
Ahmed Hulo & Johnny To

Developing Real Time Tracking of
User Behavior, with Google Analytics
for Mobile Phone Devices

Master's Thesis

Department of Design Sciences
Lund University

EAT 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289945141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Sony Mobile has a quite large internal user group with the purpose of investigating
the usability of their mobile devices. The Telephony Domain was using amongst
other techniques usability testing to evaluate the usability of their products. The
performed conventional usability testing has its limitations e.g. the controlled
test environment cannot fully represent real life setting and it’s very expensive
in terms of time and resources. This ultimately results in less test persons and
potentially biased results. These drawbacks cannot be overlooked when it comes to
determining the next software release influencing millions of mobile device users.

The purpose of this thesis work was to accommodate this problem by examin-
ing real time tracking of user behavior and interaction with mobile devices. By uti-
lizing Google Analytics in the Telephony Domain, we could autonomously gather
large quantity of real user behavior data from a natural environment. The inves-
tigation resulted in the conclusion that Google Analytics & Google Tag Manager
solely weren’t sufficient for our purposes in aiding information for user behavior.

To account for this, a tool were developed that were to be called Usage Tracker.
Usage Tracker works as a complement to Google Analytics & Google Tag Manager
by providing further functionality e.g. finding out how many users are using a
feature and how these events are distributed over the users. The resulting statistics
from Usage Tracker is also presented in a more intuitive way for easy interpretation.
Furthermore, a direct consequence of using Usage Tracker is that less data traffic
will be required.

i

ii

Preface

We want to start off by thanking Sony Mobile, Pär Olsson and Georgios Persson for
giving us the opportunity to carry out our thesis work at the Telephony Domain
at Sony Mobile in Lund, Sweden. We also want to thank our supervisor from
the University Joakim Eriksson, for his advice and feedback throughout the work.
Additionally we want to show gratitude to our friend and mentor Mohammad
Rahimpur who always lent us support whenever we needed it.

Finally yet importantly we want to thank our families and friends for their
support and patience.

iii

iv

Acronyms

GA - Google Analytics.

GTM - Google Tag Manager.

App - Application.

API - Application Programming Interface.

SDK - Software development kit.

GTM container - Queries data to Google tag manager.

Custom Dimension - Custom data sent to GA, which then can be filtered
on in the GA web interface.

Frequency - A defined custom dimension for how often a MainFeature will
report statistics to Google Analytics.

Sample rate - Percentage of total phone instances to sample from.

OTA - Over the air.

GA web interface - Google Analytics web interface.

Probe - Usage Tracker code used to measure data.

v

vi

Table of Contents

1 Introduction 1
1.1 Aims . 1
1.2 Method . 1
1.3 Limitations . 2

2 Theory & Background 3
2.1 Usability Testing . 3
2.2 Benefits of Having Frequent Usability Testing 3
2.3 Methods of Usability Testing . 4
2.4 Internal Usability Testing in Sony Mobile 5
2.5 Google Analytics . 6
2.6 Google Tag Manager . 7
2.7 Usability Testing with Google Analytics 8
2.8 Elicitation . 8

3 Prestudy 11
3.1 Project Plan . 11
3.2 Presentation of the Project Plan . 11
3.3 Elicitation of Google Analytics . 12
3.4 Prototyping . 12
3.5 Looking at Similar Applications . 13
3.6 Meetings . 13
3.7 How to Integrate Our Modifications 13

4 Usage Tracker 17
4.1 Task List . 17
4.2 What to Utilize of Google Analytics 19
4.3 Why We Need a Complementary Tool 19
4.4 Development of Usage Tracker . 20

5 Presentation of Data 29
5.1 How Event Reports Are Normally Presented in GA 29
5.2 How We Are Presenting Event Reports 30
5.3 Custom Reports . 32

vii

5.4 Different Views for the Statistics . 34

6 The Telephony Code 37
6.1 Work Flow for Inserting a Google Analytics Probe 37
6.2 Sony Mobile Internal Testing . 38
6.3 Improvements . 39

7 Conclusions & Discussion 43
7.1 The Thesis Work . 43
7.2 Future Work . 44

References 45

viii

List of Figures

2.1 Overview of the Google Analytics Platform 7

4.1 UML Diagram . 26

5.1 Event Tracking . 29
5.2 List of Main Features . 30
5.3 List of Sub Features for the Main Feature Call Settings 30
5.4 List Presenting the Number of Times a Specific Content Has Been

Activated . 31
5.5 List Presenting the Values for a Specific Checkbox 31
5.6 List Presenting the Values for Equalizer 31
5.7 First Step in the Custom Report, Select a Country 32
5.8 Second Step in the Custom Dimension, Select an Operator 32
5.9 Third Step in the Custom Report, Select a Main Feature 33
5.10 Fourth Step in the Custom Report, Select a Frequency 33
5.11 Last Step in the Custom Report, Select a Sub Feature 33
5.12 Different Views of the Data . 34
5.13 Table View of the Data . 34
5.14 Percentage View of the Data . 35
5.15 Performance View of the Data . 35
5.16 Comparison View of the Data . 35
5.17 Pivot View of the Data . 36

ix

x

List of Tables

4.1 Task List . 18

6.1 Example of How Sub Features for a Specific Main Feature Are Grouped
in the Current Solution . 40

6.2 Example of How Counter Values May Look Like in the Current Solution 40
6.3 List of All Main Features Is Consistent from the Old to New Solution 40
6.4 Example of How Sub Features Are Presented in the New Design . . . 41
6.5 Example of How the Counter Objects Values Will Be Presented in the

New Design . 41

xi

xii

Chapter 1
Introduction

This work was carried out in the Telephony Department at Sony Mobile in Lund,
Sweden. The Telephony department is responsible for amongst other things, the
Phone application and "Call settings" in Sony Mobile phones. These applications
are subjects of constant updating resulting in frequent new additions of features
and modifications of features. They have now become very populated and to
determine if a feature is still relevant or has become redundant, Sony Mobile uses
e.g. usability testing.

The way usability testing is done today in Sony Mobile has its advantages but
also its limitations. Our thesis work will be to investigate and develop a way to
utilize Google Analytics as a complement to today’s usability testing.

1.1 Aims

The main investigation was about how to utilize Google Analytics (GA) & and
Google Tag Manager (GTM) to aid in the following questions below, and how to
present the data in GA web interface for easy interpretation. The investigation
concerned mainly about functionality governed by the Telephony Domain and
therefore the resulted product is adapted for Telephony.

After the investigation, we developed the required tool and implemented a
selection of probes. The main functionality of the tool is to help answer questions
like; is a certain feature used in the intended way, Is a feature even used and why
isn’t a feature used?

1.2 Method

The work was divided into the following phases:

1. Prestudy

2. Elicitation

3. Investigate which functionalities of GA & GTM to utilize

4. Investigate how to present the data in GA

5. Development

1

2 Introduction

6. Test

7. Evaluation

Since we didn’t had much experience of the upcoming work we kicked off with
a prestudy phase were we got accustomed to the tools we were going to use and
tried to get an overview of the Telephony code. An effective way to broaden our
knowledge of GA & GTM is by elicitation. This was done by looking at current
applications that utilizes GA and by interviewing people with experience of GA.

After the initial elicitation of GA & GTM, we investigated how to best make
use of it for our purposes. E.g. what functionality of GA should be utilized and
how to present the resulting data.

In the development phase, the requirements for the tool had been elicitated and
this phase was about realizing the product. The testing was done in parallel with
the development and at later stages evaluation of the product was also included.

1.3 Limitations

The project were affected by the following limitations:

• Time constraints

• Avoid disturbing the bring up

• Limit on data traffic we’re allowed to send

Time Constraints
The thesis work is time limited and when carrying out work for a big company
where quality is of uttermost importance and where changes has to undergo sev-
eral phases before getting approved, it’s a necessity to plan with good marginals.

