IMAGE SEGMENTATION WITH
JOINT REGULARIZATION AND
HISTOGRAM SEPARATION

DAVID NILSSON

Master’s thesis
2015:E12

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

WNYVIILVINTIHLVIN WNYVILN3IIDS WNYLN3D

Abstract

In this thesis optimization methods for image segmentation are studied. The
common theme of all the methods is that we have a histogram model for ap-
pearance terms that we optimize jointly with smoothness. Recently it has been
shown that if one assumes a histogram model for appearance, it is possible to
optimize an approximation of the energy using only one graph cut, by ignor-
ing the non-submodular volumetric penalty term. We show how to include the
volumetric term using the Fast trust region framework. Fast trust region is a
recently proposed method that is able to handle a large class of non-submodular
energies by solving a sequence of graph cut problems. A comparison of these
methods shows that Fast trust region typically obtains a lower energy value and
higher segmentation quality, at the cost of requiring multiple graph cuts.

Furthermore, we extend the simple histogram term to the multi-class setting
and show that it is possible to optimize it with a-expansions. This is applied
to the problems of stereo depth estimation and geometric model fitting.

Acknowledgements

The author would like to thank Carl Olsson for excellent supervision and for
careful reading of this thesis.

Contents

1 Introduction 3
2 Theory 5
2.1 Binary segmentationo 5
2.1.1 Markov random field model 6

2.1.2 Optimizing MRF-MAP 7

2.1.3 GrabCut 9

214 OneCut o 10

2.1.50 Fasttrustregion 11

2.2 Multi-class segmentation 0L 14
2.2.1 @-expansions e 14

2.2.2 Multi-class segmentation with OneCut 15

2.2.3 Stereo depth estimation 17

2.2.4 Geometric model fitting 18

3 Results 22
3.1 Binary segmentation 000 22
3.2 Stereo depth estimation 25
3.3 Geometric model fitting oL 25

4 Conclusions 29

Bibliography

30

Chapter 1

Introduction

One of the main problems in computer vision and image analysis is the prob-
lem of segmenting images. This means that you want to mark interesting and
coherent regions in the image, for instance a human or a car. Many problems of
computer vision contains the subproblem of finding good segmentations. In this
report we focus on low level segmentation, which means optimization methods
to assign pixels to foreground or background. We do not pursue further possible
applications such as for instance recognition or scene understanding.

All the methods presented will be graph cut based methods. The recurring
theme will be that we have histogram models for the color distributions and in
the optimization functions there are terms that separates the histogram bins
between the segments so that preferably all the pixels in one bin are assigned to
a single segment. This is then optimized jointly with the segmentation. A more
common approach is to either have a given color distribution beforehand or to
alternate between estimating the color distribution and solving an optimization
problem.

The optimization problems are solved in different ways depending on if we only
want two segments, foreground and background, or if we want more than two
segments. The binary case is in its simplest form possible to solve exactly, that
is, find the global minimum of the objective function, while for the multi-class
case we have to settle with approximative solutions. A number of different
methods for the binary case will be presented: OneCut [11], GrabCut [9] and
Fast trust region [3]. For the multi-class case we will use a-expansions [2].

For the binary case we will compare the three aforementioned methods based on
energy values obtained. For the multi-class problem we will test the histogram
model for stereo depth estimation and geometric model fitting. The geometric
model fitting problem will be to find planar regions in RGB-D images, where
we beside color content also know the depth of all the pixels.

Our main contributions are the following:

e The fast trust region method is used to add a volume constraint to the
OneCut method, with resulting energies being slightly lower than for
GrabCut and for OneCut without the volume constraint.

e The histogram term in OneCut is extended to the multi-class setting where
it is optimized using a-expansions. This is then used for stereo depth
estimation and geometric model fitting.

Chapter 2

Theory

Here the theory for both binary and multi-class segmentation will be presented
in detail. We will start with the binary case and present the theoretical back-
ground and optimization methods and then introduce the three methods Grab-
Cut, OneCut and fast trust region. For the multi-class case we start with the
optimization method and then describe the extension of OneCut to the multi-
class setting. Finally we present two applications of multi-class segmentation:
stereo depth estimation and geometric model fitting.

2.1 Binary segmentation

Here we consider the problem of binary segmentation, that is, assigning all the
pixels in the image to either background or foreground. The method of doing
this is by optimizing an energy function. We will derive the general form of
the energy function starting from Markov random fields. Then we will talk
about methods to optimize the energy function. Finally three different methods
used in image segmentation will be presented: GrabCut, OneCut and Fast trust
region.

We will start by giving a somewhat informal description of the energy functions
we are trying to minimize to get a segmentation. The general form of the
segmentation energy is

E(z) = Z Up(zp) + Z Vg (2p, 2q). (2.1)

pEP (p,9)€E

The domain we are in is = (z,)pep Wwhere P denotes the set of all pixels.
x, can take the values 0 and 1, where x, = 0 means that p is assigned to
the background and x, = 1 means that p is assigned to the foreground. The
first terms, Up(z,) gives a cost for including the pixel in the foreground or
background. These values are calculated by assuming a certain model for the
foreground and background. One simple example is if we want the foreground

to be centred around pf, and the background at jipg. If I, denotes the color of
p, we can set Up(1) = ||, — pysql|? and U,(0) = |1, — psgl|*>. When optimizing
(2.1), this will give a bias towards assigning pixels with intensity close to pf4 to
the foreground. If we only relied on the U,(x,) terms we take no account of the
smoothness of the segment. This is remedied by the terms in the second sum,

Vg (Tp, Tq).

