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Abstract 

Computer simulation and modelling was used to simulate a real time environment in preparative 

chromatography to evaluate the performance of three different strategies for pooling control for different 

levels of robustness. The pooling problem was based around a separation case where three different 

insulin species were to be separated while disturbances to the modulators potassium chloride, ethanol 

and sample load could be imposed on the system. The simulation was created with the assumption that 

the only measurement available would be the UV absorbance at the process outlet. The first strategy 

implemented was a time based method where the cut points were determined by offline optimization 

and would then be static. The second strategy started with offline optimization which was used to 

determine the UV absorbance measurement at the optimal cut points, these UV absorbances were then 

used to determine cut placement in real time simulation. The last strategy was a predictive method which 

made estimations of the concentration profiles in the column based on the gathered measurements and 

subsequently used these estimations to continuously make new optimized pooling decisions in the real 

time simulation. The parameters investigated for the evaluation of the performance were the process 

yield, purity and number of batch failures due to unmet purity requirements. The time based strategy 

showed the best performance when only load disturbances were present and the prediction based strategy 

showed the best performance when only disturbances to the modulators were present. The UV based 

strategy had a large percentage of batch failures for all disturbance cases, the strategy only had moderate 

success at the highest levels of robustness used in this thesis. Results also indicate that the type of 

disturbance distribution used could play a part in which strategy shows the best performance. The 

predictive strategy fared better in cases where latin hypercube sampling was used for the disturbance 

distribution while the time based strategy showed better performance for a normal random disturbance 

distribution. 
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Populärvetenskaplig sammanfattning 

I detta examensarbete undersöktes olika strategier för att kontrollera upptag av produkter från 

kromatografisk separation. Prestandan för dessa strategier jämfördes även med en nyutvecklad 

strategi vars kontrollbeslut baserades på förutsägelser.  

Att utveckla nya läkemedel är en kostsam process samtidigt som bara 15-30% av de produkter som 

utvecklas blir godkända för lansering. Detta medför höga krav på att resten av produktionskedjan är 

kostnadseffektiv. På grund av höga krav på kvalitét och renhet så står rening för en stor del av 

kostnaderna i läkemedelsproduktion. En av de mest använda metoderna för rening av läkemedel är 

kromatografisk separation.  

Kromotografi används i syfte att separera olika ämnen i en lösning från varandra och processen skulle 

kunna liknas vid att anordna ett lopp mellan löpare, cyklister och bilister på olika banor. Om banan är 

en motorväg så kan det väntas att alla bilister kommer i mål först följt av alla cyklister och sen alla 

löpare sist. Är det en väldigt kort bana så kommer inte bilisterna hinna få så stort försprång och vissa 

bilar kanske till och med kommer i mål efter några av löparna. Om banan däremot är lång kommer 

uppdelningen däremot bli väldigt tydlig. Det är denna typ av uppdelning man vill uppnå i en 

kromatografisk process. Om olika ämnen generellt kommer i mål vid olika tider så kan man hitta ett 

tidsintervall då endast en typ av ämne kommer ut och på så vis få en ren produkt.  

Valet av det här tidsintervallet kallas poolning och det jag har undersökt i mitt examensarbete är hur det 

tidsintervallet kan styras för att maximera den mängd produkt man kan få ut utan att påverka renheten 

negativt.  

Det är nämligen så att i ett kromatografiskt system så kan det bara observeras hur loppet mellan de olika 

ämnena går precis vid målgången och oftast kan man bara mäta hur mycket som går i mål men inte 

vilken typ de tillhör. Detta betyder att om oväntade saker händer på banan så att alla tävlande inte 

kommer ut vid de väntade tiderna, så kan det vara svårt att bestämma i vilket tidsintervall som produkt 

ska plockas ut. Det finns således ett behov av att ha ett bra kontrollsystem för att undvika beslut som 

leder till dålig produktkvalitet och slöseri på råvaror.  

De olika strategierna provades för olika typer av oväntade händelser för att undersöka hur väl de kunde 

hanteras. Det visade sig att ingen av strategierna var enskilt bäst för alla fall. Olika strategier klarade av 

att hantera olika typer av oväntade händelser med varierande resultat. 

Att veta hur olika strategier klarar av att bestämma tidsintervallet för att plocka ut produkt från en 

kromatografisk process är värdefullt för att kunna maximera lönsamheten i sin produktion.  I mitt 

examensarbete undersökte jag tre olika strategier för att bestämma detta intervall. Den första strategin 

tittade på ett standardfall för målgång och bestämde tidsintervallet baserat på det. Den andra strategin 

tittade på standardfallet men istället för att bara ta tidsintervallet rakt av så kollade den på hur mycket 

av ämnena som uppmättes precis vid ändpunkterna i tidsintervallet och använda dessa för att bestämma 

nya tidsintervall för det riktiga fallet. Den sista strategin som provades använde mätningarna på 

mängden som gick i mål för att gissa hur loppet gick under tiden loppet var igång. Baserat på dessa 

gissningar försökte den aktivt hitta det bästa tidsintervallet under loppets gång. 
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1. Introduction 

The pharmaceutical industry today faces several challenges. Investment costs for the development of 

new pharmaceutical drugs are high while only a small percentage of all new drugs get approved (Hagel, 

Jagschies, & Sofer, 2008). The industry is very competitive and any increase in productivity and yield 

can be very important for the profitability of a process. Downstream processing is a crucial part of the 

production process due to the high demand on patient safety and product quality but this also means that 

a large part of the production cost stems from this part of the process. The optimization of the 

downstream processing equipment can therefore be of great interest (Westerberg, 2012).  

One of most commonly used methods for purification in the pharmaceutical industry is chromatography. 

Chromatography has the advantage of being able to separate substances that are chemically very similar 

and otherwise couldn’t be separated using other methods (Hagel et al., 2008). One of the bigger 

downsides of preparative chromatography is that it is a batch process which puts certain limitations on 

process design and productivity. Chromatographic processes are highly nonlinear and due to limitations 

in the ability to monitor these processes, optimal control can be difficult to achieve. This can lead to 

losses in the potential yield alternatively batch failure due to purity requirements not being met. 

