

Department of Automatic Control

Robot Control and Computer Vision
for Automated Test System
on Touch Display Products

Ragnar Wernersson

MSc Thesis
ISRN LUTFD2/TFRT--5967--SE
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2015 by Ragnar Wernersson. All rights reserved.
Printed in Sweden by Media-Tryck
Lund 2015

Abstract

The goal of this master thesis is to set up a low cost automated robotic test system
which can later be reproduced to greatly increase test coverage. Mostly through
experimental research this thesis will find good components to use and evaluate
these from a performance and cost perspective. It will also develop computer vision
algorithms needed and automation software for the final set up. The performance of
the robotics will be investigated by comparing with an industrial robot.

A modified 6000 SEK 3D-printer was selected and proved to work. The com-
puter vision was developed using OpenCV and a fully automated system with ap-
propriate resulting plots was created. Comparing with the industrial robot the setup
using a 3D-printer proved to work better because it allowed for better positioning
of the camera. It was also concluded that the selected robot system based on a 3D-
printer was capable enough and would drastically lower the space and cost from a
system using an industrial robot.

3

Acknowledgments

These people helped me a lot with my work.
Magnus Midholt, Katja Sjögren, Magnus Franzon, Marcus Numminen, Johan

Erlandsson, Björn Ståhl, Emma Andersén, Eva Ståhl Wernersson, Håkan Håkans-
son and Anders Robertsson.

5

Contents

1. Problem Formulation 9
2. Introduction 10
3. A brief history of 3D-printers 11
4. Method 13

4.1 Selection and modification . 13
4.2 Development . 13
4.3 Automation and verification . 14

5. Selection and Modification 15
5.1 Robot . 15
5.2 Camera . 21
5.3 Software . 21

6. Development 22
6.1 Final setup . 22
6.2 Robot . 23
6.3 Camera . 28
6.4 Computer Vision . 30
6.5 The Class structure . 39
6.6 Automating the tests . 42

7. Experiments 44
7.1 Identification of the robot . 44
7.2 Resolution test . 46
7.3 Robustness and quality . 49
7.4 Cost comparison . 50

8. Discussion 52
9. Conclusion 54

9.1 Final setup . 56

10. Epilogue 57

7

Contents

A. Swipe Measurement Results 58
A.1 Result files 40-400mm/s on both robots 58
A.2 Merged results different velocities 110
A.3 Multiple swipes, same velocity 114

Bibliography 116

8

1
Problem Formulation

This thesis will investigate the possibility to set up low-cost fully automated test
system for testing performance on touch display products. The goal is to increase
the test coverage but also to detect issues in new software that can cause new bugs.

The task will be to find a low cost robot which will be connected with a high
frame rate camera and a computer. The robot will perform swipes and computer
vision will be used to track and visualize data.

After a working setup has been created the tests should be compared to tests on
a more expensive professional robot.

9

2
Introduction

This master thesis was announced by the Device Driver team at Sony mobile. Sony
Mobile operates on a highly competitive market with a large product line of mo-
bile devices. All of these devices often consist of slightly different hardware builds
within the models them self and have various software branches. These branches
can vary in between both countries and operators and updates are pushed daily. In
such an environment it is very important with good testing performance and quick
feedback. To be able to verify and test all of this, good automation is needed for
testing and presentation of measurements.

An automated test system will be set up which will measure time-delays in
swipe moves using a robot for swiping and a camera for collecting input. Computer
vision will then analyze the input and will be used to visualize the data.

By using a robot it has the benefit of actually testing on the final product simi-
larly to the user experience. Many automated tests are done at a software basis but
that does not, in any way, guarantee that the outcome will be the same on the final
hardware. The camera provides an external measurement source so that the collec-
tion of data does not interfere with the performance of the tested product itself.

A few requirements has been set out by Sony; the first being that the system
should be able to handle swipes from 40-400 mm/s on a variety of display sizes.
The second requirement is to keep as low cost as possible. This basically means
that professional robots are out of the question and that the software should stick to
open source as much as possible. Test systems using professional robots are often
very expensive and can still usually only perform tests on one product at the time.
Using low cost, smaller robots, will allow for many systems working in parallel
instead.

A final goal is to have all of these system connected to Sony’s server-based
testing frame-work. This way, the test jobs can be triggered automatically on new
software builds, which will give immediate feedback to the developer.

10

3
A brief history of
3D-printers

3D-printing was first discovered in 1984. It was discovered by Charles Hull and used
UV light the cure photo polymers layer by layer by layer to create a 3D object. This
method is called stereolithography. Two years after this discovery Hull started the
company 3D systems which still operates. 3D systems released the first commercial
printer in 1992. In these earlier stages of 3D printing the results were not sturdy
enough to be used as final products but more often used as prototypes [National
Inventors Hall of Fame Accessed: 2015-03-25].

As improvements where made during the 90s to improve the output quality, the
application also expanded into other areas and in 1999 the first organ was created
with the help of 3D printing. In 2002 a functional kidney was printed and 2010
scientists were able to print functioning blood vessels [Harris, Accessed: 2015-03-
25].

Companies have of late also started to adapt 3D printing for creating advanced
metal components. GE has recently started to develop fuel injectors for their jet en-
gines using 3D-printing. To do this a cobalt-chrome powder is applied layer by layer
[Freedman, 2011]. In Lund, Sweden, Arcam is a company that applies 3D-printing
with metal components for both orthopedic and aerospace technology [Arcam AB
Accessed: 2015-03-25].

As of late years 3D-printing has expanded massively for commercial use be-
cause the prices have dropped drastically these last years. 2007 was seen as a break-
ing point for 3D-printers when the first printer for a price below $10,000 was intro-
duced to the market by 3D Systems. Today 3D-printers can be found for as low as
$100 [Peachy Printer Accessed: 2015-03-25]. The low-cost revolution was said to
have been started by Reprap which is a community project for free software using
3D-printing [reprap.org Accessed: 2015-03-25]. This has also created a entirely
new hobby which has spread very fast. At the time of this report (January, 2015)
there are 192 live projects involving 3D-printing at the crowd-funding community
Kickstarter [Kickstarter Accessed: 2015-03-25]. This is the reason for why a 3D-

11

Chapter 3. A brief history of 3D-printers

printer is the central tool for this master thesis it is because it provides an affordable
open-source tool.

12

4
Method

4.1 Selection and modification

The cost and limitations need to be carefully evaluated for each component in the
lab setup. The time needed for each part of the project also needs to be considered
as there is a time limit for the thesis and many components need to be put together.
The amount of modifications needed can for example effect both time and cost. For
a robot and a camera these parameters are quite quantified but it is also important
to consider when selecting software to use. As an example; open-source is free but
might be less optimized or suffer from more bugs. When selecting software, the
effect on dependencies is also good to consider. It is often possible to find down-
loadable solutions but when ever a new dependency id added, more work is required
when setting up new systems and more issues can occur when these conflict or get
outdated.

4.2 Development

When the equipment and software to use have been selected, a development strat-
egy has to be set up. First, what is required from each component to achieve the
final result and if they live up to these requirements need to be considered. In the
hardware case, if the product specifications does not meet the requirements, then
some modifications and validation should be done at an early stage to investigate
if it is possible to improve the performance. Sony want swipes up to 400 mm/s.
However, it is most likely not the velocity but rather the acceleration that can prove
to be an issue. If the display is small a high acceleration will be needed to be able to
reach the desired velocity. A larger display may not need as much acceleration but
will probably be heavier and the added weight will put more pressure on the robots
motors to accelerate.

The second step will be to consider adding limitations for the user to prevent
damage or other issues when other users start to use the system. For the robot this
can be limitations for the user to avoid performing dangerous moves or push the

13

Chapter 4. Method

robot too much. For the computer vision software some sort of requirement on the
set up and how much noise which will be possible might be of interest.

During development, some effort should be made to allow for adding of new
tests. This means creating a class structure which allow for new tests to be added
without having to change the source code in any significant way.

Testing during development
During development a lot of testing is done continuously to make sure the system
remains robust and that nothing has been broken. The robot will also need some sort
of identification testing to investigate the limitations of the robot.

4.3 Automation and verification

When each part has been developed and tested they all need to be integrated to an
automated system. What this means is deciding how proper handshaking between
the different components should work. Once proper automation is established, ex-
tensive test runs need to be done to ensure robustness.

There is a professional Epson robot at Sony Mobile, seen in Fig. 5.2. This robot
cost about 150,000 SEK and will be used as comparison with the less expensive sys-
tem. The use of this robot implements the requirement of a more versatile computer
vision software since it should handle recordings from different robotic systems.
The results of the two robots should be compared and the advantages and disadvan-
tages should be summarized.

The final verification will investigate the measurement differences inside the
same system by running multiple swipes on the same product and robot. And it will
compare this with how much the measurements differ between the two robots.

14

5
Selection and Modification

5.1 Robot

Introduction
For robot selection the focus will be on low cost 3D-printers by searching web-
stores, kick-starters and forums as well as communicating with the department at
LTH. These printers can be found for very reasonable prices and should naturally,
due to their constructed purpose, have high precision and be able to work for long
periods of time. Many 3D models take hours to print and can have very small details.

Quantifying the requirements from Sony Mobile, the robot should fulfill the
following criteria:

R 1: Be manufactured for a low cost.

R 2: Have good precision in XYZ-space.

R 3: Be able to run 40-400 mm/s velocities. This means, together with a decent
acceleration at least in XY-plane.

R 4: Have long life-time.

R 5: Have working area large enough for 10" displays.

15

Chapter 5. Selection and Modification

Final choice

Figure 5.1 Vellman K8200 3D-printer [Velleman Accessed: 2015-03-25]

Name K8200 3D-printer
Manufacturer Vellman

Cost 5500 SEK (March 2015)
Stepper motors 4 Wantai 42BYGHW811 (NEMA 17)

Nominal mechanical resolution X and Y: 0.015 mm Z: 0.781 µm
Printing speed 120 mm/s(typical) 300mm/s(maximum)

Max printing size 20cmx20cmx20cm

The choice of robot to use is a modified Velleman K8200 3D-printer seen in Fig
5.1. The printer has two stepper motors that moves a plate containing the sample, a
third stepper motor moves the bar with the filament melter up and down and a fourth
stepper motor to control the flow of the filament. The cost of a Vellleman 3D-printer
is 5500 SEK (March 2015). The printer is delivered in parts, meaning there has been
no pre-fitting of the parts what so ever. The cost per hour for building the printer
argue against this specific model, but for this thesis it gives good knowledge of
the product which can be an advantage when modifying it. The firmware for the
controller card is open source and Arduino compatible [Arduino Accessed: 2015-
03-25]. There is a support forum which has a lot of activity from both users and
developers.

16

5.1 Robot

Comparing specifications to requirements
R 1: Fulfilled.

R 2: Fulfilled.

R 3: According to the specification 300 mm/s is maximum. This is below the
requirements investigating through the community forum suggests that is
should be possible to increase the voltage over the stepper motor controllers.

R 4: There is no information of estimated life time on these specific stepper mo-
tors. However, according to a different manufacturer a standard stepper mo-
tors lifetime is 10,000 hours [Annheimautomation Accessed: 2015-03-25].
A new stepper motor will then cost 249 SEK. Replacing of straps would cost
150:-. Replacing a stepper motor controllers would cost 150 SEK while a new
controller board would cost 1300 SEK. It can be concluded that repairing the
robot should be relatively cheap.

R 5: A 16:9 10" display would result in about a 22 cm long display. This is slightly
too long for performing a full swipe. But it seem to be hard to find larger 3D-
printer in the same price range. Most of the consumer 3D-printers found are
smaller.

The fact that the K8200 uses an open source approach and that it seems to have a
serious community is definitely also an advantage. Velleman markets the product as
the "most hackable, tweakable and moddable 3D printer".

Comparing with the EPSON robot
Except for the price difference, there is a fundamental difference between the two
robots in how movements are performed. As explained above, the 3D-printer moves
the plate on which the sample is mounted while the arm is stationary. The Epson,
see Fig 5.2, on the other hand, moves the arm itself and keeps the sample stationary.
What this means is that the acceleration will, for the 3D-printer, be dependent on
the weight of the sample while that is not the case for the Epson robot.

17

Chapter 5. Selection and Modification

Figure 5.2 Epson robot

Other solutions
There are also 3D-printers based on paralleled kinematics, also known as delta-
robot. These can be bought for about the same price using similar stepper motors
and controller board. It will operate similar to the Epson where the tool is moved and
the product is stationary which would allow faster movement because less weight is
put on the motors.

Constructing
The printer was constructed according to the manual at first, with no modifications
[Velleman Accessed: 2015-03-25], even though the actual 3D-printing properties
were not going to be needed. The reason for this was to test the printer, knowing
that it was working properly before starting to modify it. A print was made of "R2-
D2s right leg" to establish that it worked properly, see Fig 5.3. When this had been
confirmed the printer could be modified to fit the needs of this project.

It took about a week to build the printer. However, the next printer could prob-
ably be built modified straight away which would leave out some of the more ad-
vanced features.

