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Abstract

This thesis studies the concept of calculation of Value-at-Risk and Ex-
pected Shortfall when the choice of model is uncertain. The method used
for solving the problem is chosen to be Bayesian Model Averaging, using
this method will reduce the model risk by taking several models into ac-
count. Monte Carlo methods are used to perform the model averaging
and the calculation of the risk measurements.

A NIG-CIR process is used to generate the data that is to be consid-
ered unknown, for which Value-at-Risk and Expected Shortfall is to be
calculated. It is chosen since it have behaviour that often occur in finan-
cial data. The model averaging is performed using six different processes
of varying levels of complexity. Both a weighted average based on BIC and
a equally weighted average is calculated for the two risk measurements.
The more complex models that are used in the Bayesian Model Averag-
ing is GARCH processes, an EGARCH process and a stochastic volatility
model, namely the Taylor 82 model. The methods used for parameter
estimation are Maximum likelihood estimation and Kalman filtering.

The results in this thesis clearly shows that it is advantageous to cal-
culate Value-at-Risk and Expected Shortfall using model averaging. But
there is not any clear conclusion on which weights that give the most
accurate estimate. But considering the time and effort that goes in to
calculating the weights, using equal weight seems preferable.
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Abbrevations

ACF Auto Correlation Function.

ARCH Autoregressive Conditionally Heteroscedastic.

BIC Bayesian Information Criterion.

BMA Bayesian Model Averaging.

CIR Cox-Ingersoll-Ross.

EGARCH Exponential GARCH.

ES Expected Shortfall.

FSA Fishers Scoring Algorithm.

GARCH Generalized Autoregressive Conditionally Heteroscedastic.

MLE Maximum Likelihood Estimation.

NIG Normal Inverse Gaussian.

SV Stochastic Volatility.

SWN Strict White Noise.

VaR Value-at-Risk.
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1 Introduction

A problem one never eludes when having unknown data is the process of se-
lecting an appropriate model to describe the data. This decision will affect
the future results that the calculations based on the selected model yields. To
choose an appropriate model is a task that has proven to be difficult and there
are several different model selection processes that are regularly used. Despite
this, it still is not always enough to get a good model for the data.

When faced with financial data, the data often demonstrates several complex
behaviours such as skewness and volatility clustering [5]. Choosing one single
model to represent this data will with a high probability prove to be inadequate
to use for some purposes, this is a problem called model risk. There are several
risk categories often defined in finance i.e. market risk, credit risk and opera-
tional risk. The notation of model risk is one that occurs in almost all areas of
risk.

This thesis will focus on the two risk measurements Value-at-Risk and Ex-
pected Shortfall. Value-at-Risk is one of the most widely used risk measures and
is mentioned in Basel II that is recommended to use for calculation of market
risk. But due to that Value-at-Risk have problems capturing behaviours such
as tail risk, it is in Basel III recommended that Expected Shortfall is to replace
VaR. Expected Shortfall is closely related to Value-at-Risk and is becoming more
popular as time passes as it is a coherent risk measure. Nevertheless there are
some problems with the risk measurements, one of these is model risk. Model
risk is the risk that a financial institution obtain losses, due to that their risk-
models are misspecified or the underlying assumptions of the model might not
be met. For example, if one tries to model losses using a Normal distribution,
the occurrence of volatility clustering might go unrecognized by the model.

The most standard practise in statistics is to choose one model that suppos-
edly is the one that has generated the data. However this approach disregard
the fact that the chosen model might not be, or even most certainly, is not
the true model. Consequently rendering an over-confident model which in turn
might lead to greater losses due to taking riskier decisions. A way to reduce the
model uncertainty, therefore reducing the model risk, is to use model averaging.
Bayesian Model Averaging is the method considered in this thesis. By averag-
ing over several different models the positive contribution from each model will
contribute to the final result, thus yielding a less uncertain measure.

1.1 Problem formulation

Deciding on how to carry out this thesis began by deciding on some main points,
i.e. which data should be used to perform the analysis and which method should
be used to perform the modelling.
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It was decided that a NIG-CIR process should be used as a data source during
the simulations and that this data was to be considered unknown. The NIG-
CIR process were chosen due to that it has several properties that are common
to financial data.

The next problem was to decide on which models that were to be fitted to
the data. It was decided to use two simpler models, the Normal distribution
and the Student’s t distribution, but also three more complex processes. These
three processes are a GARCH process, an EGARCH process and a Stochastic
Volatilty model, Taylor 82 model. Fitting these distributions to the data is
another topic in this thesis.

The final step is to use these processes to generate the Bayesian Model Av-
eraging estimates of the Value-at-Risk and Expected Shortfall estimates. The
calculation of the estimates will be performed using Monte Carlo methods. The
idea is to show that by averaging over several different models instead of choosing
one single model, the estimate will be more accurate. There will be a compari-
son between an equally weighted average and a weighted average, where it was
decided that the weights were to depend on Bayes Information Criterion, more
details on the weights can be seen in 2.3.

2 Theory

2.1 Stylized facts of financial data

Financial data have some special properties that is unusual in other data types.
These so called stylized facts are based on empirical observations of financial
data [1]. There are several different ones, some of them are mentioned below

• Little to no autocorrelation in the return series

• Conditional expected returns close to zero

• The return series has heavy tails and/or is leptokurtic

• The return often shows signs of skewness

• Volatility clustering often exists

• The absolute value or square of the returns have a clear serial correlation.
This is the so called Taylor effect.
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Heavy tails & leptokurtosis
The Gaussian distribution is often a poor fit for financial data, the data con-
tains much more extreme events than the Gaussian distribution can predict. In
general, financial return data seems to have a higher kurtosis than the Gaussian
distribution, it is hence said to be leptokurtic. A distribution that is leptokurtic
has a higher peak in the middle and heavier and longer tails [1]. This behavior
of the data make for a problem when calculating Value at Risk and Expected
Shortfall using a Gaussian distribution. When calculating VaR and ES using
a Gaussian distribution fitted to financial data, the estimates will be overesti-
mated on low confidence levels and underestimated on high confidence levels[15].
This is because the financial data have heavier tails than the Gaussian distri-
bution have the ability to predict.

Volatility clustering
Volatility clustering is a phenomenon often occurring in financial data. This
means that one extreme return often is followed by one or more extreme re-
turns, not necessarily with the same sign [1]. That a process is heteroscedastic
means that the volatility of the process changes over time. Most heteroscedastic
processes contains volatility clusters, examples of these are ARCH and GARCH
processes which will be presented in 2.6.2.

2.2 Value at Risk & Expected Shortfall

Value-at-Risk (VaR) [1] is a commonly used risk measure in financial insti-
tutions. And as mentioned before, it is the risk measurment that Basel II
recommend shall be used for calculating market risk.

