S THESIS | LUND UNIVERSITY 2015

I

MASTER

ions and

time screen space reflect

Real

1011S US

refract

ing sparse voxel octrees

ilsson

N

ip

il

F

Department of Computer Science

ing LTH
ISSN 1650-2884
LU-CS-EX 2015-09

mneering

Faculty of Eng

I

—?
Wil

Iy

i (]

[}
il

e—— ‘

il
/|
/|

I
._.._._____

if
il

m_

/

_
i

Real-time screen space reflections and
refractions using sparse voxel octrees

Filip Nilsson
adal09fni@student.lu.se

May 5, 2015

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Michael Doggett, michael.doggett@cs.lth.se

Examiner: Tomas Akenine-Moller, tomas .akenine-moller@cs.lth.se

mailto:ada09fni@student.lu.se
mailto:michael.doggett@cs.lth.se
mailto:tomas.akenine-moller@cs.lth.se

Abstract

This thesis explores the data structure known as sparse voxel octree and how
it can improve the performance of real-time ray tracing. While ray tracing is
an excellent way of producing realistic effects in computer graphics it is also
very computationally heavy. Its use in real-time applications such as games
and simulators is therefore limited since the hardware must be able to render
enough frames per second to satisfy the users. The purpose of an octree is to
reduce the amount of intersection tests each ray needs significantly. This thesis
will explain the many challenges when implementing and using an octree, and
also how to solve them. This includes both how to build the tree using various
tests and then also how to use it with a ray tracer to produce reflections and
refractions in real time.

Keywords: Sparse voxel octree, ray tracer, reflection, refraction

Acknowledgements

I would like to thank my supervisor Ass. Prof. Michael Doggett for all the support and
discussions we’ve had.

Contents

(I__Introduction 7
(1. Background| 7
(I.1.1 RayTracer 7
(L12 Octreel. 9
(13 Voxelsl. o 9
[L1.4 _Contours| 10

(.2 _Problem formulationl 10
(L3 Relatedworkl 10
(1.4 Implementation| o . 11
(4.1 Voxelizationl 11
(1.42 Octree building| 0. 13
(1.4.3 Raytracing] 15
(1.4.4 Additional implementation additions|. 16

(LS Evaluationl 18
(1.6 Visual comparisons| 19
[L7 Discussionl.o e 27
(L7Z1 Octreebuild timel 27
(1.7.2° Raytracer. 29

(L8 Conclusionsl 29

CONTENTS

Chapter 1

Introduction

In the real world photons from light sources bounce around on surfaces and if they hit
our eyes they tell us about their journey by giving us information about the colour of the
surfaces along the photons’ paths. This paints the picture of what we see, with shadows,
reflections, refractions and all the other effects we see each day. In offline rendering such
as for movies effects it’s common to simulate all these effects by using ray tracing. To
determine the colour of a pixel you send a ray through it and see what it hits in the scene.
Because we have models of how light rays work in the real world, if we implement them
for our own rays we can achieve realistic effects.

Ray tracing is very computationally demanding. A ray tracer in its most basic form
will for each frame trace one ray through each pixel, and then do an intersection test against
every primitive in the scene. These many calculations per frame makes it impossible to
use ray tracing in real time in any practical sense.

In this paper we will talk about two major optimizations, the Octree data structure
and voxelization, and a traversal algorithm for the rays that takes advantage of these two
implementations.

1.1 Background
1.1.1 Ray Tracer

To simulate photon rays it might sound more accurate to have them originate from light
sources and sending them out into the scene. There are two major problems with this idea.
The first is that the camera is a close to infinitely small point, so probability of a ray hitting
it is close to zero. The other is that every ray not hitting us is wasted. Since we already
will need several hundred thousand to million rays that hit the camera, this is not a feasible
solution. By instead using rays originating from the camera out towards the scene we in
a sense only trace those photon rays that hit us, from their destination backwards towards

7

1. INTRODUCTION

where they originated from. This way every ray traced is one that matters for the final
image. To detect what a ray intersects with we use geometry maths and the fact that a
ray is a line, and that all shapes in computer graphics consist of primitives, like triangles
and spheres. If we know where a line starts and in what direction it has, we can find if
it intersects a sphere, and where this intersection point is, by comparing the equations
for both the line and the sphere and calculating for what values they are equal. It is not
enough to find an intersection point though, as there might be other primitives that will
be intersected earlier and block the view. The goal with a ray trace is therefore to find the
closest object to the camera that the ray hits. If we know the closest intersection point, we
can let the colour of that point be the colour of the pixel the ray was traced through.

History of ray tracing

Ray tracing was first presented by Arthur Appel [[1] in 1968, in the form of ray casting.
His algorithm was to trace rays into the scene to find the colour of the first point hit. This
meant any shape or form could be rendered, not just planar ones.

Turner Whitted made the next big step in 1979 when he presented an extension of
Appel’s algorithm, today referred as Whitted Ray-Tracing [2, p. 23]. He proposed using
up to four rays per pixel instead of just one. The new ones were the shadow, reflection and
refraction rays, and the old one is called primary ray. When the primary ray hits a point the
shadow ray tests if there’s anything between the point and the light source, which means
the point is in a shadow. If the surface is reflective or refractive the respective new rays
continue into the scene and the colour of the surface they hit gets mixed with the colour
of the original hit point.