18

5.1 Robot

Figure 5.3 First and only print. R2-D2s leg.

Parts are that are not needed include the extruder with stepper motor, heating
plate and fan. These are some of the more advanced parts and building time would
probably be less the second time since these could be excluded straight away.

Mechanical modifications
The whole extruder part is removed. This includes the filament melter, fan and step-
per motor. It leaves the top bar without any device. Instead a Z formed custom made
aluminum part is mounted, see Fig 5.4. At the end there is a hole where a metallic
cylinder is places. The hole is slightly oval so that the cylinder will not spin. The
cylinder works as swiping finger it can move freely up and down and will only have
its own weight pressing towards the display.

Figure 5.4 Arm for finger

The heater bed is removed and exchanged with a new fixture plate, Fig 5.5.
The plate has incisions on the edges, parallel to each side, where three small blocks
(1cm3) are fixed. Two are put on the long side and one on the short side of the
phone. It also has a long block compensated with two smaller blocks to tighten the
phone from the other side. This design allows a flexible mounting of the product
and provides easy connectivity of USB and other input cables. Since the location
of buttons and USB connector varies in between models it is important to have this
flexible mounting.

19

Chapter 5. Selection and Modification

Figure 5.5 Fixture to fasten product

Software modification
Information of how to update the firmware as well as a download for the firmware
can be found in the manual [Velleman Accessed: 2015-03-25]. There is also a git
repository for the firmware [Marlin Accessed: 2015-03-25], but it should be kept
in mind that changes may exist between the official Git and the download from
Velleman, since it is under a GPL license. The printer uses an Arduino board called
Marlin and requires the arduino software from [Arduino Accessed: 2015-03-25] to
upload new firmware to the printer.

Most of the basic modifications can be found in the Configuration.h file. To be
able to communicate at all with a Linux machine, the baudrate has to be changed
from 250000 to 115200.

#define BAUDRATE 115200

When the filament melter is removed the file Temperature.cpp has to be modi-
fied. Since the printer is programed to do temperature tests these have to be disabled.
The following code is commented.

for(unsigned char e = 0; e < EXTRUDERS; e++) {

if(current_raw[e] >= maxttemp[e]) {

target_raw[e] = 0;

max_temp_error(e);

#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE

{

Stop();

}

#endif

}

20

5.2 Camera

if(current_raw[e] <= minttemp[e]) {

target_raw[e] = 0;

min_temp_error(e);

#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE

{

Stop();

}

#endif

}

}

#if defined(BED_MAXTEMP) && (HEATER_BED_PIN > -1)

if(current_raw_bed >= bed_maxttemp) {

target_raw_bed = 0;

bed_max_temp_error ();

Stop();

}

#endif

5.2 Camera

The camera selected by Sony is a Ximea MQ003CG-CM [Ximea Accessed: 2015-
03-25]. It has VGA resolution, 500+ frames per second (fps), 1/3" CMOS, Global
Shutter and color. The price is around 9,000 SEK.

A standard mobile display has 60 Hz update frequency which would result in
about 8 points of measurement for each frame-update using 500 fps. This will give
good time resolution and should leave room for the possibility of performing tests
on displays with 120 Hz. A drawback for the camera could be its low image resolu-
tion. Another issue is that the camera does not come with any recording software.

5.3 Software

To keep with the goal of using low cost tools, OpenCV [OpenCV Accessed: 2015-
03-25] is selected as the computer vision analyzing tool. OpenCV is free to use and
have good online documentation. It has a big community which makes it easy to
find guides, tips and ideas.

OpenCV has support for C, C++ and Python. This project will be written com-
pletely in C++ because of previous experiences and OpenCV support. To be able to
print output and to visualize results in a good way, the program will store the result-
ing values in a .tex file and compile with pdflatex together with the pgfplots-package
[PGFPlots - A LaTeX package to create plots Accessed: 2015-03-25].

21

6
Development

6.1 Final setup

The following images, Fig 6.1 and Fig. 6.2, will give a brief overview of how the
final setup will look like. Since there are two different robots that will be used, it is
important to understand the physical differences between these to better grasp some
of the decisions made during the development phase.

Comparing the different setups

Figure 6.1 Epson robot set up. Touch finger, camera and phone have been marked
red.

22

6.2 Robot

Figure 6.2 K8200 robot set up. Touch finger, camera and phone have been marked
red.

The 3D printer moves the sample itself. Hence the amount of acceleration possible
will be dependent on the weight of the product. This could prove to be an issue for
heavier products such as tablets. This is not an issue on the Epson robot since it will
instead move the swiping finger over a stationary product.

The benefits will be reversed when considering the camera. Unless the camera
is mounted on the robot arm of the Epson, it will have to be positioned in a way
so that the entire display is in view. This means that a larger display will require
the camera to be positioned further away, in other words, worse resolution. The 3D-
printer moves the product under a stationary finger and the area where the finger
impacts is what is of interest for the camera. This means that the camera can be
stationary and still get the entire swipe on the recording. The display will move from
top to bottom through the view of the camera and so the entire swipe is covered with
the same resolution independent on the size of the product.

6.2 Robot

Communicating with the printer
Stable communication is crucial for this project to work. The printer uses an open
source Arduino-based controller-card called Marlin [Marlin Accessed: 2015-03-25]
It uses a standard USB 2.0 cable for connection.

Behavior The printer sends and receives strings always ending with new-line
"\n". If the controller card doesn’t recognize the command sent, it will reply with
"Unknown command" and echo the string sent, after which it will continue reading.

23

Chapter 6. Development

For most commands, the printer will reply with an "ok\n" when the command has
been added to the buffer. Commands like G28(go home) or M400(wait for moves
to finish), also known as blocking commands, will send "ok\n" only when the
command has finished executing. There are also special commands that will return
unique results such as M114(get position). A list of commands can be found in the
G-code wiki [reprap.org Accessed: 2015-03-25]

Communicating software The base communication class is simple. It provides
the functions needed for communication but does not provide any constraints or
other safety checks. The printer itself has mechanical stopping switches and a
knowledge of its position so that it will not move outside its area. However, since
it uses stepper motors it cannot actually really know its own position, it can for
example be set astray by an external force.

The idea with the communication software is that another layer will be added
on top of the base communication which will provide safety checks and constraints.
The communication software is almost entirely C-code but for easier integration it
is implemented as a C++ class. The communication software has been developed
using "Serial Programming Guide for POSIX Operating Systems" [Sweet, 2010].

The termios class is used for serial communication. Properties and baud rate can
be set for correct communication. In this case using line by line communication,
also known as canonical mode, should be applied with echo disabled. Also baud
rate should be set to 115200 on a Linux machine.

struct termios options;

...

//Get attributes

tcgetattr(fd ,& options);

cfsetispeed (&options , B115200);

cfsetospeed (&options , B115200);

// Enable the receiver and set local mode ...

options.c_cflag |= (CLOCAL | CREAD);

//Set the new options for the port

options.c_lflag |= (ICANON | ~ECHO | ECHOE);

options.c_cflag |= CS8;

//Set attributes

tcsetattr(fd , TCSANOW , &options);

...

The port should be opened as read and write. Reading is set to blocking mode using
the following command:

fcntl(fd, F_SETFL , 0);

This will make sure that every read command will block until finished reading.
Sending strings to the printer is possible with write(PORT,CHAR*,CHARLENGTH).

int robot_communication :: writeGCode(const char *gcode)

{

int n = write(fd, gcode , strlen (gcode));

if (n < 0)

24

6.2 Robot

{

fputs("write() failed !\n", stderr);

return 0;

}

return 1;

}

To ensure proper communication a function will check every char sent from the
printer. The function only returns when a "ok\n" has been read.

void robot_communication :: waitForOk ()

{

char ch1 [1];

while (1)

{

read(fd,ch1 ,sizeof(ch1));

printf("%c",*ch1);

if(*ch1 == 'o')

{

read(fd,ch1 ,sizeof(ch1));

printf("%c",*ch1);

if(*ch1 == 'k')

{

read(fd,ch1 ,sizeof(ch1));

printf("%c",*ch1);

if(*ch1 == '\n')

{

break;

}

}

}

}

}

While writeGCode and waitForOk are private functions, command is implemented
as the main public communication function. The function writes the sent in string
to ttyUSB, waits for OK and returns 1 if successful or 0 if not.

int robot_communication :: command(const char *gcode)

{

printf("%s", gcode);

if(! writeGCode(gcode))

{

printf("Couldn 't send %s to Marlin\n", gcode);

return 0;

}

waitForOk ();

return 1;

}

A begin function opens up the port and sets initial properties such as units to mil-
limeters, absolute positioning, feed-rate and acceleration.

Also different functions are created for easier direct control of the printer.
These takes an input value of float or int format and transforms it to a cor-

25

Chapter 6. Development

rect G-code string. Similar functions implemented are moveX, moveY, moveZ,

moveXY, setFeedrate, setAccerleration, getPosition. For example:

int robot_communication :: moveX(float x)

{

char *gcode , *temp_str;

/*Get size of string */

int size = 5;

int temp_i = x;

size += getStrSizeOfInt(temp_i) + 4;

/* Allocate memory */

gcode = char[size]

/* Create G-code string */

strcpy (gcode ,"G01 X");

floatToString(x,& temp_str); // allocates memory and

creates string from float with 2 decimals.

strcat (gcode ,temp_str);

strcat (gcode ,"\n");

/*Free memory and send command to printer */

free(temp_str);

int tmp = command(gcode);

return tmp;

}

The destructor will close the port opened by the begin function.

Identification
There is no need for a full system identification of the robot since it comes with the
product. It can, already from its original state, move accurately between coordinates
in proper SI units and be given different velocities and accelerations. The original
setup is however constructed for lower accelerations, it is limited to 3000 mm/s2 in
the firmware, so it is desired to investigate a heavier load. As high acceleration as
possible is of interest in this project since swipes up to 400 mm/s2 will be performed.
Higher accelerations will put more load on the stepper-motors and since the K8200
moves the product the amount of acceleration possible will depend on the product’s
weight. A visualization of acceleration and deceleration time can be seen in Fig.
7.1. Also, since the X-motor carries the Y-motor, the maximum accelerations will
differ depending on the direction of the movement. To evaluate the printer limits
two test are performed:

• Acceleration test using different voltage and weights. See Fig. 7.1

• Acceleration test using final mechanical modifications with fixed voltage. See
Fig. 7.2

These tests are explained in full in Chapter 7 (Experiments).

26

6.2 Robot

From the tabular data in these tests, a simple linear model is constructed to
saturate the acceleration. Since the amount of acceleration possible differ in X- and
Y-direction, trigonometry is used to calculate the maximum acceleration in each
move.

Compensating for diagonal movements The acceleration tests performed lead to
assume that some function might be needed to restrict the acceleration depending
on the angle of the move. A swipe in straight X- or Y-direction would of course be
capped by the maximum possible acceleration in that direction. However for moves
that are performed diagonally the maximum acceleration should be decided by the
angle to either axis.

Simple trigonometry tells us that the acceleration for vector v̈ in x- and y-
direction is given by the projection from v̈ to the respective axis:

ẍ = cos(θ) · |v̈|
ÿ = sin(θ) · |v̈| (6.1)

By considering the maximum acceleration allowed on each axis, the maximum al-
lowed total acceleration v̈ can be known. The following pseudo code describes the
function.

dx = x_prev - x_curr

dy = y_prev - y_curr

get x_max_acc // weight dependent

get y_max_acc // weight dependent

sin_theta = |dx|/|dx+dy|

cos_theta = |dy|/|dx+dy|

acc_max_y_trig = y_max_acc/cos_theta

acc_max_x _trig= x_max_acc/sin_theta

if(acc_max_y_trig > acc_max_x_trig)

return acc_max_x_trig

else

return acc_max_y_trig

If the returned value is lower than the current acceleration used, the acceleration
should be capped to the returned value.

A quick verification test is set up performing 10 backward and forward swipes
over the entire working area. Each swipe with an increasing angle from being par-
allel to the x-axis to being parallel to the y-axis. The idea is to use the linear models
created in the acceleration test together with trigonometry to, for every move, cal-
culate the maximum allowed acceleration. That way printer would have a built in
saturation function. This also means that the product weight would have to be in-
cluded as an input. This test is not described in Chapter 7 (Experiments), as it is
merely a simple verification of the above model.

27

Chapter 6. Development

Overlaying class
With the identifications made in the previous section an overlaying class called
robot_free_move is created. This class extends the communication class and uses
the constraints measured so that safe use can be guaranteed by sending in the prod-
uct information during initiation.

Integrating the constraints The acceleration constraints are implemented in this
class. By comparing previous with current coordinates the acceleration is capped
depending on the angle as explained earlier in this chapter. Also there is a function
to warn when going outside the area of the display. It also performs a few "safe
Z-moves" to avoid the risk of ramming the finger into the product.

