
Recommender System Validation Platform

Johan Ullén

MASTER’S THESIS | LUND UNIVERSITY 2015

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2015-25

Recommender System Validation Platform

(Comparing recommender models in test- and live-

environments)

Johan Ullén

d04ju@student.lth.se
johanu@expertmaker.com

June 22, 2015

Master's thesis work carried out at Expertmaker AB.

Supervisor:
Jacek Malec, Jacek.Malec@cs.lth.se

Anders Berkeman, anders.berkeman@expertmaker.com
Examiner:

Jonas Skeppsted, Jonas.Skeppstedt@cs.lth.se

mailto:d04ju@student.lth.se
mailto:johanu@expertmaker.com
mailto:Jacek.Malec@cs.lth.se
mailto:anders.berkeman@expertmaker.com
mailto:jonas.skeppstedt@cs.lth.se

Abstract

With most applications where recommender systems are used, it is impor-
tant that they produce a better result than a system with no recommender, or
one with a previous recommender. Deploying an untested system, even to a
smaller user sample can be very costly if the system produces negative results.
It is often in a developer’s interest to create several candidate systems. They
need some way of comparing recommender systems before selecting one or
a few to launch. While the methods of testing have been explored, and their
statistical soundness motivated, in other work [1, 4, 7, 17], it is not obvious
how to do it in practice. This report describes the implementation of a modular
and configurable framework, and analyses this framework with two different
cases. The experimentation shows the power of how such a framework can
be utilized to reduce overhead work when approaching evaluation of a new
recommender system.

Keywords: recommender system, generic framework, validation, evaluation

2

Acknowledgements

When I began this project in February 2014, I had no idea where it would take me. The
problem formulation was intentionally vague to allow a flexible course to be set by myself.
Both the data domain, the retailer problem that was at first provided, and the domain of
recommender systems were new, and unknown, to me. I have learned through this year,
and this project, what my strengths and interests, as well as my weaknesses, are.

The greatest obstacle for me in this project has been the vertical depth we had to go into
to analyse the data, and motivate the results. I have never found it easy to approach an
obscure, and unknown domain, and I too easily fall back on areas more comfortable to
me. It is because of that most of the time spent with the project was spent on designing,
and implementing, the framework we used. The idea was that the more modular we could
build it, the easier it would be to modify it to suit our needs. I have, from working on
this project, realised that my strength is in the design, and implementation, of structure.
Creating a sturdy base in which I can fit the pieces I do not completely grasp, lets me stand
more firmly when my balance is off.

I would like to thank examiner Jonas Skeppsted for examination and support, supervisor
Jacek Malec for his help and feedback, Expertmaker and Lars Hård for the opportunity to
do this project, Anders Berkeman, Johan Wensäter, and everyone else at Expertmaker for
their technical support and guidance. I would also like to thank my two opponents, Chris-
ter Persson and Anders Rehn, for their insightful, and useful comments on the report. For
proofreading of, and feedback on, the report I thank Ariel Lai, Mats Walhberg, Alexan-
der Rappe, Henrik Backlund, Niklas Carnerup, Vilhelm Ullén, Zhang Xiao Ni, Markus
Hegnelius, Sabina Ngo and Paul Stilley. Finally, special thanks to Hampus Sahlin for the
cooperation between our two theses.

3

4

Contents

1 Introduction 9
1.1 Domain . 9

1.1.1 Recommender Systems . 10
1.1.2 Evaluation of Recommender Systems 10

1.2 Problem . 10
1.2.1 Why is it interesting? . 11

1.3 Work Distribution . 11

2 Background 13
2.1 Recommender systems . 13

2.1.1 Basic Techniques . 13
2.1.2 Complications with Recommender System 14

2.2 Evaluating recommender systems . 15
2.2.1 Experimental Settings . 15
2.2.2 Dimensions . 16
2.2.3 Comparison . 25
2.2.4 Complications with Evaluation 25

3 Approach 27
3.1 Philosophy . 27

3.1.1 Modularity . 27
3.1.2 Average . 28

3.2 Churn . 29
3.2.1 Data . 29
3.2.2 Recommender Purpose . 30

3.3 The Retailer . 30
3.3.1 Data . 30
3.3.2 Recommender Purpose . 31

5

CONTENTS

4 Implementation 33
4.1 Development . 33
4.2 Framework . 34

4.2.1 Recommender System Evaluation 34
4.2.2 Sequence . 35
4.2.3 Modularity . 38
4.2.4 Configuration . 39
4.2.5 Utilities . 39

4.3 Churn . 39
4.3.1 Data cleaning . 39
4.3.2 Sampling . 40
4.3.3 Simulation . 41
4.3.4 Evaluation . 41

4.4 The Retailer . 41
4.4.1 Data cleaning . 41
4.4.2 Sampling . 41
4.4.3 Simulation . 42
4.4.4 Evaluation . 43

5 Results 45
5.1 Churn . 45

5.1.1 Single Evaluation . 45
5.1.2 Multiple Permutations Evaluation 48

5.2 The Retailer . 50

6 Discussion 53
6.1 Results . 53
6.2 Evaluation . 53
6.3 Framework . 53
6.4 Future . 54

7 Conclusion 55

Bibliography 57

Appendix A Churn 63

Appendix B Configuration File 67

6

Preface

Since the early to mid 1990s when the first collaborative filtering techniques were first
suggested [8, 18] evaluation of recommender systems have been discussed. While there is
a large amount of information to be found on such evaluation [4, 7, 8, 17, 18, 25, 27], they
mostly cover an academic example where there is a distinct separation between train- and
test- data. A real world case is rarely as simple as that, as there are either dependencies
between the train- and test- data or tendencies . This report focuses on exploring a general
methodology to evaluate both the simple case, where data is easily separated, and more
complex cases.