Avoid disturbing the Bring Up
To avoid obstructing the Bring Up we’ll be limiting our modifications to packages
that are less sensitive to Android upgrades.

Limitation on how much data traffic we’re allowed to send
The data sent to GA will be sent over the network. Since more than one appli-
cation can be utilizing GA simultaneously and GA doesn’t take in consideration
what type of data connection that is currently being used, a limit on how much
data traffic that can be sent each month has been set.

Chapter 2
Theory & Background

2.1 Usability Testing

With an increase of consumer electronics in our everyday life and letting them
populate our homes, technology has indeed become a large part of our lives. The
advancement in technology is occurring in a faster pace and as consumers, we are
expected to be able to follow this fast trend. In addition consumer products are
also getting more advanced and the usage of the products tend to follow the same
path resulting in loss of many potential customers who aren’t able to keep up.

To reach out to all possible customers a well thought user interface with a
well thought user interactive experience is crucial for a product especially when
competitors’ products are just one click away.

The usability of a product has therefore a big impact on our decision when
buying a product from a certain brand over another. Let alone mainstream con-
sumer products usually have more than one manufacturer and their end products
are often quite similar in functionality. This makes the subjective preference of
the customers more important than their objective preference and it’s usually the
deciding factor for their decision. The most obvious way of implementing this in
the development process is by having frequent usability tests throughout the whole
development process.

ISO 9241-11 Usability is defined as the ”Extent to which a product can be used
by specified users to achieve specified goals with effectiveness, efficiency and sat-
isfaction in a specified context of use” [4].

2.2 Benefits of Having Frequent Usability Testing

The main goals with usability testing are to identify any usability problems and to
gather quantitative and qualitative performance data to determine how satisfied
the test subjects are with the product.

Users are usually not sure about their preferences for a product and are bad
at expressing into words what they want for a product. Let alone manufacturers
are often underestimating the difficulties in their product by regarding them as
common sense.

3

4 Theory & Background

By having usability tests we can analyze users’ behaviors and better under-
stand the difficulties of our products and improve the flaws. The following are
consequences from having regular usability testing [5]:

• The products becomes easier to use and more useful to the target audience.

• Minimizes risk and cost by early determining design problems and eliminat-
ing them.

• Increase in customer satisfaction will result in a decrease of money spent on
customer support.

• Establishes the expectation that the company produces high quality prod-
ucts that are also easy to use.

• An increase in sales and happy customers results in a higher probability of
repeat sales.

2.3 Methods of Usability Testing

Usability testing is a term usually used when referring to techniques used to eval-
uate a product or system were people from the targeted audience are involved.
Usability is used to describe how easy a user can use an object to fulfill some
tasks. The usability of an object can be tested in many different ways, some of
them are described below [8].

2.3.1 Expert Reviews

A person who is an expert in the field of interaction design evaluates the product
and provides some feedback. This is very important since this expert’s opinions
are supported by theories and studies done in the field [5].

2.3.2 Prototyping

A prototype can easily be constructed and tested for its functionality, performance
and output. New functionality and ideas can be demonstrated with the prototype
and early user feedback of the product can be elicitated. A big advantage with
prototyping is that it decreases time, money and risks for the project, since short-
comings in the design can be early detected and these are cheaper to fix the earlier
they are discovered [9].

2.3.3 Observations

Users aren’t always sure about what they are doing and why they are doing it,
therefore if asked there’s a big risk that the answer will be wrong. Rather their
behavior can be analyzed while performing some given tasks. The session can
be recorded and the tasks can be followed up with a briefing to clear out any
uncertainties. Observations is an effective way to reveal common flaws but unfor-
tunately not as effective when it comes to unpredicted critical problems since it’s
unlikely they will occur during an observation [9].

Theory & Background 5

2.4 Internal Usability Testing in Sony Mobile

The internal usability testing performed in Sony Mobile are of various types, these
are among others observation, prototyping and expert review.

2.4.1 How it can be performed

One of the types that are performed is observation and works in the way where
we have a few test persons in a controlled environment such as a lab. These test
persons are then put into different real life scenarios where they are to perform
some given tasks. While carrying out the tasks they are encouraged to think out
aloud, for easier analysis of their actions.

In this way the perception of the product from the test person’s point of view
can easily be analyzed. The test session is also recorded for further analysis. After
finishing the tests, a debriefing with the test leader together with the test person
will be held to discuss the test and the product.

Different user profiles are used depending on if it’s a basic feature or a more
advanced one. The screening process is to find the best representative users for the
product. This selection is of critical stage, if unrepresentative test persons would
be used the results would be of bad value no matter how much effort is put into
the tests [5][6].

2.4.2 Advantages

Greatest advantage of usability testing of the type observation is that if a test
leader have any questions regarding their behavior they can directly inquire the
test person about it and receive their subjective opinion. A debriefing can be held
after conducting the tests were questions about their actions can be discussed
e.g. motive for doing things the way they did and any uncertainties that they
felt during the tests. The test person will also have a chance to talk about their
user experience in detail and the test leader can have their opinion on alternative
prototypes. These are all valuable subjective information to be taken into account
in the improvement of the design of the product [9].

2.4.3 Limitations

No matter how much effort we put into these type of usability testing the result
will never be good enough to give a sure conclusion. Reasons are listed below [5].

• The artificial environment where the tests are being held is not a perfect
simulation of real life usage of the product.

• Test subjects can’t represent all of the users.

• Unable to simulate all possible outcomes therefore it’s not possible to tell
that the product will always work no matter situation.

• In some cases usability tests may not be the most optimal way of testing
due to e.g. time, cost and availability.

6 Theory & Background

The greatest disadvantage of utilizing observing as an usability method is that
it’s very expensive. It requires a lot of resources and time that can result in a
small number of test persons that may not be enough to represent the users. To
receive feedback as accurate as possible the test person must be in an everyday en-
vironment while performing the tests. Real life usage can’t be simulated perfectly,
instead the test person is given an scenario resembling real life where the product
would be used. Even the knowledge of the test person that they’re performing a
test on has an impact on their performance, due to that the state of concentration
of the test persons will usually be much higher than normal.

The test persons are encouraged to try to finish the tasks by themselves but if
they are to be stuck and unable to proceed they are allowed to ask the test leader
for help or hints. Test persons know about this but often asks for help uncon-
sciously let alone sometimes even test leaders give hints unconsciously because it’s
of human behavior to help. In the end, the results from these tests may not even
reflect on real life usage. This is one of the reasons that makes GA a very suit-
able candidate as a complement because it doesn’t suffer from the same limitations.

2.5 Google Analytics

GA is an API created by Google and it can be integrated in websites or mobile
applications. I.e. in the case of using it together with an mobile application it can
help with answering some questions about user behavior e.g. is a feature being
used, from where is it used and what crashes were thrown when the application
crashed [1].

The platform is divided into four components, these are:

• Collection- collects user interaction data from e.g. websites or android
applications. It can i.e. calculate how many times a button has been pressed
in total by all the users.

• Configuration- Provides access to the configuration data. To manage
accounts, permissions, filters etc.

• Processing- The data from the user interaction is processed together with
the configuration data.

• Reporting- Provides access to all the processed data.

In Figure 2.1 is a diagram made by Google that describes the relationship between
the components and the APIs[3].

Theory & Background 7

Figure 2.1: Overview of the Google Analytics Platform

Google Analytics is a very capable tool with the capacity to measure heaps of
data through user interaction and then generate detailed statistics in e.g. a web
interface. For our purpose, which is to track user patterns for improving the user
experience, we’ll use GA for Android V3, which is a free API provided by Google.
GA for android V3 biggest advantage over previous versions is that it can be used
together with GTM. GTM for android is a tool capable of modifying variables
in the application without the need to access the source code of the application.
Values implemented with GTM can easily be modified through a web interface,
which enables quick changes over the air. To enable GA and GTM for a certain
application the common library for GA & GTM has to be imported to the source
code and additions of code has to be made [2].

