

Department of Automatic Control

Using ADMM
for Hybrid System MPC

Mattias Fält

Lucas Jimbergsson

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289944313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MSc Thesis
ISRN LUTFD2/TFRT--5981--SE
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2015 by Mattias Fält, Lucas Jimbergsson. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2015

Abstract

Model Predictive control (MPC) has been studied extensively because of its
ability to handle constraints and its great properties in terms of stability
and performance [Mayne et al., 2000]. We have in this thesis focused on
MPC of Hybrid Systems, i.e. systems with both continuous and discrete dy-
namics. More specifically, we look at problems that can be cast as Mixed
Integer Quadratic Programming (MIQP) problems which we are solving us-
ing a Branch and Bound technique. The problem is in this way reduced to
solving a large number of constrained quadratic problems. However, the use
in real time systems puts a requirement on the speed and efficiency of the op-
timization methods used. Because of its low computational cost, there have
recently been a rising interest in the Alternating Direction Method of Multi-
plies (ADMM) for solving constrained optimization problems. We are in this
thesis looking at how the different properties of ADMM can be used and im-
proved for these problems, as well as how the Branch and Bound solver can be
tailored to accompany ADMM. We have two main contributions to ADMM
that mitigate some of the downsides with the often ill-conditioned problems
that arise from Hybrid Systems. Firstly, a technique for greatly improving
the conditioning of the problems, and secondly, a method to perform fast
line search within the solver. We show that these methods are very efficient
and can be used to solve problems that are otherwise hard or impossible to
precondition properly.

5

Acknowledgements

We want to thank our advisor Pontus Giselsson at the department of Auto-
matic Control, Lund University for all his help during this project. Not only
did he guide us through this project, but his ability and willingness to help
us with any question we had was truly valuable.

We also want to thank our families for supporting us in our studies.

7

Contents

1. Introduction 11
1.1 Background . 11
1.2 Purpose and Restrictions . 12
1.3 Thesis Outline . 12

2. Optimization Theory 14
2.1 Quadratic Programming . 14

2.1.1 Splitting . 14
2.2 Mixed Integer Quadratic Programming 15

2.2.1 Branch and Bound . 16
2.3 ADMM . 18

2.3.1 Lagrange Dual . 18
2.3.2 Method of Multipliers 19
2.3.3 ADMM . 19
2.3.4 Optimality condition 21

2.4 Choosing K and C . 22
2.4.1 Drawbacks of K = I 22

3. Model Predictive Control 25
3.1 Unconstrained MPC for Linear Systems 25
3.2 Constrained MPC for Linear Systems 26
3.3 Mixed Integer Predictive Control 26

3.3.1 Mixed Logical Dynamical Systems 26
3.3.2 Dynamic Modes . 27
3.3.3 MIPC Formulation . 29

4. Test Cases 30
4.1 Spring-Damper . 30
4.2 Turbo Car . 31

5. Improving ADMM 33
5.1 ADMM Implementation . 33
5.2 Infeasibility Check . 34
5.3 Early Termination . 35

9

Contents

5.3.1 Evaluating the Dual 36
5.3.2 Evaluating a Modified Dual 37

5.4 Preconditioning . 38
5.4.1 Preconditioning on x 39

5.5 Line Search . 41
5.5.1 Algorithm . 43

5.6 Line search with preconditioning on x 45
6. Improving Branch and Bound 47

6.1 Tree Traversal Strategies . 47
6.1.1 Suboptimal Branch and Bound 48

6.2 Branch Ordering . 49
6.2.1 Dynamic Branch Ordering 51

7. Exploiting Repeated Optimization 52
7.1 Parametric Optimization . 52

7.1.1 Parametric Formulation of QP Relaxations 52
7.2 Warmstarting . 53

7.2.1 Warmstarting Node Relaxations 53
7.2.2 Warmstarting the Branch and Bound Tree 54

7.3 Precomputation of Cutting Planes 54
7.3.1 Extra constraints in precomputation 55
7.3.2 Adding constraints to the problem 55

8. Results 59
8.1 Default Options . 59

8.1.1 Branch and Bound Options 59
8.1.2 ADMM Options . 59

8.2 Line Search . 59
8.3 Preconditioning on x . 61

8.3.1 Different Performance at Different Nodes 64
8.4 Simplified Line Search with Preconditioning on x 68
8.5 Branch and Bound . 69
8.6 Cutting Planes . 72

9. Concluding Remarks 74
9.1 Conclusions . 74
9.2 Individual Contributions . 74
9.3 Future Work . 75

A. MIQP Formulation of MIPC 76
B. Efficient Line Search 78
C. Details for Test Cases 81

C.1 Spring-Damper . 81
C.2 Turbo Car . 82

Bibliography 83

10

1
Introduction

1.1 Background

Model Predictive Control is the idea of controlling a system by predicting
its behavior and selecting an optimal control signal based on this prediction.
The control signal is usually chosen to minimize some cost over the system
states, inputs and outputs.

The most common case is unconstrained linear systems with quadratic
costs. This problem can be efficiently solved for time-invariant and time vary-
ing problems, in the discrete as well as the continuous case. It is also possible
to solve constrained problems (as we do in this thesis), but it requires more
computation.

Stability can often be achieved by choosing the prediction horizon long
enough, preferably considerably longer than the time constants in the system.
Model Predictive Control (MPC) is therefore often chosen for its ability to
handle constraints, as well as its good properties in terms of performance
and robustness [Mayne et al., 2000].

Hybrid Systems are able to model a much wider range of systems than
ordinary Linear Systems. We are in this thesis looking at a subset of hybrid
systems that can be modeled as linear systems with a mix of continuous
and binary variables. This class can not only approximate many non-linear
systems as piece-wise affine, but also systems with different modes and logics.

However, these problems can also be considerably harder to solve and
the complexity can grow exponentially with the number of binary variables.
This is a problem since the use in real time systems requires that the full
problem can be solved between each time sample, preferably even faster. This
is therefore putting a bound on how fast systems we can control.

Explicit MPC is one way to push this bound farther. By explicitly com-
puting the solutions for the whole state space in advance, it is possible to
control much faster systems. However, this method is subject to the curse of
dimensionality and is only feasible for relatively small systems, even more so
for problems with quadratic cost.

11

Chapter 1. Introduction

The Branch and Bound method is an alternative to the exponentially
growing brute-forcing approach of testing all combinations of the binary vari-
ables. By solving a series of relaxed problems, the idea is to successively find
bounds on the solution, and thus hopefully drastically reducing the range of
solutions that needs to be considered.

The problem of solving these individual relaxed (Quadratic Programming
(QP)) problems persists. There are many properties of a solver that can be
beneficial in this setting. The ability to warm start the solver (i.e. to use a
previous solution or guess as initial point) can be very valuable since little is
expected to change between time steps. Many of the relaxed problems that
are being solved are also very similar which makes it compelling to use a
method that can exploit this. Previous work has for example considered dual
active set methods for these reasons [Axehill and Hansson, 2006].

We have chosen to look at the Alternating Direction Method of Multipliers
(ADMM). It is a first-order method with very cheap iterations. It also has the
ability to initialize the solver with an infeasible solution. This is valuable since
old solutions might not be feasible at a later time, when warm-starting the
solver. Lastly, a parametric implementation of ADMM exists which further
exploits the similarities between the problems that need to be solved (QPgen
[Giselsson, 2015]).

1.2 Purpose and Restrictions

The purpose of this thesis is to investigate how ADMM can be used for
Model Predictive Control of hybrid systems. In particular, we will consider
using ADMM for solving subproblems in a Branch and Bound solver. Our
goal is not to implement a state-of-the-art Branch and Bound solver – instead
we want to investigate how ADMM can be improved to work better in this
setting, and also how the properties of ADMM can be exploited in the Branch
and Bound solver.

1.3 Thesis Outline

In Section 2 we present some optimization theory relevant to this thesis.
Section 3 then gives a brief overview of MPC for linear systems, followed by
a more thorough presentation of MPC for hybrid systems. Together, Sections
2 and 3 give some background to our thesis, while the following sections
describe our own ideas and solutions (unless stated otherwise).

In Section 4 we outline the two examples that we work with. Section 5
describes some modifications or extensions to ADMM of ours, to improve
the performance when applied to MPC for hybrid systems in a Branch and
Bound solver. Section 6 instead presents some ways in which the Branch and

12

1.3 Thesis Outline

Bound solver may exploit properties of ADMM. Section 7 deals with how to
exploit the fact that we will solve similar optimization problems again and
again.

The thesis is then concluded by our results in Section 8, and some con-
cluding remarks in Section 9.

13

2
Optimization Theory

In this section we will introduce some optimization theory relevant to the
thesis.

2.1 Quadratic Programming

The basic problem that we will be working with in this thesis is the con-
strained Quadratic Programming (QP) problem:

min
x∈Rn

1

2
xTHx+ fTx+ c

s.t AEx = bE ,

bIl ≤ CIx ≤ bIu,

(2.1)

where H is a positive semidefinite matrix.
All of the problems we are looking at in this thesis will be reduced to

solving a series of these QP problems. There are many different ways to
solve QP problems, with different properties in terms of convergence and
scalability. Common algorithms include active set and interior point methods.

2.1.1 Splitting
The ADMM algorithm (see Section 2.3) can be applied on a split problem
on the form

min
x,y

g(x) + h(y)

s.t. Cx = y,
(2.2)

where g and h are convex functions. We let x in (2.2) correspond exactly to
x in (2.1), while y is a new variable introduced with the splitting.

For (2.2) to be equivalent to (2.1), the functions g and h should together
model the cost and constraints in (2.1). This could be achieved in many ways,

14

2.2 Mixed Integer Quadratic Programming

but we will let (2.1) be split into (2.3):

min
x,y

1

2
xTHx+ fTx+ c+ I(AEx = bE)︸ ︷︷ ︸

g(x)

+ I(y ∈ Y)︸ ︷︷ ︸
h(y)

s.t Cx = y,

(2.3)

where

Y = {y : bIl ≤ Ky ≤ yIu} (2.4)
CI = KC, (2.5)

for some matrices K and C and where the indicator function I(x) is simply
defined as

I(x) =

{
0 if x
∞ else.

In the splitting (2.3), the inequality constraints modeled by h(y) are sep-
arated from the equality constraints and cost function modeled by g(x). As
minimization of g and h will be done separately in ADMM, the absence of
inequality constraints in g will be beneficial1.

The factorization of CI into K and C may also be done in many ways,
and is further discussed in Section 2.4. Specifically, consider the choice C =
CI , K = I, as it makes the constraints y ∈ Y element-wise.

2.2 Mixed Integer Quadratic Programming

We define a Mixed Integer Quadratic Program as in (2.6), the only differ-
ence to a QP (2.1) being that some elements in x now have to be binary.
The number of real and binary elements in x are denoted by nr and nb,
respectively.

min
x∈Rnr×{0,1}nb

1

2
xTHx+ fTx+ c

s.t AEx = bE ,

bIl ≤ CIx ≤ bIu.

(2.6)

Let xr ∈ Rnr denote the real elements, and xb ∈ {0, 1}nb denote the binary
elements in x. This problem is much harder to solve than the QP problem
(2.1) and is in general NP hard.

1 If there were no inequality constraints in the original QP (2.1), it could be solved
trivially by solving a KKT system.

15

Chapter 2. Optimization Theory

S =
{
[∗, ∗]T

}

S0∗ =
{
[0, ∗]T

}

S00 =
{
[0, 0]T

}
S01 =

{
[0, 1]T

}

S1∗ =
{
[1, ∗]T

}

S10 =
{
[1, 0]T

}
S11 =

{
[1, 1]T

}

x0b = 0

x1b = 0 x1b = 1

x0b = 1

x1b = 0 x1b = 1

Figure 2.1 Illustration of the Branch and Bound tree structure.

2.2.1 Branch and Bound
If we knew the solution of xb, we could formulate and solve an ordinary QP2

and also find the solution of xr. The simplest and most straight-forward
approach to solving an MIQP is by brute-force, trying out every possible
combination of xb, and solving the corresponding QPs. Then the solution is
determined by which of the QPs give the best optimal function value. The
drawback of brute-force however, is that 2nb QPs have to be solved, giving
exponential time complexity.

The main idea of Branch and Bound is to decrease the number of QPs
that have to be solved, using a hierarchical tree structure and evaluating the
prospect of entire groups of possible xb, potentially discarding some of these
groups.

Let S = {0, 1}nb denote the set of possible xb in the MIQP (2.6). In
Branch and Bound, S is hierarchically divided into subsets, as illustrated in
an example in Figure 2.1. Each of the tree nodes (which we denote NXX)
correspond to MIQPs like (2.6), but with xb ∈ S substituted for xb ∈ SXX ,
where SXX are the corresponding subsets of S.

At the leaf3 nodes all binary variables are fixed, and every leaf corresponds
to a combination of binary variables in the brute-force approach. These are
the only nodes that can be solved as QPs directly. All the other nodes are
MIQPs, although with fewer unknown binary variables as compared to the
root node.

Although only the leaves can be solved as QPs directly, we can still com-
pute lower bounds of the optimal function value for the other nodes, by solv-
ing a relaxation of the corresponding MIQP. The solution of such a relaxed
problem may very well not be feasible in the non-relaxed problem, but has

2This could be formulated in many ways, for instance by adding equality constraints
that fix xb to their known optimal values.

3By leaves or leaf nodes we mean the childless nodes at the bottom of the tree, where
all binary variables are fixed.

16

2.2 Mixed Integer Quadratic Programming

the advantage of being more straight-forward to solve. Different relaxations
are discussed later on.

Let Jub denote an upper bound of the optimal objective function value J∗
of (2.6). The upper bound Jub is initiated to Ju = +∞, but will be updated
with tighter and tighter bounds as corresponding points xub satisfying the
constraints of (2.6) are found. The relation

Jub ≥ J∗ (2.7)

will always hold, as we only update Jub with points xub satisfying the con-
straints of (2.6).

The Branch and Bound algorithm traverses the tree, and solves relax-
ations of the MIQPs at the tree nodes. Let xNi

denote the solution to the
relaxation of node Ni, with corresponding objective function value J∗Ni

. In
the following three cases we can prune the entire subtree, for which Ni is the
root node:

• If the relaxation is infeasible, since then the non-relaxed MIQP of Ni
is also infeasible.

• If J∗Ni
≥ Jub, since in that case no feasible point x in the subtree can

give lower objective function value than xub does4.

• If xNi
is binary feasible, because then it also solves the non-relaxed

MIQP of Ni. If J∗Ni
< Jub, we also update xub ← xNi

and Jub ← J∗Ni
.

In any other case, we do not prune the subtree.
Unfortunately Branch and Bound also has exponential time complexity,

but typically reduces the number of subproblems to be solved drastically as
compared to the brute-force approach.

Implementation We have implemented Branch and Bound with a priority
list of tree nodes. The list is initiated by holding a single element – the root
node. When another node is to be solved, the node Ni with highest priority
is always chosen (slightly confusing – high priorities are represented by small
numbers). If the subtree for which Ni is the root node cannot be pruned (and
Ni is not a leaf), the children of Ni are added to the priority list. On the
contrary, pruning is simply done by not adding the children to the list. When
the priority list is empty, the algorithm is done. Then (xub, Jub) minimize the
MIQP (2.6) (or Jub = +∞ if (2.6) is infeasible).

There are different ways of assigning priorities to the nodes, and some
choice of priorities may require many more nodes to be traversed than another
choice of priorities. This is further discussed in Section 6.1.

4 If we store the optimal objective function value J∗Nj
of the relaxation at the parent Nj

of Ni, we may prune if J∗Nj
≥ Jub without having to solve the current relaxation, due

to the relation J∗Ni
≥ J∗Nj

.