Consider a fixed time horizon ∆ the loss distribution and the loss distributions
distribution function is then defined according to

L[s,s+∆] := −(V (s+ ∆)− V (s))

FL(l) = P (L ≤ l)
(1)

The VaR-measure is calculated as the quantile function of the loss distribu-
tion, given a confidence level α, α ∈ [0, 1]. In other words it is the smallest
value l such that the loss L is not greater than l with a probability (1−α). The
expression of the VaRα is shown in equation (2)

VaRα = inf{l ∈ (R) : P (L > l) ≤ 1− α}
= inf{l ∈ (R) : FL(l) ≥ α} = qα(FL)

(2)

where qα(FL) denotes the quantile function. VaR is not a coherent risk mea-
surement, meaning it does not behave in the way we would have wanted. In
order for a risk measure % to be coherent it needs to satisfy the four axioms
of coherence. The axioms of coherence for a risk measure % : M → R on the
convex cone M, follows below

4



1. Translation invariance.
For all L ∈M and every l ∈ R we have %(L+ l) = %(L) + l

2. Subadditivity.
For all L1, L2 ∈M we have %(L1 + L2) ≤ %(L1) + %(L2)

3. Positive homogeneity.
For all L ∈M and every λ > 0 we have %(λL) = λ%(L)

4. Monotonicity.
For L1, L2 ∈M such that L1 ≤ L2 almost surely we have %(L1) ≤ %(L2)

VaR does not satisfy all the axioms of coherence, it does not satisfy the axiom
of subaddidivity, and thus is not a coherent risk measure. Expected shortfall
on the other hand does satisfy all criteria to be coherent. In Basel III it is
recommended that ES shall replace VaR for calculation of market risk since ES
is able to capture some behaviours VaR can not, i.e. tail risk. Due to this to
study both Expected Shortfall and Value-at-Risk in this thesis.

Using the definitions of the loss distribution as in (1) where E(|L|) <∞ the
expected shortfall at confidence level α ∈ (0, 1) is defined as in (3) if the loss
distribution is continuous

ESα =
E(L;L ≥ qα(L))

1− α
= E(L|L ≥ VaRα) (3)

That is, the expected loss given that VaR is exceeded. Another definition
that often is used is

ESα =
1

1− α

∫ 1

α

qu(FL)du

=
1

1− α

∫ 1

α

VaRu(L)du

(4)

It can be interpreted as that expected shortfall is calculated by averaging VaR
over all levels u ≤ α.

2.3 Bayesian Model Averaging

Bayesian model averaging is a mathematical method, originating from Bayes
formula. It assumes that there is a set of different models M1, ...,Mk, that all are
a fairly good fit for estimating the quantity µ from the data y [9]. The parameter
µ is defined and has an interpretation that is common for all the models. Instead
of using just one of these models, Bayesian Model Averaging (BMA) constructs
π(µ|y), which is the posterior density of µ given y, unconditioned on any of
the models. BMA begins by specifying the prior probabilities, P (Mj), for the
different models and by specifying the prior densities, π(θj |Mj), where θj is the
parameters of model Mj . The integrated likelihood of model Mj is then given
by (5)
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P (Mj |y) ∝ λn,j(y) =

∫
Ln,j(y, θj)π(θj |Mj)dθj (5)

Where Ln,j is the likelihood function for model Mj and λn,j(y) is the marginal
density of the unobserved data. Using Bayes theorem yields the posterior density
of model Mj as (6)

P (Mj |y) =
P (Mj)λn,j(y)∑k

j′=1 P (Mj′)λn,j′(y)
(6)

The next step is to calculate the posterior density of µ, this can be done as
in (7)

π(µ|y) =
k∑
j=1

P (Mj |y)π(µ|Mj , y) (7)

This means that instead of assuming one model to be true, the posterior
density in (7) is a weighted average of the conditional posterior densities. The
weights are the posterior probabilities of each model. Since the method does
not condition on any given model, it does not ignore the problem of model
uncertainty. The posterior mean and posterior variance can be calculated as in
(8) and (9) respectively [9].

E(µ|y) =

k∑
j=1

P (Mj |y)E(µ|Mj , y) (8)

V (µ|y) =

k∑
j=1

P (Mj |y)
(
V (µ|Mj , y) + (E(µ|Mj , y)− E(µ|y))

2
)

(9)

In this thesis the quantity µ is VaR and ES and the average is calculated
using Monte Carlo methods. The weight for Mj will be calculated as,

wj = e−BIC/2 (10)

which is the posterior model probability seen in (6) and the integrated likeli-
hood in (5) is calculated as the approximate BIC seen in (21). Averaging over
all considered models has been shown to provide a better predictive ability in
average, measured using a logarithmic scoring rule, than using one single model
Mj conditional on all considered models [11].

2.4 Bayes Information Criterion

The Bayesian Information Criterion (BIC) is a measurement on how good es-
timate fit a model is and it is a way of deciding which model is the best fit
to the data. The BIC is a measurement which punishes model complexity
using a Bayesian framework [9]. The criterion takes the form of a penalised
log-likelihood function as seen in (11).

6



BIC(M) = 2logL(M)− log(n)dim(M) (11)

Where M is the model, dim(M) is the number of parameters that is estimated
in the model and n is the sample size of the data set. The model with the largest
BIC value is the one that is the best fit. The Bayesian approach to model
selection, is to select the model that out of several models is the one which is a
posteriori the best fit. The posterior probabilities of models, M1, ...,Mk, derived
from Bayes theorem is shown in (12)

P (Mj |y) =
P (Mj)

f(y)

∫
Θj

f(y|Mj , θj)π(θj |Mj)dθj (12)

where Θj is the parameter space and θj ∈ Θj and y1, ..., yn is the data. P (Mj)
is the prior probability of model Mj , f(y) is the unconditional likelihood of
the data y, f(y|Mj , θj) = Ln,j(θj) is the likelihood function for the data and
π(θj |Mj) is the prior density of θj given the data. The unconditional likelihood,
f(y), is computed from (13)

f(y) =

k∑
j=1

P (Mj)λn,j(y) (13)

λn,j is the marginal likelihood of model j with θj integrated out with respect
to the prior, as seen in (14) [9]

λn,j =

∫
Θj

Ln,j(θj)π(θj |Mj)dθj (14)

When comparing the posterior probabilities P (Mj |y) with respect to the dif-
ferent models, the unconditional density f(y) is irrelevant since it is constant
across the models, it is λn,j that is important to evaluate. Define the exact BIC
estimates, BICexact

n,j , as (15), yielding the posterior probabilities in (16) [9]

BICexact
n,j = 2logλn,j(y) (15)

P (Mj |y) =
P (Mj)e

( 1
2 BICexact

n,j )∑k
j′=1 P (Mj′)e

( 1
2 BICexact

n,j′ )
(16)

these exact BIC measures as seen in (15) are seldom used in practice, since
they are very hard to compute numerically [9]. In order to get an expression
that is more useful in practice, the approximation seen in (11), one begin with
using the Laplace approximation [9].

Begin by writing (14) as (17), the integral is then of the kind where the basic
Laplace approximation works [9].