Whitted Ray-Tracing is still used today in many applications, but it has the downside
of only having hard shadows and perfect reflections and refractions. To achieve effects
such as motion blur, depth of field, fussy reflections and soft shadows we need to use
Distributed Ray Tracing [3]], first presented by Robert Cook in 1984. If we want to render
soft shadows we send several rays distributed around the light source direction from the
hit point and then use the average result to see how much shadow the point should receive.
The two biggest drawbacks of this technique are the computational heavy demands, as the
number of rays quickly grow, and the lack of indirect light.

Today most advanced ray-tracers tries to solve the Rendering Equation, first presented
by James Kajiya in 1986. The equation calculates not only the direct light received by
a point, but also the indirect. Since Kajiya first presented his equations there have been
many different versions of it. A common one is:

Lo(-x’ Wy, A’ t) = Le(-xa Wy, /1’ t) + \L‘! fr(-x’ Wi, Wy, /l’ t)Li(xa Wi, /la Z‘)((‘L)l : l’l)d(l.)l

A: wavelength of light.

t: time.

x: hit point.

w,: Outgoing light direction.

w;: Reverse direction of incoming light.

n: Normal of surface at point x.

L,: The total light emitting with wavelength A towards direction w, from point x at time z.

8

1.1 BACKGROUND

L,: Directly emitted light of wavelength A from point x, at time ¢, in direction w,.

Q: The hemisphere around x.

f,+ Bidirectional reflectance distribution function, calculating how light behaves when re-
flected on an opaque surface.

L;: Incoming light from w; to point x at time ¢ with wavelength A.

Since the equation has a continuous and not discrete integral component computers can
only approximate a solution. It also doesn’t take into account all visual phenomena of the
real world, which needs to be added to the implementation if wanted. Real-time computer
graphics is far behind offline rendering. Most ray tracers used are either ray casters or
Whitted ray tracers. Effects possible with later techniques, like blur, can still be approxi-
mated via post-processing methods.

1.1.2 Octree

Tree structures has been used in many fields to help navigate through big amounts of
data. We see it used in biology to give an easy overview of the evolutionary relationships
between different species, or on websites where each page often is found under a parent
category.

A tree starts with a root node at the top. This node in turn has a number of child nodes
depending on the tree type. These children are called siblings because they share the same
parent. Each node is located on a certain depth, which is the number of steps in the tree to
the root node. A node with no children is called a leaf.

Trees are very popular in computer science, where big arrays of data is a common part
of many programs and algorithms. The tree can either be an abstract data type or an actual
data type. If it is concrete data type it might be a class with different variables representing
the children and functions for finding information or adding new nodes. An abstract data
type will in most cases be a big array formatted in a way to make tree searches possible.
The tree used for this paper is abstract, so it will become clear how these work in later
sections.

An octree is a tree where each node has a maximum of eight children. If it is sparse
that means that a node can have fewer children, unlike a dense octree. This saves a lot of
space as otherwise the tree would have to store a lot of empty nodes. The downside of
using a sparse tree is that the formatting will be more complicated for searches. In a dense
octree you can calculate where a node is without a traversal algorithm because you know
for sure that each depth has 8%”"" nodes. Since a dense tree can be a lot bigger in memory
than a sparse tree they both have their uses.

1.1.3 Voxels

A voxel is a point in a regular grid. It can contain information about the volume it repre-
sents. Voxels are often used in real-time graphics to condense a lot of information in the
scene into a grid with few enough points to achieve effects otherwise not possible. In this
project a voxel replaces all the triangles in the cube space around its center point. It will
contain information about the average colour, normal and more of all the triangles.

1. INTRODUCTION

1.1.4 Contours

To improve the visual quality in the scene we have used contours to reduce the blockiness
just rendering the cube spaces of the voxels. Contours are polyhedrons which are guar-
anteed to encompass all the primitives in a voxel. They can have as many sides as the
creator wants, with more sides approximating the original models better but at the cost of
computational power. A contour is made up by several planes that can be chosen based on
different methods.

1.2 Problem formulation

As mentioned ray tracing is very popular in offline rendering to achieve realistic effects. In
real-time graphics a lot of creative methods have been invented to estimate some of these
effects in a cheaper way but with more unrealistic results. For reflections and refractions
a rasterizer can’t render what the camera can’t see, so normally a static texture has to be
used and sampled from to create the illusion of say reflections. As hardware improves
and developers tries to improve the graphic quality in games ray tracing have started being
more widely used in real-time too. Instead of completely abandoning rasterize rendering
most games using ray tracers use a hybrid renderer which only use rays to achieve some
effects that are still hard to emulate with the classic rendering.

In this paper we will explore how useful certain optimizations are for a complete ray
trace renderer. The first one is voxelization, which will turn our scene of several thousand
triangles into a fewer amount of voxels represented by contours. We want to compare the
original bunny made up by triangles with the new voxel bunny to see what the visual cost
of using voxels is. Voxelization will require several tests to determine which triangle goes
into which voxel. We will see how fast this can be done, as that information can be useful
for future research. To improve the performance we will use a sparse octree to store our
voxels. We will use a traversal algorithm for the octree and rays to try to minimize the
time it takes the system to find the first voxel a ray intersects with in the scene. We will
measure the build time of the octree based on different depths of the tree, as well as how
the triangle testing will be done.