Free run The class has a function for direct control of the robot using keyboard
input which can be used to hard code tests. It will respond to inputs for moving
around alongside xyz-axes. The tests are created by storing points, feed-rate and
acceleration changes and pauses. It returns a vector with the G-code corresponding
to the test created. During the creation of these tests, it is possible to test run the
stored coordinates and to remove or to regret added coordinates.

During the test creation mode the following operations are possible:

• Change step size. Sets the length of each move.

• Move in any direction the length set, XYZ.

• Move to specific coordinate.

• Store command, point/feed-rate/acceleration/pause.

• Remove stored command.

• Run stored commands.

• Quit and save created test.

Running tests All tests run through this class to guarantee that the limitations are
followed and to minimize the risk of injuring the sample product.

6.3 Camera

Recording software
The recording software for the camera is written by Björn Ståhl at the CI team
at Sony Mobile. It is a simple C-program which uses a library included with the
camera. Inputs can be sent in to change resolution, input frame rate, output frame
rate, length, gain and filename.

The program also provides a list of the time-stamps for when the shutter closes.
This provides the exact time within millisecond precision of each frame.

28

6.3 Camera

Recording to RAM A lot of data needs to be stored very fast when recording in
high frame rate. To avoid issues such as sudden jumps in the output file the video
can be recorded straight to RAM. By using the Linux command mount, a disk is
created on the RAM where the file can be stored. After recording to RAM-file, it
can be copied to the hard drive. The specific command used to mount on RAM-disk
on this project is:

sudo mount -t tmpfs -o size=2G tmpfs place/to/mount

A modern computer with a SSD disk is a good investment since it may relive the
use of mount so that all files might be recorded to the hard-drive directly.

FIFO - pipelined communication The recording software used is standalone.
Starting a new recording requires about a second for the camera to get ready. To
get as optimal handshaking between the robot and the camera the code is modi-
fied by adding named pipes. This is implemented using methods described in "The
Linux Programmer’s Guide: 6.3 Named Pipes (FIFOs - First In First Out)" [Goldt
et al., 1995]

After the robot is in position ready for its move the main program will open a
FIFO file as read and wait for response before continuing. The recording software
is then started which will open the FIFO file created as write. As soon as it is ready
to start capturing images it will write to FIFO and the main program will continue
with the robot moves.

The robot control and camera recording runs in different threads. After starting
a swipe and a recording the threads are synchronized.

Calibration software
A program called streamViewer is included with the Ximea camera and can be
used to get a live feed from the camera directly. This program is used for calibrating.

Support for Ximea cameras can be added when installing or upgrading OpenCV.
This allows the user to open the camera as a live stream in OpenCV. This can be
used to create more advanced calibration tools. There seem to be issues with sending
instructions to the camera through OpenCV, so it is currently not an ideal alternative.

Since there is an already working live feed solution bundled with the product,
adding OpenCV support would add even more dependencies to the project and have
therefore been disregarded. If a more advanced calibration program is decided to be
needed in the future, this could be an option.

Positioning and distortion
Positioning When using the 3D printer the camera is stationed above the finger
as seen in Fig.6.2. The Epson setup has the camera positioned from the side with a
slight downward tilt as seen in Fig.6.1

Distortions There are mainly two kind of distortions that effect the results. Per-
spective distortion and lens distortion. No algorithms are introduced to compen-

29

Chapter 6. Development

sate for distortions. Fig.6.3 shows that the effect on distances is noticeable but very
small. The perspective distortion is mostly effected by the positioning of the camera,
see Chapter 8 (Discussion) for thoughts regarding this.

Figure 6.3 Lines are drawn with equal distance, green representing center of
screen. The lines seem to follow the 5 mm pattern well, until the last centimetre.

Resolution
There are three aspects to look at. The camera resolution, the time-stepping resolu-
tion and the display resolution of the product. It is important to investigate which
aspects will be the limiting factor depending on the setup. This is important because
it is preferable if the camera is used in a way so that the quality of results are maxi-
mized. In Chapter 7 (Experiments) calculations are made on resolution and camera
positioning. These results are verified by studying the quality of two different cam-
era positions.

6.4 Computer Vision

Introduction
No real-time computer vision is required. The goal is to do as robust tracking as
possible and the software should be able to handle the various physical differences
between products (tablet versus smart watch). It should also work on both the Epson
and the 3D-printer setup.

Brief history of the algorithm A first approach iterated through the video only
once. It analyzed frame by frame, found the dots to track and also had an intelligence
to sort the tracked dots. This ended up in a lot of constraints and if-statements to
handle all the possible noise. Finally this approach was canceled.

A new approach is introduced where the measured input is evaluated a couple
of times instead of per frame, which is unnecessary when a real-time approach is
not needed.

The Android App
The purpose of this app is to provide an easy tracking of the display response and
at the same time provide a solution of converting the distances from pixels to mm.

30

6.4 Computer Vision

The app will print a rectangle on the display as soon as it senses a touch. The
rectangle can be modified in size and offset from the touch point. It will also print
reference dots on a distance of twice the offset from the touch point. The reference
dots are constant in position and distance from each other and serves two purposes
for the 3D-printer and one purpose for the Epson. The 3D-printer moves the prod-
uct which means that the point of touch will always be centered. This means that
only the relative distance for the object to track will be shown. By tracking the
movements of reference dots the absolute distances can be calculated. The second
purpose is to transform pixel lengths to SI units. The Epson uses a stationary prod-
uct with a moving swiping finger and so only the second purpose is needed. An
example of the app can be seen in Fig.6.6

In android it is possible to call Metrics [Android, DisplayMetrics Accessed:
2015-03-25] which provides information about the screen. In this app the dpi.x,
dpi.y and screenHeight are of interest. By using the provided dpi everything that
is drawn on screen can be converted to millimeters. This means that the distance
between the reference dots will be the same on any product and by calculating
these differences in the computer vision algorithm, a pixel to millimeter scaling
transformation constant can be calculated.

During the rest of this thesis, the dot following the swiping finger will be re-
ferred to as the object dot.

Tracking
Since the 3D-printer has a stationary finger the camera doesn’t need to track any-
thing else than the dots on the display to work. Only tracking the movement of the
reference dots and the object dot is needed. But tracking the robot finger is good to
detect if the robot vibrates or moves during a swipe. This is solved by using a LED
on the tracking finger. This also means that the robot can be put in an entirely dark
environment and thereby reduce a lot of disturbances. The LED was added at a late
phase and therefore a lot of example images in this report only have a rectangular
white paper on the finger (very dark).

Inputs
The velocity of the swipe should be provided from the robot. This can be and is
calculated in the computer vision algorithm but having the input provides good
comparison and can prove as a good error checking. Since the program will always
know the velocity sent to the robot it is logical to use this information.

Also the robot type needs to be sent in so that the algorithm knows if it is using
absolute or relative movements, as explained in the app section above.

Another input is the video file and the corresponding time-steps. The time-stamp
vector is used to convert frame counts to milliseconds.

From the app, the distance between the reference dots is needed as an input to
get correct distance conversion.

31

Chapter 6. Development

The Program
Differences between Epson and K8200 The same app is used for both robots.

Code wise, there is very little difference in the tracking software and none what
so ever in the post-processing software. Both robot needs the reference dots to cal-
culate lengths, while the K8200 also uses them for absolute positioning. So, during
the tracking, the K8200 version will not only store the mean distance value be-
tween reference dots but also the actual movement. Before sending the information
to post-processing these movements are added to each point.

This is the reason to why the robot model is needed as an input to the computer
vision program.

Image adjustments The image adjustments is based on the Canny function. A
Gaussian filter is first added to smooth out small noise. Canny uses the Sobel opera-
tor and is applied to detect edges. By adding threshold levels it filters out unwanted
edges outside these levels. Lastly OpenCV’s findContours function is applied. It
stores all points for each contour in a vector.

cv::Mat swipe_test :: imageAdjustments(cv::Mat frame , cv::Rect

ROI , vector <vector <cv::Point > > &contours , vector <cv::

Vec4i > &hierarchy)

{

contours.clear();

hierarchy.clear();

if(tech >1)

tech = 0;

if(tech == 0)

{

frame = turnGrayscale(frame);

cv:: GaussianBlur(frame ,frame , cv::Size (3,3) ,5);

cv::Canny(frame ,frame ,120 ,255 ,3);

cv:: imshow("Changed", frame);

cv:: findContours(frame , contours , hierarchy ,

CV_RETR_TREE , CV_CHAIN_APPROX_SIMPLE , cv:: Point(

ROI.x, ROI.y));

}

return frame;

}

Retrieve points The OpenCV function for bounding rectangles stores every vec-
tor of contours as a rectangle big enough to cover the respective contour. Rectan-
gles that are either very small or have a width which is a lot larger or smaller than
its height, are not stored (probably a line). This was developed using [Createing
Bounding boxes and circles for contours Accessed: 2015-03-25]

/*

* Detects bounding rectangles for each contour. Removes any

contour that has a

* bounding rectangle to small or to large compared to the

tracked points.

32

6.4 Computer Vision

* contours = stored contours

* boundRect = stored bounding rectangles

* constraints = if the function should remove to large

or to small contours.

*/

void swipe_test :: getRectangles(vector <vector <cv::Point > > &

contours , vector <cv::Rect > &boundRect , bool constraints)

{

if(contours.size() == 0) // nothing is tracked

{

return;

}

for(size_t i = 0 ; i < contours.size(); ++i)

{

boundRect[i] = cv:: boundingRect(cv::Mat(contours[i])

);

}

if(constraints)

{

for(size_t i = 0; i < boundRect.size() ; ++i) //

remove to small or to large bounding rectangles.

{

float tmp = boundRect[i]. height /(float)boundRect[i

].width;

if(boundRect[i]. height < 5 || boundRect[i]. width

< 5 || tmp < 0.25 || tmp > 4) //

{

contours.erase(contours.begin ()+i);

boundRect.erase(boundRect.begin()+i);

--i;

}

}

}

}

A rectangle in OpenCV is stored as a point representing the upper left corner coor-
dinate and its width and height. The getRectangle function is performed in every
frame. All the rectangles are stored in a vector with the same size as the amount of
frames, each index contains the corresponding rectangles retrieved for that frame.

A global matrix and a global array is created. The matrix has the same dimen-
sions as the width and height, in pixels, as the frame, each index representing a pixel
coordinate. The array has the same dimension as a column of the matrix, where each
index in this array represents the sum of each line in the matrix. Iterating through
each frame, every rectangles found pixel position is stored in the matrix and in the
line sum array by increasing that coordinate with 1. For example, a rectangle found
in position (5,6) will result in matrix[5][6] += 1 and array[6] += 1.

After all the frames have been analyzed there will be a vector containing, for
each frame, a vector with all rectangles found in that frame. There will also be
a matrix containing the amount of points found in each respective pixel over the
entire clip. And an array containing the sum of each point found in the respective

33

Chapter 6. Development

line over the entire clip.

Normalizing, removing noise and merging After the points have been retrieved,
it has to be decided which points that are of interest. Knowing that all swipes are
performed parallel to the robot’s X-axis, areas with a high line-sum should be of
interest. Having a high line-sum either means that it should be points to track or that
there are stationary noise on those lines. Random noise should, on the other hand,
be easy to avoid since they should not effect the line sum very much. The following
steps are performed for selection and noise reduction.

The column vector containing the line-sums is normalized by dividing with the
largest sum. All values less than 0.01, meaning a sum less than 1 percent of the
largest, is set to zero and considered as noise.

Since the tracking dots covers more than one line, areas of interest are created
by merging clusters of lines that have a high sum and lies next to each other.

Each area of interest is stored in a container with 5 values containing:

• Y-index of the highest line-sum in the respective area.

• The highest line-sum in the respective area.

• Start y-index of the area.

• End y-index of the area.

• Sum of all the line-sums in the area.

When there are lower line sums separating high line sums, they still might belong
to the same dots. Selected areas that are very close to each other are compared pixel
per pixel of their most dominating lines, similarly to XNOR operator. If they have
a 99% similarity, they are merged.

The three areas with the highest total line-sum is selected. The following picture
shows a swipe. Red crosses are tracked dots, green lines are selected areas, while
purple lines are areas that are disregarded.

Figure 6.4 Before removing unwanted points. Green areas will be stored, purple
will be discarded.

34

6.4 Computer Vision

Figure 6.5 After removing unwanted points.

Frame-wise points selection The three areas of interest selected, represents the
three levels of points to track. The point from the finger is the top line. The object
square following the swipe will be in the middle and lastly, the reference points,
which will be the lowest.

After these three areas have been decided, the algorithm iterates through the
vector containing all the bounding rectangles for each frame. The bounding rect-
angles are sorted in three new vectors, one for each area of interest. These vectors
also have one index per frame. If there are no bounding rectangles found in the re-
spective frame and area, a rectangle with negative coordinates is stored instead. The
vector that stores the reference points may store several points per frame. The other
areas should only store one point per frame. If there are several points in these two
areas found, the one closest to the swiping direction is stored.

When all the frames have been iterated through, the mean width of each area’s
rectangles is calculated.

