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Abstract

In this thesis a system is developed for robust time difference estima-
tion for multiple microphones in reverberant environments, without
any knowledge of the 3D positions of the microphones or the room.
RANSAC is used to find line segments in sets of frames containing
a number of the largest GCC-PHAT peaks. Focus is on real experi-
ments with one moving sound source continuously playing music. The
estimated time differences can be used to find the microphone posi-
tions, track the sound source, and estimate flat surfaces in the room.
The system has been evaluated on real data with manually annotated
ground truth in order to estimate the precision of the system in terms
of true positives and false positives. The algorithms have also been
incorporated into a system that takes a number of sound files as input
and produces the microphone positions, sound path motion and rever-
berant structures. The complete system has been evaluated on real
data with promising results.
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Chapter 1

Introduction
Using a set of synchronized recordings from a number of microphones it is
possible to track a randomly moving sound source in a room. This is true
even if the microphone positions are unknown.

The aim of this thesis is to develop a system capable of finding the micro-
phone time differences for recordings of a single sound source continuously
playing music, moving in 3D, with only the sound recordings as input, see
Figure 1.1.

0 5 10 15 20 25 30 35
Time [s]

Input data

Figure 1.1: Eight synchronized sound recordings from the same number of
stationary omnidirectional microphones serve as the input data.

The output consists of vectors containing estimated time differences (or
range differences, if scaled with the speed of sound) between all microphones
and one microphone for a number of positions in time, see Figure 1.2. This
data can be used for estimating the 3D positions of the microphones, the
path of the sound source, and reverberant flat surfaces in the room such as
walls and floor.
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Figure 1.2: Estimated range differences between all eight channels and one
of the channels (red). The colors in the plot correspond to the ones used in
Figure 1.1.

The idea is to start off with a large data set containing both inliers and
outliers by selecting multiple peaks from the generalized cross-correlation
phase transform (GCC-PHAT, see Section 2.2) for every frame for all channel
pairs, and then reduce the number of outliers with various techniques. Random
sample consensus (RANSAC, see Section 2.3) is used to find line segments
for tracks containing a number of subsequent frames.

1.1 Previous Research
The idea to use time differences for positioning is not new. Meldercreutz
(1741) suggested a method for land surveying almost three centuries ago!
Back then, the time measurement was limited to having observers flipping
hourglasses.

Today, more advanced methods are available. One is to use cross-
correlation. In particular GCC-PHAT, introduced by Knapp and Carter
(1976), is popular. Parisi, Cirillo, Panella, and Uncini (2007) suggest using
multiple peaks from the GCC-PHAT. They only use one stationary sound
source in synthetic experiments.

Zhayida, Andersson, Kuang, and Åström (2014) provide a system for
finding time differences using cross-correlation and solving the time difference
of arrival (TDOA, see Section 2.1) problem. Their system is proven to work
well for real experiments in anechoic chambers, but fails finding the time
differences for experiments in reverberant rooms. This served as the starting
point for this thesis project.



Chapter 2

Theory
This chapter introduces the concepts and algorithms used in Chapter 3. In
Section 2.1 the equations needed to solve the time difference of arrival problem
are formulated, without providing the full solution to the problem, which
is out of the scope of this thesis. The notation and problem formulation
follows the one used used by Zhayida et al. (2014). Readers familiar with
cross-correlation and RANSAC can skip Sections 2.2 and 2.3 respectively.

2.1 Time Difference of Arrival
Time difference of arrival (TDOA) is the time difference it takes for a signal
emitted from a transmitter, sj , at an unknown time instance t0,j to reach two
receivers, m1 and m2, at time instances t1,j and t2,j respectively. This can be
measured if the receivers are synchronized. If t0,j also is known one would
instead talk of time of arrival (TOA) measurements.

To estimate the receiver and transmitter positions only from TDOA
measurements one needs M receivers mi, i = 1, . . . ,M , and N matched
transmitters sj, j = 1, . . . , N . The requirements on M and N are discussed
later in this section.

The distance between sj and mi can be expressed as

c(ti,j − t0,j) = ‖sj −mi‖ ,
where c denotes the propagation speed of the signal.

Let uri,j denote the range difference between receivers mi and mr for
transmitter sj, then

uri,j = c(ti,j − tr,j) = c(ti,j − t0,j)− c(tr,j − t0,j)
= ‖sj −mi‖ − ‖sj −mr‖ = ‖sj −mi‖ − or,j,

(2.1)

where or,j = ‖sj −mr‖ is introduced as the offset between sj and mr, r =
1, . . . ,M . In Figure 2.1 the range differences and offsets are illustrated for
three receivers and one transmitter.

3
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Figure 2.1: Illustration of the range differences for three receivers mi (dots)
and one transmitter sj (cross). uri,j = ‖sj −mi‖−or,j , where or,j = ‖sj −mr‖,
i, r ∈ 1, 2, 3. (Note that the superscript is an index and not an exponent.)

To solve the problem in 3D with the method proposed by Kuang and
Åström (2013) one needs a minimum ofM = 6 receivers for which the required
number of transmitters is N = 8. Zhayida et al. (2014) use M = 7, N = 6.
Instead of having N stationary transmitters one can study a single moving
sound source at N different positions.

Note that

uri,j = urk,j − uik,j, k ∈ {1, . . . ,M} \ {i, r} (2.2)

gives M − 2 additional expressions for uri,j.

2.2 Cross-Correlation
The cross-correlation between two sequences, u and v, is defined by (Proakis
& Manolakis, 1996)

(u ? v)(τ) =
∞∑

n=−∞
u(n)v(n− τ), τ = 0,±1,±2, . . .

It can be used as a measure for how similar two sequences are for different
shifts τ . The cross-correlation between the two sequences illustrated in
Figure 2.2 can be found in Figure 2.3.
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Figure 2.2: A short segment of a sound recording from two synchronized
microphones at different positions.
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Figure 2.3: Cross-correlation (left) and GCC-PHAT (right) between the two
signals in Figure 2.2. Both have arg maxτ (u ? v)(τ) = −70, which corresponds
to the time difference between the two microphones and the sound source in
sample points.

Using the discrete-time Fourier transform (DTFT)

U(f) =
∞∑

n=−∞
u(n)e−i2πfn

with the inverse

u(n) =
∞∫
−∞

U(f)ei2πfn df =
1/2∫
−1/2

U(f)ei2πfn df,

one can also express the cross-correlation as

(u ? v)(τ) =
1/2∫
−1/2

U(f)V (f)ei2πfτ df,
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where V (f) is the complex conjugate of V (f). This can be generalized by
inserting a weighting function W (f):

G(τ) =
1/2∫
−1/2

W (f)U(f)V (f)ei2πfτ df

G(τ) is referred to as the generalized cross-correlation function (GCC).
W (f) = 1 gives the normal cross-correlation. Another popular one is the so
called GCC phase transform (GCC-PHAT) (Knapp & Carter, 1976), which
is given by

W (f) = 1∣∣∣U(f)V (f)
∣∣∣ . (2.3)

In Figure 2.3 it is illustrated how the GCC-PHAT can result in more
distinct peaks than the normal cross-correlation.