The smoothness terms in (2.1), Vpq(zp, 4), are summed over all the pixel neigh-
bours, denoted £. The neighbours of a pixel are the pixels directly above, below,
left and right of the pixel, see Figure 2.1. V,q(2p, z4) is a potential function for
the edge. If we want a segmentation that has a smooth boundary, we want
to penalize neighbours where one pixel is assigned to the foreground and the
other to the background. This can be done by letting V},4(1,0) = V,,4(0,1) =1
and Vpe(1,1) = V,4(0,0) = 0. Then we penalize neighbouring pixels that are
assigned to different labels. This also has the effect of minimizing the boundary
length, since pixels on the boundary contribute to the energy via the pairwise
terms.

When combining the two terms in (2.1) the first term makes sure that we are
assigning the right pixels to the foreground, measured by how well they fit
the assumed model and the second term makes the solution smooth along the
boundaries of the segmentation. Combining the two terms will ideally result in
a smooth segmentation of the right region.

2.1.1 Markov random field model

In this section the energy function that is used in the rest of the text is derived
in the context of Markov random fields largely following the derivation found in

[8].

A Markov random field can be defined on a graph G = (V, E), with nodes V and
edges E, and for every node a corresponding random variable, z,. We consider
both binary variables x, € {0,1} and the multiclass case x, € {1,..., N}, but
the derivation is the same for both cases and no specification is made in this
section. The Markov property can be expressed as

Pr(zy | zy\p) = Pr(xp | 2ar(p)), (2.2)

that is, the random variable z,, is conditionally independent of all variables given
its neighbours A/ (p). It can be showed, through Hammersley-Cliffords theorem,
that the distribution of x factorizes over maximal cliques. A clique is defined
as a sub graph where all nodes are directly connected. A maximal clique is a
clique that is not a subset of another clique. If C denote the set of maximal
cliques, we get

Pr(z) = [] ¢e(ae), (2.3)

ceC

where ¢.(x.) is called a potential function. To use this result for inference we

Figure 2.1: A grid graph used for image segmentation. Every pixel corresponds
to a node and there are edges for neighbouring pixels. The cliques are exactly
the set of neighbours.

condition on the observed values I, and use Bayes formula.
Pr(z | I) < Pr(I | z) Pr(z)

—HPI'I |39p H¢C) (2.4)

ceC

Instead of maximizing the likelihood we minimize the negative log-likelihood.

—In (HPrI | 2p) [el x)

ceC

—Z In(Pr(1, | x,)) —l—ZV Ze),

ceC

(2.5)

where V.(z.) = —In(¢.(x.)). In the special case of a grid graph, see Figure 2.1,
the cliques are the neighbours, so the expression reduces to

Z In(Pr(1, | p)) Z Vg (Tp, 24), (2.6)

P (p,q)€EE

where & is the set of edges. Maximizing the posterior likelihood Pr(x | I) is the
same as minimizing the above expression. So what we are doing is maximizing
the posterior likelihood given the model V,, and Pr(, | z,). That is,

& = argmax Pr(x | I)

:arg;nin Z In(Pr(I, | p)) Z Vpg(@p, xq)
p (p,9)e€

2.1.2 Optimizing MRF-MAP

We start by defining a graph cut and then showing how this is used to solve
the minimization problem encountered in (2.7). Here we only solve it for binary
xp € {0,1}. In later sections we consider the multiclass problem, which is solved
by a reduction to a sequence of binary optimization problems.

To define a graph cut, we have a graph G = (V, E) with two special nodes s and
t called the source and the sink respectively. Also, for every edge e € F there is

a weight w, > 0. We partition the nodes into sets S and "= V' \ S such that
s € SandteT and S is connected. The value of the cut of this partition is
the sum of the edge weights for edges that have one end in S and the other in
T. Formally,
cat(S,T) = Y we (2.8)

e=(p,q)EE

pES,qeT
The min cut problem is the problem of finding the S that minimizes cut(S, V'\S).
It turns out that there is a polynomial time algorithm that solves this problem.
By the max-flow min-cut theorem, the problem of minimizing the cut has the
same optimal value as maximizing a flow from s to ¢ in the graph with edge
weights being the capacities. From a max-flow solution it is possible to obtain
S and T. In Figure 2.2 is an illustration of max-flow and min-cut on a very
simple graph. There are implementations of min-cut solvers available especially
optimized for grid graphs typically encountered in computer vision. Throughout
this report the implementation by Kolmogorov is used [1]. For a more thorough
description of network flows, see any textbook on algorithms.

So far we have only talked about the min cut problem from a graph theoretical
perspective. Now will will turn to an algebraic version of the min cut problem
where it instead is formulated as a minimization problem of binary variables x,, €
{0,1} denoting if p € P isin S or T If we consider the energy E(x1,x2, x3), with
xr, € {0,1} of the cut associated with S = {k: z =0} and T = {k : z), = 1},
we get for the graph in Figure 2.2 that

cut(S, T) = E(Jﬁl,l‘g,l‘g) =4x1 +Z1 + 3x2 + 2T5 + x3 + 5T3

_ _ _ B (2.9)
+T1X2 + T2X1 + X2X3 + T3T2,

where T denotes negation, defined by = 1 — x. We can verify that for the
min cut, see Figure 2.2, with S = {1,2} and T" = {3}, we get F(0,0,1) =5
as expected and comparing to Figure 2.2 we see that the non-zero terms of
E(0,0,1) corresponds exactly to the edges in the cut.