There may occur issues where one rectangle is seen as many small rectangles
instead. This is not an issue since it is the position and not the size that is important.

Calculate on reference dots When using the Epson robot, only the distance be-
tween the reference dots is of interest. This is done by iterating through all the stored
reference dots and calculating the mean distance.

The 3D-printer also calculates the mean distance the same way. But it also need
to add the movements of the reference dots. This is done by tracking the reference
dots closest to the swiping direction.

When a new reference dot enters, the algorithm have to adjust. By taking the
newly entered reference dot and comparing it to the second closes, the distance is
removed as an offset.

It is important, when tracking the reference dots, to track the corner opposite
to from where they enter the video. In the image below, if the left corner would be
tracked, the reference dot would look stationary until it has entered the screen fully.
By tracking the right side, the correct movement is tracked.

35

Chapter 6. Development

Figure 6.6 Looking at the bottom left dot. If the left corner is what is being tracked
the following situation will make the leftmost reference dot appear stationary. When
adding the width, the right corner will be tracked instead and the dot’s movement
can be appended correctly.

Debugging It is possible to use different debug modes when running the script.
This is useful when checking for errors or to determine if a deflecting behavior is
because of issues with the product.

Debugging mode 1 will allow the user to specify threshold levels for the edge

36

6.4 Computer Vision

detection. It will also print out all tracked points and selected areas as shown in Fig
6.4 - 6.5.

Debugging mode 2 will also add a step by step iteration through the video file,
printing out the tracked dots as seen in Fig 6.6.

Post processing
The tracked points are sent into the post-processing software together with the mean
reference dot distance.

Transforming values The values sent in are rearranged so that they start from
zero. By dividing the reference dots distance with the sent in actual distance in mil-
limeter, a transformation constant from pixel to millimeter is retrieved. After these
calculations, all the robot and object points are transformed from pixel position
to millimeters and by using the time-vector created by the recording software, the
times-steps are transformed from frame indexes to actual milliseconds.

Calculating results

Mean step-vector When all the values have been transformed to proper SI units
the first step is to create a per frame step-vector, since there will be many measure-
ments per frame. A 60 Hz display will have around 8 measurement points per frame
when recording in 540 fps. It is practical to have a vector that takes only one mean
measurement per frame step.

The theoretical distance between frame updates can be calculated to

velrobot

f reqdisplay
(6.2)

However this distance can vary quite a lot depending on frame-drops, noise, decel-
eration and acceleration or not syncing with the touch input (a touch display reads
touch input in 90 Hz). A relax constant, a floating point number between 0-1, is
introduced. This constants is multiplied with the theoretically calculated distance.
The relaxation constant is determined by guessing and adjusted by empirical re-
sults throughout the project. The relax constant varies depending on swipe speed,
where lower speed is harder to differentiate. It also has a lower value during the
acceleration and deceleration phase. At the time of this report it has the following
values:

relax = 0.6

if (distance_from_start <= 5 || distance_from_end <= 5)

{

if (robot_speed > 100)

relax = 0.2

else if (robot_speed <= 60)

relax = 0.4

else

relax = 0.3

37

Chapter 6. Development

}

else if (distance_from_start <= 10 || distance_from_end <= 10)

{

if (robot_speed > 250)

relax = 0.4

}

The theoretical time on each frame is equal to

1
f reqdisplay

(6.3)

It should not be possible for the frames to update quicker, only slower, than the
displays update time. But if measurements are missed there can be occasions where
the updates can seem shorter, thus a relaxation constant is needed here as well. It is
during the time of this report set to:

relax_time = 0.7

The position value of the step-vector is calculated from the mean value of all the
position measurements in that step. The time value is taken from the last measure-
ment.

Linear regression and standard deviation The created step vector is used to cal-
culate the mean and standard deviation for step sizes of frame updates, both in time
and distance. [Blom et al., 2010]

Linear-regression is used to get the line-equation for the robot and the object
respectively. These line-equations give the velocities of the swipes which can be
compared with the actual robot speed.

Relative distance Two vectors that plot the relative distances are created. One
plots the relative time distance between robot and object. The other plots the relative
length distance between robot and object over time.

Final output A .tex file is used as template to create a PDF with the results. The
file is compiled with pdflatex and uses the package pgfplots for graph construction
[PGFPlots - A LaTeX package to create plots Accessed: 2015-03-25].

The first plot will draw the absolute distance over time. This plots all the robot,
object and step-vectors measurement points. It also plots the linear-regression mod-
els for the robot and the object. The second and third plot print the relative distances.

Below the plots, the measurement values are printed. Average time-step, calcu-
lated velocities, initial time for reaction and median time and distance offset.

Please refer to Appendix A for final results.

Warnings During calculations, results that appear odd in different ways are
printed out as warnings. These are added to the end of the PDF. Currently the fol-
lowing warnings exists:

38

6.5 The Class structure

• 0 INIT LOW: If initial response time is very low compared to mean time
delay. Usually a result of the post-processing having issues determining the
first frame updated.

• 1 INIT HIGH: If initial response time is very high compared to mean delay.
Could occur from the same reasons as short initial time or be an effect of
frame drop or phone being slow at returning from inactivity.

• 2 VEL DIFF: If the calculated velocity differs a lot from the commanded.

• 3 REFDOT: If the computer vision was not able to distinguish the reference
dots, no pixel to mm conversion is done.

• 4 TIME STEPS DIFF: A standard display has a 60 Hz refresh rate. This
warning appears if the amount of found frame drops differs too much from the
calculated amount. This can be an effect from frame drops or the algorithm
having trouble finding the frame updates.

• 5 AVERAGE DISPLAY UPDATE LOW: If the average display update is
lower than 60 Hz (16.6 ms). This should not happen so it usually means that
the algorithm is having trouble.

• 6 AVERAGE DISPLAY UPDATE HIGH: If the average display update is
higher than 60 Hz (16.6 ms). This can mean that the phone suffer from frame
drops.

• 7 NOT FROM STATIONARY: If the recording starts in the middle of the
swipe.

• 8 WARNING FRAME DROP: If a frame is more than twice as long as it
should (60Hz) it is considered as a frame drop. It is important to know that
the touch input is sampled in 90 Hz and is not synced with the display. So this
means that an "unlucky" touch event could actually take 16.6 ms + 11.1 ms =
27.7 ms, in other words almost twice the display update.

• 9 WARNING STATIONARY ERROR: If the tracking object passes or stops
before the finger, and if this distance is large, this warning appears.

Some of these warnings display additional data as well.

6.5 The Class structure

This section explains how the previous chapters are linked together for a final test
system. This section can be seen as optional, and is meant for those interested in
understanding the implementation more deeply.

39

Chapter 6. Development

There are three runnable programs in total. ./configure_robot, ./coyote_run
and ./coyote_cv. The configure_robot is used to add a new or edit an existing
product, and it also adds and creates tests related to these products. The coyote_cv

program performs the computer vision and plots the results. The coyote_run

combines all the classes and runs the full automated test.

The structure

Figure 6.7 The class structure. Red border is standalone program. Blue borders are
runnable classes.

Fig. 6.7 shows the architecture where red border is standalone program and blue
borders are runnable classes.

Robot Communication and Robot Free Move have been explained in Chap-
ter 6.2 (Robot) . The communication class takes care of the direct communications
to the Arduino card while Free Move is the overlaying class which adds constraints
and allows for running and creating tests.

Coyote cv and Post processing is explained in Chapter 6.4 (Computer Vi-
sion).

Xiqrec is the recording program explained in Chapter 6.3 (Camera).

Configure product
This is used to add new or edit existing products. The program uses Robot Free
Move to create new hard coded tests, as explained in Chapter 6.2 (Robot). Config-
ure product is used to store information on products and corresponding test cases.
Whenever a product is created or updated it is stored in a .conf text file so that it can
be loaded at any time.

When a .conf file is loaded the information is stored in a product class. The class
contains all the needed information of the product as well as Test classes. The test

40

6.5 The Class structure

classes are basically containers containing init, main and end list. Each being a list
of strings with G-code commands.

Running Configure Prouduct provides the following options: 1. Add product, 2.
Edit existing product 3. See list of existing product, 4. Play with the robot or 0. Exit.

Add product
Adding a product will first ask for the name of the product and then step by step ask
for the physical information to be added. Everything is stored in a .conf file.

Edit existing product
When this option is selected the user will select a .conf file. Whenever the user
chooses to save and exit the old .conf file is over-written. Running Edit exiting
products gives the following options: 1. Change constants, 2. Delete test, 3. Add
test, 4. Run tests, 5. Delete product 9. Save and exit or 0. Exit without saving.

Tests
Every product contains a list of tests associated to that product. The class contains
information about the test: name, type and if a camera is needed. It also contains
three vectors init, main and end. The init vector sets up the test. The main vector
performs the test itself and should be loopable. The end vector restores the changes
made during the test.

Create Test Class
Many tests can be calculated automatically by knowing the product’s measurement.
These are generated for the product every time it is loaded and have a separate
category from the hard-coded tests.

The Create Test Class generates the automated tests.

The .conf file
The products are stored in a .conf file. The file has the same name as the product,
always using large capitulation. The first part of the file defines all the measurements
and constants needed.

#DEFINE CONST

NAME = LUMIA

HEIGHT = 80

WIDTH = 50

RESY = 800

RESX = 480

DEPTH = 10

OFFSETY = 20

OFFSETX = 7

WEIGHT = 141

FREQ = 60

#END CONST

41

Chapter 6. Development

The second part defines the tests.
#DEFINE CTEST

CT1

CT2

CT3

#END CTEST

#DEFINE TEST

T1

T2

T3

#END TEST

Under the #GCODE tag the code for the hard-coded tests are provided. "(NAME"
gives the start and ")NAME" gives the end. The different vectors are separated with
HEAD, BODY and BOTTOM. A person who knows G-code would probably add
or edit custom tests directly in the text-file which can be tested in the Configure

Robot program.
#GCODE

(T1

HEAD

BODY

M204 S3000

G01 F6000

...

G01 Z10

BOTTOM

)T1

6.6 Automating the tests

The Coyote Run class is the actual automation class. Inputs to this program are the
product name, which test to be performed, a vector with velocities and the distance
between the reference dots on the phone app.

A simple pseudo code for what the program does is as follows. Below is an
in-depth explanation of the steps.:

load_product_values_and_tests

start_robot

execute_test_initiation

create thread1 , thread2

move_robot_to_init_position

loop

{

thread1 : start_camera_rec

block_read fifo

thread2 : execute_test_main

42

6.6 Automating the tests

wait_for_threads_to_finish

run_computer_vision

store_resulting_pdf

encode_video // optional

save_video_to_hard_drive // optional

}

end_test

Initiation
The loading of values is performed through the Configure Product class. It
opens the respective product’s .conf file and loads the values explained in the test
section above in this chapter. Through the same .conf file the tests belonging to the
respective product are loaded.

During the initiation phase output folders are created as well. Every test result
will end up in the following output.

archive/DATE/PRODUCTNAME/PRODUCTNAME-DATE-TIME-VELOCITY.pdf
Right before the loop the robot starts the initial phase of the test. All the tests

are run through the Robot Free Move class.

The loop
The camera recording software is started by using a system()-call in a separate
thread. The Xiqrec program will take some time to initialize and write to FIFO
when it is ready to start recording. The main program will block until FIFO is read,
after which, the main part of the test starts in another separate thread. The time
of the recording is adapted depending on the speed of the swipe and size of the
display. The threads are then synchronized using join() so that the program will
block until both the camera recording and the robot’s movements have finished.

In the next step, the computer vision software is performed on the newly
recorded video file. The video file is still located in the RAM-memory and in raw-
format. When analysis of the video has finished and the post-processing have stored
the results to pdf, the video file is encoded and archived to x264 format to preserve
space.

Lastly the encoded video file, the pdf, and the time-vector from the recording
software is moved to the archive folder, sub-foldered by date and product name.

This loop is performed once for each index in the sent in velocity vector.

43

7
Experiments

This chapter contains all tests that have been performed during the project. The
tests have all been performed during different stages of this thesis and the order has
nothing to do with when the tests were done. Reading through the report will give
better understanding of the reason for these tests.

7.1 Identification of the robot

Acceleration Test using different voltage and weights
This test will be to determining the printer’s maximum acceleration and how the
reference voltage over the micro-controllers effects the possibility of increasing the
acceleration. A strong acceleration will waste less time on acceleration and decel-
eration and allow for greater velocities.

The X-axis is heavier loaded and will probably not be able to reach as high
acceleration as the Y-axis (the X-motor carries the Y-motor). On the other hand,
the Y-axis is probably more load sensitive because of that. The currently heaviest
product is the Z2 Tablet at 495 grams.

The test result provides the maximum acceleration achieved with different
weights. It was performed on the original heating bed plate, before the modified
fixture plate had been created (seen in Fig. 5.5).

According to the manual the recommended reference voltage on the micro-
controllers is 425mV. At the support forum there have been cases where users have
been advised to increase the reference voltage to 550mV, however going above that
is not recommended without external cooling. During this test the acceleration in
X, and Y was limited to 10,000 mm/s2 in the firmware.