Developing smart ways of controlling these kinds of processes is therefore of great interest since using 

such control could have serious potential for improving performance (Westerberg, 2012). 

1.1. Aim 
The aim of this master thesis paper was to evaluate different strategies used for pooling in preparative 

chromatography using MATLAB to simulate chromatography and pooling control in a real time 

environment. The focus was put on general performance during specific types of disturbances. The 

performance of a process is judged based on the resulting yield and the ability to stay within defined 

purity constraints. Furthermore the goal was to develop a proof of concept prototype for a predictive 

pooling strategy and compare its performance with the performance of existing technology. 

 

2. Theory/Background 

2.1. Chromatography  
Chromatography is a broad concept and covers a lot of different types of applications. Chromatographic 

processes can be divided into two subcategories, analytical chromatography and preparative 

chromatography. The main difference between these two applications is the goal of the separation 

process. If the goal is to gain information about the sample then it is called analytical chromatography, 

if the goal is to extract material then it is called preparative chromatography. Furthermore 

chromatographic processes can differ both in scale and in the physical driving force behind the 

separation (Shirazi, 2006). A chromatogram is the visual representation of the concentration at the outlet 

of a chromatographic system as a function of time or eluent volume (these concepts can be used 

interchangeably, eluent volume is described below). An example of a chromatogram with three different 

substances can be seen in figure 1 (Ettre, 1993). 
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Figure 1 Representation of the concentration of three different substances at the outlet of a chromatographic system as a 

function of time, also called a chromatogram. The effects that convection and dispersion have on the system are represented 

with arrows. 

A chromatographic system can be divided into three parts, the solute which is the mixture that the 

chromatographic system aims to separate, the eluent which is a mobile phase in which the solute can 

move and the stationary phase, usually the packing material in the column, which acts to slow down the 

individual components of the solute. Differences in the individual tendencies of the substances to slow 

down is what causes the actual separation in the process (Ettre, 1993).  

2.1.1. Adsorption Chromatography 

An adsorption process refers to the binding of molecules to a surface through physical or chemical 

interactions such as van der Waals forces or covalent binding. Adsorption Chromatography is a method 

by which substances in a homogeneous molecular mixture can be separated based on their individual 

affinity to the adsorbent of the chromatographic system. Substances with higher affinity will bind to the 

surface to a greater extent and therefore get delayed in the column while substances with less affinity 

will pass through more easily (Ettre, 1993). 

2.2. Pooling/cut strategies (chromatographic control) 
Pooling in preparative chromatography is the retrieval of substances from a chromatographic separation. 

The decision of where to put the fractionation cut points that decide which substances are retrieved is 

the pooling problem. The captured pool is the mixture of substances caught within the fractionation cut 

points, these concepts are illustrated in figure 2. The correct placement of cut points is vital for the 

economics of a chromatographic system since it has a great effect on the process parameters purity and 

yield. When making the pooling decisions the objective is most often to maximize the yield of the 

process defined in equation 1 

𝑌 =
𝑁𝑖,𝑝𝑜𝑜𝑙  (𝑚𝑜𝑙)

𝑁𝑖,𝑚𝑎𝑥 (𝑚𝑜𝑙)
 

(1) 

 

where 𝑌 is yield, 𝑁𝑖,𝑝𝑜𝑜𝑙 is the amount of substance 𝑖 in the pool and 𝑁𝑖,𝑚𝑎𝑥 is the maximum amount of 

substance 𝑖 that could theoretically be obtained. The maximization of the process yield will often come 

at the expense of purity (𝑝) as defined in equation 2 
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𝑝 =
𝑁𝑖,𝑝𝑜𝑜𝑙  (𝑚𝑜𝑙)

∑𝑁𝑗,𝑝𝑜𝑜𝑙  (𝑚𝑜𝑙)
 

(2) 

 

since increasing yield will often mean moving the cut points to make the captured pool wider, including 

more of the impurities in the process, as can be seen in figure 2.  

 

Figure 2 Illustration of a chromatogram with fractionation cut points. The green area represents the desired substance 

captured within the pool, the red area represents the impurities captured within the pool and the cyan area represents desired 

substance that did not get captured within the pool. 

Traditionally the cut placement decisions are made offline, i.e. before the actual chromatographic 

separation is performed, based on past data and process understanding. An advantage of this kind of 

method is that it is non-invasive and does not require any complex control systems to operate. The use 

of online real time decision making, i.e. pooling decisions being made during the time of the actual 

separation, has been suggested by (Brestrich, Briskot, Osberghaus, & Hubbuch, 2014).This approach 

however requires the implementation of more sophisticated process control equipment and software, but 

in theory has the potential ability to make more flexible decisions when disturbances are present.  

 

3. Methods 

All the work presented in this thesis was performed using computers to simulate chromatographic 

columns and the control of them. The code created for the project can be divided into three different 

categories, modelling and simulation of chromatographic systems, strategies for chromatographic 

pooling and statistical analysis of performance during system disturbances.  

3.1. Modelling/Cases 
It was necessary to create models which could be used to produce chromatograms that displayed general 

behaviour due to process disturbances in a feasible manner. This kind of data is necessary to be able to 

properly test the performance of the pooling strategies evaluated in this project. Modelling was done 

with two different approaches, the first was using Gaussian curves as an abstract general case and the 

second was fitting a competitive Langmuir kinetic dispersive model to experimental data obtained from 

(Johansson et al., 2015). 
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3.1.1. Gaussian curves 

Chromatographic systems produce chromatograms, due to the physical nature of chromatography these 

concentration profiles tend to display behaviour similar to Gaussian distributions. Gaussian curves can 

therefore be very useful for describing chromatograms (Jönsson, 1978), the equation for a Gaussian 

curve can be seen in equation 3 

(𝑥) =
1

𝜎√2𝜋
𝑒

(−
(𝑥−𝜇)2

2𝜎2 )
   

(3) 

 

where 𝜇 is the mean and represents the central position of the peak. It has the effect that convection 

has in a physical system as seen in figure 1. 𝜎 is the standard deviation and represents the broadening 

of the peak, it has the effect that dispersion has in a physical system as seen in figure 1. This means 

that Gaussian distributions can be used to create generalized simulations of chromatograms. These 

chromatograms might not be useful for determining how physical disturbances affect process outputs 

but can be useful as a tool for studying the effects of more abstracted disturbances such as changes in 

elution time, peak height or peak width. The main way that Gaussian chromatographic models were 

used in this thesis was as a fitting model for deconvolution which is explained in more detail in section 

3.3.5.. 