λn,j(y) =

∫
Θ

enhn,j(θ)π(θ|Mj)dθ (17)
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where hn,j =
`n,j(θ)
n and ` is the log likelihood function, logL. The using the

Laplace approximation yields (18)∫
Θ

enh(θ)g(θ)dθ =
(2π

n

)(p/2)

enh(θ0)
(
g(θ0)|J(θ0)|− 1

2 +O(n−1)
)

(18)

where p is the length of θ, θ0 is the value that maximises h and J is the
Hessian matrix. The approximation is an exact solution if h has a negative

quadratic form and g is constant. The maximiser of hn,j =
ln,j(θ)
n is the maxi-

mum likelihood estimator θ̂j of model Mj and Jn,j(θ̂j) is the Fisher information
matrix, which is seen in (19).

λn,j(y) ≈ Ln,j(θ̂)
(2π

n

)p/2
|Jn,j(θ̂j)|−1/2π(θ̂j |Mj) (19)

Taking the logarithm and multiplying with 2, 2logλn,j(y), yields (20)

BIC∗n,j = 2ln,j(θ̂j)− pj log(n) + pj log(2π)− log|Jn,j(θ̂j)|+ 2logπj(θ̂j) (20)

where the first two terms are dominant with size OP (n) and log(n) respec-
tively, yielding the BIC (21) as it is usually recognized.

2logλn,j(y) ≈ BICn,j = 2`n,j,max − pj log(n)

= 2`(M)− log(n)p

= 2`(M)− log(n)dim(M)

(21)

As can be seen in [10], the BIC can also be defined as (22), which mean that
instead of multiplying with a factor 2, we multiply by -2.

BIC(M) = −2logL(M) + log(n)dim(M) (22)

With this definition of BIC, the model with the smallest BIC value is the best
fit.

2.5 Mathematical methods

In the following section the theory behind the mathematical methods used in
this thesis are introduced. There will be a brief introduction to Monte Carlo
methods, Maximum Likelihood Estimation and Kalman filtering.

2.5.1 Monte Carlo Methods

Monte Carlo methods is a class of computational algorithms where you repeat-
edly generate random numbers to obtain the wanted numerical result.

A common application of Monte Carlo methods is Monte Carlo integration
[2]. Consider the integral

τ = E(φ(X)) =

∫
φ(x)f(x)dx (23)
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Where φ : Rd 7→ R, X ∈ Rd and f is the probability density of X. The
probabilities correspond to φ being the indicator function.

P (X ∈ A) =

∫
1{x ∈ A}f(x)dx (24)

By using the law of large numbers, an approximation to τ is achieved accord-
ing to the equation below.

tN = t(x1, . . . , xN ) =
1

N

N∑
i=1

φ(xi) (25)

where x1, . . . , xN are independently drawn from f .
In this thesis VaR is calculated by generating multiple random numbers from

the selected distribution and thereafter calculated as the α-quantile of the ran-
dom numbers. The expected shortfall is calculated in a similar way by generat-
ing random numbers and averaging over the numbers that exceed the VaR-limit,
as shown in (26).

ESα = E(L|L ≥ VaRα) =
1

Nα

N∑
i=1

1{Li≥VaRα}Li (26)

where Nα is the number of random numbers that exceeds VaR. To get a
sample, Nα, of sufficient size one can use the Binomial distribution. Define p̂ as

p̂ =
Bin(N, p)

N
(27)

where p is the probability level and N is the sample size. By designing N such
that it will be possible to calculate what size the original sample N need to be
for Nα to be of required size, the expression for this can be seen in below in (29)

E(p̂) =
Np

N
V (p̂) =

Np(1− p)
N2

≈ p

N
(28)

D(p̂) =
√
V (p̂) = CE(p̂) (29)

Using the calculations in (28) and inserting into (29) yields the expression for
the sample size (30)

C p =

√
p

N

⇒ N =
1

pC2

(30)

By applying the notation from this section, the sample size needed to obtain
a certain amount (Nα) of samples once the VaR have been calculated can be
seen in (31)

N =
1

C2α
(31)

where C is a constant and α is the confidence level for the risk measure.
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2.5.2 Maximum likelihood estimation

Maximum Likelihood Estimation (MLE) is a method commonly used to estimate
the unknown parameters of a model when the data is known. By maximizing the
likelihood function, and thereby the pdf of the model, it is possible to calculate
the estimates of the unknown parameters that are the most likely to be true
given the data [4].

θ̂ML = arg max
θ
fx(x1, ..., xn|θ) = arg max

θ
L(θ, x) (32)

where x is the data, fx(x1, ..., xn|θ) is the pdf of the data and L(θ, x) is the
likelihood function.

Fishers Scoring Algorithm
A commonly used method to calculate the MLE estimates is Fishers Scoring
Algorithm (FSA). This algorithm is a version of the Newton-Raphson algorithm
[13]. Given a set of estimates θ each step in the iteration, using the Newton-
Raphson method is calculated as

∆θ = −
(
∂2`

∂θ∂θ

)−1
∂`

∂θ
(33)

where ` is the log-likelihood function. The matrix of second partial derivatives
is called the Hessian matrix. This yields the algorithm (34)

θi+1 = θi + ∆θi (34)

where ∆θi is defined as in (33). By replacing the matrix of second partial
derivatives in (33) with their expectation, and thereby yielding the Fisher in-
formation matrix, one get the Fisher Scoring Algorithm [13].

2.5.3 Kalman Filter

A Kalman filter produces the optimal linear estimators of the unknown param-
eters of the underlying state system (35). It is a recursive algorithm which uses
the noisy input data to produce the desired estimates.

xt+1 = Axt +But + et

yt = Cxt + wt
(35)

Seen above is the state space representation, where yt is the measured data
at t, A,B and C is known matrices. ut is a known input to the system, et is the
process, which includes model uncertainties, and wt is the measurement noise
process, describing the noise that disturbs the observed measurements [4].

The algorithm works in two steps, one prediction step and one estimation
step. In the prediction step the filter calculates estimates of the current state
and their variances. Thereafter estimates are produced using the predictions
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and the data. For the interested reader I reference to [4] with more detailed
information on how the Kalman filter works.

The equations used for the different steps of the filter is presented below, for a
more detailed derivation of the equations I refer once again to [4]. The prediction
of x and the variance of the prediction is seen in (36) and (37) respectively.

x̂t+1|t = Ax̂t|t +But (36)

V (x̂t+1|t) = Rx,xt+1|t = ARx,xt|t A
T +Re (37)

V (ŷt+1|t) = Ry,yt+1|t = CRx,xt+1|tC
T +Rw (38)

Where the initial estimates is set to (39) and (40) respectively.

x̂1|0 = E(x1) = m0 (39)

Rx,x1|0 = V (x1) = V0 (40)

In (41) it is shown how to calculate the Kalman gain and in (42) and (43) it is
shown how to update the reconstruction of x and the variance of x respectively.