Sony demands to be able to run swipes in 400mm/s.

44

7.1 Identification of the robot

Acceleration test of Vellman K8200 (mm/s2)
X-axis Y-axis

Weight 425mV 550mV 600mV 425mV 550mV 600mV
0g 4300 5500 6000 4900 10,000(MAX) 10,000(MAX)

100g 3900 5100 5800 5400 8500 10,000(MAX)
200g 3800 5000 5800 5000 9100 10,000(MAX)
300g 3700 4800 5600 4400 8500 9600
400g 3500 4500 5500 4400 6700 7800
500g 3000 4500 5200 4100 6100 7600

Table 7.1 Max acceleration of K8200 tested with different reference voltage and
weights.

To understand the result, the following will visualize the acceleration and decel-
eration time depending on acceleration and velocity.

0 20 40 60 80 100 120 140

100

200

300

400

500

distance (mm)

ve
lo

ci
ty

(m
m

/s
) 2m/s2

4m/s2

6m/s2

8m/s2

10m/s2

This has been visualized by the following calculations.

d =
∫

t

∫
t
adt =

at2

2
+ v0t +d0

v =
∫

t
adt = at + v0

(7.1)

Since motions are relative and starts from zero velocity this can be rewritten.

d =
∫

t

∫
t
adt =

at2

2

v =
∫

t
adt = at⇒ v2 = (at)2

⇒ d =
v2

2a

(7.2)

Including both acceleration and deceleration, assuming both are the same, doubles
the distance.

d =
v2

a
(7.3)

45

Chapter 7. Experiments

Acceleration test using final mechanical modifications.
This is performed on the final modified 3D-printer with the correct mounting pos-
sibilities and on actual products. The purpose is to append a simple model for the
robots achievable acceleration.

This test will perform swipes in X- and Y-direction as well as diagonal. Each
test is performed 100 times and it will only pass if there are no malfunctions on
the stepper motors. Every X- and Y-test is a back-and-forth swipe so 100 passes
accounts for 200 swipes. The diagonal test goes from corner to corner in the order
(x,y): (0,0),(1,1),(1,0),(0,1) so that 100 passes accounts for 400 swipes where half
of them are diagonal swipes.

Each test is performed three times with rest in between.

Acceleration test of Vellman K8200 (mm/s2)
500mm/s

Weight Y-axis X-axis Diagonal
Empty(0g) 11000 10000 10000 5000 5000 5000 FAIL FAIL FAIL

Z1 Compact(137g) 8000 9000 9000 5000 4500 5000 FAIL FAIL FAIL
Nexus 7(340g) 7500 8000 8000 4000 4000 4000 FAIL FAIL FAIL

Z2 Tablet(444g) 7000 7000 7500 3500 3500 3500 FAIL FAIL FAIL
450mm/s

Weight Y-axis X-axis Diagonal
Empty(0g) 11000 11000 11000 5000 5000 5500 FAIL FAIL FAIL

Z1 Compact(137g) 9000 10000 9000 4500 5000 4500 FAIL FAIL FAIL
Nexus 7(340g) 8000 8000 8000 4000 4500 4500 FAIL FAIL FAIL

Z2 Tablet(444g) 7000 7000 7500 4000 4000 4000 FAIL FAIL FAIL
400mm/s

Weight Y-axis X-axis Diagonal
Empty(0g) 10000 10000 11000 5500 5000 5500 7500 7500 7500

Z1 Compact(137g) 9000 9000 9000 4500 4500 4500 6500 7500 7500
Nexus 7(340g) 7500 7500 7500 4000 4000 4500 6500 6500 7000

Z2 Tablet(444g) 7000 7000 7000 4000 4000 4000 6000 6000 6000

Table 7.2 Max acceleration of K8200 tested with different velocities.

7.2 Resolution test

The specifications of the product can not be changed. The camera has VGA reso-
lution and 540 frames per second. Slower swipes require more from the resolution
because there will be smaller differences between frames. The following is studied
with the lowest required swipe speed, 40 mm/s, to get a worst case scenario.

Limitations from camera - Epson robot Considering the Epson model, the resolu-
tion will differ depending on the size of the product. The camera needs to cover the
entire display since the product will be stationary. A 10" tablet display will be 220

46

7.2 Resolution test

mm wide. Assuming that 80 % of the 640 pixels are used efficiently, the distance
per pixel covered will be:

220mm
640pixels ·0.8 = 0.430mm/pixel (7.4)

A slow swipe of 40 mm/s, will then result in

0.04mm/ms
0.430mm/pixel

= 0.093pixel/ms (7.5)

In other words 10.75 ms/pixel. The 540 fps will average at 1.85 ms per frame,
assuming the recording speed is constant. This means that 0.172 pixel/time-step or
slightly less than every 6th frame will actually track a movement. It also means that
a 60 Hz display, that updates every 16.7 ms will move:

1000
60s−1 ·10.75ms/pixel

= 1.55pixels (7.6)

Limitation from camera - 3D-printer Since the 3D-printer moves the product,
the camera is stationary while different areas of the product passes by its focus area.
This way, the camera can be in the same position no matter what size of the product.

To calculate how much space is at least needed, the fastest swipe and a high
delay should be considered. The fastest swipe measured will be 400 mm/s, assuming
that at least delays up to 200 ms should be measurable gives

400mm/s ·0.2s = 60mm (7.7)

This means, at least 60mm of the display is needed in view, otherwise the object dot
will move out of view. In the calculations some margin is added.

60mm
640pixels ·0.8 = 0.117mm/pixel (7.8)

A slow swipe of 40 mm/s, or 0.04 mm/ms, will then result in

0.04mm/ms
0.117mm/pixel

= 0.342pixel/ms (7.9)

In other words 2.93 ms/pixel for 60 mm range. Assuming a constant 1.85 ms per
frame time sampling, same as with the Epson robot, means 0.633 pixel/time-step.
This means that about every 2nd frame will actually track a movement. It also means
that a 60 Hz display, that updates every 16.7 ms, will move:

1000
60s−1 ·2.92ms/pixel

= 5.707pixels/ f rame (7.10)

47

Chapter 7. Experiments

Limitations from product display The resolution of the display might also be a
limiting factor when swiping in lower velocities. The interesting information to look
at in this case is the pixels per millimeter ratio of the display. This is usually worse
for budget phones or large tablet. Sonys current budget model in Sweden is the
Xperia M2 which has a 4.8" display with 960x540 resolution. The gives the display
a length of 106 mm and 0.116 mm/pixel density. A 40 mm/s swipe will then move:

0.04mm/ms
0.116mm/pixel

= 0.345pixel/ms (7.11)

This could be re-written as 2.9 ms/pixel.

Testing the resolution Ten 40 mm/s swipes are tested both when the recording
width is 140 mm and 80 mm. The warnings represent the warnings explained in the
post-processing section of Chapter 6.4 (Computer Vision).

Figure 7.1 140 mm width.

48

7.3 Robustness and quality

Resolution test 40 mm/s swipes
Test 140 mm 80 mm

Warnings Results Warnings Results
1 6 Update: 17.69±4.00 ms

Delay: 139.67 ms
Update: 17.07 ±2.41 ms
Delay: 145.56 ms

2 6 Update: 17.84±4.61 ms
Delay: 138.00 ms

Update: 16.91±2.09 ms
Delay: 146.73 ms

3 0: 44.8%
6

Update: 18.08±5.70 ms
Delay: 145.11 ms

Update: 17.13±2.83 ms
Delay: 151.13 ms

4 0: 2.2%
6

Update: 17.83±3.90 ms
Delay: 139.75 ms

Update: 16.91±2.47 ms
Delay: 144.89 ms

5 0: -
212.0%
6

Update: 18.56±6.89 ms
Delay: 139.50 ms

Update: 17.22±3.05 ms
Delay: 151.33 ms

6 0: 5.5%
4:-5.6 %
6

Update 17.96±4.23 ms
Delay: 132.80 ms

Update: 16.83±2.01 ms
Delay: 155.00 ms

7 6 Update: 17.66±3.91 ms
Delay: 143.22 ms

0: 68.2 % Update: 16.86±2.10 ms
Delay: 148.44 ms

8 0: 42.4% Update: 17.36±3.31 ms
Delay: 139.18 ms

Update: 16.75±1.49 ms
Delay: 147.67 ms

9 4: -7.1%
6

Update: 18.24±4.79 ms
Delay: 139.11 ms

Update: 16.90±2.22 ms
Delay: 145.5 ms

10 4: -5.0%
6

Update: 17.73±3.70 ms
Delay: 142.8 ms

Update: 16.82±1.94 ms
Delay: 145.5 ms

Table 7.3 Comparing results from 140 mm and 80 mm recording distance. The
closer alternative generate a lot less warnings and smaller standard deviations.

7.3 Robustness and quality

When the final automated lab setup is complete, multiple tests can be run to get an
understanding of the robustness.

To investigate how sensitive the software is to bad calibration a quick angle test
is performed. The swipe test is performed when the camera has been positioned
with a steep angle.

49

Chapter 7. Experiments

Figure 7.2 A steeper angle then this is still possible but gives a lot less measure-
ment points.

The algorithm still manages to manage pretty steep angle. This is of course not
a recommended setup since the results will be incorrect because of trigonometrical
differences. The robot’s X- and Y-directions should be parallel with the camera for
best result.

Final testing
The final testing consists of three parts and all the data can be found in Appendix.
The first part shows swipes for two different products on both the Epson and the
3D-printer. It provides the full result file. These tests have been done hundreds of
times and the result files in Appendix A only reports a representative handful of
these.

The second part compares the Epson and 3D-printer relative delay for each ve-
locity.

The third part plots 10 swipes at the same velocity, product and robot. This it to
show how much the delays actually differ from run to run.

7.4 Cost comparison

The following table shows a price estimate of the two systems. It could also be
worth to mention that the amount of space that the Epson robot takes with its cage
is about 4m3 while the K8200 with cages takes about 1 m3.

50

7.4 Cost comparison

Cost comparison SEK
EPSON K8200 3D-printer

Robot: 150,000 5,500
Fixture: 20,000 4,000

Cage: 30,000 1,000
Computer: 4,500 4,500

Camera: 9,000 9,000
TOTAL: 214,500

+ installation cost
24,000
+ building time cost

51

8
Discussion

Final thoughts on tracking software
Currently there is not much done in the software to avoid stationary noise. When
using the algorithm in debug mode it is possible to crop the video to remove noise
from the borders, but this is not a good option in the fully automatic case. Using the
Epson robot requires a lot of manual steps so it uses some extra debugging to remove
stationary noise. On the 3D printer these steps are not possible but because of the
3D-printer’s way of moving the sample the noise situation should be opposite to the
Epson robot. The notification LED on the phone would be stationary on the Epson
and not so on the 3D printer. On the other hand reflections from the robot would be
stationary on the 3D-printer while moving for the Epson. The printer is therefor set
up in a dark environment too avoid noise such as outside light or reflections.

Adding a lot of noise filtering may add a lot of special cases which makes the
algorithm more dependent on specific conditions. Before adding more noise reduc-
tion an optimal environment for recording should be set up and noise reduction can
be added when needed. Currently the tests perform well in an open lab setup and
will of course perform even better when inside an isolated area. The whole idea is to
measure delays and to catch errors on the products, adding to much noise filtering
may end up filtering real measurements.

Discussing the resolution
This summarizes the resolution calculations made in Chapter 7 (Experiments).

Calculated result from the Epson 1.55 pixels per display update is not a very high
resolution. It is a realistic assumption that the tracking software will error with at
least one pixel. Consider e.g., a tracked dot in between pixel A and pixel B. It will
be very hard to differentiate the frame updates in this scenario and it also renders
the time-step resolution unnecessarily high. In other words, it would be better to
have lower recording speed and higher resolution for this scenario.

In this setup, to get a reasonable resolution which will be able to differentiate the
frame updates, either the swipes will have to be faster, which will provide a better
pixel per ms ratio, or the camera will have to focus on a smaller area of the display.

52

Chapter 8. Discussion

The first case would mean not reaching the requirements made by Sony Mobile and
the second would result in less measurements.

Calculated results from 3D-printer 5.7 pixels will be a lot more easy to differen-
tiate. The 0.684 pixel/time-step means that the time versus display resolution is a
lot more reasonable in this setup.

Test results In Table 7.3 a lot more warnings are given when recording from a
greater distance. The most common warning, code 0, means that the initiation time
calculated is relatively short compared to the median time delay. This indicates that
the program is having problems differentiating noise from when a move has started.
Code 4 means that there are more than 5% difference in the amount of frame updates
found and what would be the theoretical amount. Warning 6 means that the mean-
time for each frame update is more than 5% larger than the theoretical. Basically
all of these warnings indicate that the algorithm is struggling to differentiate the
movements. Studying the Results column, it is clear that when the distance is 140
mm it has a larger standard deviation.