3.1.2. Competitive Langmuir/kinetic dispersive model 

The calibration of the model was based on data obtained from (Johansson et al., 2015). The study by 

(Johansson et al., 2015) was a separation of three different insulin species (insulin aspart, insulin desB30 

and insulin ester) in a Tricorn chromatographic column, from GE Healthcare, packed with absorbent 

from FeF Chemicals A/S. The experiments were performed under isocratic conditions with varying 

concentrations of two different modulators (Potassium chloride (KCl) and Ethanol (EtOH)). After 

evaluation of the data from this study, three data sets were selected as the basis for a calibration used in 

this thesis.  

There are different models that can be used for simulation of chromatographic systems. For this thesis 

a lumped rate model was chosen. The lumped rate model simplifies the column equation by not taking 

pore diffusion in the stationary phase into account and instead viewing all such behaviour as adsorption 

kinetics. The lumped rate model can be seen in equation 4 (Westerberg, 2012) 

𝜕𝑐

𝜕𝑡
= 𝐷𝐿

𝜕2𝑐

𝜕𝑧2 
− 𝑢𝑙𝑖𝑛

𝜕𝑐

𝜕𝑧
− 𝐹

𝜕𝑞

𝜕𝑡
  (4) 

 

where 𝑐 is the concentration in the bulk and 𝑞 is the concentration in the stationary phase. 𝐷𝐿 is the axial 

dispersion coefficient, 𝑢𝑙𝑖𝑛 is the velocity of the interstitial liquid and 𝐹 is the volume ratio between 

stationary and mobile phases. Three different parts contribute to equation, 𝐷𝐿 ∙ 𝜕2𝑐/𝜕𝑧2 represents the 

diffusion in the system, 𝑢𝑙𝑖𝑛 ∙ 𝜕𝑐/𝜕𝑧 represents convection in the system and  𝐹 ∙ 𝜕𝑞/𝜕𝑡 represents the 

kinetics of the system (Westerberg, 2012). 

A competitive Langmuir model was used to describe the adsorption kinetics of the system. It is based 

on the Langmuir isotherm seen in equation 5 

𝑞 =
𝑞𝑚𝑎𝑥𝐾𝑒𝑞𝑐

1+𝐾𝑒𝑞𝑐
  (5) 

 

This equation describes the equilibrium of adsorbed substance on the surface 𝑞 with respect to the 

concentration of the substance in the bulk 𝑐. Where 𝑞𝑚𝑎𝑥 is the maximum possible concentration in the 

stationary phase and 𝐾𝑒𝑞 = 𝐴/𝑞𝑚𝑎𝑥 where 𝐴 is the partitioning coefficient. The competitive aspect 

comes in from the fact that there is more than one substance adsorbing to the surface. This is taken into 
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account by using equation 6 to calculate 𝑞𝑓𝑟𝑒𝑒 which is the total amount of free adsorption sites 

(Westerberg, 2012).  

𝑞𝑓𝑟𝑒𝑒 = 𝑞𝑚𝑎𝑥 (1 − ∑ (
q𝑗

𝑞𝑚𝑎𝑥,𝑗
)𝑁

𝑗=1 )  
(6) 

  

To be able to simulate non-equilibrium conditions adsorption and desorption coefficients are introduced, 

𝑘𝑎𝑑𝑠 and 𝑘𝑑𝑒𝑠. If 𝐾𝑒𝑞 = 𝑘𝑎𝑑𝑠/𝑘𝑑𝑒𝑠 then equation 7, seen below, can be used to describe the adsorption 

kinetics (Westerberg, 2012). 

𝜕𝑞𝑖

𝜕𝑡
= 𝑘𝑑𝑒𝑠,𝑖 (𝐾𝑒𝑞𝑐𝑖𝑞𝑚𝑎𝑥,𝑖 (1 − ∑

𝑞𝑗

𝑞𝑚𝑎𝑥,𝑗

𝑁
𝑗=1 ) − 𝑞𝑖)  

(7) 

  

In the case studied two types of modulators where used KCl and EtOH, to account for their effect on the 

process exponents were added as can be seen in equation 8 and 9 (Westerberg, 2012). 

𝑘𝑎𝑑𝑠 = 𝑘𝑎𝑑𝑠0𝑒𝛾𝑐𝐸𝑡𝑂𝐻   (8) 

 

𝑘𝑑𝑒𝑠 = 𝑘𝑑𝑒𝑠0(𝑐𝐾𝐶𝑙)𝛽  (9) 

 

3.2. Statistical analysis 
Statistical analysis of the different control strategies was performed to determine their performance for 

different kinds of disturbances. The actual analysis was structured in a way where the types of 

disturbances, their magnitude and the way they were generated could be decided externally. A 

chromatographic system was then simulated for each of the disturbance profiles generated and the 

individual chromatograms from these simulations were sent to be evaluated by the control strategies. 

Each control strategy was evaluated with different levels of robustness, as defined in section (x).  

3.2.1. Disturbances 

Disturbances are a reality of the physical world, variations of some sort are present in all manner of 

processes and chromatography is no exception. Process disturbances in chromatography can be divided 

into two categories, sporadic and autocorrelated. Sporadic disturbances are made up of factors that 

mostly depend on external sources such as variations in the composition of the solute or the eluent. 

Autocorrelated factors are mostly related to the properties of the column and are due to for example 

degradation of column efficiency (Nagrath, Bequette, & Cramer, 2003). The focus was put on sporadic 

disturbances in this thesis, although some of the concepts and results could be applicable to the handling 

of autocorrelated disturbances. 

