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Abstract

When a video sequence is recorded in low-light conditions, the image often
become noisy. Standard methods for noise reduction have difficulties with
motion. But the interesting parts in a video is often the ones that are moving,
for instance a burglar captured in a surveillance video.

One approach for denoising video sequences is to use temporal filtering
controlled by optical flow, which describes how pixels move between two
image frames. Today, there exists few studies comparing how different optical
flow algorithms perform on noisy video sequences. Four different algorithms
have been analyzed in the thesis. Moreover, a comparison on how well
they can be used to improve the result of a temporal noise filter has been
done. The conclusion of the comparison is that optical flow is useful for
noise reduction. Algorithms based on patch matching and edge consistency
perform better than algorithms based on color consistency.

A recommendation for future work is to combine the best parts of each
algorithm to develop a new optical flow algorithm, specialized on noisy image
sequences. Furthermore, develop and implement a sophisticated optical flow
based noise filter in camera hardware.

Keywords: Optical flow, noise reduction, video sequences, video surveil-
lance, algorithms
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Chapter 1

Introduction

A common problem in video recording is insufficient incident light to the
camera. To mitigate the low light level, the camera may increase its gain
or select a longer exposure time. Both methods have drawbacks. Increasing
the gain amplifies the entire image content and therefore also increases the
amount of noise, while a longer exposure time causes blurring of motion in
the captured video sequence. In this thesis, the focus is how to handle noisy
image sequences and not motion blur. Noise filtering needs to understand
how the scene has changed to filter it optimally. This can be performed with
help of optical flow, which is a way of describing the motion in the scene as
seen by the observer (a person’s eye or the camera). If optical flow is used
to guide a noise filter, the optical flow must perform well on noisy images.
Several comparisons of optical flow algorithms have earlier been done [1–3],
but these have not tested the performance on noisy image sequences, nor
whether the algorithms can steer a noise filter, which is the focus of this
thesis.

1.1 Related work

Both optical flow and image denoising have been studied for decades. As it
is well beyond the scope of this report to give a thorough review of the entire
literature on these subjects, the focus is on the most closely related work.

Research in optical flow goes back to 1981, when the classical paper ”Deter-
mining optical flow” by Horn and Schunck [4] was published. The same year
Kanade and Lucas [5] presented their local approach. Since then, a massive
amount of articles and papers have been written about the subject. Among
this variety of approaches and algorithms, four have been investigated and
evaluated in this thesis. They have been chosen according to performance
and execution time. The names of the algorithms are SimpleFlow [6], Fast
Edge-Preserving PatchMatch (EPPM) [7], Classic+NL-Fast [8] and Large
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CHAPTER 1. INTRODUCTION

Displacement Optical Flow (LDOF) [9].

In order to evaluate and compare optical flow algorithms, several benchmarks,
all with their own dataset, have been published. One classical such bench-
mark is Barron [10], while more recent benchmarks include Middlebury [1],
MPI-Sintel [2] and KITTI [3]. The purpose of the datasets, belonging to these
benchmarks is to test a variety of things, including shadows, low contrast,
great textureless areas, motion blur, reflections and varied light conditions,
but none of them focuses on noisy images.

Noise reduction based on optical flow has been discussed for at least the
past ten years. While Buades, Coll and Morel argued that denoising image
sequences does not require motion estimation [11,12], more recent papers,
such as Dudek, Quintana and Cuenca from 2009 [13] and Liu and Freeman
from 2010 [14], say the opposite and prove that image denoising can be
improved with the help of optical flow. These papers have though their
focus on the noise filter and does not discuss which optical flow algorithm
that is most suitable to use for noisy image sequences. Furthermore, Liu
and Freeman [14] argued for the advantage of using motion estimation in
denoising, especially for structured noise.

1.2 Aim of the thesis

The goal of this thesis is to investigate which optical flow algorithms or types
of algorithms that are suitable for noisy video sequences in order to denoise.
A few optical flow algorithms will be implemented and executed on noisy
video sequences. In order to analyze the result and compare the algorithms,
a ranking system will be developed. A simple noise filter based on optical
flow will also be implemented.

1.2.1 Research questions

• How do existing optical flow algorithms perform on noisy video se-
quences?

• What kind of optical flow method generates the best result for noise
filtering?

• How can noise reduction take advantage of optical flow?

1.3 Limitations

One of the main limitations in this thesis is the number of optical flow algo-
rithms considered. Only four of the numerous existing optical flow algorithms

2



1.4. ERROR SOURCES

have been tested and compared.

While the thesis is performed in cooperation with Axis Communications AB,
the focus is noise filtering of network video with possibility to be extended
to real time. Therefore, several algorithms that may produce a better result
on noisy video sequences, but are considered too slow, are omitted.

1.4 Error sources

A major error source is that it is hard to know exactly how the considered
optical flow algorithms which have been implemented during the thesis (Sim-
pleFlow and EPPM) are originally implemented. In the case of EPPM, the
only source is a paper, where some parts of the algorithm are explained
thoroughly, while other parts are just mentioned passingly [7]. Even if
SimpleFlow [6] has available, uncompiled code, it is not used directly, but
translated into OpenCL, so some of its benefits may get lost. All parameter
choices are not mentioned in the papers or code. All this together leads to
the implementations in this report possibly varying quite a lot from the orig-
inal implementations, both when it comes to performance and execution time.

The selection of algorithms to be implemented is, except the execution
time limitation mentioned in Section 1.3, also based on availability of papers
and code and on an own classification (see Section 3.1 for details). Further-
more, only optical flow algorithms present on the MPI-Sintel benchmark [2]
are considered, so there is a risk that there exists other algorithms than
SimpleFlow, EPPM, Classic+NL-Fast and LDOF, which are better suitable
for noise removal.

1.5 Structure of the report

Chapter 2 begins with some terminology needed to understand the rest of
the report. Thereafter, theory about relevant parts in image processing
is presented. This part contains information about, for instance, different
filtering and interpolation methods. Then, some color theory is presented.
Background theory about noise and noise measurements, as well as optical
flow and a presentation of three existing benchmarks for measuring optical
flow are also included in this chapter.

Chapter 3 describes the method used during the thesis. The sections included
are choosing algorithms, implementation and parameter chooses, choosing
test images and analysis of different noise levels.

Chapter 4 starts with a presentation of the four optical flow algorithms

3



CHAPTER 1. INTRODUCTION

considered: SimpleFlow, EPPM, Classic+NL-fast and LDOF. In the case of
SimpleFlow and EPPM, implementation details and parameter choices are
also presented because these two algorithms have been implemented during
the thesis while the others have only been evaluated. The chapter continues
with a description of the noise filters that have been developed during the
thesis.

Chapter 5 introduces the dataset used in the thesis. First comes a de-
scription of each sequence from the dataset and some image frames from
them. Then, example images of the different noise levels and image his-
tograms showing the intensities of one frame typical for each sequence are
presented.

Chapter 6 presents the results of the evaluation of the noise filtering. The
filter is tested on four image sequences with five different noise levels each.
All experiments are performed both with and without pre-processing. Besides
the result measured by the structured similarity (SSIM) error measure, the
amount of occlusions found in each sequence by each algorithm is presented.

Chapter 7 consists of an analysis of the results and occlusion detection,
presented in Chapter 6. Whether the algorithms gains of the pre-processing
step and how well they handle illumination changes are also included in the
analysis.

Chapter 8 contains a general discussion about the thesis and especially
about the conclusions made in the analysis. A final conclusion, which an-
swers the research questions (see Section 1.2.1), is also included in this
chapter. Furthermore, ideas of future work in the field are presented.

4



Chapter 2

Theory

2.1 Terminology

Two adjectives often heard in image analysis are spatial and temporal. A
spatial feature is related to the position, size or area of an object and a
temporal feature is related to time. For instance, a spatial image filter uses
nearby pixels in the same image frame, while a temporal image filter uses
the same pixel in several subsequent frames.

Warp means to transform an image so that shapes in it become distorted [15].

A patch is a small area around a certain pixel [15]. In this report, the
word patch is used for a smaller, typically quadratic, segment of an im-
age. The patch radius is then the shortest distance from the center pixel
to an edge pixel of the patch, i.e. a patch having patch radius r consists of
(2r + 1)× (2r + 1) pixels. For an example of this, see Figure 2.1.

Motion boundaries are boundaries between adjacent regions with different
velocities in an image. The detection of motion boundaries can be used to
improve optical flow estimation and to extract information about the surface
boundaries in the image. The study of occlusions (see Section 2.5.1) together
with motion boundaries can tell the relative depth of adjacent objects, i.e.
which of the objects that are closest to the camera [16].

5



CHAPTER 2. THEORY

Figure 2.1: An example of a patch with radius r = 2, which thus consists of
(2r + 1)× (2r + 1) = 25 pixels.

2.2 Image processing theory

2.2.1 Filtering methods

In a linear filter, the value of the output pixel is a weighted sum of the values
of the input pixels. This can be written as

g(i, j) =
∑
k,l

f(i− k, j − l)h(k, l) =
∑
k,l

f(k, l)h(i− k, j − l) , (2.1)

where f is the input image and h is called kernel or mask. One common
kernel is the Gaussian kernel, which in two dimensions is written as

Gσ(x, y) =
1

2πσ2
e
−x

2 + y2

2σ2 . (2.2)

Equation (2.1) can also be written using convolution notation as

g = f ∗ h . (2.3)

While linear filters are convenient to work with, a better result is often
obtained by non-linear filters, which use a non-linear combination of nearby
pixels [15].

2.2.1.1 Bilateral filter

An example of a non-linear filter is the bilateral filter. The bilateral filter
is an adaptive filter, which tries to preserve edges by comparing the value
of the pixels. Nearby pixels with similar values will influence the averaging

6



2.2. IMAGE PROCESSING THEORY

more than other nearby pixels. The output of a bilateral filtering at a point
p in image I is

BF [I]p =
1

Wp

∑
q

Gσs(||p− q||)Gσr(|Ip − Iq|)Iq , (2.4)

where Wp is a normalization factor and G is the 2D Gaussian kernel (equation
(2.2)). The parameters σs and σr decide how much the spatial distance and
difference in value, respectively, will affect the result. A large σs smooths
larger features while a large σr means that the filter approximates a Gaussian
convolution [17]. A bilateral filter’s ability to preserve edges in comparison
with a Gaussian filter is shown in Figure 2.2.

Figure 2.2: The principal difference between a Gaussian filter (upper part of
the image) and a bilateral filter (lower part of the image).

2.2.1.2 Median filter

Another non-linear filtering method, often used for noise removal, is median
filtering. For each pixel, the median filter picks the median of the pixel’s
neighborhood and assign that value to the pixel. Two drawbacks with this
kind of filter is that it performs poorly on regular Gaussian noise and that
it is not very fast because the pixels need to be sorted in order to find the
median. It is, however, good for removing impulse noise, where one pixel
value is very far from its neighbors. There are also weighted median filters
where the closest pixels are used multiple times in the median calculation [15].
Another type of weighted median filter uses bilateral weights between the
current pixel and the pixels inside the filter for giving different pixels different
impact [18].

7



CHAPTER 2. THEORY

2.2.2 Interpolation methods

Assume that the function f(k, l) describes some property (for instance the
amount of red or the optical flow) at each pixel (k, l) on a coarse grid. The
goal of interpolation is to create a function g(i, j) on a finer grid which is
equivalent to f on the coarser grid. The function g can be found by using
the convolution formula

g(i, j) =
∑
k,l

f(k, l)h(i− r · k, j − r · l) , (2.5)

where the integer r is the upsampling rate. The interpolation kernel h
depends on the interpolation method used [15].

2.2.2.1 Bilinear interpolation

The interpolation kernel of the bilinear interpolation is

h(x, y) =


4
16 if x = 0, y = 0
2
16 if |x| = 1, y = 0 or x = 0, |y| = 1
1
16 if |x| = 1, |y| = 1

0 otherwise

. (2.6)

This corresponds to the convolution kernel h = 1
16

 1 2 1
2 4 2
1 2 1

.

Bilinear interpolation is often used when speed is crucial, but it gives worse
visual quality than more complicated interpolation methods [15].

2.2.2.2 Bicubic interpolation

The interpolation kernel of the bicubic interpolation is

h(x) =


1− (a+ 3)x2 + (a+ 2)|x|3 if |x| < 1

a(|x| − 1)(|x| − 2)2 if 1 ≤ |x| < 2

0 otherwise

. (2.7)

The convolution with this kernel is performed in both dimensions. This
interpolation is a piecewise-cubic spline. Spline means that the function
is piecewise polynomial and C1. The parameter a in Equation (2.7) is the
specification of the derivative at x = 1, which can be chosen, but often is set
to −1 [15]. Figure 2.3 shows the bicubic interpolation kernel for a = −1.

8



2.2. IMAGE PROCESSING THEORY

Figure 2.3: The bicubic interpolation kernel with a = −1.

2.2.2.3 Joint-bilateral upsampling

Bilateral upsampling is based on the edge preserving bilateral filter (explained
in Section 2.2.1.1). The bilateral filter consist of one spatial filter and one
range filter. Joint (or cross) bilateral filters differ from normal bilateral
filters in the way that they are using another image in the range filter. The
image that should be upsampled is put in the spatial filter (often truncated
Gaussian). For instance, when upsampling optical flow, the high resolution
image is used in the range filter and the flow field is used in the spatial filter.
In this way the upsampling process gives a less smooth result [19].

2.2.3 SIFT and HOG

SIFT is an algorithm that detects and describes feature points (descriptors)
in images. The goal of this is to match areas that corresponds to the same
3D object in different images, which can be useful for, among other things,
segmentation and optical flow. The features are found by calculating gra-
dients in a 16× 16 window. The algorithm weights the gradients such that
gradients far from the center point get less weight. The weight function is a
kind of Gaussian fall-off function. Gradient histogram orientations is created
on each 4× 4 quadrant of the 16× 16 window. Every histogram has eight
bins each. It gives 4× 4× 8 bins which form the descriptor. SIFT normalizes
the vector to handle affine change of illumination. After that, all values are
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CHAPTER 2. THEORY

cut down so they are less than 0.2. The reason of that is to throw away
photometric variations. As a last step the vector is normalized again [15].

HOG is a kind of simplified version of SIFT. HOG finds descriptors on
a dense grid (unlike SIFT) which is uniformly distributed. HOG only works
in one scale and a fixed orientation. Thus, it can only handle very small
changes in scaling and rotation [15].

2.2.4 Nearest neighbor search

Nearest neighbor search is about finding the closest matches for high-
dimensional vectors. Formally, the nearest neighbor search problem can
be defined as follows:

Definition 2.1 Given a set of points P = {p1, ..., pn} in a vector space X,
and a new point q ∈ X, find the closest point in P to q.

The vector spaceX is usually the Euclidean vector space. For high-dimensional
spaces, it is common that there does not exist any known algorithm faster
than simple linear search, which is too slow for many applications. There-
fore, approximate algorithms which are much more efficient, but not always
returns the optimal result, are often used. Applications that can take ad-
vantage of nearest neighbor search include finding matches for local image
features between two frames (i.e. find which pixel/patch in one frame that
best matches a pixel/patch in another frame) as well as machine learning,
data compression and document retrieval [20].

10



2.3. COLOR THEORY

2.3 Color theory

Brightness is the amount of visible light from a point on an object, traveling in
a specific direction [21]. The perceived relative brightness is called luminance
[15]. Independent of its luminance, a point of an object also has a chromaticity,
which consists of two independent parameters: hue and saturation. The hue
decides which color the point has and the saturation decides how intense the
color is, a low saturation means a more grayish color.

2.3.1 RGB color system

In a human eye, there are three kinds of color cone receptors, sensitive to
different wavelengths of visible light and a fourth kind, rods, which are
sensitive to luminance and not color in low light conditions. The peaks of
the color cones, which can be seen in Figure 2.4, correspond to a blueish,
greenish and reddish color, respectively, but as can be seen in the figure,
there are large overlaps between the sensitive areas. This overlap in the
human seeing makes it impossible to generate all colors that can be perceived
by the brain by using only three additive components. Nevertheless, many
color system is based on precisely three components [22].