Finally, we will use the octree, ray tracer and voxels to implement realistic reflections
and refractions, two visual effects hard to achieve in real-time without ray tracing, and
measure the frame rate in different situations and resolutions.

1.3 Related work

We used information from two papers to learn about voxelization. The first one was
"Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer" [4] by Cyril
Crassin and Simon Green which touches on a broad number of subjects relevant to voxels
and helped us get a basic understanding of a lot of them.
The second paper was "Hybrid Computational Voxelization Using the Graphics Pipeline"

[S] by Randall Rauwendaal and Mike Bailey. While it also contains a lot of general in-
formation about voxelizations, we mainly used this paper to learn more about the voxel-
triangle intersection tests.

10

1.4 IMPLEMENTATION

We’re using a sparse octree structure made by myself, but it uses ideas found in another
paper. This paper is "Efficient Sparse Voxel Octrees" [6] by Samuli Laine and Tero Karras.

My sparse octree traversal algorithm is an expansion on the algorithm presented in
"An Efficient Parametric Algorithm for Octree Traversal" [/] by J. Revelles et. al. This
algorithm has some important key differences from our expansion.

Previous work on reflections has been done by Morgan McGuire and Michael Mara
and is presented in the paper "Efficient GPU Screen-Space Ray Tracing" [8]].

Our work involves sparse octrees, but for related work made using the BVH structure
instead "Real-Time Multiply Recursive Reflections and Refractions using Hybrid Render-
ing" [9] by P. Ganestam and M. Doggett is recommended.

For further reading on the triangle-box test involving the Separating Axis Theorem see
"Fast 3D Triangle-Box Overlap Testing" [10] by T. Akenine-Moller.

1.4 Implementation

We used C++ to implement the majority of the code, including the voxelization and octree
building. The octree traversal algorithm and ray tracer were implemented in OpenGL
shaders using GLSL version 4.5. The buffer used for the octree and leaves data requires
GLSL version 4.3 or later.

1.4.1 Voxelization

We’ve used the Stanford Bunny [11] for this project, a 3D model consisting of 35 000
vertices used for 70 000 triangles. This model is good to test certain visual effects since
it has both thin, thick, smooth and uneven surfaces. The goal of the voxelization is to turn
the scene into a grid of voxels, and if a triangle intersects with a voxel its values are added
to that voxel. Since we will use a sparse octree there will only be a voxel in a grid slot if
there are any triangles intersecting with it.

To find out if a triangle is in a voxel we use several cube-triangle intersection tests.
The reason for using many tests is that they can be very cheap but with a higher chance for
false positives, or more expensive and accurate. We use the cheap tests to rule out most of
the triangles, and then use more expensive tests on the smaller amount of triangles left to
get the correct result. We’ll show the time saved doing this in the evaluation section.

The first test is a Axis-aligned bounding box (AABB) test. After we’ve parsed all the
vertex and triangle data from the model file we construct an AABB for each triangle and
store it in an array. This is done by finding the most negative and positive vertex for the
triangle. This makes the test very efficient as we only need to see if the AABB and voxel,
which is also axis-aligned, overlap in all three axes. If they do not we can rule out an
intersection. Because all voxels share one corner, which is the center coordinate of their
parent node, we can further improve the performance time of this test by testing a triangle
against several children at the same time. For the worst case scenario when a triangle is
in every child simultaneously we would normally need 3 tests per child to determine what
voxels the AABB overlaps with. In our implementation we would need 14 comparisons
for the same worst case scenario, which requires less than 60 % of the time. There’s a

11

1. INTRODUCTION

decent risk of a false positive with this test as the voxel can intersect the AABB but not
the triangle, so more tests are needed.

input : AABB vector with its coordinates (min,, min,, min,, max,, max,, max;)
Parent node’s center coordinates (parent,, parent,, parent;)
output: Updated triangle lists for every child

for every triangle in parent node do

if min, < parent, then

if min, < parent, then

if min, < parent, then Child8 « triangle ;
if max, > parent, then Child7 « triangle ;
end

if max, > parent, then

if min, < parent, then Child6 < triangle ;
if max, > parent, then Child5 < triangle ;
end

end

if max, > parent, then

if min, < parent, then

if min, < parent, then Child4 « triangle ;
if max, > parent, then Child3 « triangle ;
end

if max, > parent, then

if min, < parent, then Child2 « triangle ;
if max, > parent, then Childl « triangle ;
end

end

end
Algorithm 1: AABB - Voxels intersection test

The second test is a cube-plane intersection test, using the triangle’s plane. The plane
is also calculated before the testing begins. The three first coefficients are the same as the
normal’s values, which are calculated for several uses later. By taking the dot product of
the normal and one of the triangle’s vertices we get the fourth and last coefficient for the
plane.

To test the cube and the plane we first find the most negative and positive corners of
the cube. We then see if they’re on opposite sides of the plane by calculating the distance
between the plane and the points. If a point is below the plane the distance will be negative,
otherwise positive. If the two points are on opposite sides that means an intersection. This
test rules out most of the negatives, but there’s a small chance that it gets a false positive.

