
Automated build service to facilitate
Continuous Delivery

Ture Karlsson

MASTER’S THESIS | LUND UNIVERSITY 2015

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2015-27

Automated build service to facilitate
Continuous Delivery

Ture Karlsson
turekarlsson10@gmail.com

June 12, 2015

Master’s thesis work carried out at IKEA IT AB.

Supervisors: Magnus Glantz, magnus.glantz2@ikea.com
Ulf Asklund, ulf.asklund@cs.lth.se

Examiner: Martin Höst, martin.host@cs.lth.se

mailto:turekarlsson10@gmail.com
mailto:magnus.glantz2@ikea.com
mailto:ulf.asklund@cs.lth.se
mailto:martin.host@cs.lth.se

Abstract

Continuous delivery can be seen as an evolution from agile software develop-
ment methods and high demands to deliver working software quickly. It aims
to always be able to deliver working and reliable software in short iterations
by continuously integrate, build and test the software. This puts high demands
on automation and the focus of this thesis is to automate the pipeline between
source code and deployable software artifacts. The problem definition of this
thesis is to improve and unify the deployment pipeline of software running on
Linux at IKEA IT. The project resulted in a service that supports continuous
delivery by providing automated building, testing, signing and deployment of
software. It runs in production environment at IKEA IT and provides a high
level of automation. It was evaluated with help from end users and the eval-
uation showed that the service is useful for the intended users and automate
several steps they earlier have had to do manually.

Keywords: MSc, build service, continuous delivery, RPMPackageManager, DevOps

2

Acknowledgements

I would like to give a big thank you to Magnus Glantz at IKEA IT for all the inspiration
and for giving me this opportunity. I would also like to thank Ulf Asklund and Martin
Höst for their support and feedback on my work on this report. Also, the testers for their
time and help in the evaluation.

This work was supported by Vinnova in the ITEA2 project 12018 SCALARE.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Current conditions . 7
1.3 Problem definition . 8
1.4 Related work . 9
1.5 Approach . 10

2 Observations 13
2.1 Continuous Integration . 13

2.1.1 Version Control Systems . 13
2.1.2 CI Server . 14

2.2 RPM Package Manager . 14
2.2.1 The .spec files . 15
2.2.2 Packaging . 16

2.3 Observed problem . 17

3 Solution 19
3.1 CI Server . 20
3.2 Build script . 21
3.3 Testing . 23

3.3.1 Check for new builds periodically 24
3.3.2 Trigger test at every build . 24
3.3.3 The testing procedure . 25
3.3.4 Improvements . 26

3.4 Signing . 27
3.4.1 Signing to verify test . 27
3.4.2 Signing server . 28

3.5 Upload RPMs to Satellite server . 29
3.5.1 RESTful API . 29
3.5.2 Hammer CLI . 29

5

CONTENTS

3.6 Deliver the product . 31
3.6.1 Packaging . 31
3.6.2 Testing . 32
3.6.3 Installation . 33

4 Evaluation 35
4.1 Test person 1 . 35
4.2 Test person 2 . 37
4.3 Test person 3 . 37
4.4 Summary . 38
4.5 SCALARE canvas . 38

5 Discussion 41
5.1 Continuous Delivery . 41
5.2 The solution . 42

6 Conclusion 45
6.1 Future Work . 45

Bibliography 47

Appendix A RPM 51
A.1 exampleproject.spec . 51
A.2 Package information fields . 52
A.3 linuxtp-buildservice.spec 53

6

Chapter 1
Introduction

1.1 Background
Agile development methods are nowadays a common approach to software engineering.
These methods promote many practices, e.g. close collaboration between programmers,
short development iterations, early and continuous delivery. This puts high requirements
on the development environments of big organizations. They need to be able to provide
the developers with the correct tools to enable them to work in short iterations and deliver
software easily. The release process profits from being automated in as many steps as
possible since this makes the process faster and unified. It reduces the risk of failure in
each release since it allows smaller changes between releases and also by abstracting the
process away from human interaction.

1.2 Current conditions
In the network architecture of IKEA IT there are approximately 3,500 Linux servers dis-
tributed around the world on different central data centers, regional data centers and dis-
tributed sites. A typical example of a distributed site is typically a warehouse. To be able
to administrate such a large amount of servers in a controlled way IKEA IT has developed
a Linux Technical Standard that defines the configuration running on the servers. They
use the operating system Red Hat Enterprise Linux (RHEL) together with Red Hat Satel-
lite which is a system management platform to deploy and manage RHEL servers. The
Satellite server contains information about the technical standard, all software packages
needed and much more.

The servers run roughly approximated 200 different applications which are developed
both by different vendors but also internally at IKEA IT. There is currently no standard
on how these applications should be delivered which complicates the delivery process and

7

1. Introduction

results in extra work for both developers and testers. The release process of an application
may include many manual steps which heavily increases the release time. The release
process differs much between applications depending to their characteristics. For example
some of them has to go through multiple test environments, while others can be taken into
production environment faster.

1.3 Problem definition
The problem definition of this thesis is to examine the possibilities to automate the process
of building software, performing automated tests and deliver software to a provisioning
service. The thesis work is carried out at the Linux department at IKEA IT and the goals
of the thesis are to:

• explore different tools and techniques to automate the deployment pipeline of soft-
ware that can be used to facilitate continuous delivery at IKEA IT.

• develop a service that works with their Linux platform and can be an effective tool
in their every day work. The service should be able to package, perform automated
tests, sign and deliver the package to a provisioning service. The goal is to unify
how the applications are packaged and examine how much of the release process
that can be automated. The product should be flexible so that it can be used for
different types of applications.

• implement the service into the production environment at IKEA IT so that it is avail-
able for the intended users.

• evaluate the service in terms of usability and functionality to make sure that it meets
the requirements above.

It focuses on the challenges and problems in automation of tasks that usually are per-
formed manually, both from a command line, but also through GUI:s. Many command
line tools require the user to accept different outputs, provide passwords etc. which is a
problem that needs to be solved to be able to use these kind of tools without user interac-
tion.

Another problem that will be treated in several steps is to figure out how one activity
should trigger another in the best way. In this kind of systems it is important that one
automated process can follow another automated process. This can be done in different
ways, e.g. by sending some kind of signal or by letting the later process periodically
check if the earlier has terminated. Both security and performance in context of time and
robustness will be taken into consideration.

The service will also integrate with Red Hat Satellite 6.0 which is a new version of
the Satellite platform. When this thesis work was done, Satellite 6.0 was just released and
implemented at IKEA IT.

8

1.4 Related work

1.4 Related work
The idea of continuously deliver or deploy software has come from the increasing trend
of agile development methods. One way to visualize the process and to break it down in
stages is to see it as a deployment pipeline. This idea was first presented in an article by
Humble, Read and North [17] (even though they called it deployment production line).
The deployment pipeline as it is presented in [16] is shown in figure 1.1. It contains all the
steps a software has to go through to be released, which can either be as packaged software
or being deployed into production environment.

Delivery
team

Version
control

Build &
unit test

Automated
accep-
tance
tests

User ac-
ceptance

tests
Release

Fail

Pass Fail

Pass Pass Pass Pass

check in trigger

check in trigger trigger

check in trigger trigger approval approval

Figure 1.1: A deployment pipeline. A change to the software is
checked into the Version Control System (VCS), which triggers a
build and unit test. If it is successful the change continues through
the different test stages of the pipeline before it is ready to be re-
leased. Each stage also provide feedback to the developers if it is
successful or not.

The adoption of a deployment pipeline have multiple consequences. It guarantees
that software is properly tested before release and the automation makes the process fast
and reliable. The software can thereby be released more often which reduces the risk of
each release. It does not imply that the release process is completely free from human
interaction. For example the user acceptance test stage in figure 1.1 needs to be done
manually to catch defects that has passed the automated tests. The goal is to automate as
many steps as possible where manual interaction is unnecessary [16].

The definition of Continuous Delivery (CD) is to make bundled software available to
be deployed by the push of a button. It is related to the termContinuous Deployment which
differs from Continuous Delivery in an important way. The difference is that every build
that passes automated tests are automatically deployed into production [16]. Both of the
techniques benefit from the use of a deployment pipeline.

In a survey from 2015 about the state of Continuous Delivery, 50 % of the respondents
said that they have implemented CD for some or all of their projects. But by sorting out the
respondents that not did fulfill three key technical characteristics of CD only 18 % perform
complete CD. In the same survey from the year before it was 8 % which shows how much
growth there is in the area of CD [10].

9

1. Introduction

The technical and social challenges a company faces when applying Continuous De-
ployment were examined by Claps, Berntsson Svensson and Aurum in [9]. The main
technical challenges discovered were the following:

• Provide the proper hardware and software infrastructure. This will be the main focus
of this thesis.

• Adopting the practice of developing in small batches.

• Seamless upgrades.

• Adopting the Continuous Integration process.

The four main social challenges discovered were the following:

• Pressure on the developers to always have code ready to be deployed.

• Process documentation.

• Lack of motivation in adopting the new process.

• Shorten customer feedback loops.

In [24], a "stairway" from Traditional Development to an Experimental System is pre-
sented containing the following staircases: A - Traditional Development, B - Agile R&D
Organization, C - Continuous Integration, D - Continuous Deployment, E - R&D as an
Experiment System. The goals of this thesis can be seen as providing hardware and soft-
ware to enable IKEA IT to move from staircase B to staircase D (but with delivery instead
of deployment) for the applications running on Linux.

The development process of four different companies are studied in [24] and the fol-
lowing key barriers in moving towards Continuous Deployment are identified in the case
study:

• Transition towards agile development.

• To introduce Continuous Integration requires an automated test suite and a main
branch where code is continually committed to.

• To introduce Continuous Deployment it is required that the whole organization are
fully involved.

In one of the companies there were also noted many tools take long time to learn which
can be a barrier.

1.5 Approach
To find the solutions to the problems the different steps of the deployment process will be
treated step by step. The answers to what tools and techniques that is appropriate will be
found in an exploratory fashion by studying them both in theory and practice. Also if and
how they are currently used at IKEA IT will be taken into consideration.