However, considering that there is only around 2.85 pixel difference between
frame updates in the more distant case, it still provides surprisingly good values.
Also note that the most distant of these two cases covers less then the size of a 10"
tablet and the values would be even worse in that situation.

Why 3D-printer gives more reliable results
The reason for why the 3D-printer gives more reliable results is because of how
the camera and arm is kept stationary while the product is moving. This way, the
swiping finger will always be at the same position. The tracking object, which is the
object on the display set to follow the finger, should be in the same position at start
and at the end of the swipe. This means that offsets can easily be detected. During
the swipe this object will have a delay from the finger and that delay will be around
the same area from the cameras perspective throughout the swipe. This means that
distortions will have more of a constant effect since the finger and tracking dot will
be situated in the same area during the swipe. As an example consider a constant
time delay, where it would have an object point at a fixed position from the swiping
finger during constant speed.

In contrast, the Epson robot instead moves from one side to the other. That way
it will be harder to know the effect of distortion from lens, perspective or a bad setup
of the camera.

53

9
Conclusion

Acceleration tests
Looking at Table 7.1 it is clear that a higher voltage provides more power. But with-
out any extra cooling the reference voltage should be kept to 550mV at maximum,
as was recommended by the developers at the support forum.

Looking at Plot 7.1 an acceleration of at least 6000 mm/s2 should be desirable.
It is clear that swipes should be done in the Y-direction when comparing this with
the tests.

The second test shows that there is an issue with higher velocities. Running
above 400 mm/s fails the diagonal test no matter what acceleration. When doing a
hundred diagonal tests usually 4-8 of them fail, even when running at low accelera-
tions. Since there is no requirement to go beyond 400mm/s, this is not investigated
any further.

Following the results of Table 7.2 with the new fixture for mounting products.
This allowed for using actual products when testing and also a more robust fitting
of the sample. The results where also more stable than in Table 7.1. This makes it
more suitable to estimate maximum acceleration and weight dependencies.

By using the weight of the product as an input parameter, a simple model for
giving the maximum acceleration in each direction is created from the values in
Table 7.2. The following simple linear model is used.

ay = 10000−weight ·α
ax = 5000−weight ·β (9.1)

Using the values in Table 7.2 the values was set to α = 10 and β = 1.2. The diag-
onal moves are performed in a 45 degree angle, which means that both motors will
contribute equally. The maximum acceleration should theoretically be decided by
the weakest motor hence

adiag =
√

2 ·ax/y (9.2)

Looking at the results of the diagonal tests in Table 7.2, the acceleration achieved at
400 mm/s seem to correlate quite well with Eq. 9.2.

54

Chapter 9. Conclusion

To evaluate the model a simple test was performed going back and forth from
origin to end point. Starting from bottom left corner (origin) to top left corner and
ending from origin to bottom right corner gradually increasing the angle. This test
was done multiple times with gradually increasing masses.

Resolution
Clearly, using the Epson robot, the disadvantages of the camera position will have
to be considered during slower swipes and larger displays. Only swiping on a part
of the display is an option but would give less measurements and would above all
not test the entire display.

The 3D-printer can provide better camera resolution without having to sacrifice
the length of the swipes. It will also give a consistent resolution independent on the
size of the product.

To conclude this section, there definitely can be losses because of resolution
when using the Epson robot. For the 3D printer, the equipment used seems to have
a good balance between time and video resolution.

Comparing results between robots, Appendix
The overall time delay seem about the same overall. Higher velocities seem to have
larger differences but also do not seem to favor any of the robot. There are some ini-
tial differences between the two robots on the tablet measurements, where the 3D-
printer show, more delay initially. Also the 3D-printer seem to show, when swiping
on the phone, a larger delay in the end for higher velocities. These differences will
not be investigated further throughout this report, it is not the purpose of this thesis,
but it is worth noting the anomalies.

One important measurement is the calculated robot velocity, seen in the respec-
tive results of Appendix A.1. It is when the OpenCV uses linear regression to cal-
culate the velocity of the swipe. This can be compared with the velocity reference.
An interesting aspect is that, in every single swipe, the 3D-printer produces a very
accurate calculated result, which is a lot better than the Epson robot. Except for
the highest velocity it differs with less than 1 mm/s. This indicates that the mea-
surements from the 3D-printer are more accurate. This is most likely due to the
resolution and positioning issues that have been discussed. It does show that it is
more important to get an as close camera position as possible, rather than having
the best robot. Also the 3D-printer does perform impressively accurate for its low
cost.

Comparing result on the same robot
When comparing the results between different products and robots, we could see
quite large time-delay differences. Especially for higher velocities. In Appendix
A.3 10 swipes are made with the 3D-printer, on the same product, using the same
velocity. This is done for 40, 100 and 333 mm/s.

55

Chapter 9. Conclusion

There seems to be a variance in the time-delay which becomes larger with in-
creasing velocities, much like what was seen when comparing Appendix A.1 and
AppendixA.2. Looking at the results it also seems as if the delay stays rather con-
stant. In other words, a swipe that starts off with a high delay will maintain a high
delay throughout the sequence. A speculative reason for this could be that a touch
display samples touch-events at 90 Hz and the displays updates the graphics in 60
Hz. Depending how these are synchronized, it could cause a difference in the delay
of the results.

What also can be establish by the measurements of Appendix A.3 is that the
trends seem to be very similar throughout the move. This implicates that the behav-
ior of the robot and the touch device is quite consistent.

9.1 Final setup

Clearly the 3D-printer manages to swipe from 40-400 mm/s which was the require-
ments from Sony. We could also see that the trajectories from the 3D-printer gave
better velocity results than on the Epson robot. Comparing the results of the robots
the results where different but still close enough considering the differences given
by A.3. It was possible to see some different behaviors on especially the tablet be-
tween the two robots. To fully evaluate the reason for these, more test would have
to been done.

The automated test-system using the 3D-printer works very well for measuring
swipes. It even gives better results than the Epson, which states that it is important
to consider all the aspects before setting up a new system. The benefits of using the
Epson robot would be useless unless better camera positioning is set up. It will be
possible to set up 9 times as many 3D-printer systems than Epson system for the
same price. These will also not cover nearly as much volume.

A lot of other test could of course also be implemented, in many cases UI tests
do not even need an advanced camera, and a simple normal frame rate camera might
suffice. This would drop the price of the final lab setup with even more.

56

10
Epilogue

During the months that have past since the finish of this project, some new improve-
ments have been made. The final setup has been integrated with a server-based sys-
tem which will allow new updates and test jobs to be triggered automatically as well
as re-flashing of the phone. The final lab setup has been improved where the 3D-
printer has been installed inside a locker to keep out light, this will help eliminating
noise from the outside. The system has been wired together with a relay so that the
USB connection can be triggered on and off. Also a LED have been installed on the
robot finger so that no external light is now needed for tracking. A future goal is to
have the LED turn on and off on touch so that taps can be measured. A few new test
cases are being integrated on the system as well.

It has been decided to order more of these 3D-printers so testing can be ex-
panded even further and plans have been made to integrate the control software
with a standardized robot control system at Sony Mobile.

57

A
Swipe Measurement Results

The products on which the tests have been performed are not mentioned in this
report. Tested products can be of any brand, and have often been old prototypes,
running on both hardware and software that never even reached final release. Please
note that the results are for comparing and supporting this project and should not be
seen as actual consumer product results.

A.1 Result files 40-400mm/s on both robots

The following result files are the final pdfs that are created for each swipe in a test
suite.

Swipe results Tablet 40-400 mm/s on Epson

58

1 Tablet 40mm/s Epson

1.1 Empirical Result

0
50

0
1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

0

5,
50

0

0

20

40

60

80

100

120

140

160

time

d
is

ta
n
ce

Robot
Object
Mean

1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

3,
00

0

3,
20

0

3,
40

0

3,
60

0

3,
80

0

4,
00

0

4,
20

0

4,
40

0

4,
60

0

4,
80

0

5,
00

0

5,
20

0

5,
40

0

4.5

5

5.5

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

100

120

140

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.2 Data

Average display update time: 18.1488±5.66394ms
Average display update step: 0.701662±0.215751mm
Robot actual speed: 40mm/s
Calculated average robot speed: 38.9235±0.373025mm/s
Calculated average object speed: 38.6907±0.527485mm/s
The robot starts moving at time 1145.07 and it takes 130.933 ms for the screen to respond
Estimated touch of display: 764 ms. Estimated time for screen response: 81ms (quite uncertain method estimate
±10 ms)
Median time delay: 115.545
Median distance offset: 4.4508

1.3 Warnings

• WARNING 8: Suscpected framedrop(s) detected.

2

1 Tablet 80mm/s Epson

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

3,
00

0

3,
20

0

3,
40

0

3,
60

0

0

20

40

60

80

100

120

140

160

time

d
is

ta
n
ce

Robot
Object
Mean

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

3,
00

0

3,
20

0

3,
40

0
4

6

8

10

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
100

110

120

130

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 18.066±4.71703ms
Average display update step: 1.40839±0.30313mm
Robot actual speed: 80mm/s
Calculated average robot speed: 77.9138±0.328818mm/s
Calculated average object speed: 78.8928±0.525358mm/s
The robot starts moving at time 1295.5 and it takes 127.503 ms for the screen to respond
Estimated touch of display: 909 ms. Estimated time for screen response: 122ms (quite uncertain method estimate
±10 ms)
Median time delay: 117.24
Median distance offset: 8.58284

1.4 Warnings

2

1 Tablet 100mm/s Epson

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

3,
00

0

0

20

40

60

80

100

120

140

160

time

d
is

ta
n
ce

Robot
Object
Mean

1,
10

0

1,
20

0

1,
30

0

1,
40

0

1,
50

0

1,
60

0

1,
70

0

1,
80

0

1,
90

0

2,
00

0

2,
10

0

2,
20

0

2,
30

0

2,
40

0

2,
50

0

2,
60

0

2,
70

0

2,
80

0

2,
90

0
4

6

8

10

12

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

100

120

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 16.9889±2.66873ms
Average display update step: 1.6743±0.320941mm
Robot actual speed: 100mm/s
Calculated average robot speed: 97.3272±0.306738mm/s
Calculated average object speed: 98.7598±0.553709mm/s
The robot starts moving at time 1139.78 and it takes 113.224 ms for the screen to respond
Estimated touch of display: 743 ms. Estimated time for screen response: 130ms (quite uncertain method estimate
±10 ms)
Median time delay: 113.777
Median distance offset: 10.4456

1.4 Warnings

2

1 Tablet 200mm/s Epson

1.1 Information

...

1.2 Empirical Result

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,
00

0

1,
10

0

1,
20

0

1,
30

0

1,
40

0

1,
50

0

1,
60

0

1,
70

0

1,
80

0

0

20

40

60

80

100

120

140

160

time

d
is

ta
n
ce

Robot
Object
Mean

60
0

70
0

80
0

90
0

1,
00

0

1,
10

0

1,
20

0

1,
30

0

1,
40

0

1,
50

0

10

20

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
80

100

120

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 16.5909±1.02952ms
Average display update step: 3.40041±0.51156mm
Robot actual speed: 200mm/s
Calculated average robot speed: 194.428±0.283729mm/s
Calculated average object speed: 213.022±3.67788mm/s
The robot starts moving at time 655.736 and it takes 119.264 ms for the screen to respond
Estimated touch of display: 358 ms. Estimated time for screen response: 52ms (quite uncertain method estimate
±10 ms)
Median time delay: 90.4615
Median distance offset: 16.5575

1.4 Warnings

2

1 Tablet 300mm/s Epson

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

0

20

40

60

80

100

120

140

160

time

d
is

ta
n
ce

Robot
Object
Mean

1,
10

0

1,
15

0

1,
20

0

1,
25

0

1,
30

0

1,
35

0

1,
40

0

1,
45

0

1,
50

0

1,
55

0

1,
60

0

1,
65

0

1,
70

0

10

20

30

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

80

100

120

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 16.6897±1.78313ms
Average display update step: 5.18112±0.795778mm
Robot actual speed: 300mm/s
Calculated average robot speed: 292.237±0.403021mm/s
Calculated average object speed: 325.581±4.18037mm/s
The robot starts moving at time 1106.55 and it takes 107.454 ms for the screen to respond
Estimated touch of display: 774 ms. Estimated time for screen response: 56ms (quite uncertain method estimate
±10 ms)
Median time delay: 83.4017
Median distance offset: 22.3562

1.4 Warnings

2

1 Tablet 400mm/s Epson

1.1 Information

...