In general considering algebraic expressions instead of a graph is convenient.
For a function E(z1,...,zN) we define

N N
E(zy,...,an) = ZUZ(%) + Z Vij(i,), (2.10)
i=1 ij=1

where U are called unary terms and V pairwise terms. Note the similarity with
(2.7). In general the second sum is not over all ¢ and j, rather only a small
subset. As showed in [7], for the function FE to be efficiently optimized by graph
cut methods there are no restriction on the unary terms, but all pairwise terms
must satisfy

Vi (0,0) + Vi (L, 1) < Viy(1,0) + Vi (0, 1). (2.11)

This property is called submodularity and if it holds F can be efficiently op-
timized. Note that negative values are allowed and that Vj;(1,1) and V;;(0,0)
can be non-zero. This requires modification of the graph!, since the weights

1For instance, if we added z1z2 to E(z1,z2,23), how would we change the graph in Figure
2.27 It is not trivial at all.

Figure 2.2: From left to right: A flow network, a maximum flow and a minimum
cut. The final partition is that S is the green nodes and T is the blue nodes
and the red edges are included in the cut, with the sum of the weights being 5,
which can be verified is also the maximum flow.

must be non-negative, but it can be accounted for when submodularity holds.
All the details are given in [7].

2.1.3 GrabCut

The idea behind GrabCut [9] is to start with an initial segmentation and iter-
atively improve it. From the previous segmentation color distributions of the
foreground and background are estimated. This is then used to again solve the
optimization problem, but with different unary terms. Algorithm 1 describes
the method.

To estimate the color distribution, we first specify the model. We use a his-
togram model for the distributions. Define a probability distribution by count-
ing frequencies for all bins 6,. Each pixel is assigned to one bin, and we have
Upbp = Q and 0, N6; = 0 if i # j. Furthermore, we partition each bin into
pixels in the foreground Hbs and pixels in the background Qbs . Assume that pixel
p belongs to bin b, then Pr(I, | S, = 1) = |67]/|S], by counting elements in
bins. This is then used for the unary terms, see (2.7), as

Up(1) = —In(651/IS]), Up(0) = —n(|65|/|S]), (2.12)

where U,(1) is the cost of assigning p to the foreground, U,(0) is the cost of
assigning p to the background and p is in the bin with index b. We note that
if a bin is empty for the foreground in one iteration, then pixels in the bin can
never switch to foreground, regardless of the smoothness structure of the pixels.
This is a very bad property and a simple fix is to set a lower bound on the
probabilities. Note that basically any model can be used for GrabCut, but we
limit ourselves to bin counting since this is what we will use later in the OneCut
method.

Algorithm 1 GrabCut

1: S = Initial segmentation

2: while S has not converged do

3: 0 = estimate distributions using S
4

5

: S = argming E(S;0)
: end while

2.1.4 OneCut

Previously we arrived at the problem of minimizing

E(S) = Z Up(Sp) + Z Vpa(Sp, Sq)s (2.13)

peP (p,9)€E

where U,(S,) = —InPr(I, | Sp). If we have an explicit model and given param-
eters for the background and foreground, we can calculate all these probabilities
and solve the optimization problem. In the GrabCut method we iterate between
estimating the distributions and solving an optimization problem. For OneCut
[11] we consider a simple color distribution model and simultaneously optimize
with respect to color distributions and smoothness using only one graph cut.
Consider again the unary term in (2.13). We use histogram bin counting as
described in the GrabCut section. Rewriting the unary terms in (2.13) using
the bin notation and switching from summation over the pixels to summation
over the bins, we obtain

> Un(Sp)

peEP

=Y —InPr(,|S,)

peP

‘?l et () - o (wﬂ _

= > [1051 w151+ 165110 1] — 1651165 — 165165
b

= IS |S]+ 1510 |5 = 3 (16510165 + 1651 1051)
b

= ha(S) = Y ha,(Sh),
b

where hq(S) = |S|In|S]| 4+ |2\ S|In |2\ S|. To interpret the last expression in
(2.14), consider the function hq(S). In Figure 2.3 is a plot of how these terms
depends on |S|. The first term is a global volume balancing term and the terms
in the sum over bins separate the bins between foreground and background.

Now we can introduce the OneCut method. Instead of the expression in (2.14)
we consider a simpler version by discarding hq(S) and replacing the summation
of hq,(Sp) with the simpler terms min{|65|,|6;|}. The following function is

10

ha(S)
—ha(S)
Ehist(S)

5] 5] 5]

Figure 2.3: The volume balancing term, the histogram separation term and the
Epist(S) term.

introduced

Enist(S) = _ min{|6}'], [65']}. (2.15)
b
The OneCut energy to minimize is
E(S) = Ehist(S) + Esmoothness(s)' (216)

The optimization of E},;s(S) is most conveniently expressed using binary vari-
ables. Let x, be binary variables being 1 if p € S and 0 otherwise. Introduce
extra variables x;, for every bin. Then the term FEj;5:(S) can be expressed as?

Enist(S) = > min{|05'], 167}
b

= Xb:min{z Tp, Z Tp}

PEL PEDy (2-17)

=> 2D wpta > 7|,
b

pEby pED,

where we note that the pairwise terms are submodular. Note that all z; select
the minimum of the two choices corresponding to x, = 1 and x;, = 0 when
optimized.