10

1.5 Approach

The results found will be the basis for the solution to the problem which is the develop-
ment of the software. The different parts of the software will be treated separately which
means that each step will be explored separately and then implemented. Their relation-
ships are shown in figure 1.2 below. The following steps will be performed:

• The functionality of a Continuous Integration (CI) server will be studied and set up
with support for different Version Control Systems (VCS).

• The process of compiling and packaging software at IKEA IT will be studied, auto-
mated and integrated with the CI server.

• The possibilities for supporting automated tests by installing the software on a test
server will be studied and implemented.

• Functionality for signing software packages that has passed testing will be imple-
mented.

• 2 different ways of integrating with Red Hat Satellite will be evaluated. One of them
will be implemented so that packages can be uploaded to the Satellite server.

CI server Build server Signing server

VCS Test server Satellite server

Figure 1.2: The idea of how the different components of the so-
lution may be integrated.

To make the build service flexible for developers it should be possible to either use a
VCS controlled by IKEA IT or be able to use a VCS of your own choosing. This means
that the VCS entity in figure 1.2 and the division between what is IKEA and what is the
vendor depends on what setup is preferred by the vendor.

The general problem solving method of the thesis will be action research [18] which
contains three parts: observations, solution and evaluation. In the observations part the
current situation at IKEA IT is observed and compared with practices found in literature.
This is done to identify the problem that needs to be solved. In the solution part a solution
is proposed and also implemented according to the different steps listed above. The last
part of the action research methodology is to evaluate the result. This is done by letting
future user test the solution and analyze the result. The evaluation part result in possible
future improvements that can be applied to the solution. In the evaluation part the project
will also be applied to a model developed in the SCALARE project where the different
drivers, abilities and transformations made in the project are visualized on a canvas.

Therefore, the following three chapters which form the result part of this thesis are
named Observations, Solution and Evaluation.

11

1. Introduction

12

Chapter 2
Observations

This chapter gives an overview of the different practices of Continuous Integration (CI)
and package management found in literature and compared to how they are currently used
at IKEA IT. CI is a prerequisite for CD [16] and is a natural part of a deployment pipeline.
IKEA IT had set up a rudimentary CI server in the test environment before this thesis was
started, which was used as a starting point. The pipeline also needs a unified way of pack-
aging the software. It was decided to use RPM [11], since it is the package management
system developed by Red Hat. RPM also provides an easy way to handle dependencies
between packages which is very useful. It is also the goal of IKEA IT to package all Linux
software as RPMs.

This chapter contains both the underlying theoretical foundations together with how it
is currently realized at IKEA IT. The problem(s) observed are presented in the end of the
chapter.

2.1 Continuous Integration
The key purpose of CI is to make bundled software artifacts available for testing envi-
ronments at any time [25]. The goal is to integrate the different parts of the software to
make sure that they work together. The advantage of doing this is that it reduces the risk
of ending up in a situation where integration of different parts of a software becomes hard
because it has not been done in a long time. If the code is integrated and tested often and
feedback is provided to the developers, bugs can be found quickly.

2.1.1 Version Control Systems
To use a Version Control System (VCS) is essential to CI. A VCS enables multiple de-
velopers to collaborate on the same project. It also allows you to keep multiple versions
of your files so that you are always able to access old versions of files after someone has

13

2. Observations

modified them [16]. The files are kept in a repository and to modify them the user makes
a local copy of that repository. After the modifications are done to the local files they are
pushed to the repository to make the changes visible for the other users. This is known as
a check-in or commit.

There are a number of different popular implementations, e.g. Subversion (SVN) [1],
Git [4] and Concurrent Versions System (CVS) [3]. The Linux department at IKEA IT has
set up an SVN server that contains many projects that run on Linux. It will be used later
on in this thesis for putting up test projects etc. The projects in this repository contains
files that are compiled and ready to be installed.

2.1.2 CI Server
ACI server is used to manage the integration and can be configured to run different scripts
triggered by events specified by the user. A CI server is typically configured to run scripts
that compile, package and test a software project, also known as a build of the software
[25]. In the CI server each project is setup with the URL of the VCS repository so that the
server can access the source code when it is going to build the software. The build can be
triggered by different events, such as periodically or when a commit has been made to the
repository. The best CI practice is to make a new build of the software at every commit
[25].

IKEA IT has tested using Jenkins CI Server [7] which is an open source implementa-
tion. It basically supports the functionality described above. It is possible to add a new
project and provide a URL to its repository, add build scripts and configure what should
trigger a build. Support for different VCS can easily be installed as plug-ins. The Jenkins
server keeps track of all builds and provides feedback on their status and results through a
web interface. Each build contains a log file with the outputs from the build scripts. This
can be used to get feedback on why a build has failed and what files the build has produced.
Each build gets its own number to be able to separate them [7]. The start page of Jenkins
is shown in figure 2.1 below.

2.2 RPM Package Manager
RPM Package Manager is a packaging software created for use in RHEL and the goal of
IKEA IT is to use RPM to package all software running on Linux. It is used to build
.rpm files that contain software that is ready to be installed. The biggest benefit of using
a packaging tool like RPM is that you have full control over the files that are installed by
the package. Consider the installation of a normal software where many files are installed
in different locations of the operating system. If no package management system is used
you have no control over the files that are distributed, which makes it very hard to upgrade
or uninstall the software. But with a package manager you have control over what files
are installed. If a software package needs updating or uninstalling, RPM has control over
what files that should be effected. Therefore, when targeting a single operating system, it
is considered best practice to use the package manager of the operating system [16].

14

2.2 RPM Package Manager

Figure 2.1: The dashboard of Jenkins CI server in the web in-
terface. To the left is a settings panel and below that one can see
ongoing builds. The list to the right contains the projects and gives
a good overview of their condition.

2.2.1 The .spec files
To be able to pack an RPM a .spec file needs to be written. It contains all information
necessary to pack, install and uninstall the package. A project named ture-test will
be used as an example. The spec file begins with a section of package information in a
straight forward manner (all of the most common information tags are listed in appendix
A):

Packager: Ture Karlsson <ture@ikea.com>
Name: ture-test
Version: 1.0.1
...

After the initial package information there are a couple of sections starting with a %
character. Except for the first one, they contain shell scripts that is run in the different steps
of the installation process:

%description This section allows for a longer description of the package. There is
an information tag Summary: that is used to give a one line description, but this
section can be of arbitrary length.

%prep This section specifies the commands that need to be run before the build, e.g.
extract the software.

15

2. Observations

%build This section specifies what build script(s) that should be run if the software
needs to be compiled. This section can for example contain a call to e.g. make.
This section will not be treated much in this thesis, since all the software that the
SVN server at IKEA IT currently contain are compiled before commited.

%install This section contains the commands needed to install the software.

%clean This section specifies what clean-up that needs to be done after the packaging
is done, e.g. deleting temporary files.

%post In this section configuration can be done. It can be used to start some service or
add users etc., which could be very useful for automation purposes.

%files This section lists all the files that are packed in the RPM and will be installed.
It can also specify their attributes.

%changelog In this section the changes of the file are documented.

RPM allows use of macros and variables in spec files. This can make them harder to
read at first, but provides a lot of flexibility. E.g. the Release: field in the package
information should increase with one every time the software is built. This is because
every RPM should be unique and be able to be connected to a certain build. Instead of
modifying the spec file before every build, the field can be defined as

Release: %{?BUILD_NUMBER}

The build number can then be provided as a parameter at the command when the build is
started instead [11].

A full example of a spec file for the project ture-test is given in appendix A. This
file can be used as a template for packages that only installs files and scripts that does not
need compilation or any specific privileges. The most commonly used information tags
are also listed.

2.2.2 Packaging
An RPM package (i.e. an .rpm file) is built with the rpmbuild command. To manage
the building process six directories are created:

BUILD/ In this directory the configuration scripts are run and the software is built.
The build command changes working directory to this directory when the scripts
in %prep and %build are run.

BUILDROOT/ The content of this directory is a copy of what files and directories that
should actually be installed.

RPMS/ This directory contains the results of the builds, RPMs.

SOURCES/ This directory contains the source files to the RPMs. Prior to the packaging
the files that should be contained in the RPM is put here.

16

2.3 Observed problem

SPECS/ This directory contains the spec files described above. The spec file is given as
a parameter to the rpmbuild command to select the correct package.

SRPMS/ This directory contains specific source RPMs. These contain the source files
of the corresponding binary RPMS in the RPMS/ folder [11].

Before the build command can be run there are a few things that needs to be put in
place:

• SPECS/must contain a spec file with the same name as the project we want to build.

• The source files specified in the spec file must be put in SOURCES/. They can
be placed there directly, but the best practice is to create a tarball (.tar.gz) that
contains all the files and place it in SOURCES/.

We are now ready to build the RPM. The command for this is:

rpmbuild -ba SPECS/ture-test.spec

The first option means "build all" and can be altered to stop the build at a certain stage.
Then the path of the spec file is provided which depends on your current working directory.
If the build is successful an RPM is created in RPMS/ and a source RPM is created in
SRPMS. They are in the following convention:

ture-test-<version>-<release>.<architecture>.rpm

This means that the first build of this project would produce two files:

ture-test-1.0.0-1.noarch.rpm
ture-test-1.0.0-1.src.rpm

The RPM can then easily be installed with the following command:

rpm -I ture-test-1.0.0-1.noarch.rpm

All the installed files are as easily removed by uninstalling the package:

rpm -e ture-test

To be able to separate RPMs of the same version they include the version and build number
in their file names. In this way an RPM can easily be connected with a certain build log
from Jenkins. Both the spec file, the rpmbuild and the rpm commands have lots of
options that are thoroughly described in [11].

2.3 Observed problem
The problem that the Linux administrators at IKEA IT face is that the delivery of ap-
plications are done in different ways depending on the application. It is desired that all
applications should be delivered as RPMs, but many of the applications are not. This is
because that the packaging procedure requires many manual steps and insight in how RPM
works. As one can see in the previous section there are a couple of steps when building

17

2. Observations

RPMs that are easy to get wrong. Files need to be correctly written, placed or archived
in the correct locations or the build will fail. It is also time consuming to do these steps
by hand for every build that should be done. This results in that the software does not get
built often, which means that every update results in a higher risk of error, since it contains
bigger changes. This process should be automated so that every change to the source code
starts an automated flow that builds, tests and eventually delivers the software.