This project was conducted at Expertmaker [5], a local software developer with focus
on business optimization powered by artificial intelligence. Expertmaker offers a rare op-
portunity to work hands on with a large amount of data, a chance to work with experienced
people with vast knowledge of recommender systems, and the machine learning domain.
Expertmaker also provided a unique opportunity to work on hardware that can handle the
large amount of data provided. It is interesting to note that, although the data provided
may be considered large, it is but a small fraction of the data handled by the company
servers on a daily basis.

Two cases have been studied for this purpose: a mobile operator churning example (the
churn case), explored in sections 3.2, 4.3 and 5.1, and a retailer loyalty example (the re-
tailer case), explored in section 3.3, 4.4 and 5.2. The churn case, an example often used for
exploring prediction problems, is a mobile phone operator who wishes to know what cus-
tomers are most likely to cancel their plan. Expertmaker has been building a recommender
system for a large supermarket chain in the United States. The purpose of the project is to
recommend discount coupons to customers, to increase loyalty.

This report covers a project of how to build a generic evaluation system for recommender
systems. In chapter 1 the reader will be introduced to recommender systems, their evalua-
tion, and the problem at hand. A thorough exploration of recommender systems and their
evaluation, as well as a brief summary of other literature on related topics, can be found in
chapter 2. Chapter 3 explains the theoretical approach the author has taken to generalizing

7

CONTENTS

evaluation of recommender systems. This chapter also introduces two cases: the churn
case, and the retailer case. The implementation of a generic framework (the framework)
as well as the specific implementations for the churn, and the retailer cases, can be found in
chapter 4. Results from the execution of the implementation of the examples are displayed,
and explained in chapter 5. Chapter 6 gives the author's point of view of the results and
discusses further needs of implementation, and research, on the topic. Finally, the author's
conclusion of this project can be found in chapter 7.

8

Chapter 1
Introduction

In today's fast moving global society the staggering amount of information, and products,
to weed through has become almost insurmountable for consumers. A more and more
commonly occurring way to cope with this is the use of recommender systems. Recom-
mender systems seek to predict the preference users would give items, and by doing so
make it possible to sort them.

This chapter introduces the domain of recommender systems and their evaluation. In
section 1.1 the domain of recommender systems, and their evaluation is introduced. Sec-
tion 1.2 introduces the reader to the problem with generalization of recommender systems.
Finally section 1.3 describes how the workload was split between the author of this project
and Hampus Sahlin, whose yet unfinished project shared parts of building and utilizing the
framework.

1.1 Domain
Recommender systems belong to the domain of machine learning. By utilizing historical
knowledge of users, a recommender system can try to predict users' preferences in the
future. For an online movie streaming service, such as Netflix [13], a recommender system
can use customers ratings of movies they have seen, to predict how well they will like other
movies. A retailer supermarket customer can receive discount coupons of items they are
likely to purchase, based on what they usually purchase. For the end consumer this would
be beneficial if they can easier find cheaper products, or when they are introduced to items,
products, or movies, they didn't know existed. For the service provider it is beneficial
as good recommendations can build loyalty from the customer. On the other hand, the
recommendations could be bad, e.g. a customer could have been recommended a product
they either knew they didn't want, or one they were disappointed with after purchase or
consumption. This could essentially be worse than no recommendation at all.

9

1. I

1.1.1 Recommender Systems
Recommender systems typically produce a sorted list from some allocation of items. Each
item is given a weight based on features that can be extracted from the items or the users.
Collaborative filtering, and content-based filtering are two common ways of extracting
features for an item. Collaborative filtering builds a model from users' historical data.
Users may be recommended items they commonly use, for example a user who often buys
vegetables may be given a discount coupon for vegetables, or a user on Amazon [2] will,
when buying an item there, be given a list of recommendations of what other users also
bought, when they bought that item. Content-based filtering utilize discrete characteristics
of the items, when browsing an article on The New Yorker [21] a user will get links to
related articles.

1.1.2 Evaluation of Recommender Systems
Evaluating recommender systems is usually done by accuracy metrics. Three different
dimensions of accuracy: prediction, classification and rank, are most commonly used [4, 7,
17]. Prediction accuracy is a metric of how far off a system is in its ratings, e.g. in a scoring
system such as the Swedish movie rating and recommendation website Filmtipset [6]. A
system tries to predict what rating a user would give a movie. Once the user has given a
movie a rating the system compares the actual rating with the predicted rating and a score
is given.

Classification is the attempt to correctly label items and users. On Netflix [13] a recom-
mender system will try to predict what movies a customer want to see. On Amazon [2]
a recommender systems will try to predict what products a customer want to buy. These
items are identified either as a customer want them, or as they don't want them. The clas-
sification accuracy is the comparison between the predicted class and the actual class. In
a binary system, such as the ones described above, these are either true positive, false pos-
itive, false negative, or true negative. This becomes more complicated with multiple class
labels.

Ranking accuracy is the evaluation of the order of the recommendations. The sooner an
item is recommended correctly the higher score it will provide to the evaluation. This is
based on the analysis of the recommendation as a whole rather than on item properties,
like the prediction and classification accuracies.

1.2 Problem
Recommender system evaluation is not a new research topic. The first articles, according to
Adomavicius and Tuzhilin [1], about collaborative filtering, and their evaluation, appeared
the mid 1990s [8, 18]. Since then, and in particular in the 2000s, a vast amount of research
reports, and books, have been written on the subject [1, 4, 7, 17, 22, 25, 27]. While these
reports, and books, cover a lot of different aspects, both basic and advanced, there is little
concrete information on how to evaluate a recommender system in practice.

10

1.3 W D

1.2.1 Why is it interesting?
To systematically evaluate recommender systems it is necessary to know whether the sys-
tematic approach provides the same result as manual configuration. The setting up of such
a framework has in itself been the most interesting, while generating results has become
secondary to that.