Figure 2.4: The sensitivity curves for the three color cone receptors (and the
rods in black) in the human eye. Retrieved from http://upload.wikimedia.

org/wikipedia/commons/c/c2/Cone-response.png.

Based on the ability of the human eye, the RGB color system consists of
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CHAPTER 2. THEORY

the three components or channels, which are called R, G and B and cor-
responding to red, green and blue color. The RGB system also takes into
account another property of the human eye, namely that it is more sensitive
to luminance variation when the luminance is low compared with the same
variation when the luminance is high. Thus, the R, G and B components
are not linear in intensity, but instead scaled to be perceived as linear of the
human eye. There exist various RGB color spaces with different scalings [22].

Figure 2.5: The RGB color cube. Retrieved from http://commons.

wikimedia.org/wiki/File:RGBCube_b.svg.

The scale for the three components start at 0 and goes up to some common
maximal value, typically 255 or in this thesis often 4095. Sometimes, the
color components are normalized. Then, the maximal value is 1. The RGB
color system is additive and a higher value of one component means more
of that color. If a pixel’s R, G and B components have the same value, it
corresponds to grayscale. If all components are zero the pixel is black and if
all components have the maximal value the pixel is white. The concept can
be illustrated as in Figure 2.5.

2.3.2 CIELab color system

Except the often used RGB system, there are also several other color systems
around. One of them, which is used in some of the algorithms considered in
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2.3. COLOR THEORY

this thesis, is the CIELab color system from 1976 [23]. The CIELab system is
based on the fact that humans perceive difference in luminance and color in
a roughly logarithmic way. CIELab has thus three non-linear components: L,
a and b. The component L corresponds to the luminance or lightness, while
a and b describes chromaticity [15]. A high a corresponds to more red color
and a low a corresponds to a more green color, while a high b corresponds
to a more yellow color and a low b to a more blue color, as can be seen in
Figure 2.6.

Figure 2.6: A graphical explanation of the CIELab color system.

2.3.2.1 RGB to CIELab conversion

Consider a certain pixel from an image frame and normalize its RGB values
to be in the interval [0, 1] and call the result R, G and B, respectively. Define
the function f as

f(t) =

{
t1/3 if t > 0.008856

7.787 · t+ 16/116 otherwise
. (2.8)

Let X,Y, Z be X
Y
Z

 =

 0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

 R
G
B

 . (2.9)
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Finally, let Xn, Yn, Zn be the X, Y and Z corresponding to the reference
whingite, in the implementation in this thesis the X, Y and Z corresponding
to R = G = B = 1 are used.

Then, the CIELab values of the current pixel can be calculated as [23]

L =

{
116 · (Y/Yn)1/3 − 16 if (Y/Yn) > 0.008856

903.3 · Y/Yn otherwise

a = 500 · (f(X/Xn)− f(Y/Yn))
b = 200 · (f(Y/Yn)− f(Z/Zn))

. (2.10)

2.3.2.2 CIELab to RGB conversion

Assume that the pixel currently considered has the CIELab color values L, a
and b. Again, let Xn, Yn, Zn correspond to the reference white and let

P =
L+ 16

116
.

Then

X = Xn · (P + a/500)3

Y = Yn · P 3

Z = Zn · (P − b/200)3

and  R
G
B

 =

 3.240479 −1.537150 −0.498535
−0.969256 1.875992 0.041556
0.055648 −0.204043 1.057311

 X
Y
Z

 . (2.11)

With the formulas in Equation (2.11), some of the produced normalized RGB
values may be outside the range [0, 1]. Negative values are truncated to 0
and values greater than one are truncated to 1 [23].
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2.4 Noise

After passing through the optics (lenses) of a camera, the incoming light
reaches an image sensor. During the exposure time, light photons are con-
verted to electrons, accumulated in the sensor pixels [15]. The full well
capacity (in the rest of the report called only full well) is the maximum
amount of electrons that can be accumulated in each sensor pixel. Provided
that the exposure is adjusted so that the brightest spots in the image just
fill their pixels, a lower full well leads to a lower dynamic range and a lower
signal-to-noise ratio [24]. During the sensing process different kinds of noise
are added, for instance fixed pattern noise, quantization noise and shot
noise [15]. The temporal system noise occurring in absence of an input
signal is called read noise [25]. Before the analog-to-digital conversion of
the electrons, the signal is amplified with a factor, called gain. In theory, a
higher gain leads to a better performance in low light conditions, but it is
not only the signal, but also some of the sensor noise sources that become
amplified [15].

The noise model used in this thesis includes photon shot noise and read noise.
The signal is normalized to be in the interval [0, 1], where 0 corresponds to
black and 1 corresponds to white. In order to get the unit electrons, the
signal is multiplied with the full well, giving

signal electrons = signal · full well . (2.12)

The photon shot noise is called PSN and is modeled as a Gaussian function
(see Equation (2.2)) with mean 0 and standard deviation

σpsn =
√

signal electrons .

The read noise, called RN is also modeled as a Gaussian function with mean
0, but it has the standard deviation σread. The σread parameter has been
set to 5 in all experiments in this thesis. The noisy signal is then given by
the sum of the signal and the noise, i.e.

noisy signal electrons = signal electrons + PSN + RN . (2.13)

The final image should have intensities in the interval [0, 4095]. To accomplish
this, the final signal is calculated as

noisy signal = 240 +
noisy signal electrons · (4095− 240)

full well
, (2.14)

where 240 is called black level. Due to the noise the signal can still be outside
the wanted interval. In that case, pixel values below 0 are set to 0 and pixel
values above 4095 are set to 4095 [26].
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2.4.1 Measurements

There exists several different metrics and methods to measure the amount
of noise in an image. Three of them are MSE (mean square error), PSNR
(peak signal-to-noise ratio) and SSIM (structural similarity).

2.4.1.1 MSE

The mean square error is defined as

MSE =
1

n

∑
x

[
I(x)− Î(x)

]2
, (2.15)

where n is the number of pixels, I(x) is the original image and Î(x) is the
noisy image [15].

2.4.1.2 PSNR

Peak signal-to-noise ratio is defined as

PSNR = 10log10

I2
max

MSE
, (2.16)

where Imax is the maximal color value (4095 for 12 bit images) [15].

2.4.1.3 SSIM

Structural similarity is a metric based on perceptual similarity. The metric
uses the luminance, contrast and structure of the image. A 11× 11 Gaussian
kernel (see Section 2.2) with standard deviation 1.5 and normalized to unit
sum is used as a weighting function in SSIM. For an image I of N pixels,
let w = {wi|i = 1, 2...N} be the weighting function for each pixel. The
luminance for the image is then estimated by

µI =

N∑
i=1

wiIi (2.17)

and the contrast is estimated by the standard deviation

σI =

(
N∑
i=1

wi(Ii − µI)2

)1/2

. (2.18)

The luminance comparison, l(I, J), between two images I and J is defined
as the comparison between µI and µJ

l(I, J) =
2µIµJ + c1

µ2
I + µ2

J + c1
, (2.19)
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where c1 is a constant to avoid singularity, when µ2
I + µ2

J is close to zero.
The contrast comparison, c(I, J), between two images I and J is in a similar
way defined as the comparison between σI and σJ

c(I, J) =
2σIσJ + c2

σ2
I + σ2

J + c2
, (2.20)

where c2 is a constant to avoid singularity, when σ2
I + σ2

J is close to zero.
The structural comparison, s(I, J), between two images I and J is defined
as the correlation between (I − µI)/σI and (J − µJ)/σJ , which is equal to
the correlation coefficient between I and J

s(I, J) =
σIJ + c3

σIσJ + c3
(2.21)

with

σIJ =

N∑
i=1

wi(Ii − µI)(Ji − µJ) , (2.22)

where c3 is a constant to avoid singularity, when σIσJ is close to zero. Now
a similarity function, S(I, J) is created as

S(I, J) = f(l(I, J), c(I, J), s(I, J)) . (2.23)

For SSIM the function f is defined as

f(l(I, J), c(I, J), s(I, J)) = l(I, J)α · c(I, J)β · s(I, J)γ (2.24)

where α > 0, β > 0 and γ > 0 are parameters to modify the relative
importance. To simplify the formula, α, β and γ is set to one and c3 = c2/2.
It gives

SSIM(I, J) =
(2µIµJ + c1)(2σIJ + c2)

(µ2
I + µ2

J + c1)(σ2
I + σ2

J + c2)
. (2.25)

SSIM has the following properties

1. Symmetry: SSIM(I, J) = SSIM(J, I)

2. Bounded: SSIM(I, J) ≤ 1

3. Unique maximum: SSIM(I, J) = 1⇔ I = J

The constants, c1 and c2, are normally set to c1 = (K1L)2 respective c2 =
(K2L)2 where L is the maximum color value (4095 for 12 bit images). K1

and K2 should be chosen to small values. In this thesis K1 has been set to
0.01 and K2 has been set to 0.03. All parameters are set according to the
authors of SSIM [27].
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2.5 Optical flow

Optical flow can either be defined as the apparent motion of brightness
patterns in an image or as a motion field, which is the 2D projection of
the 3D motion of objects and surfaces in the image. Most algorithms for
determining optical flow estimates a 2D motion vector for each pixel in a
frame from a video sequence containing of at least two frames [1], see Figure
2.7.

Figure 2.7: An example of an optical flow vector field, where each arrow
represents how far and in which direction the current pixel have moved
between two image frames.

A way to estimate the optical flow, used by many algorithms, is to model it
as a global energy function (also called objective function [8]), which should
be minimized. The energy equation is typically on the form

EGlobal = EData + λEPrior , (2.26)

where EData is called the data term and EPrior the prior term [1] or the
spatial regularity term [8]. Algorithms for calculating optical flow differs
both in the exact formulation of the energy function and which optimization
algorithm that is used to minimize it [8].

The data term in the energy function is often based on the brightness
constancy assumption (BCA), which implies that the corresponding pixel
values are assumed to be constant between frames [15]. The term contains
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a robust penalty function for measuring the error of the chosen feature
between the pixels. Some examples of penalty functions are the L1-norm,
the L2-norm, the Lorentzian function ρ(x) = log(1 + x2

2σ2 ), the quadratic HS

penalty function ρ(x) = x2 and the Charbonnier function ρ(x) =
√
x2 + ε2 [8].

The prior term is based on how the optical flow varies across the image [8].
The total variational (TV) is most often used for the term. The TV for a
function f(x) over an interval [a, b] is defined as

TV(f(x)) = sup
n∑
i=1

|f(xi)− f(xi−1)| , (2.27)

where x0 = a < x1 < x2 · · · < xn = b are any partition of points between a
and b. The TV for one dimensional absolutely continuous functions is

TV(f(x)) =

∫ b

a
|f ′(x)|dx (2.28)

and for two dimensions (x over [a, b] and y over [c, d])

TV(f(x,y)) =

∫ b

a

∫ d

c
|∇f(x, y)|dxdy . (2.29)

Like the data term, other norms could also be used for the penalty func-
tion [28,29].

A classical formulation of the energy function is

E(fx, fy) =
∑
i,j

ρD(I1(i, j)− I2(i+ fx(i, j), j + fy(i, j)))

+λ

(
ρS(fx(i, j)− fx(i+ 1, j)) + ρS(fx(i, j)− fx(i, j + 1))

+ρS(fy(i, j)− fy(i+ 1, j)) + ρS(fy(i, j)− fy(i, j + 1))

) . (2.30)

Here, I1 and I2 are the two image frames, fx and fy are the x- and y-
component of the optical flow field to be estimated, ρD and ρS are the
penalty functions and λ is a so called regularization parameter [30].

To deal both with large motions and thin structures moving fast, a coarse-
to-fine estimation is often used in optical flow algorithms. The image is then
downsampled to a coarser scale, on which the flow first is estimated. The
flow field is then upsampled and refined until the original scale is reached [8].
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2.5.1 Occlusions

A key concept in optical flow is the detection and handling of occlusions. An
object or area, which is not visible in both image frames, between which
the optical flow should be estimated, is considered occluded, see Figure
2.8. Occlusions can occur when objects move into or out of the image,
when an object is moving in front of another object or when the camera is
moving. Occlusion filling means to estimate flow in occluded areas, which are
hard since the motion cannot be measured based on the two input frames.
Occlusion filling is related to image inpainting, which can be solved by
diffusion-based methods or exemplar-based methods [31]. Diffusion is most
often used to solve occlusion filling. Partial derivative equations are used
to propagate flow from non-occluded to occluded regions. The technique
of exemplar-based methods is to copy pixels from observed images to the
unknown part [31].

(a) Frame t (b) Frame t+ 1

Figure 2.8: The white area in image (b) symbolizes the occluded area for
frame t+ 1.

2.5.2 Classical approaches

Optical flow algorithms can be divided into local and global methods. The
local methods look at each pixel individually and estimate how it has moved
locally to calculate optical flow. Global methods look at the full image and
calculate the flow for all pixels at the same time [32].

The most classical global optical flow algorithm is Horn-Schunk [4] from 1980.
It relies on the brightness constancy assumption. The algorithm assumes
that neighboring pixels on an object move in the same way. In that way the
algorithm has a smoothness constraint [4]. The global energy equation for
Horn-Schunk can be written as

E =
∫ (

∂I
∂xfx(p, t) + ∂I

∂yfy(p, t) + ∂I
∂t

)2
+ α2(||∇fx||2 + ||∇fy||2)dpxdpy

, (2.31)
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where I is the intensity of the image, fx(p, t) and fy(p, t) is the flow in x-
and y-direction from a pixel p at time t and the regularization parameter
α decides the level of smoothness of the optical flow [32]. The function is
solved by using the Euler-Lagrange equations, giving

∂I

∂x

(
∂I

∂x
fx +

∂I

∂y
fy +

∂I

∂t

)
− α2∆fx = 0

∂I

∂y

(
∂I

∂x
fx +

∂I

∂y
fy +

∂I

∂t

)
− α2∆fy = 0

. (2.32)

These equations are then solved by an iterative algorithm. A problem with
Horn-Schunk is that discontinuities occur at the motion boundaries [32].

Kanade-Lucas is a local optical flow algorithm, which assumes that the
flow is locally constant. Let I(p, t) be the intensity and fx and fy be the flow
in x- and y-direction for a certain pixel p at time t. For stability reasons, a
small neighborhood window {p1, p2, ..., pm} is used. The system of equations
to be solved to find the flow for pixel p then becomes

∂I(p1, t)

∂x
fx +

∂I(p1, t)

∂y
fy = −∂I(p1, t)

∂t

∂I(p2, t)

∂x
fx +

∂I(p2, t)

∂y
fy = −∂I(p2, t)

∂t
...

∂I(pm, t)

∂x
fx +

∂I(pm, t)

∂y
fy = −∂I(pm, t)

∂t

. (2.33)

In order to solve this, often over-determined, equation system, the least
square method is used. The solution then becomes

(
fx
fy

)
=−


∑

i

(
∂I(pi, t)

∂x

)2 ∑
i

∂I(pi, t)

∂x

∂I(pi, t)

∂y

∑
i

∂I(pi, t)

∂x

∂I(pi, t)

∂y

∑
i

(
∂I(pi, t)

∂y

)2


−1

·


∑

i

∂I(pi, t)

∂x

∂I(pi, t)

∂t

∑
i

∂I(pi, t)

∂y

∂I(pi, t)

∂t



. (2.34)

In comparison with Horn-Schunk, Kanade-Lucas produces a less smooth opti-
cal flow. On the other hand, it has not the same problem with discontinuities
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as Horn-Schunk has [32]. Other formulations of the energy function includes
formulations based on image segmentation and oriented smoothness [8].
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2.6 Existing benchmark methods

Some of the newer benchmarks for ranking optical flow algorithms around
are the Middlebury benchmark from 2011 [1], the MPI-Sintel benchmark
from 2012 [2] and the KITTI benchmark, also this from 2012 [3]. Each
benchmark has its own dataset for evaluation, split into a training set and a
test set. For a comparison between these three datasets, see Table 2.1. All
four optical flow algorithms implemented in this thesis (SimpleFlow, EPPM,
Classic+NL-fast and LDOF) are listed in the MPI-Sintel benchmark [33], all
except Classic+NL-fast in the Middlebury benchmark [34] and all except
SimpleFlow are listed in the KITTI benchmark [35].