Three different parameters were altered when creating disturbances for the evaluation of strategies in 

this thesis. The parameters were the concentrations of the modulators EtOH and KCL respectively, and 

the total sample load introduced to the system. These disturbances were chosen since they affect the 

system in characteristic ways, the modulators affect the retention of the substances in the system i.e. 

time of elution and the load affects the height of the peaks. By having disturbances that representing 

these more general concepts it is possible to generalize the results from the strategy evaluation since the 

strategies do not discriminate between the origins of a disturbance. 

Two different ways of creating distributed disturbance samples were used. The first was normal 

distribution or Gaussian distribution. The MATLAB function “normrnd” was used to generate this kind 

of sample distribution. The method was latin hypercube sample (LHS), explained in further detail below. 
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3.2.2. Latin hypercube sampling 

LHS is a method by which sample points can be generated in a multidimensional space while avoiding 

overlapping sample points. The principle is that a given square grid with sample points is a latin square 

if each row and column in the grid only contain one sample point. This principle translates in the same 

way when additional dimensions are added. The benefit of this method is that a well distributed sample 

that covers a great area of possibilities is obtained while minimizing the amount of actual sample points 

(Olsson, Sandberg, & Dahlblom, 2003), an example of a latin square grid can be seen in figure 3. In this 

thesis the MATLAB function “lhsdesign” was used to create distributed samples for different 

combinations of system disturbances. 

 

Figure 3 Four examples of latin squares, the underlying concept is to create point distributions within a grid with no overlap 

in either rows or columns. This concept can be extended to multiple dimensions. 

The use of latin hypercube sampling can be advantageous for identifying particular weaknesses of the 

different strategies since it will cover the entire spectrum of possibilities equally.  

3.3. Strategies 
The general approach to pooling strategy design in this project was based on a couple of assumptions. 

The first assumption was that data for a nominal case would be available. It was also assumed that some 

kind of measurement that could be used for real time decisions would be available (e.g. UV-absorbance, 

conductivity etc.). Each strategy was implemented in a way where it would act as if it were functioning 

in real time. Three different strategies were implemented for testing of pooling control. The strategies 

were a time based approach where cut points were predetermined, an approach where specific UV 

absorbance measurements triggered pooling decisions and an approach where UV absorbance 

measurements were used to make predictions about the chromatogram and this in turn was used as a 

basis for dynamic optimization of the cut points. It is worth mentioning that no data was available for 

the how these methods would be implemented in real applications, this means that the implementations 

used in this thesis were based on personal interpretations. 
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3.3.1. Robustness 

Process variations are a reality of systems where disturbances are present, a systems ability to cope with 

such variations without failing is called the robustness of the system. When optimizing chromatographic 

systems, yield and purity often become contradictory goals, one can only be increased at the expense of 

the others. Since chromatography is often used for the purification of high value compounds, such as 

pharmaceuticals, maximizing yield is a high priority for process economy. At the same time such 

specialty chemicals often have very high demands on purity due to their nature as specialty chemicals. 

This leads to operating points near the boundary value of the purity demand when optimizing for process 

economy. The problem with such an operating point is that it is not very robust, small disturbances can 

have a great impact on the process leading to purity demands not being met which in some cases can 

mean the failure of an entire batch. To ensure the robustness of the process some of the potential yield 

has to be sacrificed so that the purity demands are met even when there are variations in the process 

(Westerberg, 2012).  

3.3.2. Pooling cut optimization 

The main tool used to obtain optimal pooling cut points was the program simplexpooling, developed at 

LTH, it is specifically designed to make optimal pooling decisions on well-defined systems. When given 

the concentration profiles of all individual components at the outflow in a chromatographic system it 

can utilize different optimization algorithms to find cut points optimal with respect to process yield. 

Different constraints can also be imposed on the system such as minimum yield or purity. For this project 

only purity constraints were used when searching for optimal cut points.  

3.3.3. Time based cuts 

The principle utilized in the time based cut strategy is that a nominal case is identified and the cut points 

are obtained by offline optimization using simplexpooling. The cut times obtained from simplexpooling 

were then used without changes regardless of the disturbances imposed on the system. Robustness was 

taken into account by the initial optimization, higher robustness was obtained by increasing the purity 

constraints in simplexpooling. 

3.3.4. UV based cuts 

The UV based cut strategy works on the principle that when a certain UV absorbance measure is met 

pooling starts or stops. In this project this was implemented in a very similar manner to how time based 

cuts were implemented. First a nominal case was identified and an offline optimization was performed. 

But instead of just using the optimal cut times directly the UV absorbance at these times was identified. 

These UV absorbances were then used in the pooling decision routine. When an UV absorbance 

corresponding to the optimized UV absorbance was measured, pooling started or stopped, a schematic 

illustration describing the UV based strategy can be seen in figure 4. Since UV absorbance is a lumped 

measurement it does not discriminate between which substances caused the UV absorbance and 

depending to the nature of the separation problem the same UV absorbance might be measured more 

than one time in the same chromatogram. As can be seen in figure 4 the UV measured at the optimal 

time of the first cut occurs twice before the optimal time. To avoid activating pooling in the wrong area 

of the chromatogram the routine was set to only make measurements and decisions during limited time 

spans. The allowed time span for cut decisions was defined as a percentage of the time difference 

between the optimized cut times before and after the optimized cut times. Furthermore to avoid getting 

no pooling at all, in the case that the desired UV absorbance was never measured, a cut would 

automatically be placed in the end of the allowed decision time span. 
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Figure 4 An illustration of how the UV based strategy works. Note that the cut points in this figure are placed arbitrarily just 

to show an example. The composite UV curve is a representation of the measured signal. 

Robustness was handled much the same as in the time based cut strategy, higher robustness was obtained 

by an increase of the purity constraints in simplexpooling in the offline optimization. 