While off-line evaluation has been thoroughly covered in the past [4, 7, 20], a generic
and modular way of implementation, with user models and simulations, seem somewhat
lacking. The modularity of a framework that allows it to evaluate any kind of recommender
problem, with only minor additional implementation, could be a great asset to anyone
working with recommender systems.

1.3 Work Distribution
Although this thesis is a solo project, the parallel work with Hampus Sahlin lead to a few
joint efforts. The design, and implementation, was done in unison, and has some specifics
implemented to handle the scenarios Sahlin's project needs. While these specifics will not
be covered in this report, it is worth mentioning they exist, and provide an additional frame
of modularity. The gist of the specifics are automatic rerunning of the framework with
multiple configurations, using results from previous runs in the initialization of models,
and returning not only the recommendations of a model, but also the weights, and other
data used, to generate the results.

Design
In the early parts of the projects Sahlin and the author worked mostly separately with the
same data, to get a basic understanding of its domain, and how to create recommenda-
tions. While some of the recommender models, for the retailer case, designed at this time
survived until the latest iterations of the framework ,they are not included in the results.
Based on the very similar work done manually it was decided on framework design, on
which both could work in an easier way. The design of the framework was discussed, and
planned, over a week, and the result was the base of what would become the framework
presented in 4.2. This design was later remodelled as needed, but the general structure is
still the same when this report is written.

Implementation
The basic structure of the framework's implementation was divided evenly between Sahlin
and the author, this includes the sequence: data import, data sampling, and execution. The
further development, most of the different modules, and naive models, were implemented
by the author. The evaluation was done completely by the author.

Initially the framework was not particularly modular, only allowing different recom-
mender models on the same data, and with one evaluation technique, and very slow be-
sides that. To speed up the execution saving, and loading, partial results to disk, was

11

1. I

implemented. When more models with different data requirements were designed, a way
to modularly build suitable data structures was implemented. A method to iterate over
multiple configurations, to allow multiple executions, was also implemented.

Many additional propositions were suggested over time, e.g. parallel processing. But
due to lack of time, and actual need, they were all scrapped.

Report
This report is in its entirety written by the author. In the early stages Sahlin and the author
started writing a few paragraphs together, but as time went on, and Sahlin had other duties,
those parts have been either rewritten, or scrapped. Not because of any fault on the writing,
but due to the increased understanding, and needs, of the report.

Sahlin's Project
The parallel project is to design a general way of boosting a recommender model by com-
bining results of other, more direct, models. By relying on the evaluation done in this
project, and the weights used for sorting with different models, a better than, or equal,
model can be generated. The link between this project and Sahlin's was the evaluation,
and the framework it was set in. By first executing several naive models, and evaluating
them, the framework allowed new models to execute those same models with new data,
and let a booster model take the previous results, weigh them, and combine the results of
the new execution. Given the evaluation this booster model generally perform better than
its parts.

12

Chapter 2
Background

This chapter works as introduction of previous work related to the approach taken in this
project. In section 2.1 common techniques for building recommender models are intro-
duced. In section 2.2 different settings, and dimensions, commonly used when evaluating
recommender systems are explored. Introducing the reader to the basics of recommender
system evaluation, and some of the different settings possible, should help the reader fol-
low the approach to the problem dealt with in this project.

2.1 Recommender systems
Multiple different techniques have been explored for building recommender systems [4,
7, 10, 11, 17]. Two of these, collaborative-filtering, and content-filtering, are discussed in
section 2.1.1, while section 2.1.2 covers some known complications with recommender
systems.

2.1.1 Basic Techniques
The two most common ways for building recommender systems are collaborative-filtering
and content-filtering [4, 7, 10, 11, 17]. Other recommender systems described in [17]
are neighbourhood-based, constraint-based, and context-aware systems. Combinations of
systems, called combinatorial filters, can also be used. The latter four will not be described
in this report, but it is good to be aware of their existence.

Collaborative-Filtering
Collaborative-filters are described by Koren, and Bell [10] as producing recommendations
of items based on patterns of ratings, or usage wihtout need for exogenous information
about either items or users. They makes recommendation based on ratings that users have
assigned to items. Two different approaches exist: user-based, and item-based [4]. In

13

2. B

the approach of user-based collaborative-filters, users with items rated similarly, will be
recommended the same, or similar items. Item-based collaborative-filters will recommend
users items that are similarly rated to items they have rated.

On Filmtipset [6], a service that utilizes user-based collaborative-filters, users are rec-
ommended movies liked by other users who like the same movies they do. For exam-
ple: person A has given Titanic, and The Rock, high ratings and user B has given Ti-
tanic, The Rock, and Terminator, high ratings. Then user A may be suggested to watch
Terminator, based on the similar preference with user B. Amazon [2] services uses item-
based collaborative-filters. When a user views a product on the Amazon website, they will
get recommendations based of a few other products called "Frequently Bought Together".
These items are recommended based on what other users have bought together with the
item viewed.

Content-Filtering
Lops, de Gemmis, and Semeraro [11] describes content-filtering recommender systems as
trying to find similarities between items and recommend items that have high similarity
to what a user usually selects. De Wit [4] describes content-filtering as having an item
domain with a predefined set of features. Those features will be used to determine simi-
larity, then recommend to users based on a user profile, created explicitly, or learned, by
user interaction with the system.

A movie, for example, could be characterised by cast, genre, theme, etc. Users may then
be recommended movies with the same characteristics as movies they usually watch.

2.1.2 Complications with Recommender System
Building a good recommender system often requires a large amount of data to make good
predictions. Any kind of system that has such a requirement is by its nature both time,
and memory, consuming. With modern hardware this is becoming less of a problem, but
is still a great concern. In the first iteration of the Retailer project Expertmaker had to
handle around three hundred thousand users, with an average of tens of transactions per
day, each, and over a year of historical data with daily updates. In the full scale version of
that project the amount of users is over twenty million. A vastly scaled down dataset with
only around ten thousand users, and around a year of historical data was provided for the
retailer case. This is still enough to stress a personal computer.