17

Chapter 2. Optimization Theory

Relaxations As explained in Section 2.2.1, all nodes in the Branch and
Bound tree correspond to MIQP problems, except for the leaf nodes which
correspond to QP problems since all binary variables are fixed. To be able
to apply convex optimization methods, convex relaxations of the non-convex
MIQPs need to be considered. There are different ways of relaxing an MIQP,
and while considering which one to use there is typically a trade-off between
tightness of the resulting bounds, and performance when solving the relax-
ations.

The QP relaxation is probably the most straight-forward example, as the
constraints xb ∈ {0, 1}nb are simply exchanged for the inequality constraints

0 ≤ xb ≤ 1. (2.8)

This turns the MIQP into a QP, which can be solved by interior point meth-
ods, active set methods or first-order methods, among others. In Section 7.1.1,
more details on how we formulate a QP relaxation for parametric ADMM
will be given.

Other examples of relaxations are Semi-Definite Programming (SDP) and
Second-Order Cone Programming (SOCP) relaxations. For the purposes of
this thesis however, we have restricted ourselves to the standard QP relax-
ation.

2.3 ADMM

2.3.1 Lagrange Dual
To explain ADMM in an intuitive way, we first introduce the Lagrange Dual.
The optimization problem that we will be solving using ADMM is the QP
problem (2.3):

min
x,y

1

2
xTHx+ fTx+ c+ I(AEx = bE)︸ ︷︷ ︸

g(x)

+ I(y ∈ Y)︸ ︷︷ ︸
h(y)

s.t Cx = y,

and the Lagrangian for this problem can be written as

L(x, y, λ) = g(x) + h(y) + λT (Cx− y). (2.9)

From this function it is possible to define the dual problem

max
λ

θ(λ) = max
λ

inf
x,y

L(x, y, λ). (2.10)

The dual problem (2.10) has the nice property that its optimal value is the
same as the one for the primal problem (2.3) and that (x∗, y∗) is a solution to

18

2.3 ADMM

the primal (2.3) if and only if (x∗, y∗, λ∗) is the solution to dual. This opens
up the possibility of solving the dual problem instead of the primal, which is
exactly what ADMM is doing.

However, before we attempt to solve the dual problem, we will first in-
troduce the augmented Lagrangian

Lρ(x, y, λ) = g(x) + h(y) + λT (Cx− y) + ρ

2
‖Cx− y‖2 , (2.11)

where ρ is a scaling factor. The associated dual problem to this augmented
Lagrangian is

max
λ

θρ(λ) = max
λ

inf
x,y

Lρ(x, y, λ). (2.12)

This extra term will not change the optimal value or solution, since Cx = y
at any feasible point. However, it has better robustness properties and will
let the solver converge under fewer assumptions [Boyd et al., 2011]. We will
thus be solving this problem instead.

2.3.2 Method of Multipliers
It is now tempting to apply a simple gradient ascent method to the
function θρ(λ). Assume that for a fix λk we can compute (xk, yk) =
argminx,y Lρ(x, y, λ

k). It is then possible to calculate the gradient ∇θρ(λ) =
Cxk − yk, which inspires us to the method of multipliers algorithm

(xk, yk) = argmin
x,y

Lρ(x, y, λ
k−1)

λk = λk−1 + ρ(Cxk − yk).
(2.13)

It is not a coincidence that the step length here is chosen to ρ. It can be shown
(for differentiable functions) that this choice will result in dual feasibility of
(xk, yk, λk), i.e. ∇xLρ(x, yk, λk) = 0 and ∇yLρ(xk, y, λk) = 0. We refer the
reader to [Boyd et al., 2011] for a slightly more thorough introduction.

2.3.3 ADMM
Although the method of multipliers has good convergence properties, it is
hard to implement in practice. It requires that we are able to minimize Lρ
over x and y simultaneously, which is difficult in general. We thus introduce
ADMM5, where the minimization is done in x and y separately:

xk = argmin
x

Lρ(x, y
k−1, λk−1) (2.14a)

yk = argmin
y

Lρ(x
k, y, λk−1) (2.14b)

λk = λk−1 + ρ(Cxk − yk). (2.14c)

5The "alternating directions" in the Alternating Direction Method of Multipliers refer
to the alternating updates (2.14a) and (2.14b) of x and y.

19

Chapter 2. Optimization Theory

There are several convergence results for ADMM, and we refer the reader
once again to [Boyd et al., 2011] for a more rigorous explanation of ADMM
with references to many of the relevant articles on this method.

We will now focus on how ADMM can be used to solve our specific prob-
lem. We note that the first step is independent of h(y) and the second of
g(x), a very important property for it to be possible to do the minimizations
efficiently. We can express the steps in the algorithm as

xk = argmin
x

{
g(x) + λk−1

T
Cx+

ρ

2

∥∥Cx− yk−1∥∥2 }
= argmin

x

{
g(x) +

ρ

2

∥∥∥∥Cx− yk−1 + 1

ρ
λk−1

∥∥∥∥2 } (2.15a)

yk = argmin
y

{
h(y)− λk−1T y + ρ

2

∥∥Cxk − y∥∥2 }
= argmin

y

{
h(y) +

ρ

2

∥∥∥∥Cxk − y + 1

ρ
λk−1

∥∥∥∥2 } (2.15b)

λk = λk−1 + ρ(Cxk − yk). (2.15c)

If we look at the functions we chose as g(x) and h(x):

g(x) =
1

2
xTHx+ fTx+ c+ I(AEx = bE)

h(y) = I(y ∈ Y),
(2.16)

we see that the first minimization is a convex quadratic problem under equal-
ity but no inequality constraints, and that the second can be seen as mini-
mizing the distance of y to Cxk + 1

ρλ
k−1T , while keeping y ∈ Y.

The first minimization (2.15a) can thus be done by solving the KKT
system[

H + ρCTC ATE
AE 0

] [
xk

µ

]
=

[
−f − CT

(
λk−1 − ρyk−1

)
bE

]
. (2.17)

Solving this can be done by first computing a LDL factorization of the ma-
trix, and then a relatively cheap backsolve. It is important to note that this
matrix is completely independent on the current iterates (xk, yk, λk), and
the factorization can thus be done once per problem, and be used for all
iterations! Moreover, the factorization is independent on the inequality con-
straints Y and the right hand side of the equality constraints bE . This makes
it possible to use the same factorization for almost all the problems we are
solving, which is one of the main reasons why we are considering ADMM in
this thesis.

20

2.3 ADMM

The second minimization (2.15b) can be expressed as

min
y

∥∥∥∥Cxk − y + 1

ρ
λk−1

∥∥∥∥2
s.t bIl ≤ Ky ≤ bIu,

(2.18)

or equivalently as a projection of Cxk + 1
ρλ

k−1T onto Y. This is in general
a non-trivial problem. However, in the common case of K = I, C = CI , it is
much easier and (2.18) can be explicitly solved by

yk = clip
bIl,bIu

{
CIx

k +
1

ρ
λk−1

}
, (2.19)

where y = clipa,b{z} is defined as

yi =

ai if zi < ai

bi if zi > bi

zi else
, (2.20)

for each index i in z. A more thorough discussion of the choice of K and C
follows in Section 2.4.

2.3.4 Optimality condition
In this section we will present a brief description of the optimality criterion
that is used both as a stopping criterion for ADMM as well as a basis for
the cost function in the line search in Section 5.5. If the Lagrangian (2.9)
was differentiable, optimality of (x∗, y∗, λ∗) for the problem (2.3) would be
equivalent to it being saddle point of L(x, y, λ) = g(x) + h(y) + λT (Cx− y),
i.e.

∇xL(x∗, y∗, λ∗) = 0

∇yL(x∗, y∗, λ∗) = 0

∇λL(x∗, y∗, λ∗) = 0.

However, since the gradient is not defined everywhere for g(x) and h(x),
we must use subgradients instead. Subgradients can be seen as an exten-
sion of gradients to non-differentiable convex functions. We say that g is a
subgradient to f at x if f(y) ≥ f(x) + gT (y − x) for all y, and denote the
subdifferential, the set of all subgradients, as ∂f . In the case where f is dif-
ferentiable, the gradient will be the only subgradient and ∂f = {∇f}. The
optimality conditions can now be shown to be

0 ∈ ∂xL(x∗, y∗, λ∗)
0 ∈ ∂yL(x∗, y∗, λ∗)
0 = ∇λL(x∗, y∗, λ∗).

(2.21)

21

Chapter 2. Optimization Theory

The two first are referred to as dual feasibility, and require that x∗ and y∗ are
minimizers for a fix λ, and the last is called primal feasibility, which requires
Cx = y.

2.4 Choosing K and C

Recall the factorization CI = KC in Section 2.1.1. A straight-forward choice
of this factorization is to let

K = CI , C = I. (2.22)

The update step (2.18) for y however, is not trivial to solve. We can instead
let

K = I, C = CI (2.23)

which, as mentioned previously, separates (2.18) into each of the coordinates,
and may be solved by the simple clip operation (2.19).

In Section 2.4.1, some drawbacks with (2.23) are discussed. As it is quite
involved, we want to point out that while it may give some intuition of the
relation between the x and y variables, it is not crucial to grasp for the report
as a whole. The main point is that while (2.23) has computational benefits,
it also has drawbacks when compared to (2.22).

2.4.1 Drawbacks of K = I

While (2.23) has a great computational advantage, the approach also has
several drawbacks. One drawback is related to preconditioning, and will be
discussed further in Section 5.4.1, where a compromise between (2.22) and
(2.23) will also be suggested. Some other drawbacks of (2.23) will be illus-
trated in the following.

Let cTi , i = 1, . . . ,m denote the rows of C ∈ Rm×n. Then each con-
straint yi = cTi x corresponds to a hyperplane in the domain of x (i.e. Rn)
with ci being the corresponding normal vectors. Now let xy (loosely) denote
the point(s) fulfilling y = Cxy for a particular y update of (2.15b). The
point(s) xy may then be seen as a (never carried out) x update suggested by
the y update.

The mapping y = Cx is bijective if and only if C is invertible (which of
course is the case for (2.22), but not necessarily for (2.23)). If not, there may
be several points xy, or none at all, that fulfill y = Cxy for a particular y.
These scenarios are illustrated in Figures 2.2 and 2.3.

When C is invertible there is no ambiguity in xy, but the y update may
represent a questionable point xy, as illustrated in Figure 2.4. As the clip
operation will be applied to y2, the infeasible point x1 will be shifted along
the line y1 = cT1 x, to a feasible point xf = x2. However, we would prefer

22

2.4 Choosing K and C

c1

y1 = cT1 x

Figure 2.2 C ∈ R1×2, and is thus not invertible. One element y1 in y,
corresponds to the entire dashed line, and hence to many possible points
xy. The infeasible region is marked with gray background.

c1

c2

c3

y1 = cT1 x

y2 = cT2 x

y3 = cT3 x

Figure 2.3 C ∈ R3×2, and is thus not invertible. Each element yi in y,
corresponds to one of the dashed lines, but apparently there is no point xy
at which all of the lines intersect. The infeasible region is marked with gray
background.

c1

y1 = cT1 x

c2

y2 = cT2 x
x1

x3

x2

Figure 2.4 C ∈ R2×2, and is invertible. For every point y, there is a
unique point xy determined by the intersection of the lines y1 = cT1 xb and
y2 = cT2 xb. The infeasible region is marked with gray background.

23

Chapter 2. Optimization Theory

a point xf close to x1, as x1 was in fact selected due to its low objective
function value in (2.15a). Considering this, xf = x3 would in fact be a better
choice than xf = x2, which points out a drawback of the approach (2.23). If
instead the rows c1 and c2 of C were orthogonal, this would not be an issue.

24

3
Model Predictive Control

3.1 Unconstrained MPC for Linear Systems

Considering MPC of linear systems with unconstrained states and inputs, we
can write the optimization problem as in (3.1).

min
x

N−1∑
k=0

(
eTkQek

)
+ eTNQNeN

s.t xk+1 = Axk +Buk,

(3.1)

where e is the state and input error from some reference trajectories rx, ru
(possibly zero):

ek =

[
xk − rkx
uk − rku

]
, k = 1, . . . , N (3.2)

Typically the cost matrix is on the form

Q =

[
Qx 0
0 Qu

]

and the state and input cost matrices Qx and Qu are often diagonal. It
is also usually required that Qx is positive semi-definite and Qu positive
definite. This is the common Linear Quadratic Regulator problem (LQR)
and the optimal (linear feedback) regulator is found by solving the discrete
time algebraic Riccati equation.

25

Chapter 3. Model Predictive Control

3.2 Constrained MPC for Linear Systems

A more general case of MPC, is when we have added variable constraints as
in (3.3).

min
x

N−1∑
k=0

(
eTkQek

)
+ eTNQNeN

s.t xk+1 = Axk +Buk.

lx ≤ xk ≤ ux
lu ≤ uk ≤ uu

(3.3)

This problem however, gives no explicit feedback rule. Instead a Quadratic
Program on the form (2.1) has to be solved at each sample.

3.3 Mixed Integer Predictive Control

When applying MPC to hybrid systems, the term Mixed Integer Predictive
Control (MIPC) is often used. MIPC is however just a special case of MPC.

The way of modeling hybrid systems is not obvious. Several possible rep-
resentations exist, modeling different flavors of hybrid systems but in many
cases overlapping. One of these representations – Mixed Logical Dynamical
Systems (MLD), will be considered in the following.

3.3.1 Mixed Logical Dynamical Systems
MLD systems can be used to model several types of hybrid systems1, and
MPC of such systems have the benefit of being easily converted to MIQPs.
This procedure is illustrated in Sections 3.3.3 and Appendix A. We define
an MLD system as

xk+1 = Axk +Buuk +Bauxwk +Baff{
Eeqx xk + Eequ uk + Eeqauxwk = Eeqaff
Eineqx xk + Einequ uk + Eineqaux wk ≤ E

ineq
aff

lx ≤ xk ≤ ux
lu ≤ uk ≤ uu
lw ≤ wk ≤ uw

(3.4)

where the vectors xk, uk and wk denote states, inputs and auxiliary variables,
respectively. All of these may have some real elements, and some binary.

1Not all hybrid systems can be written as MLD systems. For example the state update
equation needs to be linear.

26

3.3 Mixed Integer Predictive Control

3.3.2 Dynamic Modes
One kind of hybrid systems may switch between different dynamics, or so
called modes. An example of this is piece-wise affine systems, for which dif-
ferent modes are enabled in different regions of the state space. Another
example is switched affine systems, where the mode is selected by control
input(s).

Both piece-wise affine systems and switched affine systems can be mod-
eled as MLD systems, and we will illustrate the procedutre for the latter.
Consider a system with one real state x and one real input ur. In addition, a
binary input ub toggles which of two possible dynamics will be active. This
is formalized in (3.5).

x(k + 1) = Aub(k)x(k) +Bub(k)ur(k) (3.5)

If we now introduce some auxiliary variables (zx, zu) fulfilling (3.6), the sys-
tem (3.5) can be reformulated according to (3.7).{

zx(k) = ub(k)x(k)
zu(k) = ub(k)ur(k)

(3.6)

x(k + 1) = A0x(k) +B0ur(k)

+ (A1 −A0) zx(k) + (B1 −B0) zu(k)
(3.7)

Consider the QP relaxation described in Section 2.2.1. As ub then belongs
to the convex set [0, 1], we may speak of convexity of constraints on ub.
Unfortunately, (3.6) will then be a non-convex constraint. However, the so
called "big M" formulation (3.8)-(3.9) may be used instead of the constraint
zx(k) = ub(k)x(k).

mxub(k) ≤ zx(k) ≤Mxub(k) (3.8)
mx(1− ub(k)) ≤ x(k)− zx(k) ≤Mx(1− ub(k)) (3.9)

Let the constants mx and Mx be selected such that mx ≤ x(k) ≤ Mx is
always true. When ub(k) = 0, (3.8) will be equivalent to zx(k) = 0 and
(3.9) will be redundant. When instead ub(k) = 1, (3.9) will be equivalent to
zx(k) = x(k) and (3.8) will be redundant. Thus, zx(k) = ub(k)x(k) if ub(k) ∈
{0, 1}. Of course, similar (convex) inequalities can replace the constraint
zu(k) = ub(k)ur(k), and (3.6) will be fulfilled for binary ub(k). However, if
ub(k) /∈ {0, 1}, (3.6) may not hold.