2.3 Random Sample Consensus
Random sample consensus (RANSAC), introduced by Fischler and Bolles
(1981), is a method for fitting a model to a data set containing a potentially
large amount of outliers.

The idea is to only use a minimal (or small) subset of points to fit the
model, and then count the number of inliers, i.e., the points with residuals
smaller than some threshold. This process is repeated for a predefined number
of iterations, or until a set containing a satisfactory number of inliers has
been found. The largest inlier set is then used to fit the model.

In Figure 2.4, RANSAC is compared to using all points with linear least
squares for fitting a line.

0 2 4 6 8 10
0
1
2
3
4
5

RANSAC

Measurements
Linear least squares
RANSAC

Figure 2.4: Line fitting with RANSAC compared to linear least squares.



Chapter 3

Method
The algorithm for finding the range differences consists of a number of steps
that will be described in this chapter. The main idea is to start out with a
set containing both a large number of outliers and inliers, and then trying
to reduce the number of outliers while keeping, or increasing, the number of
inliers step by step.

The Matlab implementation of the system can be found in Appendix A.

3.1 Input Data and Frame Creation
The input data consists of at least two synchronized sound files. It is assumed
that recordings have been made with omnidirectional microphones with one
moving sound source continuously making some sound.

To compare different channels it is necessary to be able to divide the data
into frames short enough to consider the sound source stationary. To get a
good resolution a frame should also contain a large number of sample points.
This can be achieved by using a high sample rate for the recordings. With a
sample rate Fs = 96000 Hz, and a frame size nfs, one frame is

nfs

Fs
= 2048

96000 s ≈ 0.02 s

long. That is, a sound source moving at a speed of 1 m/s is off by approxi-
mately ±1 cm, while the range difference can be ±3 m, when comparing the
same frame for two different channels. The reason for choosing a nfs = 2048
instead of 2000 is to save a few seconds when calculating the fast Fourier
transform later (which is suited for vectors of a length that is a power of two).

The frames should be close enough in time to be able to consider the
movement of the sound source linear when studying a number of subsequent
frames. Frames 1000 sample points apart will suffice for the experiments in
this project, resulting in an overlap between the frames of 1048 sample points.

7
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3.2 Cross-Correlation
The cross-correlation (with GCC-PHAT, see Section 2.2), is computed between
corresponding frames for all channel pairs. This can be done efficiently using
the 2D fast Fourier transform.

To avoid problems when
∣∣∣U(f)V (f)

∣∣∣ is close to zero, the weighting function
defined in equation 2.3 is modified to

W (f) = 1∣∣∣U(f)V (f)
∣∣∣+ δ

,

where

δ =
1 if

∣∣∣U(f)V (f)
∣∣∣ < ε

0 otherwise

in which ε = 5 · 10−3. Another option could be to instead use

W (f) = 1
max

(∣∣∣U(f)V (f)
∣∣∣ , ε) .

In Figure 3.1 it is illustrated what the GCC-PHAT looks like for one pair
when arranging the frames as columns in a matrix. Both range differences
that are a result from the direct sound path and parts of indirect paths are
distinguishable.
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GCC-PHAT for channel 1 vs 2

Figure 3.1: GCC-PHAT between all frames for two channels. Each column of
pixels represent one (slightly cropped) frame. Only positive values are plotted.
The most prominent curve structure is the result of the direct sound path.
(The whites have been clipped to increase the contrast in the plot.)
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3.3 Peak Selection
The K = 4 strongest peaks for each frame are considered. To avoid some
outliers, peaks under a predefined threshold are ignored. Setting this threshold
high will increase the ratio of inliers to outliers, but for the following steps it’s
more important to have a large number of inliers, even though the number of
outliers is also high. See Figure 3.2.
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Top 4 peaks

1st peak
2nd peak
3rd peak
4th peak

Figure 3.2: The four strongest peaks above some threshold for each frame
for one pair of channels. Most are outliers, but range differences corresponding
to the direct sound path and parts of indirect paths can be hinted.

3.4 Matching Peaks Over all Channels
Studying a frame for one channel pair the previous step gives K values for uri,j
that are potential inliers. Equation 2.2 gives an additional K2(M − 2) values,
and a total of K +K2(M − 2) values. They are put into bins 3 sample points
wide. Bins with a count of at least 3 are considered, for which an inlier value
is calculated as the median. This results in both new inliers and removal of
outliers. See Figure 3.3.

3.5 Using RANSAC to Find Line Segments
To find tracklets, i.e., small parts of a curve, each pair of channels is studied for
sets of 21 subsequent frames with 1 frame overlap. RANSAC (see Section 2.3)
is used to find the line segments containing the most inliers. A line segment
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Figure 3.3: Potential inliers after matching over the channels using equa-
tion 2.2. Many outliers have been removed.

must contain a minimum of 5 inliers, fulfill a threshold for the slope, and share
a maximum of 1 inlier with the other returned line segments. To decrease
the required number of iterations the RANSAC algorithm is non-repeating,
i.e., not using the same values more than once. The tracklets are presented
in Figure 3.4. Both the tracklets and their corresponding line segments are
stored.
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Figure 3.4: Tracklets of inliers corresponding to the line segments found with
RANSAC. The tracklets are sorted by the number of inliers they contain.
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3.6 Connecting Line Segments

Line segments closer than 10 sample points are connected to form longer
tracklets. This is illustrated in Figure 3.5.
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Connected line segments

Figure 3.5: Connected tracklets for one channel pair. The direct path is
almost complete, but there is still a small piece to the left that is loose.

Next tracklets separated by a short amount in time, sharing the same line
equation are connected. See Figure 3.6.
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Figure 3.6: Connected tracklets from the previous step. One tracklet is now
representing the whole direct path.
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3.7 Smoothing
As a last step the longest segment is smoothed with a moving average filter
before fitting a spline. Peaks that are closer than 2 sample points from the
spline are considered inliers. For other frames the spline value becomes a new
inlier.
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Figure 3.7: Smoothed longest segment. Gaps have been filled in by fitting a
spline. Shorter tracklets are ignored.