2.6 Google Tag Manager

A big problem with mobile applications is that it’s final after release. If there’s
some parameters or something that needs to be modified a new version of the
application has to be created for people to download or upgrade. I.e. if a mistake
would be discovered in the source code, a decimal may be missing or something.
A mistake of this caliber would be easily tend to but to release this new version
with the bug fix, chances are that it will have to go through all the developing
phases again to secure approval from the company before it can be shipped out to
the end users.

This is rather a waste of resources and even when the new version reaches the
end users, they may not comply with upgrading to this version simply because
it doesn’t include any new cool features. As a result various different versions
of the application may be out in the field and in the end it may be difficult to
know which version is actually most commonly used. With the use of GTM a
wide variety of parameters can be modified OTA in the GTM website, the new

8 Theory & Background

modified parameters will then be downloaded automatically to the application of
the end users.

GTM works in synergy with GA by making it possible to push configuration
values to GA via the website. Which means that GA can be remotely controlled
OTA and the end users will get the latest version available in less than 12 hours
since GTM updates it’s container to the latest available twice a day. GTM can
also be used as a fail-safe for GA if we want to stop all GA activity [2].

2.7 Usability Testing with Google Analytics

The key benefit with GA is the ability to receive real time feedback from a natural
environment in comparison to many types of usability testing where feedback
is received from a controlled environment. In a controlled environment peoples
concentration rate is usually much higher than normal so the results may not
reflect on real life usage [5].

The second thing that makes GA such a great complement to the type observ-
ing is that it’s very cost efficient and really easy to maintain, allowing for a very
wide test group. It also provides a very simple web interface that only requires a
login with the right privileges to access.

Deprecated versions of GA suffered from a big problem by not having an
effective way to be switched off. For example if a mistake were made resulting in
illegal information about the users being gathered, there was no mean to switch it
off. Google has since then attended this problem by incorporating GTM to GA.
GTM basically solves the problem were a mobile application is frozen after its
release.

2.8 Elicitation

The process of finding and formulating requirements is called elicitation. There are
various techniques used for elicitation. The following are the ones most effective
for our purposes and were all used to cover as much as possible [10].

2.8.1 Interviewing

Interviewing can be used to gather many kinds of information, depending on whom
is being interviewed and what the questions are about. It’s a good way to acquire
knowledge about current work and current problems [9].

2.8.2 Brainstorming

Brainstorming is a technique used to elicitate new ideas in a short amount of time.
This technique doesn’t involve any participants from the targeted audience and
is usually done within a group. The participants will then share all their ideas
indiscriminately regarding the topic. No ideas are considered bad in this stage
because even the most unexpected idea can turn to something good [11].

Theory & Background 9

2.8.3 Stakeholder Analysis

The stakeholders are the ones that’ll be the deciding fact for the product’s success.
These are i.e. the future users of the product. Hence, it’s important to take their
interests in consideration.

Goals and key issues for a stakeholder analysis are to find out e.g. who are the
stakeholders, what are they expecting of the product, what risks and cost do they
see and what solutions do they see. This information can be gathered by either
having meeting with all of the stakeholders together or having meetings with each
stakeholder separately [10].

We also booked a meeting with the architect at Sony who is in charge of the
area that deals with the addition of Google Analytics in applications.

10 Theory & Background

Chapter 3
Prestudy

3.1 Project Plan

Since our University and Sony Mobile hadn’t discussed much about what work we
would carry out. We wanted to minimize potential misunderstandings by starting
out our work with a detailed project plan. This project plan would then act as a
contract to get a confirmation from both Sony Mobile and LTH that the work we
would carry out is the one intended from both parties.

The project plan consisted of the following information below and a time plan
describing what work we would perform and how we are disposing our time.

• Why? - What is the main objective of our thesis work?

• What? - What is the work that will be performed on the project? What
are the major deliverables?

• Stakeholders? - Who will be involved and what will be their responsibil-
ities within the project? How will they be organized?

• When? -What is the project timeline and when do we have our milestones?

3.2 Presentation of the Project Plan

Proceeding from getting the initial project plan approved by our mentor from the
University, we notified our section manager for a presentation to be held for all
the parties involved in our thesis work.

The purpose of this meeting was to operate as a stakeholder analysis and to
clear out all the potential uncertainties and receive feedback from the project plan
that we handed out prior to the presentation.

The main context of the feedback from the meeting was that regular follow-
ups were requested and that settings menu for Phone application was of highest
priority.

11

12 Prestudy

3.3 Elicitation of Google Analytics

In the beginning of our thesis work, we had very little previous experience of
GA and Android. Therefore, we chose numerous elicitation methods to broaden
our scope of knowledge. The following elicitation methods were chosen interview,
brainstorming, stakeholder analysis and looking at similar applications.

We started of the elicitation process with interviews and looking at similar
applications because both of them are an effective way to receive large amounts
of information in a short amount of time. These two methods are also effective in
finding out what previous work involving GA has been done in the company. Start-
ing off with the interviews also gave us the opportunity to further the stakeholder
analysis and since we chose to interview mostly people with previous experience of
GA we could also learn from peoples past experiences and get inspired by them.

The interviews were of semi-structured type and split into two parts. The first
part consisted of prepared questions and the second part was designed for an open
discussion. By having this setup, we hoped to receive answers to both specific
questions and information that could not cover in the first part because we lacked
domain knowledge.

These came to be a great source of inspiration and were our stepping-stone
when we later discovered that we had to design our tool to be called Usage Tracker.

3.4 Prototyping

Looking through Sony’s wiki page, we found some internal information about GA.
Most of it were introductions and guidelines to get people started. In the guide-
line, a workflow on how to integrate GA for an application could be found. The
workflow was pretty straightforward and is described below.

• Add Google Analytics library to the project

• Implement

• Register for GA & GTM accounts

• Evaluate the GTM container and verify that the output in GA looks as
expected. Iterate until satisfied

• Go Live!

Since both of us had minimal experience of GA and Android programming, we
believed the quickest way to get accustomed was through prototyping by creating
a simple Android application while following the reference workflow to include
GA & GTM. The application we created was very simple and consisted of a main
screen with two buttons.

The first button led to another screen containing a single button used to get
back to the main screen. The second button in the main screen displayed a toast
with the text “Button 2 has been pressed”, when pressed upon. Since this was
only for test purposes, the Google Analytics account was signed with our private
credentials. For our test application we didn’t utilize much functionality of GTM

Prestudy 13

we basically used it to query data to GA.

Being our first time coding an Android application it took us some time before
we got a hang of it, but the output generated from the prototype were more
extensive than we anticipated making us realize the potential of using GA.

3.5 Looking at Similar Applications

In the internal wiki page “guidelines for using GA”, there was a reference to a library
that utilizes GA named GaGtmHelper.jar. This library’s purpose was to make it
easier to get started with GA and basically consisted of utility classes. Fortunately,
it had recently been updated to utilize GAv3 which served our purposes perfectly.
The developer was also kind enough to make GaGtmHelperTest.java, which is a
reference implementation of GA using GaGtmHelper.jar.

We pulled the project from the GIT repository and ran it on our phone. The
application looked similar to our prototype, but had more buttons covering more
functionality of GA. Although the GUI of the application looked very similar, the
implementation differed a lot. By utilizing GaGtmHelper.jar, the implementation
of GA became much more efficient.

3.6 Meetings

After having everything set up and prepared, we booked a few meetings in Sony
Mobile with people that had previous experience of GA. The objective of these
meetings were to learn from their experiences and from their past mistakes. It
came to our knowledge that other teams within Sony Mobile were also currently
working with GA, therefore a meeting with one of the developers were scheduled
for a briefing.