Kt = Rx,xt|t−1C
T [Ry,yt|t−1]−1 (41)

x̂t|t = x̂t|t−1 +Kt(yt − Cx̂t|t−1) (42)

Rx,xt|t = (I −KtC)Rx,xt|t−1 (43)

2.6 Different mathematical models

In this thesis several different mathematical models have been used. Both for
the purpose of generating the data that were to be studied and the models that
were to be fitted to this unknown data. Following is an introduction to the
models used in this thesis.

2.6.1 NIG-CIR

The data studied in this thesis is considered to be unknown. The generated
data is a Lévy model with stochastic time, to be more specific, it is a NIG-CIR
process [3]. Making the time stochastic will result in stochastic volatility effects
in the generated data. The NIG-CIR process in this thesis is generated out
of two separate independent stochastic processes, the Normal Inverse Gaussian
(NIG) process and the Cox-Ingersoll-Ross (CIR) process.

The characteristic function of the NIG Lévy process, NIG(α, β, δ), is seen in
(44).
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φNIG(u;α, β, δ) = exp(−δ(
√
α2 − (β + iu)2 −

√
α2 − β2)) (44)

Where α > 0, −α < β < α and δ > 0. Due to that the characteristic function

is infinitely divisible the NIG process can be defined as X(NIG) = {X(NIG)
t , t ≥

0} with X
(NIG)
0 = 0. Resulting in a process which has stationary independent

increments that are NIG distributed. The process can be related to an Inverse
Gaussian time changed Brownian motion.

In order to simulate the NIG process, one begin with simulating Normal
Inverse Gaussian random numbers. This can be obtained by first simulating
Inverse Gaussian (IG) random numbers, Ik ∼ IG(1, δ

√
α2 − β2). Thereafter

one proceeds by sampling Normal random numbers uk in order to generate the
NIG process random numbers nk

nk = δ2βIk + δ
√
Ikuk (45)

The final sample path for the NIG process is then obtained according to (46),
using the random numbers nk ∼ NIG(α, β, δ∆t), where ∆t are the time points.

X0 = 0, Xt = Xtk−1
+ nk, k ≥ 1 (46)

The second part of the process is the stochastic clock, in this case a CIR
stochastic clock. It is the CIR process that gives the data its stochastic volatility
behaviour, by time changing the Lévy process above.

The CIR process solving the stochastic differential equation (SDE) (47) is
used as a the rate of time change.

dyt = κ(η − yt)dt+ λy
1/2
t dWt, y0 ≥ 0 (47)

where W = {Wt, t ≥ 0} is a Brownian motion. Given y0, the characteristic
equation of Yt is known and can be seen in (48)

φCIR(u, t;κ, η, λ, y0) = E[exp (iuYt)|y0] =

=
exp(κ2ηt/λ2) exp(2y0iu/(κ+ γ coth(γt/2)))

(cosh(γt/2) + κ sinh(γt/2)/γ)2κη/λ2

(48)

where γ =
√
κ2 − 2λ2iu. To simulate a CIR process y = {yt, t ≥ 0} the SDE

(47) is discretized. If a first order accurate explicit differencing scheme is used in
time, the sample path y = {yt, t ≥ 0} in the time points t = n∆t, n = 0, 1, 2...,
becomes

ytn = ytn−1
+ κ(η − ytn−1

)∆t+ λy
1/2
tn−1

√
∆tυn (49)

where {υn, n = 1, 2, ...} are independent standard normally distributed random
numbers.

To create the NIG-CIR process one generates the NIG process, using the
generated CIR process as ∆t in (46).
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2.6.2 GARCH & EGARCH

Generalized Autoregressive Conditionally Heteroscedastic (GARCH) process is
a type of time series process. As the name says it is an auto-regressive pro-
cess, meaning that it is dependent on the past values of the process. That the
process is conditionally heteroscedastic means that the conditional variance of
the process is changing over time, creating volatility clusters. Introduction to
the GARCH process will begin by some background concepts proceeded by in-
troducing the ARCH process, followed by an introduction to the GARCH and
EGARCH.

Basic definitions
The different processes in this thesis are all univariate stationary processes which
is a foundation for the following definitions. In time series analysis the first two
moments are commonly used. These are the mean function µ(t) and autoco-
variance function γ(s, t), as defined in (50) and (51) respectively [1].

µ(t) = E(Xt), t ∈ Z (50)

γ(s, t) = E(Xt − µ(t))E(Xs − µ(s)), s, t ∈ Z (51)

where (Xt)t∈Z is a stochastic process. For the autocovariance function it follows
that γ(t, s) = γ(s, t) for all s, t and that γ(t, t) = V (Xt).

Next, strict stationarity (2.1) and covariance stationarity (2.2) will be defined.
Most often processes are stationary in both these senses or at least in one of
them.

Definition 2.1. (Strict stationarity) A process, (Xt)t∈Z, is strictly stationary
if,

(Xt1 , ..., Xtn)
def
= (Xt1+k , ..., Xtn+k

)

For all t1, ..., tn, k ∈ Z and n ∈ N

Definition 2.2. (Covariance stationarity)
A process, (Xt)t∈Z, is covariance stationary if both the first two moments

exist and satisfy,
µ(t) = µ, t ∈ Z

γ(t, s) = γ(t+ k, s+ k), s, t, k ∈ Z

For all t1, ..., tn, k ∈ Z and n ∈ N

Definition 2.3. (Auto Correlation Function) For a covariance stationary
process the Auto Correlation Function (ACF),is defined as

ρ(h) = ρ(Xh, X0) =
γ(h)

γ(0)
, ∀h ∈ Z

where (Xt)t∈Z is a covariance stationary process, and h is the lag.
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This can be seen from the definition of covariance stationarity γ(t − s, 0) =
γ(t, s) = γ(s, t) = γ(s − t, 0), showing that the covariance between Xt and Xs

is only dependent on |t− s| = h which is called the lag.
An important concept in time series analysis is white noise. White noise is a

stationary process without serial correlation, the definition follows below.

Definition 2.4. (White noise)
A process, (Xt)t∈Z, is a white noise process if it is covariance stationary with

ACF

ρ(h) =

{
1 h = 0
0 h 6= 0

Definition 2.5. (Strict white noise)
A process, (Xt)t∈Z, is called a Strict White Noise (SWN) if it is a series of iid

random variables with finite variance

Martingale difference
The martingale difference property is another noise concept that is commonly
used in the study of ARCH and GARCH processes [1]. A martingale difference
sequence is a generalized white noise process and it is a martingale difference
process if the following holds

Definition 2.6. (Martingale) A time series (Xt)t∈Z is called a martingale
with respect to the filtration (Ft)t∈Z if the following properties hold

I. E|Xt| <∞

II. Xt is Ft −measurable

III. E(Xt|Ft−1) = 0, ∀t ∈ Z

The property saying that the expectation of the next value always is zero,
makes it appropriate to apply for financial data [1].