Chapter 4

Experiments
Several experiments were carried out in different environments containing
reverberant flat surfaces. The experimental setup is illustrated in Figure 4.1.
Eight omnidirectional microphones (t.bone MM 1) connected to a USB sound
card (M-Audio Fast Track Ultra 8R) were used to record a single moving sound
source consisting of a portable loudspeaker (Roxcore Portasound) connected
to a mobile phone through the headphone output. The sound was recorded
with a sample rate of 96000 Hz and stored with lossless compression. For
visualization some of the experiments were also recorded on video.
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7
8

Sound source

Microphones

Figure 4.1: Experimental setup with one moving sound source and eight
microphones.
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Chapter 5

Results
The results presented in Section 5.1 are the direct result from the system
implemented in this thesis project. In the subsequent sections of this chapter
the TDOA solver provided by Zhayida et al. (2014) is used to evaluate the
accuracy of the output.

5.1 Final Output

The final output of the system implemented in this project is illustrated for
one of the experiments in Figure 5.1. This is the same experiment that has
served for the illustrations throughout Chapter 3.
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Figure 5.1: Range differences for all eight channels compared to Channel 1
for one experiment.
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16 CHAPTER 5. RESULTS

5.2 Projecting the Solution

Using the range differences in Figure 5.1 as input in the system presented
by Zhayida et al. (2014) the microphone and sound source positions can be
estimated, see Figure 5.2.
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Figure 5.2: 3D path Zhayida et al. (2014). An interactive version of this
figure is presented in Appendix B.

After calculating the camera matrix (by manually marking the camera
positions in the video) the 3D path of the sound in Figure 5.2 can be projected,
see Figure 5.3.
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Projected 3D path

Figure 5.3: The 3D path from Figure 5.2 projected at video recording of the
experiment. The video is presented in Appendix B.
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Table 5.1: The number of outliers and inliers after each step for one channel
pair for one of the experiments.

Step Inliers Outliers Corresponding figure
Step 1 1260 4639 Figure 3.2
Step 2 1228 633 Figure 3.3
Step 3 1027 30 Figure 3.4
Step 4 1199 93 Figure 3.5
Step 5 1199 7 Figure 3.6
Step 6 1475 17 Figure 3.7

The number of inliers and outliers after each step of the algorithm com-
pared to the projected solution is presented in Table 5.1 for one channel
pair.

Figure 5.4 shows a histogram of the residuals when comparing the calcu-
lated direct path with the projected soulution.

−2 −1 0 1 2
0

50

100

150

Histogram of residuals in sample points

Figure 5.4: Residuals for the direct path compared to the projected solution.

5.3 Indirect Paths
In Figure 5.5 the solution for the direct path is projected on top of the matched
peaks. Also indirect paths calculated from mirroring the microphones in a
surface (found with trilateration for the second longest segment) are projected.
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Figure 5.5: Projected paths for one of the channel pairs.



Chapter 6

Discussion
The developed system works well, at least for some experiments, as seen in
Figure 5.1 and 5.3. Table 5.1 shows that the number of outliers is reduced
while the number of inliers is kept, or increased. The residuals, illustrated
in Figure 5.4, are small, most within ±1 sample point, which corresponds
to ±3.5 mm. Errors in the projection of the solution from Figure 5.2 in
Figure 5.3 are due to the rough estimate of the camera matrix only using
eight points in the image.

There are some situations for which the system might fail. RANSAC is
based on randomness and it is important that the number of iterations is
kept high to reduce the risk of missing data. When connecting the tracklets
there is a risk of loosing track of the direct path when it is crossed by indirect
paths. This is a difficult situation that might require some additional step for
increased robustness.

Using the second longest segment, which should represent some part of
an indirect path, it is possible to find the plane equation for the reverberant
surface using trilateration. This is illustrated in Figure 5.5 where the the
equation for the floor has been estimated and used to reflect the microphone
positions.

The implementation in Matlab can be improved in many ways. The
current use of cell arrays is not optimal in some cases. It would also be
interesting to try doing all calculations for small sets of frames instead of
doing it step by step for the whole signal. Maybe the system would then work
for real time applications.

Further research is required to test the system in different situations.
Using other sound sources than speakers might not work. Sound source
separation of two or more sound sources would be interesting to try. A robust
way of automatic estimation of reverberant flat surfaces is also yet to be
implemented.

19





Chapter 7

Conclusion
In this thesis a method is proposed for microphone time difference estimation
in reverberant rooms with one moving sound source and unknown microphone
positions. RANSAC is used to find line segments in sets of frames containing
a number of the largest GCC-PHAT peaks. The method is proved to work
well in real experiments with a speaker playing music moving in 3D. The
output can be used as input in a system for TDOA solving to estimate
microphone positions, sound source position, and flat reverberant surfaces.
Further research is required to increase the robustness of the system.
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Appendix A

Matlab Code
Here the full implementation of the range difference estimating system is
presented. The scripts have only been tested in Matlab 2014a and have some
dependencies on the Signal Processing Toolbox and the Statistics Toolbox.
Internal dependencies are presented in Figure A.1.

The code has also been published under a free software license on GitHub.
Please refer to this repository for the latest version: https://github.com/
SimonSegerblomRex/tdoa.

frames2vector

getdelays

vector2frames
matchingdelays

gccscores

setaxes

localmax

clipdata

lineplot

readaudio

scoreplot

connectlines
connectsegments

exportdata

segmentplot

selectsoundfiles

main

fitdelayswithransac ransacline

smoothdelays

Figure A.1: Function dependencies for the Matlab-code.
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A.1 main

This is the only script to run, preferably section by section.
%Script for time difference estimation
% Run section by section

%% Read audio files:
settings.v = 340; %speed of sound
settings.mm = 8; %number of microphones
settings.channels = 1:8; %channels to read
settings.refChannel = 1; %reference channel
%[340,8,1:8,1]

[fileNameBase,dataDir,fileExt] = selectsoundfiles();
[a,settings.sr] = readaudio([dataDir fileNameBase],fileExt,settings.mm,...

settings.channels);
settings.nbrOfSamples = length(a);

%% Correlation:
settings.wf = @(x) 1./(abs(x)+(abs(x)<5e-3)); %weighting function
settings.firstSamplePoint = 1; %center sample point of first frame
settings.frameSize = 2048; %width of frame in sample points
settings.dx = 1000; %distance between frames in sample points
settings.frameOverlap = settings.frameSize-settings.dx; %overlap between frames
settings.sw = 800; %clipping of search window
%Default: [@(x) 1./(abs(x)+(abs(x)<5e-3)),1,2048,1000,800]

scores = gccscores(a,settings);

settings.nbrOfFrames = size(scores{1,1},2);

%Plot:
ch = settings.channels(2); %channel to plot
figure(1),scoreplot(scores{settings.refChannel,ch},settings)