2.6.1 Middlebury

The benchmark Middlebury [1] has a dataset containing natural scenes.
The dataset consists of 12 image sequences with available ground truth
used for training (for instance parameter choices and debugging) and 12
image sequences for testing. One of the sequences called Yosemite comes
from an earlier benchmark, created by Barron [10] in 1994. This sequence is
included to make comparison with older algorithms possible. The Middlebury
benchmark tests four types of data (examples of the types are shown in
Figure 2.9):

• Scenes with non-rigid motion. These sequences are taken with a camera
in the real world and contains different challenges, for instance shadows,
low contrast and large areas without texture. All of them have small
motions, typically about 10 pixels per frame and lack of motion blur.
Hidden fluorescent texture, which can be captured by UV-light after
the motions, is used for determining a dense ground truth flow. This
method for finding ground truth will, however, encounter problems in
the occluded areas.

• Realistic synthetic scenes with larger independent motions and complex
occlusions. These scenes are generated by computer graphics, so it is
easier to generate ground truth, especially for occluded pixels.

• High frame rate video sequences from the real world. The ground truth
is an image captured between the two current frames. The algorithms
are tested by creating an interpolation image using the estimated optical
flow and the two frames and compare this image to the ground truth
image. These sequences provide motion blur, as well as more complex
motion and textures.

• Static scenes where the whole scene is moving horizontally [36].
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Figure 2.9: Four of the data sequences from Middlebury benchmark: ”Army”
with non rigid motion (upper left), static scene ”Teddy” (upper right), syn-
thetic scene ”Grove” (lower left) and high frame rate video ”Backyard” (lower
right).

The Middlebury benchmark measures four kinds of errors. The first is
average angular error, which is the same error metric that Barron [10] uses.
In this metric, the 3D angle between the estimated flow vectors and the
ground truth vectors are measured, meaning small motions become more
penalized than larger ones. The endpoint error is simply the Euclidean
distance between the estimated flow vector and the ground truth vector.
The third error metric is interpolation error, which is the root mean square
between all pixels in the estimated image and the corresponding pixels in
the ground truth image. The last is a normalized version of the interpolation
error. These errors are calculated in three different types of areas: in all
parts of the image (including occlusions) where ground truth flow could be
reliably determined, in the parts around the motion discontinuities and in
areas without texture. All of the errors are reported in several statistical
ways as average, standard deviation and percentage of pixels with an error
higher than a certain threshold, leading to many possible ways of ranking
algorithms. The algorithms are required to generate a dense optical flow
field in order to be ranked in the benchmark.

24



2.6. EXISTING BENCHMARK METHODS

2.6.2 MPI-Sintel

The MPI-Sintel [2] benchmark has a 3D dataset, based on the animated short
film Sintel, which is an entertainment movie in 24 fps (frames per second)
and not created specifically for research. The dataset contains 35 sequences
from Sintel, divided in 23 sequences for the training set and 12 for the test
set. Most of these video sequences consist of 50 frames. Sintel is somewhat
specialized on large motions with both small and large objects moving fast
with a maximum flow of over 100 pixels per frame. Some other challenges
are specular reflections, motion blur and defocus (objects which are not in
focus) . Since Sintel is animated, not all physical laws are followed, but
things like luminance, spatial power spectra and flow have been compared to
real world images with good result. The movie is considered close enough to
reality to tell how well the optical flow algorithms will perform in the real
world. An advantage with an animated dataset is that it is easy to mea-
sure the exact motion between two frames and thus create a perfect ground
truth, something that no current image sensor is able to do in an accurate way.

In the MPI-Sintel dataset, it is possible to choose between three render
settings for each sequence in order to test different types of conditions (for
an example image see Figure 2.10):

• Albedo: Contains no illumination, thus the brightness constancy as-
sumption is fulfilled, except in occluded regions.

• Clean: Introduces illumination changes and reflections.

• Final: The rendering from the real film. Contains motion blur, atmo-
spheric effects and much more.

The algorithms tested by the people behind MPI-Sintel (Classical+NL [8],
Classical++ [8], Classic+NL-fast [8], HS [4], LDOF [9] and H-L1 [37]) gener-
ally perform best on Clean, while they have problems with Albedo, which
contains large homogeneous regions not suitable for optical flow algorithms.
Most challenging for most of the algorithms is the Final render setting [2].

The MPI-Sintel benchmark measures different kinds of errors: average end-
point error (EPE), error for pixels that are moving in a certain speed or
having a certain distance to occlusions and error in matched and unmatched
regions. Unmatched regions, consisting of nearly 8.5% of all pixels, are the
parts of the image which are shown in only one of the two frames.
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(a) Albedo

(b) Clean

(c) Final

Figure 2.10: The three render settings available in MPI-Sintel on the same
image from the training sequence bandage 1.

Some advantages for the MPI-Sintel dataset compared to the Middlebury
dataset [1] is that MPI-Sintel has longer sequences and larger training sets,
meaning many more ground truth fields and a possibility of testing algorithms
based on machine learning. MPI-Sintel also offers higher resolution, larger
motions and more complexity. Algorithms which performs well on the
Middlebury benchmark with an average endpoint error of 0.5 pixels can do
as bad as an error of about 10 pixels on the MPI-Sintel benchmark [2].
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2.6.3 KITTI

KITTI [3] is a benchmark used not only for optical flow, but also for stereo
matching, measurement of distances in images and 3D object detection. The
images for the datasets have been captured from an autonomous driving
platform, equipped with four high resolution video cameras (out of which
two are grayscale cameras and two are color cameras), a laser scanner, an
advanced localization system and a powerful computer. Currently, only the
images from the grayscale cameras are used because they are of better quality
than the color ones. The car has driven in several areas: both on highways,
in a mid-sized town and in the countryside. A typical image captured by the
driving platform can be seen in Figure 2.11. In total, about 3 TB of material
has been filmed. In order to get a diverse optical flow dataset representing
many different kinds of motions, k-means clustering has been used on the
material to pick 400 image pairs. Eleven of them has been omitted due to bad
illumination condition, leaving 194 image pairs for the training set and 195
for the test set. The challenges in the final dataset include specular reflections
and transparent surfaces, large variety of materials, large displacements and
varied light conditions.

Figure 2.11: A typical image from the KITTI dataset.

The flows produced by the optical flow algorithms are compared to a ground
truth, which has been determined by using the instruments of the driving
platform and five frames before and five frames after the frame of interest.
Ambiguous image regions, such as windows and fences have been removed
during the calculations. No interpolation of the ground truth has been
performed, leading to the average ground truth density for KITTI being only
about 50% [3]. The optical flow algorithms are evaluated using the average
disparity and end-point error as well as the number of incorrect pixels. Two
types of evaluations are performed: one with all pixels that have ground
truth and one where occluded regions are omitted. KITTI uses an error
threshold of between two and five pixels, where three pixels are used for the
main ranking [35].
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In comparison with the Middlebury dataset [1], the KITTI dataset has
less risk of overfitting because the dataset contains a lot more image pairs:
389 instead of 24. The images from KITTI also have a higher resolution
(0.5 Megapixels compared to 0.2 Megapixels). On the KITTI benchmark,
methods using the classical variational approach usually perform best, but
they have problems with large displacements, occurring when the car travels
at high speed. Methods that perform very well on the Middlebury benchmark,
typically performs below average on the KITTI benchmark. This can be
explained by the fact that, while the Middlebury dataset contains quite small
motions performed in a controlled environment, the KITTI dataset only has
real video sequences where the camera is moving, potentially leading to a
high optical flow in the entire image [3].

Middlebury MPI-Sintel KITTI

Number of se-
quences in training
set

12 [1] 23 [2] 194 [3]

Number of se-
quences in test
set

12 [1] 12 [2] 195 [3]

Number of frames
in each sequence

mostly 8, but 2 for
three of the sequences
[36]

mostly
50 [2]

2 [3]

Resolution Between 316×252 and
640× 480 [36]

1024 × 436
[2]

about
1240 × 376
[3]

Table 2.1: Comparison between the three datasets for the benchmarks
Middlebury, MPI-Sintel and KITTI.
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Method

3.1 Choosing algorithms

In order to choose which algorithms to focus on, the MPI-Sintel benchmark [2]
was considered. All algorithms ranked in the benchmark, for which a paper or
a similar source of information was present, were briefly investigated. Then,
the algorithms were classified after which approach they use to estimate the
optical flow. Some of them have a specific approach, very different from all
other algorithms. These were not considered, instead algorithms representing
frequently used approaches (patch matching, approximate, energy equation
minimization, gradients and descriptors) were chosen. The aim of this classi-
fication was to be able to answer the research question about what kind of
method that generates the best result for noise filtering (see Section 1.2.1).

During the selection, algorithms with too long execution time were omitted
due to the real time limitation, mentioned in Section 1.3. Admittedly, the
execution time for a given software implementation, for instance in MATLAB
does not necessarily says very much about the execution time in a future
hardware implementation in a camera. Nevertheless, the execution time
reported on the benchmarks are the best available source about how fast
different optical flow algorithms are and have therefore been used to do a
rough discernment of the algorithms.

Algorithms with available code were preferred over other algorithms be-
cause they would be easier to implement. In the end, four algorithms were
selected: SimpleFlow [6], EPPM (Fast Edge-Preserving PatchMatch) [7],
Classic+NL-Fast [8] and LDOF (Large Displcement Optical Flow) [9].

SimpleFlow is based on color consistency and patch matching. EPPM
is an approximation algorithm which also is based on patch matching, but
with a more advanced matching procedure than SimpleFlow. Classic+NL-
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Fast is a global method, which is based on the energy equation and related to
Horn and Schunck [4]. It uses color consistency and smoothing and median
filtering of the optical flow. LDOF is also based on the energy equation,
color consistency and smoothness of the flow, but it also contains gradient
consistency and descriptors.

First, SimpleFlow and EPPM, which both are among the fastest algorithms
on the benchmarks, were implemented. After this the decision to use the
available code for LDOF and Classic+NL-Fast was made.

3.2 Implementation and parameter choices

EPPM and SimpleFlow have been implemented in a framework developed
by Axis, called Algsim. Each part of an algorithm implemented in Algsim
consists of a block with input and output ports and a number of parameters.
Several instances of each block can be created and these instances can be
connected by their input and output ports via either code or a graphical flow
chart. The interaction part of the framework, with the connections, input
parameters, etc. is coded in Python. Almost all other code is written in
a cross-platform framework called OpenCL (Open Computing Language),
which can run calculations in parallel on the GPU (Graphics Processing
Unit) [38]. The programming language used are formally called OpenCL C
and is a version of C, which is extended to handle parallelization, but in
some other ways restricted [38].

Both SimpleFlow and EPPM had available code, but the code for EPPM
was already compiled, so the source code could not be viewed and the imple-
mentation is, therefore, based only on the paper about EPPM [7] and other
papers and not on any existing code. The first step in implementing EPPM
was to read the EPPM paper [7] and some of the papers it refers to it. The
point of this was to get a general understanding of the algorithm. After this,
EPPM was implemented part by part in Algsim.

SimpleFlow was implemented in parallel with EPPM. The present code
is divided into two parts. One part for pre-processing (MATLAB code)
and one part for optical flow caluclation (C++ code). The first step was
to translate the MATLAB code which uses several built-in functions, into
parallelized similar OpenCL C code. The next step was to translate the C++
code into OpenCL C code. Some of the C++ methods were parallelized by
using shared resources, which cannot be done in an effective way in OpenCL.
Therefore, a lot of the C++ code must be rewritten to take advantage of the
parallelism available in OpenCL.

30



3.3. CHOOSING TEST IMAGES

Most parameters of EPPM were taken from theory, while most parame-
ters from SimpleFlow were from the code that the implementation is build
on. The implementations of EPPM and SimpleFlow were concluded with a
parameter analysis, where many of the parameters were varied independently
of each other. Between each modification the result of the noise filtering (see
Section 3.4) on a part of the image sequence bandage 1 from MPI-Sintel [2]
was measured. If the modification led to an improvement of the result, it was
kept, otherwise it was discarded. The specific parameter choices are presented
and motivated in Section 4.1 for SimpleFlow and Section 4.2 for EPPM. The
parameters of LDOF and Classic+NL-Fast has not been analyzed at all, but
all parameter choices made in the MATLAB implementations have remained
unmodified.

3.3 Choosing test images

During the implementation of SimpleFlow and EPPM, several image se-
quences from the MPI-Sintel dataset were used for testing the algorithms.
The focus was on the render setting ”clean”, which most optical flow algo-
rithms handle best (see Section 2.6.2). For the analysis, two image sequences
from this dataset were picked: ”bandage 1” and ”market 2” (see Figure 3.1),
both from the training part of the dataset. These sequences were picked
because they had least motions in the background of all image sequences from
MPI-Sintel. Bandage 1 has minimal background motion, while market 2 has
some rotation in the background.

(a) Bandage 1 (b) Market 2

(c) Real 1 (d) Real 2

Figure 3.1: The four image sequences used in the thesis.
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In addition to the image sequences from MPI-Sintel, two more sequences
were used for the evaluation. These image sequences, called ”real 1” and
”real 2” (see Figure 3.1), were captured at Axis Communication. The goal
of recording own image sequences was to get more realistic material with
people moving in front of a static background, which is a typical surveillance
situation. In total, over 6000 image frames where captured in 25 fps (frames
per second). The material was then divided into shorter sequences based
on the events and motions appearing in the video. These shorter sequences
were then searched through to find sequences with interesting motions and
reasonable length. Two sequences were chosen. They had the advantage that
they could be looped because they ended in almost exactly the same way as
they started.

3.4 Analysis of different noise levels

In the sensor simulator in Algsim, the full well and read noise standard devi-
ation σread, described in Section 2.4 could be set to generate noisy image
sequences. During the thesis, a decision was made: to test the algorithms on
several noise levels to see where each algorithm failed to produce optical flow
useful for noise reduction. On each noise level the algorithms were tested
both with and without the pre-processing described in Section 3.4.1.

The noise levels were initially set to full well 200, 400, 600, 800 and 1000
electrons, respectively. The parameter σread was set to 5 electrons for all
noise levels [26]. While all algorithms performed relatively good even on the
noisiest image sequence (full well 200 electrons) from the MPI-Sintel dataset,
noisier sequences were needed. After experiments the new noise levels full
well 50 electrons and full well 100 electrons were added. Due to the amount
of time for evaluating all optical flow algorithms on all noise levels, both with
and without pre-processing, seven noise levels were regarded as too many and
two of the initial noise levels were removed: full well 1000 electrons because
it did not correspond to very much noise and full well 600 electrons because
it was quite similar to adjacent levels. The final choice of noise levels were
chosen logarithmic scale with full well 50, 100, 200, 400 and 800 electrons.

3.4.1 Pre-processing

In this thesis, the optical flow algorithms have been analysed for pre-processed
respective non pre-processed noisy image sequences. The idea is to investigate
if the algorithms performs better if the noise is smoothed out. The pre-
processing uses a bilateral filter (see Section 2.2.1.1) with a kernel size of
11× 11 and σs = 8. Depending on the noise level, different values for σr is
used. For images with full well 50, 100, 200 and 400 electrons σr = 70 is
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used, and for images with full well 800 electrons σr = 40 is used. Figure 3.2
shows an example of a pre-processed image.

(a) Noisy image

(b) Pre-processed image

Figure 3.2: The pre-processed image for full well 200 electrons on frame 15
from the image sequence market 2.

