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Abstract

The objective of this thesis is to investigate performance for different investment alter-
natives for an investor wanting to track a multidimensional stock index. Performance is
measured in terms of transaction cost, active return against the index and tracking error.
The problem is approached by comparing performance for a full replication strategy against
a strategy in which the traded portfolio is a dimension reduction of the index as well as
against a strategy, trading the dimension reduced portfolio, aiming to predict and in turn
minimize transaction costs. The full replication case and the dimension reduction case
trade with a volume-weighted strategy, whilst the last strategy trades at times historically
being least expensive to trade at. The dimension reduction is done based on results from
a principal component analysis together with empiric results on transaction costs associ-
ated with trading a certain stock. The transaction cost prediction model implemented is
the PAR-model, presented by Rashkovich and Verma (2012). The results show that when
reducing the dimension of the index, meaning that stocks with undesired characteristics
can be excluded, performance is improved. The transaction cost minimizing strategy show
some improvement against the full replication strategy, but its performance is inferior to
trading a dimension reduced portfolio with a volume-weighted strategy. This highlights
the difficulties in predicting stock market behavior. Hence, the strategy recommended for
an investor wanting to track a multidimensional index is to conduct a dimension reduction
according to preferences and use a volume-weighted trading strategy.
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1 Introduction

The stock market contributes with two basic functions for the financial system; first by
converting savings to financing; and second, by providing risk management. If an investor
is willing to accept some risk, investing in stocks generally gives a higher return than tra-
ditional saving accounts. At the same time this provides companies with capital needed
for their activities and enables them to reallocate their risk by transferring it to external
investors.

This thesis has been written at Sales Trading at Handelsbanken Capital Markets. It will
focus on the investor perspective. A part of the Sales Trading Group’s function is to provide
customers, i.e., potential investors, with investment proposals. If commissioned to create a
portfolio tracking a certain performance benchmark, the sales trader is expected to deliver
a portfolio meeting the constraints on return and risk determined by the customer.

1.1 Purpose

This thesis will investigate different investment alternatives for an imagined investor want-
ing to invest in a portfolio constructed out of Swedish stocks, with a restriction on its
return being equal to, or better than that of a multidimensional index1. In order to draw
conclusions about how to find an eligible investment strategy with good overall perfor-
mance, three different investment strategies, referred to as test cases, will be analyzed. All
test cases have the same restriction on its return, but will differ in their approach towards
achieving best performance. The first test case will be a simple strategy, namely to fully
replicate the index. The second test case will investigate if performance can be improved
by conducting a dimension reduction of the index. The portfolio traded in this test case
will be composed of a subset of the stocks included in the index. By doing a dimension
reduction, stocks with undesirable characteristics, such as illiquidity, can be excluded from
the portfolio. Illiquid stocks contribute to uncertainty which can imply that the cost of
holding such a stock is high. The last case to be investigated is to, in addition to reducing
the dimension of the index, also predict transaction costs2 before deciding on execution
strategy. This test case will explore the effect from optimizing trade times on performance.

Performance in this thesis is primarily evaluated in terms of resulting transaction costs,
but also in terms of active return against the benchmark, i.e., the multidimensional index,
and tracking error.

1I.e., the index is comprised of a large number of stocks
2Costs that arise when trading

4



1.2 Problem to be Solved

Assume that the Sales Trading Group is approached by a customer interested in investing
in a portfolio tracking the multidimensional Stockholm Benchmark Index (OMXSB). This
index is constructed of approximately 70 stocks listed on the Stockholm Stock Exchange.
With this constraint on investment return, this thesis will investigate two questions:

• How does dimension reduction of a multidimensional index affect performance?

• Can optimizing trade time and order size based on predicted transaction costs im-
prove performance?

The results from the questions posed above will serve as support for the problem to be
solved in this thesis:

How to construct and maintain a portfolio, tracking a multidimensional index,
to obtain best performance?

In the scope of this project, Handelsbanken requested performance results on daily basis to
be presented for a potential customer. These results are therefore attached in the Appendix
section, where one can see how day to day results could be presented for a customer.

1.3 Disposition

The remainder of this thesis is disposed as follows: Chapter 2 provides a brief background
to exchange trading and explains some important concepts, such as transactions costs and
stock indexes. In the subsequent chapter the theoretical concepts and models used in this
thesis are introduced, such as models for transaction cost analysis and dimension reduction.
The implementation of these models are described in Chapter 4. Furthermore, the results
are presented in Chapter 5, followed by discussion and conclusion in Chapters 6 and 7
respectively.
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2 Background

In this chapter, background explaining the trading environment is presented. For the
reader to get an idea of how trade is conducted, the first section explains exchange trading in
general followed by a more specific description on how trade is conducted on the Stockholm
Stock exchange. Furthermore, this chapter defines and explains transaction costs and
their characteristics and relevance for a trader. Lastly, the reader is introduced to stock
indexes and certain investment strategies which have the objective to perform according
to a specified index.

2.1 Exchange Trading

Stock trading on exchanges is of great importance for the modern financial system. Ex-
change trading dates back to the late 18th century and during its lifetime it has faced many
developments. Still, however, the exchanges’ main objective remains the same: to act as a
market place where sellers and buyers meet and trade. Today these market places are often
electronic platforms where submission and matching of orders are done automatically. A
term often heard in the context of trading is algorithmic trading. This is basically a term
describing that trade is conducted by automated processes following a set of rules. Among
others, Kolm & Maclin (2010) state that the use of algorithmic trading has evolved and
increased in importance over the past years.

The largest exchange in Sweden is the Stockholm Stock Exchange, owned by Nasdaq OMX
Group (hereinafter referred to as OMX Stockholm). Data from stocks traded on this ex-
change will serve as basis for this thesis. The exchanges accept numerous types of orders,
one being limit orders where buyers (sellers) submit a specified price and trade is executed
if there is a counterpart willing to sell (buy) at that specified price or lower (higher). If not,
the order is stored in a limit order book for stand-by. Another order type is market orders
where buyers (sellers) submit an order to buy (sell) a certain quantity of a stock to the best
available price. Thus, the trader submitting a market order is more concerned with having
an immediate execution than getting the best price. The resting limit orders assure that
there is liquidity meeting this immediate liquidity demand (Kolm & Maclin 2010). The
highest buy order price is called the bid price and the lowest sell order price defines the
ask price. The difference between the two is called the bid-ask spread. The largest bid-ask
spread is often found in the beginning of the trading day which Groß-Klußmann et al.
(2011) explains by a higher adverse selection component in spreads due to the processing
of overnight information.

If interested in stock liquidity, one can turn to historical stock data to get a picture of the
future order flow. Figures 1 and 2 below show the intraday liquidity cycle for two sample
Swedish stocks as percentage of average daily volume (ADV) traded. The stocks are ABB

6



and Rezidor Hotel Group (REZT). These stocks have different levels of liquidity, where
ABB is a more frequently traded stock compared to REZT.
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(a) Intraday liquidity cycle for ABB in February
2013, computed on 30-day historical data.
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(b) Liquidity cycle for ABB, 9 am – 5:25 pm.
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Figure 1
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(a) Intraday liquidity cycle for Rezidor Hotel Group
in February 2013, computed on 30-day historical data.
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(b) Liquidity cycle for Rezidor Hotel Group,
9 am – 5:25 pm.

Figure 2
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OMX Stockholm starts the day with a pre-open session where a call auction takes place.
Buyers (sellers) submit a maximum (minimum) price at which they are willing to buy (sell).
Their offers are matched with eligible sell (buy) orders in a process called uncrossing3.
This process is carried out during a fraction of a second right before opening at 9:00 am.
Uncertainty of stock price might have been raised overnight due to new information etc.
and the morning call auction is conducted to decrease the instability of the opening stock
price. At 9:00 the ordinary trade begins, when orders are automatically and continuously
matched. The trade continues until 5:25 pm when the matching of orders is haltered.
Orders submitted during the last 5 minutes of the day, i.e., the pre-close period, are not
matched until the last 30 seconds of the day (5:29:30 - 5:30) when an uncrossing takes place
again. This closing call is conducted to ensure a fair closing price for the stock (Nasdaq
OMX [A]). Figures 1a and 2a show the order flow from the morning call auction finish
at 8:59 am, until the closing at 5:30 pm. In these figures one can clearly see the peak of
orders matched just before closing. To better understand the ordinary trade flow one can
look at Figures 1b and 2b, which only display orders matched between 9:00 am to 5:25
pm in time buckets of 15 minutes. Looking at these figures one can see that the intraday
liquidity cycle is somewhat convex for both stocks, meaning that most of the trade takes
place in the beginning or at the end of the trading day. This pattern is according to Kolm
et al. (2010) representable for most publicly traded stocks.

2.2 Costs Associated with Trading

Glanz & Kissel (2003) states that every trade generates a transaction cost which is defined
as a cost paid by a trader without resulting in any value increment. These costs refer
to costs associated with implementing an investment decision and facilitating the trans-
actions, such as offering a price attractive to counterparties etc. To visualize transaction
costs one can look at Figure 3. Transaction costs are described as the difference between an
actual portfolio and its paper equivalent. The paper portfolio is a virtual portfolio, traded
at benchmark prices and the actual portfolio is the portfolio where transaction costs are
accounted for. The difference between the two portfolios was defined as implementation
shortfall by André Perold (1988).

3Since all crossing prices are matched and removed
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Figure 3: Implementation shortfall, defined by André Perold, is the difference between an
actual portfolio and its paper equivalent.

Glanz et al. (2003) divides transaction costs into nine different cost components. These
are shown in Figure 4. The costs are organized after visibility in a pyramid, where the
most visible costs are closer to the top.

Almgren et al. (2005) states that if a transaction cost is visible, i.e., easily measured, it
is also easily minimized. Commissions and fees are costs paid to brokers etc. These costs
cannot be avoided altogether, though bargain with different brokers can minimize them4.
Taxes vary depending on national monetary politics and can obviously not be avoided or
negotiated. The bid-ask spread, defined in the previous section, compensates the liquidity
providers on the market, e.g., market makers or brokers buying at bid prices and selling
at ask price. Optimizing trade times and participation rate, i.e., the fraction between the
traded order size and the total volume available at the chosen trade time, can minimize
spread-related costs.

The visible costs do not contribute much to total transaction costs, instead Glanz et al.
(2003) means that the hidden costs are those that account for the largest part. The five
costs in the base of the cost pyramid are the ones generally described as hidden. Delay
costs arise as there might be a time lag between the decision to trade and the actual trade,
thus the price might have changed in an unfavorable direction. Price appreciation costs
occur due to natural price movement of the stock; if buying stock in a rising market or vice

4For sales traders these costs are fairly low since they are high-frequency traders
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Figure 4: Visualization of transparent and hidden transaction costs defined by Glanz et al.

versa. The three most hidden components are: market impact; timing risk and opportunity
costs. These are also the ones providing the greatest opportunity for cost reduction (Glanz
& Kissel 2003), thus they are the most important to control. This thesis will focus on
minimizing market impact under certain constraints on timing risk and opportunity cost.
The characteristics of these costs are described in detail in section 3.3.1.