%% Delays:
settings.nbrOfPeaks = 4; %max number of peaks
settings.minPeakHeight = 0.01; %threshold for min value of local maxima
%Default: [4,0.01]

u = getdelays(scores,settings);

%Plot:
figure(2),scoreplot(scores{settings.refChannel,ch},settings),hold on
plot(1:size(u{settings.refChannel,ch},2),...

u{settings.refChannel,ch}+settings.sw+1,'*')
%% Clean up delays:
settings.binSize = 3; %inlier threshold
settings.minNbrOfInliers = 3; %min number of matching equations
%Default values: [3,3]

uref = matchingdelays(u,settings);

%Plot:
figure(3),scoreplot(scores{settings.refChannel,ch},settings),hold on
plot(1:size(uref{ch},2),uref{ch}+settings.sw+1,'g*')

%% RANSAC:
settings.RANSACnbrOfIterations = 350; %number of RANSAC iterations
settings.RANSACframeSize = 21; %line width
settings.RANSACframeOverlap = 1; %overlap of lines
settings.RANSACmaxNbrOfGroups = 5; %max nbr of lines
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settings.RANSACminNbrOfInliers = 6; %min nbr of inliers
settings.RANSACinlierThreshold = 1; %max distance to line
settings.RANSACsharedPointsThreshold = 1; %max nbr of shared points
settings.RANSACmaxSlope = 3.5; %max derivative
%Default values: [350,21,1,5,6,1,1,3.5]

[delays,lines,ind] = fitdelayswithransac(uref,settings);

%Plot:
figure(4),lineplot(delays{ch},ind,settings)
figure(5),lineplot(lines{ch},ind,settings)

%% Connect lines:
settings.lineDistanceThreshold = 10; %max vertical distance between lines
%Default value: [10]

[delaysegments,linesegments] = connectlines(delays,lines,ind,settings);

%Plot:
figure(6)
segmentplot(scores(settings.refChannel,:),...

delaysegments,ind,@(x)find(x>0),settings)

%% Connect line-segments:
settings.linesInlierThreshold = 10;
settings.linesOverlap = 5;
settings.linesInlierRatio = 0.15;
[newdelaysegments,newlinesegments] = connectsegments(delaysegments,...

linesegments,ind,uref,settings);
%Default values: [10,5,0.15]

%Plot:
figure(7)
segmentplot(scores(settings.refChannel,:),...

newdelaysegments,ind,@(x)find(x==max(x),1,'first'),settings)

%% Smoothing:
settings.smoothingDegree = 0.01; %degree of smoothing of uref
settings.smoothingDistance = 2; %set to 0 to keep smoothed curve
%Default values: [0.01,2]

urefsmooth = smoothdelays(newdelaysegments,newlinesegments,uref,settings);

%Plot:
figure(8),scoreplot(scores{settings.refChannel,ch},settings),hold on
plot(urefsmooth{ch}+settings.sw+1,'g.')

%% Clip data:
uout = clipdata(urefsmooth,settings);

%Plot:
figure(9),pl = plot(1:length(uout),uout+settings.sw+1,'*');
marks = {'+','o','*','.','x','s','d','^','v','>','<','p','h'}.';
colors = num2cell(hsv(settings.mm),2);
set(pl,{'Marker'},marks(1:settings.mm),{'MarkerFaceColor'},...

colors,{'MarkerEdgeColor'},colors);
leg = num2cell(1:settings.mm);
leg = cellfun(@(k) ['Channel ' num2str(k)],leg,'UniformOutput',false);
legend(leg)
setaxes(settings)

%% Save data:
if ~exist([fileNameBase 'data.mat'],'file')

save([fileNameBase 'data'],'settings','u','uref','delays','lines','ind',...
'delaysegments','linesegments','newdelaysegments','newlinesegments',...



28 APPENDIX A. MATLAB CODE

'urefsmooth','uout')
end

%% Export data:
%Only if you intend to use the 'tdoasystem'-package
exportdata

A.2 selectsoundfiles
Brings up a dialogue to choose input data.
function [fileNameBase,dataDir,fileExt] = selectsoundfiles(delimeter)
%SELECTSOUNDFILES - Select one of the input sound files
%
% [fileNameBase,dataDir,fileExt] = SELECTSOUNDFILES()
% [fileNameBase,dataDir,fileExt] = SELECTSOUNDFILES(delimeter)
%
% Input (optional):
% delimeter - string containg the delimeter separating the sound files
% default value is '-'
%
% Output:
% fileNameBase - part of file name before the delimeter
% dataDir - path to directory, e.g., 'C:/'
% fileExt - file extension, e.g., '.aiff'

if nargin < 1
delimeter = '-';

end

[file,dataDir] = uigetfile(...
{'*.wav;*.ogg;*.flac;*.au;*.mp3;*.aac;*.aiff',...
'Sound files (*.wav, *.ogg, *.flac, *.au, *.mp3, *.aac, *.aiff)';...
'*.*', 'All Files (*.*)'},...
'Select one of the sound files in the set');

[~,fileName,fileExt] = fileparts(file);
fileNameBase = strtok(fileName,delimeter);
fileNameBase = [fileNameBase delimeter];
end

A.3 readaudio
Note that the built-in Matlab-function audioread is currently not available
in Octave.
function [a,sr] = readaudio(fileNameBase,fileExtension,mm,channels)
%READAUDIO - Read audio files
%
% This function returns a matrix containing audio data from the files
% specified with the input arguments. All files must have the same
% sample rate and names ending with 1,..,mm
%
% [a,sr] = READAUDIO(fileNameBase,fileExtension,mm)
%
% Input:
% fileNameBase - filenamebase including path, e.g, 'C:/foo-' if the
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% filenames are 'C:/foo-1.aiff','C:/foo-2.aiff',...
% fileExtension - file extension, e.g., '.aiff'
% channels - vector with channel numbers, e.g., 1:8, or [2,3,5,8]
%
% Output:
% a - matrix where each row contains the samples of corresponding file
% sr - sample rate

ainfo = audioinfo([fileNameBase num2str(channels(1)) fileExtension]);
sr = ainfo.SampleRate;
a = zeros(mm,ainfo.TotalSamples);
for k = channels

a(k,:) = audioread([fileNameBase num2str(k) fileExtension]);
end
end

A.4 gccscores
Edit out the call to single for double precision.
function scores = gccscores(a,settings)
%GCCSCORES - Genereal cross-correlation
%
% This function calculates the GCC for all pairs of frames.
%
% scores = GCCSCORES(a,settings)
%
% Input:
% a - matrix where each row contains samples of a signal for
% different receivers
% settings - struct that must contain:
% .mm - number of columns in scores
% .channels - indeces of rows in a to compute
% .frameSize - number of columns in a frame
% .frameOverlap - overlap between frames
% .firstSamplePoint - column index for the center of the first frame
% .wf - weighting function for the GCC
% .sw - half width of frame to consider
%
% Output:
% scores - cell array containing matrices where each column is the
% calculated between corresponding frames of two channels