The entire switched affine system can now be modeled on the MLD form

27

Chapter 3. Model Predictive Control

(3.4) according to (3.10).

x = x, u = [ur, ub]
T , w = [zx, zu]

T (3.10a)

A = A0, Bu =
[
B0 0

]
, Baux =

[
A1 −A0 B1 −B0

]
, Baff = 0

(3.10b)

[
Eineqx Einequ Eineqw

]
=

1 0 Mx −1 0
−1 0 −mx 1 0
0 0 mx −1 0
0 0 −Mx 1 0
0 1 Mu 0 −1
0 −1 −mu 0 1
0 0 mu 0 −1
0 0 −Mu 0 1

(3.10c)

Eineqaff =

Mx

−mx

0
0
Mu

−mu

0
0

(3.10d)

The equality constraints Eeq∗ are not present in this example, and the
lower/upper bounds in (3.4) may be selected as desired. In (3.10c)-(3.10d),
the green elements constitute the "big M" formulation for zx, while the red
elements correspond to zu. This coloring will be helpful when referring from
Section 5.4.1. If we would consider a larger system, additional such blocks of
four lines would be incorporated for the corresponding additional states or
inputs.

If we would instead let the modes correspond to different parts of the
state space, (3.5) would turn into a piece-wise affine system. However, the
MLD modeling would be almost the same. The binary input ub could be
replaced by a binary auxiliary variable δ, and inequality constraints could let
the state determine if δ = 0 or δ = 1. How to formulate such constraints2 is
described in [Mignone et al., 1999].

If we desire more than two modes, this could be achieved by introducing
more binary variables. However, we will not go through the details of this
procedure.

2Many other logical relationships are also converted into linear (in)equality constraints
in this article.

28

3.3 Mixed Integer Predictive Control

3.3.3 MIPC Formulation
While the MLD system (3.4) can describe hybrid system dynamics and vari-
able constraints, we also need a cost function to perform mixed integer pre-
dictive control. Let the final MIPC problem be defined as

min
x

N−1∑
k=0

(
eTkQek

)
+ eTNQNeN

s.t (3.4),

(3.11)

where e is the error for states, inputs and auxiliary variables, from some
reference trajectories rx, ru, rw (possibly zero):

ek =

xk − rkxuk − rku
wk − rkw

 , k = 1, . . . , N (3.12)

Similarly to the non-hybrid case, the cost matrix is typically on the form

Q =

Qx 0 0
0 Qu 0
0 0 Qw

where Qx, Qu and Qw are often diagonal.

The MIPC problem (3.11) can now be formulated as an MIQP of the
form (2.6) (see Section A).

29

4
Test Cases

4.1 Spring-Damper

Our first example is inspired by a classic linear spring-damper system, char-
acterized by

x(k + 1) = A0x(k) +B0u1(k). (4.1)

The system matrices A0 and B0 are given in Section C.1, together with other
details for this section. The states x1 and x3 are positions of two masses
m1 and m2, along a direction in which they are both free to move. Their
corresponding velocities are x2 and x4. The masses are interconnected by a
spring with spring constant k = 400N/m, and they are also damped with
corresponding damping coefficients d1 and d2. There is one input u1, which
is a force on the first mass.

Inspired by the linear system (4.1), we define our hybrid spring-damper
system as

x(k + 1) = Au2(k)x(k) +Bu2(k)u1(k) +Bbu3(k) (4.2a)

−10 ≤ x1, x3 ≤ 10 (4.2b)
−100 ≤ x2, x4 ≤ 100 (4.2c)
−1 ≤ u1 ≤ 1 (4.2d)

where the states x(k) and input force u1(k) ∈ R are the same as before. The
binary input u2 ∈ {0, 1} is a mode switching variable, switching between the
dynamics given by A0, B0 (same as before) and A1, B1 (see Section (C.1)).
The only difference between the modes is that the spring constant is decreased
to k = 10N/m for A1, B1. A binary input force u3(k) is also exerted on the
first mass, by the additional matrix Bb, which is the same for both modes.

Except for the presence of Bb and u3(k), (4.2) is on the switched affine
system form (3.5). It is straightforward to write the system on MLD form, by
following (3.10) and simply extending Bu with Bb in (3.10b). The "big M"

30

4.2 Turbo Car

values m and M are taken from the corresponding lower and upper bounds
in (4.2).

The cost matrices when applying MIPC to this system are stated in Sec-
tion C.1.

4.2 Turbo Car

The following example is provided with the Hysdel modeling language [Tor-
risi and Bemporad, 2004], which lets the user specify hybrid systems with an
intuitive high-level language. An MLD system representation is then gener-
ated automatically.

Consider a simple (one-dimensional) model of a turbo car. There is one
real input a which accelerates the car, but there is also one binary input
t which if enabled turns on the turbo and doubles the acceleration a. The
states consist of the position p, velocity v and a turbo count c. The turbo
count is initiated to 5, but decreases by one every time the turbo is used.
Due to a constraint 0 ≤ c ≤ 5, we may not use the turbo at more than 5
samples. The dynamics can be formalized by p(k + 1) = p(k) + v(k) + z(k)

v(k + 1) = v(k) + 0.5 · z(k)
c(k + 1) = c(k)− t(k),

(4.3a)

where z is an auxiliary variable defined by

z(k) =

{
a(k) if t(k) = 0

2a(k) if t(k) = 1.
(4.3b)

In addition we have the constraints−50−10
0

 ≤
pv
c

 ≤
5010
5

 . (4.3c)

An MLD system (4.4) is then generated by Hysdel (the matrices are
defined in Section C.2):

xk+1 = Axk +Buuk +Bauxwk +Baff{
Eeqx xk + Eequ uk + Eeqauxwk = Eeqaff
Eineqx xk + Einequ uk + Eineqaux wk ≤ E

ineq
aff

lx ≤ xk ≤ ux
lu ≤ uk ≤ uu
lw ≤ wk ≤ uw

(4.4)

31

Chapter 4. Test Cases

Although (4.3b) is not identical to (3.6), it results in inequalities (C.1b)
similar to our "big M" formulation (3.10c)-(3.10d)

The cost matrices when applying MIPC to this system are stated in Sec-
tion C.2.

32

5
Improving ADMM

The purpose of this Section is to point out ideas and implementations of
ours, which improve ADMM or makes it fit for our purposes better. The
main contributions of the entire thesis are given in Sections 5.4.1 and 5.5.

5.1 ADMM Implementation

ADMM is implemented in QPgen[Giselsson, 2015], a Matlab[MATLAB, 2014]
toolbox which generates C code for solving optimization problems on the form
(2.3) and similar forms. QPgen is based on the following articles: [Giselsson
and Boyd, 2014a; Giselsson, 2014; Giselsson and Boyd, 2014c; Giselsson and
Boyd, 2014b].

The QPgen implementation does however differ slightly from the pre-
sentation in Section (2.14). First of all Cxk in (2.15b) is exchanged for an
auxiliary variable

zk = αCxk + (1− α)yk−1, (5.1)

where α ∈ (0, 2) is called a relaxation parameter. According to [Boyd et al.,
2011], experiments have indicated that α ∈ [1.5, 1.8] can improve conver-
gence. We have selected the parameter to α = 1.75.

In addition to this, the implementation includes a diagonal precondi-
tioning matrix E (with elements Eii > 0), which may be used to scale an
ill-conditioned problem for improved convergence.

In QPgen the iterations (5.2) replace (2.14).

xk = argmin
x

{
g(x) +

ρ

2

∥∥∥∥ECx− Eyk−1 + 1
√
ρ
λk−1E

∥∥∥∥2 } (5.2a)

yk = argmin
y

{
h(y) +

ρ

2

∥∥∥∥Ezk − Ey + 1
√
ρ
λk−1E

∥∥∥∥2 } (5.2b)

λkE = λk−1E +
√
ρ(ECxk − Eyk). (5.2c)

33

Chapter 5. Improving ADMM

Note that the dual variable λ (which is the multiplier for the constraint
Cx = y) is exchanged for a new variable λE . The latter can be interpreted as
the multiplier for √ρECx =

√
ρEy, and the two are related by1 λ =

√
ρEλE .

The KKT system (2.17) for minimization w.r.t x is exchanged for (5.3):

[
H + ρCTETEC ATE

AE 0

] [
xk

µ

]
=

[
−f −√ρCTET

(
λk−1E −√ρEyk−1

)
bE

]
.

(5.3)
Recalling the auxiliary variable (5.1), the minimization (2.18) w.r.t. y is

replaced by (5.4).

min
y

∥∥√ρE(zk − y) + λk−1E

∥∥2
s.t bIl ≤ Ky ≤ bIu

(5.4)

The minimization can still be carried out by a simple clip operation if K = I,
but (2.19) is exchanged for (5.5).

yk = (
√
ρE)−1 clip√

ρEbIl,
√
ρEbIu

{√
ρEzk + λk−1E

}
, (5.5)

For debugging, we have also implemented the QPgen version of ADMM
in Matlab. The two implementations are meant to be identical, but have
diverged to some degree when either one or the other has been extended with
additional features of ours.

5.2 Infeasibility Check

Ability to detect infeasibility of a QP relaxation is crucial in Branch and
Bound, since it allows for pruning of the entire subtree of the corresponding
node. Since QPgen lacked this feature at the start of this thesis, we set out for
implementing an infeasibility check based on [Raghunathan and Di Cairano,
2014]. The article proposed the following four conditions for detection of

1The relation holds for the optimal variables λ∗ and λ∗E , but not for every iteration (the
point with preconditioning is to search for the minimum in another, hopefully faster
way).

34

5.3 Early Termination

infeasibility2:

max(
∥∥√ρE(yk − yk−1)

∥∥ ,∥∥(√ρE)−1(λkE − λk−1E)
∥∥) > ε0 (5.6a)

max(
∥∥Cxk − Cxk−1∥∥ ,∥∥√ρE(yk − yk−1)

∥∥)
max(

∥∥√ρE(yk − yk−1)
∥∥ ,∥∥(√ρE)−1(λkE − λ

k−1
E)

∥∥) ≤ εr (5.6b)

(
(
√
ρE)−1λkE

)T
(Cxk − yk)∥∥(√ρE)−1λkE

∥∥ ‖Cxk − yk‖ ≥ 1− εa (5.6c)

(
√
ρE)−1λkE ◦ (Cxk − yk) ≥ 0 or

vk − 2vk−1 + vk−2

‖vk‖
≤ εv (5.6d)

Here ◦ denotes element-wise product of vectors or matrices (the Hadamard
product). Only one of the conditions in (5.6d), but all of the others need to be
fulfilled for triggering infeasibility. The numerator in the second condition in
(5.6d) is a finite difference approximation of the second derivative of v, where
vk =

√
ρEzk+λk−1E is the argument to the clip operator, in the update (5.5)

of y. The tolerances are selected to the proposed values in [Raghunathan and
Di Cairano, 2014]: ε0 = 10−6, εr = 10−3, εa = 10−3, εv = 10−4.

While the conditions (5.6a)-(5.6d) have indeed proven able to detect in-
feasible problems3, they sometimes triggered infeasibility even for feasible
problems. In an attempt to decrease the risk of false infeasibility detection,
we extended conditions (5.6) with conditions (5.7).∥∥Cxk − Cxk−1∥∥

‖Cxk‖
< εCx (5.7a)∥∥yk − yk−1∥∥

‖yk‖
< εy (5.7b)

The tolerances are selected to εCx = εy = 10−8. After adding the extra
conditions, we do not detect infeasibility mistakenly as often as before. How-
ever, the infeasibility check is not entirely satisfactory as we do still observe
false alarms occasionally. Due to this, we have been forced to avoid certain
problems.

5.3 Early Termination

Imagine a scenario where ADMM is working on a relaxation of a node in
the Branch and Bound tree. If the relaxation has an optimal value4 which is

2We have slightly modified the conditions to account for preconditioning, and accounted
for the possibility of C 6= I.

3For almost feasible problems, more iterations are needed before infeasibility is detected.

35

Chapter 5. Improving ADMM

higher than the current global upper bound of the MIQP, it should be pruned
as described in Section 2.2.1. Therefore, we have no interest in finding a
solution to the relaxation, but solely to detecting that it should be pruned
and in such case terminate ADMM instead of waiting for convergence.

This section describes two methods for computing lower bounds on the
optimal objective function value. If one of them is larger than the global
upper bound Jub of the MIQP, ADMM will simply be stopped.

Of course this method relies on having found a good enough global up-
per bound. The exact same requirement will be needed for the Suboptimal
Branch and Bound in Section 6.1.1, where more details about how to achieve
this are given.

5.3.1 Evaluating the Dual
One way to compute a lower bound on the optimal primal function value J∗,
is to evaluate the dual function θ(λ) = infx,y L(x, y, λ), where L(x, y, λ) is the
non-regularized Lagrangian function, defined in (2.9). The dual function will
fulfill θ(λ) ≤ J∗ for any λ, with θ(λ∗) = J∗ for an optimizing dual variable
λ∗.

Since ADMM continuously updates λ while searching for λ∗, the iterates
λk will probably give tighter and tighter bounds θ(λk). Therefore evaluating
θ(λk) for the current iterate seems to be a reasonable way of computing a
lower bound on J∗.

Since L(x, y, λ) is separable in x and y, we define the partsLx(x, λ) = g(x) + λTCx =
1

2
xTHx+ (f + CTλ)Tx+ I(AEx = bE)

Ly(y, λ) = h(y)− λT y = −λT y + I(y ∈ Y)

fulfilling L(x, y, λ) = Lx(x, λ) + Ly(y, λ). Then θ(λ) = θx(λ) + θy(λ), where
θx(λ) = inf

x
Lx(x, λ)

θy(λ) = inf
y
Ly(y, λ).

Considering evaluation of θx(λk), we want to minimize a QP in x, with
equality constraints but without inequality constraints. This can be done
by finding a KKT point, which is a solution to the system of equations
(2.17) (with ρ = 0)5. However the left-hand-side matrix in (2.17) will not
be invertible when H is positive semi-definite but not positive definite on
Ker(AE). Since we are only interested in the value of θx(λk), any KKT point6
x suffice since they will all give the same value of Lx(x, λk). Although any

4We consider the optimal value of an infeasible relaxation to be ∞, and want to prune
subtrees of such nodes as well.

5Of course, we insert the latest λ iterate we have.
6 If H is only semi-definite, there may be several points x minimizing the QP (2.1).

36

5.3 Early Termination

solution fits our purpose, for some λk there may actually not be any points
x fulfilling the KKT conditions (2.17). In this situation Lx(x, λ) and thus
L(x, y, λ) is unbounded from below w.r.t x for λ = λk.

In case we do find a KKT point x, we also want to evaluate θy(λk), which
corresponds to solving the linear program (5.8):

min
y

− λT y

s.t bIl ≤ Ky ≤ bIu
(5.8)

In the common case K = I this can be reduced to minimization of each
coordinate separately, giving three cases: if λki < 0, yi = bIl,i =⇒ Ly(y, λ

k)i = −λki bIl,i
if λki > 0, yi = bIu,i =⇒ Ly(y, λ

k)i = −λki bIu,i
if λki = 0, yi ∈ [bIl,i, bIu,i] =⇒ Ly(y, λ

k)i = 0
(5.9)

If K is block diagonal, as will be proposed in Section 5.4.1, (5.8) will instead
separate into one (smaller) LP for each block. If the blocks are small, the
LPs can be solved efficiently using explicit optimization software such as
Multi-Parametric Toolbox (MPT) [Kvasnica et al., 2004]. This is however
not implemented.