3.4.2 Noise filter

Two noise filters are implemented for the analysis of denoising using optical
flow. One of the filters is called temporal filter and does not use information
about optical flow. The temporal filter is, therefore, used as a reference for a
noise reduction without optical flow. The second filter is called optical flow
noise filter and is similar to the temporal filter, but with the difference that
it uses optical flow estimations (see Section 4.5 for more details about the
filters).
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3.4.3 Test framework

The test framework to perform noise filtering with optical flow algorithms
consists of seven steps. Figure 3.3 shows how the steps are connected. The
seven steps are

1. Raw image: Generate raw images from the sequences of the dataset
described in Chapter 5.

2. Add noise: Add noise on the image sequences. The different noise
levels are described in Section 3.4.

3. Gamma correction: The human eye can see a much wider range of
brightness and colors than can be shown on a screen with limited range.
This step tries to reproduce this visibility and increase the contrast of
the image [39]. One reason for using this step is that it was an early
attempt to spread out the noise over all intensity levels in the images.
Furthermore, the optical flow algorithms are developed to be used for
the kinds of sequences that the benchmarks offer, which are gamma
corrected.

4. Pre-processing: Perform pre-processing on the image sequences. The
pre-processing is described in Section 3.4.1.

5. Optical flow calculation: A specific algorithm is used to estimate the
optical flow between two images. The different optical flow algorithms
are described in Chapter 4.

6. Noise filter: The optical flow filter described in Section 4.5.2 is used
for noise reduction. The filter consists of an occlusion algorithm which
both finds occlusions (finder step) and tries to remove incorrect flow
(detect, remover and filler steps). In order to compare the optical flow
noise filter with a non optical flow filter, a temporal filter (see Section
4.5.1) is used in this step to get an alternative noise reduction.

7. Noise measurements: SSIM and MSE (see Section 2.4.1) are used to
measure the amount of noise for the filtered images from step 6.

Figure 3.3: The main structure of the test framwork. 1: Raw image, 2: Add
noise, 3: Gamma correction, 4: Pre-processing (optional), 5: Optical flow
calculation, 6: Noise filter, 7: Noise measurements.
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Chapter 4

Algorithms and
implementation

This thesis focuses on four different optical flow algorithms; Classical NL-Fast,
SimpleFlow, EPPM and LDOF. Two of them, SimpleFlow and EPPM, are
implemented in a GPU-based framework (see Section 3.2). The remaining
two algorithms have source code in MATLAB and were decided not to be
implemented in the framework. The details of the different algorithms are
explained in respective section below.

4.1 SimpleFlow

SimpleFlow is a non-iterative optical flow algorithm with sublinear time com-
plexity with respect to the number of pixels. In contradiction to most of the
state-of-art algorithms this algorithm does not use global optimization, but
instead only local methods. SimpleFlow is developed to be a fast algorithm
which can manage high resolution images in a reasonable amount of time. It
uses a multiscale approach whereat each pixel is processed independent of
the others at each scale. In that way the algorithm can use parallelization to
reduce the calculation time.

First a single scale version of the algorithm is going to be discussed and
thereafter a multiscale version. Figure 4.1 and 4.2 present the main structure
of the multiscale version of the algorithm.

4.1.1 Single scale approach

The single scale approach is based on two assumptions; color consistency and
locally smooth flow. The assumptions lead to a minimization problem for
each pixel. The assumptions are described in the next two sections.
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Figure 4.1: The flow chart for the multiscale approach for SimpleFlow with l
layers. For each layer an initial optical flow is estimated by upsampling the
optical flow from the previous layer. For the first layer, the initial optical
flow is set to zero for all pixels. A subpixel estimate and refinement are
performed on the optical flow at the end.

Figure 4.2: The flow chart for a layer of the multiscale approach for Simple-
Flow. The algorithm first performs color consistency calculations followed
by calculations for a locally smooth optical flow and at the end occlusion
detection.

4.1.1.1 Color consistency

The model for the color consistency assumption is given by

d(x, y, u, v) = ||Ft(x, y)− Ft+1(x+ u, y + v)||2 , (4.1)

where Ft(x, y) is the RGB color of the pixel (x, y) in frame t and d is the
square difference between two RGB vectors. The likelihood probability
p ∝ e−d is used in the algorithm for the color consistency calculations.

4.1.1.2 Locally smooth flow

The optical flow is assumed to be locally smooth. If the optical flow in
a specific pixel is (u0, v0), then the assumption says that it is also a good
approximation of the optical flow in its neighborhood N0. In the implemen-
tation N0 is the 9× 9 area around the pixel. The assumption is expressed
by

(u0, v0) = arg max
(u,v)∈Ω

∏
(x,y)∈N0

p(x, y, u, v) , (4.2)

where p is from the color consistency and Ω = {(u, v)|u, v ≤ a}. The
parameter a is set to 2 in the implementation. To calculate Equation (4.2) is
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the same thing as solving the negative-log-likelihood equation

(u0, v0) = arg min
(u,v)∈Ω

∑
(x,y)∈N0

d(x, y, u, v) . (4.3)

4.1.1.3 Weights and minimization

Equation (4.3) has the problem that it does not take edges into account.
This can be solved by adding weights to the equation. Let

wd = e
−
||(x0, y0)− (x, y)||2

2σ2
d (4.4)

be a weight for the distance difference and

wc = e
−
||Ft(x0, y0)− Ft(x, y)||2

2σ2
c (4.5)

be a weight for the color difference. This results in the equation

E(x0, y0, u, v) =
∑

(x,y)∈N0

wdwcd(x, y, u, v) . (4.6)

The parameters σd and σc is set to 4.1 respective 25.5 in the implementa-
tion. Equation (4.6) is the equation SimpleFlow minimizes to find the best
approximation for the optical flow in pixel (x0, y0).

4.1.1.4 Occlusion detection

SimpleFlow calculates both the backward and the forward optical flow
between two frames. Occlusions can then be detected by comparing the back-
ward and forward optical flow. An occlusion threshold is used to determine
if a given pixel is occluded or not.

4.1.1.5 Subpixel estimate and regularization

After Equation (4.6) has been minimized, (u0, v0) is achieved. Both u0 and
v0 are integers. A 3 × 3 parabola with center at (u0, v0) is used to get a
subpixel estimate of (u0, v0). One more regularization is made by SimpleFlow
after that. It uses a bilateral filter with wd and wc from above, but also

wr(x, y) = mean
(u,v)∈Ω

d(x, y, u, v)− min
(u,v)∈Ω

d(x, y, u, v) . (4.7)

The weight wr(x, y) indicates how reliable the optical flow is at (x, y). In
this last regularization step the occluded pixels are ignored.
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4.1.2 Multiscale approach

The input frames are first downsampled l times each with a factor of 2. The
coarsest scale uses the single scale approach described above in Section 4.1.1.
The flow of the remaining l− 1 layers are computed by using the optical flow
from the previous layer.

4.1.2.1 Initial flow estimate

By upsampling the optical flow from the previous layer an estimate of the
optical flow in the current layer is obtained. After that the single scale
approach (see Section 4.1.1) is used to approximate the optical flow, but
with one change. The change is that the neighborhood N0 is now centered
at (x0 + ū, y0 + v̄) where (ū, v̄) is the initial estimate.

4.1.3 Adaptive multiscale approach

The source code of SimpleFlow uses an adaptive multiscale approach to
decrease the computational time. The idea is to find regions where the
optical flow changes slowly and then interpolate in these regions instead of
the more time-consuming minimization of the likelihood equation. Due to
implementation problems of a thread based adaptive multiscale algorithm,
this part is not implemented in this thesis GPU version of the algorithm.

4.2 EPPM

EPPM (Fast Edge-Preserving PatchMatch [7]) is a local optical flow algorithm
based on PatchMatch [40] and specialized on large motions and speed, i.e.
short execution time of the algorithm. It is among the fastest algorithms on
the benchmarks sites with 0.25 seconds on Sintel and KITTI and 0.20 seconds
on Middlebury. EPPM uses an approximate nearest neighbor field (NNF).
The patch size is relatively large in order to increase the spatial smoothness,
so that patches close to each other in one frame maps to positions close to
each other in the next frame. This has some drawbacks. Motion boundaries
are not that well-preserved and the speed of the algorithm becomes slower
with a growing patch size. The first problem is addressed by creating an
edge-preserving version of PatchMatch and the second one by using a fast
randomized approximation algorithm when calculating the matching cost.
Another problem with NNFs is that they do not handle occlusions, but
for this aim an occlusion detection and filling step (see Section 4.2.5) is
included in the algorithm. The main structure of the algorithm is presented
in Figure 4.3. The different steps are explained and implementation issues
and parameter choices are presented in the subsections below.
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Figure 4.3: The main structure of the EPPM algorithm. White blocks are
before any flow is calculated, gray blocks are when a sparse flow is present for
the current resolution and black blocks when a dense flow is calculated. The
steps are: A - Downsampling, B - PatchMatch, C - Joint bilateral upsampling,
D - Local PatchMatch, E - Occlusion handling, F - Weighted median filtering.
The algorithm is preferably concluded with some kind of refinement step,
which is not present in this figure.

4.2.1 Downsampling

In order to speed the algorithm up, the images are first downsampled twice
with a factor 2 in each dimension, leading to one sixteenth of the original
resolution. While the authours of the EPPM paper [7] does not specify which
downsampling method they use, the implementation in this thesis uses a
standard downsampling method. Pixel (i, j) in the downsampled image will
have the mean value of the four corresponding pixels in the high resolution
image as pixel value. Mathematically, this can be written as

Id(i, j) =
(
Iu(2 · i, 2 · j) + Iu(2 · i+ 1, 2 · j) + Iu(2 · i, 2 · j + 1)

+ Iu(2 · i+ 1, 2 · j + 1)
)
/4

, (4.8)

where Id is the downsampled image and Iu is the high resolution original
image. This calculation is performed for each color channel independently.

4.2.2 PatchMatch

The matching step of the algorithm is based on PatchMatch [40], which is a
randomized matching algorithm attempting to find an approximate nearest
neighbor match fast. First, pixels are matched randomly. An alternative to
this would be to instead use prior information, as for instance the flow from
the previous frames, as initial flow. Then, an iterative process follows in order
to improve the matching. In each iteration (typically 4 - 5 iterations are
used) the image is scanned either from the top left to the bottom right corner
or in the opposite direction depending on which iteration the algorithm is in.
Each pixel in the image first undergoes a propagation and then a random
search. In the propagation step, the translations of neighboring pixels are
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considered. Which neighbors that are used depend on the scan order. The
translation, which leads to a minimal matching cost when a whole patch
centered around the pixel is moved, is selected.

In the random search step, different translations of the form ui = v0 +wαiRi
are investigated and the one with the lowest matching cost is chosen. Here,
v0 is the current translation, w is the maximum image dimension, α is a
parameter set to 0.5, Ri is uniformly distributed random variable in the
interval [−1, 1] × [−1, 1] and i is an integer starting at 0 and increased by
one until wαi ≤ 1 [40].

4.2.2.1 Self-similarity propagation

In the original PatchMatch [40], all pixels from the current patch are used in
the calculation of the matching cost. While it can be shown that it is mainly
pixels similar to the center pixel of a patch that contributes to the matching
cost, an approximate matching cost can be determined by using only the
n most similar pixels. Even if using fewer pixels speeds the calculation up,
picking these n pixels out of a patch is too slow when the patch size is large.
Therefore, EPPM offers a randomized algorithm for picking n pixels out of a
patch, which are not necessarily the top n most similar pixels to the center
one, but similar enough for giving an approximation of the matching cost.

For each pixel in both image frames a so-called self-similarity vector S(x, y)
is created, where x and y are the coordinates of the pixel. First, the vectors
are filled with the positions of n random pixels from the patch which has the
current pixel as center. Moreover, the similarity to the pixels, measured in
CIELab color (see Section 2.3.2) is also stored in the vectors. Then, they
are sorted after similarity. To improve the vectors, the frames are scanned
twice, one time where each S(x, y) is merged with S(x− 1, y) and S(x, y− 1)
and one time when it is merged with Si(x+ 1, y) and Si(x, y + 1) [7]. Based
on suggestions from the EPPM paper [7], the patch radius is set to 17 and
n = 50 is used.

4.2.2.2 Census transform

One feature that can be used for the data term in Equation (2.26) is the
census transform. The idea behind the census transform is to transform the
image and then find correspondences using correlation. The transform is
looking at a neighborhood of a given pixel. It creates a bit string with the
positions corresponding to pixels with smaller values than the given pixel
set to 1 and the rest set to 0. The census transforms for different pixels in
different frames are then compared. The difference between two pixels is
calculated as the Hamming distance, i.e. the number of bits differing in the
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two bit strings [41]. An example of this is shown in Figure 4.4.

Figure 4.4: An example of a 3× 3 census transform: gray blocks correspond
to pixels with smaller values than the black center pixel and white blocks
correspond to pixels with greater or equal pixel values. The left pixel will
have the bit string ”10000111” and the right pixel will have the bit string
”01111110”, leading to the Hamming distance 6.

4.2.2.3 Matching cost

The matching cost of matching a pixel a in the fist frame to a pixel b in the
second frame, suggested in the EPPM paper [7], is

d(a, b) =
1

W

∑
∆

w(a, b,∆)C(a, b,∆) . (4.9)

In Equation (4.9), ∆ are the distances in x- and y-direction from pixel a
to the neighbors in its self-similarity vector. The cost function consists of
two terms, the bilateral weighting function w(a, b,∆) and the robust cost
function C(a, b,∆) and a normalization factor 1

W , where W is the sum of
the weights. The bilateral weighting function is

w(a, b,∆) = exp

(
−||∆||

2

σ2
s

)
exp

(
−||I

A(a+ ∆)− IA(a)||2

σ2
r

)
· exp

(
−||I

B(b+ ∆)− IB(b)||2

σ2
r

) . (4.10)

In the implementation, the weighting function was omitted due to the
implementation of it giving a more random flow, leading to the reduced cost
function

d(a, b) =
∑
∆

C(a, b,∆) . (4.11)

The robust cost function for a specific ∆ is

C(a, b,∆) = ρi(CAD(a+ ∆, b+ ∆), λAD)

+ ρi(Ccensus(a+ ∆, b+ ∆), λcensus)
, (4.12)
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where CAD is the mean value of the color differences measured in the CIELab
color system and Ccensus is the difference in census transform (see Section
4.2.2.2) of the luminance [42]. The function ρ is a robust penalty function,
used for rejecting outliers and balance between the terms of the cost function.
In the implementation, the penalty function

ρ(x, σ) = 1− exp

(
−x

2

σ2

)
(4.13)

is used. The parameters are set to λAD = 0.1 and λcensus = 0.5 based on
empirical tests and to make them balance the two terms in Equation (4.12).

4.2.2.4 GPU implementation issues

The propagation step in PatchMatch as well as the merging of the self-
similarity vectors are in theory typical serial operations, but they are very slow
when implemented in a serial way. For a fast parallel GPU implementation
the authors of both EPPM and PatchMatch suggest using the Jump flooding
algorithm [43] for these steps. This algorithm handles all pixels in parallel
and runs several iterations where the distance to the neighbors used is
halved in each iteration, see Figure 4.5. The initial distance is set to 8 for
PatchMatch as suggested by the authors of PatchMatch [40] and to 16 for the
self-similarity propagation, while vectors from further away will not improve
the result when the patch radius is set to 17.

Figure 4.5: Jump flooding algorithm with initial distance k = 8.
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4.2.3 Joint bilateral upsampling

The optical flow is upsampled twice with a factor 2 to get an optical flow
on a higher resolution. The method used is joint bilateral upsampling (see
Section 2.2.2.3) with the parameters σs = 8.5, σr = 0.1. The parameters are
set empirically.

4.2.4 Local PatchMatch

After each of the two upsampling steps a 3×3 local patch match is performed
in order to refine the optical flow [7]. The matching costs for the closest nine
pixels to the current match are determined and the optical flow is modified to
make the pixel with the lowest cost the new match. The self similarity vectors
from Section 4.2.2.1 are upsampled and then again used when calculating
the matching costs.

4.2.5 Occlusion handling

In order to find occlusions, the forward and backward optical flows are
compared. The main idea is that if an unoccluded pixel in the first frame
has a certain forward flow, the corresponding pixel in the second frame will
have the opposite optical flow as backward flow. Assume that pixel a in the
first frame is mapped to pixel b in the second frame according to its forward
flow and that pixel b is mapped to pixel c in the first frame according to its
backward flow. If the euclidean distance between a and c are greater than a
threshold, which by experiment is set to 1, pixel a is considered occluded.
Occluded pixels are filled with new flows by an algorithm, which searches
through the nearby pixels and copies the flow from the unoccluded pixel
with the lowest bilateral weight. If no such pixel is found, the flow is set to
0. When calculating bilateral weights, the parameters σs = 8.5 and σr = 0.1
are used just like before.