Jenkins can take care of a couple of steps that otherwise would be manual, such as
checking out the content of the repository and start the build process. The rudimentary
Jenkins server IKEA IT has set up in their test environment can build RPMs. But the builds
are started manually and the SVN server needs to contain a spec file for the package. The
build script need to be more flexible and the software should be delivered to the correct
location. It should also be possible to verify the correctness and integrity of the software
packages which can be achieved by testing and digital signatures. This will result in a more
secure, faster and unified delivery process and also take the responsibility of the packaging
away from the developers.

18

Chapter 3
Solution

This chapter contains the description of the solution that was developed and begins with
a short overview and figure.

A deployment pipeline will be implemented with focus on automation. The deploy-
ment pipeline used is slightly different from the one presented in [16] due the release
processes used at IKEA IT. The pipeline is presented in figure 3.1 below. It is started by
a check-in or commit from a developer. The commit should be noticed by a CI server that
triggers the build. If the build is successful it will go into the testing phase where the build
is installed on a test server and automated tests are performed. If the tests are successful
the idea is that the content should be signed so that its integrity can be verified. The final
step is to upload the software into the Satellite. The deployment pipeline guarantees that
all software artifacts that ends up in the Satellite have gone through all these stages.

Developer VCS Build
server Test server Signing

server
Satellite
server

Fail

Pass Fail

Pass Pass Pass Done

commit trigger

commit trigger trigger

commit trigger trigger approval deploy

Figure 3.1: The deployment pipeline that will be used. If the build
or the test phase fails the rest of the deployment is canceled and the
developer gets feedback of what went wrong. If the build passes
test the package is signed and deployed to the Satellite server.

19

3. Solution

The steps of the solution are presented in the different sections of this chapter. The first
section covers the Jenkins server which will be used to provide CI. Jenkins was chosen
because it is open source and IKEA IT has already tried using it, but there are many other
alternatives, e.g. AnthillPro, Apache Continuum, Bamboo and CruiseControl [25].

3.1 CI Server
The Jenkins software was installed to a newly deployed virtual server. Asmentioned earlier
a development team will either be able to save manage their artifacts on the SVN server
hosted by IKEA IT or provide a SVN or Git server of their own. Jenkins provides a useful
web interface which makes CI trivial and it is easy to configure a new project. Basically,
the user needs to provide the name of the project, what VCS that is used and the URL to
the repository. Then provide build triggers that defines what should trigger a build [7]. It
can be done periodically (e.g. once every day) but one practice of CI is to build at every
commit [25].

A project called ture-testwas created and committed to the SVN server and a new
job was created in Jenkins to manage the build of the project. Jenkins is configured to poll
the SVN with a certain interval to see if a new revision is available. This is accomplished
with schedules similar to the ones used by Cron [2]. They contain 5 fields specifying
MINUTE HOUR DAY-OF-MONTH MONTH DAY-OF-WEEK. A * represents all valid
values. A couple of schema examples and their interpretations are given below.

* * * * * every minute, every hour, every day of the month, every
month, every day of week

*/5 * * * * every fifth minute, every hour, every day of the month, every
month, every day of the week

*/15 9-16 * * 1-5 every 15 minutes, between 9 pm and 16 pm, every day of the
month, every month, mondays through fridays

Table 3.1: 3 different Cron schedules and their interpretations.
Cron is often used in Linux environments to schedule scripts that
should be run periodically.

A reasonable schema could be every fifth minute. But consider a Jenkins server run-
ning hundreds of projects. If every project is configured like this there would be a lot of
polls every fifth minutes and very quiet in between. Therefore it should be changed to
"H/5 * * * *". "H/5" means "some time every fifth minute" (the H is actually a hash of the
project name and a random function).

Another approach that can be used is that instead of letting Jenkins poll the VCS pe-
riodically, the VCS can wake up Jenkins and tell it that a new revision is available. This
approach will make the build start (marginally) faster, but it requires some kind of plugin
to the VCS and differ between e.g. SVN and Git. The periodic approach will be used in
this thesis, but the other approach with the correct configuration is possible as well.

The last thing that needs to be provided is what build scripts that should to be run. It
can be called with some environment variables provided by Jenkins, e.g. ${JOB_NAME}
provides the name of the project and ${BUILD_NUMBER} the number of the current

20

3.2 Build script

build. In the description of the spec file in section 2.2.1, the release number of an RPM
was specified as this variable. In this way the release number of the RPM can automatically
be specified as the build number of the project without user interaction [8].

As discussed previously, IKEA IT has an SVN server where developers check in com-
piled software that is ready to be built to RPM packages. This is a limitation that removes
the responsibility of compiling code from the build server and means that a developers
has to compile their code in their development environment before it is checked in to this
SVN. Though, one can still get the build server to do the compiling if the compilation step
is defined in the spec file of the project. But the problem is that if the build server should
be able to compile all kinds of projects, it has to have all compilers and libraries installed
which could potentially be very many.

3.2 Build script
This section describes the build script that was developed. It solves the problems with
packaging of RPMs described in the observations chapter. The build script was written in
Python instead of for example a Bash script. This decision was made due to the extensive
support from its standard library, the easy and minimalistic syntax and the fact that it is
an interpreted language which makes it suitable for scripting. Also it has an API to RPM
called rpm-python.

A first version of the build script was developed to be able to build a project locally.
It required that the source files and a spec file was provided in the correct directory struc-
ture. The rpm-python API mentioned above turned out to be useless since it only had
functionality for querying RPM packages and printing information about them, but did
not support the actual building of packages [11]. The functionality that was implemented
was to pack the source files into a .tar.gz archive (a tarball) and then build the RPM
with the rpmbuild command. The script worked as it was supposed to and placed a bi-
nary RPM in the RPMS/ directory and a source RPM in SRPMS/. The script was named
rpmbuilder.py

Even if the script worked as supposed it needed somemore functionality and flexibility
to be able to automatically build the projects from Jenkins:

1. Jenkins needed to be able to call it.

2. It needed to be able to use the source files that Jenkins checks out from VCS.

3. It needed to be able to give different options on how the .spec file should be pro-
vided.

4. It needed to make the resulting RPMs available for the next step in the deployment
pipeline.

All commands made by Jenkins are performed by a user called jenkins. To make it
able to call the command in an easy manner the script was placed in the PATH environment
variable of the Jenkins user. This means that no path to the script needs to be provided to
call it. Also the first line was changed to:

#!/usr/bin/python

21

3. Solution

This means that this script can be run by only specifying its name and not that it should
be run as a python script. The script was also changed to accept two parameters; project
name and build number. This means the script can be called from Jenkins in the same way
for every project:

rpmbuilder.py ${JOB_NAME} ${BUILD_NUMBER}

Jenkins automatically provides the name of the project as ${JOB_NAME} and the number
of the current build as ${BUILD_NUMBER}.

As a solution to the second item on the list above a couple of paths that the script uses
needed to be specified. When Jenkins starts a new build it is configured to check out the
content of the repository to a path:

.../jenkins/jobs/<project name>/workspace

The script was therefore modified to set up a separate directory for each project fromwhere
the rpmbuild command is called:

.../jenkins/jobs/<project name>/rpmbuild

which contains the directories explained in 2.2.2. Before the build is done the script copies
the content of workspace/ to rpmbuild/SOURCES/ and creates a tarball of the con-
tent. In this way the build script will always use the latest checked out content of the
repository.

As described earlier, every rpm build needs a spec file. These can contain a lot of
instructions on what should be done before and after the installation of the RPM, which
can be used to automate many steps that otherwise would have to be done manually. A
different script called rpmspec.py was developed and called from the build script. Its
responsibility is to provide a spec file in the SPECS directory. The script searches the
files checked out in the workspace to see if it contains a spec file. If that is the case, it
is copied to the SPECS directory of the project. If not, a rudimentary spec file is created
from scratch (much like the one in appendix A). This gives the developers the choice to
either provide a spec file or to let the build service generate one. If the spec file should
contain custom instructions it is preferable to have a spec file in the repository that can be
edited by the developers to fit their needs. But if a project just contains files that needs to
be put in the correct directories, the automatically generated spec file is sufficient.

The last step of the build process was to make the RPMs available for the next step
in the pipeline; testing. This was realized by copying them to the web root directory
/var/www/html/rpms. If the server is running Apache HTTP Server the files in
/var/www/html will be published as a file system on the web page of the server. Each
project was provided with its own directory which means that the latest RPMs of a project
will be available for from servername.com/rpms/projectname/. Figure 3.2 be-
low shows how Apache presents the web root in a browser.

The Jenkins web interface displays every build of a project in a list. If a build has failed
it is marked red which gives the user an easy overview of them. Each build contains a log
with the output from the build scripts. The build script gives output of its process to give
the user enough feedback to be able to debug the build if it fails.

Since the build script is run locally on the Jenkins server the approach sketch in figure
1.2 is not accurate. In the next section a new virtual machine will be deployed to handle

22

3.3 Testing

Figure 3.2: The standard way Apache presents files in the web
root.

the testing. A more accurate figure of the solution with a VCS, the Jenkins server and a
test server so far is shown below.

VCS CI and build
server

Test server

trigger result

Figure 3.3: An overview of the solution so far with the test server
introduced in the next section included.

3.3 Testing
The purpose of the test phase is to perform build verification tests [16] which test if the
package is correctly built and possible to install and if its dependencies to other pack-
ages can be resolved. These tests are also known as smoke tests and are performed to
give developers early feedback on the build and to avoid deploying bad builds into fur-
ther test environments. The test phase was also integrated with a custom test suite called
linuxts-test that is newly developed at IKEA IT. It tests functionality on the host
server specified by the application in order for it to be able to run. It can test if certain
services are running, certain RPMs are installed, if communication to remote servers are
working, etc. IKEA IT has a goal to havemore automated tests for the applications running

23

3. Solution

on Linux. The integration with linuxts-test provides an easy way for the automated
tests to be run, which can influence developers to create more automated tests.