2.1.5 Fast trust region

We have so far introduced two different methods to solve (2.7) for a certain
distribution model. GrabCut approximates a solution by iterating between esti-
mating foreground and background distribution and solving (2.7) with specified
distributions. For OneCut we used a simple distribution model and could solve
the optimization problem using one graph cut. In this section the fast trust
region method will be introduced. The main thing about fast trust region is
that we are able to handle more difficult energies by considering Taylor expan-
sions. Like GrabCut, it iteratively finds better solutions by refining the previous
solution.

2Note that the third equality strictly speaking is wrong and we should write ming, before
the parenthesis. We will not do this since the notation would become quite horrible later on.
It is always assumed that we are minimizing the energy functions. This abuse of notation will
be present at a number of occasions later on and is only pointed out here.

11

We consider an energy function of the form
E(S) = R(S)+ Q(S5), (2.18)

where R(S) is a regional constraint and Q(.S) is the normal smoothness terms,
or more generally any term that can be optimized with graph cuts. Later we will
use R(S) = hq(5), as defined in (2.14). Since R(S) in general is non-linear it
can not be solved by the standard min-cut method. Instead of R(S) we consider
a Taylor expansion of R(S) at the previous segmentation Sy. That is, instead
of optimizing E(S) we iteratively optimize an approximative energy

E(S) = Uo(S) + Q(S), (2.19)

where Up(S) is a Taylor expansion of R(S) at Sp. The details about how to
compute the Taylor expansion can be found in [4] and will not be given here.

Since a Taylor expansion is a local approximation, we want solutions not to be
too far away from the starting solution Sy, i.e. it should minimize E(S) within
a trust region [|.S — Sp|| < 0 where the approximation is sufficiently accurate.
The solution proposed in [3] solves this problem by considering the Lagrangian

LA(S) = E(S) + /\Z $0(Sp; So), (2.20)

where ¢o(Sp;So) is the signed distance function of Sy, equal to the distance
from p to the boundary of Sy if S, = 1 and 0 if S, = 0. In Figure 2.4 is an
example of this function. It measures the distance to the boundary. If a point
is inside Sy the distance is negative and if a point is outside Sy it is positive,
forcing for large A the minimizer of Ly(S) to be not too far away from the last
segmentation Sy. As showed in [3], and intuitively by looking at Figure 2.4, it
holds approximately that A ~ é, so by adjusting A we can adjust the size of the
trust region.

Algorithm 2 describes the method. It iteratively updates the segmentation. It
starts by computing the Taylor expansion around the current segmentation .S.
Then it solves the optimization problem within the trust region using Ly (S).
The energy reductions are then computed, both the predicted AP and the actual
AA. If the actual energy has decreased then the segmentation is updated. If
the approximation is good, checked with AA/AP > 7 then the trust region is
expanded by decreasing \. Otherwise the trust region is decreased.

The fast trust region framework will be used for the OneCut energy in (2.14).
Here the regional term is hq(S), which is not submodular. To use the fast
trust region method we need the Taylor expansion of hq(S) at Sp. This can
be computed following the methodology in [4] with the result being, up to a

constant |S |
In 0) s|. 2.21)
<Q||So| 5 (

12

ElE

110]-1]-2

Figure 2.4: Example of the signed distance function ¢o(S). Gray pixels are in
the segmentation Sy and white pixels are not in the segmentation. Including
pixels far away from Sy will give a high cost and not including pixels in the
interior of Sy will also give a high cost, giving a bias towards only changing
close to the boundary.

Algorithm 2 Fast trust region

1: S = Initial segmentation
2: while S has not converged do

3: Up = Taylor expansion of R(S) at S
4: S* = argming Ly(95)
5: AP =E(S)— E(S*)
6: AA = E(S)— E(S%)
7: if AA>0 then

8: S =5

9: end if

10: if AA/AP > 1 then
11: A=)\/Oz

12: else

13: A=A«

14: end if

15: end while

13

2.2 Multi-class segmentation

Previously we have written about segmenting images into two classes: fore-
ground and background. In this part the problem of segmenting the image into
N regions is studied. First the general framework with the energy function
will be presented. This is solved by a-expansions which will be described in
the next section. The trick in OneCut to rewrite (2.14) will be imitated in a
multi-class setting and the optimization procedure will be described in detail.
Finally the problems of stereo depth estimation and geometric model fitting will
be presented.

To solve a multi-class segmentation problem, one approach is to minimize a
function of the form

E(S) = Z Dp(Sp) + Z qu(spasq), (2.22)

peP (p,9)€E

where S, € {1,2,..., N}, unlike as for binary segmentation S, € {0,1}. It
turns out that to exactly solve this problem is NP-hard even for simple choices
of D and V, so an exact solution is not achievable [2]. However, there are two
efficient methods to approximate a solution: a-expansions and af-swaps. We
will only use a-expansions. If we partition the different pixels as P; for different
labels i € {1,2,..., N}, let P; denote the current candidate solution and P/ a
new solution, then P/ is an a-expansion of P; if P, C P/, and P/ C P, for i # «.
That is, the label « is allowed to expand and all other nodes either change to «
or keep the old label.

In [2], optimization methods that finds the local minimum of E(S) within an
a-expansion of the previous solution are presented. The problems are reduced
to binary optimization problems that can be solved by min-cuts. There is an
approximation guarantee for a-expansions on the form

E(S) <2 max (HMXL#JVPQ(Z"])> E(S™), (2.23)
(pa)€€ \ mingz; Vi (7, 5)

where S is the local minimum using a-expansions and S* is the global minimum.