ARCH process
The ARCH process is as the name suggests an Autoregressive Conditionally
Heteroscedastic process. Let (Zt)t∈Z be a Strict White Noise (SWN) process,
such that (Zt)t∈Z ∼ SWN(0, 1). The process (Xt)t∈Z is defined as an ARCH(p)
process if it is strictly stationary and if it for all t ∈ Z and for the strictly
positive process (σt)t∈Z satisfies equation (52) [1]

Xt = σtZt

σ2
t = α0 +

p∑
i=1

αiX
2
t−i

(52)

where α0 > 0 and αi ≥ 0, i = 1, ..., p.
Ft = σ(XS : s ≤ t) is the sigma algebra which contains the information

generated by the process until time t, that is Ft is the natural filtration. From
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(52) one can see that σt is measurable with respect to Ft−1. Provided that
E(|Xt|) <∞, one can calculate

E(Xt|Ft−1) = E(σtZt|Ft−1) = σtE(Zt|Ft−1) = σtE(Zt) = 0 (53)

in (53) one can see that the ARCH process possesses the martingale difference
property (2.6) with respect to (Ft)t∈Z. If the process is covariance stationary as
well, the process is a white noise. Assuming that the process is covariance sta-
tionary (54) yields that its conditional volatility is depending on the previously
squared values of the process. Hence generating volatility clustering [1].

v(Xt|Ft−1) = E(σ2
tZ

2
t |Ft−1) = σ2

t v(Z2
t ) = σ2

t (54)

The innovations (Zt)t∈Z can in general be any distribution with zero mean
and unit variance, i.e. the Gaussian distribution or student’s t-distribution.

GARCH process
The GARCH process is a Generalized ARCH process, meaning that the condi-
tional volatility is also allowed to depend on previous squared volatilities.

Let once again Zt be a strict white noise, (Zt)t∈Z ∼ SWN(0, 1). The time
series process Xtt∈Z is a GARCH(p,q) process if it for all t ∈ Z and some strictly
positive valued process (σt)t∈Z holds for (55) and (56).

Xt = σtZt (55)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−1 (56)

Where α0 > 0, αi ≥ 0, i = 1, ..., p and βj ≥ 0, j = 0, ..., q. In practise
mostly lower ordered GARCH processes is used [1]. A GARCH(1,1) process is
a covariance stationary white noise process iff α1 + β1 < 1 [1].

EGARCH
The Exponential GARCH (EGARCH) process is an extension of the GARCH
model. Assume (Zt)t∈Z to be a SWN(0, 1) process, Xtt∈Z is an EGARCH(p,q)
process, if for all t ∈ Z and some strictly positive valued process (σt)t∈Z, it
satisfy the following equations [6].

Xt = σtZt (57)

logσ2
t = α0 +

p∑
i=1

αiXt−i +

q∑
j=1

βj logσ2
t−j (58)

Where αi , i = 0...p, βj , j = 1...q are real numbers.

σ2
t = eα0

p∏
i=1

eαiXt−i
q∏
j=1

σ2
j−1

βj−1
(59)
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In contrast to the classical GARCH process the volatility in the EGARCH have
multiplicative dynamics which can be seen in (59) [6]. Since the logarithm can
be of any sign, it’s possible to avoid the constraint of strictly positive coefficient,
which holds for the GARCH process.

MLE of GARCH and EGARCH parameter estimates
The parameters of a GARCH or EGARCH process can be estimated using
Maximum Likelihood Esimation. In this thesis the focus is on GARCH(1,1)
and EGARCH(1,1) processes and these will thus set the standard for the rest
of this section, but the concept can easily be extend to cover GARCH(p,q) and
EGARCH(p,q) processes.

Begin by defining the parameter vector θ = (α0, α1, β1) which is the argument
that shall be maximized. The log-likelihood function ` can be rewritten as (60)

`(θ) =

n∑
t=q+1

`t(θ) (60)

where `t(θ) is the log-likelihood function at time t. As written in 2.5.2 the
algorithm updates the parameters according to (61), each iteration step use
both the first and second order derivative of the log-likelihood function. called
∇L and J respectively [12].

θi+1 = θi + J−1(θj)∇L(θj) (61)

Where ∇L and J are defined according to (62) and (63) respectively, and J
is the Fisher information matrix.

∇L =
∂`

∂θ
(62)

J = E

(
− ∂2`

∂θ∂θ

)
(63)

The GARCH(1,1) process is defined as in (55) and (56) as

yt = σtZt

σ2 = α0 + α1y
2
t−1 + β1σ

2
t−1

(64)

and the EGARCH(1,1) process is defined as

yt = σtZt

logσ2 = α0 + α1yt−1 + β1log(σ2
t−1)

(65)

This thesis will consider both the Normal distribution and Student’s t Dis-
tribution for the SWN process Zt. The log-likelihood function for the Normal
distribution is presented in (66) below [12].
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`Nt (θ) = −1

2
log(2π)− 1

2
log(σ2

t )− 1

2

y2

σ2
t

(66)

For the Normal distribution the first and second order derivative of (66) are
defined as in (67) (68). A more detailed calculation of the derivatives can be
found in A.1.

∂`Nt
∂θ

=
1

2σ2
t

∂σ2
t

∂θ

(
y2
t

σ2
t

− 1

)
(67)

∂2`Nt
∂θ∂θ

=

(
y2
t

σ2
t

− 1

)
∂

∂θ

(
1

2σ2
t

∂σ2
t

∂θ

)
− y2

t

2(σ2
t )

3

∂σ2
t

∂θ

∂σ2
t

∂θ
(68)

where
∂σ2

t

∂θ is updated according to (69) and ∇L and J is calculated as in (70)
and (71).

∂σ2
t

∂θ
= (1, y2

t−1, σ
2
t−1) + β1

∂σ2
t−1

∂θ
(69)

∇L =
1

2

n∑
t=2

1

σ2
t

∂σ2
t

∂θ

(
y2
t

σ2
t

− 1

)
(70)

J =
1

2

n∑
t=2

(
1

σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ

)
(71)

The way of calculating the iteration step for the Student’s t distribution,
similar to the way it is calculated for the Normal distribution, but the way one
updates the∇L and J matrices differ. This due to that the first and second order
derivatives will differ from the expressions in (67) and (68). The log-likelihood
function for the Student’s t distribution can be seen in (72)

`Tt (θ) = log(Γ((ν + 1)/2))− log(Γ(ν/2))− 1

2
log(π)

−1

2
log(ν − 2)− 1

2
log(σ2

t )− ν + 1

2
log

(
1 +

y2

(ν − 2)σ2
t

) (72)

For the t-distribution the following functions will replace the functions valid
for the Normal distribution. More detailed calculations of the expression can
be found in A.2.