Implementation shortfall is sometimes referred to as a “unavoidable slippage”. This point
of view is rejected by many, for example by Glanz et al. (2003) who suggests that if taking
the right actions the costs can be considerably reduced. Perhaps transaction costs cannot
fully be avoided, but since they can have a significant effect on investment returns it is
important to manage them by implementing some kind of transaction cost analysis (TCA)
for tracking and/or predicting future costs. Since transaction costs have many origins they
can be complex and time demanding to control. According to Kissel (2006), the increased
use of algorithmic trading has also increased the interest in TCA, maybe due to the fact
that algorithms can be designed to manage and minimize transaction costs based on current
market conditions. To ensure successful minimization one needs to have a good method for
measuring transaction costs. The model used in this thesis is the PAR-model, presented
by Rashkovich and Verma (2012), and is further described in section 3.5.
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2.3 Investing in Stock Indexes

A stock index is an imagined portfolio composed of different stocks representing a specific
part of the stock market. It can be constructed to capture the performance of a specific in-
dustry, e.g., telecommunications or mining, or the performance of companies with a certain
market capitalization. indexes can also be constructed to track the overall performance of
a national market. While one cannot actually invest directly in the index portfolio, there
are many alternatives if one wants to achieve the same performance as an index. The most
obvious one is full replication, i.e., creating a portfolio with portfolio stock weights corre-
sponding to the index weights. Given that the index one wants to track is composed of a
large number of different stocks, meaning that the index is high dimensional, this method
could imply that one needs to create a very large portfolio and hold stocks with undesired
characteristics. Atamtürk & Gollamudi (2013) means that this strategy usually is far too
expensive to implement due to transaction costs that arise when trading and the cost of
holding such a large number of securities. Hence it is not a preferred method.

Another method is to find a replicating portfolio composed by a smaller number of stocks
than included in the index. This strategy for tracking the index can be viewed as making
a dimension reduction of the index. However, to ensure that this method is successful
both in the objective of tracking the index performance and avoiding extensive transaction
costs one needs to choose stocks in a clever way. How this can be done is explained in the
subsequent chapter.
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3 Theory

This thesis will investigate how the performance of a portfolio, tracking a multidimensional
index, is affected by certain measures to avoid high transaction costs. This problem can be
approached in many ways. In the following sections the theory behind the methods used
in this thesis are introduced. The selected multidimensional stock index is presented in
the first section, followed by sections describing how a potential replicating portfolio can
be constructed and how the transaction costs generated by trading this portfolio can be
predicted and managed.

3.1 OMX Stockholm Benchmark Index

An index is essentially a list of stocks serving as a benchmark for a certain portion of the
market. The most regularly quoted stock index in Sweden is probably OMXS30, which is
an index composed of the 30 most traded stocks on OMX Stockholm. This is the index
often used by the news to report how the Swedish market is doing. The included companies
in this index all are large ones with high turnover of their stocks. In order to get a bench-
mark reflecting a larger part of the market movements one might want to turn to other
indexes, such as OMX Stockholm Benchmark Index (OMXSB). This index is composed
of stocks with top 10% turnover on OMX Stockholm. This results in the index portfolio
comprising 70-100 stocks. The index is revised twice a year in order to mirror current
market conditions5, meaning that for a period of one half year the companies on the index
stock list remains the same (Nasdaq OMX [B]).

The weighting of stocks included in an index can be done in different ways. One com-
mon method, which also is the one used for OMXSB, is to set weights according to the
stocks’ market capitalization6. When calculating market capitalization OMXSB use free
float adjustment, which means that only those shares available7 for daily trade are counted
as shares outstanding (Nasdaq OMX [B]). The weight for each stock is calculated as the
stock’s market capitalization divided by the sum of market capitalization for all stocks.

Since OMXSB includes more stocks than OMXS30 one can draw the conclusion that some
of the OMXSB-stocks are less liquid that the OMXS30-stocks, even though they have rela-
tively high trading volume compared to the rest of the market. For that reason some stocks
might be expensive to trade. Because of this characteristic OMXSB is a more interesting
index for the purpose of this thesis and it is therefore selected for further investigation.

5I.e., the list of stocks included in the index is updated according to which stocks currently belong to
the top 10% turnover companies on OMX Stockholm

6I.e., number of shares outstanding× price
7Stocks defined as non-available are shares held by the government or a controlling/company insider

shareholder. Cross-held shares are also by definition non-available
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The index will be dimension-reduced in order to get a more manageable portfolio where
expensive, i.e., illiquid stocks, and stocks less important for index return will be excluded
in order to minimize transaction costs. The distribution of capital weights for different
industries in OMXSB, as of June 2013, is shown in Figure 5 (for a more detailed distri-
bution of industries and sectors, please see Appendices A.1 and A.2). The classification
of industries follows the Industry Classification Benchmark (ICB), a classification system
used by OMX Stockholm since February 2012 (Nasdaq OMX [C]).

Figure 5: The distribution of capital weights for different industries in OMXSB, June 2013.

3.2 Portfolio Optimization

To track a specific index means to invest in a portfolio that follows the movements of the
index to the best extent possible. As previously mentioned, full replication of an index do
imply high cost, hence it is not best practice when tracking an index. A better method
is to reduce the dimension of the index and create a portfolio that includes fewer stocks,
but still follows the index movements resulting in a minimal tracking error. Atamtürk &
Gollamudi (2013) means that the main problem faced for the investor is to decide which
subset of securities to include and what capital weight should be assigned respectively.
How these problems can be solved is presented in the subsequent subsections.
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3.2.1 Tracking Error

First and foremost the term tracking error should be defined. The tracking error is some
measure of the deviation between portfolio value and index value. One measurement could
be absolute value deviation, i.e., abs(index value − portfolio value). A more comprehen-
sible measure is the percentage difference in value, which is how tracking error will be
interpreted in this thesis, defined in Equation (1). To ensure that the tracking error gets
and remains low, the replicating portfolio holdings should be rebalanced continuously, e.g.,
daily, according to index movements.

Tracking Error =

∣∣∣∣Portfolio Value

Index Value
− 1

∣∣∣∣. (1)

3.2.2 Quadratic Minimization

The basic method for portfolio optimization is the mean-variance model, which finds the
optimal portfolio weights w minimizing the variance of the portfolio return for a given
expected return R, i.e.,

min
w

w>Qw,

s.t. r>w = R,
(2)

where Q is the covariance matrix for the security returns, r. In this model the investor
can vary R and observe the trade-off between risk, i.e. variance in portfolio return, and
expected return. However, the model ignores many considerations and possible constraints
for an investor. As for the restriction on portfolio return set in this thesis, to track a
multidimensional index, another portfolio optimization method is needed. The function
optimized is, instead of Equation (2), the total active risk relative to a benchmark portfo-
lio, e.g., an index, with weights wb subject to some additional constraints on return, short
positions etc., see Equation (3) below.

min
w

√
(w − wb)>Q(w − wb), (total active risk)

s.t. r>w ≥ R, (return constraint)∑
w = 1, (budget constraint)

w ≥ 0, (no short positions allowed)

(3)

where r is the exponentially weighted average logarithmic return for each stock in the
portfolio and R is the return of the index portfolio

14



The covariance matrix Q for n securities can be constructed according to (4), where σ is
the standard deviation for the stock returns and ρ is the correlation.

Q =


ρ1,1σ

2
1 ρ1,2σ1σ2 · · · ρ1,nσ1σn

ρ2,1σ2σ1 ρ2,2σ
2
2 · · · ρ2,nσ2σn

...
...

. . .
...

ρn,1σnσ1 ρn,2σnσ2 · · · ρn,nσ
2
n

 (4)

For the covariance matrix to be valid it must be based on a symmetric and positive-
semidefinite correlation matrix, i.e., the correlation matrix must have eigenvalues larger or
equal to zero. In Jäckel (2002) it is stated that slight inconsistencies in the historical data
used increases the risk of obtaining an unvalid correlation matrix. This risk also increases
as the number of assets grows. Hence, this is something one must pay attention to before
continuing further analysis with the covariance matrix.

3.2.3 Principal Component Analysis

If having the attention of tracking an index with a portfolio of lower dimension than that
of the index, one needs to select stocks in a clever way. The most logical approach is to in-
clude those index stocks that reflects most of the index performance. Principal Component
Analysis (PCA) is a method widely used for extracting relevant information from noisy
data sets. By orthogonal transformation the method converts a data set, with possibly
correlated variables, into linearly uncorrelated variables, i.e., principal components, also
called factors. If conducting a PCA on a covariance matrix for stock returns, such as the
above described matrix Q, the resulting principal components should give a hint of which
stocks explains most of the index return.

The procedure is based on the fact that a symmetric matrix can be expressed in terms of its
eigenvalues and eigenvectors. Assume that the matrix considered is the covariance matrix
Q above. The matrix can be expressed as Q = ΓΛΓ>, where Λ is a diagonal matrix with
the eigenvalues of Q, λ1, . . . , λn, in the diagonal. Γ is an orthogonal matrix with columns
γ1, . . . , γn corresponding to the standardized eigenvectors of Q. The principal components,
P , can be expressed as:

P = Γ> (r − E[r]) , (5)

where r is the data observations, in this case logarithmic stock return observations. The
principal components have E[P ] = 0 and Cov(P ) = Γ>QΓ = Γ>ΓΛΓ>Γ = Λ, which shows
that the principal components are uncorrelated. Without loss of generality Λ and Γ can
be ordered so that the eigenvalues are sorted in descending order. For sorted eigenvalues,
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the ratio expressed in Equation (6) represents the amount of variability explained by the
first j principal components, when j ≤ n.

Lambda Ratio =

∑j
k=1 λk∑n
k=1 λk

, (6)

The first principal component, with corresponding eigenvalue λ1, explains the greatest
amount of the total variation of the data, and the second explains the greatest amount of
the remaining variation and so on. If a principal component has a corresponding low eigen-
value, the factor has little explanatory power of the data. Hult et al. (2012) states that for
a good approximation of a data set one regularly only needs 2-3 factors. To conclude which
original variables, in this case which stocks, that are of the greatest importance for each
principal component one can turn to the factor loading, which is the correlation between
the original variables and the principal component. The original variables with the largest
correlation are those that are most important.

PCA is a commonly used data-reduction technique, mostly providing useful results. How-
ever, one should be careful before drawing definite conclusions. One pitfall could be that
when applying PCA on a covariance matrix, where the original variables have very different
sample variances, the variables with the highest variance will dominate the first principal
component. The solution to this problem is to standardize the data and then apply PCA
on the standardized data set’s correlation matrix instead.

3.2.4 Bloomberg Performance Attribution Model

Evaluation of portfolio performance can give insight in potential improvements in port-
folio formation or support future strategy decisions. Especially when trading a portfolio
constructed as a dimension reduction of an index it would be useful to track relative perfor-
mance versus the index performance, i.e., active return. Bloomberg Professional Services
provides that kind of tool, presented by Gan (2013). The tool is called Performance At-
tribution Model and is based on the assumption that active return can be calculated by
assessing return contribution to a set of factors, e.g., industries. Gan argues that active
return can be decomposed into Allocation and Selection Effects as described in Equation
(7).

Active Return =

S∑
s=1

(wPs − wBs )(RBs −RB)︸ ︷︷ ︸
Allocation

+
S∑
s=1

wPs (RPs −RBs )︸ ︷︷ ︸
Selection

, (7)

where ws is the weight for certain industry s in the portfolio (P ) and benchmark (B), Rs
represents the return attributed to an industry and RB is the weighted average return for
all industries in the benchmark.
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Allocation refers to the capital allocation assigned to different industries. To underweight
an industry, i.e., wPs < wBs , with inferior return or overweight an industry with superior
return, relative to the average benchmark return, gives positive contribution to active
return. Selection effect origins from the selection of portfolio stocks. The term gives positive
contribution to active return if the portfolio return attributed to a certain industry is higher
than the benchmark return in the same industry. If tracking the two components of active
return one can evaluate decisions about capital allocation and stock selection. Hence, it
can give insight about if the dimension reduction has been done in an appropriate way.