The third and final test uses the Separating Axis theorem. We project the vertex and
triangle on three 2D planes by either removing the x, y or z coordinate depending on what
plane, XY, YZ or ZX, we want to project to. We then create 3 perpendicular axes from the
3 edges of the triangle, and project the voxel and triangle corners on each axis. If they do
not overlap in at least one axis there exists a plane that can separate the voxel and triangle,
meaning they do not intersect. If they overlap for every axis, for every 2D projection, we

12

1.4 IMPLEMENTATION

input : Triangle’s plane coefficients (a, b, ¢, d)

Center coordinates of child node (center,, center,, center;)
Length from center coordinate to side, length

output: Intersection boolean

p < (center, — length, center, — length, center, — length)
n < (center, + length, centery + length, center, + length)

for every dimension i of normal do
‘ if normal; > 0 then swap p; and n;’s values;
end

if distance between plane and point p is negative then Intersection «— false;
else if distance between plane and point n is positive then
Intersection «— false;
else Intersection <« true;
Algorithm 2: Plane - Voxel intersection test

know for certain that the voxel and triangle intersect. Normally we would need to also look
for an overlap using the voxel’s edges as axes too, but we learned that they overlapped in
the AABB test already.

1.4.2 Octree building

We start the octree building by first creating the root node. To calculate it’s size we find
the smallest and biggest coordinate value in each axis by comparing every triangle vertex
and see which difference is largest. This will be the length of each side of the root node.
We then split the root into 8 equally big children and pass along a list containing all the
triangles in the scene. For each triangle in the list we test which of the eight child nodes
it intersects. For each child it intersects with we add it to that child’s triangle list. After
testing all triangles we split up those children with triangles in them in 8 new children,
which will have their respective list of triangles themselves.

This recursive method is done until we reach a specified depth of the tree. We then
create a leaf, which is an array containing the average normal, colour, reflectivity and
refractivity of all the triangles intersecting the node. This array is then inserted to a bigger
array containing all the leaves. We return an index of the leafs position in this big array to
its parent. After the parent has received a return value from all of its children it inserts an
array of 9 values into an octree array. The first value is a information byte with each bit
telling us if the i’th child exist. The 8th following values are pointers to the children. The
node then returns a pointer to itself to the parent node.

The order of the children will matter depending on what you intend to do with the tree.
For our tree to work with our traversal algorithm the first child must be the most positive
one, and the eight the most negative. The exact order can be seen in figure on page

13

1. INTRODUCTION

Figure 1.1: Child order

+Z

14

1.4 IMPLEMENTATION

input : Center coordinates of child node (center,, center,, center.)
Length from center coordinate to side, length
output: Intersection boolean

for Planep «— XY,YZ,ZX do

Vv, 1, < Project voxel corners and triangle vertices on plane.

for every edge e of triangle do

axis « ﬁ

for every corner i inv, do v, < v,; - axis ;
for every vertexiint, do t, < t, - axis ;
min, < min(t,)

max; «— max(t,)

min, «— min(v,)

max, «— max(v,)

if max, < min, or max, < min, then intersection < false;
end

end

intersection < true

Algorithm 3: Separating Axis Theorem intersection test

1.4.3 Ray tracing

Normally when a scene is rendered by the GPU the vertex shader first gets fed the data
about the vertices of the scene, primitives are created and if a fragment covers a primitive
it gets coloured by the fragment shader. This is known as rasterizer-based rendering. With
a ray tracer we instead find if we hit something by a series of intersection tests between
the ray and objects in the scene, so we do not need to create vertices for the primitives.
Instead we create a canvas to cover the screen. This is a quad made in the vertex shader
to exactly fit the screen. We also create a ray from the camera towards each corner of this
quad. A ray is represented as:

r(t) = (X0, Y01 Z0) + £ % (X4, Ya, 2a)
which can be written as:
r))=o+tx*d

The first vector is the origin point of the ray, in our case the camera coordinates. The
second vector is the direction, in our case the coordinates of one of the four corners. All
positive values of t give us a point along the ray line, and a negative value give us a point
behind the camera. In the fragment shader we use trilinear interpolation between the four
rays using the fragment’s position on the screen to get the ray direction for that specific
fragment. We can then start our octree traversal. The first step is to test if the ray hits the

15

1. INTRODUCTION

scene, which is done by calculating the distance to each plane of the root node’s faces.
This is done by solving the following equation for ¢ (here for the YZ planes):

0.x +1 % d.x = root.x + 1k

When subtracting the rootSize you get the distance to the most negative plane, otherwise
the most positive. If the distance to the negative plane is less than the positive for every
axis, and no distance to a positive face is below zero we know that the ray hits the root
node and scene. These 6 distances are kept and modified all the way through the traversal
until we hit a leaf. Every time we reach a node in the octree we check for 3 cases:

1. Is the node behind us? This is just as with the root node done by testing if any of
the most positive face distances are negative. The algorithm then goes back to the previ-
ous step and tests the next node in line.

2. If we’ve hit a voxel leaf. In our octree array indices to leafs are marked by being
negative, while indices to nodes are positive so that we easily can test for this case. In this
case we test if we hit a contour, which we will talk about in the next section. If there’s an
intersection we return the index to the voxel as well as the distance to the intersection point.