3.3.5. Prediction based cuts 

The main difference between the prediction based cut strategy and the previously described strategies 

was the implementation of simulated online real time cut decisions. To be able to make pooling 

optimization decisions in real time, information about the concentration profiles of the individual 

components is needed. The problem in a lot of different real applications of detectors in chromatographic 

systems is that only lumped measurements such as UV absorbance are available. This problem could be 

solved with novel solutions in chromatographic detectors such as Diode array detectors used with partial 

least squares regression to identify the concentration of individual substances (Brestrich et al., 2014), 

but in this thesis it was assumed that only lumped sum measurements would be available.  

To get around the problem of lumped measurements in this project, the lumped measurements were 

deconvoluted using least squares fitting. Given the assumption that there was a nominal case, Gaussian 

curves were first fitted to the individual concentration peaks of each substance. Later when receiving 

data from another simulation the Gaussian curve parameters obtained from the nominal case were used 

as initial guesses for estimating Gaussian curve parameters to fit the data measured in in the simulation. 

By trying to fit a Gaussian curve to each peak in the lumped measurement an estimation of the individual 

concentration profiles was obtained. 

This also served as a very basic prediction method that produced estimates of the chromatogram that 

were then used by simplexpooling to make the actual pooling decisions. The idea of the method was to 

simulate a real time environment by mimicking measurement sampling and then letting the strategy 

make a decisions in every theoretical sample point. The nominal case was used as a reference value and 

was overwritten with the simulated disturbed case for each new sample point, this simply meant that the 

chromatogram consisted of data from the disturbed case up to the point of the current sample time and 

after that consisted of data from the nominal reference point. An example of how this might look can be 

seen in figure 5.A. After every new sample the chromatogram was deconvoluted, the deconvolution 

served as the predictor since it was basing its estimation on a combination of nominal and disturbed 

data, an example of such deconvoluted chromatograms can be seen in figure 5.B.  
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Figure 5.A shows how the data from the disturbed chromatogram and the nominal chromatogram are combined before being 

sent to deconvolution, note the boundary between disturbed and nominal data in the updated chromatogram at around 180 ml 

eluent volume.  Figure 5.B shows all predictions made up to the point of the latest data update. Note that predictions for each 

individual substance are made simultaneously. 

After deconvolution simplexpooling was then used to find optimal cut points for the estimated data. If 

the cut point obtained from optimization corresponded to the current sample time, pooling would start 

and likewise when the next cut point corresponded to the time, pooling would stop. 

Robustness in this case was handled in a way very similar to the previous cases. Robustness was 

increased by increasing the purity requirements in simplexpooling. 

 

4. Results 

4.1. Calibration 
After implementation of the kinetic dispersive model the model parameters were calibrated to fit with 

the experimental data obtained from the insulin separation case. Three sets of experimental data were 

used for the calibration and the fitting was performed for all these cases simultaneously, the fitting 

obtained can be seen in figure 6. The calibration was considered sufficiently accurate when the systems 

response to disturbances showed the same general tendencies as the experimental data i.e. the peaks 

moved in the same directions as could be observed from the experimental data when altering parameters.  
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Figure 6(A,B,C) show the chromatograms used for the calibration of the parameters of the model used for simulations in this 

thesis, with the respective fitting obtained. The text above each figure describe the conditions for each data set used in the 

calibration. 

After the calibration was complete simulations with each individual disturbance were performed. The 

actual effect that disturbances had on the simulated system can be seen in figure 7. As can be observed 

both of the modulators, KCl and EtOH, have very similar effects on the system. Increasing them 

decreases the retention of all substances in the column making elution time shorter and conversely 

decreasing then increases retention. Increases to the sample load result in heightening of the entire 

profile and decreases result in lowering of the profile. 

 

Figure 7 results from simulation, UV absorbance as a function of time for different disturbances.  
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The conditions chosen for the nominal case can be seen in table 1, this case is based on the same 

conditions as can be seen in figure 6.A. 

Table 1 this table contains the operating conditions for the case chosen as the nominal operating point. 

Salt concentration 208 mol/m3 

Ethanol concentration 0.346 V/V 

Load 0.1522 ml 

 

4.2. Sample distributions 
Two different methods were used to create distributed disturbance samples, normal random distribution 

and LHS. Two examples of what the distributions look like can be seen in figure 8. As can be seen in 

these figures LHS creates evenly distributed samples while the normal random distribution creates 

samples with an intensity maximum around the nominal point. 

 

Figure 8 the figures represent examples of sample distribution for two different disturbances. Normal random distribution was 

used to produce the sample distribution seen in the leftmost figure while LHS was used to produce the distribution seen in the 

rightmost figure. 

4.3. Strategy evaluation results 
The pooling cut strategies were tested for many different conditions and combinations of disturbances. 

All simulation sets were performed with 1000 sample points and a purity requirement of 𝑝 = 0.95. 

The results presented below are from one of these simulation sets. The data set used had a normal random 

sample distribution for all three disturbances with the standard deviations 𝜎𝑙𝑜𝑎𝑑 = 0.02 for sample load, 

𝜎𝐾𝐶𝑙 = 10 for the concentration of KCl and 𝜎𝐸𝑡𝑂𝐻 = 0.002 for the concentration of EtOH. For every 

strategy three specific cases are shown to represent the cut strategies behaviour at the nominal case and 

two extremes. The extreme points represent all disturbances giving positive addition and negative 

addition respectively to the process conditions. The points were chosen from the sample set to meet 

these requirements.  

4.3.1. Time based cut strategy 

The nature of the time based cut strategy is to be static, the actual cut points never change from case to 

case. As can be expected this strategy works very well for the nominal case since the actual cut points 

were optimized for the nominal case. As seen in table 2 the purity for the nominal case never drops 

below the requirement. As expected the yield decreases as the robustness is increased but the yield is 

still very close to the theoretical maximum with a yield of 92.7% of the maximum possible yield even 

for 2% robustness. The fact that the purities are not exactly consistent with purity requirements used for 
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the optimization is due to the way that the theoretical sampling is performed in the code, only making it 

possible to perform pooling cuts at discrete points along the volume axis. The chromatograms and the 

actual pooling cut points made by the strategy can be seen alongside the optimal cut placements, made 

by simplexpooling given all information, in figure 9. 