4.2.6 Weighted median filtering

In order to make the optical flow smoother and remove outliers, a weighted
median filtering is performed on the flow field between the two iterations of
occlusion detection and filling [7]. An edge preserving filter framework [44]
with the parameters η = 0.15 and N = 40 is used. The former parameter
is set empirically, while the number of intensity planes is set to 40 as a
trade-off between accuracy and execution time. The weighted median filter
used in the framework is a 7× 7 filter which chooses the flow value β that
minimizes

∑
iwi · |xi − β| where xi is flow number i and wi is the bilateral

weight between the current pixel and pixel i [18]. The parameters σs and σr
for the bilateral weights are the same as earlier and the size of the filter is
set empirically as a trade-off between performance and execution speed.
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4.2.7 Final refinement

The original EPPM is ended by a subpixel refinement step followed by a
bilateral filtering with small parameters for smoothing out small outliers
created in the refinement step [7]. The subpixel refinement is tricky to
implement and heavy to run in OpenCL. Thus, the decision to skip the
final refinement steps of EPPM in the implementation and instead use a
modification of the smoothing from SimpleFlow was made.

4.3 Classic+NL-Fast

Classic+NL-Fast is one of several so-called Classic algorithms developed by
Sun, Roth and Black [8]. It is implemented in MATLAB. The algorithm
has a classical baseline approach based directly on the flow formulation from
Hort-Schunk [4]. The baseline algorithm has then been systematically varied
using modern implementation and optimizing techniques until a satisfying
result is reached. During this process it was shown that only a few of the
variations gave a statistically significant improvement, leading to the final
algorithm becoming relatively simple, but still producing a good result [8].

4.3.1 Pre-processing

The image sequence is pre-processed using Rudin-Osher-Fatemi (ROF) struc-
ture texture decomposition. ROF is originally a noise removal algorithm [45],
but can also be used to find textures [8]. The algorithm is based on nonlinear
partial differential equations. The function that should be minimized uses
the total variation norm. It can have an arbitrary number of constraints,
both linear and nonlinear ones [45].

4.3.2 Multiscale approach

Classic+NL-Fast uses the standard multi-resolution technique, i.e. it works
on several scales. The image is downsampled with a factor 2 recursively,
step-by-step, until it has a width or height of about 20 - 30 pixels. The flow
is first determined on the coarsest scale and then refined step-wise towards
the finest scale. On each scale, 3 iterations of warping is performed. Each
warping step consists of linearizing the data term in the objective function by
calculating temporal and spatial derivatives of the image. The upsampling of
the flow field is performed using bicubic interpolation (see Section 2.2.2.2) [8].

4.3.3 Median filtering

In order to remove outliers, a 5 × 5 median filtering is performed once
after each warping step. This is the step that gives the most significant
improvement of the baseline algorithm [8]. Given the current flow, motion
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boundaries are detected with a so-called Sobel edge detector, which is based
on the Sobel operator. The flow field is convoluted with two 3×3 convolution
kernels, one for estimating the gradient in x-direction and one for estimating
the gradient in y-direction. The x- and y-directional gradients are used to
find horizontal and vertical edges, respectively [46]. The motion boundaries
are then extended to form flow boundary regions using a 5×5 mask. In these
regions, the median is computed in a 15 × 15 neighborhood with weights
from Equation (4.17). In all other regions, the normal 5 × 5 median filter
with equal weights are used [8].

4.3.4 Objective function

Even if the median filter improves the flow field, it can lead to that the
classical objective function (Equation (2.30)), which should be minimized,
gets a higher instead of a lower energy. To fix this inconsistency, a new robust,
non-local term and a coupling term are added to the objective function, which
now becomes

EA(fx, fy, f̂x, f̂y) =
∑
i,j

ρD(I1(i, j)− I2(i+ fx(i, j), j + fy(i, j)))

+λ(ρS(fx(i, j)− fx(i+ 1, j)) + ρS(fx(i, j)− fx(i, j + 1))

+ρS(fy(i, j)− fy(i+ 1, j)) + ρS(fy(i, j)− fy(i, j + 1)))

+λ2(||fx − f̂x||2 + ||fy − f̂y||2)

+
∑
i,j

∑
(i′,j′)∈Ni,j

wi,j,i′,j′(|f̂x(i, j)− f̂x(i′, j′)|+ |f̂y(i, j)− f̂y(i′, j′)|)

. (4.14)

In Equation (4.14), Ni,j contains the pixels from a, possibly large, neigh-
borhood to pixel (i, j), while f̂x and f̂y are an extra assistance flow field.
The two new terms represent the weighted median filter. While minimizing
the objective function, two iterations of a graduated non-convexity (GNC)
scheme is performed [8]. GNC is a deterministic approximation method
that approximate a function by another function which has a limited second
derivative. By changing the objective function according to GNC the problem
becomes convex and a solution can easier be found [47].

4.3.4.1 Penalty function

One of the robust penalty functions tested by the authors of Classic+NL-Fast
is the Charbonnier function

ρ(x) =
√
x2 + ε2 . (4.15)

Classic+NL-Fast uses a generalized version of this penalty function for both
the data term and the spatial term in Equation (4.14), namely

ρD(x) = ρS(x) = ρ(x) = (x2 + ε2)a . (4.16)

45



CHAPTER 4. ALGORITHMS AND IMPLEMENTATION

The parameter a in Equation (4.16) is set to 0.45 and the penalty function
is thus referred to as GC-0.45. The parameter ε in the same equation is
set to ε = 0.001. The Charbonnier function is convex, but the GNC scheme
described above is still useful due to the nonlinear data term [8].

4.3.4.2 Weights

The scalar weights λ and λ2 are both set to 3 in the MATLAB implementation
of Classic+NL-Fast. To prevent over-smoothing of thin structures and near
corners, the weight wi,j,i′,j′ in front of the local term depends on the likelihood
that pixel (i, j) and (i′, j′) belongs to the same surface in the image. This
weight is approximated using the color-value distance, the spatial distance
and the occlusion state of the two pixels and is written as

wi,j,i′,j′ = exp
(
− |i−i

′|2+|j−j′2|
2σ2

1
− |I(i,j)−I(i

′−j′)|2
2σ2

2

)
o(i′,j′)
o(i,j) , (4.17)

where I(i, j) is the color vector in the CIELab color system (see Section
2.3.2). The parameters σ1 and σ2 in Equation (4.17) are set to 7 [8]. Define
the divergence of the optical flow field in a pixel (i,j) at time t as

div(i, j, t) =
∂

∂x
fx(i, j, t) +

∂

∂y
fy(i, j, t) (4.18)

and let

d(i, j, t) =

{
div(i, j, t) div(i, j, t) < 0

0 otherwise
. (4.19)

Let further the pixel projection difference be

e(i, j, t) = I(i, j, t)− I(i+ fx(i, j, t), j + fy(i, j, t), t+ 1) . (4.20)

The occlusion state at a specific time point t is then calculated as

o(i, j, t) = N(d(i, j, t);σd) ·N(e(i, j, t);σe) , (4.21)

where N is a Gaussian function with mean 0 and standard deviation σd = 0.3
and σe = 20, respectively. The value of Equation (4.21) is close to zero for
occluded pixels and close to one for unoccluded pixels [48].

4.4 LDOF

The Large Displacement Optical Flow (LDOF) [9] algorithm is based on
descriptor matching and a variational model. The algorithm is implemented
in MATLAB.
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4.4.1 Variational Model

The variational model for LDOF is based on five terms. Let I1, I2 : (Ω ⊂
R2)→ R3 be the functions for the RGB values in the first and second frame.
Let Ω be the image domain, x = (x, y) a point in Ω and w = (u, v) its optical
flow. The first term is based on a color consistency assumption and written
as

Ecolor(w) =

∫
Ω

Ψ(|I2(x + w(x))− I1(x)|2)dx , (4.22)

where Ψ(x) =
√
x+ ε2 with ε = 0.001. The next term, which is based on a

gradient consistency assumption, is

Egrad(w) =

∫
Ω

Ψ(|∇I2(x + w(x))−∇I1(x)|2)dx . (4.23)

The color consistency assumption does not work well for illumination changes.
The gradient consistency assumption works better for illumination effects
and is therefore a supplement for the color consistency. The third term is
based on smoothness regularization and is written as

Esmooth(w) =

∫
Ω

Ψ(|∇u(x)|2 + |∇v(x)|2)dx . (4.24)

This term penalizes variations of the flow, which leads to a smooth flow. The
fourth term, which is based on descriptor matching, is written as

Ematch(w,w1) =

∫
δ(x)ρ(x)Ψ(|w(x)−w1(x)|2)dx (4.25)

where

δ(x) =


1 if there exists at least one descriptor

at the point x in the first frame

0 otherwise

.

The formula contains a factor ρ(x) which is the matching score described in
Section 4.4.2.1. The fifth and last term is based on descriptors and written
as

Edesc(w1) =

∫
δ(x)|f2(x + w1(x))− f1(x)|2dx , (4.26)

where f1 and f2 are the feature vectors from the first and second frame,
respectively.

Combining the five terms above gives the variational model for LDOF

E(w,w1) = Ecolor + γEgrad + αEsmooth + βEmatch + Edesc , (4.27)

where γ, α and β are parameters set to 30, 300 and 5 as default.
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4.4.2 Solving the variational model

The variational model for LDOF (see Equation (4.27)) needs an initial guess
to be solved. The initial guess is based on two methods, descriptor matching
and a continuation method. The continuation method does not care about
image details, whereas the descriptor matching does not care about regularity.

4.4.2.1 Descriptor matching

The descriptor matching that minimizes Edesc in Equation (4.26) is indepen-
dent of the rest of the terms in Equation (4.27). In the LDOF paper [9],
the authors present three alternative ways to represent and find descriptors.
The source code for LDOF used for the analysis in this thesis is based on
histograms of oriented gradients (HOG) descriptors. Therefore, only the
method to find the HOG descriptors is going to be discussed in this report.

HOG descriptors (see Section 2.2.3) are computed in both the first and
second frame. The gradient histograms are calculated in a 7× 7 neighbor-
hood and includes 15 different orientations. The default HOG descriptors
neglect the signs of the gradients. LDOF does not neglect the signs.

The matching score from Equation (4.25) is defined as

ρ(xi) =
d2 − d1

d1
, (4.28)

where d1 is the distance for the best match and d2 is the distance for the
second best match. The distance is calculated by taking the sum of the
square difference between descriptor vectors.

In Equation (4.26), δ(x) is zero for some x. Actually δ(x) is a grid generated
by removing every fourth pixel in x-direction and y-direction. The only
reason to make such a grid is performance. The grid does not disregard the
small textures since the histograms are based on a 7× 7 area.

In order to eliminate some of the false matches in regions without tex-
ture, the LDOF algorithm computes the smallest eigenvalue of ∇I∇IT for
all descriptor points. ∇I∇IT is a measure of the structure in the image.
Descriptors at points with an eigenvalue smaller than 1/8 of the average
of the whole image is then removed, by setting δ(x) to zero. At the end
δ(x) is set to zero for inconsistent backward and forward matches. Forward
matching is performed from the first frame to the second and backward
matching is the other way around.

48



4.4. LDOF

4.4.2.2 Continuation method

Equation (4.27) can be solved by a continuation method after Edesc is
detached. The method splits the original problem into several subproblems.
The subproblems are achieved by downsampling the input image to different
resolution levels. For level k the downsampling factor r is

r = 0.98kmax − k (4.29)

with

kmax =

⌈
log(40)− log(h)

log(0.98)

⌉
,

where h is the height of the input image. The global optimum for a subprob-
lem is achieved by considering the Euler-Lagrange equations for Equation
(4.27), which is

Ψ′(I2
z )IzIx + γΨ′(I2

xy + I2
yz)(IxxIxz + IxyIyz)

+ βφΨ′
(
(u− u1)2 + (v − v1)2

)
(u− u1)

− αdiv
(
Ψ′(|∇u|2 + |∇v|2)∇u

)
= 0

Ψ′(I2
z )IzIy + γΨ′(I2

xy + I2
yz)(IxyIxz + IyyIyz)

+ βφΨ′
(
(u− u1)2 + (v − v1)2

)
(v − v1)

− αdiv
(
Ψ′(|∇u|2 + |∇v|2)∇v

)
= 0

, (4.30)

where

Ix = ∂xI2(x + w) Ixy = ∂xyI2(x + w)

Iy = ∂yI2(x + w) Iyy = ∂yyI2(x + w)

Iz = I2(x + w)− I1(x) Ixz = ∂xIz

Ixx = ∂xxI2(x + w) Iyz = ∂yIz .

LDOF uses fixed point iterations to solve Equation (4.30) [9]. The estimated
flow w for each level is calculated as

wk+1 = wk + dwk , (4.31)

where the initial flow for the coarsest level is w0 = 0. The term dwk is the
solution of the fix point iterations for level k.

Every subproblem can be optimized globally, but that does not imply that
the original problem achieves a global optimum. On the other hand, the
method avoids most of the local minima for the original problem [9].

The algorithm is running a last iteration with β = 0, which is motivated by
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the fact that the descriptor correspondences have high impact on the solution
at the coarse scale. For higher resolutions, the number of pixels increases
and, therefore, the impact of the descriptor correspondences decreases. For
the finest scale the continuous limit of the ratio becomes zero [9].

4.5 Noise filter

Two different types of noise filters are developed in the project. The first
one, which is called ”temporal noise filter”, uses no information about optical
flow. The other one is called ”optical flow noise filter”. The two filters are
structured in a similar way, but there are some differences. The filters have
one output and two input signals. The output signal for the pixel (x, y) is
called outx,y. One of the input signals is lastx,y which is the output signal for
pixel (x, y) for the previous frame. The second input signal is newx,y, which
is the pixel value at (x, y) for the latest noisy image in the sequence. All the
parameters for the filters are determined after advises from the supervisors
of the thesis [26] and experiments.

4.5.1 Temporal noise filter

The temporal filter uses the pixel values of the previous filtered frame in
combination with the latest noisy image in the sequence. One part of the
output signal for a given pixel is from the filtered image and the other is
from the noisy image. The size of the parts for a given pixel is determined
by the number of frames since the pixel was not stationary. A pixel for a
given frame is called stationary if the patch around the pixel is similar to
the corresponding patch for the latest filtered image. The pixels that are
stationary are called fixed and the remaining pixels are called unfixed.

The filter starts by finding stationary pixels. After the stationary pixels
are found, different actions are performed on the fixed and unfixed pixels
respectively.

4.5.1.1 Find stationarity

Stationary pixels are found by comparing the pixels at the same location
in two frames. The comparison is accomplished by consider a patch of size
9× 9 around each pixel. For each patch, the mean value is calculated for the
R, G and B component (see Section 2.3.1) respectively. The mean value for
each component is then compared between the two patches. If the difference
between any of the three components is above σ = 200, the pixel is marked
as unfixed. After the mean value check, the filter performs a remover step.
This is done by calculating the number of fixed pixels in a 5× 5 area around
each unfixed pixel. If the number of fixed pixels is above the threshold 1, the
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pixel is also marked as fixed. At the end, a filler step is performed. The filter
looks at a 7× 7 area around each fixed pixel and if the number of unfixed
pixels is above the threshold 1, the pixel is marked as unfixed.

4.5.1.2 Unfixed pixels

First, the number of frames since stationarity is set to one for the pixel. The
value for outx,y is set to the mean value of the 5× 5 area around newx,y.

outx,y =
1

25

2∑
i=−2

2∑
j=−2

newx+i,y+j , (4.32)

4.5.1.3 Fixed pixels

First, the number of frames since stationarity is checked for the pixel. Then,
Equation (4.33) is used to calculate the value for outx,y. At the end, the
frames since stationarity value is increased by one for the pixel.

outx,y = (1− α)lastx,y + αnewx,y , (4.33)

where α =
1

1 + frames since stationarity
.