As for Lx(x, λ), Ly(y, λ) will also be unbounded from below if the bounds
are not finite. If both Lx and Ly turn out to be bounded for the current λk
iterate, we can simply evaluate the dual as θ(λk) = L(x, y, λk) for the x
minimizing Lx(x, λk) and y minimizing Ly(y, λk).

5.3.2 Evaluating a Modified Dual
Whenever the dual function θ(λ) is unbounded for the current iterate λ = λk,
it is of no use for us. We can instead modify the Lagrangian by adding a
regularization term, very similar to (2.11):

L1(x, y, λ) = g(x) + h(y) + λT (Cx− y) + 1

2
‖Em(Cx− y)‖2 . (5.10)

By the same argument, this term will not change the optimal value J∗ for
any matrix Em since Cx = y at any feasible point. If we would evaluate the
corresponding dual function θ1(λ) = infx,y L1(x, y, λ), it would in fact give a
tighter bound than θ(λ) for any λ. Unfortunately, evaluation of θ1 is much
harder since it’s not separable in x and y.

Let us ignore h(y), and consider the even more modified dual

θ2(λ) = inf
x,y

L2(x, y, λ), (5.11)

where

L2(x, y, λ) = g(x) + λT (Cx− y) + 1

2
‖Em(Cx− y)‖2 . (5.12)

37

Chapter 5. Improving ADMM

Since h(y) ≥ 0 ∀y, θ2(λ) will also give valid bounds, i.e. θ2(λ) ≤ J∗ ∀λ.
While neither L1 nor L2 is separable in x and y, at least L2 contains no
inequality cosntraints. Introducing dual variables for the equality constraints
in the term ATE µ, and taking the derivative with respect to x, µ and y yields
the KKT systemH + CTETmEmC ATE −CTETmEm

AE 0 0
−ETmEmC 0 ETmEm

xµ
y

 =

−f − CTλbE
λ

 . (5.13)

If x and y are part of a solution to (5.13), we also have a lower bound on J∗
by evaluating L2(x, y, λ

k).
Since we have completely left out the inequality constraints in h(y), evalu-

ation of θ2 may give a poor bound on J∗. The bound is however tightened by
the regularization term, and Em can be chosen as any matrix of suitable size.
The larger7 we pick Em, the tighter the bound will be. In practice though,
there is a limit as to how large it can be before encountering numerical issues
when solving (5.13).

5.4 Preconditioning

The diagonal preconditioning matrix E defined in Section 5.1 may be used
to scale the optimization problem for better conditioning8. While QPgen
implements several methods for finding a good preconditioning matrix, none
of them have given satisfactory results for our QP relaxations of the Spring-
Damper example. As we have discovered that the "big M" formulation (see
Section 2.3) might be causing problems, this Section illustrates how to over-
come some of these by an alternative way of preconditioning.

Due to the regularization term in (5.2a) and (5.2b), the primal variables
y and Cx are prohibited from taking very large steps away from each other.
The extent of this effect can however be tuned by preconditioning with the
scale matrix E. If Eii is small, the elements yi and (Cx)i will take larger steps.
The choice of E will however also influence the dual variables λ, as can be
seen in (5.2c). If Eii is small, λi will instead take smaller steps. The effect of
the step size parameter ρ can be seen as scaling the entire preconditioning
matrix, and thus determines whether we will take larger steps in λ or x and
y.

If we have some knowledge about the scale of y = Cx and λ, we can
use this to set the preconditioning to something like Eii = |λi/yi|. Of course
we have to avoid zero or infinite elements on the diagonal of E, e.g. by the
modification Eii = max(|λi|, ε)/max(|yi|, ε).

7For example in the sense of large eigenvalues.
8Loosely speaking, a well-conditioned problem has the same curvature in all directions.

38

5.4 Preconditioning

5.4.1 Preconditioning on x

In situations where variables have very different scaling, a proper precon-
ditioning becomes even more important. Such a case can occur due to the
"big M" formulation, described in Section 3.3.2. The auxiliary variables in-
troduced will indeed behave properly as long as the mode switching variables
are binary constrained. However, a relaxed switching variable can cause the
corresponding optimal auxiliary variables to be very large, if the constants
m and M are of great magnitude. This scenario is an example of when we
have knowledge of the scaling of x. However, we can only scale elements of
Cx, not x, by the preconditioning matrix E.

As mentioned in Section 2.4, the approach (2.22) makes the update step of
y intractable. On the other hand, it gives us full flexibility in preconditioning
based on Cx = x, as we desire for the big M case. However, if exploiting the
structure of (A.2) and (3.10c), it may be possible to do something in between
(2.22) and (2.23).

Let PCI be a permutation matrix, permuting the rows of CI . We then
split the permuted matrix into blocks CiI such that

PCICI =

C0
I

C1
I
...
CmI

 , (5.14)

and define matrices

KP = PCIK =

I

K1

. . .
Km

 , C =

C0
I

C1

...
Cm

 , (5.15)

with blocks fulfilling CiI = KiCi, i = 1, . . . ,m =⇒ PCICI = KPC.
The block structure of KP , splits the optimization problem (5.4) into

one clip operation for the I block, and one non-trivial optimization problem
for each block Ki. However, if the blocks are small we can apply explicit
optimization methods for solving these subproblems fast. Due to the "block
diagonal"9 structure (A.2) of CI , the desirable approach of (2.22) would
in fact split (5.4) into one subproblem per time instant. Despite this, the
subproblems will still be large if the MLD system is large10, and should
preferably be split up even more.

9CI is not block diagonal strictly speaking, but by a permutation of rows it is.
10 In the sense of many states, inputs, auxiliary variables or constraints.

39

Chapter 5. Improving ADMM

Consider the "big M" inequalities defined by (3.10c). If the red and
green elements would (with a permutation of columns) separate into differ-
ent blocks, we could split the subproblems further. As only the 3rd column
(corresponding to ub) holds both red and green elements, this would almost
be possible. We will now go through how C1, C2 and K1,K2 can be chosen
to split up the "big M" inequalities for the first time step, but the procedure
will be the same for the remaining time steps.

Let ei denote the vector such that its i:th coordinate is 1, while all the
others are 0. Also let I(x(k)), I(ub(k)), etc. denote the indices of the corre-
sponding variables x(k), ub(k), etc. in (A.1). Now let C1 pick out the variables
corresponding to the green elements, and C2 the variables corresponding to
the red elements:

C1 =

eI(ub(1))
T

eI(x(1))
T

eI(zx(1))
T

 , C2 =

eI(ub(1))
T

eI(ur(1))
T

eI(zu(1))
T

 (5.16)

Then we can construct the blocksK1 andK2 to hold the "big M" formulation
for zx and zu, respectively:

K1 =

Mx 1 −1
−mx −1 1
mx 0 −1
−Mx 0 1
0 0 1

 , K2 =

Mu 1 −1
−mu −1 1
mu 0 −1
−Mu 0 1
0 0 1

 (5.17)

By the last row inK1 andK2, additional constraints on the auxiliary variable
are incorporated, as these may be present in the lower (identity) part of CI
in (A.2).

By defining C1 and C2 as in (5.16), we do indeed map x(1), zx(1), ur(1)
and zu(1) to individual elements in y, according to y = Cx. Thus, we may for
example choose a preconditioning which allows for large steps in the possibly
large auxiliary variables zx(1) and zu(1). However, C1 maps ub(1) to one
element in y while C2 maps it to another. Though (if desired) we can apply
preconditioning to both of these elements in y, there is still an ambiguity
effect as illustrated by Figure 2.3 in Section 2.4.

The additional blocks Ci and Ki for i > 2 are chosen accordingly, for
the remaining time steps. If we then have rows left in CI which have not
been handled by these blocks, we simply let C0

I hold these rows11, and the
corresponding inequalities will be subject to the trivial clip operation.

As the Ki blocks are small independently of the size of the MLD system,
we can apply explicit optimization for solving the corresponding subproblems
11As we are free to select the permutation matrix PCI , we put the remaining rows of CI

to the top of PCICI .

40

5.5 Line Search

fast. Our implementation makes use of Multi-Parametric Toolbox (MPT)
[Kvasnica et al., 2004], for this purpose.

If we would have more states x or inputs ur, each of them would introduce
an additional auxiliary variable and an additional "big M" block in (3.10c),
giving additional blocks Ci and Ki, and some increased ambiguity for ub.

5.5 Line Search

One of the big drawbacks with ADMM is the difficulty in finding a good
preconditioning which results in good convergence. Even if a good precon-
ditioning is found for some of the nodes in the Branch and Bound routine,
there is no guarantee that it will work for all of them. The results of this can
be devastating when it comes to the number of iterations (and thus time) it
takes to converge. One illustration of the convergence for a problem with bad
preconditioning is shown in Figure 5.1. In this section we develop an efficient
method to mitigate some of these problems.

If we study the convergence in Figure 5.1 closer, we notice an interesting
feature. For a long period of time when the step size is short, the iterations
seem to be going in a straight line. Furthermore, not only do they go in the
same direction most of the time, they even go almost straight towards the
optimum. For the first 8000 iterations, when the convergence is as slowest for
this problem, we do not see this behavior too clearly. In many other examples
however, it was very apparent that the solver was taking very short steps in
a seemingly straight line.

Since this phenomenon was observed for several problems, it spurred the
idea of taking large steps in this direction when that kind of stagnation
occurred. The obvious choice for taking this step is using a line search. This
however requires that it can be implemented efficiently.

Our first attempt was to fix λ and minimize the regularized Lagrangian
(2.11) over x and y in the detected direction. This method resulted in some
improvement, but it wasn’t satisfactory. We instead developed a method that
performs a line search in all the variables x, y, λ by minimizing the distance
to a saddle point. This can also be interpreted as minimizing the stopping
criterion (2.21).

Although we can no longer guarantee convergence when applying the line
search, our experiments indicate that this is not a problem. Even the line
search is not always effective, it never seems to inhibit convergence. It may
be possible to prove convergence for this method, but that is outside the
scope of this thesis.

41

Chapter 5. Improving ADMM

Distance to optimum

0 0.5 1 1.5 2 2.5 3

x 10
4

10
−15

10
−10

10
−5

10
0

x

l

y

J

(a) Distances to the optimum at each iteration for the variables x, λ, y
and the total cost J .

Angle (−1 to 1) between step and optimum

0 0.5 1 1.5 2 2.5 3

x 10
4

−1

−0.5

0

0.5

1

x

lambda

y

(b) Plot of the direction of each itera-
tion compared to the optimum. 1 means
a step straight towards optimum and −1
a step in the opposite direction.

Stepsize relative to distance to optimum (2 norm)

0 0.5 1 1.5 2 2.5 3

x 10
4

10
−3

10
−2

10
−1

10
0

x

lambda

y

(c) Plot of each stepsize as compared to
the total distance to the optimum. It
is noteworthy that the algorithm takes
steps between iteration 10000 and 15000
that are of a constant length relative to
the remaining distance.

Figure 5.1 Plots illustrating the convergence properties of ADMM for a
problem with slow convergence.

42

5.5 Line Search

5.5.1 Algorithm
For detecting that the algorithm is moving in a constant direction we intro-
duce the following criterion∥∥∥∥ vk − vk−N

‖vk − vk−N‖
− vk−N − vk−2N

‖vk−N − vk−2N‖

∥∥∥∥2 ≤ ε ·Ne (5.18)

where Ne is the number of elements in the vector. We apply this criteria for
all variables v = x, v = y and v = λ. This can be interpreted as requiring
the angle between the last N steps and the N steps before that to be small,
for both x, y and λ. In our implementation we used ε = 10−7 for x and y,
and ε = 10−5 for λ.

For the horizon N we chose values between 10 and a few hundred. This
value can be tweaked to change how the line search performs. For efficiency
reasons we only do this check every N iterations. This means that we only
have to save the state vk for two previous iterations. It is thus important
to note that N will not only change how far back in the history we look,
but also how often we might trigger the line search. It might be interesting
to tweak these properties independently, but it is not something that we
studied in this thesis.

Let the detected direction (xk−xk−N)/
∥∥xk − xk−N∥∥ be denoted as x̃, the

current iteration as x0, and for the purpose of the line search let x = x0 + tx̃
and define the variables y0, λ0, ỹ, λ̃ analogously. Given the Lagrangian (2.9)

L(x, y, λ) = g(x) + h(y) + λT (Cx− y),

where
g(x) =

1

2
xTHx+ fTx+ c+ I(AEx = bE)

h(x) = I(y ∈ Y)
,

the optimality conditions are, as introduced in Section 2.3.4:

0 = ∇λL(x, y, λ) = Cx− y
0 ∈ ∂xL(x, y, λ) = ∂g(x) + CTλ

0 ∈ ∂yL(x, y, λ) = ∂h(y)− λ.
(5.19)

We are here using addition of sets, defined as A+B = {a+ b |a ∈ A, b ∈ B }.
It can also be noted here that we require the sub-differential to be non-
empty which means that both indicator functions must be finite. This follow
automatically for the equality constraint from feasibility of xk and xk−N ,
and will be handled explicitly for the inequality below. We now choose to

43

Chapter 5. Improving ADMM

minimize the distance to an optimal point through the norm

J (x, y, λ) = ‖Cx− y‖2︸ ︷︷ ︸
J1(x,y)

+
∥∥∂g(x) + CTλ

∥∥2
min︸ ︷︷ ︸

J2(x,λ)

+ ‖∂h(y)− λ‖2min︸ ︷︷ ︸
J3(y,λ)

,
(5.20)

where
‖S‖min

.
= min

s∈S
‖s‖ .

For the term J2 we look at ∂g(x) separately in the direction x = xK + xI,
where xK ∈ KerAE and xI ∈ ImATE⊥KerAE . For any point AEx = bE , the
sub derivatives can be calculated to

∂IE
∂xK

(x) = 0, ∀xK ∈ KerAE

∂IE
∂xI

(x) = [−∞,∞], ∀xI ⊥ KerAE .

(5.21)

The sub gradient at x is therefore any vector perpendicular to the null space
of AE

∂IE(x) = {v : v⊥KerAE} = ImATE .

It is thus possible to simplify the second term J2 to

∥∥∂g(x0) + CTλ
∥∥2

min =

∥∥∥∥∥∥Hx+ f − CTλ︸ ︷︷ ︸
u

+∂IE(x)

∥∥∥∥∥∥
2

min

=

=
∥∥PKu+ PIu+ ImATE

∥∥2
min =

= ‖PKu‖2min +
∥∥PIu+ ImATE

∥∥2
min =

=
∥∥PK(Hx+ f + CTλ)

∥∥2 + 0,

(5.22)

where PK and PI are orthogonal projections onto the orthogonal subspaces
KerAE and ImATE respectively. That the norm-min can be split follows from
the fact that all the vectors in the first part are orthogonal to all the vectors
in the second.

The evaluation of J3 = ‖∂h(y) + λ‖2min requires more care. We have

h(y) = I(bIl ≤ Ky ≤ bIu) =
∑
i=1..n

I(bIl,i ≤ kiy ≤ bIu,i),

where ki is the i:th row in K. The sub-differential can then be written as

∂h(y) =
∑
i=1..n

∂I(bIl,i ≤ kiy ≤ bIu,i) =
∑
i=1..n

ci(y)k
T
i

44

5.6 Line search with preconditioning on x

where

ci(y) =

0 if bIl,i < kiy < bIu,i

[−∞, 0] if bIl,i = kiy < bIu,i

[0,∞] if bIl,i < kiy = bIu,i

[−∞,∞] if bIl,i = kiy = bIu,i

.

It is in general not trivial to calculate the norm
∥∥∑ ci(y)k

T
i − λ

∥∥
min. It re-

quires a projection of λ onto
∑
ci(y)k

T
i , which means solving an inequality

constrained QP. This makes the line search expensive in the general case.
However, with K = I, the sum can be simplified to

∂h(y) =
∑
i=1..n

∂I(bIl,i ≤ eTi y ≤ bIu,i) =

=
∑
i=1..n

ci(y)ei =
[
c1(y) . . . cn(y)

]T .
= c(y).