3. The node has children.

In the last case we have to find out in what order the algorithm should check the node’s
children. This is done by first calculating the distance to the middle point between the
negative and positive face of the node’s parent. We then have either the new negative or
positive face, depending on where in the parent the child is.

By comparing the new negative and positive face distances we know in what order the
children will be intersected by the ray. As an example, if the last negative face to be hit is
the XY-plane we know that the ray will first hit the bottom of the node.

Once we know what child to go to we see if the child exist by checking the information
byte previously mentioned in[I.4.2] If it does we continue by checking it. If that path does
not lead anywhere we check the next sibling node in line. Once all possibly intersected
siblings have been checked with no voxel intersection found we go back up one level in the
tree, checking which of the parent’s siblings are next in line. This way, we check all nodes
intersected by the ray in the octree. If the ray does not hit anything we use a samplerCube
to create a skybox. Otherwise we check if the voxel we’ve hit is recursive or reflective and
spawn a new ray by using the voxel’s normal and traverse through the octree with it. If the
voxel is not reflective or refractive we apply a simple Phong shading algorithm to give a
sense of depth and use the voxel’s colour to colour the fragment.

1.4.4 Additional implementation additions

Negative rays

The octree traversal algorithm only works for positive direction rays so that we can make
assumptions about the most negative and positive faces. To make this algorithm viable for

16

1.4 IMPLEMENTATION

every ray we must mirror the scene if a ray is negative in any axis. The ray will be remade
to positive with the following calculations (if x is the negative direction dimension):

0.x =2 xrootCenter.x — 0.x

dx =—-d.x

We do this for every negative direction dimension, and also create a byte for mirroring
the octree. This byte is initialized as 0. If the x-direction is negative we bitwise or it with
4. If y is negative we or it with 2, and for z with 1. This byte is later used to get the
mirrored child node in the octree by using xor with the child’s index.

Triangle testing

The octree building time is significantly better if we only use the final test on the final
depth level when creating the leaves. While we’ll carry some false positives further down
the tree than if we would use the SAT test on every level, not having to use SAT on the
true positives more than once per possible voxel saves a lot of time. There could be scenes
where this is not true, but we can not see any practical scenario with those types of scenes.
If we would be interested in what triangles are in non-leafs we would have to use SAT on
every level.

Another very big optimization in the testing is to before each SAT test check if any
of the triangle’s vertices are inside the voxel cube. If this is the case we’re guaranteed an
intersection, so we can skip the SAT test.

Contours

Without contours the octree would need to be very deep to not look blocky, as we would
simply render a voxel as the cube of space it takes up. While creating the leaf in the octree
we also create two planes, a positive and a negative one, that encompass all the triangles
in the voxel the leaf represents. The planes are represented by their d-coefficient, as the
rest of the coeflicients can be found in the normal which is already calculated and stored.
For each vertex of each triangle in the voxel we calculate the distance to the planes. If the
distance to the positive plane is positive we move that plane so that it contains the vertex.
If the distance to the negative plane is negative we move that plane to the vertex.

Once a ray has hit a non-empty leaf during ray tracing we test if we hit the polyhedron,
which would mean the ray should stop. The first test calculates the intersection point
between the ray and the voxel, and then calculates the distance between that point and
the two planes. If the point is between the two planes we’ve hit the contour. Otherwise
we calculate the distance to the intersection point between the ray and the first plane that
will be hit. We know which of the two planes it will be based on the previous distance
calculations, which both will be positive if the ray will hit the positive plane first, otherwise
the negative one. A final comparison to make sure the distance to the intersection point
is between the distance to the entry and exit point of the voxel acts as the final test for an
intersection.

17

1. INTRODUCTION

Buffers

To pass all the data about the leaves and octree to the shader we’re using Shader Storage
Buffer Objects (SSBO). This new buffer has been a core feature since GLSL 4.3. This
means that current MacOSX systems (up to Yosemite) can’t run it without using extensions
since they only support GLSL 4.1. The extensions needed are:

* ARB_shader_storagebuf fer_object

* ARB_program_inter face_query

Other options for passing big amounts of data are textures and Uniform Buffer Objects
(UBO). These have a lot lower size limits than an SSBO though. For comparison, an UBO
has a size limit of at least 16KB, while an SSBO at least has 16MB but more typically on
the order of the GPU memory [12]. For this project the difference meant that we could
only create an octree of depth 4 with an UBO. We could work around the limit by splitting
up our arrays to reach depth 5, but 6 would have been impossible. With SSBO there are
no issues at all.

1.5 Evaluation

To test our implementation we rendered a scene with the Stanford Bunny submerged into
a pool from 3 angles. We added code to measure the frame rate by for each frame adding
to a frame counter. Once the counter hits 100 we check how much time has passed and
can then calculate the frame rate. We think this keeps the timer’s performance hit close to
nothing.