%Calculating matrices containing the DFT of all frames:
fftframes = cell(1,settings.mm);
for k = settings.channels

frames = single(vector2frames(a(k,:),settings.frameSize,...
settings.frameOverlap,settings.firstSamplePoint));

%frames = frames-repmat(mean(frames),size(frames,1),1);
fftframes{k} = fft(frames,2*size(frames,1)-1);

end
clear frames;

%Getting indeces indu only for the pairs that we have to calculate:
ii = zeros(1,settings.mm);
ii(settings.channels) = 1;
ind = logical(ii'*ii);
indu = triu(ind);

%Cross-correlation for all pairs with indeces indu:
scores = cell(settings.mm);
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for k = find(indu)'
[ii,jj] = ind2sub(size(ind),k);
tmp = fftframes{jj}.*conj(fftframes{ii});
tmp = fftshift(ifft(tmp.*settings.wf(tmp)),1);
scores{ii,jj} = tmp(round(end/2)-settings.sw:round(end/2)+settings.sw,:);

end
clear fftframes;

%Filling in the pairs not in indu by mirroring the data:
tmp = cellfun(@flipud,scores','UniformOutput',false);
scores(tril(ind,-1)) = tmp(tril(ind,-1));
end

A.5 scoreplot
For plotting the GCC-PHAT data. Is set to only plot positive values and to
clip colors for high values.
function scoreplot(score,settings)
%SCOREPLOT - Plots gray-scale version of GCC-PHAT data

c = 4; %set to 1 not to clip any colors
mm = max(max(score))/c;
imagesc(score,[0,mm]),colormap(gray)

setaxes(settings)
end

A.6 setaxes
Changes ticks. Not necessary if using a different call to imagesc in scoreplot
and scaling the rest of the data.
function setaxes(settings)
%SETAXES - Scales axes ticks
%
% This function scales the axes of a plot.
%
% SETAXES(settings)
%
% Input:
% settings - struct that must contain:
% .nbrOfFrames - number of frames
% .nbrOfSamples - number of samples in the signal
% .sr - sample rate of the signal
% .sw - half width of frame to consider
% .v - propagation speed of the signal

axis equal

%x-axis:
xlim([1,settings.nbrOfFrames])
x = 1:settings.nbrOfFrames;
t = x*settings.nbrOfSamples/settings.nbrOfFrames/settings.sr;
tticks = 5*unique(fix(t/5));



A.7. VECTOR2FRAMES 31

tind = arrayfun(@(x) find(t-x>0,1,'first'),tticks);
set(gca,'XTick',x(tind));
set(gca,'XTickLabel',tticks);
xlabel('Time')

%y-axis:
ylim([1,2*settings.sw+1])
y = 1:2*settings.sw+1;
u = (y-settings.sw)/settings.sr*settings.v;
uticks = 1*unique(fix(u/1));
uind = arrayfun(@(x) find(u-x>0,1,'first'),uticks);
set(gca,'YTick',y(uind));
set(gca,'YTickLabel',uticks);
set(gca,'YDir','reverse');
ylabel('Range-difference')
end

A.7 vector2frames
Could use buffer directly if not caring about the parameter start.
function F = vector2frames(v,frameSize,frameOverlap,start)
%VECTOR2FRAMES - Similar to buffer
%
% This function divides the input vector v into frames organized in a
% matrix.
%
% F = VECTOR2FRAMES(v,frameSize,frameOverlap,start)
%
% Input:
% v - vector
% frameSize - length of frame
% frameOverlap - overlap between frames
% start - center of first frame
%
% Output:
% F - frames organized as columns in a matrix

if nargin < 4
start = 1;

end

v = v(:); %ensure v is a column vector

hw = round((frameSize-1)/2);
if frameOverlap > 0

n = hw-frameOverlap;
else

n = hw;
end

if (start <= hw)
z = zeros(hw-start+1,1);
v = [z; v];
start = hw+1;

end

F = buffer(v(start-n:end),frameSize,frameOverlap,...
v(start-hw:start-hw+frameOverlap-1));

end
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A.8 getdelays
Could be shortened if the optimization for the special case of one peak was
handled in localmax instead.
function u = getdelays(scores,settings)
%GETDELAYS - Find local maxima
%
% This function finds local maxima for the input.
%
% u = GETDELAYS(scores,settings)
%
% Input:
% scores - cell array conataining matrices
% settings - struct that must conatin:
% .mm - number of columns in scores
% .channels - indeces of columns in scores to compute
% .minPeakHeight - minimum value for local maxima
% .sw - should be round((size(scores{ch},1)-1)/2)
% .nbrOfPeaks - max number of local maxima to return
%
% Output:
% u - cell array of size mm x mm containing matrices

u = cell(settings.mm);

%Getting indeces indu only for the pairs that we have to calculate:
ii = zeros(1,settings.mm);
ii(settings.channels) = 1;
ind = logical(ii'*ii);
indu = triu(ind);

if settings.nbrOfPeaks == 1 %special case for 1 peak (for optimization)
for k = find(indu)'

[v,ii] = max(scores{k});
ii(v < settings.minPeakHeight) = NaN;
u{k} = ii-settings.sw-1;

end
else

for k = find(indu)'
[~,ii] = localmax(scores{k},settings.minPeakHeight,settings.nbrOfPeaks);
u{k} = ii-settings.sw-1;

end
end

%Filling in the pairs not in indu by mirroring the data:
tmp = cellfun(@(A) -A,u','UniformOutput',false);
u(tril(ind,-1)) = tmp(tril(ind,-1));
end

A.9 localmax
This could be implemented using findpeaks. Sorting all the values even
when just returning a few is not optimal.
function [v,ind] = localmax(A,minPeakValue,nbrOfPeaks)
%FINDLOCALMAX - Find local maxima
%
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% This function finds local maxima for each column in the input matrix.
%
% [v,ind] = LOCALMAX(A,minPeakValue,nbrOfPeaks)
%
% Input:
% A - matrix
% minPeakValue - minimum value for local maxima
% nbrOfPeaks - max number of local maxima to return (for each column)
%
% Output:
% v - value vectors for local maxima
% ind - index vectors for local maxima

%Finding local maxima:
n = size(A,2);
df = [diff(A); zeros(1,n)];
df = sign(df);
dfdf = [zeros(1,n); diff(df)];

ind = dfdf < 0; %indeces of local maxima
v = -Inf(size(A));
v(ind) = A(ind);