For recommendations domain expertise is very important. To extract features for content-
filtering knowledge of both users, and items, can be used [4, 17]. With collaborative-
filtering features are extracted from users behaviour, either by comparing users, or the
items from a user point of view. To do this efficiently a good basic knowledge of both
the user- and item- domains is required. Thorough analysis of the domains should thus be
done before attempting to build the recommender system.

14

2.2 E  

De Wit [4] identifies two main difficulties when building a recommender system: cold-
start (new user or new item), and over-specialization. Lops, de Gemmis and Semeraro[11]
also identify over-specialization, and cold-start (new user only), as well as limited content.

• Cold-start is when a recommender system cannot infer for users, or items, for which
not enough information has been gathered. Collaborative filtering has problems han-
dling both new users and new items while content-based systems only have problems
with new users.

• Over-specialization happens when only items with high similarity scores are recom-
mended. This effectively prevents serendipitous recommendations.

• Limited-content is the problem of distinguishing items users like from the ones they
do not like due to lack of information of the items.

De Wit [4] also points out that recommender system results is dependent on the type of
data, i.e., a recommender system that works well with a set of data that has many users, and
few items, may do poorly on a set with few users, and many items. A general evaluation
should be independent of the dataset.

2.2 Evaluating recommender systems
Evaluating recommender systems is generally done in three settings: Off-line experi-
ments [4, 7, 20], user studies [20] and on-line evaluation [4, 7, 20]. These are explored
in section 2.2.1. Each setting generate a list of relevancies. These are the relations be-
tween the recommendation and the test data. The relevancies are generally measured in
dimensions [4, 7, 20]: predictive accuracy, classification accuracy, rank accuracy and
utility. These are explored in section 2.2.2. In section 2.2.3 it is explored how to compare
relevance lists, and in section 2.2.4 a discussion of known problems with recommender
system evaluation is conducted.

2.2.1 Experimental Settings
The different approaches are generally used in different stages of the development of a
recommender system [20]. Starting with off-line experiments, to evaluate many different
recommender models at a low cost, following with a user study that can be conducted with
a small sample of users, to further select a best model for the system, and finally a large
scale off-line evaluation with unknowing users, to further optimize the model before full
scale launch. It is advised by Shani and Gunawardana [20] that off-line experiments is used
to select a few models for user studies, and finally conduct a full scale on-line evaluation
using models that are validated with both off-line experiments and user studies.

Even after a model has been launched at full scale, continuous evaluation should be done
to compensate for changes in the domain, and further optimize the model. This continuous
evaluation is essentially the same as the on-line evaluation on a larger scale.

15

2. B

Off-line Experiments
Off-line experiments are fast, and cheap, but will generally only give a hint of a model's
quantitative prediction power. Not taking into account the quality of the recommendations,
nor evaluate anything of items users have not used in the historical data.

User Studies
User studies lets users knowingly try a system, and evaluate their experience formally. A
user could for example be asked to rate recommendations in terms how interesting they
are, how useful they are, how offending they are, etc. This is more expensive than off-line
experiments, since users are involved, but allows deeper examination of the quality of a
model, and subjective comparison between models, to be evaluated.

On-line Evaluation
On-line evaluation is a near full scale test where many users unknowingly use different
models. This gives an objective evaluation of both quantity, and quality, but is much more
expensive and risky than both off-line experiments and user studies.

2.2.2 Dimensions
Three accuracies are discussed by de Wit [4], prediction accuracy, classification accuracy
and rank accuracy. Shan and Gunawardana [20] describes accuracy of ratings, accuracy
of predictions and accuracy of rankings.

Besides accuracy there are a number of other dimensions that can be measured [4].
Coverage measures the percentage of items for which the recommender system can make
predictions or recommendations. Strength and confidence measures how much a user will
like an item, and how sure the recommender system is about that strength. Diversity mea-
sures the spread of recommendations, i.e. the opposite of limiting recommendations to
only include items very similar to the ones a user has selected previously.

Prediction Accuracy
Prediction, in a recommender system context, is the predicted rating of an item. This
mainly applies to systems that has, and predicts, grades of items. www.filmtipset.
se [6] has a rating system where users grade any movie they have seen on a five point
scale. Based on those ratings the website provides a guess for any movie the user has
not yet rated. Prediction accuracy is the metric that describes the distance between the
actual ratings, after the ratings have de facto been given, and the predicted ratings. Most
prediction accuracy metrics are measures of error.

There are several different metrics commonly used for predictions accuracy [4, 20]. One
of the most widely used is mean absolute error (MAE). MAE is the sum of the difference
between a user's ratings (ri(bk)) and the predicted ratings (pi(bk)), and divides the result
by the number of items considered (Bi).

16

www.filmtipset.se
www.filmtipset.se

2.2 E  

MAE =
1

Bi

∑
bk∈Bi

|ri(bk)− pi(bk)| (2.1)

Mean squared error (MSE), and the more commonly used root mean squared error
(RMSE) are the mean of the squares of all errors. MSE, and RMSE, will therefore penalize
large errors more than MAE does.

MSE =
1

Bi

∑
bk∈Bi

(ri(bk)− pi(bk))
2 (2.2)

RMSE =
√
MSE (2.3)

Both MAE, and RMSE, are commonly normalized by the range of the ratings. Normal-
ized MAE (NMAE), and Normalized RMSE (NRMSE), are simply scaled down versions
of their non-normalized parts, and will thus show the same result.

NMAE =
1

rmax − rmin

MAE (2.4)

NRMSE =
1

rmax − rmin

RMSE (2.5)

Classification Accuracy
Classification prediction is a prediction of if an item is a member of a certain class. The
simplest classification prediction is with a binary class. With more classes the complexity
is higher.