We’ve tested both the octree build time and frame rate on level 1 to 8 in various ways.
For our octree we tested the best way to perform the three intersection tests by using the
tests either on every level or on the leaf level only. In the following table we’ve presented
the build time in seconds for each level:

1 2 3 4 5 6 7 8
AABB + Plane 3.071 | 1.216 | 1.185 | 1.249 | 1.647 | 3.335 | 17.35 | 54.17
AABB + Plane + SAT | 23.81 | 36.13 | 45.40 | 54.40 | 66.21 | 95.46 | 197.3 | 472.2
SAT (leaf level) 36.25 | 14.83 | 9.539 | 9.960 | 13.85 | 78.06 | 191.2 | 427.7
Plane + SAT (leaf level) | 34.60 | 14.13 | 8.870 | 9.593 | 14.52 | 80.69 | 204.7 | 493.1

Since SAT on leaf level only was the fastest we then used the extra test of checking if
any vertex was inside the cube meaning we could skip the SAT test if it was. The build
times we then got for every level is presented as:

1 2 3 B! 5 6 7 8
SAT (leaf level) | 1.813 | 1.038 | 0.859 | 1.394 | 2.216 | 11.71 | 61.2 | 256.6

Testing the frame rate is both difficult and not as telling as in many other projects. When
measuring rasterizer-based programs the framerate will mostly depend on what’s in front
of the camera only. With a ray tracer and octree the whole scene, even things not in front
of the camera, will have an effect. Only looking at a flat surface in one scene and the same
surface placed in another scene can give us different frame rates, even though the image

18

1.6 VISUAL COMPARISONS

rendered will look identical. With that said we’ve compared 3 different camera positions
in the scene. The first one is when the whole screen is filled with water (figure[1.2] p.[20).
This is in most cases the worst possible situation seen to performance, as every ray will hit
the water, requiring two more traversals for the reflection and refraction rays. The seconds
camera position makes every ray hit the bunny from the side with as many voxel normals
as possible pointing towards the camera, and will therefore require one traversal with no
bad cases per pixel (figure[1.3] p.[20). In the last test we’ve placed the camera along the
bunny’s inside, which is hollow (figure p.[2I). With contours enabled a very taxing
traversal situation is if a ray hits several non-empty leaves but doesn’t hit the planes within
them and have to continue in the tree. While writing and testing our code we discovered
this was the situation requiring the most node visits, so it could be a contender with the
water view for worst case scenario. We tested each situation on every level, with two dif-
ferent resolutions. In the following table we’ve presented the frame rate we got with an
AMD Radeon HD 6900 series card:

1 2 3 14 |5 6 |7 8
Water (640x480) - - 25|17 |13 95|74 |6
Water (1920x1200) | - - 4 272015121 1.18
Bunny (640x480) 105 | 105 | 65|60 | 50 |45 |40 |35
Bunny (1920x1200) |18 |17 |14 |11 |98 |79 |72 |6.0
Parallel (640x480) - - 52147 |32 |23 |15 10
Parallel (1920x1200) | - - 1118 |55|38)261 |19

On level 1 and 2 it was not possible to get a full view of water and the bunny was no
longer hollow, so tests could not be done.

As explained in the buffer implementation section we first used UBOs instead of SSBOs.
When reading data from these arrays UBOs should be slightly faster or at least not slower
[12]], but no performance change was detected when comparing the two buffers with an
octree with depth 5. This could be because the amount of accesses are not enough on that
depth to make a difference. Since the UBO couldn’t handle any deeper trees we do not
think it’s worth investigating though.

In the contour image we can one of the limitations of our traversal algorithm. Because
some rays have to pass a very large amount of nodes they hit an iteration cap specified in
the code. We chose to have this limit so that a few pixels alone wouldn’t lower the frame
rate. We left it in to better showcase the problem, but one could instead render the last
voxel the ray hits before the cap as a cube instead, or increase the cap if the lower frame
rate is acceptable.

1.6 Visual comparisons

Using a rasterizer to render the scene gives us an rendition of the bunny (fig[I.5), letting
us compare the voxelized bunny to a perfectly correct one.

In figures [I.6]to[I.10] we can see the difference between rendering contours and voxel
cubes on different levels.

From comparing these images we can see that the difference contours make is more

19

1. INTRODUCTION

Figure 1.2: Water image

Figure 1.3: Bunny image

20

1.6 VISUAL COMPARISONS

Figure 1.4: Contour image

Figure 1.5: Rasterized bunny

21

1. INTRODUCTION

Figure 1.6: Depth 4 octree

22

1.6 VISUAL COMPARISONS

Figure 1.7: Depth 5 octree

23

1. INTRODUCTION

Figure 1.8: Depth 6 octree

24

1.6 VISUAL COMPARISONS

Figure 1.9: Depth 7 octree

25

1. INTRODUCTION

Figure 1.10: Depth 8 octree

26

1.7 DiscussioN

noticeable on lower levels, and that on depth 8 the difference is mostly in the actual con-
tours of the bunny. If we would use even deeper trees a possible optimization could be to
only render contours if the angle between the ray direction and the plane is below a certain
threshold.

We can also see how our reflections and refractions behave in figure[I.TT] We’ve used
Fresnel’s equations to mix the contribution the reflection and refraction makes for the
colour of the water. This makes the water look more realistic, as it reflects more if we look
along the surface instead of directly down through it. We can also see the refraction in
full effect as the pool looks to be shallower further away, even though the depth is really
unchanged.