Because of the static nature of the strategy the performance noticeably decreases when it is introduced 

to systems with large disturbances, as illustrated by the positive and negative disturbance cases in table 

2. Since no online decisions are being made the cuts do not adapt and performance losses follow. This 

is most clearly evidenced by the fact that strategies fall well below the required purity no matter the 

robustness giving an effective yield of 0 for the cases. This can also be observed in the positive and 

negative disturbance cases in figure 9 where the cut placements are far away from the theoretical 

optimum. 

Table 2 results from nominal and extreme cases for the time based strategy, r represents robustness. Yield is defined as 0 if the 

purity requirement of 𝑝 = 0.95 is not met, the value given in parenthesis is the yield captured in the pool regardless of batch 

failure. 

Strategy/Robustness Purity Yield Yield/maxYield 

Nominal case 

Timecut r=0% 0.956 0.925 0.987 

Timecut r=1% 0.965 0.900 0.961 

Timecut r=2% 0.973 0.868 0.927 

Negative disturbances 

Timecut r=0% 0.839 0 (0.640) 0.684 

Timecut r=1% 0.844 0 (0.586) 0.627 

Timecut r=2% 0.848 0 (0.530) 0.566 

Positive disturbances 

Timecut r=0% 0.837 0 (0.742) 0.792 

Timecut r=1% 0.848 0 (0.695) 0.742 

Timecut r=2% 0.860 0 (0.646) 0.689 

 

             
Figure 9 representations of chromatograms for nominal and extreme cases with cut placements made by the time based strategy 

as well as the optimal pooling cut points. 
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The performance of the time based cut strategy in yield, purity and number of passed and failed batches 

can be seen in figure 10. It is compared to the theoretical maximum, which was determined using 

simplexpooling, for the same disturbances. The average performance for the entire set is presented in 

section 4.3.4. and can be seen in table 7. 

 

Figure 10 histograms showing the distribution of performance for the time based strategy for different levels of robustness 

alongside the theoretical maximum performance for the same simulation set. The parameters displayed are number of passed 

batches (where passed batches are represented by 1 and failed batches are represented by 0), batch purity and batch yield 

(without consideration for batch failures). 

4.3.2. UV based cut strategy 

The UV based cut strategy was designed so that cut points would be placed when a UV absorbance 

measurement corresponding to the UV absorbance at the optimal cut time was encountered. However 

UV absorbance is a lumped measurement and does not discriminate between which substance caused 

the UV absorbance. This means that the same UV absorbance signal can and will occur several times in 

the same chromatogram. In the implementation of the strategy this was solved by imposing a limited 

time span where the strategy was actually active. The results from three different cases from the same 

simulation run, as represented for the time based cut strategy, can be seen in figure 11. The problem 

with encountering the same UV to early can be seen in the nominal case where only the cut placement 

using the highest robustness actually managed to make a pooling decision within the boundaries of the 

purity requirements. This is also reflected in figure 12 when comparing the amount of batch failures 

between the different robustness levels, where lower percentage of the cases with low robustness passed 

compared to the cases with 2% robustness. 
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Table 3 results from nominal and extreme cases for the UV based strategy, r represents robustness. Yield is defined as 0 if the 

purity requirement of 𝑝 = 0.95 is not met, the value given in parenthesis is the yield captured in the pool regardless of batch 

failure. 

Strategy/Robustness Purity Yield Yield/maxYield 

Nominal case 

UVcut r=0% 0.908 0 (0.962) 1.032 

UVcut r=1% 0.891 0 (0.953) 1.021 

UVcut r=2% 0.968 0.887 0.951 

Negative disturbances 

UVcut r=0% 0.967 0.855 0.914 

UVcut r=1% 0.967 0.855 0.914 

UVcut r=2% 0.969 0.792 0.846 

Positive disturbances 

UVcut r=0% 0.464 0 (0.273) 0.291 

UVcut r=1% 0.498 0 (0.273) 0.291 

UVcut r=2% 0.818 0 (0.258) 0.275 

 

 

Figure 11 representations of chromatograms for nominal and extreme cases with cut placements made by the UV based strategy 

as well as the optimal pooling cut points. 

The fact that the UV based strategy manages to make as good pooling decisions in the negative 

disturbance case as it does, as can be seen in table 3, is most likely an exception due to lucky 

circumstances when taking the data in figure 12 into consideration, where it can be seen that the method 

very consistently performs badly. 
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Figure 12 histograms showing the distribution of performance for the UV based strategy for different levels of robustness 

alongside the theoretical maximum performance for the same simulation set. The parameters displayed are number of passed 

batches (where passed batches are represented by 1 and failed batches are represented by 0), batch purity and batch yield 

(without consideration for batch failures). 

4.3.3. Prediction based cut strategy 

The prediction based cut strategy used an updating estimation of the chromatogram to make predictions 

of where the optimal cut points would be. The original estimation is based on the nominal case and as 

could be expected the pooling strategy produces a yield very close to the theoretical maximum for the 

nominal case. For the cases with disturbances the results are mixed as illustrated by the negative and 

positive disturbance cases in table 4. For the case with negative disturbances the strategy fails to find 

cut points which satisfy the purity demand and for the positive disturbances the purity demand is 

satisfied for all levels of robustness but the yield is relatively low as can be seen in table 4 with a yield 

of 71.7% of the theoretical maximum yield for a robustness of 0%.  
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Table 4 results from nominal and extreme cases for the prediction based strategy, r represents robustness. 

Strategy/Robustness Purity Yield Yield/maxYield 

Nominal case 

Predictcut r=0% 0.957 0.918 0.984 

Predictcut r=1% 0.970 0.881 0.944 

Predictcut r=2% 0.976 0.832 0.892 

Negative disturbances 

Predictcut r=0% 0.823 0 (0.703) 0.752 

Predictcut r=1% 0.764 0 (0.600) 0.641 

Predictcut r=2% 0.821 0 (0.600) 0.641 

Positive disturbances 

Predictcut r=0% 0.960 0.672 0.717 

Predictcut r=1% 0.967 0.623 0.665 

Predictcut r=2% 0.973 0.569 0.607 

 

 

Figure 13 representations of chromatograms for nominal and extreme cases with cut placements made by the prediction based 

strategy as well as the optimal pooling cut points. 