In the churn case a customer can be predicted to either be a churner or not. In the retailer
case a coupon can be predicted to be either clipped or not, and a product can be predicted
to be either bought or not.

A famous classification problem is the Iris flower classification [3], where the species
of an Iris flower can be classified based on the physical lengths and widths of its sepals,
and petals. There are three species of Iris flowers: Iris Setosa, Iris Versicolor and Iris
Virginica. By training a model with the parameters, and known species, a model can
somewhat accurately guess the species of new flower using only those parameters.

The accuracy in classification is the rate of true and false predictions. A confusion
matrix, cm, is a m∗m matrix where rows, i, are actual class and columns, j, are predicted
class. Positions in the matrix where i = j is the correct classifications, Actuali. All other
classifications are incorrect.

As seen in table 2.1, True Positive (TP) is the number of correctly predictions of the true
class. False Positive (FP) is the number of incorrectly predictions of the true class. False
Negative (FN) is the number of incorrectly predictions of the false class. True Negative
(TN) is the number of correct predictions of the false class.

17

2. B

Actual
value

Prediction outcome
p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

Table 2.1: Confusion matrix with positive-negative classification

Multiple classes can be computed similarly, table 2.2, and all metrics are calculated
generally from this [4, 20]: Precision, Recall and Specificity. An additional classification
accuracy metric that can be calculated is Accuracy.

Precision, the correct actual rate for a class:

Precision =
TP

TP + FP
(2.6)

Precision i =
Actuali
CLASS i

(2.7)

Recall, the correct hit rate for a class:

Recall =
TP

TP + FNAnd
(2.8)

Recall i =
Actuali
CLASS ′

i

(2.9)

1−Specificity, the ratio of false predictions.

Specificity = 1− FP

FP + TN
(2.10)

Specificity i = 1− FP

FP + TN
(2.11)

Accuracy, the ratio of correct predictions.

Accuracy =
TP + TN

TP + TN + FP + FNAnd
(2.12)

Accuracy =

∑k
i=1Actuali∑m,m
i=1,j=1 cmi,j

(2.13)

18

2.2 E  

Actual
value

Prediction outcome
Class1 Class2 Class3 total

Class ′1
Class ′1
Class1

Class ′1
Class2

Class ′1
Class3

CLASS ′
1

Class ′2
Class ′2
Class1

Class ′2
Class2

Class ′2
Class3

CLASS ′
2

Class ′3
Class ′3
Class1

Class ′3
Class2

Class ′3
Class3

CLASS ′
3

total CLASS 1 CLASS 2 CLASS 3

Table 2.2: Confusion matrix with three classes

Shani and Gunawardana [20] describe a trade-off between these quantities. A longer
recommendation list would typically improve recall, but it is likely to reduce the precision.

Using classification accuracy with recommender systems it is often useful to calculate
the classification accuracies at a certain position, N , in a recommendation [20]. This
implies a binary classification where each element before, and including, N are predicted
as positive, and all after N are predicted as negative. This only works in applications
where the number of recommendations to the users is preordained. In other applications
it is preferable to evaluate algorithms over a range of recommendation list lengths. In this
way it is possible to compute curves comparing precision to recall, Receiver Operating
Characteristics (ROC) curves. More details on these curves, their computations, and other
related metrics can be found in [4, 20].

Rank Accuracy
Sometimes the order of recommendations is more interesting than the complete recom-
mendation list [20], i.e., when items are presented in order, and may be more numerous
than any user can take in. Netflix [13], for example, will recommend movies in list that is
too long for any user to get through, the most interesting movies should appear as early as
possible in that list. In these cases ranking accuracy is a useful metric.

Shani and Gunawardana [20] describes a multitude of reference ranking, and utility
based accuracy metrics . Among them are Normalized Distance-based Perforamnce Mea-
sure (NDPM), Kendall's tau correlation, Spearman's p correlation, half-life utility, R-
Score, and Normalized Discounted Cumulative Gain (nDCG). While only nDCG will be

19

2. B

described in this report it may be useful to know of the others existence.

To understand nDCG it is important to understand all its parts. Ranking evaluation is
based on a list of values (v) with the length N + 1 where p denotes the position. Position
0 is the first position, and N is the last position. Position 0 is the zero item, which is
necessary to calculate cumulative gain, and discounted cumulative gain, properly. With U
users, each user, denoted Ui will get a individual relevance list, IndRel:

IndRel(p) = value,where value is set by the simulation (2.14)

An average list, Avr, is also useful to score and visualize a baseline:

Avr(v) = 1/U ∗
U∑
i=1

v(i) (2.15)

Optimal sorting, Opt, is a sorting based on test results, i.e., the test will run first then sort
the results according to the test score:

Opt(p) =
U∑
i=1

sorted(IndRel i(p)), ∀p = {1, 2,…, N} (2.16)

This can be used for comparison and normalization.

If relevance had been easy to interpret no other metrics would have been necessary. All
metrics mentioned above are essentially projections of the same data on different sets of
coordinate systems. Relevance and gain are the same data but relevance displays an ab-
solute value and gain a range between 0 and 1, normalized according to 2.19. Cumulative
gain is, as described in 2.20, the sum of all gain values up to each index. This is the first
metric that is in any way readable, but when it comes to scalable comparisons it may be
inadequate.

Relevance (Rel) Each position in a recommended list is given a score based on the
test data, seen in figure 2.1. This score can be binary (1 if the item recommended exists
in the test data, 0 otherwise), binary discounting (1 if the item recommended exists in the
test data, -1 otherwise), counted (number of occurrences in the test data), or something
else (e.g. a time period from test date to occurrences in test data). When evaluating a
model over several instances of data their relevance measurements can be averaged over
all instances 2.1.