3.3 Transaction Cost Analysis

3.3.1 Transaction Cost Overview

According to Glanz et al.(2003) portfolio managers claim that transaction costs account for
around 1% of total trade costs when trading liquid assets, but can be as high as 2-3% for
trades with illiquid assets or trades during adverse markets conditions. The ones generally
described as the largest contributors to transaction costs are presented below.

Market impact cost is according to Almgren et al. (2005) the most important one to
control in order to improve overall performance. It can be explained as the price change
for a stock due to a particular trade or order. Kissel (2006) gives two reasons why this
cost occurs, the first one being the order’s liquidity demand and the second reason is the
information leakage caused by placing the order. The liquidity demand forces investors to
pay a premium (buy orders) or provide discounts (sell orders) to attract a counterpart.
Glanz et al. (2003) states that information leakage occurs when the market interprets the
trade as a signal that the stock is under- or overvalued. Market impact depends mostly on
order size and participation rate, originated from chosen execution strategy, but also on
price volatility and prevailing market conditions. Having a non-aggressive trading strategy
and dividing large orders into small trades over a longer time period can, according to
Spatt (2010), minimize market impact. For high liquid assets the market impact is small,
implying low transaction costs even for substantial order sizes.

Another hidden transaction cost is timing risk. This refers to the uncertainty of the es-
timated transaction cost. One part of timing risk is price volatility and the other one is
liquidity risk. Kissel (2006) states that price volatility can impose an unexpected change
in the stock price independent of the presence of the order. Furthermore, liquidity risk is
connected to unexpected low liquidity on the market that will impose high market impact
if the order is completed. Having a short trade horizon, meaning trading in an aggressive
manner, can minimize timing risk.

Opportunity cost is a hidden cost that represents the lost profits or the cost of not be-
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ing able to fully complete an order. Glanz et al. (2003) means that the reason for this
often is lack of liquidity in the market, adverse price movements, or both. For example,
suppose that a trader decides to buy 200 000 shares of a stock, traded at a currently low
price. However, throughout the day he only executes 150 000 shares due to a non-aggressive
strategy originated from a desire to trade with minimal market impact. Then, if the price
has increased the next day when he wants to execute the final 50 000 stocks, he has lost an
opportunity to buy at a low price. An aggressive trading strategy, i.e., short trade horizon
with potentially high participation, can minimize opportunity costs.

Obviously, these three costs are tightly connected to one another. A cost-reduction of one
transaction cost can lead to an increase of another. For example, if a trader wants to reduce
market impact by trading in a non-aggressive manner, the trader experience higher timing
risk and opportunity costs since the trading horizon is prolonged. Glanz et al. (2003) refers
to this trade-off between risk and market impact as “The Traders Dilemma”.

Market impact cost is, even though it is hidden on beforehand, fairly easy to measure
post-trade. When it comes to timing risk and opportunity cost, much is depending upon
the preferences of each individual trader. Therefore, market impact cost is the transaction
cost that most TCA-models focus on.

3.3.2 TCA in the Investment Process

Madhavan (2002) refers to the investment process as a cycle, illustrated in Figure 6. He
suggests that the first step is to decide an investment strategy, defining objective and
horizon for the investment. When this is settled, one should make decisions about which
stocks to invest in and what capital weight to assign to each stock. Before starting the
trade, Madhavan means that a TCA should be implemented, predicting future transaction
costs, allowing the trader to predict the best execution strategy. This pre-trade analysis
could be based on historical data on price, liquidity and risk.

Figure 6: Scheme of Madhavan’s investment process where a pre-trade analysis should
precede the execution.

There are many models eligible for predicting transaction costs. In the subsequent section
3.4 one of the most commonly used transaction cost models is introduced and in section
3.5 a modification of this model is presented and explained.
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After the order is executed according to the determined strategy, the performance of the
trade is evaluated in a post-trade analysis. In this stage the actual transaction cost can be
measured. Information from the post-trade analysis can be used as feedback when deciding
investment strategies for future trades.

3.4 The Almgren Model

A detailed study of market impact transaction cost estimates is provided by Almgren et
al. 2005 which is based on previously published works by Almgren and Criss (2000) and
Almgren (2003). The goal of this model is to calculate the realized market impact costs
based on order size and duration. It is based on the separation of a trade’s temporary and
permanent impact on the market where the first one dissipates over time and the second
one remains. The concept behind Almgrens model is that the permanent impact can be
measured, post-trade, as the price change from arrival price8 30 minutes after the end of
an order. Almgren argues that by that time the temporary impact is gone, hence all that
remains is the permanent impact. The permanent impact can then be used to calculate the
temporary impact via Equation (8), where the market impact is estimated as the difference
between arrival price and average execution price.

Temporary Impact = Market Impact− 1

2
Permanent Impact. (8)

After an estimation process in several steps based on a large sample of data from Citigroup
US, Almgren arrives at Equations (9) and (10) to predict the permanent impact I and
the realized market impact J based on trade size and trade time. To simplify the model,
Almgren states that the rate of trading is constant in volume time.

I = γ × σ × size

ADV
×
(

Θ

ADV

)δ
, (9)

J =
I

2
+ sgn(size)× η × σ ×

∣∣∣∣ size

ADV × T

∣∣∣∣β, (10)

where size is total order size, ADV is average daily volume, T is the duration of the trade

(in days) and σ represents the daily volatility. Furthermore, the factor

(
Θ

ADV

)
is a liq-

uidity factor and γ, δ, η and β are model parameters estimated by regression on the data set.

For further reading about the Almgren model the reader is referred to the work by Almgren
et al. 2005.

8Arrival price is the price at which trade is initiated
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3.5 The PAR-model

3.5.1 Overview of the Model

Almgren’s work has made a great contribution to the field of transaction cost analysis.
However, his model has been accused of being too static. According to Rashkovich and
Verma (2012), the fix amount of time Almgren waits to capture permanent impact is the
major drawback of his model. Permanent impact of a trade with participation rate of only
1%, taking 2 minutes to execute, and a trade with participation rate of 30%, taking 2 hours
to execute, are both measured after 30 minutes in the Almgren model. It is a reasonable
assumption that these trades, with such different characteristics, will have different impact
on the market. In 2012, Rachkovich et al. presented a more dynamic transaction cost
model, based on the assumption that participation rate greatly affects the magnitude of
the temporary impact. They introduced Participation Arrival Reversion (PAR), defined
in Equation (11), as the time lag from order execution start until the temporary impact
should be measured. This model is hereinafter referred to as the PAR-model.

PAR = min(participation % minutes*, 0.5× duration, 30 minutes), (11)

*For each 1% of participation, wait 1 minute to measure temporary impact

The PAR-model suggest that the post-trade measure for temporary impact is the price
change from arrival price. For a trade with 1% participation one will wait one minute to
capture the temporary impact and for a trade with 25% participation, one will wait 25
minutes. This is done in order to capture the impact as close to the source, i.e., the order
execution, as possible. Two practical considerations with PAR are made: the first one
being that the time one waits to capture temporary impact cannot be larger than half the
duration of the trade; the second is that to ensure that the model includes enough trades
close to the end of the day, trades with a higher participation rate than 30% will still be
measured after 30 minutes. From the observed temporary impact, the permanent impact
is calculated via Equation (12).

Permanent Impact = Market Impact− 1

2
Temporary Impact, (12)

where market impact is the change from arrival price to average execution price.

One can distinguish two conceptual differences from the Almgren model. First; the time lag
the two models wait to capture the impact, and second; what kind of impact being measured
– Almgren measures permanent impact while the PAR-model measures the temporary
impact. The authors find the PAR-model assumptions being more intuitive thanks to the
dynamic approach of measuring transaction costs. For this reason, the PAR-model will be
the basis for the TCA implemented in this thesis.
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3.5.2 The Cost Components Reconsidered

When designing the formula for predicting market impact transaction costs using the PAR-
model, data from more than 250 buy-side firms world wide were collected. Some filters were
applied before including the orders in the data set9. After filtering 65 000 orders remained
(all from the US market). These orders were used to calibrate the model. Rashkovich et
al. divided the market impact transaction cost into three cost components: instant impact ;
temporary impact ; and permanent impact, see Equation (13).

Transaction Cost = Instant impact + Temporary impact + Permanent impact. (13)

Formulas for these components was found, which are further described below, and the
model parameters used were obtained via regression. The parameter values are shown in
Table 1.

Parameter Value

α 0.023± 0.0014
β1 0.76± 0.06
β2 0.19± 0.04
γ 0.030± 0.0017
η 0.81± 0.08

Table 1: Parameter values in the PAR-model.

Rashkovich et al. (2012) states that instant impact cost occurs when trading through the
bid-ask spread10. An aggressive execution strategy (with high participation rate) forces
a trader to cross deeper into the spread than a non-aggressive strategy and will therefore
suffer from higher transaction costs. Their research found that a participation of 5% would
cross one quarter of the spread whereas a participation ≥ 30% fully cross the spread. This is
illustrated in Figure 7 in the case of a buy order. They concluded that the factor describing
how much a trade would deviate from the mid price is linear and can be expressed as λ in
Equation (14).

λ = [−0.25 + 3× (max(min(0.3,
participation

100
), 0.05)− 0.05)], (14)

where participation is given in percent. Notice that a participation rate of 13.3% will cause
λ = 0, and even lower participation will lead to λ ≤ 0. This because a non-aggressive

9Order size ≤ 1000 shares, Market cap 6= micro, Order duration ≥ 2 min and ≤ 1 day,
30-day volatility ≥ 8 and ≤ 100, Size/ADV ≥ 1% and ≤ 100%, Participation % ≥ 1% and ≤
100%, Order life price momentum < |3%|, Realized market impact ≤ |500|bp, Country = United States,
Dates = June 1, 2011, to May 31, 2012

10I.e., trade at a price deviating from the mid price =

(
ask price− bid price

2

)
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Price                               

30% participation => 100% cross

                             

5% participation => 25% cross

Figure 7: Rashkovich et al. suggest that a participation of 5% would cross one quarter of
the spread whereas a participation ≥ 30% fully cross the spread (buy order).

execution strategy allows the trader to wait until an eligible counterpart arrives, hence
the trader do not have to cross over the mid-price. Rashkovich and Verma arrived to the
conclusion that the instant impact factor could be estimated using the following formula:

Instant Impact = λ× bid-ask spread, (15)

where bid-ask spread is in percent. To ensure stability of the instant impact factor,
Rashkovich et al. argues that one should use the average bid-ask spread over the last
five trading days. Since λ can be negative this could cause a negative instant impact cost,
and possibly a negative transaction cost. This is not practically possible, hence the instant
impact factor is said to be zero if participation rate is lower than 13.3%.