A new virtual server was deployed which was used as a test server during the develop-
ment. This was done to separate the testing from the build process and to test the builds
in a clean environment. Two different ways to start the testing was identified. Either to
periodically check if there are any new builds that should be tested or to trigger the testing
as soon as a build is complete. Both approaches were tried and the results are presented
below.

3.3.1 Check for new builds periodically
A first approach to the testing was to monitor the web root of the build server and trigger
a test every time a new RPM is published. A script was developed to parse the HTML
page of the build server. As mentioned earlier each project was provided with its own
directory and since Apache provides a field "last modified" to every file and directory that
is put in the web root the script can see if any changes has been made since it was last run.
Each directory of servername.com/rpms/ are presented in the following way in the
HTML source code:

...project1/...11-Mar-2015 14:01...

...project2/...09-Mar-2015 09:58...

where project1 and project2 are two directories followed by their corresponding
date of last modification. The HTML page was parsed to figure out which projects had
new RPMs since the last time the script was run and that should thereby be tested. And
the RPMs could be downloaded from this page as well. To run the script periodically can
be accomplished either by adding it as a cron job (which means that it will be called with
a given period) or it could be programmed as a daemon (a service that always runs in the
background on the system).

During the development some drawbacks with this method was found. The first one
was that the parsing of the HTML file becomes very static and error prone, since it has to
look for specific key words. Secondly, since the tests will be run in a periodic fashion, there
will take longer time until the tests are performed than if they in some way were triggered
by the build itself. And lastly, there is no trivial way to provide feedback to the developers
on the testing. A corresponding way of communicating the feedback to the Jenkins server
would have to be setup, which would result in even more time delay and a lot work for a
small reward.

A new approach needed to be found that could trigger the test directly and be able to
provide feedback in an easy manner.

3.3.2 Trigger test at every build
A better approach would be to trigger the test phase for a project every time the build
script has successfully terminated. The RPMs would need to be transferred to the test
server and the output from the tests should be returned to the build server. In that way
both the feedback from the build script and from the test can be presented at the same
place, namely in in the build log of the project in Jenkins.

24

3.3 Testing

This was accomplished by using the remote login program ssh, a secure copy pro-
gram scp and RSA encryption. The commands that need to be run on the test server are
called over ssh from the build server. To enable this, encryption keys were created for
the jenkins user on the build server and a user called rpmtest was created on the test
server. To avoid having to provide passwords at every remote call the public key of the
jenkins user was saved as an authorized key for the rpmtest user. In this way the
user jenkins can perform operations at the test server as rpmtest without providing
its password. The syntax used to call commands over ssh is the following:

ssh remote-user@remote-host command

If no public key encryption scheme is in place like the one presented above, ssh will ask
for the password of the remote user before the command can be executed.

This approach is better than the previous one in multiple ways. It makes the test proce-
dure faster because it starts as soon as the build is done which can provide the developers
with faster feedback on the build. Since the test script is called from Jenkins the feedback
from the build script and the test can be presented in the same log. Because of the same
reason, if the test fails, the build can be marked as failed, which would be harder to accom-
plish with the previous approach. This also makes the service more flexible in an other
way. With just a small modification, it is possible to let the user provide a test server of its
own choosing as a parameter to the build. In this way the service can be used to deploy
the software into test environments where all kinds of tests can be performed.

3.3.3 The testing procedure
The following steps were implemented in the test script:

Copy The RPMs are copied to the test server. To copy files over ssh the program scp
is used with the following syntax:

scp /local/file remote-user@remote-host:/remote/file

Install The RPM is installed on the test server with a program called yum instead of the
rpm command. yum has got a couple of benefits and features when installing soft-
ware that the rpm command lacks. For example it resolves dependencies between
packages which is wanted in this context. If the RPM that is going to be tested has
specified any dependencies in its spec file (the Requires: tag) those packages get
installed as well.

linuxts-test If the RPM contains any test files for the linuxts-test suite they
are run. The tests are specified with a simple syntax and can test if certain services
are running by writing their names in a file appname.services, if something is
listening to local ports by putting the port numbers in appname.ports, certain
RPMs inappname.rpms, communication to remote servers inappname.firewall
and check if resources are managed by Puppet in appname.puppet (not relevant
at the moment). If these files are installed in /linuxts-test/test.d/ the
tests can be performed by calling appCheck appname.

25

3. Solution

Uninstall After the tests the RPM is uninstalled usingyum. If all these steps are successful
the test phase is complete.

If any of the steps fail the whole build gets marked as failed in Jenkins and the user may
look in the build log to see in what stage the build that failed. An example of the output
from the test phase is shown in figure 3.4 below.

Figure 3.4: The output of the test phase for a build of a project
called tutorial-test. The first two tests are Python unit tests
and the rest are functional tests for the linuxts-test suite.

3.3.4 Improvements
At this point the test script worked in the following way: The newly built RPM was copied
to a certain dedicated test server where it was installed, tested with linuxts-test and
then uninstalled. This is not always a good solution for the developers and testers. A rea-
sonable setting could be the following: An application should be built and then deployed
at a test server where the testers of the application want to perform various kinds of tests.
A previous build of the application is probably installed on the test server which means
that when the new build is deployed it is an upgrade. When an upgrade has been made, it is
possible to perform a yum downgrade. This is a feature in yum that makes it possible
to roll back to a previously installed build. After the upgrade, the linuxts-test tests
should be executed. If any of the tests fails, the software should be downgraded to the
previously working build. If it succeeds subsequent tests can be performed to determine
if the build meets the requirements for production environments.

The test script was altered due to these insights. It was modified to accept another
parameter that specifies the name of the test server. This enables the developers to specify
a test server of their own where the tests should be performed. It was also modified to not
uninstall the application after the tests. Instead, when a new build is going to be tested,
the last stable build is upgraded to the new build. If the tests then fail, the application is
downgraded to the previously stable build. Only builds that pass the automated tests are
passing the test phase and go on to the next stage in the deployment pipeline.

26

3.4 Signing

3.4 Signing
This section describes how and why the RPMs should contain digial signatures [14] before
they are deployed intot the Satellite server. Another server was set up with the single
purpose of signing the RPMs and uploading them to the Satellite server. An updated
overview of the whole solution is shown in figure 3.5 below.

VCS CI and build
server Signing server

Test server

poll

trigger result

poll

Figure 3.5: An overview of the solution so far, which now in-
cludes another server that fetches and signs RPMs that have passed
testing.

The motivation behind the signing is to provide a way to verify the integrity and origin
of the RPMs. If an RPM is signed by the signing server it is possible to verify that the
RPM has been built by this service, has passed the automated testing phase and has not
been altered. RPM has built in support to sign RPMs with GNU Privacy Guard (GPG)
which is an open source implementation of Pretty Good Protection (PGP). In other words,
GPG implements PGP. Confusing as these abbreviations are, the only command that needs
to be used for the signing is gpg [11].

3.4.1 Signing to verify test
The first thing that was done in the implementation of the signing process was to make
Jenkins sign every RPM that has passed the testing phase. In this way the signing server
can later verify that the RPM has been built by Jenkins and that it has passed the testing.
The file structure of the web root of the build server was changed so that each project
directory contains one directory with the latest built RPMs and one with the latest tested
and signed. A GPG key pair was generated for the Jenkins user. This is done with the
command gpg - -gen-key. An empty passphrase was used to avoid having to store
a passphrase in the code. A couple of macros needed to be configured so that the RPM
command knows what key to use. This is done in a file called .rpmmacros in the home
directory of the current user. After that an RPM can be signed with the command rpm
-addsign filename.rpm.

A time consuming setback occurred in the implementation of the signing. The com-
mand to sign the RPMs needed to be provided with the empty passphrase as a response,
which seemed to be impossible with the Python standard library. The problem was that
when RPM asks for the passphrase of the GPG key, it uses a function called getpass

27

3. Solution

[5]. getpass is built to make it difficult to provide passwords in any other way than with
human interaction at the command prompt. After looking at different possibilities for a
workaround an approach with an Expect [23] script was tried. Expect scripts are used
to automate command line programs that require interaction with the user and provides
a trivial syntax for writing scripts that are based on an expected behavior. The following
short Expect script that takes an RPM file as an argument solved the signing problem:

#!/usr/bin/expect -f

spawn rpm --addsign {*}$argv
expect -exact "Enter pass phrase: "
send -- "\r" # Just "\r" because an empty passphrase is used.
expect eof

Instead of making the Python script call rpm –addsign, it calls this Expect script which
performs the signing. A call to the signing script was added in the end of the test script to
sign RPMs that has passed testing with the key of the Jenkins user.

3.4.2 Signing server
The purpose of the signing is to make it possible to verify that the RPMs has been built
by the service and thereby passed through the pipeline. IKEA IT has a key that is used to
sign packages that are going to be used in production. This makes the security around this
key very delicate and the signing server has to store this key to be able to automatically
sign RPMs that has passed testing. Just as with the test script, a decision had to be made
to either trigger the signing process by the previous stage of the pipeline or to periodically
check if any packages from the previous stage has beenmade available. As figure 3.5 above
reveals, the signing server was developed to periodically check if the build server stores any
RPMs that has not yet been signed. At the test stage the time factor is of bigger concern,
but at this stage the security is more important. This approach means that it is possible to
make it much harder to access the signing server by turning off ssh. Another difference
from the test stage is that the signing server does not need to provide any feedback directly
to each build in Jenkins. If a build has passed the test phase it will eventually be signed
by the signing server. In other words, a build is considered successful after the test phase
and will be signed and deployed into the provisioning service.

This functionality was implemented in a similiar fashion to the first approach to the
testing at section 3.3.1. The benefits in form of security are superior to the drawbacks
in form of time and parsing html, since the html page always looks the same. A signing
script was written that parses the html page to see if any projects has been changed since
last time the script was run. If so, it checks if there are any new RPMs in the directory
named tested/. New RPMs are first queried to see if they are signed by Jenkins and
thereby are really built and tested by Jenkins. If so, they are signed by the production key
that certifies that the package is ready for production.