(5.23)

The cost J3 can in this case be calculated coordinate wise as∥∥∥∑ c(y)− λ
∥∥∥2

min
=

∑
i=1..n

‖ci(y)− λi‖2min =
∑
i=1..n

(
clipci(y)(λi)− λi

)2
=

=
∑
i=1..n

(
clipc̃i(yi)(λi)

)2
where

c̃i(y) =

[−∞,∞] if bIl,i < y < bIu,i

[0,∞] if bIl,i = y < bIu,i

[−∞, 0] if bIl,i < y = bIu,i

0 if bIl,i = y = bIu,i

.

The total cost function for the line search can now be written

J (x, y, λ) = ‖Cx− y‖2 +
∥∥PK(Hx+ f + CTλ)

∥∥2 + ∑
i=1..n

(
clipc̃i(y)(λi)

)2
.

(5.24)
We now have a way to evaluate the cost J which is a requirement to do the
minimization. We want to minimize this function, from the current position
(x0, y0, λ0), in the detected direction (x̃, ỹ, λ̃), while keeping the solution
feasible (y ∈ Y). We refer the reader to Appendix B for the details on how
this can be implemented efficiently.

5.6 Line search with preconditioning on x

We have now introduced two methods, the line search and the preconditioning
on x, both with the hope of improving bad convergence properties in ADMM

45

Chapter 5. Improving ADMM

on some of our problems. As is shown in the results in Section 8.2 and 8.3
this is also the case for many problems. It is thus tempting to consider how
these methods can work together. It is quickly apparent that it is not trivial
to make this happen.

The main reason that we are able to add preconditioning on x instead of
y is that we are no longer using K = I for the inequality bIl ≤ Ky ≤ bIu.
On the other hand, the only reason that we are able to both compute and
minimize the cost J3(y, λ) so efficiently is that K = I. It may be possible
to come up with a relatively cheap way to evaluate the cost J3, using for
example the Multi-Parametric Toolbox (which we already use at each itera-
tion when doing preconditioning on x). It seems however, that there would
be no explicit way to do the line search, thus forcing us to do many of these
relatively expensive evaluations. We therefore didn’t implement a complete
combination of the two ideas.

On the other hand, neither of the costs J1 and J2 are affected by the use
of K 6= I. We have therefore implemented a combination of the two methods
where the line search is only minimizing the cost of the first two functions
J1, J2. There is still no guarantee that this method will converge. However,
we have seen in the testing that the two methods work well together in many
cases.

46

6
Improving Branch and
Bound

6.1 Tree Traversal Strategies

There are different ways of traversing the Branch and Bound tree, and they
may differ a lot in the number of nodes having to be solved. Reminding the
priority list implementation in Section (2.2.1), different traversal strategies
can be implemented by different choices of priority for the tree nodes.

Let the priority pi = p(Ni) be the priority assigned to node Ni. If pi < pj ,
Ni is prioritized over Nj . A basic example of priority selection is pi = 1/(di+
1), where di is the depth of Ni (the number of fixed binary variables). This
corresponds to the traversal strategy depth-first, ultimately prioritizing leaf
nodes. Another basic example is pi = di, which corresponds to breadth-first.
Our experience is that both depth-first and breadth-first search give poor
results (too many nodes need to be solved).

Another alternative is best-first search, which assigns priorities pi = J∗Nj
,

where the lower bound J∗Nj
was computed when solving the relaxed problem

at the parent node Nj of Ni.
Let the function sfix(x∗Nj

, Ni) output a slight modification to the solution
x∗Nj

of the relaxed problem at Nj , with an additional binary variable fixed,
according to branching fromNj to its child nodeNi. Then we assign priorities
according to (6.1) below:

pi = J(sfix(x
∗
Nj
, Ni)). (6.1)

The traversal strategy (6.1) is simply best-first search, but with the objective
function being evaluated when fixing the binary variables1 according to Ni.
If the binary variable to be branched on has a cost assigned to it, the child
with lowest cost will be prioritized over its sibling. In Section 6.1.1, (6.1) will
be further modified.

1Note that sfix(x∗Nj
, Ni) may be infeasible.

47

Chapter 6. Improving Branch and Bound

6.1.1 Suboptimal Branch and Bound
As proposed in [Axehill et al., 2014], the number of nodes to be solved may
be reduced if we do not require absolute optimality. In Section (2.2.1), we
allowed pruning of a subtree if J∗Ni

≥ Jub. If we also allow pruning in the
case

(1 + εs) · J∗Ni
≥ Jub, (6.2)

where εs ≥ 0 is a suboptimality tolerance, we may of course prune more
often, and thus reduce the number of QP relaxations to be solved. Due to
(2.7) we also ensure that (1+ εs) ·J∗Ni

≥ J∗, meaning that εs (which we may
pick arbitrarily) really is a bound on the suboptimality of our final "solution"
x̂∗ of (2.6).

While the suboptimal approach is appealing, it relies on having found a
good enough point xub with objective function value Jub ≤ (1 + εs) · J∗Ni

to
be able to prune the subtree of Ni. However, if we stick with best-first search
as defined by (6.1), we have observed that xub and Jub will typically not be
updated for a long time – possibly not until we have found an optimal leaf.

To understand this, first consider Theorem 1 concerning ideal2 best-first
search, as defined by (6.3).

pi = J∗Ni
(6.3)

Theorem 1
If Branch and Bound is applied to a feasible MIQP (2.6) with ideal best-first
search (6.3), xub and Jub will not be updated until the solution to (2.6) is
found. This is the case both with or without suboptimal Branch and Bound,
i.e. whether pruning requires the condition (2.7) or (6.2). 2

Proof Let A denote the set of all nodes N in the priority list, such that N
is an optimizing leaf, or an ancestor to an optimizing leaf. Also let F denote
the set of all nodes in the priority list, whose relaxations have binary feasible
solutions. Since (2.6) is feasible, F 6= ∅.

Assume that xub and Jub have not yet been updated, i.e. Jub = +∞ and
xub is undefined. Then (suboptimal) pruning has never taken place, so A 6= ∅.
According to (6.3), pNA

= J∗NA
≤ J∗ (for some arbitrary node NA ∈ A),

with equality only if also NA ∈ F , which implies pNB
< J∗ for any node

NB ∈ B = A ∩ F ∗.
Now consider any node NF ∈ F , with solution x∗NF

and objective function
value J∗NF

. Because x∗NF
is feasible in (2.6), of course pF = J∗NF

≥ J∗.
Then nodes NB ∈ B will be prioritized over any NF ∈ F , since apparently
pB < J∗ ≤ pF .

2 In practice, (6.3) cannot be used since it requires solving the relaxation at Ni prior to
assigning a priority to it, while we actually decide which nodes to solve based on their
priority.

48

6.2 Branch Ordering

As mentioned in Section (2.2.1), xub and Jub may only be updated with
binary feasible solutions, i.e. solutions to relaxations of NF ∈ F . Therefore
nodes NF ∈ F will not be prioritized, as long as B 6= ∅. If indeed B = ∅
and a node NF ∈ F has the highest priority, then NF ∈ A ∩ F (since
A 6= ∅, B = ∅ =⇒ A∩F 6= ∅). Then xub will be updated to x∗NF

, which will
be a solution to (2.6). 2

When assigning priorities according to the non-ideal best-first search
(6.1), we cannot prove conclusions like Theorem 1. However, it is not surpris-
ing if the non-ideal priority assignment would in many cases give priorities
similar to (6.3), and would hence not promote investigating leaves or other
binary feasible nodes.

As mentioned previously, the suboptimal approach relies on having up-
dated (xub, Jub) to something good enough for suboptimal pruning. Thus a
priority assignment not promoting binary feasible solutions is very problem-
atic. Inspired by depth-first (which promotes leaves to an extreme level), we
could modify (6.1) into something like (6.4).

pi =
J(sfix(x

∗
Nj
, Ni))

di + 1
(6.4)

When trying this, we did however observe the depth-first drawback of travers-
ing a large number of nodes. Reasoning that we do only want to explore the
leaves occasionally, we settled on the priority assignment (6.5), also incorpo-
rates randomness. This helps avoid the algorithm getting stuck at some part
deep down in the tree.

pi =
J(sfix(x

∗
Nj
, Ni))

eZ
, Z ∼ N

(
µZ , σ

2
Z

)
µZ = εs · log(di + 1), σZ = 0.5 · εs.

(6.5)

Still, di denotes the number of fixed binary variables at Ni, and εs is the
suboptimality tolerance. Note that if Z is exchanged for its mean εs · log(di+
1), (6.4) and (6.5) only differs by a factor eεs . Also, (6.5) will coincide with
(6.1) if no suboptimality is allowed, i.e. if εs = 0.

Apart from the priority assignment (6.5), warmstarting of the Branch and
Bound tree could also help finding a (hopefully good) binary feasible node at
an early stage (see Section 7.2.2). Note that both the priority assignment and
warmstarting are also crucial for the Early Termination feature (see Section
5.3).

6.2 Branch Ordering

When dividing S into subsets according to Section 2.2.1, there is a freedom
to choose in which order to branch on the variables. For example - in Figure

49

Chapter 6. Improving Branch and Bound

N∗∗

N0∗

N00

135

N01

119

N1∗

N10

19

N11

23

Figure 6.1 Illustrative example, where x0b is branched on before x1b . Op-
timal costs at the leaves are also shown.

N∗∗

N∗0

N00

135

N10

19

N∗1

N01

119

N11

23

Figure 6.2 Illustrative example, where x1b is branched on before x0b . Op-
timal costs at the leaves are also shown.

6.1 we branch first on x0b and last on x1b , while in Figure 6.2 we branch first
on x1b and last on x0b .

Figures 6.1 and 6.2 illustrate different ways to branch for the same MIQP.
The leaves are the same, with identical costs, but ordered differently. Appar-
ently there is a tendency for high cost when the first binary variable x0b = 0,
and low cost when x0b = 1. The second binary variable x1b does not seem to
affect the cost as much.

In Figure 6.1 we would expect the relaxation at node N0∗ to have high
optimal cost as that is the case for both its children. If we have traversed
some of the low cost leaves N10 and N11 and the cost at N0∗ is high enough,
we will prune the subtree of N0∗.

Now consider Figure 6.2. As both N11 and thus N∗1 has low optimal cost,
it is unlikely that we can prune the subtree of N∗1 even if we have traversed
the optimal leaf N10. Thus, we will have to branch N∗1 into its children, and
more nodes will have to be traversed.

We have concluded that the order in which we branch on binary variables
can affect the number of nodes to be traversed. Also – if some binary variable
xib has greater influence

3 on the cost than some other variable xjb, x
i
b should

50

6.2 Branch Ordering

N∗∗∗

N∗0∗

N∗00

N000 N100

N∗01

N001 N101

N∗1∗

N01∗

N010 N011

N11∗

N110 N111

Figure 6.3 Illustration of dynamic branch ordering.

be branched on before xjb.
For causal systems (which are the only ones we consider), a binary variable

at time k will not influence the cost at times < k, but may affect the cost at
times ≥ k. Thus, binary variables at early times may affect more of the terms
in (3.11), and we argue that binary variables at early times should generally
be branched on before variables at the end of the horizon. Therefore, we have
always used this branch ordering in our experiments.

6.2.1 Dynamic Branch Ordering
Until now, we have only considered what we will call static branch ordering.
With a static branch ordering, the variables are ordered in the same way in
every part of the tree (if xib is branched on before xjb in some part of the tree
– the same will hold for the entire tree).

However, Branch and Bound does not require a static branch ordering,
and how to branch from a node Ni may even be decided at runtime. Figure
6.3 shows an example of dynamic branch ordering.

Though it would be interesting to investigate how to pick a good branch
ordering at runtime, we have not considered this due to limitations described
in Section 7.1.1.

3Loosely speaking. xib could have very different influence on the cost at different parts
of the tree, and in such cases we have nothing to say about how to pick a good branch
ordering.

51

7
Exploiting Repeated
Optimization

7.1 Parametric Optimization

For an inequality constrained QP (2.1), a great advantage of first-order meth-
ods like ADMM is that the iterations are inexpensive to carry out. In addi-
tion, a great deal of the work may be done once for all iterations1, making
every iteration even cheaper.

Consider the KKT system of equations (5.3), and denote the left-hand-
side matrix M . M depends on H, AE , C, E and ρ, but assume that all of
these are fixed. Then one possibility is to compute M−1 beforehand, so that
(5.3) can be solved by matrix multiplication. M−1 may however be dense
even if M is sparse, causing a dense matrix multiplication which does not
exploit the sparsity of M . In this case a sparsity preserving decomposition
of M , such as the permuted LDL decomposition PTMP = LDLT , may be
a better choice although still systems of equations (but now triangular) have
to be solved.

The same inversion or decomposition ofM may be used not only for every
iteration, but also if solving several similar QPs. Although H, AE , C, E and
ρ need to be fixed, the vectors f , bE , bIl and bIu may very well be altered
from one problem instantiation to another. The resulting solver will solve a
parametric QP, where the latter vectors are possible parameters.

7.1.1 Parametric Formulation of QP Relaxations
When applying MIPC to an MLD system we derive an MIQP on the form
(2.6) according to Appendix A, where only bE will vary from one time to
another. However, we also want to express the QP relaxations parametrically.

1 Second-order methods like the interior point method, need to solve a linear system of
equations Ax = b at each iteration, where A depends on x. This dependence makes it
impossible to invert A or applying some decomposition to it once for all iterations.

52

7.2 Warmstarting

At each node some binary variables are fixed while others are binary con-
strained (according to the corresponding set SXX). The binary constrained
variables are then relaxed according to (2.8). Both fixation and relaxation
may be modeled by varying the upper and lower bounds bIl and bIu:

xib = 0 =⇒ 0 ≤ xib ≤ 0

xib = 1 =⇒ 1 ≤ xib ≤ 1

xib ∈ {0, 1} =⇒ 0 ≤ xib ≤ 1

(7.1)

As the upper and lower bounds can be parameters, (7.1) allows us to apply
parametric ADMM to all QP relaxations. Nevertheless, we have experienced
convergence issues when sticking with (7.1). Typically the nodes with fixed
binary variables required many more iterations than the root node. Therefore
we have added equality constraints for the fixed binary variables, in addition
to (7.1). Although we observe much more stability in the number of iterations
required from one node to another, it comes with a drawback – AE is now
node dependent.

Since bE can be parametric, the first two cases in (7.1) can be handled by
the very same row, appended to AE . The third case however, requires that
the row is not appended.

If the static branch ordering (see Section 6.2) is used, AE will be constant
w.r.t. nodes at the same level in the tree. Thus,M may be inverted/factorized
only once for each level. Of course the offline computational effort will in-
crease, but only linearly in the number of binary variables.

We have also implemented a possibility for sticking with the inequality
constraints in (7.1), and thus have the same AE for all nodes.

7.2 Warmstarting

7.2.1 Warmstarting Node Relaxations
If we have a good guess x̂ of the solution x∗ of a QP relaxation, the number
of iterations can be reduced by initiating the solver at x0 = x̂ rather than
at some arbitrary point like x0 = 0. There are of course different ways of
choosing a point x̂.

When speaking of points or solutions "x" in the following, we could mean
the optimal primal variables, dual variables or both, depending on how the
actual algorithm is initiated. For example, ADMM is initiated by primal
variables y0 and dual variables λ0, and these may here be referenced together
as x0.

For ADMM, one way of warmstarting is to choose x̂ as the solution x∗par of
the QP relaxation at the parent node. This may be done without considering
feasibility, since ADMM can be started at an infeasible point. As we do only

53

Chapter 7. Exploiting Repeated Optimization

add one more constraint on one binary variable, we expect x∗ to be close to
x∗par (at least at some times), and we have thus picked our initial guesses as
x̂ = x∗par.

Another way of warmstarting a QP relaxation is possible if that particular
node has already been solved at another, but recent time. That solution x∗old
may then (shifted) be chosen as an initial guess x̂ of the current solution,
similarly to Section 7.2.2. Although this approach could be promising, we
have not explored it due to lack of time.