2.2.1 a-expansions

In this section the a-expansion method will be described in greater detail than
the overview in the previous section. Algorithm 3 describes the general pro-
cedure of the a-expansion algorithm. The hard part of the algorithm is the
Expand procedure and it is this part that will be described in detail. In [2]
the graph constructions used for a-expansions are described. Here an algebraic
version that essentially is the same will be presented.

Assume that we have a current segmentation S and we wish to expand label
a. Define), for all pixels and let z;, = 1 if pixel p changes to label and let
xp = 0 if pixel p keeps the old label S,. This is a binary problem solvable by

14

graph cuts. If S, = o we force z,, = 1. Now introduce the energy function
E(z) =Y Dy(xp)+ Y. Vig(zp,), (2.24)
p (p.9)€€

with

Bo-{ 5 Si0 B0-{bw gi0- D

Note that we force z, =1 for S, = a.. For S, = S; we have
V;;q(lvo) = VPQ(aﬂsq)v Vggq(oﬂl) = VPQ(Spﬂa)v
Vp'q(O, 0) =0, Vp'q(l, 1) =0,
and for S, # 5,
V;:q(lﬂ 0) = Vpglar, Sg), V[;q(ov 1) = Vipg(Sp, @), (2.27)
V;;q(oﬁo) :qu(spasq)7 V;;q(Ll) 207

where we note that submodularity requires Vjq to satisfy the triangle inequality
Vg (Sps Sq) < Vipg(Spy @) + Vg, Sy). It is assumed that Vie(a, 8) = 0 if o =
5. The Expand method in Algorithm 3 has now been described, and it finds
the minimum of E(x), which can be done efficiently. In [2] is a proof that
optimization of this construction indeed is the local minimum of the global
energy function restricted to a single expansion move.

Algorithm 3 a-expansion

1: S = Initial segmentation

2: while S has not converged do
3 for a € {1,2,...,N} do
4: S = Expand(S, a)

5 end for

6: end while

2.2.2 Multi-class segmentation with OneCut

In the GrabCut section we introduced a bin model for the color distributions.
We have bins 6. For every bin, the pixels have assigned labels and we partition
0, into 6, = Ulﬁé where [denotes the label. We will do the same trick as for
OneCut in (2.14) and discarding global volume balancing. The probabilities are
computed in the same way as for binary segmentation, but are computed for

each label.
Z Dp(Sp) = Z —InPr(Z,[S,)
peP peEP

6!
= —1641 <|b>
El:zb: | b| n |Sl|
=D 163 (n]65] — In|Si))
l b
=Y Silm[Si| =YD (65 n 6]
l l b

(2.28)

15

Now we proceed as for OneCut and discard the first part of the last expression
and define
Enist(S) = = > > 03 n [6}]. (2:29)
b

The rest of this section will contain details about how to optimize the above
expression and can be skipped all together if one is not interested in the imple-
mentation details. The term Ep;q:(S) contains the expression —z In(x) which
we will approximate using linear functions. Since —x In(x) is a concave function
we can approximate it as a minimum of linear functions. We consider an ap-
proximation of f(x) = —zIn(z) =), fi(x) where each f; is a minimum of two
linear functions, f;(z) = min{alz + bF, a%z + bY} where we assume aX > a?.
All the f; are supposed to have different breakpoints, meaning the number x
such that afz + bF = aVz + bY. The breakpoints are set at fixed values, for
instance logarithmic in scale. Finding a and b is done by solving a linear system
of equations obtained by setting the values at the breakpoints to fixed values
and also making sure that the breakpoints of all f; are at the right values. We
will implement the minimum in a way similar to that in (2.17) by introducing
additional variables, denoted y.

Remember that we are performing a-expansions and that z, = 1 if p is assigned
to @ and z, = 0 if it keeps the old label S,. If S, = a we force x, = 1. We will
need to express both |0!],1 # « and |#¢|. This can be done as follows

051 = g, 05 = Y gl #a (2.30)

q€E€by qeEP;NOy

Now we are ready to rewrite Ep;s+(S). We will split the labels between « and
not a.

Bniat(S) =D > —03| n |6}
l b
SO AAED ISP
b 7

l#a b i
= ZZ [Goopi (@105 +07) + yapi (af 165 +07)]
b

+ ZZZ (1,0, (ar’ 03] + bF) + Gup,i (af|64] + 07)]

l#a b i

:ZZ Jabi | 0F qu +07 | + Yo | af qu +bY
b i

q€0y qEb,

+ZZZ b | af Z Tg | +0F | + G | af Z o I

I#a b i gEPNB, qe POy,

Consider the first line in the last equality. The interaction terms are 9, » ;arz,+
Youp,i0Y T4 which are submodular if and only if ¥ < aF, which holds by con-
struction of the linear approximations. The terms with | # « are submodular
by the same reasoning. The interaction terms are y; p ;arZ, + 41 pa¥ Z, which

are submodular if and only if aY < al.