28

3.5 Upload RPMs to Satellite server

3.5 Upload RPMs to Satellite server
The last stage of the pipeline will be to upload RPMs to a repository at a Red Hat Satellite
6 server. The pipeline will provide Continuous Delivery when this functionality is in
place. It will not provide Continuous Deployment, since it does not automatically install
new packages into production. This limitation to the service emerged from the scope of
the thesis but also from IKEA IT. Continuous Deployment is often a goal, but it is not
suitable for all companies [16]. At IKEA IT there is currently no goal to reach Continuous
Deployment. Continuous Delivery provides the necessary level of automation but persist
the manual control of when to deploy a new version of a software package, which is needed
due to change management etc.

Red Hat Satellite is a life-cycle management platform for RHEL. It provides adminis-
trators tools to manage large systems and is used for deployment of physical and virtual
servers, subscription and repository management etc [22]. The latest major release, Red
Hat Satellite 6, was released during the fall of 2014. It was implemented at IKEA IT
during the time of this thesis.

The Satellite server stores all RPMs in repositories that are used by the servers. This
is where the RPMs should be deployed. The Satellite server at IKEA IT has different
repositories for RPMs created for different major releases of RHEL. This forced a little
adjustment to the pipeline to make it possible to specify what major release an RPM should
be built for. It was needed because an RPM should be tested at the same major release of
RHEL as it is built for.

Satellite 6 has a web UI that enables the user to control it and use all its functionality.
It also provides two other ways of communication, namely a Representional State Transfer
(REST) API and a CLI tool called Hammer. Both of these can be used to perform the task
of deploying the RPMs to the correct repositories and are examined separately below.

3.5.1 RESTful API
REST [12] is an architectural style that is implemented in interfaces to many web services.
A RESTful API is an API that follows the principals of REST. The main constraints put on
these API:s are that they often use existing technology such as HTTP for communication.
They are also using a client-server architecture to separate the responsibility of e.g. user
interfaces and data storage between clients and servers. The most important constraint is
probably that the communication should be stateless. This means that each request from a
client to a server should contain all information that the server needs to perform the action.

The API to Satellite 6 follow these constraints. A client can send HTTP requests such
as GET, POST, DELETE etc. to the server in a stateless manner. As described in this guide
[20] it is possible to write Python scripts that connects to the Satellite API using JSON
[6].

3.5.2 Hammer CLI
The second approach to the deployment is to use Hammer CLI which is a command line
interface that also can be used for scripting most of the different functionalites of the web

29

3. Solution

UI [21]. It was also used in the transition from Satellite 5 to Satellite 6 at IKEA IT.
After seeking advice from the Linux team at IKEA IT and also a Red Hat consultant it

was decided to use Hammer rather than the RESTful API. This decision was made because
the task of deploying an RPM can be done with a single command in Hammer given the
correct parameters. Hammer CLI can also handle bigger files without having to split them
into chunks. Also, the Linux team at IKEA IT are used to Hammer from the transition.
If the build service would have needed to send many different kinds of requests to the
Satellite server, the API would possibly be a better approach. But Hammer was better
suited for this single task.

The request to the Satellite server using Hammer was implemented on the signing
server. The request to the Satellite is basically to upload the specified content to the spec-
ified repository. It needs to specify the following parameters:

• URL of the server

• Username and password for the user performing the upload

• Organization name

• Product name

• Repository name

• Path of the file to upload

The product name is the technical standard for Linux at IKEA IT and it contains 3 different
repositories for the 3 latest major releases of RHEL (5, 6 and 7). Because of this, it was
realized that it has to be possible for the end user to specify what major release a build is
intended for. Otherwise it will not be possible for the service to know which repository the
RPM should be uploaded to. It was therefore decided that the major release needs to be
included in the release number of each RPM so that the full name of an RPM with version
number 1.0, release number 4 that is built for RHEL 7 (el7) gets the following name:

package-name-1.0-4.el7.noarch.rpm

The major release can therefore be provided in the call to the build script like this

rpmbuilder.py ${JOB_NAME} ${BUILD_NUMBER}.el7

The Hammer command called has the structure showed below.

hammer -s <server address> -u <username> -p <password>
repository upload-content
--organization <default organization>
--product <product name>
--name <repository name>
--path <path to the rpm>

It was implemented in the signing script so that after an RPM is signed with the production
key it is uploaded to the correct repository with this single command. The pipeline is now
complete and a figure of it is shown in figure 3.6 below.

30

3.6 Deliver the product

VCS CI and build
server Signing server

Test server Satellite server

poll

trigger result

poll

deploy

Figure 3.6: An overview of the complete solution with the last
step implemented, which was to deploy signed RPMs to Red Hat
Satellite 6.

3.6 Deliver the product
This section describes the process of making the different parts of the service into packages
that contains everything that is needed to install the service on new servers. The service
was developed and test run in test environment, but had to be correctly packaged in order
to be able to be installed in production environment. Documentation for installation and
test that follow the guidelines at IKEA IT were written simultaneously. Since the product
is a build service, it was a suitable first test to let it build it self.

3.6.1 Packaging
To prepare for the delivery and allow for future changes, all the components needed to
be put under version control. This was done in the SVN server and modifications to the
source files were from now on checked in there. All the source code was checked in, which
means that it is possible to continue the development. The complete product will consist
of 3 different packages:

linuxtp-buildservice Contains everything that needs to be deployed to the build
server. This includes the following:

• The scriptsrpmbuilder.py, rpmspec.py, rpmtest.py, rpmsigner.exp
• Test cases for the linuxts-test suite
• A Jenkins template job with the standard settings that can be copied when
creating new jobs

• An initiation script Jenkins
• An index.html page that is used to direct users between the Jenkins page
and the web root page where the RPMs that the service has built can be found.

• A spec file that specifies what other packages that is required to run the ser-
vice, what files it installs and a post installation script that enables services and
settings that are vital for the build service (like Jenkins and Apache). This spec

31

3. Solution

file is shown in appendix A.3 and is a good example of a little more compli-
cated spec file than the one discussed in 2.2.1.

linuxtp-buildservice-testintegration Contains what needs to be config-
ured on a server that will perform the automated tests. It sets up a user that will be
used to perform the commands at the test machine. It also installs the public key
of the Jenkins user so that the build server can control the test server without any
password.

linuxtp-buildservice-signer Contains the scripts needed to perform the sign-
ing and deployment to Satellite 6, namely rpmsigner.py, rpmsigner.exp
and rpmsigner-lastcheck. It also contains a Cron tab (see table 3.1) for the
root user which contains:

* * * * * /usr/bin/rpmsigner.py

This means that the script rpmsigner.py will be run by the root user once every
minute if this package is installed.

The latest version of Jenkins was downloaded and added to the Satellite. This version
of Jenkins will be installed when linuxtp-buildservice is installed, since it has
Requires: jenkins in its spec file. The 3 projects were set up as jobs and built by
the version of the service running in the development environment.

3.6.2 Testing
The packages were built and tested on a test server. During the testing some complications
were found. It was mainly settings made to other services on the build server, such as ssh
and httpd. These settings were automated as much as possible by adding them to the
spec file of the package, but some settings will have to be done by hand after installation.
They were documented in a document describing installation and configuration that has to
be written for every product at IKEA IT.

The linuxtp-buildservice RPM contains test cases for the linuxts-test
suite to test some core functionalities on the server it gets installed on:

linuxtp-buildservice.ports:
443
80

linuxtp-buildservice.rpms:
java-1.6.0-openjdk
jenkins
python
expect
rpm-build

linuxtp-buildservice.services:
jenkins
httpd

32

3.6 Deliver the product

The last time the RPMwas built, installed on a test server and tested before it was deployed
into production all the test cases passed with the following output:

OK: Service jenkins is enabled.
OK: Service jenkins is running.
OK: Service httpd is enabled.
OK: Service httpd is running.
OK: RPM java-1.6.0-openjdk is installed.
OK: RPM jenkins is installed.
OK: RPM python is installed.
OK: RPM expect is installed.
OK: RPM rpm-build is installed.
OK: Found service listening to port 443.
OK: Found service listening to port 80.

3.6.3 Installation
The build service were now ready to be installed in the production environment. The RPM
for the build server was installed which caused the installation of Jenkins and the other
dependencies. Jenkins was up and running within a minute and contained the template
project which was packaged in the RPM.

IKEA IT has hard requirements on security and has to be PCI-DSS compliant (Payment
Card Industry Data Security Standard). PCI-DSS compliance put high demands on who
should be able to access and modify systems, as well as on logging etc. Also, anyone that
should have access to the build service should not be able to take control over the server
running the build service. It was realized that this is a risk that is exposed if anyone would
be able to add or change configuration of a job. This is because the configuration page
gives the user the ability to execute arbitrary commands in the build script section which
could have serious consequences. This forced some security hardening of the service. The
first thing that was put in place was user login. IKEA IT has a server that provides LDAP
which can be used with a Jenkins plugin to provide username and password authentication
[13]. This plugin was set up and configured. The next step was to decide who should have
what privileges on the Jenkins server. Administrators were given the authority to edit all
kinds of settings. Then it was decided that other users will be divided into two groups:
power users that has access to the configure page of projects and normal users that only
can start builds and see the output from them. This decision was made to ensure that the
service does not give any users more privileges to the server than they had before. Users
that will be able to execute arbitrary commands at the server through Jenkins would be
able to do it by other means as well.

Another Jenkins plugin called Audit Trail [15] was also installed to provide logging
of every change to Jenkins settings and project configurations etc. This is to ensure that
every change is traceable.

The service was now ready to be used. The projects that make up the build service
were added and built successfully. Also the linuxts-test project was added.

Three different video tutorials were recorded to be able to spread information about
how the service is working. One shows how to set up a project on the SVN server and

33

3. Solution

add linuxts-test cases. The next showed how a new project is created in Jenkins
and how to set up the build and test scripts with the correct parameters. The last tutorial
shows how builds can be started either manually or by commits and also how to read the
output of the build. The tutorials were made available on the intranet of IKEA IT so that
everyone that should use the service will have access to them.

After the last modifications the standard settings for starting and performing builds are
shown in figure 3.7 below.

Figure 3.7: This figure shows how Build Triggers and Build
Scripts can be specified for a project in Jenkins. Jenkins will
poll the repository once every minute to see if there is any com-
mits the last minute. If it is the RPMs will be build with the
rpmbuilder.py script where the build number will be in-
creased automatically. Then tested with the rpmtest.py script
when the test server is specified.