7.2.2 Warmstarting the Branch and Bound Tree
We can use information from previous times not only for warmstarting indi-
vidual nodes, but also for choosing which nodes to prioritize.

We have the structure (A.1), where the optimizer x is obtained by stacking
time by time. Similarly the binary variables xb (picked out from x) can be
obtained by stacking the binary variables time after time:

xb = [x0b , u
0
b , w

0
b , x

1
b , u

1
b , w

1
b , . . . , x

N
b , u

N
b , w

N
b]T (7.2)

If (7.2) represents the optimal binary variables (the optimal leaf) at the
previous sample, we argue that for the current sample some of the leaves
represented by

xshiftedb = [x1b , u
1
b , w

1
b , . . . , x

N
b , u

N
b , w

N
b , ∗, ∗, ∗]T , (7.3)

will probably have almost-optimal objective function values2. The last vari-
ables denoted by ∗ are free/unknown.

We force the Branch and Bound algorithm to explore the leaves repre-
sented by (7.3), by assigning very high priorities to the leaves themselves as
well as to any ancestor to any of the leaves.

Note that this feature serves the same goal as the priority assignment
(6.5) in Section 6.1.1 – to find a (hopefully good) binary feasible node at an
early stage. Thus, warmstarting of the Branch and Bound tree may improve
the features of Suboptimal Branch and Bound (Section 6.1.1) as well as Early
Termination (Section 5.3).

7.3 Precomputation of Cutting Planes

The purpose of the method that we present here is to find parts of the
Branch and Bound tree that will always be infeasible and exclude them from
the search. The goal is also to use this information to improve the relaxations

2Assuming that the horizon is long enough for the last costs to be negligible or if the
estimated cost QN accurately represents the real cost, this result should follow from
Bellman’s Principle of Optimality [Bellman, 1957].

54

7.3 Precomputation of Cutting Planes

used in the rest of the tree. It is an unfortunate limitation in ADMM that
there is no way to do reliable and fast infeasibility detection. It is therefore
even more interesting in our case to detect and avoid infeasible nodes, before
the actual real time solver is run.
The simplest way to find infeasible nodes is to remove the equality constraint
for the initial point. It is then possible to traverse the nodes in the tree to
find any nodes that will necessarily be infeasible, no matter what the initial
point is. It is not hard to make up cases where it is actually expected to have
a large amount of infeasible nodes. For example, in the turbo car example, as
described in Section 4.2, the system is limited to setting the binary variable
to 1 only a few times. Several of the nodes (and sub trees) will therefore be
infeasible for all initial points.

The most basic way to handle this knowledge is to avoid the nodes in
the Branch and Bound routine. This can simply be done by automatically
setting them to infeasible as soon as they are reached, without doing any
computation.

7.3.1 Extra constraints in precomputation
Every inequality constraint that is added to the problem will increase the
computational cost when using ADMM. It could therefore sometimes be ben-
eficial to not include all the known constraints into the problem formulation.
For example, if it is known that the system will remain within some invariant
set, it may not be efficient to add this knowledge as a constraint since the
system will automatically satisfy it anyway. However, if this constraint (or
a conservative approximation of it) is added in the precomputation, it can
be possible to identify nodes that the system will never be able to reach in
practice, as infeasible.

7.3.2 Adding constraints to the problem
Although it can be useful to exclude specific nodes in the Branch and Bound
routine, a lot more can be done when knowing that some nodes are infeasi-
ble. The idea is to not only exclude these nodes, but also to restrict other
relaxations, whenever possible. Study for example the problem with a Branch
and Bound tree as shown in Figure 7.1. In this tree, we assume that nodes
S0,1,1 and S1,1,1 are infeasible. In the best case, if we are simply skipping
these nodes, we are reducing the number of nodes that need to be solved
by 4 (solving S01,S011,S11 or S111 is redundant). However, we would still
be solving exactly the same problems in the rest of the tree. If we instead
restrict the space of feasible solutions in all nodes by excluding the known
infeasible solutions, we can expect better bounds.

55

Chapter 7. Exploiting Repeated Optimization

N∗∗∗

N0∗∗

N00∗ N01∗

N000 N001 N010 N011

N1∗∗

N10∗ N11∗

N100 N101 N110 N111

Figure 7.1 Illustration of tree with two infeasible nodes, as described
in Section 7.3.2. Observe that these nodes could represent a subtree if the
branching order was different.

The simplest restrictions given the infeasible nodes would be

not [1, 1, 1] −→ x1b + x2b + x3b ≤ 2

not [0, 1, 1] −→ (1− x1b) + x2b + x3b ≤ 2.
(7.4)

This restriction to the relaxed binary variables is shown in Figure 7.2. It is
apparent that this is not the maximal restriction possible. For example, the
solution [0.5, 0.5, 1] is still possible in the root node, even though it is not in
the convex hull of the feasible points.

By reformulating the exclusion of [1, 1, 1] and [0, 1, 1] to the exclusion of
[∗, 1, 1], we can get the maximal restriction, which is depicted in Figure 7.3,

not [∗, 1, 1] −→ x2b + x3b ≤ 1. (7.5)

We have not looked extensively into how this conversion can be done in
general. We believe this to be a non-trivial problem and have only considered
a few special cases.

56

7.3 Precomputation of Cutting Planes

x
1
b

x
2
b

x3b

(1, 0, 0)

(0, 1, 0)

(0, 0, 0)

(0, 0, 1)
(1, 1, 1)

(0, 1, 1)

Figure 7.2 Illustration of restrictions that makes certain nodes unfea-
sible, but that does not restrict the relaxed space maximally. The planes
correspond to the restrictions x1b + x2b + x3b ≤ 2 and (1− x1b) + x2b + x3b ≤ 2.

57

Chapter 7. Exploiting Repeated Optimization

x
1
b

x
2
b

x3b

(1, 0, 0)

(0, 1, 0)

(0, 0, 0)

(0, 0, 1)
(1, 1, 1)

(0, 1, 1)

Figure 7.3 An illustration of the optimal restriction of relaxed binary
variables. Only the convex hull of the binary feasible points is feasible in
the relaxed problem. The plane corresponds to the restriction x2b + x3b ≤ 1
which is equivalent to the restrictions in Figure 7.2 for binary xb.

58

8
Results

8.1 Default Options

In this section we define some default options, which we will use for our
results unless stated otherwise.

8.1.1 Branch and Bound Options
For the Branch and Bound solver, we do not allow for any suboptimality by
default. Furthermore we do not compute any cutting planes in advance, and
the tree is not warmstarted. If however ADMM is used as the QP solver,
warmstarting from parent nodes will be enabled1. Even if ADMM is used,
the early termination feature is not activated by default.

8.1.2 ADMM Options
By default we do not use any line search with ADMM, and we do not use
the "preconditioning on x" feature. Neither do we use any preconditioning
at all (E = I). We do however let ρ be computed automatically according
to [Giselsson and Boyd, 2014a], but with an additional scaling of 120 for the
Turbo Car example2. At every node the known binary variables are fixed
with both inequality and equality constraints.

8.2 Line Search

In this section we will evaluate the line search algorithm on a few differ-
ent problems. We apply the method on three different nodes in the Spring
Damper example as well as the Turbo Car example. We try the line search
with two different settings. When we set the interval between line search

1To be clear – if individual nodes are run, they will not be warmstarted from the corre-
sponding parent.

2The additional scaling was simply chosen due to empirically improved convergence.

59

Chapter 8. Results

checks to N = 100, we call this "LS100", and when we set the interval to
N = 10, we call it "LS10". A list of the results is shown in Table 8.2. These
results were run with the default settings outlined above with the maximum
number of iterations limited to 100 000. The step size ρ was set according to
Table 8.1.

It is clear from the results that ADMM has a hard time solving the Spring
Damper problem. The improvement in the root node is quite impressive.
Not only is the problem solved very fast, the time cost is merely 1% when
considering line search each 100th iteration and 10% at each 10th. The gain
in terms of iterations on the other hand, is a reduction by more than 95%.
The other nodes seemed even harder to solve, and it is hard to draw any
direct conclusions more than that the line search does not increase the time
per iteration significantly.

The Turbo Car was easier to solve and the results clearer. In every test it
was far better to use any of the variations of the line search compared to the
standard ADMM. There is no clear result on which of the variations of the
line search is better. This is consistent with the other testing we have done.
For some problems it seems better to line search often with relatively small
steps in order to converge as fast as possible. On others it is more valuable
to wait longer, which often results in larger steps in the line search.

The properties of the convergence for the root node of the Turbo Car
example is illustrated in Figure 8.1. On the first row we show how the solver
works without any line search. In the left column we show how far away the
iterates x, y and λ are from the optimum at each iteration, as well as how
far the cost J is from the optimal value. In the right column we show the
direction of each iteration for x, y and λ compared to the location of the
optimum. This angle is calculated as

2

π
arcsin

(
(vk − vk−1) · (v∗ − vk−1)
‖vk − vk−1‖ ‖v∗ − vk−1‖

)
,

and will be 1 if the iteration is going straight towards the optimum, and −1 if
it is going in the opposite direction. It is quite striking to see how quickly the
solver starts to iterate very straight towards the optimum, without reaching
it for a very long time.

When the line search is applied with N = 100 the solver starts very
similarly. The solutions look identical up to iteration 1000. But just as all
the angles seem to stagnate at 1, the line search kicks in and removes a large
part of the remaining distance to the optimum. Around iteration 1300 the
same thing happens again, this time bringing the solution almost all the way
to a point where the stopping criterion is fulfilled, roughly 20 times faster
than without line search.

This behavior is very typical for what we have observed in several ex-
amples. We have also observed that the convergence rate often is greatly

60

8.3 Preconditioning on x

Spring-Damper Turbo Car

Root 1.8 · 10−4 0.39

N110 7.5 · 10−5 0.39

N1010 5.0 · 10−5 0.39

Table 8.1 Step size ρ for the different nodes and problems, when evalu-
ating line search.

improved, directly after a line search. Our theory is that while ADMM might
get stuck minimizing the function in an ill-conditioned direction, the line
search quickly minimizes the function completely in this direction, allowing
ADMM to start working in a new direction.

If we look at the last row where we allow the line search each 10th itera-
tion, we see that the performance is not as good. It is hard to say exactly why
this is the case. One idea is that ADMM is not given enough time to find a
good direction, another is that the two methods are working slightly against
each other from time to time. It should however be noted that a solution is
found roughly twice as fast as compared to not using line search.

8.3 Preconditioning on x

In this section it is investigated to what extent the performance of ADMM
may be increased, when preconditioning according to Section 5.4.1. The
method is evaluated for both the Spring-Damper and the Turbo Car ex-
ample, with horizon length N = 10 and step sizes according to Table 8.3.

All "big M" blocks3 have been treated separately according to Section
5.4.1, and the diagonal preconditioning matrix E is set to:

Eii =

{
1 if i ∈ Iaux
1/Li if i /∈ Iaux

, (8.1)

where Iaux is the set of all x indices such that xi is a "big M" auxiliary
variable, but whose corresponding binary variable is not fixed. Thus Iaux,
and therefore the preconditioning (8.1) differs between nodes. The values of
Li should correspond to the magnitude of the "big M" auxiliary variables,

3Although the Turbo Car does not have exactly the same "big M" formulation as (3.10c)-
(3.10d), the inequalities (C.1b) are quite similar.

61

Chapter 8. Results

LS Node Rel. error Itrs. Time / itr. (ms)

Off

N

2.20 · 10−4 100 000 0.182

LS100 4.51 · 10−12 4 370 0.184

LS10 4.90 · 10−11 5 700 0.235

Off

N110

2.11 · 10−1 100 000 0.179

LS100 3.31 · 10−4 64 310 0.181

LS10 1.52 · 10−1 100 000 0.193

Off

N1010

2.07 · 10−1 100 000 0.182

LS100 1.34 · 10−1 100 000 0.183

LS10 1.48 · 10−1 100 000 0.196

(a) Spring-Damper

LS Node Rel. error Itrs. Time / itr. (ms)

Off

N

1.96 · 10−12 41 970 0.091

LS100 5.72 · 10−11 1740 0.095

LS10 6.08 · 10−12 13 360 0.104

Off

N110

3.27 · 10−8 2 620 0.097

LS100 2.71 · 10−8 1 540 0.094

LS10 2.71 · 10−8 630 0.105

Off

N1010

5.55 · 10−8 3 500 0.094

LS100 5.09 · 10−8 1 470 0.097

LS10 5.09 · 10−8 1 060 0.104

(b) Turbo Car

Table 8.2 Results of the line search on three different nodes, with line
search interval 10 and 100 on both the Turbo Car example and the Spring
Damper.

62

8.3 Preconditioning on x

Distance to optimum

0 0.5 1 1.5 2 2.5

x 10
4

10
−5

10
0

x

l

y

J

(a) No line search

Angle (−1 to 1) between step and optimum

0 0.5 1 1.5 2 2.5

x 10
4

−1

−0.5

0

0.5

1

x

lambda

y

(b) No line search

Distance to optimum

0 200 400 600 800 1000 1200 1400

10
−5

10
0

x

l

y

J

(c) Line search 100

Angle (−1 to 1) between step and optimum

0 200 400 600 800 1000 1200 1400
−1

−0.5

0

0.5

1

x

lambda

y

(d) Line search 100

Distance to optimum

0 2000 4000 6000 8000 10000 12000

10
−5

10
0

x

l

y

J

(e) Line search 10

Angle (−1 to 1) between step and optimum

0 2000 4000 6000 8000 10000 12000
−1

−0.5

0

0.5

1

x

lambda

y

(f) Line search 10

Figure 8.1 Performance of line search on Turbo Car example in root
node. Notice the very different scales on the number of iterations.

63

Chapter 8. Results

Spring-Damper Turbo Car

Root 1.8 · 10−4 0.39

N111 8.4 · 10−5 0.39

N0001101 3.7 · 10−5 0.39

Table 8.3 Step size ρ for the different nodes and problems, when evalu-
ating preconditioning on x.

and were for the Spring-Damper example selected4 to 1, 10 or 100. For the
Turbo Car example the Li were selected5 to 2.

Table 8.4 shows the performance of preconditioning on x, at different
nodes. When the feature is turned off, no preconditioning is applied. Relative
objective function errors6 |(Ĵ∗−J∗)/J∗| are presented, as well as the number
of iterations carried out and the average execution time per iteration.

Consider the Spring-Damper results in Table 8.4(a). Apparently precon-
ditioning on x performs very well at the root node (and is well worth the
extra execution time), but gives no improvement of the extremely slow con-
vergence at nodes N111 and N0001101. In fact, we observed a general bad
performance except for the root node.

Now consider the Turbo Car results in Table 8.4(b). As the bounds −2 ≤
z(k) ≤ 2 are quite tight, we should not expect a vast improvement from the
modest preconditioning 1/Li = 1/2. There may however be other benefits of
having elements in y directly corresponding to elements in x (see Sections
2.4 and 5.4.1). All the nodes converge both with or without preconditioning
on x, but the number of iterations differs quite much. At the root node and
at node N111, we get a considerable decrease in the number of iterations, but
the extra execution time for each iteration makes the different approaches
similar in performance. At node N0001101 however, the number of iterations
is instead increased, and we do not know why this is the case.

8.3.1 Different Performance at Different Nodes
Again consider the Spring-Damper example. The vast reduction of the num-
ber of iterations at the root node seems very promising, and the poor results
at the other nodes are thus disappointing. In this section we do some effort
in understanding why the performance can differ so much.

4According to the magnitude of the bounds of the corresponding states and inputs
specified in (4.2).

5According to the magnitude of the bounds (C.1c)- (C.1d) of the "big M" auxiliary
variables z(k).

6Matlab’s interior point solver is used with objective function tolerance 10−15, to pro-
duce reference values J∗.