16

To actually implement it, rewrite the first sum as

ZZ Yo | aF qu +0F | + Yo | @Y qu + oY
b

qEy q€Eby
= Z Z Z [az{:xqga,b,i + agjqua,b,i] + Z Z [bz‘Lga,b,i + bzl‘]ya,b,i]
b i qeo, b i
= Z Z [afxqgoz,b(q),i + %quya,b(q),i] + Z Z [bz‘L?ja,b,i + b?ya,b,i])
i qeP b g

(2.32)
where we note that >, > ., is the sum over all the pixels, and write b(q) to
get the bin of a pixel. Similarly, rewrite the second sum as

SIS e [l [X & | voF) 4 [V [Y & | +o¥

l#a b i qEP,NOy qEP,NOy

= Z Z Z Z [afyipi®p + al GupiTp) + Z Z Z [bF 10,6 + Y Gu.bi]

I#£a b i qEPNG, l#a b i

= Z Z Z [a Y1.b(q).iTp + @ Grb(q).iTp) + Z Z Z (b5 Y1, + b Gpi] -

l#a i q€P, l#a b i
(2.33)
These sums are straight forward to implement.

2.2.3 Stereo depth estimation

For the stereo setup, two cameras are placed next to each other with parallel
principal axis and the same orientation, see Figure 2.5. The 3D-point projects
to z; in the left camera and to z, in the right camera. Since the projection of
the second camera center onto the first image is the direction of the x-axis in the
first image, we get that the epipolar line through x; is the line parallel with the
x-direction, as showed in the image. The difference in x-coordinates of the two
projections is called the disparity and is defined d = x; — z,.. It can be showed
that the disparity is inversely proportional to the depth of the 3D-point.

To use graph cuts for stereo depth estimation, we seek an energy to minimize,
namely

E(S) = Edata(s) + Esmoothness(s) + Ehist(S)
=" Du(S) + Y Veg(Sp S0 =SS 16 me), (2:34)
l b

peP (p,9)€E

where S}, denotes the disparity of the pixel. This formulation is the energy
function defined in previous sections and it is solved using a-expansions. Note
that the disparities are only allowed to be values in a predefined set of disparities,

17

Figure 2.5: Camera setup for stereo.

typically only integers, which gives a depth map with discrete depths and not
continuous.

The interaction terms Vp,(Sp, Sq) in the multi-class setting, does in general only
depend on whether S, = S, or S, # S, since the class numbers only are used
for indices. In stereo, the interaction term may be defined as

qu(sp’ Sq) = min(|Sp - Sql,t), (2.35)

where t is some threshold. The idea is that large disparity changes are penalized,
but a large discontinuity may be present, as it typically is for real scenes.

The data term D,(Sp) is defined for p = (z,y) by comparing intensities in
a patch around (z,y) in the first image, denoted by I; and a patch around
(z + f,y) in the second image, denoted I», where f is the disparity associated
with the label S},. Then we use the cross-correlation between these patches

(1) = 1) (J2(d) — Ip)
o(l1)o(lz) ’

1 n
NCC(h, I2) = — > (2.36)

i=1

where [}, is the mean and o(I}) is the standard deviation. D, (S,) is set to minus
this cross correlation. A high correlation thus gives a low cost. The patch is
typically the 3 x 3 neighbourhood around the pixel.

2.2.4 Geometric model fitting

In this section the geometric model fitting problem will be presented. The
problem is to assign every pixel one of many possible hypotheses while keeping
track of global regularization. The method presented in this section is described
in greater details in [6]. The stereo depth estimation problem is a special case
of this problem where the hypotheses are the different disparities and we wish

18

to assign every pixel a disparity. The reader should have this case in mind when
reading the rest of the section, which might otherwise be a bit abstract. Another
possible application described in [6] is find homographies between image pairs.
It is well know that if 3D-points on a plane are projected onto two cameras, then
there is a homography between the projected points [5]. The goal is then to
find the best homography for each pixel and also taking account of smoothness
of the overall solution. This will segment the image into planar regions.

A problem we will consider later is to find planar regions in an RGB-D image. In
an RGB-D image we have both colors and depth of all the pixels, see Figure 2.6.
A typical approach to this and also the homography problem is to use RANSAC
and greedily select the sample that yields the most inliers [5]. The inlier pixels
are then considered solved and a new RANSAC iteration is performed with the
pixels that were not inliers in the first. While this approach in all the steps
finds the best hypothesis it can fail to give a globally coherent solution. The
proposed method in [6] is to minimize an energy function with labels being a set
of hypotheses and the data terms measure how well the pixel fits the hypotheses.

Suppose we have different hypotheses corresponding to all the labels and data
terms that assign a cost between a pixel and a hypothesis. We minimize the
following function

E(S) = Edata(S) + Esmoothness(S) + Enist(S) + [{S}|
=3 Du(S) + Y Ve85, S) = D1 6 m 6] + [{S}]. (237
l b

peP (p,9)€E

Note the similarity with (2.34). The last term denotes the number of hypotheses
that are used. In general there might be many hypotheses and we only want
the final solution to use a few of those.

This is solved using a-expansions as described in the previous sections. The
only new thing is the term |{S}| which count the number of hypotheses that
are assigned to at least one pixel. To implement this, introduce additional
variables z; for every label (hypothesis). Then the minimum is implemented in
the standard way, with P; denoting the pixels assigned label [,

{5} = min{L, |P}
l

(2.38)

=ZatZa Y wpt+d [tz) @],

pEP l#a pEP;

where all pairwise terms are submodular. Remember that x, = 1 means the
pixel is changed to a and x, = 0 means it keeps the old label S,,.