In the previous subsection temporary impact was post-trade measured as the price change
from arrival price after PAR, calibrated on participation rate alone, see Equation (11).
However, Rashkovich et al. found that when predicting the temporary impact one could
not only consider participation rate but also needed to add duration as a component in
order to scale the cost with increasing order size11. Participation rate versus duration
mirror the level of aggressiveness of an order. This because when decreasing duration for

11A large trade order with long duration is expected to imply a larger temporary impact than a small
trade order with short duration and the same participation rate. Thus, duration seems to be an appropriate
scale factor for the temporary impact
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a fix order size, the participation rate is forced to increase, i.e., the strategy becomes more
aggressive, if the order is to be fully executed. This represents the preferred strategy for a
trader with low risk tolerance in terms of opportunity cost and timing risk. The opposite
strategy, long duration and low participation, would represent a non-aggressive strategy
with high risk tolerance. To fully capture this characteristic in the temporary impact,
Rashkovich et al. found that it was not enough to use only participation and duration,
but when adding the annualized volatility, σ, over the last 30 trading days, the temporary
impact factor behaved as expected, resulting in Equation (16). The parameters α , β1 and
β2 are obtained via regression and T is the duration of the trade (in days).

Temporary Impact = ασ × participationβ1(T )β2 . (16)

When calibrating the formula for permanent impact, Rachkovich and Verma assumed that
it would only depend upon the relation between order size and ADV. However, they found
it appropriate to scale also this factor by the annualized 30-day volatility, see Equation
(17). The variable ADV is calculated over a 30-day moving window and the parameters η
and γ are obtained via regression.

Permanent Impact = γσ

(
size

ADV

)η
. (17)

As previously stated, the total transaction cost is the sum of instant, temporary and
permanent impact, see Equation (13), thus the resulting transaction cost equation can be
written as follows:

Transaction Cost = λ× bid-ask spread Instant Impact

+ ασ

(
participation

100

)β1
(T )β2 Temporary Impact

+ γσ

(
size

ADV

)η
Permanent Impact

(18)

where λ is given in Equation (14) and bid-ask spread and participation is given in percent.
Equation (18) gives the transaction cost as fraction of the trade cost per share.
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4 Methodology

This chapter will clarify how the previously described models and methods are implemented
in this thesis. The work flow should be easy to follow and give the reader a scheme of how
all different parts, such as PCA and TCA, are connected.

4.1 Terms for Analysis

4.1.1 Data Description

The basis for this thesis is OMXSB data from the first trading day in June 2013 to the
last trading day in November 2013. This timeframe is chosen because it lies between two
OMXSB rebalancing periods, hence the included stocks remain the same over the whole pe-
riod, except for the stock ’HOGA B’ which was delisted from OMX Stockholm in October
18 and excluded from OMXSB in September 25. To simplify calculations and program-
ming problems, we chose to divide our data set in two; the first being a test period12 which
is defined as the time period before ’HOGA B’ is removed; the second period, including
the remaining data, is defined as run period13. We assume that an investor commissions
us to construct a portfolio ready to trade from October 3 (five days into run phase data)
and onwards. The data before this date is seen as historical data, and all sequent data is
assumed to be unknown.

The test period data is used for calculating parameters and analyzing different models later
used in the run phase. The data in the run period is used to simulate trading processes
for different investment strategies, referred to as test cases (for clarification see Figure 8).
The test cases are further described in the subsequent subsection.

Figure 8: Decomposition of data.

122013-06-03 – 2013-09-24
132013-09-25 – 2013-11-29
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The data we have available is comprised of daily stock data on trade size and volume-
weighted mid-prices in one-minute ticks for all stocks included in OMXSB from June to
November 2013 (68-69 stocks). We also have information on daily closing prices and av-
erage bid-ask spread for each stock. The bid-ask spread normally varies throughout the
day depending on market liquidity conditions and the valuation of the underlying stock by
sellers and buyers. The established assumption on the intraday pattern for bid-ask spread
is a reversed ’J’-shape, presented by, among others, Groß-Klußmann et al. (2011). Thus,
the bid-ask spread is largest at opening and decreases as the day passes. In the data used in
this thesis, however, the bid-ask is fix for a window of one day, implying that the intraday
dynamics are removed. For our results to be based on a more natural bid-ask spread we
model it as a reversed ’J’-shaped curve with a mean equal to the average bid-ask spread
given to us in the data.

Furthermore, we also have OMXSB index data, comprised of the daily stock weights in the
index and index closing value. The index value is calculated so that the closing value on
day t is equal to the index opening value day t+ 1.

4.1.2 Cases to be Investigated

Four test cases are run on our data set. These will be referred to as Base Case, Case A,
Case B and Pre-case, further described below.

The first case to be investigated is the Base Case, in which we fully replicate OMXSB.
This case is used as a basis against which the other case results are compared. The Base
Case is simulated in the run period, using an 80-day rolling data window, starting in the
test period, to calculate parameters such as historical average daily volume and volatility.
The trading strategy chosen in this case is the commonly used volume-weighted strategy.
This strategy aims to trade with a constant participation throughout the day, hence the
trade sizes will vary with the available trade volume. If trading with a constant relatively
low participation, this strategy can be viewed as a non-aggressive market impact minimiz-
ing strategy. The volume-weighted trading strategy will predict how the intraday volume
pattern will evolve and decide which order size to trade at what time during the day based
on historical data.

The second case, Case A, is the first step towards trying to minimize transaction costs
and improve portfolio performance. In this case we aim to trade a dimension reduced
portfolio with the same volume-weighted trading strategy as in the Base Case. It is run on
the same data as the Base Case, using the same historical parameters. However, since we
have excluded stocks with undesired characteristics we expect that the transaction costs
in Case A will be lower than in the Base Case. The dimension reduction is made based on
results from a PCA, together with knowledge about which stocks are expensive to trade in
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terms of transaction cost as fraction of total trade cost. This will ensure that we include
the stocks most important for index return as well as those being least expensive to trade.
Because of the dimension reduction we also expect that this case will have some active
return against OMXSB due to allocation and selection effect.

A potential improvement in minimizing transaction costs is to trade the same dimension
reduced portfolio on the same data as in Case A, but to use another trading strategy. This
case, Case B, uses a trading strategy based on predictions about which times during the
day that are the least expensive to trade at. For this objective we have developed three
transaction cost optimizing versions, referred to as TC-optimizers. From testing these ver-
sions in a Pre-case study we decide which one to implement for Case B. The Pre-case
tests the TC-optimizers by trading a portfolio being a full replication of OMXSB in the
test period (+ five days of run phase data) since we want to simulate a real situation where
a customer commissions us to create a portfolio ready to start trade at October 3. Thus,
the only data available at this time would be previous data. The TC-optimizers are de-
scribed further in section 4.2. Case B follows the investment cycle described by Madhavan:
a TCA is conducted before trading and based on its result, trade is executed (see Figure 6).

All cases are post-trade analyzed in terms of transaction cost, active return and tracking
error during a trading period of 10 trading days (2013-10-03 – 2013-10-16). Since we do not
actually trade, only simulate trading on historical data for each case, we cannot post-trade
measure the realized transaction cost as in the PAR-model14. Instead we use the formula
for predicting transaction costs with real-time input parameters as approximation15, see
Equation (18). This implies that we cannot rely on the calculated transaction cost’s ab-
solute value. However it reflects the size of the transaction cost paid, hence this gives us
comparable test case results. One can also argue that the transaction cost prediction is
reliable enough if measured over a longer period of time. An overestimation one day will
probably be compensated by an underestimation another day. Both Case A and B are
initiated to investigate trade with a dimension reduced portfolio and these two cases are
also evaluated on their active return against benchmark.

To conclude the most important characteristics of the test cases:

Base Case: Full replication of OMXSB index, volume-weighted trading strategy

Case A: Trade with dimension reduced portfolio, volume-weighted trading strategy

Case B: Trade with dimension reduced portfolio, transaction cost optimizing trading
strategy selected via a Pre-case study

14Market impact costs arise due to a certain order being disclosed to the market. Our historical data is
not affected by our simulated trades, hence no market impact arise

15Such as available volume, actual trade size, bid-ask spread etc.
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In order to run the above described test cases, we first need to decide some input variables
such as maximal allowed participation, how many index instruments we want to track,
i.e., how much money we initially want to invest in the portfolio, and acceptable tracking
error. These variables are usually determined by the investor, but in order for him/her
to make these decisions we need to provide information on how these two variables are
connected to how many days it takes to reach an acceptable tracking error. We obtain this
information by calculating the 30-day average ADV for each stock in the index as well as
the 30-day average stock holding needed to fully replicate the index, based on the 30 last
days before October 3. Based on these results we approximate the number of days it would
take to obtain a tracking error of less than a certain limit for different values on maximal
participation.

4.1.3 Assumptions for the Transaction Cost Model

As mentioned earlier, the market impact transaction cost prediction method used in this
thesis is the PAR-model. The model requires the following assumptions on model param-
eters and variables:

Model parameters: The fixed parameters in Table 1, obtained via regression on US
market data, are used without consideration of the confidence intervals.

Volatility: In this model, σ is the annualized average 30 day volatility. It is calculated
on the logarithmic returns rt based on the stocks’ closing prices pt, for each day in
our historical data window of 80 days, t = 1, 2, ..., 80, see (19). σdaily for each stock
is obtained through Equation (20). This is converted to yearly standard deviation,
σyearly, by multiplication of a factor

√
25216.

rt = log

(
pt+1

pt

)
, (19)

σdaily =

√√√√ 1

80− 1

80∑
t=1

(rt −
−
r)2, (20)

σyearly = σdaily ×
√

252 (21)

where
−
r is the mean of the stock’s logarithmic returns.

16We assume 252 trading days per year
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Average Daily Volume: ADV is calculated as an exponentially weighted moving aver-
age over 30 days.

Bid-ask spread: We approximate the bid-ask spread to a reversed ’J’-shaped curve with
an average equal to actual daily average bid-ask spread. The bid-ask used in the
PAR-formula is a five-day average.

Size, Duration and Participation: The size is the order size one wants to trade and
the time T is the duration of its execution. Participation is calculated as the fraction
between the trade size and the available volume during T , see Equation (22).

Size

Available Volume
= Participation (22)

4.2 Preparations

4.2.1 Constructing the Dimension Reduced Portfolio

The first step towards constructing the dimension reduced portfolio, used in Case A and
B, is to conduct a PCA on the stock return covariance matrix. For this objective we create
a data set containing the stocks’ logarithmic returns for an 80-day window of historical
data, ending just before the portfolio trade period starts at October 3. The eigenvectors,
γ1, . . . , γn, and eigenvalues, λ1, . . . , λn, for the data set’s covariance matrix are obtained.
The λ:s are used to calculate the lambda ratio, described in Equation (6). The result
supports the decision of how many of the first principal components (PC) that are needed
to accurately mirror the data. To determine which stocks are the most important for the
chosen PC:s, we look at their factor loadings for each stock respectively. The factor loading
can be obtained by looking at the value attributed to each stock in the eigenvector.

The second step is to obtain information on which stocks that are expensive to trade. We
measure this in terms of fraction of the daily trade cost attributed to transaction costs.
This variable will be referred to as TCfrac

17. TCfrac for one day is obtained by predicting
transaction costs when trying to trade a certain amount of each stock, equal to the fraction
of the stock’s ADV corresponding to trading with maximal participation throughout the
whole day. To get a fair value on this variable we take the five day average TCfrac

Via a scoring formula, including results form both the PCA and the five day average
TCfrac, we determine which stocks to include in our dimension reduced portfolio. The

17TCfrac = transaction cost/total cost. Total cost refers to the cost of trading the stock, i.e., stock price
paid + transaction cost
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results are weighted according to relative importance for our investigation. The skeleton
for the scoring formula is displayed in Equation (23).