1.7 Discussion

1.7.1 Octree build time

As we can see in the evaluation section the optimal way to perform the intersection tests
is to save the SAT test for the final level, while the plane-voxel test should be done on
each level. This is because the AABB test is quite bad in accuracy and lets a lot of false
positives through. The plane test on the other hand is still very cheap, as can be seen in the
case where we completely skipped the SAT test all together, but still has a high accuracy.
The false positives it lets through will be mostly noticeable in sharp surfaces. In our scene
the major visual difference between skipping the SAT test or not can be seen in the ears,
otherwise the smooth bunny still looks very good.

Since the octree is built before the renderer starts build time is not as important as the
ray tracer performance, so there’s no question in our minds that all three tests should be
used. If we did not use contours but instead just rendered cubes, the difference between
using the SAT test and not can hardly be seen in the rendered images. Since the octree is
static it also only need to be computed once, and can then be stored as a string which can
be parsed the next time you need the tree.

At the end of the project while trying out other models we noticed how much the build
time would increase if the model had a very high resolution. To try to counter this issue
we implemented the additional test on the leaf level in which we see if any vertex is in
the voxel. This will make the voxelization skip the SAT test. For our Bunny model the
reduction in build time was massive, staying around 90% for the 6 first depths and then
quickly dropping to 40% for level 8. The true positive cases this extra test will miss are
the ones where all vertices are outside of the voxel, but it will still be somewhere between
them. Since this case is more rare in more detailed models, we estimate that this test will
give better results for those.

There’s not many things we think we can improve with the octree builder. Since the
plane test is very close to the SAT test in terms of accuracy we don’t think any tests between
them would improve the build time. If we had to continue working on the octree we would
spend more time trying to find a faster test than SAT that still had perfect accuracy, since
that’s the big time sink.

27

1. INTRODUCTION

Figure 1.11: Reflections and refractions

28

1.8 CONCLUSIONS

1.7.2 Ray tracer

In this implementation we’ve used a whitted ray tracer without shadow rays. Adding
shadow rays would half the frame rate in most situation as each ray would require two
traversals instead of one. Adding distributed rays to achieve soft shadows, blur and other
effects would be to costly and is better left to post-processing algorithms. As can be seen in
the evaluation section the frame rate for a solely ray tracing renderer is highly dependant
on the effects you choose to use. Contours were very cheap except in the parallel case,
while reflections and refractions can be very heavy. Beyond requiring at least an extra
traversal those two features also need to calculate all other effects one more time, like the
contours used in this project.

The frame rate was not enough for real time in some of the cases, but there are a lot of
improvements that can be done to vastly improve the performance. Many games utilizing
ray tracing today only use it for some parts of the screen, and let a rasterizer render the rest
which saves a lot of time. There are also many other optimizations we would have wanted
to try out. The rays are all independent of each other, but there are techniques which take
advantage of the fact that nearby rays will almost take the same path, which could have
the potential to vastly increase the performance [13]. We would also have liked to find
a better way to implement reflections and refractions, since as mentioned they are very
computationally heavy and mostly based on physics and with little optimizations done to
take benefit of the octree.

1.8 Conclusions

From the work and research we’ve done we think ray tracing in real time is definitely
possible, it just comes with a lot of ifs. The graphic card we used for testing the code is
close to 5 years old, so with a modern card from the last year the performance would be a
lot better. While hard to tell without specific tests we’d estimate that a Radeon R9 280X
for example could double the frame rate, based on 3DMark benchmark tests. Overall
we’re pleased with the results from this project. The octree performed very well and is
shown to work well with ray tracing, even on an GPU. We believe it can be one of the
best optimizations possible for performance. Combined with the voxelizations it’s very
flexible, as only memory limits how much information the voxels can hold. The contour
for example is something we added very late in the project and it only required additions to
the code, meaning we didn’t have to rewrite anything. The voxelization is shown to produce
visually pleasing results, allowing the use of the octree without diminish the quality of the
image.

29

1. INTRODUCTION

30

Bibliography

[1]

(2]

(4]

[5]

[6]

Arthur Appel,

Some techniques for shading machine renderings of solids, IBM Research Center. In:
AFIPS ’68 (Spring), Proceedings of the April 30-May 2, 1968, spring joint computer
conference, p. 37-45. ACM, New York (1968)

Borko Furht,
Handbook of Multimedia for Digital Entertainment and Arts, Springer Science &
Business Media, 2010.

Robert L. Cook, Thomas Porter, Loren Carpenter
Distributed Ray Tracing, Computer Division, Lucasfilm Ltd. In: SIGGRAPH ’84,
Proceedings of the 11th annual conference on Computer graphics and interactive
techniques, p. 137-145. ACM, New York (1984).

Cyril Crassin, Simon Green
Octree-Based Sparse Voxelization Using the GPU Hardware Rasterizer, Nvidia Cor-
poration. In: OpenGL Insights. CRC Press (2012).

Randall Rauwendaal, Mike Bailey
Hybrid Computational Voxelization Using the Graphics Pipeline, Oregon State Uni-
versity. In: Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 1 (2013).

Samuli Laine, Tero Karras

Efficient Sparse Voxel Octrees, NVIDIA Research. In: 13D 10 Proceedings of the
2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, p. 55-
63. ACM, New York (2010).

J. Revelles, C. Urena, M. Lastra
An Efficient Parametric Algorithm for Octree Traversal, University of Granada,
Spain. In: WSCG 2000 Conference Proceedings (2000).