Rel(p) =
U∑
i=1

IndRel i(p),∀p = {1, 2,…, N} (2.17)

Also useful for normalization is sorted version of the relevance, Idl:

Idl = sorted(Rel) (2.18)

20

2.2 E  

0 2000 4000 6000 8000 10000
Item Position

0

20

40

60

80

100

Re
le

va
nc

e
Va

lu
e

Relevance
Data from churn case

gradient boosting
logistic regression
average
optimal

Figure 2.1: Rel(p),∀p = {1, 2,…, N}

Gain is normalized relevance, seen in figure 2.2. In the normal case, only running
one instance of a recommender model, gain will be equal to the relevance. However, to
evaluate models, rather than the result of a model, it is often useful to run it over several
instances with different permutations of the data (e.g. separation of train and test data), and
thus getting a statistically more significant result. To normalize this the relevance vector
is divided by the number of instances run. With a binary, or discounted binary, relevance
score this will yield a value between 0 and 1, or -1 and 1, respectively. With other counted
relevance scores the gain can be any natural number.

Gain(v, p) = v(p)/U (2.19)

0 2000 4000 6000 8000 10000
Item Position

0.0

0.2

0.4

0.6

0.8

1.0

Ga
in

 V
al

ue

Normalized Relevance
Data from churn case

gradient boosting
logistic regression
average
optimal

Figure 2.2: Gain(p),∀p = {1, 2,…, N}

21

2. B

Cumulative gain (CG) is the sum of all subsequent values of gain 2.20, seen in
figure 2.3. CG is useful as it is becomes a fairly continuous, never decreasing curve. All
CG computations of the same length should have the same value at the N-th position. A
good recommendation will generally be steep in the lower positions, and curve closer to
the end.

CG(v, p) =

p∑
i=1

v(i),∀p = {1, 2,…, N} (2.20)

0 2000 4000 6000 8000 10000
Item Position

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Ga
in

 V
al

ue

Cumulative Normalized Relevance
Data from churn case

gradient boosting
logistic regression
average
optimal

Figure 2.3: CG(p),∀p, 0 < p ≤ N

Lift is CG normalized against an average, i.e., divided by the cumulative average in all
positions, seen in figure 2.4. The cumulative average is always a straight line with the
average value as increment in each position. All lift computations should be 1 at the N-th
position. As cumulative average is divided by itself in all positions it will always be exactly
1. A good recommendation would generally be a high multiple of the cumulative average
in the beginning and eventually intersect with the cumulative average, with value 1, at the
N-th position.

Lift(p) = CG(Rel , p)/CG(Avr(Rel), p), ∀p = {1, 2,…, N} (2.21)

Loss is, similarly to lift, a projection. Loss is projected on a cumulative optimal per-
formance rather than a cumulative average, seen in figure 2.5. As with lift, all recom-
mendations should intersect with 1 at the N -th position. A good recommendation would
only drop slightly in the beginning, and soon be close to the cumulative optimal. As a
cumulative optimal recommendation may not be possible to find it is common to use the
cumulative ideal version of a recommendation. Since the cumulative ideal recommenda-
tion is based on a recommendation the projection is not the same for any recommendation.
Dividing by cumulative ideal rather than cumulative optimal is a form of normalization.

22

2.2 E  

0 2000 4000 6000 8000 10000
Item Position

0

5

10

15

Li
ft

Ra
tio

Relevance Value / Avereage Relevance Value
Data from churn case

gradient boosting
logistic regression
average
optimal

Figure 2.4: Lift(p),∀p, 0 < p ≤ N

LossIdl(p) = CG(Rel , p)/CG(Idl , p),∀p = {1, 2,…, N} (2.22)

LossOpt(p) = CG(Rel , p)/CG(Opt , p), ∀p = {1, 2,…, N} (2.23)

0 2000 4000 6000 8000 10000
index

0.2

0.4

0.6

0.8

1.0

Lo
ss

_i
d
e
a
l

loss (ideal)

logistic regression

gradient boosting

random

0 2000 4000 6000 8000 10000
index

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

_o
p
ti

m
a
l

loss (optimal)

logistic regression

gradient boosting

average

optimal

Figure 2.5: Left: Loss Idl(p), ∀p, 0 < p ≤ N ,
Right: LossOpt(p),∀p, 0 < p ≤ N

Discounted cumulative gain (DCG) While CG computes a list that is easy
to interpret it does not take into account the positional value in the recommendation. By
discounting each position DCG penalizes relevance later in a list, seen in figure 2.6.

DCG(v, p) = v(1) +
N∑
i=2

v(i)/log2(i),∀i = {2, 3,…, p} (2.24)

23

2. B

0 2000 4000 6000 8000 10000
Item Position

0

2000

4000

6000

8000

Di
sc

ou
nt

ed
 C

um
ul

at
iv

e
Re

le
va

nc
e

Va
lu

e

Discounted Cumulative Relevance
Data from churn case

gradient boosting
logistic regression
average
optimal

Figure 2.6: DCG(p), ∀p, 0 < p ≤ N

Normalized discounted cumulative gain (nDCG) is like loss 2.2.2 a
projection on a discounted cumulative optimal, or a discounted cumulative ideal recom-
mendation, but unlike loss, nDCG utilizes DCG rather than CG, seen in figure 2.7. Fur-
ther reading on nDCG can be found by Ravikumar, Tewari, Ambuj, and Yang [16], who
discusses nDCG consistencty, Valizadegan, Jin, Zhang and Mao [22], who covers opti-
mization of nDCG, and Wang, Wang, Li and He [25], who have conducted a theoretical
analysis of nDCG type ranking measures.

nDCG Idl(p) = DCGRel/DCGIdl , ∀p, 0 < p ≤ N (2.25)

nDCGOpt(p) = DCGRel/DCGOpt ,∀p, 0 < p ≤ N (2.26)

0 2000 4000 6000 8000 10000
Item Position

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 D

ic
ou

nt
ed

 C
um

ul
at

iv
e

Ga
in

 R
at

io

Discounted Cumulative Relevance
Divided by Ideal Relevance

Data from churn case

gradient boosting
logistic regression
random

0 2000 4000 6000 8000 10000
Item Position

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 D

ic
ou

nt
ed

 C
um

ul
at

iv
e

Ga
in

 R
at

io

Discounted Cumulative Relevance Value
Divided by Optimal Relevance

Data from churn case

gradient boosting
logistic regression
average
optimal

Figure 2.7: Left: nDCG
Idl
(p), ∀p, 0 < p ≤ N ,

Right: nDCGOpt(p),∀p, 0 < p ≤ N

24

2.2 E  

2.2.3 Comparison
Shani and Gunawardana [20] explains that between any pair of recommendations two com-
parisons can be taken into account: confidence and average.