1.2 Empirical Result

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,
00

0

1,
10

0

1,
20

0

1,
30

0

1,
40

0

1,
50

0

0

20

40

60

80

100

120

140

160

time

d
is

ta
n
ce

Robot
Object
Mean

65
0

70
0

75
0

80
0

85
0

90
0

95
0

1,
00

0

1,
05

0

1,
10

0

1,
15

0

1,
20

0
0

20

40

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
100

120

140

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 16.55±0.804674ms
Average display update step: 6.95246±0.766453mm
Robot actual speed: 400mm/s
Calculated average robot speed: 384.198±0.377877mm/s
Calculated average object speed: 442.918±4.71837mm/s
The robot starts moving at time 679.303 and it takes 129.697 ms for the screen to respond
Estimated touch of display: 352 ms. Estimated time for screen response: 60ms (quite uncertain method estimate
±10 ms)
Median time delay: 108.033
Median distance offset: 37.3935

1.4 Warnings

2

A.1 Result files 40-400mm/s on both robots

Swipe results Tablet 40-400 mm/s on K8200

71

1 Tablet 40mm/s K8200

1.1 Information

...

1.2 Empirical Result

0
50

0
1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

0

5,
50

0

0

20

40

60

80

100

120

140

160

time

d
is

ta
n
ce

Robot
Object
Mean

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

3,
00

0

3,
20

0

3,
40

0

3,
60

0

3,
80

0

4,
00

0

4,
20

0

4,
40

0

4,
60

0

4,
80

0

5,
00

0

5,
20

0

5,
40

0

5,
60

0
4

5

6

7

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

100

150

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 16.7788±2.86954ms
Average display update step: 0.680216±0.180981mm
Robot actual speed: 40mm/s
Calculated average robot speed: 40.0976±0.160314mm/s
Calculated average object speed: 40.9107±1.22853mm/s
The robot starts moving at time 1446.19 and it takes 162.814 ms for the screen to respond
Median time delay: 102.8
Median distance offset: 4.00121

1.4 Warnings

• WARNING 1: Init time is very large compared to average delay. Diff = 60.200001%

• WARNING 8: Suscpected framedrop(s) detected.

2

1 Tablet 80mm/s K8200

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

3,
00

0

3,
20

0

3,
40

0

3,
60

0

3,
80

0

0

20

40

60

80

100

120

140

160

time

d
is

ta
n
ce

Robot
Object
Mean

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

3,
00

0

3,
20

0

3,
40

0

3,
60

0
4

6

8

10

12

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

100

120

140

160

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 16.6545±0.835968ms
Average display update step: 1.36352±0.22788mm
Robot actual speed: 80mm/s
Calculated average robot speed: 80.2842±0.172944mm/s
Calculated average object speed: 83.4192±2.175mm/s
The robot starts moving at time 1445.61 and it takes 157.385 ms for the screen to respond
Median time delay: 114
Median distance offset: 8.62445

1.4 Warnings

• WARNING 1: Init time is very large compared to average delay. Diff = 40.500000%

2

1 Tablet 100mm/s K8200

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

3,
00

0

0

20

40

60

80

100

120

140

160

time

d
is

ta
n
ce

Robot
Object
Mean

1,
40

0

1,
50

0

1,
60

0

1,
70

0

1,
80

0

1,
90

0

2,
00

0

2,
10

0

2,
20

0

2,
30

0

2,
40

0

2,
50

0

2,
60

0

2,
70

0

2,
80

0

2,
90

0

3,
00

0

3,
10

0

5

10

15

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

100

120

140

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 16.6706±0.787972ms
Average display update step: 1.71761±0.329538mm
Robot actual speed: 100mm/s
Calculated average robot speed: 100.327±0.17024mm/s
Calculated average object speed: 105.597±2.76391mm/s
The robot starts moving at time 1449.37 and it takes 136.625 ms for the screen to respond
Median time delay: 96.6665
Median distance offset: 8.93961

1.4 Warnings

• WARNING 1: Init time is very large compared to average delay. Diff = 41.099998%

• WARNING 8: Suscpected framedrop(s) detected.

2

1 Tablet 200mm/s K8200

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

0

20

40

60

80

100

120

140

160

180

time

d
is

ta
n
ce

Robot
Object
Mean

1,
40

0

1,
50

0

1,
60

0

1,
70

0

1,
80

0

1,
90

0

2,
00

0

2,
10

0

2,
20

0

2,
30

0

10

20

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

100

120

distance

ti
m

e
to

re
ac

h

Offset time-delay

1.3 Data

Average display update time: 17.0238±2.44451ms
Average display update step: 3.59806±0.774199mm
Robot actual speed: 200mm/s
Calculated average robot speed: 202.234±0.184569mm/s
Calculated average object speed: 218.987±3.33281mm/s
The robot starts moving at time 1456.13 and it takes 129.872 ms for the screen to respond
Median time delay: 102.333
Median distance offset: 18.8106

1.4 Warnings

• WARNING 1: Init time is very large compared to average delay. Diff = 35.099998%

• WARNING 8: Suscpected framedrop(s) detected.

2

1 Tablet 300mm/s K8200

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

0

20

40

60

80

100

120

140

160

180

time

d
is

ta
n
ce

Robot
Object
Mean

1,
45

0

1,
50

0

1,
55

0

1,
60

0

1,
65

0

1,
70

0

1,
75

0

1,
80

0

1,
85

0

1,
90

0

1,
95

0

2,
00

0

2,
05

0

2,
10

0

10

20

30

40

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

80

100

120

140

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 17.2692±3.0199ms
Average display update step: 5.62362±1.29385mm
Robot actual speed: 300mm/s
Calculated average robot speed: 301.934±0.239349mm/s
Calculated average object speed: 339.953±3.90835mm/s
The robot starts moving at time 1464.16 and it takes 123.843 ms for the screen to respond
Median time delay: 97.7037
Median distance offset: 27.0037

1.4 Warnings

• WARNING 4: Time-steps found differs more than 10% from theoretical amount of time-steps. Diff = -
13.000000%

• WARNING 8: Suscpected framedrop(s) detected.

2

1 Tablet 400mm/s K8200

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

0

20

40

60

80

100

120

140

160

180

time

d
is

ta
n
ce

Robot
Object
Mean

1,
45

0

1,
50

0

1,
55

0

1,
60

0

1,
65

0

1,
70

0

1,
75

0

1,
80

0

1,
85

0

1,
90

0

1,
95

0

20

40

time

d
x

Offset distance

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

100

110

120

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 17.5625±1.11629ms
Average display update step: 7.09799±0.487016mm
Robot actual speed: 400mm/s
Calculated average robot speed: 396.055±1.22859mm/s
Calculated average object speed: 405.945±1.83158mm/s
The robot starts moving at time 1468.53 and it takes 104.471 ms for the screen to respond
Median time delay: 102.215
Median distance offset: 33.8028

1.4 Warnings

• WARNING 4: Time-steps found differs more than 10% from theoretical amount of time-steps. Diff = -
22.799999%

• WARNING 8: Suscpected framedrop(s) detected.

2

Appendix A. Swipe Measurement Results

Swipe results Small Phone 40-400 mm/s on Epson

84

1 Small Phone 40mm/s Epson

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0
−5

0

5

10

15

20

25

30

35

40

45

50

55

time

d
is

ta
n
ce

Robot
Object
Mean

85
0

90
0

95
0

1,
00

0

1,
05

0

1,
10

0

1,
15

0

1,
20

0

1,
25

0

4.1

4.15

4.2

time

d
x

Offset distance

1

0 5 10 15 20 25 30 35 40 45 50

95

100

105

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.1 Data

Average display update time: 17.1667±1.2693ms
Average display update step: 0.661616±0.10438mm
Robot actual speed: 40mm/s
Calculated average robot speed: 38.3053±0.0777466mm/s
Calculated average object speed: 38.9063±0.271198mm/s
The robot starts moving at time 669.935 and it takes 135.065 ms for the screen to respond
Estimated touch of display: 293 ms. Estimated time for screen response: 87ms (quite uncertain method estimate
±10 ms)
Median time delay: 101.31
Median distance offset: 4.08626

1.2 Warnings

2

1 Small Phone 80mm/s Epson

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0
−5

0

5

10

15

20

25

30

35

40

45

50

55

time

d
is

ta
n
ce

Robot
Object
Mean

1,
10

0

1,
15

0

1,
20

0

1,
25

0

1,
30

0

1,
35

0

1,
40

0

1,
45

0

1,
50

0

1,
55

0

1,
60

0

1,
65

0

1,
70

0

1,
75

0

1,
80

0

1,
85

0
4

6

8

time

d
x

Offset distance

1

0 5 10 15 20 25 30 35 40 45

105

110

115

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.1 Data

Average display update time: 17.3143±0.820154ms
Average display update step: 1.31805±0.176524mm
Robot actual speed: 80mm/s
Calculated average robot speed: 76.9019±0.0883197mm/s
Calculated average object speed: 77.3149±0.400477mm/s
The robot starts moving at time 1076.73 and it takes 107.273 ms for the screen to respond
Estimated touch of display: 706 ms. Estimated time for screen response: 88ms (quite uncertain method estimate
±10 ms)
Median time delay: 112.725
Median distance offset: 7.92556

1.2 Warnings

2

1 Small Phone 100mm/s Epson

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0
−5

0

5

10

15

20

25

30

35

40

45

50

55

time

d
is

ta
n
ce

Robot
Object
Mean

1,
20

0

1,
25

0

1,
30

0

1,
35

0

1,
40

0

1,
45

0

1,
50

0

1,
55

0

1,
60

0

1,
65

0

1,
70

0

1,
75

0

1,
80

0

1,
85

0
4

6

8

10

time

d
x

Offset distance

1

0 5 10 15 20 25 30 35 40 45
90

100

110

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.1 Data

Average display update time: 17.3333±0.942809ms
Average display update step: 1.66537±0.169588mm
Robot actual speed: 100mm/s
Calculated average robot speed: 96.0043±0.0921952mm/s
Calculated average object speed: 97.8303±0.547998mm/s
The robot starts moving at time 1204.37 and it takes 97.6322 ms for the screen to respond
Estimated touch of display: 828 ms. Estimated time for screen response: 118ms (quite uncertain method estimate
±10 ms)
Median time delay: 110.48
Median distance offset: 9.69879

1.2 Warnings

2

1 Small Phone 200mm/s Epson

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0
−5

0

5

10

15

20

25

30

35

40

45

50

55

time

d
is

ta
n
ce

Robot
Object
Mean

1,
28

0

1,
30

0

1,
32

0

1,
34

0

1,
36

0

1,
38

0

1,
40

0

1,
42

0

1,
44

0

1,
46

0

1,
48

0

1,
50

0

1,
52

0

1,
54

0

1,
56

0

1,
58

0

1,
60

0

1,
62

0

5

10

15

20

time

d
x

Offset distance

1

0 5 10 15 20 25 30 35 40 45

95

100

105

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.1 Data

Average display update time: 17.75±1.08972ms
Average display update step: 3.42036±0.235495mm
Robot actual speed: 200mm/s
Calculated average robot speed: 192.619±0.110892mm/s
Calculated average object speed: 199.479±1.09512mm/s
The robot starts moving at time 1269.34 and it takes 90.6558 ms for the screen to respond
Estimated touch of display: 888 ms. Estimated time for screen response: 98ms (quite uncertain method estimate
±10 ms)
Median time delay: 102.871
Median distance offset: 17.2544

1.2 Warnings

2

1 Small Phone 300mm/s Epson

1.1 Information

...

1.2 Empirical Result

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,
00

0

1,
10

0

1,
20

0
−5

0

5

10

15

20

25

30

35

40

45

50

55

time

d
is

ta
n
ce

Robot
Object
Mean

68
0

70
0

72
0

74
0

76
0

78
0

80
0

82
0

84
0

86
0

88
0

90
0

92
0

94
0

10

20

30

time

d
x

Offset distance

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

70

80

90

100

110

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 18±1.26491ms
Average display update step: 4.93178±0.258792mm
Robot actual speed: 300mm/s
Calculated average robot speed: 291.908±0.212273mm/s
Calculated average object speed: 379.78±4.87006mm/s
The robot starts moving at time 685.54 and it takes 99.46 ms for the screen to respond
Estimated touch of display: 305 ms. Estimated time for screen response: 107ms (quite uncertain method estimate
±10 ms)
Median time delay: 75.299
Median distance offset: 17.551

1.4 Warnings

• WARNING 1: Init time is very large compared to average delay. Diff = 34.299999%

• WARNING 4: Time-steps found differs more than 10% from theoretical amount of time-steps. Diff = -
22.600000%

• WARNING 8: Suscpected framedrop(s) detected.