We were shown some examples of how they had utilized GA and were also pre-
sented some of the results. After running GaGtmHelperTest.java and looking at
how GA was implemented using GaGtmHelper.jar we concluded that GaGtmHelper.jar
would be very useful to us. While studying this library some questions arose so a
meeting was scheduled with the developer behind this code. We used this meeting
as an opportunity to learn about his thoughts behind the utility library while also
trying to get a deeper understanding of overall GA.

3.7 How to Integrate Our Modifications

We want to include GA in an application used by millions of people. For an
application with a user group of this magnitude, the quality of the product is of
great importance. The Phone application is the main application for any phone
and a quality defect could potentially render millions of people unable to make
a phone call. An unstable phone application could also potentially stain Sony
Mobile’s reputation of making quality products.

14 Prestudy

For this reason, a good deal of quality aspects had to be taken in consideration
for the application to work as well as possible. In order to keep it that way we need
to implement GA in a way that’ll not contaminate the current code. This means
that our modifications will have to be approved by the architect of Telephony and
then undergo strict tests to verify that our code haven’t affected the overall quality.
We also need to adhere to rules set by the logging board to guarantee that the
legal aspects are met.

Sony have been using GA for some of their decoupled applications. A de-
coupled application is autonomous and unaware of other applications and the
operative system. For a coupled application such as the Phone application, this
is not true. The Phone application in Sony Mobile patches the original android
vanilla phone application, which makes it a subject to Android changes. This
means that a bad implementation of our third party modifications of phone will
be more sensitive to Android changes, resulting in that each time a new android
version is released unnecessary many modifications have to be made for it to be
compatible.

3.7.1 Implement a Service

The code that we had access to and were allowed to make changes in were all in a
project called Telephony. The addition of Google Analytics may not contaminate
the current code therefore our first scheme was to isolate GA by using a service.
The definition of a service is:

" A Service is an application component that can perform long-running opera-
tions in the background and does not provide a user interface. Another application
component can start a service and it will continue to run in the background even
if the user switches to another application. Additionally, a component can bind to
a service to interact with it and even perform interprocess communication (IPC).
For example, a service might handle network transactions, play music, perform
file I/O, or interact with a content provider, all from the background." [13].

This seemed to be a good idea to let GA operate in the background. All re-
quired classes for GA were added to the service and some testing were performed
to try it out. A meeting was scheduled with the architect of Telephony and our
supervisor to discuss this scheme.

It was pointed out that the service was persistent. The Telephony application
is as default a persistent application, which means that it is always running. Let
alone the fact that using a service the Telephony application wouldn’t be offloaded
of GA, the conclusion was that we might as well discard the use of a service.

After some discussion we came to the conclusion that it would be wiser to
import GA libraries to the Telephony project and simply add a new package in
the Telephony project to store all GA classes. Another idea we found positive was
to extract the logic from the probes to make them smaller therefore less code to
be inserted when adding a probe.

Prestudy 15

3.7.2 New Design of the Telephony Package

Later in the project, an Android upgrade split the Telephony project into two
separate projects. This had a big impact on our work and our previous scheme
were no longer feasible. Let alone we had to relocate all the corresponding places
to insert the probes. Fortunately the two packages were not independent of each
other, there exists methods for the two projects to communicate with each other
and a common directory that both project had access to.

There is a class in one of the divided projects (P2) that can be used to send
an array of strings to a class in the second project (P1), where the event then will
be taken care of depending on type. Since both projects were going to use GA,
to prevent importing the same GA libraries to the two projects our new scheme
would come to make use of the above functionality.

In the new design a package with all the classes were created in P1 where the
GA libraries were imported. A class Constant.java needed access by both projects
and were therefore moved to the common directory. P1 contains almost all logic for
the probes. Probes will be placed in P2 and when triggered they will be queried to
P1 with an array of String. This information are then processed in P1 to identify
which probe that were activated and then queried to GA.

16 Prestudy

Chapter 4
Usage Tracker

4.1 Task List

The scope owner prepared a list of tasks which we prioritized. The tasks with high
priority have been listed below. Table 4.1

17

18 Usage Tracker

Table 4.1: Task List

High priority
tasks

Questions to answer What to mea-
sure

After Call Screen Which options are used and
how often?

of activations
% of total calls
& reason for
ended call

Answering Ma-
chine

How many uses it and is it ac-
tivated manually or automat-
ically?
Does people deactivate it?

and % of
launches
Manual or auto-
matic launch

Call settings Which settings are end users
changing frequently and from
where?

Which settings
are changed?
How often are
they changed?
From where are
they changed?

In Call Screen
Button Panel

Which buttons are used fre-
quently by users

of button clicks

Reject Call Mes-
sages

How frequently are they used
and which ones are changed?

of activations
of changed mes-
sages

Bluetooth Head-
set Audio Routing

How do the users answer, end
or reject a call?

of answered,
ended or rejected
calls from both
headset and
phone

Wired Headset
Audio Routing

How do the users answer, end
or reject the calls?

of answered,
ended or rejected
calls from both
headset and
phone

Route Sound When the users answers a
call with bluetooth coonected,
how often do they re-route the
sound to the phone earpiece
and not the headset?

of times the
sound re-routed
to phone earpiece
of times the
sound re-routed
to headset

Usage Tracker 19

4.2 What to Utilize of Google Analytics

GA is a very powerful tool capable of gathering many kinds of statistics e.g. Appli-
cation views, crashes, events etc. about the application. Those individuals ending
up as part of sample needs to be having acceptable level of data traffic sent, even
in unusual network states such as roaming.

Therefore, we chose to only collect data that we are to make specific decisions
on. These are data relevant for the tasks in the task list received from the scope
owner. Event tracking in GA is to be used to collect data about how users interact
with the content of an application. An event is a user interaction with the content
of the application that can be tracked independently. These can e.g. be clicks,
page views, downloads and video plays. For our purposes we want to measure
how many times something has been clicked and how many times a particular
sub feature has been invoked which fits in the example of when to utilize Event
tracking [14].

4.3 Why We Need a Complementary Tool

Since the reference implementation has an example of Event tracking, we originally
intended to implement GA by adopting the reference implementation with the use
of GaGtmHelper.jar. In our case, this would mean that in terms of usage statistics
we would only measure the total number of times something has been activated.

After receiving our tasks from the scope owner we realized that by only using
the reference implementation it wouldn’t be sufficient to answer the relevant ques-
tions specified in the task list. The way GA was implemented for our prototype,
the statistics generated by GA would only be presenting us the total number of
times a certain sub feature had been activated. This number would be accumu-
lated by all of the users together and we wouldn’t by any means be able to calculate
out exactly how many times an arbitrarily individual had activated something. No
indications if the number of activations are evenly distributed over all the users or
if there exist a small percentage of users that made up for a large portion of the
total number.

The majority of the tasks were not about finding out how often a feature was
activated but instead they wanted us to find out how often something was used
and how many uses it. These two questions may sound similar but hold very
different meanings and would amount for us to create our own Usage Tracker.

4.3.1 Example

Take for an example were we have button B1 and button B2 and we want to find
out which of the two buttons most users are actively using. GA using the reference
implementation would only be able to present us the number of times B1 and B2
have been clicked upon from a total number of users’ perspective.

Let’s say B1 have received 500 clicks and B2 has received 700 clicks by the
total number of users. This tells us that B2 have been clicked upon 200 times
more than B1, what it doesn’t tell us is how many users and how many times an
individual user have clicked on B1. Therefore, there’s no way to tell if the usage

20 Usage Tracker

of the feature is even amongst all of the users or if it’s only a small percentage of
the total users that represents the accumulated value.

4.4 Development of Usage Tracker

4.4.1 Elicitation of Usage Tracker

For the development of our Usage Tracker, a new phase of elicitation took place.
Looking back, we had come across with Usage Tracker when interviewing employ-
ees about GA. Back then, we didn’t put much thought into it because we didn’t
realize it would be of much use for us.