The complete process for an application can now in words be summarized like this:
The development team sets up a project on a VCS server. The files that should be packaged
are commited as well as automated test cases for the linuxts-test suite. A spec file
can be added as well if it needs to contain custom configuration that is not included in
the automatically generated (as the one in appendix A). A new project is then created in
Jenkins and set up similiar to figure 3.7 and connected to the VCS server. A new build is
then started either manually or by a new commit. The RPMs are built and tested. If the
tests are successful the RPMs are signed by the signing server and are then uploaded to the
correct repository at the Satellite server. Then, if potential manual tests are successful, a
new Content View [19] is created in the Satellite server that includes the new RPMs. The
RPMs can then be installed to every server that has yum connected to that repository by
calling e.g.

yum install project-name

34

Chapter 4
Evaluation

The solution needs to be evaluated as the last step of the action research methodology.
This was done with help from various end users of the service. Three persons were con-
tacted. One that had tried using the test Jenkins server described in section 2.3 and one that
normally packages, tests and signs RPMs manually. The third tester is one of the Linux
administrators at IKEA IT that among other things works much with the linuxts-test
suite. They were asked to watch the tutorials and then configure and build a couple of their
projects with assistance. They were then asked a couple of questions to see if the service
fulfilled the goals set up in the problem definition in section 1.3. The questions asked were
the following:

1. How do you find the service in context of usability? Is it easy to learn and easy to
use?

2. How do you find the service in context of functionality? Is it robust and working as
expected?

3. How does it effect the way you package and deliver software? Has it solved any
problem you have had?

4. Have you noticed anything that could be improved?

5. Have you noticed any features that you think the service is lacking?

4.1 Test person 1
This tester is responsible for development ofmultiple software packages containingNetScaler
Load Balancing and NetScaler Support Servers. It is a team of 5 developers but the person
testing the service is currently responsible for the packaging. This is because of the com-
plexity according to the tester. These packages have lately been built with the test Jenkins

35

4. Evaluation

server described in section 2.3, but without any automated testing etc. The other devel-
opers send their changes to the tester who then commits the changes to the SVN server.
The builds are then started manually after version number and release number have been
updated manually in the spec file.

To show how the new build service works, the tester was guided through the steps of
setting up and configuring new projects. The process of starting builds and how the testing
phase works were then also described. All actions were performed by the tester, but with
guidance. The first impression was that the service felt familiar since the tester had used
Jenkins before, even if it was an older version. The tester had not used linuxts-test
before but quickly realized how it could effectively be used together with the build service.
The part where a new Content View needs to be created was considered to become an ob-
stacle, but after explaining that otherwise untested RPMs could be automatically exposed
to servers in production, the tester realized that it was reasonable.

The tester were asked to answer the questions above after the testing and demonstration
and the answers are presented below.

1. "The service is very usable at a top level, however there are many features and much
flexibility that is not obvious and therefore not accessible to an average user.
I would like to see a system like Jenkins be more ’wizard’ driven, inviting users
to learn the options through description offered at the point where the feature is an
option."

2. "The service is ’fit for purpose’ and indeed, yes, robust!"

3. "During my time working with Application Delivery I have always worked closely
with Magnus Glantz and followed his guidelines to build and delivery application
to the Glinux supported platform. Therefore this newer version of the platform does
not solve any problems. The main issue that my department, Application Delivery,
faces is the speed of (or rather lack of) delivery of the packages to the Servers via
the Satellite mechanism.
Now we package applications and then manually/directly transfer the same to the
target server and install with YUM by reference to the package file local to the disk.
This has proved effective however individual file transfer can be time consuming
across the 14 servers I manage."

4. "I would prefer that once a package is "passed" by my department, it is made avail-
able for general release to my servers. Simply no one other than my immediate team
can claim whether the packages are "right" or "wrong" anyway..."

5. "I would like to be able to identify "files that contain local variables".... then when
the package is installed, YUM identifies if the files exists, if it does it does not over-
write. If it is not there, then a default is installed.
I am sure that this feature probably exists in YUM and/or Jenkins. I am also sure
that I could script the same however I am sure this is a common requirement for the
types of packages that I am working with..."

The tester set up all the projects of his team after the demonstration and they are now
building all their projects in the build service.

36

4.2 Test person 2

4.2 Test person 2
The second tester is responsible for delivering and configuring IBM WebSphere middle-
ware platform at IKEA IT. Every component of this platform is currently built, deployed
and tested by hand which can be automated by the build service. The source files are in
version control at the SVN server, but are structured as in section 2.2.2 so that they can
be checked out and built manually. One of the packages were chosen to start with and
the files were moved around so that it worked for the build service. The tester had spec
files that needed some modification before they worked with the build service. The RPMs
were now built successfully and the test script could also be run since the tester had test
servers available. The RPMs were successfully installed on the test server. The test script
resolved the dependencies to other packages successfully, but no tests were run since none
existed. The tester explained that some manual configuration is currently needed before
the platform is running and tests can be performed. It was also discussed what should
happen with the build number when the version number is increased. As the build ser-
vice is working currently, the build number increases for every build regardless of version
number, but the tester would like to be able to reset the build number to 1 when the version
number is increased.

This tester gave the following written answers:

1. "After a walkthrough and hands on its easy to use. Starting without this I will think
it’s hard to know what to do and how to get started. (Note that I have not read any
user guide or similar)"

2. "Hard to give an answer right now. Will have to use it for a while to be able to have
a correct opinion."

3. "Same as above."

4. "Build_number automation should be cleared when going for higher release num-
ber."

5. "Same as above."

4.3 Test person 3
The last tester is one of the Linux administrators at IKEA IT who are usually building
RPMs by hand or lately by the test Jenkins server described in 2.3. This tester is responsible
for the packaging and testing the linuxts-test suite that has been used throughout
this thesis, but also some other packages. The tester found the service useful, especially
the testing phase, since the linuxts-test suite needs to work on all different major
releases and all different versions of the Linux Technical Standard at IKEA IT. But during
this testing it was realized that it would be a very useful feature to be able to test an RPM
on several test servers at each build. With the current functionality, the tester needs to
change the settings of the project in Jenkins for every version the tests should be run on.
The answers to the questions are presented below.

37

4. Evaluation

1. "I find the service simple to use, especially since I’ve used Jenkins before."

2. "My experience with the service is that it is stable and works as expected."

3. "It has simplified the testing of RPM:s that I’ve built. Previously I had to download,
install and test the built RPM manually."

4. "Not that I can think of right now."

5. "It would be useful to be able to test the RPM on several servers every build, since
you sometimes want to make sure an RPM works on several different platforms."

4.4 Summary
The evaluation of the service confirmed that the service fulfills the goals that were set up
in the problem definition and also resulted in a couple of useful ideas for how the service
could be further improved:

• The service could provide a way to make the delivery of applications from the Satel-
lite server to the servers in production environment easier.

• Some people may want to be able to reset the build number for an application when
the version number is increased.

• It would be useful to be able to build and test an application for different major
releases of RHEL and versions of the Linux Technical Standard at them same time.

The evaluation also gave the testers a thorough introduction and hands-on experience with
the service.

4.5 SCALARE canvas
As a second part of the evaluation the whole problem and solution treated in this thesis
were applied to a model developed by the SCALARE research project presented in figure
4.1 below.

The different drivers of the project are identified and placed in the top of the canvas.
Then the current abilities that were present before the project was started are placed to
the left. These are dependent on the "as is" organization, processes and products. In the
middle the transformations are presented which are the solutions to the problems. To the
right the different advantages of doing the transformations are presented. The different
entities are linked together with the arrows in different colours.

38

4.5 SCALARE canvas

Figure 4.1: The project applied to the canvas developed in the
SCALARE project.

39

4. Evaluation

40

Chapter 5
Discussion

5.1 Continuous Delivery
Continuous Delivery has shown to provide benefits for many companies and there are
many companies that currently move in that direction, as the white paper from CloudBees
[10] show. Except for the technical challenges that has been treated in this thesis, company
culture and other processes may need to be changed as well. Especially if the goal is to
reach Continuous Deployment. The scope of this thesis was limited to make a service
that upload RPMs to the repositories at the Satellite server. Then, to expose an RPM
to production servers a new Content View needs to be created in the Satellite server. A
Content View can be seen as a filter that decides what versions of different softwares
that should be exposed to the servers. This becomes an obstacle in the complete delivery
pipeline of an application but it is necessary. It should not be possible for all applications
to go into production without going through more than automated tests.

A deployment pipeline turned out to be a good approach. It provided an intuitive
abstraction and made it easy to divide the different stages. Another thing that is clear
now is that the different stages of the development of the pipeline naturally resulted in 3
different RPMs:

linuxtp-buildservice This RPM contains the Continuous Integration and build
server.

linuxtp-buildservice-testintegration This RPM corresponds to the test
phase and is installed on every test machine.

linuxtp-buildservice-signer This RPM contains the signing and uploading
functionality.

Another aspect of Continuous Delivery is how to be able to deliver applications that
run on multiple platforms. As for IKEA IT the biggest applications run across multiple

41

5. Discussion

platforms. As an example there can be applications that run databases on AIX, back-end
on Linux and front-end on Windows. This kinds of setup makes the problem much more
complex, but a build service like this one is essential if Continuous Delivery for these
kinds of applications should be possible.

5.2 The solution
The development of the service was successful and according to the evaluation it fulfilled
the goals that was set up. It was a good decision to build the service around a Jenkins
server, since it provides a user interface which would take long time to develop. Jenkins
is easy to modify in many different ways and since it is open source there is a lot of useful
plugins available. All code that was written during this thesis was in Python except for the
5 lines long Expect script in 3.4.1. It was a real pleasure to learn and work with Python
and it turned out to fit well for the task. Other alternatives would be Ruby or Perl, but I do
not think it would have made any significant difference.

As one of the persons who helped out with the evaluation pointed out, it could have
been a good idea to be able to reset the build number so that it starts at 1 for every new
version of the software. The build service does not support this, but it can however be
solved by a little trick. If a copy of the project is made in Jenkins and the old one is
deleted, the build number will be reset to 1. It is not a very good solution, but it can be
done in just a couple of mouse clicks. But this removes the ability to trace an RPM to a
certain build in Jenkins since it removes all the history of that project from Jenkins. The
build number should therefore be unique.