As can be seen in figure 14 the predictive pooling strategy shows great consistence in making pooling 

decisions that meet the required purity demands, surpassing the other methods on all levels of robustness 

for the amount of passed batches. On the other hand the strategy seems to tend to make more 

conservative decisions, exemplified by the positive disturbance case in figure 13. As can be seen in the 

yield histograms in figure 14 the average yield suffers from this. It should be noted that the reason for 
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some of the points showing a value of zero for purity is due to a safety measure put in to the code to 

prevent crashes during simulations. If the strategy failed during evaluation the purity and yield were 

automatically put to zero.   

 

Figure 14 histograms showing the distribution of performance for the prediction based strategy for different levels of 

robustness alongside the theoretical maximum performance for the same simulation set. The parameters displayed are number 

of passed batches (where passed batches are represented by 1 and failed batches are represented by 0), batch purity and batch 

yield (without consideration for batch failures). 

4.3.4. Comparison 

When comparing the different strategies it is evident that they excel at different types of disturbances. 

For simulation sets where disturbances were only introduced to the modulators, with a standard 

deviation of 𝜎𝐾𝐶𝑙 = 10 for the concentration of KCl, 𝜎𝐸𝑡𝑂𝐻 = 0.002 for the concentration of EtOH and 

a normal random sample distribution, the predictive cut strategy outperformed both of the other methods 

for all levels of robustness. This can be seen in table 5 which presents the average performance of the 

strategies for the data set with these conditions.  
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Table 5 results from simulation set with disturbances to modulators with a normal random sample distribution, Tc stands for 

time based strategy, Uc stands for UV based strategy and Pc stands for prediction based strategy. Robustness is represented 

by r. The highlighted results are the ones that show the best performance. 

Set 13 Tc  

r=0% 

Tc 

r=1% 

Tc 

r=2% 

Uc  

r=0% 

Uc 

r=1% 

Uc 

r=2% 

Pc 

r=0% 

Pc 

r=1% 

Pc 

r=2% 

Yield 0.433 0.622 0.696 0 0.090 0.725 0.855 0.807 0.726 

Yield/Yieldmax 0.462 0.664 0.744 0 0.096 0.775 0.914 0.863 0.776 

Avgpurity 0.941 0.951 0.960 0.897 0.895 0.958 0.954 0.959 0.963 

 

The yield presented in tables 5 to 8 is defined as the total average yield for all cases with the yield of 

failed batches set to zero. 

In contrast to this the time based cut strategy showed the highest average yield when simulating a set 

with disturbances only to the load, with a standard deviation of 𝜎𝑙𝑜𝑎𝑑 = 0.02 for sample load and a 

normal random sample distribution,  as can be seen in table 6. 

Table 6 results from simulation set with disturbances to sample load with a normal random sample distribution, Tc stands for 

time based strategy, Uc stands for UV based strategy and Pc stands for prediction based strategy. Robustness is represented 

by r. The highlighted results are the ones that show the best performance. 

Set 17 Tc  

r=0% 

Tc 

r=1% 

Tc 

r=2% 

Uc  

r=0% 

Uc 

r=1% 

Uc 

r=2% 

Pc 

r=0% 

Pc 

r=1% 

Pc 

r=2% 

Yield 0.924 0.899 0.867 0.034 0.106 0.489 0.608 0.714 0.726 

Yield/Yieldmax 0.987 0.961 0.927 0.037 0.113 0.522 0.650 0.763 0.775 

Avgpurity 0.956 0.965 0.973 0.894 0.906 0.947 0.913 0.917 0.897 

 

Another thing that could be observed from the results was that the average performance was affected by 

the type of sample distribution used for the simulations. When comparing results obtained from a 

simulation set  

Two data sets using different sample distributions were compared, the first using a normal random 

distribution with the standard deviations 𝜎𝑙𝑜𝑎𝑑 = 0.02 for sample load, 𝜎𝐾𝐶𝑙 = 10 for the concentration 

of KCl and 𝜎𝐸𝑡𝑂𝐻 = 0.002 for the concentration of EtOH and the second using LHS with the standard 

deviations 𝜎𝑙𝑜𝑎𝑑 = 0.012, 𝜎𝐾𝐶𝑙 = 12 and 𝜎𝐸𝑡𝑂𝐻 = 0.002. When comparing the two sets the strategy 

that showed the best performance differs between the different types of sample distribution even though 

the standard deviations are roughly the same. The time based strategy shows the best performance when 

the disturbances have normal random distribution, as can be seen in table 7, while the predictive 

approach shows better performance for disturbances with a LHS distribution as can be seen in table 8. 

This indicates that the expected disturbance distribution can be of importance when choosing strategies 

for optimal performance. It is however worth noting that the case with normal random distribution had 

a higher standard deviation for load disturbances which the time based strategy generally handles better 

as pointed out previously. 

Table 7 results from simulation set with disturbances to all parameters with a normal random sample distribution, Tc stands 

for time based strategy, Uc stands for UV based strategy and Pc stands for prediction based strategy. Robustness is represented 

by r. The highlighted results are the show the best performance. 

Set 14 Tc  

r=0% 

Tc 

r=1% 

Tc 

r=2% 

Uc  

r=0% 

Uc 

r=1% 

Uc 

r=2% 

Pc 

r=0% 

Pc 

r=1% 

Pc 

r=2% 

Yield 0.460 0.656 0.725 0.037 0.187 0.514 0.521 0.652 0.647 

Yield/Yieldmax 0.492 0.702 0.775 0.040 0.200 0.550 0.557 0.697 0.692 

Avgpurity 0.943 0.953 0.961 0.876 0.906 0.942 0.907 0.914 0.902 
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Table 8 results from simulation set with disturbances to all parameters with a LHS distribution, Tc stands for time based 

strategy, Uc stands for UV based strategy and Pc stands for prediction based strategy. Robustness is represented by r. The 

highlighted results are the show the best performance. 