∂`Tt
∂θ

=
1

2σ2
t

∂σ2
t

∂θ

(
y2
t

σ2
t

G − 1

)
(73)

∂2`Tt
∂θ∂θ

= −
(
y2
t

σ2
t

G − 1

)
∂

∂θ

(
1

σ2
t

∂σ2
t

∂θ

)
− y2

t

2σ2
t

∂σ2
t

∂θ

∂σ2
t

∂θ

(ν + 1)(ν − 2)

(σ2
t (ν − 2) + y2)2

(74)
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where G is defined as in (75), which yields the expressions seen in (76) and
(77) for ∇L and J respectively

G =
ν + 1

(ν − 2) + y2

σ2
t

(75)

∇L =
1

2

n∑
t=2

1

σ2
t

∂σ2
t

∂θ

(
y2
t

σ2
t

G − 1

)
(76)

J =
1

2

n∑
t=2

(
1

σ4
t

(ν + 1)(ν − 2)

((ν + 2) + 1)2

∂σ2
t

∂θ

∂σ2
t

∂θ

)
(77)

Studying the EGARCH(1,1) process shown in the system (65) the SWN pro-
cess have been chosen to be Normal distributed, implying that most of the
equations will remain the same as in the case of GARCH(1,1) with Normal dis-
tribution. The difference will be to (69) which instead will be updated according
to (78)

∂σ2
t

∂θ
= (1, yt−1, logσ2

t−1)e(α0+α1yt−1+β1logσ2
t−1) + β1

∂σ2
t−1

∂θ
(78)

2.6.3 Stochastic Volatility model - Taylor 82

Stochastic Volatility (SV) models are an alternative to the GARCH model,
which also generates volatility clustering, but with SV models the volatility is
assumed to be driven by it’s own stochastic process. The SV process studied in
this thesis is the classical SV model introduced in 1982 by S.J Taylor [7]. This
is a standard Gaussian autoregressive SV process in discrete time and is defined
according to (79) and (80) [8].

yt = eht/2zt zt ∼ N(0, 1) (79)

ht = a0 + a1ht−1 + σηt ηt ∼ N(0, 1) (80)

where yt is the log return at time t and ht is the log volatility. The error terms
zt and ηt are Gaussian white noise processes. Comparing with the GARCH
model the major difference is, conditional on the information set Ft−1, h2

t is an
unobserved random variable [7].

The Taylor 82 model can be fitted to the data by using a Kalman filter. By
squaring and taking the logarithm of (79), one see similarities to a state space
system (81).

ut = log y2
t = ht + log z2

t zt ∼ N(0, 1) (81)

where E(log z2
t ) = −1, 27 and V (log z2

t ) = π2

2 . This yields (82) which have
clear similarities to the state space system defined in (35) in the section about
the Kalman filter.
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ut = ht + log z2
t zt ∼ N(0, 1)

ht+1 = a0 + a1ht + σηt ηt ∼ N(0, 1)
(82)

The initial estimates of the mean, (39), and variance, (40), are seen in (83)
and (84) respectively.

m0 = E(x1) =
a0

1− a1
(83)

V0 = V (x1) =
σ2

1− a2
1

(84)

This knowledge yields an opportunity to use a Kalman filter to estimate the
unknown parameters a0, a1 and σ.

3 Simulations

The main part of the thesis is based on simulations performed in Matlab. This
section will consist of a summary of the simulation steps.

3.1 Creation of the NIG-CIR data

In section 2.6.1 it is described how to create NIG-CIR distributed data. The
data set that was generated consisted of two NIG-CIR processes, with slightly
different parameters, that were concatenated to one. The reason for the slight
change of parameters in the data is to see how well the method can follow when
the conditions change.

The parameters for the two processes were chosen as

First set of parameters:
α = 21.1975
β = −1.1804
δ = 7.0867
κ = 5.7101
η = 5.5507
λ = 2.7864
y0 = 1

Second set of parameters:
α = 20.1975
β = −1.3804
δ = 7.0867
κ = 5.2101
η = 5.5507
λ = 2.7864
y0 = 1

The parameter choices was influenced by parameters found in [3]. Generating
the NIG-CIR data with these parameters yields the plots seen in Figure 1 and
Figure 2 shows a closer look at the first 500 samples. This NIG-CIR data process
is the one that is considered to be the true loss function and it is this one that
the VaR and ES measurements are supposed to be calculated for using model
averaging.
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Figure 1: A plot over the data set used to estimate the parameters of the
different processes. The first parameter set is used to generate the first 2000
samples and the remaining samples are generated using the second parameter
set, seen on the previous page.
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Figure 2: A closer look at the first 500 samples of the NIG-CIR data set. In
this plot it is possible to see that the process have stochastic volatility.
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3.2 Fitting distributions to the data

Once the data that was to be used as foundation for the simulations was gen-
erated, the next step was to fit the different distributions to the data. The
generated data set was 4000 samples long and for each fitting of parameter es-
timates 1000 samples were used, iterating forward with 50 samples at a time
finally yielding 60 parameter estimates for each distribution. The distributions
that were fitted are:

• Normal Distribution

• Student’s t Distribution

• GARCH process with Normal Distribution

• GARCH process with Student’s t Distribution

• EGARCH with Normal Distribution

• Stochastic Volatility process - Taylor 82

Although six different distributions were fitted, only five were used in the pro-
ceeding calculations. This is due to that the parameter estimates generated for
the GARCH process with student’s t distribution sometimes yielded an unsta-
ble processes. It is known from [14] that fitting stable parameters to a GARCH
process with student’s t distribution could be tricky and they have come up
with a solution to this problem based on Generalized Auto regressive Scoring
algorithms. But this article was found rather late in the process of this thesis
and the method is hence not used in this thesis, instead the GARCH with Stu-
dent’s t distribution is excluded when calculating the average. The interested
reader can read more about the Generalized Autoregressive Scoring algorithms
in [14].

The Normal and Student’s t distribution were generated using the built in
functions makedist and fitdist in Matlab. The fitting of the GARCH and
EGARCH processes was done using MLE as explained in 2.6.2. To establish
numerical stability and make sure that the estimator converged to the correct
values, some tricks were performed. I.e. when taking the inverse of the Fisher
matrix an eigenvalue matrix with small values were added to avoid zeros along
the diagonal and the pseudo inverse, pinv, was used to calculate the inverse.
And in order for the estimator not to take too big steps at each iteration, each
step size was reduced and the number of iterations were increased to complement
the reduced step size. In figure 3 and 4 the iteration process of the parameter
estimates of the MLE procedure is showed.
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Figure 3: The estimation of the parameters of the GARCH(1,1) with Normal
distribution as the iteration proceeds
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Figure 4: The estimation of the parameters of the EGARCH(1,1) as the iteration
proceeds.
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To calculate the parameters for the Taylor 82 process a Kalman filter was
used.

Figure 5 to 9 shows the parameter estimates of the five different processes for
the 60 different data sets. Comments on the different plots can be found in the
captions.