4.5.2 Optical flow noise filter

The optical flow noise filter is working in nearly the same way as the temporal
filter described in Section 4.5.1. Though, there are two differences. The
first is that the optical flow filter is using occlusions instead of stationary
points. The second is that the optical flow filter is using the pixel value in
last filtered image, whereat the optical flow is pointing.

4.5.2.1 Occlusion finder and detection

The optical flow is calculated for both the backward and forward flow, which
means that the flow is calculated between framet−1 and framet, but also
between framet and framet−1. A pixel is marked as occluded if the difference
between the backward and forward flow is above the threshold 0.5. This
step is called finder. Both SimpleFlow and EPPM use the same technique to
find occlusions in their algorithms [6, 7]. Next a comparison is accomplished
by consider a patch of size 9× 9 around newx,y and lastx+u,y+v respectively,
where u, v is the optical flow in point (x, y). For each patch, the mean value
is calculated for the R, G and B component (see Section 2.3.1) respectively.
The mean value for each component is then compared between the two
patches. If the difference between any of the three components is above σ,
the pixel is marked as occluded. The parameter σ is set to 200 for sequences
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with full well 800 and 400 electrons, and 350 for sequences with full well
100 and 50 electrons. This step is called detection. At the end, occlusion
removing and occlusion filling performed in the same way as described above
for the stationary removing and filling for the temporal filter. The last three
steps (detection, removing and filling) try to eliminate incorrect flow.

4.5.2.2 Occluded pixels

The value for outx,y is calculated by taking the mean value of the 5× 5 area
around newx,y, according to Equation (4.34). Furthermore, the frames since
occlusion value is set to zero.

outx,y =
1

25

2∑
i=−2

2∑
j=−2

newx+i,y+j , (4.34)

4.5.2.3 Unoccluded pixels

Unlike the previous filter, the new pixel value is calculated by using the
optical flow for newx,y. Let (u, v) be the flow value for newx,y. Equation
(4.33) is then modified by replacing lastx,y with lastx+u,y+v, which gives

outx, y = (1− α)lastx+ u, y + v + αnewx, y . (4.35)

Since (u, v) are floats and not integers a subpixel estimation is performed to
get lastx+u,y+v. Equation (4.36) is used to get an estimate.

lastx+ u, y + v = a · b · lastx+ u, y + v
+ (1− a) · b · lastx+ u+ c, y + v
+ a · (1− b) · lastx+ u, y + v + d
+ (1− a) · (1− b) · lastx+ u+ c, y + v + d

, (4.36)

where

a = 1− |u− u|
b = 1− |v − v|

c =

{
1 if u− u > 0
0 otherwise

d =

{
1 if v − v > 0
0 otherwise

.

At the end, the frames since occlusion value is increased by one.
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(a) Finder

(b) Detection

(c) Remover

(d) Filler

Figure 4.6: The four occlusion steps when LDOF is used on frame 15 from
the sequence market 2 with full well 100 electrons.
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Chapter 5

Dataset

The dataset used for testing the optical flow algorithms consist of four image
sequences, all with the resolution 1024 × 436 pixels. Two of them, called
bandage 1 and market 2, comes from the MPI-Sintel dataset. The two
other image sequences, called real 1 and real 2, have been recorded at Axis
Communication during the thesis. The image sequences are presented below.
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5.1 Bandage 1

The sequence bandage 1 consists of 50 image frames. The sequence is
animated and shows a girl caring for a wounded baby dragon. The background
is more or less stationary, while a relatively large part in the middle of the
foreground is moving. The motions are small. One of the frames from
bandage 1 can be seen in Figure 5.1 and every fifth frame can be seen in
Figure 5.2.

Figure 5.1: Frame 20 from the image sequence bandage 1.

Figure 5.2: The image sequence bandage 1.
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5.2 Market 2

The sequence market 2 shows people moving in a marketplace. One of the
frames from market 2 can be seen in Figure 5.3. Just like in the case of
bandage 1, the sequence is animated. Most motions are relatively large. The
background has some rotation. The sequence consists of 50 image frames.
Every fifth of them is shown in Figure 5.4.

Figure 5.3: Frame 15 from the image sequence market 2.

Figure 5.4: The image sequence market 2.
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5.3 Real 1

The sequence real 1, is recorded at Axis. It shows two people walking in
opposite directions, with their side against the camera and crossing each
other’s paths in front of a static wall with a picture on. One of the frames
can be seen in Figure 5.5. The sequence contains textured as well as flat
areas, both in the moving and stationary parts of the motive. This is the
darkest of the four sequences. Motion does not appear in very big parts of
each frame, but during the 104 frames of the image sequence, the people are
walking through the entire image. Figure 5.6, which consists of frame 20, 30,
40, 50, 60, 70, 80, 90 and 100, gives an idea about the type of motions in
this sequence.

Figure 5.5: Frame 60 of on of the image sequences captured at Axis, called
real 1.

Figure 5.6: The image sequence real 1.
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5.4 Real 2

The other sequence recorded at Axis, real 2, shows two people throwing a
plastic bag between each other. This sequence consists of 58 image frames,
out of which frame 39 is shown in Figure 5.7. The background is static and
mainly consisting of a white wall. The motion is centered to small parts of
the image and the objects moving are mostly thin or small and moving fast,
for instance hands and the plastic bag. The sequence also contains shadows
and a mixture of flat and textured areas. Real 2 is much lighter than real 1
and the contrast between the moving parts and the background is higher (see
Figure 5.11 and 5.12). A short version of the sequence is shown in Figure
5.8, which shows frame 9, 14, 19, 24, 29, 34, 39, 44 and 49.

Figure 5.7: Frame 39 of one of the image sequences captured at Axis, called
real 2.

Figure 5.8: The image sequence real 2.
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5.5 Image histograms

The intensity varies for the four different sequences. In Figure 5.9–5.12 the
gray scale histograms for a frame in each sequence are represented. The
intensity for each image reaches from 0 to 4095. The darkest sequence is
market 2, which has a mean pixel value of 980, closely followed by real 1,
with 990. The mean pixel value for bandage 1 and real 2 is 1330 and 2550,
respectively.

Figure 5.9: Histogram for frame 15 for the sequence bandage 1. The mean
value is 1330.

Figure 5.10: Histogram for frame 20 for the sequence market 2. The mean
value is 980.
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Figure 5.11: Histogram for frame 60 for the sequence real 1. The mean value
is 990.

Figure 5.12: Histogram for frame 39 for the sequence real 2. The mean value
is 2510.
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5.6 Noise levels

As have been presented in Section 3.4, five different noise levels have been
used in the thesis, corresponding to full well 50, 100, 200, 400 and 800
electrons. The σread parameter described in Section 2.4 has been set to 5
electrons for all levels. The amount of noise produced by these parameter
choices varies a bit among the different sequences. This is because of the fact
that the amount of noise in an image depends on its intensity. Dark areas
contains less noise than lighter areas, but the signal-to-noise-ratio is lower
and thus is the mean error in intensity larger. Figure 5.13 shows the mean
error in intensity between a noisy grayscale image (full well = 100 electrons)
and the same image without noise for the pixels at different light levels.

Figure 5.13: Amount of noise in different light levels of a grayscale image.

The amount of noise in the image sequences bandage 1 and real 1 can be
seen in Figure 5.14 and Figure 5.15, respectively. According to Section 5.5,
real 1 has a lower mean pixel value than bandage 1 and contains more dark
areas. This means that the signal-to-noise-ration is lower for real 1, which is
confirmed by the fact that the noise is more visible in Figure 5.15, compared
with the same noise levels in Figure 5.14.
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(a) Full well 800 electrons

(b) Full well 400 electrons

(c) Full well 200 electrons

(d) Full well 100 electrons

(e) Full well 50 electrons

Figure 5.14: The different noise levels on frame 20 from the image sequence
bandage 1.
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(a) Full well 800 electrons

(b) Full well 400 electrons

(c) Full well 200 electrons

(d) Full well 100 electrons

(e) Full well 50 electrons

Figure 5.15: The different noise levels on frame 60 from the image sequence
real 1.
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Result

The results presented in this chapter comes from the evaluation of the noise
filter on four different image sequences: bandage 1 and market 2 from the
MPI-Sintel dataset [2] and real 1 and real 2, which have been recorded at
Axis during the thesis. For each sequence, three different tables with SSIM
(see Section 2.4.1.3) values for 5 different noise levels (full well 800, 400, 200,
100 and 50 electrons) are presented. All values are the mean SSIM over the
whole image sequence compared with the same image sequence without noise.

The first table contains SSIM and MSE (see Section 2.4.1.1) of the un-
filtered image.

The second table for each image sequence consist of the SSIM obtained
when filtering with the optical flow produced by each of the four optical
flow algorithms considered. Here, the best algorithm for each noise level
is marked with gold background, the second best with silver background
and the third best with bronze background. The third table is almost as
the second one, but the image sequence has been pre-processed (see Section
3.4.1) before the optical flow was determined.

Both the second and the third table also contains SSIM for Temporal and
Ground truth. Temporal is the sequence after filtering with the temporal filter
without optical flow. Ground Truth is the sequence produced by noise filtering
using the noise filter from Section 4.5.2, fed with the ground truth optical flow
and ground truth occlusions. This represents the performance of the noise
filter when using a perfect optical flow, i.e. a best-case result for the noise
filter. For the sequences real 1 and real 2, no ground truth optical flow exists.

In addition to the SSIM tables, tables with the amount of occlusions found in
each image sequence are presented. The quantity of occlusions in one image
frame is measured as the percentage of the pixels in that image frame, which
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are considered occluded when the current optical flow algorithm is used. The
values presented are the mean over all image frames in the sequence. The
occlusions come from the steps finder and filler, explained in Section 4.5.2.1.
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6.1 Bandage 1

Noise level

1 2 3 4 5

MSE 38 000 65 300 129 400 264 400 523 500

SSIM 0.798 0.649 0.467 0.294 0.164

Table 6.1: MSE and SSIM for the noisy images of bandage 1.

Noise level

1 2 3 4 5

SimpleFlow 0.851 0.820 0.747 0.641 0.458

EPPM 0.885 0.837 0.731 0.604 0.415

Classic+NL-Fast 0.883 0.820 0.711 0.555 0.385

LDOF 0.900 0.858 0.772 0.640 0.434

Temporal 0.833 0.796 0.721 0.591 0.402

Ground truth 0.893 0.865 0.815 0.734 0.624

Table 6.2: SSIM for the filtered images of bandage 1 when using optical flow
based filters, a temporal filter and a filter based on the ground truth optical
flow.

Noise level

1 2 3 4 5

SimpleFlow 0.830 0.772 0.680 0.557 0.437

EPPM 0.879 0.824 0.718 0.578 0.410

Classic+NL-Fast 0.890 0.827 0.721 0.567 0.393

LDOF 0.892 0.854 0.780 0.673 0.495

Temporal 0.833 0.796 0.721 0.591 0.402

Ground truth 0.893 0.865 0.815 0.734 0.624

Table 6.3: SSIM for the filtered images of bandage 1 when using optical
flow based filters, a temporal filter and a filter based on the ground truth
optical flow. The optical flow is calculated by first pre-processing the image
sequence.
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6.1.1 Occlusions

Noise level

1 2 3 4 5

SimpleFlow 11% 12% 16% 26% 45%

EPPM 28% 28% 25% 26% 34%

Classic+NL-Fast 16% 27% 42% 57% 68%

LDOF 6% 7% 8% 11% 21%

Ground truth 4%

Table 6.4: Occluded pixels after the finder step for bandage 1.

Noise level

1 2 3 4 5

SimpleFlow 12% 12% 7% 8% 17%

EPPM 36% 36% 27% 26% 35%

Classic+NL-Fast 17% 27% 39% 53% 67%

LDOF 8% 9% 8% 10% 19%

Ground truth 4%

Table 6.5: Occluded pixels after the filler step for bandage 1.

Noise level

1 2 3 4 5

SimpleFlow 16% 18% 23% 26% 26%

EPPM 32% 36% 37% 39% 42%

Classic+NL-Fast 9% 17% 33% 55% 71%

LDOF 8% 10% 9% 13% 10%

Ground truth 4%

Table 6.6: Occluded pixels after the finder step for bandage 1 pre-processed.

68



6.1. BANDAGE 1

Noise level

1 2 3 4 5

SimpleFlow 19% 22% 21% 19% 17%

EPPM 41% 45% 44% 45% 49%

Classic+NL-Fast 11% 19% 33% 56% 75%

LDOF 9% 12% 9% 9% 15%

Ground truth 4%

Table 6.7: Occluded pixels after the filler step for bandage 1 pre-processed.
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6.2 Market 2

Noise level

1 2 3 4 5

MSE 60 500 101 000 183 800 341 700 633 100

SSIM 0.685 0.560 0.426 0.303 0.201

Table 6.8: MSE and SSIM for the noisy images of market 2.

Noise level

1 2 3 4 5

SimpleFlow 0.797 0.754 0.666 0.578 0.435

EPPM 0.799 0.739 0.642 0.540 0.385

Classic+NL-Fast 0.797 0.725 0.615 0.489 0.362

LDOF 0.821 0.777 0.693 0.585 0.420

Temporal 0.692 0.649 0.582 0.483 0.351

Ground truth 0.834 0.795 0.732 0.643 0.533

Table 6.9: SSIM for the filtered images of market 2 when using optical flow
based filters, a temporal filter and a filter based on the ground truth optical
flow.

Noise level

1 2 3 4 5

SimpleFlow 0.781 0.718 0.613 0.508 0.416

EPPM 0.788 0.727 0.619 0.495 0.368

Classic+NL-Fast 0.808 0.739 0.625 0.498 0.368

LDOF 0.803 0.747 0.678 0.606 0.475

Temporal 0.692 0.649 0.582 0.483 0.351

Ground truth 0.834 0.795 0.732 0.643 0.533

Table 6.10: SSIM for the filtered images of market 2 when using optical
flow based filters, a temporal filter and a filter based on the ground truth
optical flow. The optical flow is calculated by first pre-processing the image
sequence.
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6.2.1 Occlusions

Noise level

1 2 3 4 5

SimpleFlow 13% 14% 18% 28% 45%

EPPM 18% 21% 21% 22% 34%

Classic+NL-Fast 28% 40% 51% 60% 67%

LDOF 9% 10% 10% 13% 22%

Ground truth 4%

Table 6.11: Occluded pixels after the finder step for market 2.

Noise level

1 2 3 4 5

SimpleFlow 14% 14% 8% 8% 15%

EPPM 25% 27% 20% 19% 34%

Classic+NL-Fast 28% 39% 46% 55% 89%

LDOF 11% 12% 11% 13% 20%

Ground truth 4%

Table 6.12: Occluded pixels after the filler step for market 2.

Noise level

1 2 3 4 5

SimpleFlow 24% 26% 28% 29% 26%

EPPM 28% 32% 33% 38% 40%

Classic+NL-Fast 17% 26% 43% 60% 71%

LDOF 10% 11% 11% 11% 12%

Ground truth 4%

Table 6.13: Occluded pixels after the finder step for market 2 pre-processed.
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Noise level

1 2 3 4 5

SimpleFlow 26% 30% 25% 20% 17%

EPPM 35% 41% 39% 44% 47%

Classic+NL-Fast 19% 29% 44% 62% 75%

LDOF 12% 14% 11% 12% 16%

Ground truth 4%

Table 6.14: Occluded pixels after the filler step for market 2 pre-processed.
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6.3 Real 1

Noise level

1 2 3 4 5

MSE 29 600 79 500 183 000 343 400 606 800

SSIM 0.625 0.379 0.181 0.088 0.051

Table 6.15: MSE and SSIM for the noisy images of real 1.

Noise level

1 2 3 4 5

SimpleFlow 0.902 0.775 0.764 0.445 0.209

EPPM 0.872 0.710 0.507 0.319 0.201

Classic+NL-Fast 0.849 0.690 0.471 0.308 0.210

LDOF 0.915 0.783 0.690 0.338 0.200

Temporal 0.903 0.812 0.597 0.321 0.195

Table 6.16: SSIM for the filtered images of real 1 when using optical flow
based filters and a temporal filter.