2

1 Small Phone 400mm/s Epson

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,
00

0

1,
10

0

1,
20

0

1,
30

0

1,
40

0

1,
50

0

1,
60

0

1,
70

0

1,
80

0
−5

0

5

10

15

20

25

30

35

40

45

50

55

time

d
is

ta
n
ce

Robot
Object
Mean

1,
32

0

1,
34

0

1,
36

0

1,
38

0

1,
40

0

1,
42

0

1,
44

0

1,
46

0

1,
48

0

1,
50

0

1,
52

0

1,
54

0

10

20

30

time

d
x

Offset distance

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

85

90

95

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.1 Data

Average display update time: 22.5±7.88987ms
Average display update step: 7.91791±1.98711mm
Robot actual speed: 400mm/s
Calculated average robot speed: 375.367±0.348306mm/s
Calculated average object speed: 369.411±2.41071mm/s
The robot starts moving at time 1315.3 and it takes 82.7036 ms for the screen to respond
Estimated touch of display: 920 ms. Estimated time for screen response: 106ms (quite uncertain method estimate
±10 ms)
Median time delay: 90.8925
Median distance offset: 21.544

1.2 Warnings

• WARNING 2: Calculated velocities differs more than 5% from actual robot velocity. Diff = 6.500000%

• WARNING 4: Time-steps found differs more than 10% from theoretical amount of time-steps. Diff = -
10.300000%

• WARNING 6: Average display update is high. (60 Hz = 16.666 ms)

2

A.1 Result files 40-400mm/s on both robots

Swipe results Small Phone 40-400 mm/s on K8200

97

1 Z1 COMPACT-2014-9-3-16:28:52-40mms.mkv

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

3,
00

0

3,
20

0

3,
40

0

3,
60

0

3,
80

0

0

10

20

30

40

50

60

70

80

90

time

d
is

ta
n
ce

Robot
Object
Mean

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

3,
00

0

3,
20

0

3,
40

0

3,
60

0
4

4.5

5

time

d
x

Offset distance

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

100

150

200

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 16.8829±3.08364ms
Average display update step: 0.668853±0.100558mm
Robot actual speed: 40mm/s
Calculated average robot speed: 40.2357±0.134103mm/s
Calculated average object speed: 40.0098±0.275348mm/s
The robot starts moving at time 1449.97 and it takes 129.035 ms for the screen to respond
Median time delay: 119.111
Median distance offset: 4.4901

1.4 Warnings

2

1 Z1 COMPACT-2014-9-3-16:29:33-80mms.mkv

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

3,
00

0

0

10

20

30

40

50

60

70

80

90

time

d
is

ta
n
ce

Robot
Object
Mean

1,
40

0

1,
50

0

1,
60

0

1,
70

0

1,
80

0

1,
90

0

2,
00

0

2,
10

0

2,
20

0

2,
30

0

2,
40

0

2,
50

0
4

6

8

10

time

d
x

Offset distance

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

100

110

120

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 17.3019±0.90251ms
Average display update step: 1.35709±0.0947133mm
Robot actual speed: 80mm/s
Calculated average robot speed: 79.5288±0.257572mm/s
Calculated average object speed: 79.6372±0.456885mm/s
The robot starts moving at time 1436.81 and it takes 107.192 ms for the screen to respond
Median time delay: 117.889
Median distance offset: 8.69301

1.4 Warnings

2

1 Z1 COMPACT-2014-9-3-16:29:51-100mms.mkv

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

2,
60

0

2,
80

0

0

10

20

30

40

50

60

70

80

90

time

d
is

ta
n
ce

Robot
Object
Mean

1,
50

0

1,
60

0

1,
70

0

1,
80

0

1,
90

0

2,
00

0

2,
10

0

2,
20

0

2,
30

0
4

6

8

10

12

time

d
x

Offset distance

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

100

110

120

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 17.3415±0.978046ms
Average display update step: 1.70601±0.152954mm
Robot actual speed: 100mm/s
Calculated average robot speed: 99.8365±0.262249mm/s
Calculated average object speed: 100.184±0.596665mm/s
The robot starts moving at time 1442.41 and it takes 102.59 ms for the screen to respond
Median time delay: 114.1
Median distance offset: 10.3519

1.4 Warnings

2

1 Z1 COMPACT-2014-9-3-16:30:19-200mms.mkv

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

2,
40

0

0

10

20

30

40

50

60

70

80

90

time

d
is

ta
n
ce

Robot
Object
Mean

1,
45

0

1,
50

0

1,
55

0

1,
60

0

1,
65

0

1,
70

0

1,
75

0

1,
80

0

1,
85

0

1,
90

0

1,
95

0

5

10

15

time

d
x

Offset distance

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

60

80

100

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 19.6667±8.14453ms
Average display update step: 3.5932±0.440858mm
Robot actual speed: 200mm/s
Calculated average robot speed: 199.303±0.346694mm/s
Calculated average object speed: 207.256±3.2508mm/s
The robot starts moving at time 1447.67 and it takes 80.3293 ms for the screen to respond
Median time delay: 66.5
Median distance offset: 11.399

1.4 Warnings

• WARNING 4: Time-steps found differs more than 10% from theoretical amount of time-steps. Diff = -
16.100000%

• WARNING 6: Average display update is high. (60 Hz = 16.666 ms)

2

1 Z1 COMPACT-2014-9-3-16:30:44-300mms.mkv

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

0

10

20

30

40

50

60

70

80

90

time

d
is

ta
n
ce

Robot
Object
Mean

1,
44

0

1,
46

0

1,
48

0

1,
50

0

1,
52

0

1,
54

0

1,
56

0

1,
58

0

1,
60

0

1,
62

0

1,
64

0

1,
66

0

1,
68

0

1,
70

0

1,
72

0

1,
74

0

1,
76

0

1,
78

0

1,
80

0

1,
82

0

1,
84

0

10

20

30

time

d
x

Offset distance

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

90

100

110

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 18±0.912871ms
Average display update step: 5.10166±0.670579mm
Robot actual speed: 300mm/s
Calculated average robot speed: 300.599±0.250785mm/s
Calculated average object speed: 303.96±2.00015mm/s
The robot starts moving at time 1455.05 and it takes 87.9542 ms for the screen to respond
Median time delay: 99.1666
Median distance offset: 24.7284

1.4 Warnings

2

1 Z1 COMPACT-2014-9-3-16:31:10-400mms.mkv

1.1 Information

...

1.2 Empirical Result

0
20

0
40

0
60

0
80

0
1,
00

0

1,
20

0

1,
40

0

1,
60

0

1,
80

0

2,
00

0

2,
20

0

0

10

20

30

40

50

60

70

80

90

time

d
is

ta
n
ce

Robot
Object
Mean

1,
46

0

1,
48

0

1,
50

0

1,
52

0

1,
54

0

1,
56

0

1,
58

0

1,
60

0

1,
62

0

1,
64

0

1,
66

0

1,
68

0

1,
70

0

1,
72

0

1,
74

0

1,
76

0

10

20

30

time

d
x

Offset distance

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
80

90

100

110

distance

ti
m

e
to

re
a
ch

Offset time-delay

1.3 Data

Average display update time: 18.1667±0.897527ms
Average display update step: 6.868±0.78536mm
Robot actual speed: 400mm/s
Calculated average robot speed: 393.637±0.649598mm/s
Calculated average object speed: 393.965±4.40516mm/s
The robot starts moving at time 1460.79 and it takes 91.2069 ms for the screen to respond
Median time delay: 89.3334
Median distance offset: 25.8276

1.4 Warnings

• WARNING 4: Time-steps found differs more than 10% from theoretical amount of time-steps. Diff = -
28.200001%

• WARNING 8: Suscpected framedrop(s) detected.

2

Appendix A. Swipe Measurement Results

A.2 Merged results different velocities

The following plots shows the time-delay plot from each product and velocity
merged for easier comparison.

Tablet comparison
40 mm/s

0 20 40 60 80 100 120 140

100

150

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay Epson

80 mm/s

0 20 40 60 80 100 120 140

100

120

140

160

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay Epson

100 mm/s

0 20 40 60 80 100 120 140

100

120

140

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay Epson

110

A.2 Merged results different velocities

200 mm/s

0 20 40 60 80 100 120 140
80

100

120

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay Epson

300 mm/s

0 20 40 60 80 100 120 140

80

100

120

140

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay Epson

400 mm/s

0 20 40 60 80 100 120 140
100

120

140

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay Epson

111

Appendix A. Swipe Measurement Results

Small Phone
40 mm/s

0 5 10 15 20 25 30 35 40 45 50

100

110

120

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay Epson

80 mm/s

0 5 10 15 20 25 30 35 40 45

100

110

120

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay Epson

100 mm/s

0 5 10 15 20 25 30 35 40 45
90

100

110

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay Epson

112

A.2 Merged results different velocities

200 mm/s

0 5 10 15 20 25 30 35 40 45
60

80

100

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay K8200

300 mm/s

0 5 10 15 20 25 30 35 40
70

80

90

100

110

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay Epson

400 mm/s

0 5 10 15 20 25 30 35 40
80

85

90

95

distance

tim
e

to
re

ac
h

Time-delay K8200
Time-delay Epson

113

Appendix A. Swipe Measurement Results

A.3 Multiple swipes, same velocity

Each of the following plots shows data from 10 swipes performed on the same
product and velocity. These test are not performed on any of the products shown
earlier in this appendix.

40 mm/s

50 60 70 80 90 100 110 120 130 140

130

140

150

160

170

distance

tim
e

to
re

ac
h

100 mm/s

50 60 70 80 90 100 110 120 130 140

100

110

120

distance

tim
e

to
re

ac
h

114

A.3 Multiple swipes, same velocity

333 mm/s

50 60 70 80 90 100 110 120 130 140

80

90

100

110

distance

tim
e

to
re

ac
h

115

Bibliography

Android, DisplayMetrics (Accessed: 2015-03-25). Google. URL: http : / /

developer.android.com/reference/android/util/DisplayMetrics.

html.
Annheimautomation (Accessed: 2015-03-25). URL: http : / / www .

anaheimautomation.com/manuals/forms/stepper-motor-guide.php.
Arcam AB (Accessed: 2015-03-25). Arcam AB. URL: http://www.arcam.com/

technology/electron-beam-melting/.
Arduino (Accessed: 2015-03-25). Arduino. URL: http://www.arduino.cc/.
Blom, G., J. Enger, G. Englund, J. Grandell, and L. Holst (2010). Sannolikhetsteori

och statistikteori med tillämpningar. Studentlitteratur.
Createing Bounding boxes and circles for contours (Accessed: 2015-03-25). Itzeez.

URL: http : / / docs . opencv . org / doc / tutorials / imgproc /

shapedescriptors / bounding _ rects _ circles / bounding _ rects _

circles.html.
Freedman, D. H. (2011). Layer by Layer. Technology Review. URL: http://www.

technologyreview.com/featuredstory/426391/layer-by-layer/.
Goldt, S., S. van der Meer, S. Burkett, and M. Welsh (1995). “The linux program-

mer’s guide”. URL: http://www.tldp.org/LDP/lpg/node15.html.
Harris, W. (Accessed: 2015-03-25). How 3-D Bioprinting Works. HowStuffWorks.

URL: http : / / health . howstuffworks . com / medicine / modern -

technology/3-d-bioprinting1.htm.
Kickstarter (Accessed: 2015-03-25). Kickstarter, Inc. URL: https : / / www .

kickstarter.com.
Marlin (Accessed: 2015-03-25). URL: http://reprap.org/wiki/Marlin.
National Inventors Hall of Fame (Accessed: 2015-03-25). URL: http://invent.

org/inductees/hull-charles/.
OpenCV (Accessed: 2015-03-25). OpenCV Documentation. Itseez. URL: http:

//opencv.org.

116

Bibliography

Peachy Printer (Accessed: 2015-03-25). URL: http://www.peachyprinter.
com/.

PGFPlots - A LaTeX package to create plots (Accessed: 2015-03-25). URL: http:
//pgfplots.sourceforge.net/.

reprap.org (Accessed: 2015-03-25). URL: http://reprap.org.
Sweet, M. R. (2010). “Serial programming guide for posix operating systems”. URL:

http://www.tldp.org/LDP/lpg/node15.html.
Velleman (Accessed: 2015-03-25). Velleman 3D-printer. URL: http : / / www .

k8200.eu/.
Ximea (Accessed: 2015-03-25). Technical specification - MQ003CG-CM. Ximea.

URL: http://www.ximea.com/en/usb3-vision-camera/xiq.

117

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER´S THESIS
Date of issue
March 2015
Document Number
ISRN LUTFD2/TFRT--5967--SE

Author(s)

Ragnar Wernersson
Supervisor
Magnus Midholt, Sony Mobile
Anders Robertsson, Dept. of Automatic Control, Lund
University, Sweden
Rolf Johansson, Dept. of Automatic Control, Lund
University, Sweden (examiner)
Sponsoring organization

Title and subtitle

Robot Control and Computer Vision for Automated Test System on Touch Display
Products
Abstract

The goal of this master thesis is to set up a low cost automated robotic test system which can later be
reproduced to greatly increase test coverage. Mostly through experimental research this thesis will
find good components to use and evaluate these from a performance and cost perspective. It will also
develop computer vision algorithms needed and automation software for the final set up. The
performance of the robotics will be investigated by comparing with an industrial robot.
A modified 6000 SEK 3D-printer was selected and proved to work. The computer vision was
developed using OpenCV and a fully automated system with appropriate resulting plots was created.
Comparing with the industrial robot the setup using a 3D-printer proved to work better because it
allowed for better positioning of the camera. It was also concluded that the selected robot system
based on a 3D-printer was capable enough and would drastically lower the space and cost from a
system using an industrial robot.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-117

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Blank Page