The new thing with geometric model fitting is the problem of generating hy-
potheses, and once we have those, setting the values for the data terms D, (S,).
In stereo depth estimation we have different disparities as hypotheses and the
cross correlation measure described in the previous section is used to calculate
the values of the data terms. The problem of finding planar regions in RGB-D
images will be described in greater detail now. Once we have the data terms we

19

Figure 2.6: An RGB-D image with the RGB content to the left, D content in the

middle and to the right the data term corresponding to the RANSAC proposal
with the most inliers.

A4

can solve the problem in exactly the same way as for stereo depth estimation.
Algorithm 4 outlines the procedure to find hypotheses and assign values to the
data terms. Essentially it is RANSAC where we keep the N best proposals. In
the last line a special hypothesis for outliers is added. This label should in the
final segmentation only be assigned to pixels that are outliers to all the N most
popular hypotheses. Note that for generating hypotheses, only the depth image
and not the color image is used and later for regularization, the color image is
used for Ej;st(S5).

A number of details remain for the algorithm. Let d; denote the depth of a
pixel. The 3D-points (X;,Y;,d;) are obtained from z;, y; and d; by assuming
that the camera matrix has the form

f 0 x
P=KI[I 0=|0 f w|[l 0], (2.39)
00 1

where the principal point (zg,yo) is supposed to be in the middle of the image
and the focal length f is set to a fixed value. Specifically,

X; X

T vy, fXi+dizo -t xo
yi| ~ P = | Yt diyo | ~ fd—y + Yo (2.40)
1 11 d; 1

is a system of equations where we can get X; and Y; by knowing all the other
variables. Also, in Algorithm 4 inliers are only counted for the largest connected
component.

20

Algorithm 4 Generate RGB-D image plane hypotheses

: I, = the best hypothesis for all pixels
Calculate (X,,Y},) from (zp, yp,d,) for all p € P
for ke {l,...} do
Select three random points {X;, Y, d;}3_;
Find the plane 7 through these points
Count the number of inlier, i.e. points {X,,Y,,d,},ep that are closer
than d,n to p.

7 Refit the plane using the inliers, obtaining 7’

8: Again select the inliers using the new plane 7’

9: for all inliers g do

10: if The current hypothesis k& has more inliers than I, then
11: I, =k

12: end if

13: end for

14: end for

15: Select the N most frequent values in I, denoted Hy, k € {1,...,N}.
16: for k € {1,...,N} do
17: for p e P do

18: D, (k) = distance from Hy, to (zp,yp, dp)
19: end for
20: end for

21: Set Dp(N + 1) = ydyip, for all p e P

21

Chapter 3

Results

3.1 Binary segmentation

We start by comparing OneCut, GrabCut and fast trust region (Ftr). We
vary the smoothness parameter and compare with a ground truth segmentation
and also compare the energies of the resulting segmentations obtained by the
different methods. The energy functions we consider are

GrabCut E(S) = hQ(S) - Z th (Sb) +)\Esmoothness(s)
b

OneCut E(S) = 2In2FEh;5t(S) + AEsmoothness(S) (3.1)

Ftr E(S) = hq(S) +4In2Fh;5t(S) + AEsmoothness(S)

The slope 21n2 is the average slope of —hq(S) between 0 and [2|/2, see Figure
2.3. For Ftr this was doubled since using 21n2 proved unreliable. Throughout
this experiment we let V(1,0) = V(0,1) = 1 and V(0,0) = V(1,1) = 0 for
the smoothness terms. Note that both the OneCut energy and Ftr energy are
approximations of the GrabCut energy. We compare the segmentation result
with a ground truth using the Jaccard score |[S NT|/|S UT| and we compare
the energy values evaluated for the GrabCut energy.

In Figures 3.1 and 3.2 are the results using two different images. The energies
obtained by Ftr are in most cases lower than the energies for GrabCut. For a
low value of A, the Ftr method gives a bias towards choosing roughly half of
the pixels. This is because hq(S) has a minimum at |S| = |2|/2, see Figure
2.3. Also, for OneCut large and small \ tends to only include the seeds, which
can be seen in the flower image, where the Jaccard score drops rapidly and the
segmentation only includes the foreground seeds.

22

EX(S)

Jaccard score

-10°
T T 515 T |
—eo— Grabcut
—a— Onecut
51F —— Ftr |
0.8 |- N
—e— Grabcut
—a— Onecut 5.05 |- .
—eo— Ftr
0.6 |- N
Lol (R | 57\\\\\\\ Lol
10° 10! 10° 10!
A A
A =6.314
Grabcut
OneCut
Ftr

Figure 3.1: Comparison of GrabCut, OneCut and fast trust region (Ftr). The
plots show a comparison of the Jaccard score and final energy (computed using
the GrabCut energy, note dependence of A) versus smoothness parameter A.
The left images shows the image to segment and an image with the ground
truth and seeds. 322 bins were used. The image is taken from the GrabCut
dataset [9].

23

Jaccard score E\(S)

-10°
1pF 7777 T T T T T T T T TT] T T T TT]
—e— Grabcut
08l | 4.3 |-~ Onecut |
’ —eo— Ftr
0.6 |—e— Grabcut |42 o
—a— Onecut
—e— Ftr
0.4+ 1 41 |
Lo Lo Lol Lol
10° 10! 10° 10!
A A
A =1.805 A =6.518
Ftr

Figure 3.2: Comparison of GrabCut, OneCut and fast trust region (Ftr). The
plots show a comparison of the Jaccard score and final energy (computed using
the GrabCut energy, note dependence of A) versus smoothness parameter A.
The left images shows the image to segment and an image with the ground
truth and seeds. 322 bins were used. The image is taken from the GrabCut
dataset [9].