Having a better understanding of the limitations of GA we took another look
of the before mentioned Usage Tracker hoping that it would fill out the missing
gaps. It had similar functionality as what we were looking for but as expected
since it was developed for an application very dissimilar to what we were working
with, the implementation and the functionality were also very different. However
studying this code was very profitable and was a good base for designing our own
Usage Tracker, which also happened to be named Usage Tracker.

The strategy behind Usage Tracker is that instead of reporting to GA each and
every time something has been activated a counter would instead increment and
accumulate over a specific time period i.e. one week, and then only report once
after that time is due. We adopted this logic and modified it to fit our purposes.

4.4.2 Brainstorming

In this phase of our thesis work, we had enough knowledge to start a Brainstorm-
ing. The Brainstorming was amongst the two of us and main topic was to come up
with requirements for our Usage Tracker. The requirements would come to involve
everything from design to functionality. When a brainstorming session is followed
up with a prioritization of the ideas, the ideas that receives low priority may be
forgotten and left out. Therefore, we chose to keep all of our ideas and sleep on
them, giving them a chance to grow. The brainstorming was then continued by
an expert review with the architect of GA in Sony Mobile.

4.4.3 Context from the investigation

Instead of reporting to GA each time a button is pressed, we need to develop a
tool (Usage Tracker) that stores the number of times something has been activated
over a certain time period. This specific information should then be reported to
GA only when its time period (Frequency) has been reached.

In doing so, it would be possible to look at a certain time interval, e.g. a week
in GA and be sure that there is not two events in the data that is reported by
the same user. By making users who haven’t used a certain sub feature report
0 we will be able to differentiate between people who have and haven’t activated
(used) something. With this information in hand, we could calculate numerous
information such as the percentage of people that are actually using a sub feature.

Usage Tracker 21

This solution is not only for measuring clicks but also effective whenever there’s
a need to measure the frequency of content. I.e. this can be used to measure how
many times answering machine has been triggered both automatically and man-
ually. A pleasant consequence of using this strategy for collecting and reporting
data is that the amount of data traffic will decrease considerably since it will only
report once for each sub feature after a given time period instead of every time it
has been activated.

4.4.4 Design of Usage Tracker

Since we are to develop a tool that is intended to be used by people who’ve not
necessarily been involved in our work, we’ll be opting for simplicity. For this reason
our implementation will follow the guidelines set up by Sony Mobile and follow
the reference implementation as much as possible. The code should be as easy to
understand, as it is easy to modify for future extensions.

GaGtmHelper.jar has been a common start ground for many GA users within
Sony and has functionality that simplifies reporting to GA. Our Usage Tracker will
also follow this trend by importing this library and follow the reference implemen-
tation for the GTM container opening used to query data to GA. End users will
give their consent of sharing usage information by having the "Send Usage Info
checkbox" enabled. Depending on the status of this checkbox, all GA activity will
either be enabled or disabled. The requirements for the basic functionality for our
tool had been established and for the more specific requirements, we split them
up into their respective problems for further investigation.

4.4.5 Reporting to Google Analytics

Sub features populate a main feature. To ease readability in GA we’ve grouped
all sub features to its corresponding main feature. Each main feature will be given
its own Frequency determining when all of its sub features are ready for report.
Reporting all the sub features simultaneously will ensure us that all sub features
under a main feature has reported the same number of times.

A timer class will be responsible for the actuation of a check that loops through
all the main features. This check will occur when the phone is turned on and after
each 24h interval. The check is to determine if a main feature is ready to report by
looking at its corresponding Frequency defined in GTM. If the time interval has
been reached all of its sub features will have their accumulated values reported.

4.4.6 How the Data Are Stored in the Phone

The accumulated data is saved in the java structure HashMap that is not persistent
and we don’t want any data to get lost when switching off the phone. Therefore
an efficient way of saving the data between reboots needs to be implemented.
The original Usage Tracker solved this by saving the data in SharedPreferences
so naturally we tried that also for our implementation. SharedPreferences stores
private primitive data in Key-Value pairs. Data can be read efficiently if you know
the key for the data. Since it only allows for storing primitive values, it’s difficult

22 Usage Tracker

to store large data, as each value needs a key. Because of the way we’re structuring
our data and SharedPreferences has no efficient way to structure data and retrieve
a specific query of data we considered using a database instead.

Storing the data in a SQLite database the structure of our data could be
preserved. The data structure is managed by the database and we can write SQL
queries to get specific sub sets from the data. This makes it possible to search
and filter out explicit content. Managing and searching after large sub sets of data
influences the performance so reading data from a database can be slower than
reading directly from a HashMap.

For this reason and to remain our code as low complexity as possible we de-
cided to just serialize the HashMap containing all our saved values and write it
to a file. The file will be saved to the internal storage making it private for the
application and inaccessible by the user. This keeps the integrity of the file and
after uninstalling the application, the file will be removed along with it.

4.4.7 Track Usage of Checkboxes and Settings with Multiple Options

What we came up with in our Brainstorming session wouldn’t suffice for tracking
usage of Checkboxes and settings were we have multiple options i.e. Equalizer.
For features of this type, it’s more relevant to measure which setting is enabled
rather than how many times it has been invoked by the user. End users don’t
change settings of this type frequently. When that occurs it’s usually because
an end user only tried the different settings before settling with the preferred one.
The preferred solution to this would be that instead of storing the number of times
they have changed the specific setting it makes more sense to read the value of the
setting prior to reporting the data to GA.

4.4.8 Grouping of Values

Usage Tracker will report the accumulated number of times an individual have
invoked a certain sub feature over a given time period. To make the data more
readable in the Event reports in GA web interface we’ll create different slots with
varying sizes for values to be grouped into before reporting to GA.

The potential slots for a value will be 0, 1, 2-5, 6-10, 11-15, 16-20, 21-40, 41-60
etc. 0 and 1 are presented on their own because it’s important to get these two
specific values. 0 means that the sub feature haven’t been triggered or invoked
over the given time period. This gives us the information needed to calculate the
percentage of users who actually uses a certain feature. For the lower values, we
chose to have intervals of size 5 and for larger values intervals of 20. In the report,
we’ll be able to tell by the value of the slots how many individuals have fallen into
each slot, which describes the number of times a certain sub feature have been
invoked by the individual.

4.4.9 What Should Be Remotely Configurable OTA through GTM

We want to keep every main feature independent from each other so we can treat
them separately. Therefore, each main feature should have its own sample rate

Usage Tracker 23

and sample Frequency that are modifiable OTA. Being able to change sample rate
provides the functionality to chose percentage of total phones instances to sample
from.

For our purposes which involves an application that is considered to be always
active, a small value on the sample rate should suffice. For this we chose to start
off with a sample rate of 1%. This parameter can later be modified OTA and will
also be used as a kill switch when GA activity is not desired. A kill switch is
achieved by setting the sample rate parameter to zero.

Frequency is a custom dimension that we have defined. Each main feature will
have its own Frequency determining the time limit. The time limit is the time a
main feature will let its sub feature accumulate over before they are reported. This
would be useful in e.g. the case when we’ve collected enough data for a certain
main feature and don’t want to waste users’ data traffic. Another example is if we
realize the specified Sample Frequency for a certain main feature is too short or
too long, it could easily be modified OTA to desired time interval.

4.4.10 Custom Dimensions to Define

The GUI and functionalities in Sony Mobile phones between models are quite sim-
ilar to each other but they are not persistent. Many aspects such as phone model,
software label, country and operators influence the GUI and the functionalities
of a phone device. A feature may have been recently introduced and only the
phones with the latest software label may have it and some functionality can vary
for different phone models.Countries and operators also have an influence on the
functionalities of a mobile phone. These authorities may have different rules and
restrictions resulting in changes in the phone content.