Morgan McGuire, Michael Mara
Efficient GPU Screen-Space Ray Tracing, Williams College. In: Journal of Computer
Graphics Techniques (JCGT), vol. 3, no. 4 (2014).

31

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

Per Ganestam, Michael Doggett
Real-time multiply recursive reflections and refractions using hybrid rendering, Lund
University. In: The Visual Computer (2014).

Tomas Akenine-Moller

Fast 3D Triangle-Box Overlap Testing, Chalmers University of Technology. In: Jour-
nal of Graphics Tools, vol. 6, no. 1, p. 29-33. A. K. Peters, Ltd. Natick, MA, USA
(2001).

Stanford University Computer Graphics Laboratory
Stanford Bunny, Available at: https://graphics.stanford.edu/data/
3Dscanrep/. [Accessed 13 April 15].

Khronos Group
Shader Storage Buffer Object, Available at: https://www.opengl.org/
wiki/Shader_Storage_Buffer_Objectl [Accessed 13 April 15].

Ryan Overbeck, Ravi Ramamoorthi, William R. Mark

Large Ray Packets for Real-time Whitted Ray Tracing, Columbia University, Intel
Corporation, University of Texas at Austin, 2008. In: Symposium on Interactive Ray
Tracing 2008, p. 41-48. IEEE (2008).

32

https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/
https://www.opengl.org/wiki/Shader_Storage_Buffer_Object
https://www.opengl.org/wiki/Shader_Storage_Buffer_Object

INSTITUTIONEN FOR DATAVETENSKAP | LUNDS TEKNISKA HOGSKOLA | PRESENTATIONSDAG 2015-04-29

EXAMENSARBETE Real-time screen space reflections and refractions using sparse voxel octrees
STUDENT Filip Nilsson

HANDLEDARE Michael Doggett (LTH)

EXAMINATOR Tomas Akenine-Moller (LTH)

Reflections and refractions using a real-time ray tracer

POPULARVETENSKAPLIG SAMMANFATTNING Filip Nilsson

To reflect and refract objects in a correct way ray tracing has to be used. This is very com-
putationally demanding in real-time applications. However, by combining three different

methods the performance can vastly improve.

What we see as reflections and refractions in games
and other real-time applications is in most cases just an
image being sampled to create an illusion of the effect.
When rendering a frame on the screen only objects in
front of the camera is computed, so it’s very hard to
reflect the rest of the scene. To do this we have to use
ray tracing instead. This technique works by tracing rays
through the camera into different parts of the scene.
These rays can be compared to photon rays, but ins-
tead of coming from the scene we trace them backwards
from the camera. We can then emulate real-world ef-
fects realistically by for example letting them bounce
to get reflections. Ray tracing is very computationally
demanding, as a single movie frame can take days to
render. In real-time applications we normally want at
least 24 frames per second to get smooth motions, so a
lot of optimizations have to be made.

The octree structure
To see what a ray hits we perform intersection tests with
objects in the scene. In the most basic form of ray tra-
cing we test a ray against every triangle in the scene and
see which one we hit first. This is unfeasible as a scene
normally have thousands to millions triangles. We ins-
tead use an octree, which is a tree structure consisting
of nodes containing voxels. A voxel is a cube that takes
up space in the scene. The first node
in the tree is the root node, which
contains the whole scene. This node
has 8 children, each taking up 1/8 of
its space. The children in turn have
their own 8 children, and so it con-
tinues until the tree has reached a
certain depth. The tree is also sparse,
meaning that if a voxel doesn’t con-

The water both reflects and refracts the scene.

tain any triangles it will not be created, saving space.

The voxelization process

To find out which triangles belong to which voxels three
tests are performed. They vary in performance and ac-
curacy, where they can be faster but might include tri-
angles that are not in the voxel, or more expensive and
accurate. The cheap tests are useful for ruling out the
vast majority of triangles, leaving a smaller amount for
the expensive ones.

On the lowest depth the triangles in a voxel are con-
densed into a polyhedron based on the average shapes,
colours and other attributes of the triangles. This is all
done once during the preparation part of the program.

The traversal algorithm

Once we start rendering frames we use an algorithm
made for this specific type of octree to quickly find what
voxel will be hit. This is done by first testing which of
the 8 children of the root node that are intersected by
the ray. In order of intersection their children are then
tested in a similar way until we reach a node on the max
depth of the tree that is intersected, and we render the
polyhedron of that voxel.

This reduces the amount of intersection tests to a
fraction of the total number of triangles, increasing ray
tracing performance enough for
real-time. Using reflections and re-
fractions decrease the performan-
ce, but are visually correct. This
work shows the use of real-time
ray tracing to create more realistic
reflections and refractions than ty-
pical rasterization algorithms can
achieve.

	2015-09 Framsida
	Tom sida
	2015-09 Rapport
	2015-09 Rapport
	Introduction
	Background
	Ray Tracer
	Octree
	Voxels
	Contours

	Problem formulation
	Related work
	Implementation
	Voxelization
	Octree building
	Ray tracing
	Additional implementation additions

	Evaluation
	Visual comparisons
	Discussion
	Octree build time
	Ray tracer

	Conclusions

	Tom sida
	2015-09 Popvet