Scorei = Ω1 ×
NPC∑
k=1

ekf(i,k)︸ ︷︷ ︸
PCA results

−Ω2 × TCfrac︸ ︷︷ ︸
TC-prediction

(23)

where Ω is a vector containing weighting factors for the PCA results and the TC-prediction,
NPC is the number of PC:s taken into consideration, ek is the fraction between how much
of the variance is explained by PCk and the cumulative sum of variance explained by the
NPC PC:s. f(i,k) is the factor loading for PCk assigned to stock i.

4.2.2 Transaction Cost Optimizing Trading Strategies

We have developed three versions of TC-optimizers with objective to predict time and size
for optimal order execution in terms of transaction cost, given that we have a desired goal
size which we want to trade each day. The prediction is based on the PAR-model formulas
for calculating transaction costs. The versions are tested in a Pre-case study from which
we are able to select the best TC-optimizer.

Of the PAR-model variables: volatility; ADV; and bid-ask spread are fix for each individual
stock and day in the trade period, since they all are historical averages. Hence, these vari-
ables cannot be optimized. We also fix the duration to a specified fraction of the trading
day in order to simplify the calculations. Thus, the remaining variables for our PAR-model
are size and participation, where the relation between the two are described in Equation
(22). Looking at Equation (18), we can see that transaction cost will increase with in-
creased participation, i.e., larger order size, over some time period T . Evidently, finding
optimal participation rate, and corresponding trade size, is key to minimizing transaction
costs. For this objective the historical intraday liquidity curves, i.e., volume curves, are
used to predict future volume patterns and finding optimal trading times where participa-
tion and trade size results in minimal transaction costs.

The different TC-optimizing versions tested in this thesis are described below. The input
variables are volatility, ADV and bid-ask spread, as well as historical volume curves divided
into five-minute buckets, meaning that the duration is fixed to five minutes18. Based
on this data, together with a desired trade size, sizedesired, and a constraint on maximal
participation, referred to as partmax, the following methods optimizes execution time and
order size. All three versions differentiate two scenarios. Scenario 1: desired size is not
tradable during one day, i.e., sizedesired ≥ partmax × ADV. Scenario 2: desired size is
tradable during one day

18Hence, order size and participation are optimized based on T = 5 minutes/minutes in one trading day
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Version 1: This method suggest trade with partmax throughout the whole day if Scenario
1 applies (see Figure 9a) which is equal to a volume-weighted strategy. In the opposite
case, however, this model calculates predicted transaction cost per bucket under the
assumption that the size to execute in each bucket is equal19. The five-minute buckets
are ordered from lowest to highest transaction cost and trade is conducted, with
partmax, in the in buckets with lowest predicted transaction cost until size is fully
executed (see Figure 9a).
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(a) Version 1, partmax = 20%: Trade size and participation for Scenario 1 (desired size is not
tradable during one day). Notice that the order size follows the same pattern as the intraday
liquidity curve in Figure 1b.
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(b) Version 1, partmax = 20%: Trade size and participation for Scenario 2 (desired size is tradable
during one day). Trade is conducted only in buckets with the lowest predicted transaction costs.

Figure 9

19sizebucket = sizedesired/nbr of buckets
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Version 2: This TC-optimizer start by predicting the transaction costs in each time
bucket under the same assumption on equally sized orders as in Version 1. The
buckets with higher transaction cost than a certain limit are excluded from the set
of possible trade times. Version 2 has a limit that excludes the top 10% of the most
expensive time buckets. In Scenario 1 this version suggests trading a size equal to
partmax × available volume in the buckets with predicted transaction cost below the
limit (see Figure 10a). When Scenario 2 applies, this method trades in the less ex-
pensive buckets using a volume-weighted strategy, i.e., constant participation equal

to
sizedesired

ADV
(see Figure 10b).

Version 3: The only difference in this version compared to Version 2 is the way we
calculate the limit for transaction costs. The limit in Version 3 is set to be the mean
plus the standard deviation of all of the buckets’ transaction costs. Apart from that
this version suggests trading in the same manner as Version 2. For clarification on
how this version predicts optimal trade look at the Figures 10a and 10b.
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(a) Version 2, partmax = 20%: Trade size and participation for Scenario 1 (desired size is not
tradable during one day). Trade is excluded in buckets where predicted transaction costs exceeds
a certain limit.
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transaction cost

Figure 10
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4.3 Trading Algorithm

The trading algorithm will be quite similar for all test cases, only differing in the way we
calculate the portfolio weights and how trade times are chosen. Our trading algorithm will
operate between 9:00 am and 5:25 pm since we do not want to participate in the pre-open
and pre-close auctions because of the uncertainty of the price movements in the beginning
and the end of the day.

The trading algorithm’s objective is to trade stocks to obtain a portfolio that tracks
OMXSB. The first step in the trading algorithm is to find the weights that we want to use
as goal weights. If we want to preform a full replication of the index, as in the Base Case
and Pre-case, we use the index weights as goal weights. However, if we want to exclude
some stocks and create a dimension reduced portfolio, as in Case A and B, we use quadratic
programming to find our weights. In these cases we decide the capital weights for each
stock by optimizing the total active risk according to Equation (3). To do this we use the
inbuilt Matlab function quadprog which returns a vector w that minimizes Equation (24).

min(
1

2
w>Hw + f>w). (24)

Here H must be a positive semidefinite matrix for the problem to have a finite minimum.
We have to adjust the input variables to the inbuilt function in order for it to assemble
Equation (3) and therefore we create H and f according to Equations (25) and (26) (see
Appendix B for a more detailed explanation).

H = 2Q, (25)

f = −2wbQ. (26)

By rewriting the problem this way we can use the ready-made Matlab function to find the
optimal weights. Note that the optimal solution for Equation (24) also solves the squared
root problem in Equation (3). To construct the covariance matrix Q, given in Equation
(4), we need the standard deviation σ and the correlation ρ. σ is calculated as in Equations
(19)-(21) and ρ is obtained via the log-returns calculated in (19). We control that the re-
sulting covariance matrix is positive semidefinite which is a constraint for the optimization
to work.

The constraints under which Equation (24) is minimized are those presented in Equation
(3). The two last constraints, the budget and short position constraint, can easily be
implemented in our quadratic programming tool. The return constraint, on the other
hand, demands some calculations. We need this constraint to make sure that even though
we trade a dimension reduced portfolio, the return will be at least that of the index. We
use the logarithmic returns obtained from the closing prices for each stock and calculate a
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30-day exponentially weighted moving average. The sum of our optimized portfolio weights
times the exponentially weighted log-returns for each stock should be greater or equal to
the total return of the index, i.e., ∑

wiri ≥ R, (27)

where ri is the exponentially weighted log-return for stock i, wi is the optimized weight
and R is index return. Since the calculations are based on historical data and desired
portfolio weights, we cannot fully ensure that the actual portfolio return a certain day is
higher than index return. However, having this constraint increases the probability of the
outcome being as desired.

After deciding goal weights w, we calculate the goal sizes, sizeG, which represent how
many stocks we need to have in our portfolio in order to obtain minimal tracking error. A
portfolio with zero tracking error is a portfolio with a value equal to that of the index value
multiplied by the number of index instruments the portfolio should track, i.e., Equation
(28) is equal to Equation (29). When that equality holds, the desired holding for each
stock, sizeGi , is given via Equation (30).

Portfolio Value =

n∑
i=1

sizeGi × pricei (28)

Index Portfolio Value = Index Value×N (29)

sizeGi =
Index Value×N × wi

pricei
, (30)

where N is the number of instruments and wi is the stock i’s weight in the portfolio.

When we have found the goal weights and corresponding desired portfolio holdings we
start to simulate trade according to the different trading strategies’ predictions on what
quantity to trade at what time. The simulated orders assemble market orders since we
submit a quantity which we want to execute, and trade is conducted if there is available
volume meeting our demand. Placing market orders imply that we cannot control what
stock price we have to pay, as can be done when placing limit orders. Since we are inter-
ested in comparing our test cases’ trading strategies in terms of transaction cost, rather
than total trade cost, we make the simplification that we always accept trading at the
volume-weighted mid-price observed in our data set. This means that we never trade at
the best available price, but not at the worst observed price either.

Each day we update sizeG according to index price movements and check with our current
portfolio holdings how many shares need to be traded to track the potential change. The
Base Case and Case A trade according to a volume-weighted prediction, whereas Case B
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trades based on the results from the selected TC-optimizer’s prediction. When simulating
on ’new’ data, however, the predictions cannot always be fulfilled because of lack of avail-
able volume, resulting in deviations from the pre-set strategy. Three different situations
may arise when placing the orders. First, if available volume is equal to, or higher than
historical volume at a certain time, the predicted size can be fully executed. Second, if
available volume is lower than expected, we can only execute a fraction of the predicted
size corresponding to partmax × available volume. Third and last situation: if there is no
available volume then no trade is conducted. The transaction costs are calculated based
on the actual outcome. As previously mentioned, we cannot measure the actual market
impact from our trades since we only simulate trading on our data set. Instead we approx-
imate the realized transaction costs by using the PAR-prediction formula with real input
parameters for available volume etc.

To clarify the steps in the trading algorithm we have summarized the process below. The
process is repeated every day in the trading period.

1. Find portfolio stock weights

Base Case & Pre-case: Portfolio weights = Index weights

Case A & Case B: Portfolio weights = optimal solution to Equation (24) subject
to constraints described in (3)

2. Find the desired holding, i.e., goal size, for each stock via Equation (30)

3. Check with current portfolio holdings how many shares of each stock need to be
traded, i.e., find the total order size

4. Decide trading strategy for executing the total order size. The decisions are based
on historical data such as: volume curves; ADV; volatility and bid-ask spread

Base Case & Case A: Divide the total order size into smaller orders so that the
pre-set trading strategy equals trading with a volume-weighted trading strategy

Case B: Use the TC-optimizer selected via the Pre-case. Predict which time buckets
are the most expensive to trade in according to historical data. Exclude these
buckets from possible trade times and distribute the total order size in the
remaining time buckets according to historical volume

5. Simulate trade! Place market orders according to the different test cases trading
strategies and trade if enough volume is available

6. Calculate the resulting transaction costs
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5 Results

Results obtained from test data commence this chapter. These results serves as basis
for decisions made by the imagined customer. Also, the Pre-case study conducted in the
test period, supporting the selection of the best TC-optimizer for Case B, is presented.
Furthermore the construction of the dimension reduced portfolio, based on PCA results
and transaction cost predictions, is described. The remainder of the chapter is dedicated
to present the results from the test cases, and ends with a summary of the obtained results.