24

Grabcut

OneCut

Figure 3.3: Top left: one of the images in the stereo pair. Top right: ground
truth. Bottom left: using E7. Bottom right: using Es.

3.2 Stereo depth estimation

Here we experiment with the added histogram term for stereo. We will compare
the two energies, see (2.34)

EI(S) = ﬂEdata(S) +)\Esmoothness (S) + Ehist(S)

3.2
EQ(S) = /’LEdata(S) +)\Esmoothness<s) ()

to see if the added histogram term improves the result. We use images from the
Middlebury dataset! and a quantitative comparison outlined in [10]. In Figures
3.3, 3.4, 3.5 and 3.6 are results using both F; and E5, with the same parameters,
1 =38and A = 3. Also, 163 bins were used. In Table 3.1 are quantitative results
showing that the results are improved by the histogram term.

3.3 Geometric model fitting

This section will contain a few qualitative result of plane fitting in RGB-D
images showing that it is possible. In Figure 3.7 are example segmentations.

Lhttp://vision.middlebury.edu/stereo

25

Figure 3.4: Top left: one of the images in the stereo pair. Top right: ground
truth. Bottom left: using F;. Bottom right: using Fs.

Figure 3.5: Top left: one of the images in the stereo pair. Top right: ground
truth. Bottom left: using F. Bottom right: using Es.

26

| L -l

Figure 3.6: Top left: one of the images in the stereo pair. Top right: ground
truth. Bottom left: using F7. Bottom right: using Es.

Rank | Average percent bad pixels
FE; | 138.6 12.2
FEy | 149.2 14.7
Tsukuba, figure 3.3
Nonoce | All | Disc
Ey 2.95 4.73 | 13.1
Fo 5.21 717 | 16.9
Venus, figure 3.4
Nonoce | All | Disc
Ey 7.74 9.25 | 18.4
Fo 12.5 14.0 | 24.3
Teddy, figure 3.5
Nonoce | All | Disc
Ey 114 20.2 | 27.8
Fo 12.6 21.6 | 26.2
Cones, figure 3.6
Nonoce | All | Disc
Ey 4.32 14.2 | 124
Fo 5.34 15.7 | 14.3

Table 3.1: Results for the different images compared to ground truth. Nonocc
means the image is only compared to the ground truth on non-occluded pixels.
All means all pixels are tested. Disc means that the errors at discontinuities
in the ground truth are evaluated. Pixels are considered bad if the disparity
is wrong with more than 1. The presented errors are the percentage of wrong
pixels in the considered regions. Rank is an aggregate measure of all the results.

27

Figure 3.7: Results of segmenting RGB-D images into planar regions.

28

Chapter 4

Conclusions

For the binary case, we have showed how to add a volume constraint to the
OneCut method using the Fast trust region method. The resulting energy was
lower with the volume constraint than for OneCut and GrabCut. The sensitivity
for parameter choice in OneCut was somewhat mitigated by adding a volume
constraint, see Figure 3.2. It should be kept in mind that OneCut is solved
by one graph cut and Fast trust region requires solving multiple graph cut
problems.

For the multi-class problem, a term similar to the OneCut term has been de-
scribed and we have showed how to optimize this term using a-expansions. Two
applications have been studied: stereo depth estimation and geometric model
fitting. For stereo the result on the Middlebury dataset was somewhat im-
proved by including the histogram term. It should be noted that we start with
the method described in [2] and there are many known improvements to this
method. Testing the histogram term for any of these methods has not been
done. For geometric model fitting the qualitative results showed that the walls
and major surfaces were found. However, it is unclear how the different terms
in the energy function contribute.

29

Bibliography

[1]

Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 26(9):1124—
1137, 2004.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy
minimization via graph cuts. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 23(11):1222-1239, 2001.

Lena Gorelick, Frank R Schmidt, and Yuri Boykov. Fast trust region for
segmentation. In Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 1714-1721. IEEE, 2013.

Lena Gorelick, Frank R Schmidt, Yuri Boykov, Andrew Delong, and Aaron
Ward. Segmentation with non-linear regional constraints via line-search
cuts. In Computer Vision—-ECCV 2012, pages 583-597. Springer, 2012.

Richard Hartley and Andrew Zisserman. Multiple view geometry in com-
puter vision. Cambridge university press, 2003.

Hossam Isack and Yuri Boykov. Energy-based geometric multi-model fit-
ting. International journal of computer vision, 97(2):123-147, 2012.

Vladimir Kolmogorov and Ramin Zabih. What energy functions can be
minimized via graph cuts? In Computer VisionECCYV 2002, pages 65-81.
Springer, 2002.

S.J.D. Prince. Computer Vision: Models Learning and Inference. Cam-
bridge University Press, 2012.

Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Inter-
active foreground extraction using iterated graph cuts. ACM Transactions
on Graphics (TOG), 23(3):309-314, 2004.

Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. International journal
of computer vision, 47(1-3):7-42, 2002.

Meng Tang, Lena Gorelick, Olga Veksler, and Yuri Boykov. Grabcut in one
cut. In Computer Vision (ICCV), 2013 IEEE International Conference on,
pages 1769-1776. IEEE, 2013.

30

Master’'s Theses in Mathematical Sciences 2015:E12
ISSN 1404-6342

LUTFMA-3272-2015

Mathematics
Centre for Mathematical Sciences
Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