64

8.3 Preconditioning on x

PC x Node Rel. error Itrs. Time / itr. (ms)

Off
N

2.20 · 10−4 100 000 0.18

On 8.82 · 10−8 380 0.90

Off
N111

1.95 · 10−1 100 000 0.22

On 2.84 · 10−1 100 000 0.81

Off
N0001101

5.58 · 10−1 100 000 0.23

On 5.75 · 10−1 100 000 0.82

(a) Spring-Damper

PC x Node Rel. error Itrs. Time / itr. (ms)

Off
N

5.96 · 10−12 41 970 0.09

On 4.24 · 10−12 11 150 0.24

Off
N111

4.15 · 10−12 37 500 0.09

On 4.24 · 10−12 11 130 0.25

Off
N0001101

4.91 · 10−7 4 170 0.10

On 1.17 · 10−6 23 150 0.25

(b) Turbo Car

Table 8.4 Performance of preconditioning on x, for the different nodes
and systems. The PC x column indicates whether or not preconditioning on
x is applied. The number of iterations (aborted at 100 000) is also presented,
along with the current relative objective function error and the average
execution time for each iteration. The Matlab implementation of ADMM
is used for these results.

65

Chapter 8. Results

0 20 40 60 80 100 120 140
−60

−40

−20

0

20

40

60

Matlab IP

PC x off

PC x on

(a) Last x iterate

0 50 100 150 200 250 300 350 400
−6

−4

−2

0

2
x 10

−3

PC x off

PC x on

(b) Last λ iterate

Figure 8.2 Last x and λ iterates for the root node (values on y-axis,
vector index on x-axis). The red iterates are obtained with preconditioning
on x, and the green iterates without. For x, there is also a blue reference
solution, obtained by Matlab’s interior point solver. The latter can however
not be seen behind the red line.

Figure 8.2(a) shows a reference solution7 x∗ at the root node, along with
corresponding last iterates x̂∗ and x̂∗PCx of ADMM (with or without pre-
conditioning on x). The high peaks correspond to the variables z2 and z4,
for which M = −m = 100. At the root node, x̂∗ has not yet (after 100 000
iterations) reached the high peaks of the "big M" auxiliary variables in x∗.
However, applying preconditioning on x gives a solution x̂∗PCx close to x∗ (so
that the latter cannot be distinguished underneath), after only 380 iterations.

When looking at the other nodes (see Figures 8.3 and 8.4), we see that
ADMM is far from the optimal "big M" auxiliary variables, both with or
without preconditioning on x. When it comes to the dual variables λ we do

7As not all costs for the Spring-Damper example are positive-definite, there may not be a
unique solution. Therefore comparison between iterates should be done with precaution.
In this case we compare iterates with very different magnitude at certain elements, and
are confident (but not entirely sure) that for instance the "big M" aux variables need
to be large at any solution.

66

8.3 Preconditioning on x

0 20 40 60 80 100 120 140
−60

−40

−20

0

20

40

60

Matlab IP

PC x off

PC x on

(a) Last x iterate

0 50 100 150 200 250 300 350 400
−0.2

0

0.2

0.4

0.6

PC x off

PC x on

(b) Last λ iterate

Figure 8.3 Last x and λ iterates for node N111 (values on y-axis, vector
index on x-axis). The red iterates are obtained with preconditioning on x,
and the green iterates without. For x, there is also a blue reference solution,
obtained by Matlab’s interior point solver.

not have any reference solution λ∗ to compare to8. Despite this, we do some
reasoning based on the last dual variable iterates λ̂ without preconditioning
on x, and λ̂PCx with preconditioning on x9.

At N111 and N0001101 we observe much larger values of λ̂∗ as compared
to the root node. We see that although also λ∗PCx attains larger values at
these nodes, there is still a considerable difference in magnitude between λ̂∗
and λ̂∗PCx, which was not the case for the root node (see Figure 8.2(b)).

We believe that also the optimal λ∗ should have very large values, as
we observed a growth in λ. In that case, one possibility could be that the
heavy preconditioning on the "big M" aux variables is somehow preventing

8We supply Matlab’s interior point solver with the original QP on the form (2.1), and
therefore neither y nor the constraints ECIx = Ey with the corresponding dual vari-
ables λE are present.

9Note that the C matrix in Cx = y is different depending on whether we apply precon-
ditioning on x or not. Thus, λ̂∗ cannot be compared to λ̂PCx directly (and certainly
not element-wise since they may be of different length). We will only consider the
magnitude of λ̂ and λ̂PCx.

67

Chapter 8. Results

0 20 40 60 80 100 120 140
−60

−40

−20

0

20

40

60

Matlab IP

PC x off

PC x on

(a) Last x iterate

0 50 100 150 200 250 300 350 400
−0.1

0

0.1

0.2

0.3

PC x off

PC x on

(b) Last λ iterate

Figure 8.4 Last x and λ iterates for node N0001101 (values on y-axis,
vector index on x-axis). The red iterates are obtained with preconditioning
on x, and the green iterates without. For x, there is also a blue reference
solution, obtained by Matlab’s interior point solver.

λ to take large steps, which indicates that the preconditioning needs to be
modified. Another possibility is that the larger values of λ simply require a
larger step size. By increasing Eii for the large elements λi of λ, we did in
fact get fast convergence at some additional nodes as well, which of course
is promising. We did however not manage to find a general recipe for how to
select E for the different nodes, in the limited time frame of ours. Neither
did we have time to present the actual nodes and preconditionings that gave
satisfactory results.

8.4 Simplified Line Search with Preconditioning on x

As mentioned in Section 5.6, we are not able to use the line search together
with the preconditioning on x. However, we present results of the combination
with the simplified version of the line search, without the troublesome cost
J3 from Section 5.5. We have shown in the previous examples that the two
methods perform well by them selves on many problems, but that neither will

68

8.5 Branch and Bound

make all problems easily solvable. We have observed that the combination
works well for many problem, however the method also has some drawbacks.

In Figure 8.5 we show how the solver is performing in each iteration with
a combination of the different settings on the Spring Damper example. We
see that the line search and preconditioning on x do indeed seem to work
together. The performance is improved when any of the methods is added to
the other.

It should be noted that this is not always the case and that this exam-
ple was crafted specifically to illustrate this result. The sampling time was
changed from 0.1 to 0.3 and the horizon chosen to 1. For most of the exam-
ples however, the method performed best with either only line search or only
preconditioning on x. On the other hand, it seems like the combination per-
forms better on average than choosing only one of the methods. For almost
all the examples where one of the methods converged, so did the combina-
tion. We did however find one case where the solver didn’t seem to converge
with the combination. This is not too surprising since we are ignoring part
of the optimality criteria in the line search.

There are a few more noteworthy observations to be made from the plots.
Firstly, we see common behavior that when only checking for the line search
each 100th iteration, the jumps will be much rarer, but also much longer. The
convergence is more even with the more frequent line search, but in this case,
also slightly slower. Lastly, we see that even though the preconditioning on x
is keeping a steady rate of convergence, the line search is still able to take a
large step. The reduction from 10 000 iterations with barely any improvement
to 300 iterations to reach machine precision is quite impressive.

8.5 Branch and Bound

In this section we test several features, whose performance we evaluate by
the execution time of solving an entire MIQP problem. Many of the features
benefit from or rely on each other. Both the Spring-Damper and the Turbo
Car example are considered, with horizon length N = 10. However, some
features rely on our ADMM extensions and could only be evaluated for the
Turbo Car due to lots of nodes not converging with ADMM for the Spring-
Damper example.

Table 8.5(a) shows the performance when applying ADMM to the Turbo
Car example with the different features:

• X% Suboptimal Branch and Bound (SX%) – (see Section 6.1.1).

• Warmstarting of nodes (WN) and trees (WT) – (see Section 7.2).

• Early Termination (E) – (see Section 5.3).

69

Chapter 8. Results

Distance to optimum

0 2000 4000 6000 8000 10000

10
−15

10
−10

10
−5

10
0

x

l

y

J

(a) No line search, No preconditioning on x.

Distance to optimum

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

x

l

y

J

(b) No line search, preconditioning on x.

Distance to optimum

0 2000 4000 6000 8000 10000

10
−15

10
−10

10
−5

10
0

x

l

y

J

(c) Line search 100, No preconditioning on
x.

Distance to optimum

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

x

l

y

J

(d) Line search 100, preconditioning on x.

Distance to optimum

0 2000 4000 6000 8000 10000

10
−15

10
−10

10
−5

10
0

x

l

y

J

(e) Line search 10, No preconditioning on x.

Distance to optimum

0 500 1000 1500 2000 2500 3000

10
−15

10
−10

10
−5

10
0

x

l

y

J

(f) Line search 10, preconditioning on x.

Figure 8.5 Plots of the convergence of the solver with and without pre-
conditioning on x, as well as combined with the line search.

70

8.5 Branch and Bound

Subopt. Time (s) Nodes Rel. error Itrs./node

No feats.
0%

0.67 43 2.3 · 10−7 3291

WN 0.55 43 2.2 · 10−7 2730

WN

1%

0.49± 0.03 42.2± 1.1 2.2± 0.0 · 10−7 2756± 31

WN|WT 0.48± 0.02 41.4± 0.6 2.2± 0.0 · 10−7 2741± 21

WN|WT|E 0.33± 0.02 41.4± 0.6 2.2± 0.0 · 10−7 1632± 20

WN

10%

0.35± 0.10 32.2± 9.6 4.8± 2.3 · 10−2 2561± 223

WN|WT 0.22± 0.01 15.0± 0.0 1.1± 0.0 · 10−2 3480± 1

WN|WT|E 0.22± 0.02 15.0± 0.0 1.1± 0.0 · 10−2 3209± 1

(a) The Turbo Car problem solved by our Branch and Bound with QPgen

Subopt. Time (s) Nodes Rel. error

No feats. 0% 0.517 87 4.0 · 10−8

No feats.
1%

0.485± 0.039 80.4± 6.1 4.9± 2.9 · 10−3

WT 0.358± 0.002 59.0± 0.0 1.8± 0.0 · 10−3

No feats.
10%

0.439± 0.127 75.1± 23.3 3.0± 2.3 · 10−2

WT 0.166± 0.004 27.0± 0.0 1.8± 0.0 · 10−3

(b) The Spring-Damper problem solved by our Branch and Bound with
Gurobi’s QP Solver

Time (s)

Spring-Damper 0.0916

Turbo Car 0.0057

(c) Gurobi’s MIQP Solver

Table 8.5 Performance of different features: Warmstarting of nodes
(WN) and trees (WT), Early Termination (E) and Suboptimal Branch
and Bound. When Suboptimal Branch and Bound is applied, the priority
assignment is random according to (6.5). We have thus run the solver 15
times and presented estimated means and standard deviations.

71

Chapter 8. Results

As more features are added, we see that the total execution time decreases.
Applying WN gives a decrease from 0.67 s to 0.55 s. When also adding S1%

or S10%, we get an additional decrease to 0.49 s or 0.35 s, correspondingly.
Then incorporating WT gives a further improvement, but since it depends
on Suboptimal Branch and Bound the decrease is much greater for the case
S10% with more suboptimality. Finally, E gives an improvement for the case
S1% but not10 for S10%. The decrease in execution time is due to the reduced
number of iterations carried out at the nodes, which can be seen in the
rightmost column. In neither case the number of nodes is decreased, which
is the expected behavior.

Table 8.5(b) shows the performance of suboptimal Branch and Bound and
warmstarting of the tree for the Spring-Damper example. The relaxations of
the nodes are solved by Gurobi’s QP solver [Gurobi Optimization, 2015], since
the convergence of ADMM is bad at most nodes. The results are similar to
Table 8.5(a).

Finally, Table 8.5(c) shows the performance of Gurobi’s MIQP solver for
reference. Clearly, it outperforms our methods11.

8.6 Cutting Planes

We did not implement a full method to test how well infeasible nodes can be
detected and used to automatically restrict the solutions. This would require
a significant amount of work with a limited value to this thesis. However, we
did create a specific example which illustrates the possible benefits clearly.

We consider the Turbo Car example as explained in Section 4.2. A counter
c is used to keep track of how many uses are left of the binary turbo. The
counter is decreased by 1 every time the turbo it is used. This means that a
large portion of the nodes in the Branch and Bound tree will be infeasible.
In practice, every node with more uses of the turbo than c is initialized to.
If it is known that the system will be initialized with c = 3 uses of the turbo
remaining, then we know that c ≤ 3 for all future times.

It can thus be beneficial to in advance go through all the nodes and find
the ones that will be infeasible, given the constraint 0 ≤ c ≤ 3 on the initial
state. The information about which nodes are infeasible can then be used to
constrain the set of feasible solutions to the relaxed problems.

10The number of nodes are very few (15). The most probable explanation to the lack
of improvement is that there are not many of these nodes to be discarded. Thus the
improvement of discarding these very early may not contribute very much.

11 It is however worth noting that Gurobi’s MIQP solver is implemented in parallel, and
executed on a quad-core machine. Our implementation runs on a single core, and al-
though QPgen is implemented in C, the branch and bound algorithm is written in
Matlab.

72

8.6 Cutting Planes

It is easy to see for this example that we can formulate such a constraint
without actually testing which nodes are infeasible:∑

k

t(k) ≤ 3 (8.2)

where t(k) is the binary input that regulates thruster use. The idea is that
this constraint would disallow a relaxed solution like

[t(1) t(2) t(3) t(4)] = [1 1 0.6 0.6]

even if it satisfies the system dynamics. For this example however, the dy-
namics will indirectly generate a constraint identical to (8.2) through the
system dynamics c(k + 1) = c(k) − t(k), the constraint c(k) ≥ 0 and the
initial condition c(0) = 3. We ran the Branch and Bound solver and, as
expected, the same number of nodes, 44, was solved with and without this
constraint. It may therefore seem like we have nothing to gain from adding
this restriction.

However, if we change the initial state from c = 3 to c = 3.5 we get some
interesting results. For the non-relaxed problem, very little has changed. The
car can still only use an integer number of thrusts and thus has no use for
the last half. We will get the same solution, and all the same nodes will be
feasible. On the other hand, when solving the relaxed problems, the system
dynamic will no longer force

∑
k t(k) ≤ 3, but only

∑
k t(k) ≤ 3.5, and the

solution above would be accepted. This is exactly when the cutting planes
can be useful, when the relaxed problem enable solutions that are outside of
the convex hull of the feasible binary solutions.

With the new initial state c(0) = 3.5 and no extra constraints, the Branch
and Bound method solved a total of 101 nodes instead of the previous 44, a
considerable difference. If we manually add the extra constraint

∑
k t(k) ≤ 3,

which we know will be true for any feasible binary solution, we manage to
reduce the number of solved nodes to 44 again.

We have thus managed to show how extra constraints, or cutting planes,
may significantly improve the performance. We have however not studied
extensively how these planes can be efficiently found and added and leave
this to future research.

73

9
Concluding Remarks

9.1 Conclusions

First of all we have discovered that applying ADMM to the QP relaxations of
some hybrid systems may give very poor convergence. Due to this observation
we have extended ADMM with line search, as well as developed a method for
preconditioning on certain variables, utilizing the block structure of "big M"
formulations. Although both of these methods have given a vast improvement
in convergence for some QP relaxations, there are still relaxations which
remain intractable to solve.

In addition to improvements of convergence, we have also developed some
Branch and Bound features which exploit the properties of ADMM in some
way or another. While the features have proven advantageous (especially
when combined), the execution time for solving an MIQP is still not in the
same league as commercial solvers like Gurobi’s MIQP solver. Since the full
range of Branch and Bound techniques have not been the focus of this thesis,
the inferior performance of our MIQP solver is expected.

9.2 Individual Contributions

Mattias has analyzed the behavior of ADMM, and developed the line search
due to this analysis. He has also implemented the Matlab version of ADMM,
as well as warmstarting of nodes, cutting planes, and the ability to fix the
binary variables by equality constraints.

Lucas has focused on the preconditioning on x and early termination
features, but has also implemented the infeasibility check and warmstarting
of the tree.