5.1 Test Period Results

5.1.1 Investor Decisions

Maximal participation limits the volumes we can trade every day, defining the shortest
trading horizon. The number of instruments (N) we want to track determines how much
money to invest. Calculations providing support for the decisions about partmax and N are
shown in Table 2. Usually an investor would decide these variables according to preferences.
We assume that our imagined investor chooses to make an investment corresponding to 3
million index instruments20 and that he/she accepts a tracking error of 1%. For a maximal
allowed participation of 20-25%, calculations from test period data show that it would
take approximately 4 and 2 days respectively to get a tracking error less than 1% when
trading a full replication of the index. Our investor decides that a maximal participation
of 20% suits his/her preferences in terms of timing risk and opportunity cost, i.e., level of
aggressiveness. Subsequent test case results are based on these decisions.

part1max part2max part3max part4max

N 10% 15% 20% 25%

1× 106 5 2 1 1

2× 106 10 4 2 2

3× 106 15 7 4 2

Table 2: Approximation for how many days it takes until tracking error for full replication
of OMXSB is less than 1% depending on number of index instruments traded and maximal
participation. Our imagined investor decides that he/she wants to invest in 3 million index
instruments with a maximal participation of 20%.

5.1.2 Transaction Cost Optimizer Selection

In Case B we want to trade in a less expensive way compared to the volume-weighted
method used in Base Case and Case A. We want to investigate whether predicting trans-

20This equals an investment of 624.3× 3, 000, 000 SEK, where 624.3 is the value of OMXSB as of Oct 3
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action costs and optimizing order size and trade time can improve performance.

From running the Pre-case with the three different TC-optimizing versions we could analyze
and compare their results. In Figure 11 we can see that by trading based on Version 2 (V.2)
and Version 3 (V.3) predictions, we reach a low tracking error quicker than for Version 1
(V.1). However, after five days of trade all three versions have reached approximately
the same tracking error and in the end of the Pre-case period all tracking errors are close
to the acceptable range of 1%. The reason why V.1 is a bit slower can be explained by
the fact that when sizedesired ≤ partmax × ADV (Scenario 2) V.1 suggests that all day’s
trading can be conducted in a few buckets. If, however, the volume in those buckets this
day is less than the historical volume, then the resulting trade size will be much lower
than predicted. V.2 and V.3 will not suffer as much from this since they trade in nearly
all buckets anyway. Furthermore, Figure 12 show that V.2 and V.3 are outperforming
V.1 in terms of transaction cost per day and per share. This result is not surprising since
even though V.1 predicts and excludes expensive buckets, it suggests trading with maximal
participation in a few number of buckets instead of trading with a constant low participation
in all remaining buckets. Hence, V.1 suggests a more aggressive trading strategy compared
to V.2 and V.3. This implies both a high average transaction cost per share and total
transaction cost per day due to market impact. From Figure 13 we can see that for the
whole Pre-case trading period (10 days), V.2 and V.3 ends up with a total transaction cost
being less than 1.25% of total trade costs while V.1 results in almost 1.5%. From these
results we reject V.1 as TC-optimizer. Looking at transaction cost as part of total trade
cost we can see that V.2 is slightly better than V.3, which is why we select V.2 as the
TC-optimizer used in Case B.
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Figure 11: Tracking Error for the different versions during 10 days of trade (N = 3× 106,
partmax = 20%. Version 2 and 3 reaches a lower tracking error faster than Version 1.

37



1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18
x 10

6

Days

T
o
ta

l 
T

ra
n
s
a
c
ti
o
n
 C

o
s
t 
<

S
E

K
>

 

 

V1

V2

V3

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Days

T
ra

n
s
a
c
ti
o
n
 C

o
s
t/
s
h
a
re

 <
S

E
K

>

 

 

V1

V2

V3

Figure 12: Transaction cost per day and version (left) and average transaction cost per
share (right). Version 1 is more expensive than Version 2 and 3, both in terms of total
transaction costs and in terms of transaction cost per share.
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Figure 13: TC as % of Total Cost for the different versions. The result is obtained during
10 days of trade (N = 3 × 106, partmax = 20%). Version 2 is the least expensive version
and will be selected as TC-optimizer in Case B.

5.2 Dimension Reduced Portfolio Construction

From the eigenvalues of the covariance matrix we calculate the lambda ratio. Figure
14 shows which explanatory power each principal component has on the variance in index
return (bars) and their cumulative explanatory power (line). The first principal component
explains more than 30% and has a correlation with the index portfolio of 97%. PC1 together
with PC2 and PC3 explains approximately 50% of the index return variation. We therefore
conclude that these three PC:s are enough to include when scoring the stocks. To find which
stocks that are of most importance for the PC:s we look at the stocks’ individual factor
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loadings, i.e., correlation with PCk (k = 1, 2, 3). Figure 15 show the distribution of the
factor loadings for PC1. Factor loadings for PC2 and PC3 are shown in Appendix C.2.
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Figure 14: Lambda ratio for the first 10 principal components. PC1 together with PC2

and PC3 explains approximately 50% of the index return variation.
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Figure 15: Factor loadings for the first principal component. Boliden has the highest and
Arise Windpower has the lowest factor loading in the first principal component.

To see if our PCA result is reliable, we compare the stocks most important for PC1 with
the stocks that have the largest variance (see Appendix C.1). Since these are not consistent
we can draw the conclusion that it was fine to conduct the PCA on the covariance matrix
instead of on the standardized correlation matrix.
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As shown in Figure 15, the first two stocks, being most important for PC1, are Boliden
(’BOL’) and Lundin Mining (’LUMI SDB’). These companies are both in the Basic Mate-
rials industry, in the sector of Basic Resources (see Appendix A.1). Their primary market
is Europe. From these similarities one would like to draw the conclusion that PC1 mostly
depends upon European-based Basic Material companies. But looking at the sequent
companies: Modern Times Group (’MTG B’); Nordea (’NDA’); and SEB (’SEB A’), this
conclusion seems unreasonable. MTG is an international media conglomerate and the last
two are large Nordic banks. To find the scarlet thread defining what factor PC1 stands for
is not easy. This is one drawback with PCA: one can determine which the main drivers are
but not what they actually stand for. For the purpose of this thesis, however, we confine
ourselves with the result as it is and use the stocks’ factor loadings in PC1−3 as one part
of our dimension reduction scoring.

The second part of the scoring is the five day average TCfrac. We decide that we want more
weight for the TC-prediction than for the PCA-result. This because we are most concerned
with having minimal transaction costs. We therefore set the weighting factor in the scoring
formula in Equation (23) to be Ω = [100; 200]. Figure 16 below shows the stocks’ scores
in descending order. We decide to conduct a dimension reduction of 50%, thus we will
include all stocks with score equal to, or higher, than ’HEXA B’ (34 stocks). We find it
reasonable not to reduce the dimension too much since we still want some differentiation
for our portfolio risk. Furthermore we believe that reducing the dimension by less than
50% would not display the differences between the Base Case and the other cases with
desired clarity.
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Figure 16: Resulting score for each stock. Stocks with score equal to, or higher than
’HEXA B’ will be included in the 50% dimensioned reduced portfolio (34 stocks).

A full table displaying PCA results, TC-prediction and score for the stocks included in the
dimension reduced portfolio is found in Appendix C.3 and a table for those excluded is
found in Appendix C.4. The average TCfrac for all OMXSB stocks is 3.7%. This figure is
reduced to 2.0% when taking the average TCfrac for the 34 stocks included in the portfolio,
while it for the excluded stocks raise to 5.5%. Hence, we can conclude that via our scoring
formula we have been able to exclude some of the most expensive stocks in terms of
transaction cost.
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5.3 Base Case Result

In this case we preform a full replication of the index and trade with a volume-weighted
strategy over 10 trading days (2013-10-03 – 2013-10-16). Each day we get output data
on stock- and industry level. Since the data on stock level is very detailed, we only show
the results on industry level. The output is comprised of: portfolio weights; net cost
(i.e., total cost excl. TC); net income (i.e., total income excl. TC); transaction cost and
TC as fraction of total cash flow in and out of the portfolio21, see Appendix D.2. These
result tables could be shown to an interested customer on a daily basis, and give him/her
support for suggesting changes in the portfolio strategy. Below, we display a summary of
these results on day 10 plus the active return in each industry (Figure 17). In Figure 18
a day by day summary of the performance measures and the active risk against OMXSB
are displayed.

Figure 17: Base Case: performance summary after 10 days. Results are on sector level
where one can see how different sectors varies in performance and weights.

Figure 18: Base Case: performance results where TC/abs(Trade cost) is cumulative and
the other measurements are day by day. Acceptable tracking error (≥ 1%) is not reached
during the 10 day period.

21TC/(TC + Net Cost + Net Income)
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5.4 Case A Result

In Case A we trade our dimension reduced portfolio, comprised of the 34 stocks with high-
est scores. The same volume-weighted trading strategy as in the Base Case is used. The
portfolio is equal to a dimension reduction of OMXSB of 50%. Apart from getting the
same output data as in the Base Case (shown in Appendix D.3), we also calculate the com-
ponents of active return from the Bloomberg Performance Attribution Model: allocation
and selection effect. These components are calculated from day 2 and onwards since their
formulas demand portfolio return which can only be obtained by comparing portfolio value
on day t and t− 1. Figure 21 shows the Performance Attribution results for day 10, for all
days’ results see Appendix D.4.

Figure 19: Case A: performance summary after 10 days on sector level. Total
TC/abs(Trade cost) is lower than for Base Case.

Figure 20: Case A: performance results where TC/abs(Trade cost) is cumulative and the
other measurements are day by day. Acceptable tracking error is reached day 4.
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Figure 21: Case A: Active Return (day 10) is positive and mostly generated by stock
selection.

5.5 Case B Result

Case B trades the dimension reduced portfolio with the selected TC-optimizing trading
strategy V.2. Same result tables as for Case A are obtained and the full results are shown
in Appendix D.5. All active return results are shown in Appendix D.6. For active return
components on day 10, see Figure 24.

Figure 22: Case B: performance summary on sector level after 10 days. Case B is less
expensive than Base Case but slightly more expensive than Case A.
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Figure 23: Case B: performance results where TC/abs(Trade cost) is cumulative and the
other measurements are day by day. Acceptable tracking error is reached day 5.

Figure 24: Case B: Active Return (day 10) is positive and mostly generated by stock
selection.

5.6 Summary of Results

To get a better overview of the results we compile the most important performance measures
for the three different cases in a summary for the 10 trading days, see Figure 25. As shown
in this table we do achieve a reduction of transaction costs in Case A and Case B compared
to Base Case as expected. Looking at TC/abs(Trade Cost) we can see that for Case A this
figure is 1.02%, slightly higher for Case B, and 1.18% for the Base Case. This result can
also be seen in Figure 26 and Figure 27 which show the transaction cost performance over
the 10 day trading period. A surprising result is the fact that Base Case has a non-zero
active return, in fact it is larger than for both A and B. This can be explained by looking
at the tracking error. Throughout the 10 trading days the Base Case does not manage to
reach the acceptable range of 1% of tracking error, whilst both A and B are close to zero.
This result can also be seen in Figure 28. However, by looking at active return over the
whole trading period we can see that it is diminishing over time, see Figure 18.
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Figure 25: Performance comparison for Base Case, Case A and Case B (10 days). Case
A has the best performance in terms of transaction cost and tracking error. Active return
is higher for Base Case than for Case A and B since acceptable tracking error is not yet
reached.
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Figure 26: Accumulated transaction cost per day for the three test cases. One can see that
Base Case is the most expensive case during the whole trading period.
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test cases. One can see that by this measure Case A represents the best strategy during
the whole trading period.
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Figure 28: Tracking error comparison for Base Case, Case A and Case B. Case A reaches
acceptable tracking error day 4, Case B in day 5 and Base Case does not reach the accept-
able range over the whole period
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6 Discussion

6.1 Performance Results

As mentioned in the beginning of this thesis, performance will primarily be measured in
terms of transaction cost, but also in terms of tracking error and active return against
OMXSB. The three test cases are evaluated and compared based on these measures.