Therefore, a feature may not exist in all mobile phone devices even if the
model is identical. If the functionality exist, it doesn’t guarantee that the feature
is accessed or looks in the same way. If phones with a specific functionality and GUI
shows odd usage statistics compared to other phones with similar functionality but
with less similar GUI, it suggests that the design is at fault. To be able to do this
we need to be able to filter out explicit data showing behavior for a consistent
system. That’s why we need the following Custom Dimensions:

• Frequency

• Sample rate

• Country

• Operator

• Model

• Software version

• Phone model

24 Usage Tracker

4.4.11 Implementation of Usage Tracker

In this stage when we had decided all the criteria for the building blocks for our
Usage Tracker, we had already fallen behind according to our initial time plan.
It was primarily due to our lack of experience when it comes to deliver quality
code and another reason for our delay was that we weren’t anticipating the need
to develop Usage Tracker.

In an attempt to get back to the initial time plan, we got into a rush that
resulted into implementing Usage Tracker quite straightforward without any con-
sideration to design principles. Putting it through an initial phase of testing it
seemed to do what we expected from an alpha version but after considering the
UML generated from the code, we quickly realized that the code structure was
a mess. It didn’t follow any design principles and we discovered a few circular
dependencies. Maintaining our code would be too much of a hassle let alone no
one would’ve the patience to learn the architecture of it. After discussing with our
supervisor we concluded that the time plan were just preliminary and not final.
This time around, we decided to try with a new approach and regardless of the
time pressure, we would do it in the right way.

Instead of wasting time on implementing something that may be of bad design,
we would rather follow an iterative model before implementing.

• Analyze the design

• Generate an UML

• Discuss the design

Naturally, the first step would be to analyze the design. Then generate an
UML diagram of the code skeleton and use it as a basis to discuss the design
together with our supervisor and the architect of Telephony.

The discussion was mainly about motivating our decisions. Since they have
far more experience in programming than us, it would be of big help for them to
know the idea behind our design. It’s possible that the underlying thought for
our design was good but we chose a poor way to execute it. From these meetings
we could get valuable information in short time and take in consideration their
feedback to the next iteration.

It took a few iterations before they were pleased with our design and then it
was finally time to implement. Having a well thought design certainly made it
easier to implement and resulted in less code and classes compared to our first
implementation. The code became much easier to understand and open for exten-
sions. The generated UML- diagram of the final design can be seen in Figure 4.1
below.

After the implementation, we carried out our own verification tests in parallel
to the implementation to test the added functionality and to ascertain any un-
expected behavior. Many modifications were made to accommodate all our test
cases covering use cases in real life. Since the code needed a lot of tweaking before
final, this became the start of another iterative process. At this stage, we also

Usage Tracker 25

tried to find the respective placements of the probes. Since the Phone applica-
tion is constantly affected by changes, the placement for some probes had to be
reconsidered several times.

• Analyzing the design and implementation

• Push the code to Gerrit for reviewing

• Discuss the design and implementation

26 Usage Tracker

Figure 4.1: UML Diagram

Usage Tracker 27

4.4.12 Result of Our Implementation

A MainFeature object can represent a main feature i.e. "Call settings" in Settings.
The SubFeature objects are used to represent the sub features of a main feature
e.g. "Slow talk" and "Equalizer". Therefore, a MainFeature object can contain
multiple SubFeature objects but a SubFeature belongs to only one MainFeature.

We have also defined two types of SubFeature objects, which we call Counter
and Toggle. Counters are the SubFeature objects used when there’s a need to
keep track of the number of activations. So if we have a Counter object called
"Answering machine" we will have a counter that keeps track of how many times
"Answering machine" has been activated for an individual user. Toggle objects
has been created to report which option that have been toggled for a setting such
as a checkbox or a setting containing a list of options. Example of a checkbox is
"Answering machine" which then can be "Enabled" or "Disabled", and an example
of a setting with a list of options is "Equalizer" which can have the value "Normal",
"Smooth" or "Bright".

Each MainFeature object has a Frequency obtained from the GTM container
that indicates the period of how often it will report, I.e. if the MainFeature object
"Call settings" has a Frequency of a week, all of its SubFeature objects will report
their accumulated values once a week.

The values from GTM are updated twice every 12 hours automatically and
can therefore be changed OTA without modifying the code itself.

To make the values more readable in the event reports in GA web interface,
instead of reporting the exact value of a Counter object, the values will be cate-
gorized to a slot prior to reporting. The slots that we have defined are 0, 1, 2 5,
6-10, 11-15, 16-20, 21-40, 41-60 etc.

4.4.13 Functional Testing

For Usage Tracker in its early stages we concluded it would be more effective if we
carried out the functional testing ourselves. These tests were done by trying out
different scenarios and then comparing the outcome with the expected outcome in
either ADB logcat or in the Event reports in GA web interface.

Testing was performed every time there was a modification on the code and
each time the repository was synchronized with the latest version we had to recheck
all probes and redo the testing.

The testing was to verify the following:

• Does the Counters count correct.

• Are the values reported to GA correct.

• Are the report frequencies correctly read from GTM.

• Does the MainFeatures containing their SubFeatures report simultaniously.

• Are the names of the main features and sub features correctly presented in
GA.

• Does the Custom Dimensions work as intended.

28 Usage Tracker

• Does it work to change values OTA through GTM.

• Does the Toggle objects report the correct values.

• Does the check for report trigger at boot up and after each given interval.

• Does the GTM container update work as expected.

• Does save to file and read from file work.

Chapter 5
Presentation of Data

5.1 How Event Reports Are Normally Presented in GA

An event consists of four components and is used to describe a user’s interaction
with the application’s content. These four components can be seen in Figure 5.1
below.

The values set for the components will be displayed in the event reports in
the GA web interface. By having these values well organized data can be easily
located and interpreted in the event reports.

These four components are sorted in an explorer type model in GA, with the
Category label at the top of the hierarchy. Category should therefore be the main
identifier to sort the events for a report. It can e.g. be button, video, download.
Action is the view next in line after Category and is used to describe a particular
Category. Action is also defined by a string and can be arbitrarily set to best
describe the action. In the case of Category being Video, potential values of Action
would be Play, Pause and Stop. For the later components Label and Value, these
are not mandatory and can be used to give further information.

I.e. if we want to measure every time "Slow talk" in "Call settings" have been
clicked we could e.g. send an event with the following values for the components:
Buttons for Category, with the Action as click and the Label would be "Slow talk".
Below is an example.

Figure 5.1: Event Tracking

29

30 Presentation of Data

5.2 How We Are Presenting Event Reports

To make the data more readable in GA we’re presenting the data differently from
the orthodox way. Thus, the values for the four components of an event will be
set differently. For easy access to data concerning each task, we have chosen to
categorize all information for a given task under its task name. I.e. all sub features
to the main feature "Call settings" in "phone Settings" will be grouped together
in the event reports under the common name "Call settings". This allows for fast
access to all data concerning the task "Call settings". To do so all information that
we’re reporting to GA that concerns e.g. "Call settings" will have "Call settings"
as the value for "Category".
Figure 5.2 below presents an example of a list with main features.

Figure 5.2: List of Main Features

To be able to distinguish between the different information reported to GA under
each "Category" we’ll make use of the "Action" parameter. The value for this
parameter can e.g. be the name of the options belonging to the main feature.
In the case of the "Category" being "Call settings", the value for the "Action"
parameter could e.g. be "Slow talk", "Increasing ringtone" or "Equalizer".
Figure 5.3 below illustrates an example of the main feature "Call settings" with
its sub features.

Figure 5.3: List of Sub Features for the Main Feature Call Settings

Presentation of Data 31

The above two parameters "Category" and "Action" are compulsory out of the
four. For our purposes, we’ll need to utilize the third one called "Label".
With our Usage Tracker implementation, we will utilize the "Label" parameter to
describe the value for the "Action" parameter. In the case of "Action”, being a
button the "Label" will then be a string value in the form of an interval e.g. 11-15.
This tells us that the button have been clicked 11-15 times by the individual user
in the specified time interval. In Figure 5.4 below we can see an example of this.