The testing part integrated well with the linuxt-test suite. This became very
powerful, since it is possible to append all kinds of automated tests in your project and
they will be run at every build. One issue with the testing part was to make it possible at
arbitrary servers running different version of the Linux standard. But the idea is to make
the automation work for all configurations inside the scope, so this problem was solved
with the linuxtp-buildservice-testintegration RPM.

The last step of the development was the script that signs and uploads the RPMs to the
Satellite server. There was some problem with the signing, as described in the solution
chapter. I wanted to only use Python code and not involve the Expect script, but it was not
possible. I suspected that more tools than the Python standard library would be needed, but
I tried to keep it at a minimum. The uploading of the RPMs to the Satellite was done with a
command to Hammer which was easy to use because most of the surrounding functionality
was already in place.

The service as a whole provides a high level of automation. By using it, it is easier
to work in short iterations because it is not time consuming to integrate and test a project
often. One thing that has not been treated by this thesis is the compilation of code. This is
because the files checked in to the SVN server at IKEA IT are already compiled or do not
need compiling. This means that the files that need compiling are compiled locally by the
developers, which is not optimal according to [25]. It is possible to make Jenkins do the
compilation by specifying the compilation steps as the %build script in the spec file of a
project. But the drawback with this is that the server running the build service would need
to have all compilers and libraries etc installed. This does not scale well if the number of

42

5.2 The solution

projects increase. As for projects containing e.g. Python code like the ones developed in
this thesis or PHP like the one in the NetScaler projects described in the evaluation chapter,
no compilation is needed anyway.

43

5. Discussion

44

Chapter 6
Conclusion

The overall questions that was asked in this thesis was how to best automate the delivery
of software running on Linux at IKEA IT. It boiled down to a delivery pipeline that pro-
vides continuous integration, automated building, testing, signing of RPMs and delivery
to a central repository. It fulfills the goals set up in section 1.3 and achieved the level of
automation that was desired. The problem with realizing the flow through the pipeline
was solved in different ways depending on the stages. The test stage is triggered by the
build because it should provide as fast feedback as possible. But the signing was realized
with a periodic approach since it provides a higher level of security. The complete deploy-
ment pipeline allows developers to work in short iterations by automating many steps that
developers earlier were forced to do manually.

Another more general conclusion that can be drawn from this thesis is that these kinds
of processes are closely connected to automation and benefits from being automated in as
many steps as possible. Even if automation takes some work to achieve, it can save much
time for a lot of people, which in the end profits the whole organization.

6.1 Future Work
One way to improve the service would be to develop a plugin to Jenkins that supports the
same functionality. In that way it would be easy to make changes to the configure page of
Jenkins. For example it would be possible to manage a spec file for the project directly in
Jenkins instead of on the SVN server. It would be possible to add new features and connect
them to the GUI in Jenkins to make it much easier to handle user settings. It would for
example be fairly easy to include a feature that enables the user to reset the build number
when the version number is increased.

There are some possible ways to increase the speed of builds. One way of scaling
is to explore different ways of speeding up Jenkins. It is possible to modify how many
"builders" Jenkins use, which is basically the number of possible concurrent builds. This

45

6. Conclusion

is set to 1 from the start but was increased to 10 when the service were installed in produc-
tion. This was not examined very scientifically, but the limit of how many builders that
is suitable is ultimately set by the hardware of the host server. If the build service would
need to scale up even more, it is possible to connect build slaves to Jenkins. Build slaves
are machines that Jenkins control and distribute the work load on.

One new feature that would probably be the first one to be implemented if there was
time would be to make the build service able to perform parallel tests on different servers.
Many of the projects at IKEA IT need to be tested for several major releases of RHEL
and also different versions of the Linux Technical Standard. A simplified model of this is
shown in figure 6.1 below where a single package is built and then tested on 3 different
RHEL servers and then uploaded into their corresponding repository in the Satellite server.

Jenkins server

RHEL 5
test server

RHEL 6
test server

RHEL 7
test server

Satellite server

Figure 6.1: A simple figure of how it would be possible to simul-
taneously test at different platforms. If the tests pass, the RPMs are
uploaded into the corresponding repository at the Satellite server
for each of the test machines.

46

Bibliography

[1] Apache subversion. https://subversion.apache.org/, accessed 2015-
05-13.

[2] cron(8) - linux man page. http://linux.die.net/man/8/cron, accessed
2015-05-13.

[3] Cvs - concurrent versions system. http://www.nongnu.org/cvs/, accessed
2015-05-13.

[4] Git version control system. http://git-scm.com/, accessed 2015-05-13.

[5] The gnu c library: getpass. http://www.gnu.org/software/libc/
manual/html_node/getpass.html, accessed 2015-05-13.

[6] Introducing json (javascript object notation). http://json.org/, accessed
2015-05-13.

[7] Jenkins ci server. http://jenkins-ci.org/, accessed 2015-05-13.

[8] Jenkins wiki - use jenkins. https://wiki.jenkins-ci.org/display/
JENKINS/Use+Jenkins, accessed 2015-05-13.

[9] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum. On the jour-
ney to continuous deployment: Technical and social challenges along the way. Infor-
mation and Software Technology, 57:21–31, 2014.

[10] CloudBees DZone. Research partner spotlight. The Guide To Continuous Delivery,
vol II, 2015.

[11] Eric Foster-Johnsson. Red Hat®RPM Guide. Wiley Publishing, 2003.

[12] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. Doctorial dissertation. University of California, 2000.

47

https://subversion.apache.org/
http://linux.die.net/man/8/cron
http://www.nongnu.org/cvs/
http://git-scm.com/
http://www.gnu.org/software/libc/manual/html_node/getpass.html
http://www.gnu.org/software/libc/manual/html_node/getpass.html
http://json.org/
http://jenkins-ci.org/
 https://wiki.jenkins-ci.org/display/JENKINS/Use+Jenkins
 https://wiki.jenkins-ci.org/display/JENKINS/Use+Jenkins

BIBLIOGRAPHY

[13] Jesse Glick. Jenkins ldap plugin. https://wiki.jenkins-ci.org/
display/JENKINS/LDAP+Plugin, accessed 2015-05-13.

[14] Dieter Gollmann. Computer Security 3rd Edition. John Wiley & Sons, 2011.

[15] Alan Harder. Jenkins audit trail plugin. https://wiki.jenkins-ci.org/
display/JENKINS/Audit+Trail+Plugin, accessed 2015-05-13.

[16] Jez Humble and David Farley. Continuous Delivery: reliable software through build,
test, and deployment automation. Pearson Education, 2011.

[17] Jez Humble, Chris Read, and Dan North. The deployment production line. In Pro-
ceedings of the conference on AGILE 2006, pages 113–118, 2006.

[18] Martin Höst, Björn Regnell, and Per Runesson. Att genomföra examensarbete. Stu-
dentlitteratur AB, Lund, Sweden, 2006 (in Swedish).

[19] Red Hat Inc. Red hat satellite 6 user guide - content views. https://access.
redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/
html/User_Guide/chap-Using_Content_Views.html, accessed
2015-05-13.

[20] Red Hat Inc. Red hat satellite 6.0 api guide. https://access.redhat.
com/documentation/en-US/Red_Hat_Satellite/6.0/pdf/API_
Guide/Red_Hat_Satellite-6.0-API_Guide-en-US.pdf, accessed
2015-05-13.

[21] Red Hat Inc. Red hat satellite 6.0 transition guide. https://access.
redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/
pdf/Transition_Guide/Red_Hat_Satellite-6.0-Transition_
Guide-en-US.pdf, accessed 2015-05-13.

[22] Red Hat Inc. Red hat satellite 6.0 user guide. https://access.redhat.
com/documentation/en-US/Red_Hat_Satellite/6.0/html/
User_Guide/index.html, accessed 2015-05-13.

[23] Don Libes. Expect - home page. http://expect.sourceforge.net/, ac-
cessed 2015-05-13.

[24] Helena Holmström Olsson, Hiva Alahyari, and Jan Bosch. Climbing the "stairway
to heaven" – a mulitiple-case study exploring barriers in the transition from agile
development towards continuous deployment of software. In proceedings of the 38th
Euromicro Conference on Software Engineering & Advanced Applications, pages
392–399, 2012.

[25] Paul M. Duvall and Steve Matyas and Andrew Glover. Continuous Integration: im-
proving software quality and reducing risk. Pearson Education, 2007.

48

https://wiki.jenkins-ci.org/display/JENKINS/LDAP+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/LDAP+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Audit+Trail+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Audit+Trail+Plugin
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/html/User_Guide/chap-Using_Content_Views.html
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/html/User_Guide/chap-Using_Content_Views.html
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/html/User_Guide/chap-Using_Content_Views.html
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/pdf/API_Guide/Red_Hat_Satellite-6.0-API_Guide-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/pdf/API_Guide/Red_Hat_Satellite-6.0-API_Guide-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/pdf/API_Guide/Red_Hat_Satellite-6.0-API_Guide-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/pdf/Transition_Guide/Red_Hat_Satellite-6.0-Transition_Guide-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/pdf/Transition_Guide/Red_Hat_Satellite-6.0-Transition_Guide-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/pdf/Transition_Guide/Red_Hat_Satellite-6.0-Transition_Guide-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/pdf/Transition_Guide/Red_Hat_Satellite-6.0-Transition_Guide-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/html/User_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/html/User_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/6.0/html/User_Guide/index.html
http://expect.sourceforge.net/

Appendices

49

Appendix A
RPM

A.1 exampleproject.spec

Packager: Ture Karlsson <ture@email.com>
Summary: This is a test project
Name: ture-test
Version: 1.0.0
Release: %{build_number}
Group: Applications/System
BuildArch: noarch
BuildRoot: %{_tmppath}/%{name}-%{version}-root
Source0: %{name}.tar.gz
License: Commercial

%description
This section contains a longer description of the project
and can be written on multiple lines.