6.1.1 Tracking Error

If we start to look at the resulting tracking error after 10 days of trade we can see that
Case A reaches the acceptable range of 1% in 4 days and Case B in 5 days. The reason
why it takes longer time for Case B could be the fact that its trading strategy prohibits
trade in certain time buckets because they have a high predicted transaction cost. Instead
it suggests that all trade should be conducted in a subset of all available time buckets.
If the actual volumes during the trading day in the accepted time buckets deviates from
historical volume and is lower than expected, the Case B strategy might not be able to be
fulfilled, resulting in a lower traded volume than suggested pre-trade.

The Base Case, however, does not manage to reach the acceptable range throughout the
whole trading period, instead it ends up at an error of 1.76%. Thus, it takes more than
double the time approximated beforehand. The explanation for this is that we in the Base
Case aim to trade with all OMXSB stocks, even those being relatively illiquid, implying
that it is hard to trade a potential large order size quickly. This would most probably also
lead to the Base Case giving high transaction costs in terms of timing risk and opportunity
cost if measured.

6.1.2 Active Return

Active return, calculated according to the Performance Attribution Model, ends up around
0.14% for both Case A and B on day 10. For the Base Case the active return is 0.24 on
day 10 which is surprising since it should be almost zero. Yet again this is explained by the
fact that the Base Case has not managed to reach an acceptable tracking error, resulting
in its portfolio weights differing from the index weights which lead to some active return.
This figure will decrease as the days pass and the Base Case portfolio becomes the full
replication of OMXSB as being its objective22.

Studying the active return on a daily basis for Case A and B, see Figures 20 and 23, we
can conclude that the portfolio’s active returns sometimes are negative, meaning that the
constraint on equal or better return than benchmark is not always fulfilled. As previously

22The Base Case reaches the acceptable tracking error on day 15 with an active return on 0.10. These
results were obtained by running the test case for a period of 16 days
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discussed, we had knowledge of this possibility since the constraint is based on historical
data. However, if we compare total portfolio return from the day when tracking error is
reached (day 4 for Case A and day 5 for Case B) we see that Case A has a return equal to
2.92% from day 4 to day 10, whilst the index return over the same period is 1.91%. Case
B has a return of 3.03% from day 5 to day 10 and corresponding index return is 2.47%
(See Appendix E.1 for more details). From this we can conclude that we have fulfilled the
pre-determined constraint on portfolio return.

6.1.3 Transaction Cost

Looking at the total transaction cost during the 10 days of trade for each test case, we
can conclude that the Base Case have the largest amount of transaction costs. This is not
surprising since we in this case include all OMXSB-stocks, even those that are expensive to
trade. In Figure 17 we can see that the industries being most expensive in terms of TC as
percent of absolute trade cost are Oil & Gas, Basic Materials and Consumer Goods. The
portfolio weights for these industries are 1.22, 2.66 and 8.16% respectively. This is close
to the goal weights, i.e., the index weights (cf. Appendix D.1). When comparing this to
the dimension reduced portfolio traded in Case A and B, we can see that these industries
are underweighted (0.00, 1.82 and 6.02 respectively) and the measure TC as percent of
absolute trade cost has decreased. This is a sign that the dimension reduction successfully
excluded expensive stocks, resulting in lower transaction costs. The industry with lowest
TC/abs(Trade Cost) is Telecommunications, which is overweighted in the dimension re-
duced portfolio.

One unexpected result is that Case B gets higher transaction cost than Case A, even though
the Case B trading strategy is to predict which times during the day that are least ex-
pensive to trade at. When comparing the prediction of transaction cost for the two cases,
however, Case B do fulfill its purpose and returns order sizes and trade times that would,
based on historical data, cause lower transaction costs than Case A. From this result we
can conclude that making predictions based on historical input parameters can be hard
and that the volume-weighted trading strategy used in Case A already gives attractive
transaction cost in terms of market impact. A potential improvement for Case B could
be to continuously update the transaction cost predictions as the day passes, e.g., hourly.
By doing this, the trading strategy would be more adapted to current market conditions
and actual portfolio holdings which could imply more accurate predictions. This, however,
demands more frequent data on index value than available in our data set. In addition,
to decrease the amount of transaction cost spent in Case B, one could increase the limit
for excluding time buckets from 10% as used in our analysis. This action would imply
a trade-off between how quickly the acceptable tracking error is reached and acceptable
range for transaction costs which must be taken into consideration.
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Furthermore we can see that the total flow of capital in and out of the portfolio, i.e.,
abs(Trade Cost), is higher for the dimension reduced portfolio than for the full replication
portfolio in the Base Case. Hence, we draw the conclusion that Case A and B conducts more
transactions. This is also supported by the result tables in Appendices D.3 and D.5 where
we can see that these cases alters between selling and buying more frequently than the
Base Case. The reason why is that since we have excluded some stocks and overweighted
others, the goal weights become more sensitive to index movements. However, both Case A
and B have managed to achieve a higher portfolio value than Base Case with lower amount
of transaction costs. Thus, we can see that the transactions made has been cheaper than
those made in the Base Case and have resulted in a lower tracking error.

6.1.4 Transaction Cost Performance Reconsidered

Above we have made references to the total realized transaction cost for all test cases and
to the measure TC as percentage of absolute trade cost. From this point of view the Case
A and B strategies, with lowest total transaction costs and 1.02 and 1.03% respectively in
TC/abs(Trade Cost), would be chosen over the simple full replication strategy. One could
argue that this is misleading because Case A and B have a larger amount of absolute trade
cost, hence TC/abs(Trade Cost) gets smaller. Instead one could suggest that it would be
better to look at the total amount of money actually spent on the portfolio (net cost + TC)
and to measure transaction cost performance as percent of this cost. These measures are
presented in Appendix E.2. The actual net cost (excl. TC) is approximately 30× 106 SEK
lower for the Base Case compared to Case A and B. This might be due to the fact that
the goal weights are not yet completely achieved and that this difference would decrease
if prolonging the trade period. However, TC as percentage of actual cost (incl. TC) is
still better for Case A and B why we can conclude that the dimension reduced portfolio
performs better than full replication in terms of transaction cost also when measuring it
this way.

Since transaction costs occur both when buying and selling we find it more reasonable
to display the fraction between transaction cost and total cash flow as presented in the
result tables in Chapter 5. The conclusion drawn from those results, that the dimension
reduced portfolio performs better than full replication in terms of transaction cost, remains
unchanged.

6.2 Error Sources and Suggested Improvements

6.2.1 The Transaction Cost Model

When calculating transaction costs, following the formulas from the PAR-model, we use
parameters estimated from US stock market data, which were presented by Rashkovich et
al. 2012. One adjustment implying potential improvement for the results of this thesis
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could be to preform a new regression based on Swedish stock data and use these parame-
ters instead. However, this procedure is time demanding and since we are more interested
in comparing performance of different test cases than of the exact size of the transaction
costs, these US-market parameters are used since they provide sufficiently good results for
comparative purposes.

Furthermore, as an input to the transaction cost model one needs the intraday bid-ask
spread. In our data we have an average daily bid-ask spread. When comparing the different
TC-optimizers, having a fix bid-ask throughout a whole day provides difficulties in finding
the best optimizer, since the PAR-model is very sensitive to bid-ask fluctuations. As
mentioned in the Methodology chapter we model a reversed J-shaped spread in order to
obtain a clearer intraday transaction cost pattern. Even if this assumption provides a result
based on a more natural behavior of the bid-ask spread, it may affect the absolute size of
the transaction cost. The modeling of the bid-ask also provides additional uncertainty
since we have applied the same reversed J-shape on all the stocks (but with individual
daily means) which is a simplification of the actual behavior of each stock’s spread. Hence,
to improve the results of this study we suggest that one should use actual intraday bid-ask
spread data instead.

6.2.2 Dimension Reduction of OMXSB

In this thesis we assume that our investor wants to track 3 million OMXSB instruments
(N = 3×106). N affects both the amount of money put in the investment and the number
of days it takes to reach an acceptable tracking error. In addition, N affects the signifi-
cance of the improvements due to dimension reduction. If only investing in a small number
of index instruments, the holding of relatively illiquid and/or expensive stocks decrease,
hence the difference in transaction cost effect on performance between full replication and a
dimension reduced portfolio would diminish. We can therefore conclude that the dimension
reduction effect on portfolio performance increases with the value of the desired portfolio.

The dimension reduction of OMXSB is in this thesis based on transactions cost predictions
and a PCA. The portfolio is constructed to track OMXSB and the weights are obtained
by minimizing total active risk against this benchmark. This implies that the resulting
active return is quite low (around 0.14 % on day 10 for Case A and B). If more interested
in getting a higher active return than tracking benchmark performance, one could base
the dimension reduction on a deeper knowledge in future stock/industry returns and over-
weight those stocks/industries predicted to have superior return compared to others and
underweight those with predicted inferior return. Industry or stock weight constraints are
easily implemented in our weight optimizer based upon the Matlab function quadprog.

The selection of portfolio stocks in the dimension reduction of OMXSB are in this thesis
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constrained to be a subset of those included in the index. Another way to potentially
improve performance could be to replace illiquid and/or expensive stocks with stocks not
belonging to the OMXSB set. To successfully pursue this strategy deeper analysis of the
index stocks are needed.

6.3 Remarks

The trading period chosen in this thesis is 10 days in October 2013. For our investment
proposal to be seen as attractive, the tracking error had to decrease quickly so that the
investment strategy’s objective – to track OMXSB – was fulfilled in a reasonable period
of time. Hence, 10 days should be enough for an attractive investment strategy to reach
the acceptable tracking error range of 1% and to reach a state of maintenance. One might
argue that the sampling period used in this thesis is short and decreases the strength of our
results. However, to empower our results and following conclusions we have tested that our
results are replicable. We repeated our simulations over two other 10 day time periods23

in our data and obtained similar results. Thus, we argue that our results presented in the
previous chapter are representable and gives sufficient support for our conclusions.

OMXSB, constructed out of the companies with top 10 % turnover on their stocks, is
a relatively liquid stock index. This, together with the fact that trading with a market
impact minimizing volume-weighted strategy, which is the transaction cost measured in
this thesis, implies that the Base Case can achieve quite good results. If the same two-
step improvement method used on OMXSB would be applied on an index of even higher
dimension, constructed out of more illiquid stocks, the test case results might have differed
more. An example of such an index could be some small-cap stock index or the index OMX
Stockholm24.

232013-10-31 – 2013-11-13 and 2013-11-14 – 2013-11-27
24Also called Stockholm all-share index since it includes all stocks listed on the Stockholm Stock Exchange
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7 Conclusion

An investment decision should be preceded by determining strategy and objective for the
investment. The pre-set objective for the investment alternative investigated in this thesis
was a constraint on the return being higher than, or equal to, that of the OMXSB index.
The overall strategy was to track OMXSB with a portfolio constructed of the same set,
or a subset, of the stocks included in the index. The goal was to investigate the effects
on portfolio performance from tracking OMXSB with a dimension reduced portfolio and
from implementing a TCA-step in the trading process. From running three different test
cases on our data set we were able to draw the following conclusions about how to improve
performance in terms of transaction cost, active return and tracking error.