Set 9 Tc  

r=0% 

Tc 

r=1% 

Tc 

r=2% 

Uc  

r=0% 

Uc 

r=1% 

Uc 

r=2% 

Pc 

r=0% 

Pc 

r=1% 

Pc 

r=2% 

Yield 0.387 0.564 0.643 0.009 0.152 0.568 0.617 0.713 0.676 

Yield/Yieldmax 0.414 0.603 0.688 0.001 0.162 0.607 0.660 0.761 0.722 

Avgpurity 0.938 0.948 0.957 0.875 0.900 0.940 0.945 0.935 0.935 

 

5. Discussion 

The fact that the time based cut strategy outperforms the other pooling strategies for cases where only 

load disturbances are present can be attributed to the fact that a disturbance to the load will have minimal 

impact on the elution time of the individual peaks. This means that the optimal cut points will move to 

a very small extent. Even if a higher load might lead to higher concentrations of impurities in the pool, 

this is counteracted by the increase in the concentration of the desired substance leaving the purity of 

the pool at approximately the same level. This behaviour is of course a result of how the load disturbance 

was designed for the simulation, where a change to the load proportionally changes the concentration of 

each substance. Having disturbances with variability in the individual concentrations of the different 

substances might have produced different results. 

It is worth mentioning that the deconvolution used for the predictive pooling strategy did not have the 

ability to alter the total concentration of substances in its predictions. Adding these parameters might 

have increased the performance of the predictive strategy for load related disturbances. The reason for 

not implementing them however was the risk of decreasing the accuracy of the predictions due to the 

increased freedom it would give in fitting.  

The fact that the predictive cut strategy showed performance surpassing that of the time based strategy 

when introduced to disturbances to the modulators was also expected. Since changes to the modulators 

alter the elution times, the optimal cut points will shift to follow the position of the peaks. This is where 

one would expect an adaptive method as the predictive strategy to be better than a static method as the 

time based strategy. These results highlight the strengths of this type of approach to chromatographic 

control. 

Another interesting aspect of the results is the consistently poor performance of the UV based method. 

This is most likely more due to factors in the implementation of the strategy rather than a reflection of 

viability of this approach in real life. One factor that might play a part in this is that the definition of 

robustness is somewhat unfair when comparing the methods. As can be seen in the results the 

performance of the UV based strategy sometimes increases several times over when comparing lower 

and higher levels of robustness. Since the method is based on searching for a specific measurement 

within a fixed timespan, altering the timespan can produce very different results. Changing the 

robustness changes the timespan and as mentioned the strategy becomes much more viable at higher 

robustness levels. This indicates that the decision timespans might have been poorly optimized and 

changing the timespan implementation might produce performance results very different to the results 

presented in this thesis. Another way of improving the performance of the UV method would be to 

completely change the approach used to create the decision space. For example, instead of using 

predetermined timespans, an implementation where the gradient of the UV absorbance is measured to 

determine the relative position of the chromatogram could be used as a criterion for the decision space. 

This kind of implementation would of course be very case specific but could nonetheless prove more 

efficient.  
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5.1. Validity and sources of error 

5.1.1. Experimental data  

This thesis has focused on determining the performance of pooling strategies for general types of 

disturbances. But even with this broad approach determining the validity of the results for general cases 

is difficult. The focus has basically been on one case study with data taken from a study with the primary 

focus of determining the effect of different modulators on elution time. The range of deviation for the 

disturbances in the simulations was chosen to try and give a realistic representation of how a 

chromatographic process might behave, but depending on the actual system, substances or separation 

problem the magnitude and type of disturbances might differ radically. This gives some validity to the 

general approach but applications of these methods to any other case will require further work. 

5.1.2. Simulation uncertainty 

With any work that is strictly based on computer simulations there is always a risk of missing aspects 

of a problem that might only become evident when performing actual experiments. These could be 

technical aspects of real time measurements such as interference from noise which has not been 

accounted for in the implementation of the strategies.  

5.2. Future work 
There are several areas that could be worked on to further improve understanding of this subject. 

Improvements to the implementation of the simulation could increase the feasibility of the results 

produced. Further development could also improve performance of the individual strategies and help 

highlight their individual strengths and weaknesses.  

By expanding the simulation study with more cases the legitimacy of the results would increase and 

light could be shed on the generality of the usefulness of the different strategies. The case currently used 

in the simulation is a relatively simple separation case with clearly defined peaks of Gaussian nature. 

This does not necessarily represent the behaviour of cases with different kinetics or cases with different 

conditions imposed on them. 

One of the areas that could be the most interesting to investigate would be alternative implementations 

of predictive cut strategies. The predictive method used in this thesis was a very basic implementation 

but still showed great promise for certain types of cases. The implementation of a feed forward system, 

where information gathered prior to the separation could be used to fine tune the prediction model before 

each batch run, could help improve capability of the predictive approach immensely. There are also 

other approaches to prediction that could be investigated such as machine learning. 

Something that really should be tested further is the validity of these methods in practice with real 

experimental setups utilizing the suggested methods. This would help illuminate problems that might 

appear when working with physical systems that might not become apparent in simulations. The 

evidence presented from such a study would also be stronger for the purpose of determining the viability 

of the methods suggested. 

6. Conclusions 

After evaluation of the results it can be concluded that performance for different strategies can differ 

radically for different sets of conditions. The type of disturbance as well as the type of sample 

distribution has an effect on which strategy shows the best performance. The time based strategy shows 

the best average performance for load disturbances and mixed disturbances when using normal random 

sample distribution. The predictive strategy shows the best performance for modulator disturbances and 

mixed disturbances when using a LHS distribution. The UV based strategy showed poor performance 

in almost all cases, only at higher robustness levels did it show performances in acceptable ranges. This 

might indicate inferiority of the UV based approach general but is more likely due to flaws in the 

implementation of the strategy. 
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