%Sorting local maxima:
[v,ind] = sort(v,'descend');
v = v(1:nbrOfPeaks,:);
ind = ind(1:nbrOfPeaks,:);

%Setting local maxima < minPeakValues to NaN:
badind = v < minPeakValue;
v(badind) = NaN;
ind(badind) = NaN;
end

A.10 matchingdelays
Uses equation 2.2 to find inliers.
function uref = matchingdelays(u,settings)
%MATCHINGDELAYS - Limits the delay candidates
%
% This function...
%
% uref = MATCHINGDELAYS(u,settings)
%
% Input:
% u - delay data output from getdelays
% settings - struct that must have...
%
% Output:
% uref - delays for

channels = settings.channels;
refChannel = settings.refChannel;
[m,n] = size(u{channels(1),channels(1)});

uref = cell(1,settings.mm);
for ch = channels(channels~=refChannel)

candidates = NaN(1+m*m*(numel(channels)-2),n);
candidates(1:m,:) = u{refChannel,ch};
%Using u{refChannel,ch} = urefChannel{refChannel,k}-u{ch,k}:
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pp = 1; %loop counter
for k = setdiff(channels,[refChannel,ch])

candidates(2+(pp-1)*m*m:pp*m*m+1,:) = dfcombs(u{refChannel,k},u{ch,k});
pp = pp+1;

end
%Finding the candidates that have at least minNbrOfInliers inliers:
[bin,binNbr] = histc(candidates,-settings.sw:settings.binSize:settings.sw);
ind = bin > settings.minNbrOfInliers;
urch = NaN(max(sum(ind)),size(bin,2));
for cc = find(sum(ind) > 0)

pp = 1; %loop counter
for k = find(ind(:,cc))'

urch(pp,cc) = median(candidates(binNbr(:,cc) == k,cc));
pp = pp+1;

end
end
uref{ch} = urch;

end

end

%Help function:
function combs = dfcombs(A,B)
%...
% A, B, same size

[m,n] = size(A);
combs = NaN(m*m,n);
for k = 1:m

combs(1+(k-1)*m:k*m,:) = A-B;
B = circshift(B,-1);

end
end

A.11 fitdelayswithransac
Doesn’t use perform any calculations for the last frame.
function [delays,lines,ind] = fitdelayswithransac(u,settings)
%FITDELAYSWITHRANSAC - Non-repeating RANSAC
%
% This function performs a non-repeating RANSAC to find line segments.
%
% [delays,lines,ind] = FITDELAYSWITHRANSAC(u,settings)
%
% Input:
% u - cell array of matrices where each column represents an
% instance in time with a number of values (or NaN)
% settings - struct that must contain:
% .channels - indeces of u to compute
% .refChannel - reference index of u
% .RANSACframeSize - number of columns in a frame
% .RANSACframeOverlap - overlap
% .RANSACmaxNbrOfGroups - max number of line segments to return
% .RANSACnbrOfIterations - number of RANSAC iterations
% .RANSACmaxSlope - max allowed abs derivative
% .RANSACminNbrOfInliers - min number inliers for a line segment
% .RANSACinlierThreshold - distance to line threshold
% .RANSACsharedPointsThreshold - max number of shared points between
% returned line segments
%



A.12. RANSACLINE 35

% Output:
% delays - matrix containing the values in A correspoinding to the
% found line segments row by row sorted by the number of inliers
% lines - matrix containing the values for the found line segments row
% by row sorted by the number of inliers
% ind - matrix containing the column indeces of all frames as columns

channels = settings.channels;
refChannel = settings.refChannel;

frameSize = settings.RANSACframeSize;
frameOverlap = settings.RANSACframeOverlap;
maxNbrOfGroups = settings.RANSACmaxNbrOfGroups;

start = round((frameSize+1)/2);
ind = vector2frames(1:max(cellfun('length',u)),frameSize,frameOverlap,start);
ind = ind(:,1:end-1); %since there might be zeros in the last column
n = size(ind,2);

delays = cell(1,settings.mm);
lines = cell(1,settings.mm);

for ch = channels(channels~=refChannel)
delays(ch) = {NaN(maxNbrOfGroups,frameSize,n)};
lines(ch) = {NaN(maxNbrOfGroups,frameSize,n)};
for k = 1:n

[delays{ch}(:,:,k),lines{ch}(:,:,k)] = ...
ransacline(u{ch}(:,ind(:,k)),settings);

end
end
end

A.12 ransacline
Non-repeating RANSAC algorithm.
function [delays,lines] = ransacline(A,settings)
%RANSACLINE - Non-repeating RANSAC
%
% This function performs a non-repeating RANSAC to find line segments.
%
% [delays,lines] = RANSACLINE(A,settings)
%
% Input:
% A - matrix where each column represents an instance in time with
% a number of values (or NaN)
% settings - struct that must conatin:
% .RANSACmaxNbrOfGroups - max number of line segments to return
% .RANSACnbrOfIterations - number of RANSAC iterations
% .RANSACmaxSlope - max allowed abs derivative
% .RANSACminNbrOfInliers - min number inliers for a line segment
% .RANSACinlierThreshold - distance to line threshold
% .RANSACsharedPointsThreshold - max number of shared points between
% returned line segments
% Output:
% delays - matrix containing the values in A correspoinding to the
% found line segments row by row sorted by the number of inliers
% lines - matrix containing the values for the found line segments row
% by row sorted by the number of inliers

delays = NaN(settings.RANSACmaxNbrOfGroups,size(A,2));
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lines = NaN(settings.RANSACmaxNbrOfGroups,size(A,2));

tmp = find(sum(~isnan(A)));
if numel(tmp) < settings.RANSACminNbrOfInliers

return
end

%Non-NaN points in A:
[rows,cols] = find(~isnan(A));
points = [cols'; A(sub2ind(size(A),rows,cols))'];

%All possible combinations:
n = length(points);
[r,c] = meshgrid(1:n,1:n);
pairs = unique(sort([r(:),c(:)],2)','rows');
pairs = pairs(:,randperm(length(pairs))); %shuffling

%RANSAC:
nbrOfIterations = settings.RANSACnbrOfIterations;
tmpdelays = NaN(nbrOfIterations,size(A,2));
tmplines = NaN(nbrOfIterations,size(A,2));
for k = 1:min(settings.RANSACnbrOfIterations,length(pairs))

%Line using two random points:
p = points(:,pairs(:,k));
ll = null([p' ones(2,1)]);
okSlope = abs(ll(1)/ll(2)) < settings.RANSACmaxSlope;
if ~okSlope

continue
end
distances = abs(ll'*[points;ones(1,size(points,2))])/norm(ll(1:2));
ind = distances < settings.RANSACinlierThreshold;
enoughInliers = sum(ind) >= settings.RANSACminNbrOfInliers;
if enoughInliers