Noise level

1 2 3 4 5

SimpleFlow 0.864 0.697 0.513 0.349 0.216

EPPM 0.855 0.705 0.522 0.319 0.204

Classic+NL-Fast 0.858 0.700 0.486 0.318 0.214

LDOF 0.904 0.759 0.701 0.453 0.210

Temporal 0.903 0.812 0.597 0.321 0.210

Table 6.17: SSIM for the filtered images of real 1 when using optical flow
based filters and a temporal filter. The optical flow is calculated by first
pre-processing the image sequence.
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6.3.1 Occlusions

Noise level

1 2 3 4 5

SimpleFlow 18% 20% 27% 42% 57%

EPPM 29% 28% 37% 38% 39%

Classic+NL-Fast 70% 76% 78% 80% 82%

LDOF 10% 13% 18% 35% 56%

Table 6.18: Occluded pixels after the finder step for real 1.

Noise level

1 2 3 4 5

SimpleFlow 17% 21% 7% 22% 57%

EPPM 29% 41% 41% 52% 67%

Classic+NL-Fast 70% 80% 77% 84% 91%

LDOF 12% 22% 18% 40% 73%

Table 6.19: Occluded pixels after the filler step for real 1.

Noise level

1 2 3 4 5

SimpleFlow 38% 48% 50% 35% 33%

EPPM 46% 45% 41% 32% 36%

Classic+NL-Fast 58% 76% 85% 86% 86%

LDOF 15% 20% 16% 19% 41%

Table 6.20: Occluded pixels after the finder step for real 1 pre-processed.

Noise level

1 2 3 4 5

SimpleFlow 40% 57% 39% 38% 51%

EPPM 55% 59% 47% 47% 65%

Classic+NL-Fast 60% 81% 88% 91% 99%

LDOF 16% 28% 19% 30% 67%

Table 6.21: Occluded pixels after the filler step for real 1 pre-processed.
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6.4 Real 2

Noise level

1 2 3 4 5

MSE 6 450 17 570 50 550 126 060 284 730

SSIM 0.881 0.771 0.605 0.414 0.242

Table 6.22: RMSE and SSIM for the noisy images of real 2.

Noise level

1 2 3 4 5

SimpleFlow 0.949 0.927 0.884 0.794 0.628

EPPM 0.948 0.914 0.846 0.751 0.592

Classic+NL-Fast 0.949 0.909 0.821 0.687 0.516

LDOF 0.958 0.940 0.890 0.747 0.549

Temporal 0.929 0.913 0.864 0.747 0.570

Table 6.23: SSIM for the filtered images of real 2 when using optical flow
based filters and a temporal filter.

Noise level

1 2 3 4 5

SimpleFlow 0.946 0.911 0.825 0.692 0.515

EPPM 0.947 0.911 0.832 0.729 0.584

Classic+NL-Fast 0.954 0.917 0.826 0.693 0.523

LDOF 0.954 0.929 0.877 0.771 0.574

Temporal 0.929 0.913 0.864 0.747 0.570

Table 6.24: SSIM for the filtered images of real 2 when using optical flow
based filters and a temporal filter. The optical flow is calculated by first
pre-processing the image sequence.
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6.4.1 Occlusions

Noise level

1 2 3 4 5

SimpleFlow 19% 21% 23% 26% 35%

EPPM 32% 31% 26% 24% 14%

Classic+NL-Fast 46% 59% 70% 76% 77%

LDOF 9% 10% 13% 22% 38%

Table 6.25: Occluded pixels after the finder step for real 2.

Noise level

1 2 3 4 5

SimpleFlow 19% 19% 15% 14% 28%

EPPM 41% 37% 30% 29% 31%

Classic+NL-Fast 48% 63% 71% 78% 83%

LDOF 10% 12% 13% 23% 45%

Table 6.26: Occluded pixels after the filler step for real 2.

Noise level

1 2 3 4 5

SimpleFlow 29% 35% 44% 50% 50%

EPPM 48% 44% 38% 32% 27%

Classic+NL-Fast 24% 41% 60% 75% 81%

LDOF 19% 24% 26% 22% 30%

Table 6.27: Occluded pixels after the finder step for real 2 pre-processed.

Noise level

1 2 3 4 5

SimpleFlow 32% 39% 47% 52% 58%

EPPM 53% 53% 45% 41% 42%

Classic+NL-Fast 26% 44% 63% 79% 87%

LDOF 20% 25% 26% 26% 42%

Table 6.28: Occluded pixels after the filler step for real 2 pre-processed.
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Analysis

7.1 Analysis of the result

Figure 7.1 - 7.4 shows the performance of the noise filter on each image
sequence. The SSIM from Chapter 6 is presented for the noisy image sequence,
the sequence temporal filtered without optical flow and the result after the
filter has been fed with each of the four optical flow algorithms. The result
after pre-processing is not included in the diagrams, neither in the analysis
in this section. In the case of the sequences bandage 1 and market 2 are also
the sequence filtered with the noise filter with the ground truth optical flow
presented.

Figure 7.1: The result of the noise filtering of the image sequence bandage 1.

As expected, the unfiltered image sequence (called Noisy in Figure 7.1 - 7.4)
always has the lowest SSIM, meaning that the noise filtering has served its
purpose in all experiments. The noise filter fed with ground truth optical flow
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Figure 7.2: The result of the noise filtering of the image sequence market 2.

Figure 7.3: The result of the noise filtering of the image sequence real 1.

always beats the temporal filter, leading to the conclusion that optical flow
can improve noise filtering, at least if a perfect flow and occlusion detection
are obtained.

Regarding the noise filter with optical flow, it usually beats the tempo-
ral filter without optical flow. For the sequence market 2, the temporal
filter always performs the worst. For the sequence bandage 1, it is only
Classic+NL-Fast that is worse, and that only occur on the noise levels full
well 200, 100 and 50 electrons. On the sequences captured at Axis, the noise
filter with optical flow faces greater challenges. When it comes the sequence
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Figure 7.4: The result of the noise filtering of the image sequence real 2.

real 1, only LDOF beats the temporal filter on the noise level full well 800
electrons and on the noise level full well 400 electrons, the temporal filter
performs best. On the noise levels full well 200 and 100 electrons, LDOF and
SimpleFlow win over the temporal filter, but EPPM and Classic+NL-Fast
do not reach the same level of denoising. On the noisiest level (full well 50
electrons) both the temporal filter and all algorithms perform equally well.
Worth to remark is that the noisy image has an SSIM value of 0.051, which
makes it more difficult than for example bandage 1, which has an SSIM
value of 0.164 on the same noise level. Figure 7.5 shows the flow, occlusion
mask and filtered image for SimpleFlow. Moreover, it shows the filtered
image with the temporal filter. The flow and occlusion mask is nearly totally
random which leads to the optical flow filter just doing a kind of smoothing
of the noisy image. For that reason, the optical flow estimation can be seen
as unsuccessful.

All optical flow algorithms win over the temporal filter on the level with least
noise (full well 800 electrons) on real 2. On the other noise levels some of
the algorithms beat the temporal filter and some do not.
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(a) Noisy image (Full well 50, SSIM 0.051)

(b) SimpleFlow, optical flow (c) SimpleFlow, occlusions (finder)

(d) SimpleFlow, filtered image (SSIM 0.209)

(e) Temporal filter (SSIM 0.195)

Figure 7.5: The images are generated from frame 60 of the sequence real 1
with full well 50 electrons. Image (b), (c) and (d) shows the optical flow,
occlusions found by the finder step and the filtered image for SimpleFlow.
(e) is the image produced by the temporal filter.
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7.1.1 Comparison between the optical flow algorithms

The optical flow algorithm that generally performs best is LDOF, which
produces the highest SSIM in 12 out of 20 cases. For the lowest noise levels
(full well 800 and 400 electrons), it outperforms the other algorithms on all
four image sequences. On the noise level with full well 200 electrons, LDOF
comes in first place on all sequences except real 1, where it is beaten by
SimpleFlow. LDOF is though not as good on the noisiest sequences (full
well 100 and 50 electrons) where it mostly is beaten by SimpleFlow and
sometimes also by other algorithms.

In contradiction to LDOF, SimpleFlow performs best on the noisiest image
sequences. In particular, this is evident for the noise level full well 400 elec-
trons on real 1, where SimpleFlow has an SSIM on 0.445, while the closest
competitor only has an SSIM on 0.338.

Classic+NL-Fast is overall the worst algorithm, especially without pre-
processing. It produces the worst SSIM of the four algorithms in 15 out of
20 cases.

EPPM, finally, is a moderately good algorithm, which never reaches the first
place, but at the same time seldom comes last.

Let us do an analysis of different parts of a filtered image. Figure 7.6
and 7.7 show one part without motion and one part with motion. Figure 7.6
has no motion. The figure shows that ground truth and temporal keep the
structure in the image quite well. LDOF and SimpleFlow have less noise but
also less structure. Classic+NL-Fast has much noise left after the filtering. It
just looks like the image has been smoothed. EPPM is something in between
Classic+NL-Fast and SimpleFlow and LDOF. Some parts of the filtered
image have less noise and some have much noise.

Figure 7.7 has one big motion. Ground truth, SimpleFlow and LDOF
have almost the same result. They keep the structures best of the algorithms
and have the least amount of noise. Actually. the frame has one more motion
than the big motion, and that is the eye, which has been opened since the
previous frame. Because of that, it appears occlusions in the area of the eye.
SimpleFlow and LDOF handle the occluded areas better than the ground
truth. EPPM and Classic+NL-Fast keep some of the structures of the image,
but not as well as ground truth, SimpleFlow and LDOF. For the temporal
filter, nearly all structures have disappeared.
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(a) Source (b) Noisy

(c) Ground truth (d) Temporal

(e) SimpleFlow (f) EPPM

(g) Classic+NL-Fast (h) LDOF

Figure 7.6: Filtered images for the different methods for a cropped part of
frame 20 of the sequence bandage 1 with full well 200. The frame has no
motion.
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(a) Source (b) Noisy

(c) Ground truth (d) Temporal

(e) SimpleFlow (f) EPPM

(g) Classic+NL-Fast (h) LDOF

Figure 7.7: Filtered images for the different methods for a cropped part of
frame 20 of the sequence bandage 1 with full well 200. The frame has one
big motion.
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7.2 The usefulness of pre-processing

The algorithm that gains most of using the pre-processing step is Classic+NL-
Fast, which always produces a better SSIM when pre-processing is used. Fig-
ure 7.8 - 7.10 show an example of the performance gain from pre-processing.
By just looking at the flow in Figure 7.8, it is hard to see that the flow
from the pre-processing is better. Consider the occluded pixels in Figure 7.9
instead. By using pre-processing the number of occluded pixels decreases
from 51% to 37%, which leads to more temporal filtering and thereby less
noise. The reason that the number of occluded pixels increases is that the
backward flow and the forward flow do not match. It is easy to see that the
result becomes better with pre-processing by zooming into the image (see
Figure 7.10).

(a) Without pre-processing (b) With pre-processing

Figure 7.8: The generated flow from Classic+NL-Fast for frame 15 of the
sequence market 2.

(a) Without pre-processing
(51% occluded)

(b) With pre-processing
(37% occluded)

Figure 7.9: The occluded pixel found by the finder step by estimating the
flow with Classic+NL-Fast for frame 15 of the sequence market 2.

SimpleFlow does not respond very well to pre-processing. In many cases, the
result is considerably worse when pre-processing is used. It is only in one out
of the twenty cases presented in Chapter 6, that SimpleFlow has a better
SSIM in the case of pre-processing, namely for the noisiest sequence, i.e.
real 1 with full well 50 electrons. EPPM shows the same pattern. It receives
better result without pre-processing except for real 1 with full well 50, 100
and 200 electrons, but the pre-processing does not decrease the SSIM as
much as for SimpleFlow for the other cases. LDOF performs better without

84



7.2. THE USEFULNESS OF PRE-PROCESSING

(a) Without pre-processing

(b) With pre-processing

Figure 7.10: A filtered part of frame 15 of the sequence market 2 when
Classic+NL-Fast is used to estimate the optical flow.

the pre-processing on the lowest noise levels (full well 800 and 400 electrons
for all sequences and full well 200 electrons for market 2 and real 2), but
better with pre-processing for sequences with more noise.

In total, the analysis shows that pre-processing is most useful for Classic+NL-
Fast and most devastating for SimpleFlow. Regarding EPPM and LDOF, it
is often preferable to skip the pre-processing, but when the level of noise is
high, the pre-processing can increase the SSIM, especially for LDOF.
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7.3 Occlusions

The four optical flow algorithms use the same technique to find occluded
pixels. Some of the algorithms have much difference between the backward
and forward flow, which leads to that many pixels are considered occluded
after the first finder step (Table 6.4, 6.6, 6.11, 6.13, 6.18, 6.20, 6.25 and
6.27) in the occlusion detection algorithm (see Section 4.5.2). The idea of
the last three steps of the occlusion algorithm is to eliminate incorrect flow.
Generally, the occlusion algorithm finds a lot of occlusions from the flow
generated by Classic+NL-Fast. Both the tables about occlusions in Chapter
6 and Figure 7.11 confirm that.

(a) Ground truth (4% occluded)

(b) LDOF (17% occluded)

(c) Classic+NL-Fast (31% occluded)

Figure 7.11: Occlusion mask for frame 20 of the sequence bandage 1 with full
well 400. For the two optical flow estimation the images show the occlusion
map after the last filler step.
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7.4 Illumination changes

When objects are moving in a scene, they are going to be affected by
illumination changes. Let us consider Figure 7.12 as an example. In (a),
the source image, there is a clear shadow in the top left corner. The same
shadow appear in both (b), the noisy image, and in (e), the noisy image
filtered by LDOF. For the noisy image filtered by the ground truth, (d), the
shadow has almost disappeared. Moreover, the girl’s back is quite light in
the source image, but for the ground truth filter it is a bit darker.

(a) Source image (b) Noisy image (full well = 200)

(c) Temporal filter (d) Ground truth

(e) LDOF

Figure 7.12: A part of frame 15 of the sequence market 2 where: (a) is the
source image without noise. (b) is the source image with noise. (c) is the
noisy image filtered with the temporal filter. (d) is the noisy image filtered
with ground truth flow. (e) is the noisy image filtered with the flow from
LDOF.
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Chapter 8

Discussion

8.1 Discussion

In this chapter, the performance of the algorithms is first going to be discussed,
followed by discussions about the algorithm selection, parameter analysis,
effect of pre-processing, noise filters, occlusions, illumination changes, mea-
surements and execution speed. The chapter ends with a conclusion and
suggestions for future work.

8.1.1 The performance of the algorithms

There are several reasons why the four considered optical flow algorithms
produce different results for the noise filter. Algorithms based on color
consistency have a drawback for noisy image sequences because a pixel that
is noisy in only one of the two frames will differ in color and thus not be
considered a match. Gradient based algorithms will probably perform better.
Patch matching is generally an advantage because it checks a greater area
and not only one single pixel, so noisy pixels will have less effect on the
matching.

SimpleFlow is a local algorithm. Therefore, it has problems with larger
motions. It is based on patch matching, which makes it suitable for image
sequences with high noise level. A disadvantage is that it uses color consis-
tency for the matching.

EPPM has the advantages that it is based on patch matching and that
it contains a weighted median filter, which will remove some of the noise.
The largest drawback is probably the approximate nature of the algorithm.
The self-similarity step chooses the neighbors that should represent the patch
based on color consistency. Then, some pixels, which are really representative
will be discarded because they are noisy. An even greater risk is that noisy
pixels, which actually are very far in color from the center pixel will be picked
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because they get a similar color because of the noise. This leads in that the
chosen pixels may not be a good representation of the entire patch, which
can lead to unsatisfactory tracking. Another problem with EPPM is the cost
function. Apart from color consistency, it also contains the census transform.
The census transform compares the pixel values in a 9× 7 area around the
current pixel and a pixel in the other frame. This metric will be misleading
when the amount of noise is high and/or when the color differences within
the area are small.