Figure 5.4: List Presenting the Number of Times a Specific Content
Has Been Activated

If the "Action" is of the type Checkbox then the "Label" parameter can have the
value either "Enabled" or "Disabled". This tells us if the checkbox was toggled or
not prior to the report to GA. An example of this is shown in Figure 5.5 below.

Figure 5.5: List Presenting the Values for a Specific Checkbox

If the "Action" is a setting with a list of options that can be selected. I.e. "Equal-
izer" with the selectable options Normal, Bright and Smooth. The value for the
"Label" parameter will be the option selected by the user prior to the report to
GA. An example is shown in Figure 5.6 below.

Figure 5.6: List Presenting the Values for Equalizer

32 Presentation of Data

5.3 Custom Reports

By using a custom report, we can filter the statistics in the way we want to and
save a “shortcut” for these filtered values. We can for example filter the data for
all the users in Sweden that uses Tele2. That custom report will only include the
data for those specific users. Every time we want to see the statistics for those
users, we can preferably select the custom report instead of filtering the statistics
each time. To give an example we have generated random data and created a
custom dimension that gives us the possibility to filter the statistics for all users
in a country that uses a specific operator. In this custom dimension, the first step
is to select the country of interest. Figure 5.7 tells us that we have generated
statistics from users in three different countries, Finland, Sweden and Norway.

Figure 5.7: First Step in the Custom Report, Select a Country

Next step in the custom report is to select the operator of interest. In this example,
Sweden was selected in previous step and a list of all operators that the users are
using will appear. Figure 5.8 presents statistics for users in Sweden that has Tele2
or Telia as an operator.

Figure 5.8: Second Step in the Custom Dimension, Select an Oper-
ator

After selecting the operator, i.e. Tele2 a list of all the main features will appear as
in the following example. The statistics for each main feature corresponds to data
accumulated from people using Tele2 as an operator in Sweden. See Figure 5.9 for
reference.

Presentation of Data 33

Figure 5.9: Third Step in the Custom Report, Select a Main Feature

To filter the statistics for a specific time interval to ensure that each event cor-
responds to one user. We need to filter after users with the same Frequency.
Figure 5.10 tells us that we have generated data for two different frequencies for
the main feature "Call settings".

Figure 5.10: Fourth Step in the Custom Report, Select a Frequency

After selecting the Frequency, we will get a list of all the Sub features which can
be seen in Figure 5.11. This list now only contains data from users in Sweden that
has Tele2 as operator.

Figure 5.11: Last Step in the Custom Report, Select a Sub Feature

34 Presentation of Data

5.4 Different Views for the Statistics

In the GA web interface it is possible to switch the presentation of the data by
clicking on the buttons that can be seen in Figure 5.12.

Figure 5.12: Different Views of the Data

From left to right, these buttons presents the data in the following way:

• Table view

• Percentage view

• Performance view

• Comparison view

• Pivot view

5.4.1 Table View

Table view organizes the data in a spreadsheet manner and is the most common
view when going over statistics. Figure 5.13 illustrates an example.

Figure 5.13: Table View of the Data

5.4.2 Percentage View

Effective way to get an quick overview of the proportions of the values. Figure 5.14
illustrates an example.

Presentation of Data 35

Figure 5.14: Percentage View of the Data

5.4.3 Performance View

The Performance view is also a tool for visualizing data and works as a complement
to Percentage view. Figure 5.15 illustrates an example.

Figure 5.15: Performance View of the Data

5.4.4 Comparison View

The comparison view is useful for comparing data distribution against each other.
Figure 5.16 illustrates an example.

Figure 5.16: Comparison View of the Data

36 Presentation of Data

5.4.5 Pivot View

The pivot view is used when there is a need of viewing multiple dimensions of data
at once. Figure 5.17 illustrates an example.

Figure 5.17: Pivot View of the Data

Chapter 6
The Telephony Code

The Telephony code is rather large and consists of many classes. Since our stay at
Sony Mobile is very limited, we couldn’t afford to spend much time into getting
accustomed with the code. Instead, we used different techniques to navigate us to
the right place to insert the Usage Tracker probes.

6.1 Work Flow for Inserting a Google Analytics Probe

To do this effectively we followed this work model:

1. Logs

2. Opengrok

3. verification

6.1.1 Logs

Having a quick look over some classes we recognized that the code was well logged.
The following are different types of logs that could be found : [12].

• Verbose

• Debug

• Information

• Warning

• Error

By connecting the phone to the computer, the logs could be read in real time with
ADB using the commando "Logcat". Filtering the outputs after certain keywords
and log type, we could capture content relevant for our search, such as class name
and method name etc. The result could then be investigated using OpenGrok.

37

38 The Telephony Code

6.1.2 Opengrok

OpenGrok is a source code search that Sony Mobile employees have access to. All
code from Sony Mobile can be found using OpenGrok and it allows for quick search
and has advanced filtering options. Using Opengrok we can list all the classes that
contains specific search parameters. This was done for the keywords that we found
interesting from the outputted ADB logs. Typically there are several places where
a probe can be inserted and still generate the same result. The most appropriate
place in the code would be the execution place for what the probe is actually
measuring. E.g. if we want to measure the number of times button "A" is being
pressed, the best place to put the probe is in the method which handles this button
click. Usually it’s verify straight forward but sometimes additional code needs to
be added to accommodate the probe.

6.1.3 Verification

The last step is to verify that the new addition of probes works as expected by
comparing the outcome and the results from looking at the GA logs in ADB logcat
and output in the Event reports in GA web interface.

6.2 Sony Mobile Internal Testing

Prior to a feature being released, it has to go through various types of testing to
ensure that all quality aspects are met.

6.2.1 Internal Testing in Sony Mobile

Prior to developing Usage Tracker the utilization of GA would be considered as a
modification of another feature, which means that it wouldn’t need to go through
all of the testing. Since Usage Tracker had to be developed, the addition of it
consisted of more code than expected which resulted in Usage Tracker being a
feature itself. The result of this is that all code that plausibly were affected by our
modifications had to go through regression testing and Usage Tracker itself had to
undergo the following tests:

• Regression testing

• Functional testing

• Performance testing

Regression Testing
The intention of regression testing is to confirm that changes in the code hasn’t
introduced new problems to prior working code. This is usually done by rerunning
previously completed tests.

Functional Testing
Functional testing is performed to verify that everything is working as expected.

The Telephony Code 39

These tests performed by Sony Mobile covered all our private tests while also
covering other specifications of the phone. The following additions of tests were
specifically added for our interest:

• Counters updates their values correctly

• Periodic update of results to GA

• Enable/Disable of feature

• Enable/Disable flight mode

Performance Testing
Performance testing tests among other things a systems responsiveness and sta-
bility. It’s important to check if the addition of Usage Tracker had any impact
on these factors. Since Usage Tracker saves a file at shutdown and reads from a
file at boot up, extra care was done when performing tests for measuring boot
up time and shutdown time. Testing showed that the addition of Usage Tracker
didn’t slow down the phone noticeably for the user.

6.3 Improvements

The implementation of Usage Tracker could’ve been more efficiently, the most
obvious is that all Counter objects for the sub features are reported once each
time period, even the Counter objects for the sub features that has not been
activated at all will be reported.

This should’ve been avoided to save data traffic and unnecessary operations
as the following.

• Reporting these Counter objects.

• When starting the phone, reading these Counter objects from a file.

• In reboot, writing these Counter objects to a file.

This means that we only want to process Counter objects that has been activated
at least once, but retain information about the Counter objects that has not been
activated. In retrospect, we came up with the following solution.

Instead of reporting all Counter objects, it’s more efficient to only report the
Counter objects that has been activated at least once. No other Counter objects
that has not been activated will be reported, this means that we’ll never report a
value of "0". Nevertheless, we are still interested in the Counter objects that has
the value "0" since we want to know how many users that are not using a certain
feature.