For the remaining parts, most of the work has been split between the two
of us.

74

9.3 Future Work

9.3 Future Work

We propose further investigation of how to select a good preconditioning
when the "preconditioning on x" feature is applied. For the method to make
a practical difference in the context of solving an entire MIQP, it needs to
be determined how to select preconditioning for all the nodes. In particular
the magnitude of the dual variables should be investigated, in the hope of
discovering a potential structure regarding which dual variables are large at
which nodes.

While the line search is performing well, we have no proof of convergence.
Because the line search is not limited to MIQP problems, any such results for
ADMM would be of high interest, especially because of the low cost compared
to the potential improvement.

While ADMM has several advantages, it is indeed sensitive to the prob-
lem conditioning. As the ill-conditioned QP relaxations caused by the hybrid
systems are not trivial to cope with, solvers less sensitive to the problem con-
ditioning may be preferable. We suggest that the possibilities for parametric
optimization in the context of quasi-Newton method’s are investigated, as
these methods are more compliant with the problem curvature.

75

A
MIQP Formulation of MIPC

This section gives the details about how the MIPC problem (3.11) in Section
3.3.3 can be formulated as an MIQP of the form (2.6). We build up x by
stacking states, inputs and auxiliaries one time after another:

x = [x0, u0, w0, x1, u1, w1, . . . , xN , uN , wN]T . (A.1)

In the same way we stack the references:

r = [r0x, r
0
u, r

0
w, r

1
x, r

1
u, r

1
w, . . . , r

N
x , r

N
u , r

N
w]T .

The objective function is defined by

H = 2 ·

Q

Q
. . .

Q
QN

 , f = −2 ·Hr, c = rTHr,

while the equality constraints are defined by

AE =

I 0 0
−A −Bu −Baux I 0 0

−A −Bu −Baux I 0 0
. . .

−A −Bu −Baux I 0 0

Eeqx Eequ Eeqw

Eeqx Eequ Eeqw

76

Appendix A. MIQP Formulation of MIPC

and

bE =

Baff + x0
Baff
...

Baff
Eeqaff
...

Eeqaff

.

The inequality constraints are defined by

CI =

Eineqx Einequ Eineqw

. . .
Eineqx Einequ Eineqw

I

, (A.2)

and

bIl =

−∞
...
−∞
lx
lu
lw
...
lx
lu
lw

, bIu =

Eineqaff
...

Eineqaff

ux
uu
uw
...
ux
uu
uw

.

77

B
Efficient Line Search

This appendix will outline how we implemented an efficient algorithm for the
line search in ADMM. The goal is to solve the following problem

min
t
J (x, y, λ) = min

t
(J1(x, y) + J2(x, λ) + J3(y, λ)) =

min
t

(
‖Cx− y‖2 +

∥∥PK(Hx+ f + CTλ)
∥∥2 + ∑

i=1..n

(
clipc̃i(y)(λi)

)2)
,

given y ∈ Y, where (x, y, λ) = (x0, y0, λ0) + t(x̃, ỹ, λ̃).
To do this we first find the maximum t such that y0 + tỹ ∈ Y, and denote it
tmax. Because the set Y is convex, the same set of constraints bIl,i ≤ yi ≤ bIu,i
will be active on the entire interval t ∈ (0, tmax). The functions c̃i(y) will
therefore be constant on the interior, which means that we can write the
function on the closed interval t ∈ [0, tmax] as

J3(y(t), λ(t)) =

∑
i=1..n

(
clipc̃i(y0i)λi(t)

)2
if t = 0∑

i=1..n

(
clipc̃i(y0i+tintỹi)λi(t)

)2
if t ∈ (0, tmax)∑

i=1..n

(
clipc̃i(y0i+tmaxỹi)λi(t)

)2
if t = tmax

,

where tint is any t ∈ (0, tmax). Minimization of J can therefore be done by
comparing the values at t = 0 and t = tmax to the minimum on the interior.
It is important to note that c̃i(y0 + tmaxỹ) ⊆ c̃i(y0 + tintỹ) which results in

clipc̃i(y0+tmaxỹ)(λi) ≤ clipc̃i(y0+tintỹ)(λi).

There is therefore no risk in finding false minimums at the ends of the interval
when minimizing the cost function on the interior.
For minimization on the interior, we look at the terms clipc̃i(y0i+tintỹi)λi(t) in
J3. Depending on which constraints on yi are active and the sign of λ̃i, they
will each take one of three distinctive shapes, also shown in figure B.1:

78

Appendix B. Efficient Line Search

clipc̃(λ(t))

t

0
ti

ti =
−λ0

i

λ̃i

clipc̃(λ(t))2

t

ti ti

Figure B.1 Illustrations of the different types of functions in the sum
J3. Red illustrates the type T1, blue type T2 and green type T3.

T1: {
0 if t ≤ ti = −λ0

i

λ̃i

(t− ti)2λ̃2i if t ≥ ti

T2: {
(t− ti)2λ̃2i if t ≤ ti = −λ0

i

λ̃i

0 if t ≥ ti

T3:

(λ0i + tλ̃i)
2 for all t

We can therefore see that the function J3 (and thus J) will be convex and
piece-wise quadratic on the interior t ∈ (0, tmax) The method we are using to
minimize this function first computes all the points ti =

−λ0
i

λ̃i
for the terms

of type T1 and T2. We then sort these times in increasing order and denote
them, through abuse of notation, by changing their indices as t1, t2, ...tn. If
we let the function J be described on the interval t ∈ (ti, ti+1) by pi(t) =
ait

2 + bit+ ci, we can compute the constants recursively as

pi(t) = pi−1 + sgni · (t− ti)2λ̃2i if i > 0

p0(t) =
∑
j∈T2

(t− tj)2λ̃2j +
∑
j∈T3

(λ0j + tλ̃j)
2 + J1(t) + J2(t)

(B.1)
where sgni = 1 if i ∈ T1 and sgni = −1 if i ∈ T2. An illustration of J is shown
in figure B.2. It is now simple to calculate and evaluate the polynomials at
the points ti until pi(ti) ≤ pi+1(ti+1). From convexity it is then clear that
the minimum must either be at t = bi

2ai
, t = bi+1

2ai+1
or ti.

79

Appendix B. Efficient Line Search

p0(t)

p1(t)

t1

p2(t)
t2

p3(t)t3

p4(t)

t4

t

J

Figure B.2 An illustration of the cost function J in the line search.

80

C
Details for Test Cases

This section presents the details for the hybrid systems defined in Section 4.

C.1 Spring-Damper

The sampling interval of the system is h = 0.1 s. The masses arem1 = 2.29 kg
and m2 = 2.044 kg, and the damping coefficients are d1 = 3.12N/m/s and
d2 = 3.73N/m/s.

A0 =

0.390 0.0709 0.610 0.0223
−8.01 0.293 8.01 0.5693
0.672 0.0250 0.328 0.0667
8.68 0.638 −8.68 0.206

 B0 =

0.00182
0.0310
0.000296
0.0109

A1 =

0.979 0.0928 0.0207 0.000669
−0.402 0.853 0.402 0.0195
0.0229 0.000750 0.977 0.0907
0.440 0.0218 −0.440 0.812

 B1 =

0.00208
0.0405

0.00000833
0.000327

Bb =

0
1
0
0

 Qx = h ·

100 0 0 0
0 0 0 0
0 0 100 0
0 0 0 0

 QNx =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Qu = QNu = h ·

10−3 0 0
0 0 0
0 0 0

 Qw = QNw =
[
0
]

81

Appendix C. Details for Test Cases

C.2 Turbo Car

A =

1 1 0
0 1 0
0 0 1

 , Bu =

 0 0
0 0
−1 0

 , Baux =

 1
0.5
0

 , Baff = 03×1

(C.1a)

Eineqx = 06×3, Einequ =

0 0
0 0
3 2
3 −2
−3 1
−3 −1

 , Eineqaux =

−1
1
−1
1
−1
1

 , Eineqaff =

2
2
3
3
0
0

(C.1b)

lx =

−50−10
0

 , lu =

[
0
−1

]
, lw =

[
−2
]

(C.1c)

ux =

5010
5

 , uu =

[
1
1

]
, uw =

[
2
]

(C.1d)

Qx = QNx = I3×3, Qu = QNu =

[
10−4 0
0 10−4

]
, Qw = QNw =

[
1
]

(C.1e)

All matrices Eeq∗∗ are absent in this example.

82

Bibliography

Axehill, D. and A. Hansson (2006). “A mixed integer dual quadratic program-
ming algorithm tailored for mpc”. In: Decision and Control, 2006 45th
IEEE Conference on, pp. 5693–5698. doi: 10.1109/CDC.2006.377215.

Axehill, D., T. Besselmann, D. Martino Raimondo, and M. Morari (2014).
“A parametric branch and bound approach to suboptimal explicit hybrid
MPC”. Automatica 50:1, pp. 240–246.

Bellman, R. (1957). Dynamic Programming. Princeton University Press,
Princeton, NJ, USA.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011). “Distributed
optimization and statistical learning via the alternating direction method
of multipliers”. Found. Trends Mach. Learn. 3:1, pp. 1–122. issn: 1935-
8237. doi: 10.1561/2200000016. url: http://dx.doi.org/10.1561/
2200000016.

Giselsson, P. (2014). “Improved fast dual gradient methods for embed-
ded model predictive control”. In: Proceedings of the 2014 IFAC World
Congress, pp. 2303–2309.

— (2015). QPgen Matlab toolbox. [Accessed 2015-01-19]. url: http://
www.control.lth.se/user/pontus.giselsson/qpgen/.

Giselsson, P. and S. Boyd (2014a). “Diagonal scaling in douglas-rachford
splitting and admm”. In: Decision and Control (CDC), 2014 IEEE 53rd
Annual Conference on, pp. 5033–5039.

— (2014b). “Monotonicity and restart in fast gradient methods”. In: Decision
and Control (CDC), 2014 IEEE 53rd Annual Conference on, pp. 5058–
5063.

— (2014c). “Preconditioning in fast dual gradient methods”. In: Decision and
Control (CDC), 2014 IEEE 53rd Annual Conference on, pp. 5040–5045.

83

http://dx.doi.org/10.1109/CDC.2006.377215
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
http://www.control.lth.se/user/pontus.giselsson/qpgen/
http://www.control.lth.se/user/pontus.giselsson/qpgen/

Bibliography

Gurobi Optimization, I. (2015). Gurobi optimizer reference manual. url:
http://www.gurobi.com.

Kvasnica, M., P. Grieder, and M. Baotić (2004). Multi-Parametric Toolbox
(MPT). url: http://control.ee.ethz.ch/~mpt/.

MATLAB (2014). version 8.3.0 (R2014a). The MathWorks Inc., Natick, Mas-
sachusetts.

Mayne, D., J. Rawlings, C. Rao, and P. Scokaert (2000). “Constrained model
predictive control: stability and optimality”. Automatica 36:6, pp. 789
–814. issn: 0005-1098. doi: http://dx.doi.org/10.1016/S0005-
1098(99)00214-9. url: http://www.sciencedirect.com/science/
article/pii/S0005109899002149.

Mignone, D., A. Bemporad, and M. Morari (1999). “A framework for control,
fault detection, state estimation, and verification of hybrid systems”. In:
American Control Conference, 1999. Proceedings of the 1999. Vol. 1, 134–
138 vol.1. doi: 10.1109/ACC.1999.782755.

Raghunathan, A. U. and S. Di Cairano (2014). “Infeasibility detection in al-
ternating direction method of multipliers for convex quadratic programs”.
In: Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on,
pp. 5819–5824. doi: 10.1109/CDC.2014.7040300.

Torrisi, F. D. and A. Bemporad (2004). “Hysdel-a tool for generating compu-
tational hybrid models for analysis and synthesis problems.” IEEE Trans.
Contr. Sys. Techn. 12:2, pp. 235–249. url: http://dblp.uni-trier.
de/db/journals/tcst/tcst12.html#TorrisiB04.

84

http://www.gurobi.com
http://control.ee.ethz.ch/~mpt/
http://dx.doi.org/http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://www.sciencedirect.com/science/article/pii/S0005109899002149
http://www.sciencedirect.com/science/article/pii/S0005109899002149
http://dx.doi.org/10.1109/ACC.1999.782755
http://dx.doi.org/10.1109/CDC.2014.7040300
http://dblp.uni-trier.de/db/journals/tcst/tcst12.html#TorrisiB04
http://dblp.uni-trier.de/db/journals/tcst/tcst12.html#TorrisiB04

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER´S THESIS
Date of issue
June 2015
Document Number
ISRN LUTFD2/TFRT--5981--SE

Author(s)

Mattias Fält
Lucas Jimbergsson

Supervisor
Pontus Giselsson, Dept. of Automatic Control, Lund
University, Sweden
Bo Bernhardsson, Dept. of Automatic Control, Lund
University, Sweden (examiner)
Sponsoring organization

Title and subtitle

Using ADMM for Hybrid System MPC

Abstract

Model Predictive control (MPC) has been studied extensively because of its ability to handle
constraints and its great properties in terms of stability and performance [Mayne et al., 2000]. We
have in this thesis focused on MPC of Hybrid Systems, i.e. systems with both continuous and discrete
dynamics. More specifically, we look at problems that can be cast as Mixed Integer Quadratic
Programming (MIQP) problems which we are solving using a Branch and Bound technique. The
problem is in this way reduced to solving a large number of constrained quadratic problems.
However, the use in real time systems puts a requirement on the speed and efficiency of the
optimization methods used. Because of its low computational cost, there have recently been a rising
interest in the Alternating Direction Method of Multiplies (ADMM) for solving constrained
optimization problems. We are in this thesis looking at how the different properties of ADMM can be
used and improved for these problems, as well as how the Branch and Bound solver can be tailored to
accompany ADMM. We have two main contributions to ADMM that mitigate some of the downsides
with the often ill-conditioned problems that arise from Hybrid Systems. Firstly, a technique for
greatly improving the conditioning of the problems, and secondly, a method to perform fast line
search within the solver. We show that these methods are very efficient and can be used to solve
problems that are otherwise hard or impossible to precondition properly.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-84

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Introduction
	Background
	Purpose and Restrictions
	Thesis Outline

	Optimization Theory
	Quadratic Programming
	Splitting

	Mixed Integer Quadratic Programming
	Branch and Bound

	ADMM
	Lagrange Dual
	Method of Multipliers
	ADMM
	Optimality condition

	Choosing K and C
	Drawbacks of K=I

	Model Predictive Control
	Unconstrained MPC for Linear Systems
	Constrained MPC for Linear Systems
	Mixed Integer Predictive Control
	Mixed Logical Dynamical Systems
	Dynamic Modes
	MIPC Formulation

	Test Cases
	Spring-Damper
	Turbo Car

	Improving ADMM
	ADMM Implementation
	Infeasibility Check
	Early Termination
	Evaluating the Dual
	Evaluating a Modified Dual

	Preconditioning
	Preconditioning on x

	Line Search
	Algorithm

	Line search with preconditioning on x

	Improving Branch and Bound
	Tree Traversal Strategies
	Suboptimal Branch and Bound

	Branch Ordering
	Dynamic Branch Ordering

	Exploiting Repeated Optimization
	Parametric Optimization
	Parametric Formulation of QP Relaxations

	Warmstarting
	Warmstarting Node Relaxations
	Warmstarting the Branch and Bound Tree

	Precomputation of Cutting Planes
	Extra constraints in precomputation
	Adding constraints to the problem

	Results
	Default Options
	Branch and Bound Options
	ADMM Options

	Line Search
	Preconditioning on x
	Different Performance at Different Nodes

	Simplified Line Search with Preconditioning on x
	Branch and Bound
	Cutting Planes

	Concluding Remarks
	Conclusions
	Individual Contributions
	Future Work

	MIQP Formulation of MIPC
	Efficient Line Search
	Details for Test Cases
	Spring-Damper
	Turbo Car

	Bibliography