%Line fitting using all the inliers:
pp = [points(1,ind)' ones(size(points(1,ind)'))]\points(2,ind)';
ll = [pp(1)/pp(2); -1/pp(2); 1];
x = 1:size(A,2);
y = (-ll(3)-ll(1)*x)/ll(2);
distances = abs(ll'*[points;ones(1,size(points,2))])/norm(ll(1:2));
ind = distances < settings.RANSACinlierThreshold;
tmpdelays(k,points(1,ind)) = points(2,ind);
tmplines(k,:) = y;

end
end

%Deleting NaN-rows:
ind = ~all(isnan(tmpdelays),2);
tmpdelays = tmpdelays(ind,:);
tmplines = tmplines(ind,:);

%Getting rid of duplicate lines:
for k = 1:settings.RANSACmaxNbrOfGroups

if isempty(tmpdelays)
return

end
nbrOfInliers = sum(~isnan(tmpdelays),2);
[~,ind] = max(nbrOfInliers);
delays(k,:) = tmpdelays(ind,:);
lines(k,:) = tmplines(ind,:);
ind = ~(sum(ismember(tmpdelays,delays(k,:)),2) > ....

settings.RANSACsharedPointsThreshold);
tmpdelays = tmpdelays(ind,:);
tmplines = tmplines(ind,:);

end
end
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A.13 connectlines

Only works for positive values of settings.RANSACframeOverlap.
function [delaysegments,linesegments] = connectlines(delays,lines,ind,settings)
%CONNECTLINES - Connects line segments
%
% This function connects line segments to form longer tracklets.
%
% [delaysegments,linesegments] = CONNECTLINES(delays,lines,ind,settings)
%
% Input:
% delays - cell array
% lines - cell array
% ind - matrix
% settings - struct that must contain:
% .mm - number of columns in scores
% .channels - indeces of columns in scores to compute
% .refChannel - reference index
% .RANSACframeOverlap - overlap
% .lineDistanceThreshold - threshold
%
% Output:
% delaysegments - cell array
% linesegments - cell array

channels = settings.channels;
refChannel = settings.refChannel;

frameOverlap = settings.RANSACframeOverlap;

delaysegments = cell(1,settings.mm);
linesegments = cell(1,settings.mm);

for ch = channels(channels~=refChannel)

delaysegments(ch) = {{NaN(size(ind))}};
linesegments(ch) = {{NaN(size(ind))}};

pp = numel(delaysegments{ch});
prev = cellfun(@(c) c(end-floor(frameOverlap/2),1),linesegments{ch})';
for k = 1:size(ind,2)

curr = lines{ch}(:,frameOverlap-floor(frameOverlap/2),k);
lineInd = find(~isnan(curr));
tmpMin = Inf(size(prev));
for j = lineInd'

[mv,tmp] = nanmin(abs(prev-curr(j)));
if (mv < min(settings.lineDistanceThreshold,tmpMin(tmp)))

%Connect to old segment:
delaysegments{ch}{tmp}(:,k) = delays{ch}(j,:,k)';
linesegments{ch}{tmp}(:,k) = lines{ch}(j,:,k)';
tmpMin(tmp) = mv;

else
%New segment:
delaysegments{ch}{pp}(:,k) = delays{ch}(j,:,k)';
linesegments{ch}{pp}(:,k) = lines{ch}(j,:,k)';
delaysegments{ch}(pp+1) = {NaN(size(ind))};
linesegments{ch}(pp+1) = {NaN(size(ind))};
pp = pp + 1;

end
end
prev = cellfun(@(c) c(end-floor(frameOverlap/2),k),linesegments{ch})';

end



38 APPENDIX A. MATLAB CODE

if pp > 1
delaysegments{ch} = delaysegments{ch}(1:end-1);
linesegments{ch} = linesegments{ch}(1:end-1);

end
end
end

A.14 lineplot
Some hacks to remove NaN-values from the plot to reduce the size of exported
vector graphics.
function lineplot(u,ind,settings)
%LINEPLOT - Plots line segments

marks = '+o*.xsd^v><ph';
colors = hsv(12);

rows = find(~all(all(isnan(u),3),2))';
n = rows(end);

p = zeros(n,1);

hold on
for k = 1:n

mar = marks(mod(k-1,numel(marks))+1);
col = colors(k,:);
tmp = squeeze(u(k,:,:)+settings.sw+1);
tmpind = ~isnan(tmp);
tmp = plot(ind(tmpind),tmp(tmpind),mar,'Color',col);
p(k) = tmp(1);

end
legend(p,'1st line','2nd line','3rd line','4th line','5th line')
setaxes(settings)
end

A.15 connectsegments
There are some ugly hacks here that should be fixed.
function [newdelaysegments,newlinesegments] = ...

connectsegments(delaysegments,linesegments,ind,uref,settings)
%CONNECTSEGMENTS - Connects tracklets
%
% This function connects tracklets to form longer tracklets.
%
% [newdelaysegments,newlinesegments] = ...
% CONNECTSEGMENTS(delaysegments,linesegments,ind,uref,settings)
%
% Input:
% delaysegments - cell array
% linesegments - cell array
% ind - matrix
% uref - cell array
% settings - struct that must contain:
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% .mm - number of columns in scores
% .channels - indeces of columns in scores to compute
% .refChannel - reference index
% .RANSACframeOverlap - overlap
% .lineDistanceThreshold - threshold
%
% Output:
% newdelaysegments - cell array
% newlinesegments - cell array

channels = settings.channels;
refChannel = settings.refChannel;

newdelaysegments = cell(1,settings.mm);
newlinesegments = cell(1,settings.mm);

for ch = channels(channels~=refChannel)

newdelaysegments{ch} = cell(size(delaysegments{ch}));
newlinesegments{ch} = cell(size(newlinesegments{ch}));

n = numel(linesegments{ch});

u = uref{ch};

for k = 1:n
segment0 = linesegments{ch}{k};
index = find(~isnan(segment0),settings.linesOverlap,'last');
point0 = [ind(index(1)); segment0(index(1))];
rMax = -Inf;
for j = k+1:n

segment1 = linesegments{ch}{j};
index = find(~isnan(segment1),settings.linesOverlap,'first');
point1 = [ind(index(end)); segment1(index(end))];
if point0(1) > point1(1)

tmp0 = frames2vector(segment0,settings.RANSACframeOverlap,...
round((settings.RANSACframeSize+1)/2));