Confidence
Confidence is computed as a per user performance measure. Given a pair of recommenda-
tionsA and B, from different recommender models, the number of times A outperforms B
is denoted nA and the number of times B outperforms A is denoted nB. The significance
level is the probability that A is not truly better than B. Confidence is estimated as the
probability of at least nA out of n = nA + nB, 0.5-probability binomial trails succeed-
ing [20], and is given by:

p = (0.5)n
n∑

i=nA

(
n

i

)
(2.27)

This approach shows whether A outperforms B with a 95% confidence, but does not show
by what magnitude.

Average
Evaluating the magnitude by which a model outperforms another another can be done by
comparing each model's average performance. With enough users an expected value (E)
and variance (V) in the performance can be calculated, and a stochastic comparison of
magnitude can done.

2.2.4 Complications with Evaluation
Recommender evaluation is dependant on the accuracy of the data. Off-line experiments
rely on historical data and are subject to changes in the user base. In cases where personal
predictions are made, such as in Expermaker's retailer project, the system evaluation de-
pends on users' change of opinions and whims. It has been suggested that a recommender
model cannot be more accurate than the variance in the users' habits [7].

Off-line experiments cannot take into account new items, or users who have no history.
Introducing a new item that does not exist in the test data will not give it any score by itself.
A serendipitous item will thus be neglected despite the possibility of being liked, and can
only be tested with a content-based similarity score. Models promoting such items will
more than likely perform worse in an off-line experimental setting. These items have been
shown to be important for recommender models [20].

In user studies evaluation must trust the congruency of user scores, some users may rate
all questions the same, while others may rate arbitrarily. To counter this methods to detect
incongruous behaviour can be applied, and remove those users. One such method is to
provide contradictory questions. Additional complication with user studies come from
the users' interpretation of the grading. Normalization of users' grades can be done to
allow comparison between users.

25

2. B

26

Chapter 3
Approach

While the main task is to set up a platform that can be used to evaluate any recommender
system with only minor work, there are a few sub problems that need attention. The idea
used to build a generic platform is to use a modular, and configurable, framework. Sec-
tion 3.1 introduces the philosophical approach taken, and describes the problems encoun-
teredt. This chapter also formally introduces the churn 3.2 and retailer 3.3 cases.

The two cases, churn and retailer, are useful as comparison as they need different ap-
proaches. The churn case targets a single recommendation, and can easily be compared to
a classification problem. The retailer case need to handle multiple personal recommenda-
tions, and must be evaluated globally with the individual recommendation evaluations as
base. Both can be viewed as ranking problems, and can thus be effectively evaluated with
the same metrics.

3.1 Philosophy
The requirements for a generic evaluation platform for recommender systems have to be
separated into a few sub problems. Modularity, described in section 3.1.1, is a first step of
making sure the framework can be used to solve different types of problems. Section 3.1.2
introduces the approach taken to evaluate recommender systems.

3.1.1 Modularity
Modularity is not a problem with a specific result, but rather a problem which needs to be
solved to evaluate different recommender problems. By building the framework modularly,
different recommender problems can be approached with vastly decreased overhead work.
Exploring the design and implementation of the framework, with two different cases, the

27

3. A

churn case, and the retailer case, kept in mind, the parts of the framework that can be
generic, and the parts that have to be modular, can be identified.

To make a framework accommodate different types of problems, the problems, and their
possible differences, must first be identified. The churn case is actually a classification
problem, for which the most probable churners, customers who cancel their contract with
the service provider, can be recommended. The retailer case is a multiple recommendation
problem. Each customer should be recommended a list of products they may be interested
in. The singular recommendation versus the multiple one is one of the main differences
identified between the two examples.

3.1.2 Average
Evaluating a recommender system in practice is by its nature not deterministic. The test
data is generally biased towards the recommendation. A user is less likely to select an
item that has not been recommended, and evaluating a system which already has a rec-
ommender, off-line, without using that recommender, will therefore produce a systemic
error. A replication of the actually used model will likely get a better result than it should.

The absolute knowledge of the churn case, with no dependencies on previous schemes to
change the outcome of the recommendation, is another important factor to consider. The
retailer case depends strongly on the recommendation system in place, i.e., the customers
behaviour is affected by what they have seen. The approach taken in this project is to
simulate the churn case as a multiple recommendation problem, more similar to the retailer
case.

Cross-validation [9] is used to motive the accuracy of an average evaluation. Through
comparison of a classification problem, the churn case, as a recommendation with a simu-
lated average of the same problem. It must be shown that the average can correspond to a
single evaluation. Applying a naive recommender on the data of the churn case, with the
classification probabilities as weights, a predictable result can be retrieved. By using 100-
fold1 cross evaluation it can be shown how average corresponds to the single validation.
An N−fold cross evaluation, unlike a single validation, would also allow computation of
confidence.

As a proof of concept the average evaluation method will then be applied to the retailer
system, where we have no method of singularly evaluating the system.

110 − 20-fold should be enough, according to Kohavi [9], but as there is no significant performance
reduction using 100-fold it is deemed good enough to use.