Figure 5: The parameter estimates of the Normal distribution for each of the
60 data sets. As seen the estimated parameters seem to be rather stable over
the entire data set, even when the parameters have changed slightly it remains
stable.
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Figure 6: The parameter estimates of the Student’s t distribution for each of the
60 data sets. The most notable in this plot is how much the degrees of freedom,
ν changes. The reason for this is not something discussed closer in this thesis,
but it is a behavior that is present rather often.
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Figure 7: The parameter estimates of the GARCH(1,1) with Normal distribu-
tion for each of the 60 data sets. The parameter estimates are rather consistent
through out the plot and it is possible to see a small peak and dip in the esti-
mates around sample no. 30. This is when there have been a slight change in
the parameters generating the NIG-CIR process.
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Figure 8: The parameter estimates of the EGARCH(1,1) distribution for each
of the 60 data sets. The parameter estimates for the EGARCH process is not
as stable for the second half of the data. Around 30 a clear dip is seen which
is followed with more varying behavior. But it is possible to see that if there is
a dip/peak in one of the estimated values, the other parameter estimates will
also have a dip/peak at that time.
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Figure 9: The parameter estimates of the Taylor 82 process for each of the 60
data sets. The parameter estimates for the Taylor 82 model show similarities to
the EGARCH estimates in the sense that they are more stable in the first half,
have a clear peak/dip around 30 and a more varying behavior in the second
part.
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3.3 BMA

The next step is to calculate weights used for the BMA. When calculating
the weights BIC is used, the calculated BIC measures is of magnitude BIC ∼
1000 − 4000. If calculating the weights using (10) the magnitude of the BIC
measure will become a problem, since the weights then become very large and
approach infinity. Adjusting this as in (85) is the same thing as when using the
unadjusted weights. This can be seen when normalizing the weights as in (86).

w = e(−BIC
2 ) = e(−BIC±A

2 ) = e
A
2 e(−BIC−A

2 ) (85)

Which yields

wj =
e(−

BICj
2 )∑n

l=1 e
(−BICl

2 )

=
e
A
2 e(−

BICj−A
2 )∑n

l=1 e
A
2 e(−BICl−A

2 )

=
e(−

BICj−A
2 )∑n

l=1 e
(−BICl−A

2 )

(86)

A problem with this way of calculating the weights is that due to the consider-
ably different sizes of BIC only one of the models is considered, that is the Taylor
82 model which can be seen in 10. The way of calculating the log-Likelihood
function have been validated by testing it on GARCH data, in which case the
GARCH with Normal distribution and Taylor 82 model preforms equally well.
The conclusion to draw from this is that considered the data in this thesis the
Taylor 82 model is a significantly better fit than the other models, and hence it
is the only one used.

But if instead adjusting the BIC according to (87)

w = e−
(BIC/A)

2 (87)

all models get considered, even though the BIC values differs rather much.
In both cases the constant A was set to be BICmax which is the maximum BIC
from this set of values. Different choices of the value A was tested, i.e. the
mean of the BIC values, but it was decided to use BICmax since it yielded good
results. The weights that were used was calculated according to (87) and can be
seen in Figure 11. As seen in the figure this will yield a result that is rather close
to equal weights. But with a slight consideration of the BIC measurements.
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Figure 10: The calculated weights using the weight in (10). As seen in the figure
only Taylor 82 is chosen.
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Figure 11: The calculated weights using the weight in (87). All models will be
considered almost equally, but the will be a preference of the Taylor 82, and a
slight preference of the GARCH and EGARCH process.
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Before finally calculating the BMA estimates for VaR and ES, the sample size
used for the BMA need to be established. This was done according to (31), with
the constant C = 10−2 and α = 0.1 the sample size Nα was calculated to be

Nα =
1

0.1 · (10−2)
2 = 100 000 (88)

This means that using an α-level of 0.1 there will be ∼ 10 000 samples that
are used to calculate the ES estimate, which was deemed a sufficient amount
of samples for the result to be relevant. Since VaR essentially is the α-quantile
of the data, the matlab function prctile was used to calculate the VaR es-
timates. When knowing the VaR estimates it is straight forward to calculate
the ES estimates using (26). To be sure that the averaging of the VaR and ES
estimates was not a problem the averaging was performed by creating a new
mixed data sample, where the mixture was based on the weights. It was from
this new weighted and mixed data sample the VaR and ES estimates finally
were calculated.

4 Results

The calculated estimates for VaR and ES can be seen in Figure 12 to 15. It
is the unconditional 1-step prediction of VaR and ES that is calculated. Due
to that Monte Carlo methods is used to calculate VaR and ES, it is trivial
to calculate the n-step prediction. As previously mentioned, when using the
unadjusted weights only the Taylor 82 model is chosen is chosen, since it has
the best fit for the data. That means that when it is written Taylor 82 in the
figures, that correspond to the original weights and the parts where it is written
weighted corresponds to the adjusted weights.
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Figure 12: The different calculated VaR estimates. In the picture it is possible
to see both the estimated values and the true value. One thing that is possible
to see in this figure is that most of the functions under estimate the VaR, the
idea was that GARCH with student’s t were to compensate for this, since the t
distribution usually yields higher estimates, which also is possible to see in the
picture.
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Figure 13: A closer look at the more interesting VaR estimates, the different
weighted averages, where the line corresponding to Taylor 82 also corresponds
to the original weights.
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Figure 14: The calculated ES estimates for the different models.
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Figure 15: A closer look at the more interesting ES estimates calculated using
the different averaging processes. The line corresponding to Taylor 82 also
corresponds to the original weights.
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The first thing that is noticed when studying the different pictures is that
there is not any average or model that outperforms the others, but they are
all rather similar. One thing that is easy to see is that using only the Normal
distribution will make for a underestimation of the risk. This is due to that the
data has heavier tails than the Normal distribution is able to predict. Another
thing that is seen in the figures is that the different estimates follow each other,
if the one of the estimates increases in value, most of the others does the same at
approximately the same time. A further interesting thing is that the EGARCH
estimates yields an even worse estimate than the Normal distribution, the reason
for this is unclear. In order to see if there seems to be any model that is
performing better than the others the absolute value of the errors is analysed
and the results are presented in the tables below.

Error of the Value-at-Risk estimates
Distribution Mean SD
Weighted average adjusted weights 0.6331 0.2741
Weighted average original weights 0.5641 0.2368
Equally weighted average 0.6320 0.2728
Normal distribution 1.0091 0.1569

Errors of the Expected Shortfall estimates
Distribution Mean SD
Weighted average adjusted weights 0.6324 0.2752
Weighted average original weights 0.6594 0.2802
Equally weighted average 0.6363 0.2803
Normal distribution 1.3041 0.2066

When studying the errors the previous guess that the different averaging
estimates were similarly good is confirmed. Their mean errors are very similar to
each other and they deviate approximately equally much from the true curve. It
is known that an equally weighted portfolio sometimes outperforms a minimum
variance portfolio when it is out of sample [16]. Considering the results in this
thesis it is reasonable to assume that the same principle might be valid to this
area of application.

There might be several reasons for these slightly vague results. One of these
could be that there were some problems when fitting the different models to the
unknown data, as it was with the GARCH with Student’s t distribution, so that
the parameters did not converge to the optimal values. These problems could
be due to the chosen parameters of the NIG-CIR process. Another problem is
that the BIC values varied quite a lot, which lead to difficulties calculating the
weights which in turn resulted in that solely the Taylor 82 process was chosen
or that the averaging was performed with either equal or close to equal weights.