tmp1 = frames2vector(segment1,settings.RANSACframeOverlap,...
round((settings.RANSACframeSize+1)/2));

index = point1(1):point0(1);
r = sum(abs(tmp0(index)-tmp1(index)) < 10)/norm(point0-point1);

else
ll = null([point0' 1; point1' 1]);
[rows,cols] = find(~isnan(u));
index = logical((cols > point0(1)).*(cols < point1(1)));
rows = rows(index);
cols = cols(index);
points = [cols'; u(sub2ind(size(u),rows,cols))'];
distances = abs(ll'*[points;ones(1,size(points,2))])/norm(ll(1:2));
r = sum(distances < settings.linesInlierThreshold)/norm(point0-point1);
if norm(point0-point1) > 300 %...fult

r = 0;
end

end
if r > max(settings.linesInlierRatio,rMax)

rMax = r;
%Add segment k...
newdelaysegments{ch}{k} = delaysegments{ch}{k};
index = ~isnan(delaysegments{ch}{j});
newdelaysegments{ch}{k}(index) = delaysegments{ch}{j}(index);
%...and segment j:
newlinesegments{ch}{k} = linesegments{ch}{k};
index = ~isnan(linesegments{ch}{j});
newlinesegments{ch}{k}(index) = linesegments{ch}{j}(index);
%Copy new connected segments to j:
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delaysegments{ch}(j) = newdelaysegments{ch}(k);
linesegments{ch}(j) = newlinesegments{ch}(k);
continue

elseif j == n
newdelaysegments{ch}(k) = delaysegments{ch}(k);
newlinesegments{ch}(k) = linesegments{ch}(k);

end
end

end
end
end

A.16 frames2vector
Should work for negative overlaps too.
function v = frames2vector(F,frameOverlap,start)
%FRAMES2VECTOR - Frames back to vector
%
% This function reconstructs a vector from frames.
%
% v = FRAMES2VECTOR(F,frameOverlap,start)
%
% Input:
% F - matrix with frames as columns
% frameOverlap - overlap between frames
% start - center of first frame
%
% Output:
% v - vector

frameSize = size(F,1);
hw = (frameSize-1)/2;

if frameOverlap >= 0
v = F(1:end-frameOverlap,:);
v = v(:);
if start <= hw

v = v(hw-start+2:end);
end
v = [v; F(end-frameOverlap+1:end,end)];

else
F = [zeros(-frameOverlap,size(F,2)); F];
v = F(1:end,:);
v = v(:);

end
end

A.17 segmentplot
Some hacks to remove NaN-values from the plot to reduce the size of exported
vector graphics.
function segmentplot(scores,u,ind,f,settings)
%SEGMENTPLOT - Plots tracklets
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marks = '+o*.xsd^v><ph';
for ch = settings.channels(settings.channels~=settings.refChannel)

subplot(2,round(settings.mm/2),ch)
nel = cellfun(@(c) numel(find(~isnan(c))),u{ch});
indd = f(nel);
colors = hsv(numel(indd));
%scoreplot(scores{ch},settings)
hold on
pp = 1;
for kk = indd

mar = marks(mod(pp-1,numel(marks))+1);
col = colors(pp,:);
tmp = u{ch}{kk};
tmpind = ~isnan(tmp);
plot(ind(tmpind),tmp(tmpind)+settings.sw+1,mar,'color',col);
pp = pp + 1;

end
setaxes(settings)

end
end

A.18 smoothdelays
There are many other built-in smoothers in Matlab that might work better,
needs more testing.
function urefsmooth = smoothdelays(newdelaysegments,newlinesegments,uref,settings)
%SMOOTHDELAYS - Smooths input data
%
% This function smooths the input data.
%
% urefsmooth = SMOOTHDELAYS(newdelaysegments,newlinesegments,uref,settings)
%
% Input:
% newdelaysegments - cell array
% newlinesegments - cell array
% uref - cell array
% settings - struct that must contain:
% .mm - number of columns in scores
% .channels - indeces of columns in scores to compute
% .refChannel - reference index
% .RANSACframeOverlap - overlap
% .RANSACframeSize - number of columns in a frame
% .smoothingDegree - degree of smoothing
% .smoothingDistance - inliers threshold
%
% Output:
% urefsmooth - cell array

channels = settings.channels;
refChannel = settings.refChannel;

longestdelaysegments = cell(1,settings.mm);
longestlinesegments = cell(1,settings.mm);
for ch = channels(channels~=refChannel)

nel = cellfun(@(c) numel(find(~isnan(c))),newlinesegments{ch});
[~,indd] = max(nel);
longestdelaysegments(ch) = newdelaysegments{ch}(indd);
longestlinesegments(ch) = newlinesegments{ch}(indd);

end
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urefsmooth = cell(1,settings.mm);

for ch = channels(channels~=refChannel)

ur = uref{ch};

u = frames2vector(longestdelaysegments{ch},settings.RANSACframeOverlap,...
round((settings.RANSACframeSize+1)/2));

%Fit spline:
x = find(~isnan(u));
y = smooth(x,u(x),settings.smoothingDegree);
xx = x(1):x(end);
yy = spline(x,y,xx);

y = NaN(1,size(ur,2));
y(xx) = yy;

d = abs(ur-repmat(y,size(ur,1),1));
cind = find(sum(d < settings.smoothingDistance) > 0);
[~,rind] = min(d(:,cind));
ind = sub2ind(size(ur),rind,cind);
tmp = ur(ind);

y(cind) = tmp;
urefsmooth{ch} = y;

end
end

A.19 clipdata
This is not really optimal if the TDOA solver can handle missing data.
function uout = clipdata(u,settings)
%CLIPDATA - Clip input data
%
% This function clips the input data.
%
% uout = CLIPDATA(u,settings)
%
% Input:
% u - cell array
% settings - struct that must contain:
% .channels - indeces of columns in scores to compute
% .refChannel - reference index
%
% Output:
% uout - matrix

leftLim = max(cell2mat(cellfun(@(c) find(~isnan(c),1,'first'),u,...
'UniformOutput',false)));

rightLim = min(cell2mat(cellfun(@(c) find(~isnan(c),1,'last'),u,...
'UniformOutput',false)));

uout = NaN(settings.mm,max(cellfun('length',u)));
for ch = settings.channels(settings.channels~=settings.refChannel)

uout(ch,leftLim:rightLim) = u{ch}(leftLim:rightLim);
end
uout(settings.refChannel,leftLim:rightLim) = 0;
end



Appendix B

Videos and 3D Figures
Figure B.1 and B.2 are intended to be viewed in a PDF viewer with multimedia
support.

Figure B.1: Interactive version of Figure 5.2.

Figure B.2: Click to play video version of Figure 5.3.
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