This can be achieved by introducing a new Counter object for each main
feature that will always be reported by all the users. The objective for this Counter
object is to record the number of total users. A better explanation will be provided
by following example. In this example the newly introduced Counter object is
called "Total users". Table 6.1 presents how the Sub features for a specific main
feature are grouped in our current solution.

40 The Telephony Code

Table 6.1: Example of How Sub Features for a Specific Main Feature
Are Grouped in the Current Solution

Sub feature Total events
Sub feature 1 50
Sub feature 2 50

With the current solution all sub features belonging to a common main feature are
reported exactly the same number of times. This is because each user will always
report their Counter objects, whether a Counter object has been activated or not.
Selecting Sub feature 1. The Statistics may then look like Table 6.2 below.

Table 6.2: Example of How Counter Values May Look Like in the
Current Solution

Counter value Events
0 40
1 5

2-5 5

This gives us that 40 out of 50 users have reported that this Sub feature has not
been activated at all during the time interval. If we have 60 Sub features for this
main feature that have similar statistics as above, with 40 out of 50 users that
haven’t activated the Sub feature at all, then this will result in 40 users each re-
porting 60 Counters with the value "0" which can be omitted with the new design.
The new design makes it possible to report a single Counter object that represents
all these 60 Counter objects which reports the value "0".

Table 6.3 presents the list of all main features. This design has been consistent
from the old to new solution.

Table 6.3: List of All Main Features Is Consistent from the Old to
New Solution

main feature Total events
Feature 1 100
Feature 2 200

In Table 6.4 is an example of how the sub features will be presented in the new
solution with the introduction of "Total users" which gives the number of total
users that are reporting.

The Telephony Code 41

Table 6.4: Example of How Sub Features Are Presented in the New
Design

Sub feature Total events
Total users 50

Sub feature 1 10
Sub feature 2 20

"Total users" informs that there are a total of 50 users who are reporting statistics,
and we can also see that only 10 users has reported for Sub Feature 1 and 20 users
has reported for Sub Feature 2. This means that 40 users has not activated sub
feature 1 and 30 users has not activated sub feature 2.
Selecting e.g. Sub feature 1 will result in the following presentation in Table 6.5.

Table 6.5: Example of How the Counter Objects Values Will Be
Presented in the New Design

Counter value Events
1 5

2-5 5

The value "0" haven’t been reported but we can still derive that information
with the help of "Total users" and the number of events that we have received.
Calculations gives us 50 - 10 = 40 meaning that 40 users haven’t used the sub
feature.

The other positive thing with this solution is that you do not have to create
all the Counter objects. We can instead create one "Total users" Counter object
for each main feature, the rest of the Counter objects will be created when they
are activated the first time.

This solution is more optimized and saves on data traffic but makes the pre-
sentation of data less intuitive.

42 The Telephony Code

Chapter 7
Conclusions & Discussion

7.1 The Thesis Work

The scope of the thesis work were the following:

• Investigate and suggest a strategy for how to utilize GA.

• Evaluate how to present the data in GA.

• Implement a selection of GA probes.

• Avoid unnecessary patching of Android.

By presenting statistics of concrete data, Usage Tracker helps with answering
questions that we previously only could speculate about. With the development
of Usage Tracker and the utilization of it we managed to fulfill all the requirements
of the thesis proposal.

At the beginning of this thesis work, our impression of the implementation of
GA was that it would be very straightforward. We tried to confirm this early on
by creating a prototype that we implemented GA to. Even though we didn’t have
any prior experience of GA it was easy to use. Therefore, our first impression was
that the weight of this thesis work would primarily lay on investigating on how to
effectively utilize GA and how to present the data.

Naturally we’d been optimistic of extending the scope of our thesis work with
ambitions to release the code worldwide to collect real usage data and then inves-
tigate it. But after receiving the task list from our scope owner, we realized that
we had to develop a complementary tool, Usage Tracker. This came to be more
time consuming than expected.

Studying in University, we are used to take quality aspects in consideration
when developing software programs, however with the ambition to release our code
worldwide, the quality aspects of our thesis work were of a much greater extent
than we were used to. This to minimize any potential problems that could occur
and potentially render millions of people unable to use their phones to their extent.

The unforeseen development of Usage Tracker had a big impact on our time
plan having us miss our milestones, which made it less likely for us to experience
the release of our code worldwide. We came to realize that we wouldn’t make our

43

44 Conclusions & Discussion

deadline but made the decision to persist and extend our stay to get our code
ready for integration into a future release.

In the end the design of Usage Tracker got approved and it passed all the tests.
Our thesis work was then ended with a presentation of our work.

Sony Mobile is gradually applying a more data driven approach when forming
their decisions on features and we are pleased to hear that our Usage Tracker will
be integrated into a near future release.

Applying Usage Tracker in parallel with the internal usability testing allows
us to obtain both heaps of quantitative data along with qualitative data from the
users. However, since "Usability tests are best for observing behaviors and mea-
suring performance issues, while perhaps gathering some qualitative information
along the way" we need a third complement to gather quality data about people’s
opinions and attitude about an preliminary concept. Focus group research would
in this case be appropriate [5].

Focus group research has the advantage to explore a few people’s opinions and
attitude towards a preliminary concept in greater depths. The participants are
free to share their thoughts with each other and discuss them. These thoughts are
usually different from what they actually do and is therefore very different from
the results received from usability testing. [5].

7.2 Future Work

If priority lies within prioritizing features then it’s more benefitting to use the
current Usage Tracker or parts of it to collect real statistics from end users. The
statistics can then be compared to the statistics from the internal usability tests to
verify if there are any correlations. Matching results would be a strong implication
to take appropriate action to the sub feature. Otherwise, if the statistics are con-
tradictory to each other an investigation could take place for further examination.

For Usage Tracker, the most obvious work would be to fix the drawbacks pre-
sented. It would also be helpful to add a functionality that displays the correlation
between the usage of different sub features. I.e. people that uses sub feature A
are they also more keen to use sub feature B?

Another improvement, if possible, would be to query raw data to GA and then
process it instead of processing the data prior to querying it to GA. This would
retain all the information of the data and the functionality in Event reports in GA
web interface could be used more efficiently.

References

[1] Mobile App Analytics,
http://www.google.com/analytics/mobile/

[2] Mobile App Analytics,
https://www.google.se/tagmanager/features.html

[3] GA platform overview,
https://developers.google.com/analytics/devguides/platform/

[4] ISO 9241-11,
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-1:v1:en

[5] Rubin, J and Dana, C. (2008) Handbook of Usability Testing: How to Plan,
Design, and Conduct Effective Tests, 2nd Edition, Indianapolis: Wiley

[6] Victoria Wibeck. (2010) Fokusgrupper: Om fokuserade gruppintervjuer som
undersökningsmetod, 2nd Edition, Lund: Studentlitteratur

[7] George, E.P Box., Stuart Hunter, J. and William G, H. (2012) Praktisk statis-
tik och försöksplanering Lund: Studentlitteratur

[8] Tullis, T and Albert, B. (2008) Measuring the user experience: Collecting,
Analyzing and Presenting Usability Metrics, Amsterdam ; Boston: Morgan
Kaufmann

[9] Shneiderman, B and Plaisant, C. (2009) Designing the user interface: Strate-
gies for Effective Human-Computer Interaction, 5th Edition, Harlow: Pearson
Education

[10] Soren Lauesen (2002) Software Requirements: Styles and Techniques, Harlow:
Addison-Wesley

[11] Chaunsey Wilson (2013) Brainstorming and beyond: a user-centered design
method, Burlington, Mass. : Morgan-Kaufmann

[12] Android Logs,
http://developer.android.com/tools/debugging/debugging-log.html

[13] Android service definition,
http://developer.android.com/guide/components/services.html

45

46 References

[14] Event tracking in GA,
https://support.google.com/analytics/answer/1033068?hl=en