%prep
tar -xvzf %_topdir/SOURCES/%{name}.tar.gz

%install
rm -rf $RPM_BUILD_ROOT
mkdir %{buildroot}
cd %{name}
cp -Rp * %{buildroot}/

%clean

51

A. RPM

rm -rf $RPM_BUILD_ROOT

%post

%files
%defattr(-,root,root)
/usr/local/bin/rpmqa.py
/usr/local/bin/info.txt

%changelog
* Fri Feb 27 2015 Ture Karlsson
- Changed version number and removed file list
* Thu Feb 26 2015 Automatic Packager
- File created.

A.2 Package information fields
Packager:
Summary:
Name:
Version:
Release:
Epoch:
Group:
BuildArch:
BuildRoot:
Source0: can be followed by Source1, Source2, ...
Patch0: can be followed by Patch1, Patch2, ...
License:
Group:
Distribution:
Vendor:
URL:
ExcludeArch:
ExclusiveArch:
Excludeos:
Exclusiveos:
Requires:
Provides:
Obsoletes:
Conflicts:
PreReq:
BuildRequires:
BuildConflicts:
BuildPreReq:

52

A.3 linuxtp-buildservice.spec

A.3 linuxtp-buildservice.spec

Packager: Ture Karlsson <tukar3@ikea.com>
Summary: Build service for applications running at Linux
Name: linuxtp-buildservice
Version: 1.2.0
Release: %{build_number}
Group: Applications/System
BuildArch: noarch
BuildRoot: %{_tmppath}/%{name}-%{version}-root
Source0: %{name}.tar.gz
License: Commercial
Requires: java-1.6.0-openjdk, jenkins, python, expect,
rpm-build, httpd

%description
Build service to package project to RPMs, smoke test them
and sign if they are OK.
It is running through Jenkins CI server.
Create a new project in Jenkins and add the following as
build script:

Calls the build script to build the RPMs.
Example: rpmbuilder.py <job name> <build number>
(optional other parameters)
rpmbuilder.py ${JOB_NAME} ${BUILD_NUMBER}

Calls the test script to test the last successfully
built RPM.
Example rpmtest.py <job name> (optional <remote host>)
rpmtest.py ${JOB_NAME}

%prep
tar -xvzf %_topdir/SOURCES/%{name}.tar.gz

%install
rm -rf $RPM_BUILD_ROOT
mkdir %{buildroot}
cd %{name}
cp -Rp * %{buildroot}/

%clean
rm -rf $RPM_BUILD_ROOT

%post
mv /etc/rc.d/init.d/jenkins.rpmsave /etc/rc.d/init.d/jenkins

53

A. RPM

setcap cap_net_bind_service+ep /usr/lib/jvm/jre-1.6.0-
openjdk.x86_64/bin/java
rm /etc/yum.repos.d/jenkins.repo
passwd -l jenkins
service jenkins start
chkconfig jenkins on
service httpd start
chkconfig httpd on
sed -i ’s/# StrictHostKeyChecking
ask/StrictHostKeyChecking no/g’ /etc/ssh/ssh_config

%files
%defattr(-,root,root)
%dir %attr(755, jenkins, jenkins) /var/www/html/rpms
/etc/rc.d/init.d/jenkins.rpmsave
/usr/bin/rpmbuilder.py
/usr/bin/rpmsigner.exp
/usr/bin/rpmtest.py
/usr/bin/rpmspec.py
/linuxts-test/test.d/linuxtp-buildservice.ports
/linuxts-test/test.d/linuxtp-buildservice.rpms
/linuxts-test/test.d/linuxtp-buildservice.services
%dir %attr(755, jenkins, jenkins) /var/lib/jenkins/
jobs/template/
%attr(755, jenkins, jenkins) /var/lib/jenkins/
jobs/template/config.xml
%dir %attr(755, jenkins, jenkins) /var/lib/jenkins/
jobs/template/builds/
%attr(755, jenkins, jenkins) /var/lib/jenkins/
jobs/template/builds/lastSuccessfulBuild
%attr(644, jenkins, jenkins) /var/lib/jenkins/
jobs/template/builds/lastFailedBuild
%attr(755, jenkins, jenkins) /var/www/html/index.html
%attr(644, jenkins, jenkins) /var/www/html/trofast.jpg
%attr(644, jenkins, jenkins) /var/www/html/krister.jpg
%attr(755, jenkins, jenkins) /var/lib/jenkins/jobs/
template/builds/lastStableBuild
%attr(755, jenkins, jenkins) /var/lib/jenkins/jobs/
template/builds/lastUnstableBuild
%attr(755, jenkins, jenkins) /var/lib/jenkins/jobs/
template/builds/lastUnsuccessfulBuild
%attr(755, jenkins, jenkins) /var/lib/jenkins/jobs/
template/scm-polling.log
%attr(755, jenkins, jenkins) /var/lib/jenkins/jobs/
template/nextBuildNumber
%attr(755, jenkins, jenkins) /var/lib/jenkins/jobs/

54

A.3 linuxtp-buildservice.spec

template/config.xml
%attr(755, jenkins, jenkins) /var/lib/jenkins/jobs/
template/builds/legacyIds
%attr(755, jenkins, jenkins) /var/lib/jenkins/jobs/
template/subversion.credentials

%changelog
* Wed Apr 15 2015 Ture Karlsson <tukar3@ikea.com>
- Removed signing scripts and enabled services.
* Tue Apr 14 2015 Ture Karlsson <tukar3@ikea.com>
- Changed description.
* Wed Apr 01 2015 Ture Karlsson <tukar3@ikea.com>
- Added some more information and dependencies.
* Wed Apr 01 2015 Automatic Packager
- File created.

55

IKEA IT har många underleverantörer av programvaror som kör på deras Linux-
plattform. För att få alla att leverera pålitliga uppdateringar på ett enhetligt sätt
och dessutom tillåta dem att arbeta i korta iterationer har en tjänst utvecklats
under detta examensarbete som tillhandahåller Continuous Delivery.

Ett problem som Linuxadministratörerna på IKEA IT
ställts inför är att det inte finns någon standard för hur
applikationerna som kör på deras servrar ska levereras.
Detta innebär att personerna som är ansvariga för att
paketera och leverera applikationerna gör detta manuellt
och i olika format, vilket är tidskrävande och innebär
en stor risk för misstag. Det gör även att uppdateringar
görs sällan och innehåller större förändringar.
 För att lösa detta problem har en tjänst utvecklats
som paketerar applikationerna på ett enhetligt sätt i det
format som passar bäst för operativsystemet. Så fort för-
ändringar görs i applikationens källkod byggs ett nytt
programvarupaket automatiskt utan mänsklig inbland-
ning. Paketet installeras i en testmiljö där automatise-
rade tester utförs på applikationen. Om testerna är lyck-
ade signeras paketet varefter det laddas upp i ett centralt
lagringsutrymme. På så sätt garanteras både paketets
korrekthet och integritet och det kan sedan installeras
på de servrar i produktionsmiljö där de ska användas.
 Dessa stegen har automatiserats, vilket gör att en ny
förändring i programvaran startar ett flöde som paketerar,
testar och levererar programvaran automatiskt. Detta
medför att utvecklare kan arbeta i korta iterationer och
kontinuerligt få återkoppling på sitt arbete genom att
programvaran kontinuerligt testas för att upptäcka brister
som senare kunnat orsaka problem i produktionsmiljö.
Tekniken kallas Continuous Delivery och innebär att
man alltid har senaste testade programvarupaket redo
att sättas in i produktion. Tjänsten bidrar med följande
fördelar för IKEA IT:

• Enhetlighet: Alla applikationer kan paketeras och
sedan även installeras på samma sätt.

• Automation: Tjänsten har automatiserat många
steg som annars behövt utföras manuellt, vilket all-
tid medför en risk för misstag.

• Kortare iterationer: Tjänsten medför att uppdate-
ringar kan ske med tätare intervaller, vilket gör att
mindre uppdateringar kan införas i produktion i
stället för stora uppdateringar som medför en högre
risk för fel.

Personer som är ansvariga för leverans av applikationer
kan nu lägga till sitt projekt i den nya tjänsten. Så fort
förändringar görs i källkoden kommer ett nytt flöde
sparkas igång varefter alla de automatiska stegen utförs.
Detta gör att utvecklarna inte behöver paketera, testa,
signera och ladda upp sina applikationer manuellt,
vilket sparar dem mycket tid.
 Tjänsten kör nu i produktion hos IKEA IT. För att
sprida kunskapen om den och för att få människor att
börja använda den har användarinstruktioner spelats in
i videoformat samt har några av slutanvändarna testat
och låtits utvärdera tjänstens funktionalitet. Målet är att
alla applikationer som körs på Linux hos IKEA IT ska
använda sig av tjänsten.
 Även ett annat stort företag har visat intresse för
tjänsten och i framtiden planeras att tjänsten ska göras
om till ett öppen källkodsprojekt för att underlätta att
fler kan använda den.

EXAMENSARBETE Automated build service to facilitate Continuous Delivery

STUDENT Ture Karlsson

HANDLEDARE Ulf Asklund (LTH), Magnus Glantz (IKEA IT)

EXAMINATOR Martin Höst (LTH)

Ny tjänst gör att utvecklare kan leverera
uppdateringar kontinuerligt
POPULÄRVETENSKAPLIG SAMMANFATTNING Ture Karlsson

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2015-06-04

	2015-27 Framsida
	Tom sida
	2015-27 Rapport
	2015-27 Rapport
	Introduction
	Background
	Current conditions
	Problem definition
	Related work
	Approach

	Observations
	Continuous Integration
	Version Control Systems
	CI Server

	RPM Package Manager
	The .spec files
	Packaging

	Observed problem

	Solution
	CI Server
	Build script
	Testing
	Check for new builds periodically
	Trigger test at every build
	The testing procedure
	Improvements

	Signing
	Signing to verify test
	Signing server

	Upload RPMs to Satellite server
	RESTful API
	Hammer CLI

	Deliver the product
	Packaging
	Testing
	Installation

	Evaluation
	Test person 1
	Test person 2
	Test person 3
	Summary
	SCALARE canvas

	Discussion
	Continuous Delivery
	The solution

	Conclusion
	Future Work

	Bibliography
	Appendix RPM
	exampleproject.spec
	Package information fields
	linuxtp-buildservice.spec

	Tom sida
	2015-27 Popvet