Classic+NL-Fast works in more scales than SimpleFlow and EPPM. This
ought to be an advantage because the amount of noise decreases when an
image is downsampled, provided that a good downsampling method is used.
Some other advantages is the usage of smoothing and median filtering of the
flow. Like the other algorithms, Classic+NL has the disadvantage of using
color consistency. It relies more on color consistency than any of the other
algorithms. The greatest drawbacks, which make Classic+NL-Fast produce
a worse noise filtering than the other algorithms is the total lack of patch
matching and usage of gradients.

LDOF uses even more scales than Classic+NL-Fast. Like Classic+NL-Fast, a
good downsampling method could decrease the amount of noise, which makes
the optical flow estimation more accurate. One of the terms in LDOF’s
energy function is based on color consistency, which is a disadvantage for
noisy sequences. The other four terms in LDOF’s energy function are based
on smoothing, gradients and descriptors. The smoothing prevents the ef-
fects from the noise by removing discontinuities of the flow. The gradient
consistency is not as noise sensitive as the color consistency as long as the
amount of noise is not very high. The descriptors are based on patches, and
could thereby handle noise quite well. In total, this makes LDOF a suitable
algorithm for noisy image sequences.

8.1.2 Algorithm selection

As described in Section 3.1, the selection of optical flow algorithms is based
on the MPI-Sintel benchmark. This choice was made after advise from
the supervisors of the thesis [26]. Only algorithms with available papers,
present code and not too long execution time were considered. Furthermore,
the selection took into account that the chosen algorithms should represent
different types of optical flow algorithms. Four of the over forty algorithms
present at MPI-Sintel [33] have been evaluated and compared in this thesis.

The algorithms’ positions at 11th of May 2015 on the MPI-Sintel benchmark
is 23 (EPPM), 32 (LDOF), 37 (Classic+NL-Fast) and 40 (SimpleFlow) [33].
In other words, there exist several algorithms which give a more accurate flow.

90



8.1. DISCUSSION

Many of them are also faster than both LDOF and Classic+NL-Fast [35]. Of
course, some of these algorithms may be better suited for finding optical flow
in noisy image sequences than the chosen ones. If the choice was based on
Middlebury or KITTI instead of MPI-Sintel, the same four algorithms would
definitely not have been picked because SimpleFlow is not present on KITTI
and Classic+NL-Fast is not present on Middlebury. In the same manner,
many algorithms from Middlebury and KITTI do not appear in MPI-Sintel.
Therefore, they have not been considered at all, even if they very well can
be both faster, more accurate and easier to implement. Furthermore, optical
flow is an evolving subject where new algorithms are developed all the time.
All this together leads to that there is a great possibility of finding better
suited optical flow algorithms than those tested in this thesis.

8.1.3 The effect of parameter analysis

For SimpleFlow and EPPM, a parameter analysis (see Section 3.2) has
been performed in order to optimize the parameters for the type of image
sequences used in this report. In this parameter analysis, one of the test
image sequences, namely bandage 1, was used. Thus, there exist a risk
for SimpleFlow and EPPM being overfitted to this sequence and therefore
having an extra advantage in the comparison. This can be the reason that
EPPM, compared with the other algorithms, performs best on bandage 1.
Furthermore, due to the long execution time, no such parameter analysis
was performed for Classic+NL-Fast or LDOF, but all parameter choices in
the MATLAB implementations remained unchanged. These parameters are
most likely not set with noisy image sequences in mind and can therefore
potentially lead to Classic+NL-Fast and LDOF having a disadvantage in the
total comparison.

8.1.4 The effect of pre-processing

According to the analysis (see Section 7.2), SimpleFlow performs worse on
pre-processed images. Most likely, this depends on that SimpleFlow already
contains a pre-processing step. In that step, the algorithm performs different
actions on the pre-processed image and the original one. By first doing an
extra pre-processing, the image SimpleFlow consider as original is already pre-
processed, which will result in a small or no difference between the two images
and will thus cause the built-in pre-processing in SimpleFlow to have no effect.

Classic+NL-Fast, on the other hand, responds very well on the pre-processing.
One of the reasons is that Classic+NL-Fast is mainly based on color consis-
tency and relies more on this property than any of the other optical flow
algorithms. By using pre-processing, the main part of the pixels are going to
get pixel values which are closer to the noise free image. The color consistency
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assumption part in the algorithm is then going to prefer a more correct flow.

In the analysis, one conclusion was that LDOF performs better for sequences
with high noise level when pre-processing is used. One possible reason is that
the color consistency term in the energy equation for LDOF has too much
impact on the result. For the same explanation as for Classic+NL-Fast in
the previous section, the pre-processing helps the color consistency term to
produce a more correct flow. Another approach to handle sequences with
much noise is to change the weight of the color consistency term, and in that
way give the other, less noise sensitive terms more impact.

EPPM performs worse for nearly every pre-processed image. An expla-
nation for that is that EPPM is an edge-preserving algorithm. The pre-
processing smooths out the image, and therefore makes the edges less distinct.

A recommendation is to use the pre-processing described in Section 3.4.1 for
Classic+NL-Fast. For SimpleFlow, only the built-in pre-processing in the
algorithm, and no external pre-processing, ought be used. For EPPM, the
pre-processing does seldom lead to any improvement. Finally, for LDOF,
the pre-processing should be used when the level of noise is high, but not
otherwise.

8.1.5 The performance on different image sequences

According to the result, the temporal filter performs best, compared with
the optical flow based filtering on real 2 and on some noise levels on real 1.
A reason for this is that the motions in real 1 and real 2 are limited to a
small part in each image frame. Furthermore, the backgrounds are static,
while there are motions in the background in market 2. A sequence with
many static parts favors the temporal filter.

A way to further improve the performance of the optical flow steered filter
compared to the temporal filter, would be to only choose test sequences with
more motion, like market 2. There are mainly two reason to also include
image sequences with less motion in the thesis’ dataset. Firstly, the aim is to
create a dataset that includes many different kinds of motion and thus get a
broader and more general analysis about how well the usage of optical flow
can improve the performance of a temporal filter. Secondly, real 1 and real 2
are interesting because they are more realistic in a surveillance prospective
than an image where the entire background is moving.
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8.1.6 Noise filter

Optical flow and noise filtering are both large, broad research fields. To focus
on both would be too much work for a master thesis, so the main focus is on
the optical flow algorithms. Thus, the noise filter implemented is relatively
simple and leaves room for improvements.

The optical flow filter in this thesis is based on the temporal filter. The
filter requires both perfect flow and occlusion knowledge to perform a perfect
filtering. This is though difficult, if not impossible, to get. The occlusion
finder, remover and filler are steps to solve the problem with incorrect flow
and occlusions.

An alternative to the currently used noise filter would be to develop a
patch based noise filter that uses optical flow. Such a filter would consider
a small patch around each pixel in the first frame and search for similar
patches nearby the place that the forward flow points at in the second frame.
An advantage with this kind of filter is that the flow does not need to be
perfect, while a drawback is that the patch search is quite time-consuming.

8.1.7 Occlusions

A perfect occlusion mask can only be obtained if the forward and backward
flow is exact. To find exact flow is an unsolved problem. Because of that,
the occluded areas need to be estimated instead. In the thesis, one approach
for doing so is given, but several other methods could be used and some of
them could be better for optical flow noise reduction.

The second step (detect) in the thesis occlusion algorithm will have problems
with some edges of moving objects. Imagine the case when the background
color next to the border of the moving object has a big color difference
between two frames. Then, the mean color difference of that border pixel
is going to be too big between the two frames and the pixel is going to be
marked as occluded even if it is not.

The occlusion algorithm has a remover and a filler step at the end. An
idea is to modify the algorithm to just do the removing and filler step on
the pixels detected in the second part of the occlusion algorithm. In the
approach of this thesis the remover and filling part is also done on the found
occluded pixels in the first step. If one or the other approach is the best is
not easy to answer because the first step could also find incorrect occlusions
which could be solved by the last two steps in the approach.

The main reason to use a filler step at the end of the occlusion detec-
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tion is to increase the area around the uncertain pixels. The probability to
use pixels with totally wrong color decreases, by increasing the number of
occluded pixels. It leads to that the filtered image get less artifacts.

In the filter for the optical flow algorithms, the output pixel for the oc-
cluded pixels has been set to the average of the pixel values of an area around
the latest frame’s pixel. This is not the only approach to handle occluded
areas. Another approach is to apply the temporal filter on the occluded
pixels.

8.1.8 Illumination changes

Effects which are hard for the noise filter to handle are illumination changes
and shadows (see Section 7.4), i.e. situations where the brightness constancy
assumption mentioned in Section 2.5 is not fulfilled.

The analysis shows that the ground truth flow produces a filtered image
with illumination changes. Shadows have disappeared and the brightness is
different for several parts in the image. The reason is that the ground truth
filter averages the corresponding pixels from several frames for a pixel of a
moving object and thereby the pixel’s illumination is going to change. For
example, if the pixel does not have a shadow on it most of the time, the
shadow is going to disappear in the filtered image.

Regarding shadows, is it okay to take them away like the ground truth
filter does? Maybe for some applications and for others not. If the goal is
to noise filter an image, so it becomes as similar to the noise free image as
possible, illumination changes need to be handled. The ground truth optical
flow does not care about shadows, transparency and specular reflections. It
means that the ground truth is not optimal as optical flow for filtering. To
solve a part of the problem, one idea to find optical flow for both objects
and shadows, and combine the results when filtering.

According to the analysis, the noise filter based on the ground truth just
perform slightly better than the other algorithms, when the noise level is low.
For the sequence bandage 1 with least noise (full well 800 electrons), LDOF
actually beats the ground truth. One of the reasons for this is the problem
with illumination changes, described above.

8.1.9 Measurements

In the result tables in Chapter 6, the SSIM error measure (see Section 2.4.1.3)
is used to compare the performance of the temporal filter with noise filtering
based on the different optical flow algorithms. As has been described in
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Section 2.4.1, there exist several other types of metrics that can be used to
measure the amount of noise in an image, for instance MSE and PSNR. The
reason for choosing SSIM is that it is based on perceptual similarity [27],
which means that it favorites image sequence, which look good for the human
eye, which is usually the result one want to achieve in imaging.

The SSIM values presented in Chapter 6 are measured between a filtered
image sequence and the input sequence with no added noise. To achieve a
high SSIM, the filtered image must come as close as possible to the original
sequence. But the goal of noise filtering is to remove all noise. Therefore, the
assumption that the original sequence contains no noise is made indirectly.
This is not true for the sequences real 1 and real 2, which have been filmed
at Axis during the thesis and contains some natural noise. A good enough
noise filtering algorithm cannot only remove the added artificial noise but
also the original noise and thus produce a better image sequence than the
original one. The filtered image sequence will then be less similar to the
original than a sequence produced by a filter that only removes the added
noise and thus get a lower SSIM even if it is a better algorithm.

A way to overcome this unfairness in the measurement would be to first per-
form a denoising of the original sequence using the best available algorithm.
A suggestion is ground truth when it is available and LDOF otherwise. In
this way, most of the natural noise is removed. The filtered sequence can then
be used as source sequence to put artificial noise on. When this sequence is
filtered by one of the noise filters, almost no natural noise can be removed
(because there is almost no such noise left), why an image sequence produced
by a very good noise filter will be similar to the source sequence and thus
get a high SSIM.

The focus in this thesis is to compare how well the optical flow algorithms
can increase the performance of a temporal noise filter. An important ability
for an optical flow algorithm which should be used in a noise filter is that it
produces an accurate flow for noisy image sequences. An optional way to
find a suitable flow algorithm would be to measure how accurate optical flow
fields the algorithms produce. There are several reasons why this approach
has not been used in this thesis. First, it requires a ground truth optical flow
to compare with, which are only present for the MPI-Sintel sequences and
not for real 1 and real 2. Furthermore, even if a good flow is an advantage, is
it not certain that an exact flow is required for the noise filtering. There are
already several benchmarks like Barron [10], Middlebury [1], MPI-Sintel [2]
and KITTI [3] that compares the accuracy of the flow for different kinds
of image sequences, even if none of them focuses on noisy sequences. This
kind of measurement are thus already commonly occurring, while the actual
improvement an optical flow algorithm can have on a temporal noise filter
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has not been very well investigated before.

8.1.10 Execution speed

LDOF is not only the best of the optical flow algorithms considered, but also
the slowest. To calculate the forward or backward flow between two image
frames take almost 5 minutes, compared with about the half for Classic+NL-
Fast and not more than a few seconds for EPPM and SimpleFlow.

Even if the speed of a MATLAB implementation does not say very much
about the possibility of implementing LDOF in real time in camera hardware,
the long execution time may frighten people to even try. The authors of the
LDOF paper say though that there exist GPU implementations of classic
warping methods that run in 30 frames per second on VGA images. Further-
more, they say that their approach is also feasible for that and that their
additional descriptor matching part fits very well for parallel hardware [9]. In
other words, the possibilities to extend LDOF to real time are probably good.

The pre-processing step from Section 3.4.1 takes a very limited amount
of time, compared with the total execution time of the algorithms. Thus, it
is still a good idea to use it together with LDOF when the noise level is high,
even though the execution time should be minimized.

Overall, the execution time of all the considered optical flow algorithms, as
well as the noise filter could be decreased. The focus of the thesis has been
to optimize the performance and not the execution time of the code. One
such example on an easy improvement are to use faster sorting algorithms in
the median filters.

8.2 Conclusion

In this thesis, it has been shown that the usage of optical flow increases the
performance of a temporal filter. Out of the four optical flow algorithms
considered (SimpleFlow, EPPM, Classic+NL-Fast and LDOF), LDOF is
suitable to use when the amount of noise is moderate, while SimpleFlow is
preferable for image sequences with high noise level. The EPPM algorithm
has some problems with noisy image sequences. Classic+NL-Fast performs
the worst of the tested algorithms, but get slightly helped if the suggested
pre-processing is used together with it.

An optical flow algorithm that should be used to steer a noise filter must
produce a very accurate optical flow and find accurate occlusions. To man-
age this, the algorithm should optimally rely more on gradient consistency
than on color consistency. It should use patch matching, but without the
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approximation techniques used in EPPM. Finally, it should use descriptors
and apply smoothing and a median filter on the optical flow.

8.3 Future work

In the analysis in this thesis, the focus was set on algorithms that can be
extended to real time implementations. An idea is to instead use optical flow
for post processing of noisy image sequences. Then, the execution speed of
the optical flow algorithm used is not as big problem and other, slower, but
more accurate algorithms could be used.

LDOF performs well, but was the slowest of the four optical flow algo-
rithms considered. The implementation was written in MATLAB and ran
on the CPU. A natural continuation of the work in this thesis would be to
try to parallelize LDOF and implement it on the GPU to get a fair perfor-
mance comparison between the GPU implemented algorithms and LDOF
and investigate if it is realistic to run LDOF in real time. There are also a
lot of other optimizations of the code that can be done, in order to further
speed both LDOF and the other algorithms up. Finally, a parameter analysis
to optimize the parameters to noisy image sequences, similar to the one
performed on SimpleFlow and EPPM, would probably give an even better
accuracy for LDOF.

If LDOF after the improvements described above beats SimpleFlow even
on images with high noise level, the future work ought to be concentrated
on improving LDOF further. Otherwise, even SimpleFlow is in question for
further research and improvements. EPPM and Classic+NL-Fast produce
too bad result for the noise filter to be considered interesting to develop
further.

Another option is to use the knowledge and analysis from this report and
combine the best parts of each algorithm to develop a novel optical flow
algorithm, specialized on noisy image sequences. An idea is to let such an
algorithm take several frames into account when estimating the optical flow.
The state-of-the-art algorithms do not use the flow calculated from previous
frames. Since the objects normally move in the same direction for several
frames, the optical flow can be used as an initial guess for the next frame.
This means that heavy calculations for an initial guess just need to be done
for the first pair of frames.

Independently of the choice of algorithm, a final step would of course be to
develop and implement a more sophisticated noise filter built on an estimate
of optical flow, first in software and then in the hardware on a real camera.
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