Figure 16 shows a histogram of the NIG-CIR data used as validation of the
estimates. The red line in the figure is a fitted Normal distribution. A closer
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study of this figure shows that it has several of the properties that are common
to financial data i.e. leptokurtosis, skewness and heavy tails. This is best seen by
comparing to the Normal distribution in the picture. The peak is more narrow
and higher than for the Normal distribution yielding that is it leptokurtic and
the highest peak of the histogram is slightly shifted from that of the Normal
distribution. By a closer study of the tails, it is possible to see that the NIG-
CIR data has heavier tails than the Normal distribution. This explains why the
VaR and ES estimates using only the Normal distribution is underestimated, as
mentioned in 2.1.

Figure 16: A histogram of the NIG-CIR data, the red line corresponds to a
Normal distribution fitted to the histogram.
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5 Conclusions

As stated in the results, in this thesis, there is not one averaging process calcu-
lating an average over several models or using one model, that fits remarkably
better than the other. But calculating an average, regardless of the weights
used, is extensively better than assuming that the data is Normal distributed.
If the amount of time and work that is needed to calculate the different weights
are taken into account when deciding on how good a fit the model is the con-
clusion, based on the results in this thesis, is that the equally weighted average
would be preferable over the weighted ones. This is due to that the accuracy of
the estimates differ very little between the weighted and the equally weighted
averages.

The main problem with the result in this thesis is that when using the intended
weights, the fit of the Taylor 82 model was significantly better than for the other
models to the extent where the Taylor 82 model was the only model chosen. If
more models would have been considered it is likely that several of these would
have given an equally good or even better fit than the Taylor 82 model. More
models would also change the estimated weights which in turn might yield even
better estimates.

And even though this thesis did not shine any light on which weights are
the best to use to get the most accurate estimation fit, it is possible to draw
the conclusion that using model averaging for calculating Value-at-Risk and
Expected Shortfall is a good method. More considered models might also yield
a more stable estimate.

A way to continue the research within this topic is to consider how to cal-
culate the weights. There are many different information criterion’s that could
be considered and that is just a small part all the possibilities for developing
new weights. The interested reader can read more about different information
criterions in [9].
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Appendices

A Derivation of the Hessian matrix - MLE

A.1 Normal distribution

Deriving the expressions for J originates from the log-Likelihood function. The
log-likelihood function for the Normal distribution is seen in (89)
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Yielding the second derivative to be
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Defining the standardized residuals as Zt = yt/σt where Zt is SWN, so that
we have Zt|ψt−1 ∼ SWN(0, 1) [12]. The following results is known

E(Zt|ψt−1) = 0, E(Z2
t |ψt−1) = 1, E(Z2

t − 1|ψt−1) = 0 (92)

Since σ2
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Combining the concept of standardized residuals with the expression in (91)
yields the expression for J
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A.2 Student’s t distribution

The same calculations can be performed on the Student’s t distribution. Begin
with the log-likelihhod function of the t distriution as seen in (95), the first
derivative can then be seen in (96)
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Where G is defined as in (97)
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The second order derivative then becomes
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Using standardized residuals yields an expression for J
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Calculation of VaR and Expected Shortfall under
model uncertainty
Alexandra Böttern ∗

∗Lund University

A common problem for financial institutions is to decide which model
should be used when modelling prices and risks, in this article we
focus on the risk aspect. When you have unknown data, for ex-
ample losses, it is always a problem to decide which model to use
when making the simulations, this is a concept called model risk. In
this thesis the two risk measures calculated are Value-at-Risk and
Expected Shortfall and they are calculated using a model averaging
approach.

Value-at-Risk | Expected Shortfall | Bayesian Model Averaging

Value-at-Risk, or VaR as it is more commonly called, is a
very common risk measurement used by financial institutions.
It is often used to calculate market risk. Market risk is the
risk of losses that a financial institution obtains due to factors
affecting the financial market. An example of a market risk is
that there might be a natural disaster or terrorist attack, this
will affect the market as a whole. In Basel II, the second Basel
accord, it is written that VaR is the preferred method for cal-
culating market risk. But there are some problems with using
VaR, for example it does not capture tail risk. And Value-at-
Risk is not a coherent risk measure. This means that it does
not fulfill the four axioms of coherence that follow below, the
axiom it does not fulfill is the one for subadditivity.

1. Monotonicity - which can be explained as, if portfolio A is
consistently better than portfolio B under almost all sce-
narios then the risk of A should be less than the risk of
B.

2. Subadditivity - meaning that the risk of portfolio A and B
together cannot be worse than adding the risks for A and
B separately.

3. Positive homogeneity - this means that if you double the
size of your portfolio, you double the size of your risk.

4. Translation invariance - meaning that if you have one port-
folio A with a guaranteed return and a portfolio B, the
portfolio A is the same thing as adding cash to your port-
folio B.

Since there is some problems with using VaR, the Basel
committee have in Basel III decided that Expected Shortfall
(ES) shall be used instead of VaR. Expected Shortfall is a
risk measure that is closely related to Value-at-Risk, but it is

a coherent risk measure and it captures a lot of the behaviours
that VaR does not.

Financial data often behaves in a special way and contain
many complex behaviours. An example of this is that finan-
cial data often is leptokurtic, meaning it have a more narrow
and higher peak and heavier tails than the Normal distribu-
tion. It is also common that it is skewed and that it contains
volatility clustering. That a data series have volatility clus-
ters means that one extreme event is likely to be followed by
several extreme events.

These complex behaviours of financial data can be hard
to model and predict if the underlying model is unknown,
which usually is the case. In this thesis we use model aver-
aging to solve this problem. By using model averaging, or
more specifically Bayesian Model Averaging, the model risk
is reduced. This is due to that we now consider several mod-
els instead of just choosing one. By choosing several models
each one of them get to contribute with their unique behav-
ior and generate a more confident final prediction. But there
are some problems one is faced with when performing the av-
eraging and one of these is how to select the weights used
to calculate the average. We tried two different approaches
when choosing the weights. One more naive approach using
equal weights, which have proven to be rather good in the
past. And one where the weights are calculated using Bayes
Information Criterion (BIC). Bayes Information Criterion is
a method of deciding which model is the best fit to the data
using a Bayesian framework. The measurement is based on
the log-likelihood function and punishes based on model com-
plexity.

The different simulations performed shows that it is ad-
vantageous to use BMA rather than using just one model.
But due to some problems with the modelling the results are
inconclusive regarding which weights are best to use. But if
the time it took to calculate the weights is taken into consid-
eration, the equally weighted average is to prefer since it is
a lot faster to calculate and yielded an equally good result.
Considering that Basel III states that Expected Shortfall is
to be the recommended measurement to use when calculating
market risk and that the BMA showed good results, I do be-
lieve that this method is something that financial institutions
can benefit from implementing.
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