7.1 Dimension Reduction

When reducing the dimension of a multidimensional index, such as OMXSB, it is possible
to obtain diverse portfolio characteristics by using different criteria for excluding/including
stocks. The dimension reduction in this thesis was based on results from a Principal Com-
ponent Analysis together with predictions on transaction costs related to trading a certain
stock. The PCA was conducted to ensure that the stocks most important for index return
was included. The second part, predicting transaction costs, made it possible to exclude
stocks that were expensive to trade in order to investigate how minimizing transaction
costs affected overall performance. The results gave input to a scoring formula in which
the stocks got positive score contribution if explaining much of index return and were pe-
nalized if being expensive to trade. When constructing the dimension reduced portfolio
we chose to include the index stocks with top 50% scores. This portfolio’s performance
was tested in a test case (Case A) and was compared against trading a full replication of
the index (Base Case). The results obtained showed that we got lower transaction costs
and reached a low tracking error quicker in Case A compared to the Base Case. Hence,
the reference to transaction costs being unavoidable slippage can be rejected by these re-
sults. When comparing active return we could conclude that we achieved higher return
than index in both cases, but since the Base Case did not reach an acceptable tracking
error during the 10-day trading period, we did not get any comparable results. Thus, no
conclusions about how dimension reduction affected this performance measure could be
drawn. However, since the Base Case strived to become a full replication of OMXSB, the
active return in this case would approach zero if prolonging the trade period, while Case
A most probably would continue to have some active return against the benchmark.

7.2 Transaction Cost Prediction

When looking at improving performance additionally by adding a TCA-step in the trading
process we used historical data and PAR-model transaction cost predictions for optimizing
trade times and order sizes to trade each day (Case B). The portfolio traded in Case
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B was the same dimension reduced portfolio as in Case A. However, when comparing
Case A and B results we could conclude that Case B got higher transaction costs and
reached the acceptable tracking error range slower than Case A. As for active return both
cases had similar performance. This comparison lead to the conclusion that the attempt
to minimize transaction costs by predicting them did not give positive contribution to
portfolio performance. This highlights a drawback when trying to act based on predictions:
the future patterns are seldom fully captured in historical data. Especially in the stock
market, where the intraday dynamics can be greatly affected by macro events, statements
from insiders or journalists etc., it is hard to make accurate predictions.

7.3 Empirical Findings

From running our test cases and analyzing their results we have support for answering
the main problem to be solved in this thesis. The best strategy investigated in this thesis
to construct a portfolio, having a return constraint corresponding to that of a multidi-
mensional index, is to reduce the dimension and exclude stocks with undesired features.
Furthermore, the best way to maintain it is to use a volume-weighted trading strategy
which is similar to minimizing market impact leading to low transaction costs25. From our
empirical studies this course of action results in superior performance in terms of trans-
action cost and tracking error. In addition, it gives a satisfactory level of active return
against benchmark.

25Note that there are fixed fees for trading which implies that this strategy might not be optimal for a
private trader. For professional traders, as sales traders, the fixed fees are quite low.
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A OMXSB Classification and Capital Weights

A.1 Industry Classification

Figure 29: Classification according to Industry Classification Benchmark (2014)

57



A.2 Capital Weights

Figure 30: Capital weights for stocks included in OMXSB at 2013-06-03
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B Construction of H and f

In order to minimize Equation (3) by using the inbuilt Matlab function quadprog we have
to find f and H in Equation (24). In the two dimensional case, one can express Equation
(3) as

[
w1 − wb1 w2 − wb2

] [Q11 Q12

Q21 Q22

] [
w1 − wb1
w2 − wb2

]
=

w2
1Q11 + w1w2Q21 + w1w2Q12 + w2

2Q22 − 2w1w
b
1Q11 − 2w2w

b
2Q22

− w1w
b
2(Q21 +Q12)− w2w

b
1(Q21 +Q12) + (wb1)

2Q11 + wb1w
b
2Q21 + wb1w

b
2Q12 + (w2

2)bQ22 =

[
w1 w2

] [Q11 Q12

Q21 Q22

]
︸ ︷︷ ︸

A

[
w1

w2

]
−2
[
wb1 wb2

] [Q11 Q12

Q21 Q22

]
︸ ︷︷ ︸

B

[
w1

w2

]
+
[
wb1 wb2

] [Q11 Q12

Q21 Q22

] [
wb1
wb2

]
.︸ ︷︷ ︸

C

When comparing this result to Equation (24) we can see that H = 2A, B = f and
C=constant. The constant term can be neglected in the optimization. This two dimensional
result can be applied to higher dimensional problems as well. In thesis, the dimension will
be the number of stocks included in our portfolio tracking OMXSB.
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C PCA Results

C.1 Stock Return Variance and Correlation with Index
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C.2 Factor Loadings
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(a) Factor loadings for second principal component

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

F
a
c
to

r 
L
o
a
d
in

g
 P

C
3

S
A

S
M

E
D

A
 A

E
R

IC
 B

H
M

 B
R

E
Z

T
N

IB
E

 B
M

IC
B

E
T

S
 B

T
L
S

N
A

B
B

M
E

K
O

S
T

E
 R

H
P

O
L
 B

A
S

S
A

 B
L
U

P
E

E
K

T
A

 B
S

W
M

A
A

L
F

A
IN

V
E

 A
S

C
V

 B
E

L
U

X
 B

S
C

A
 B

A
Z

N
U

N
IB

 S
D

B
A

A
K

B
IL

L
G

E
T

I 
B

IN
V

E
 B

S
K

A
 B

L
U

M
I 
S

D
B

S
H

B
 A

N
E

T
 B

A
R

IS
E

A
O

IL
A

L
IV

H
O

L
M

 B IJ
H

U
F

V
 A

M
T

G
 B

K
IN

V
 B

T
E

L
2
 B

L
J
G

R
 B

R
A

T
O

 B
N

D
A

IN
D

U
 C

F
A

B
G

H
E

X
A

 B
S

E
B

 A
W

IH
L

V
O

L
V

 A
H

U
S

Q
 B

A
T

C
O

 A
N

C
C

 B
V

O
L
V

 B
S

S
A

B
 A

C
A

S
T

A
T

C
O

 B
IN

D
U

 A
S

A
N

D
S

W
E

D
 A J
M

B
A

L
D

 B
S

K
F

 B
W

A
L

L
 B

B
O

L
K

L
E

D
C

L
A

 B
N

O
K

I 
S

E
K

(b) Factor loadings for third principal component

Figure 32
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C.3 Stocks Included in the Dimension Reduced Portfolio

Figure 33: OMXSB-stocks included in dimension reduced portfolio

Days to Buy: Number of days until the difference in the portfolio market value compared to index market

value is less than 5% when trading with a volume-weighted strategy (partmax = 20%)

Relative Liquidity: Stock’s average daily volume as percentage of total average daily volume for all index

stocks

TC/share: 5-day average transaction cost per share

TC as % of Daily Cost: 5-day average TCfrac (= transaction cost as percentage of daily trade cost for

stock)

Factor Loading: Stock’s correlation with principal component

Score: Calculated according to Equation (23) with Ω = [100; 200]
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C.4 Stocks Excluded from the Dimension Reduced Portfolio

Figure 34: OMXSB-stocks excluded from dimension reduced portfolio

Days to Buy: Number of days until the difference in the portfolio market value compared to index market

value is less than 5% when trading with a volume-weighted strategy (partmax = 20%)

Relative Liquidity: Stock’s average daily volume as percentage of total average daily volume for all index

stocks

TC/share: 5-day average transaction cost per share

TC as % of Daily Cost: 5-day average TCfrac (= transaction cost as percentage of daily trade cost for

stock)

Factor Loading: Stock’s correlation with principal component

Score: Calculated according to Equation (23) with Ω = [100; 200]

63



D Case Results

This Appendix shows how day to day performance results could be presented for an inter-
ested customer. These daily result tables could be seen as redundant for the problem to
be solved but are requested by Handelsbanken and therefore included in this thesis.

D.1 Index Data

Below are figures showing index weights and index return during the period October 3 –
October 16 (10 trading days). Since the index is not depending upon which test case we
run, these tables are the same for all cases.

Figure 35: Index weights during October 3 (trading day 1) – October 16 (trading day 10)

Figure 36: Index return during October 3 (trading day 1) – October 16 (trading day 10)
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D.2 Base Case Results

’Net’ refers to cost/income without consideration of transaction costs. ’TC/abs(Trade Cost)’ is the fraction

between TC + Net Cost + Net Income and TC.

(a) Base Case results day 1

(b) Base Case results day 2
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(c) Base Case results day 3

(d) Base Case results day 4
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(e) Base Case results day 5

(f) Base Case results day 6
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(g) Base Case results day 7

(h) Base Case results day 8
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(i) Base Case results day 9

(j) Base Case results day 10

Figure 37
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D.3 Case A Cost Results

’Net’ refers to cost/income without consideration of transaction costs. ’TC/abs(Trade Cost)’ is the fraction

between TC + Net Cost + Net Income and TC.

(a) Case A results day 1

(b) Case A results day 2
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(c) Case A results day 3

(d) Case A results day 4
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(e) Case A results day 5

(f) Case A results day 6
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(g) Case A results day 7

(h) Case A results day 8
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(i) Case A results day 9

(j) Case A results day 10

Figure 38
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D.4 Case A Performance Attribution Results

(a) Case A active return components day 2

(b) Case A active return components day 3
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(c) Case A active return components day 4

(d) Case A active return components day 5

(e) Case A active return components day 6
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(f) Case A active return components day 7

(g) Case A active return components day 8

(h) Case A active return components day 9

Figure 39
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D.5 Case B Cost Results

’Net’ refers to cost/income without consideration of transaction costs. ’TC/abs(Trade Cost)’ is the fraction

between TC + Net Cost + Net Income and TC.

(a) Case B results day 1

(b) Case B results day 2
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(c) Case B results day 3

(d) Case B results day 4
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(e) Case B results day 5

(f) Case B results day 6
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(g) Case B results day 7

(h) Case B results day 8
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(i) Case B results day 9

(j) Case B results day 10

Figure 40
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D.6 Case B Performance Attribution Results

(a) Case B active return components day 2

(b) Case B active return components day 3
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(c) Case B active return components day 4

(d) Case B active return components day 5

(e) Case B active return components day 6

84



(f) Case B active return components day 7

(g) Case B active return components day 8

(h) Case B active return components day 9

Figure 41
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E Test Case Comparison

E.1 Portfolio Return vs Index Return

Case A Case B

Day TE < 1% 4 5
Portfolio (Index) Value 1826175505 (1844133735) 1824158064 (1834020738)
Portfolio (Index) Value Day 10 1879449418 (1879290389) 1879416000 (1879290389)
Portfolio (Index) Return 2.92% (1.91%) 3.03% (2.47%)

Table 3: Case A and B portfolio return compared to index portfolio return from day 4 -10
and 5-10 respectively. Portfolio Value and Index Value in the table are measured at the
day when tracking error is less than 1%.

E.2 Alternative Transaction Cost Measures

Case Actual Net Cost <SEK> TC/ (Actual Cost) <%>

Base Case 1.8386× 109 1.18

Case A 1.8729× 109 1.09

Case B 1.8722× 109 1.09

Table 4: Table displaying alternative transaction cost measures. Actual Net Cost = Net
Cost − Net Income and TC/(Actual Cost) = TC/(Actual Net Cost + TC)
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