28

3.2 C

3.2 Churn
Readily available for this thesis to use as an example is the churn dataset that Johan Wen-
säter used in [26]. The churn dataset is a clear cut case, with a training period, and known
result. A churning customer is a customer who cancels a plan, most likely to move to a
different provider. The churn case is essentially a classification problem, where the goal is
to find which customers are going to churn. By training a classification model on a subset
of the customers, with known result, whether or not the remaining customers will churn,
can be predicted. This can then be tested against the knowledge of their actual churn-
ing. The churning example is a good platform to start exploring a recommender problem,
as this classification problem can easily be transformed into a recommender problem by
recommending customers predicted, i.e. classed, as churners.

Wensäter describes the churn dataset in [26]:

"One of the most common business problems involving statistical classifica-
tion and machine learning is within an area called customer churn predic-
tion. The term churn, most widely used in the telecommunication industry,
describes a customers tendency to cancel a service at the end of a contract.
What makes churn such a hot topic is the fact that the western market is sat-
urated, with many vibrant competitors fighting to win customers over. The
harsh competition results in a five to six times higher cost associated with
acquiring new customer, compared with retaining old. In general, long-term
customers are also associated with many beneficial attributes such as higher
profits and less likely to be influenced by competitive marketing [24]. These
factors contribute to the case that small improvements in customer retention
lead to significant increases in profits [23]."

"With this in mind, it is not hard to understand the interest in using machine
learning algorithms on customer data in order to find a predictive classifica-
tion model capable of identifying the most likely churners among customers.
With such a model at hand, a telecommunication company (operator) can take
preventive actions such as calling the most likely churners with a special offer
to try to retain them. Even if most customers can not be persuaded the effort
is still worthwhile considering the costs of attracting new customers and the
benefits of retaining as many as possible."

3.2.1 Data
The churn data found in appendix A consists of a set of around a hundred thousand cus-
tomers, with customer data and their activity over the period of three months, August until
October 1997, and whether or not they churned from the service within four months after
that period. The customer data are features describing the customer. The activity data are
features describing customer usage. Lastly is a binary feature telling weather a customer
churned or not within the four month period following the data sampling period. More on
this specific churn dataset can be found in [26].

29

3. A

3.2.2 Recommender Purpose
The target is to create a recommendation of customers for marketing focus. By predicting
what customers are most likely to churn the operator gets an idea of who to contact to
prevent churning. A theoretical scenario for using the churner recommender system could
be described as follows:

The total amount of customers, 106495, and the number of churners are 6231, with
p = 106495

6231
≈ 5.9% as the average probability that a customer is a churner. Using 90% of

the dataset for training, and 10% for prediction and testing. The test is done on around ten
thousand customers, N ≈ 10000. The expected number of churners for that test would
be around 600, X = N ∗ p = 10000 ∗ 5.9% = 590 The operator is assumed to budget a
scheme, with a budgeting modifier k = 2 to contact X ∗k = 590∗2 = 1180 customers, to
increase the chance that all churners are contacted without having to contact all customers.

3.3 The Retailer
The retailer is one of the biggest grocery store chains in the United States. To attract new,
and keep old, customers they provide discount coupons. New coupons are created a couple
of times every week, and the lifetime of a coupon is generally between one week to a few
weeks. To make it easy for customers to see, and choose, coupons, they provide a mobile
application, and a web interface. In both the mobile, and the web interface, users can clip
(a metaphor for actually clipping a coupon from a magazine) any coupon in the interface.
One of the views in the interface is based on a personalized recommender system that tries
predict which coupons the user is most likely to use. It shows a sorted list with the most
likely at the top. The goal for the recommender system is to get as many clips as possible.

3.3.1 Data
The available data for this project is transaction history for around seven thousand users
between January 1st 2013 until December 31st 2013. This data contains user ids (called
household ids), and receipts, which in turn contains product id (called UPC or Universal
Product Code), and time stamp. Household ids are anonymous to protect the integrity of
the users, and the retailer.

Users in the dataset are uniformly distributed in terms of activity from all of the retailer
users. The data available from this project is sampled from test group available to Expert-
maker for their development. Around three houndred thousand households are included
in this development set. Sampling was done by randomly taking around seven hundred
users from each of ten groups, split by number of transactions. The total set used for this
project contains 6553 households.

The item mapping contains over two and a half million products. A preprocessing is
done to reduce the list of products to only include those that exist in any receipt in the
transaction history. This turns out to be about fifty thousand products, where the bulk of
the transactions were represented by only 10% of them.

30

3.3 T R

3.3.2 Recommender Purpose
The real system Expertmaker is creating for the retailer recommends coupons. These
coupons can be a discount for any single product, but is often a discount for a set of prod-
ucts. Coupons can be national, local for region, or for a single store. The recommendations
is a personalized list list of coupons relevant for each individual customer. Customers are
assumed to view only around five to a hundred coupons, with an average of about twenty.

To simplify the task of the example recommender system to build for this project the
requirements are loosened. Instead of coupons the system recommends products. The
recommender system produces a list of recommended products in order of relevance, for
each customer. For this purpose it is assumed customers will purchase around one hundred
products on average. The total list recommended contains around one thousand products.
While this does not exactly correspond to the project Expermaker is doing, it is an approx-
imation of such a project.

31

3. A

32

Chapter 4
Implementation

This chapter describes the implementation done for this project. Section 4.1 introduces the
reader to the programming language chosen, and some of the machine learning packages
used, for this project. Section 4.2 describes the framework implemented for recommender
system evaluation. Sections 4.3 and 4.4 describes the specifics for the churn and retailer
respectively.

4.1 Development
This section introduces the python scripting language, and the available machine learning
packages that is available with it.

Since the language used at Expertmaker is Python 2.x [15], it was the obvious choice for
this project as well. All implementation of this project executes with Python 2.7. Python
is a scripting language with powerful, and easy to use, ways for handling lists, dictionaries,
and tuples. There are useful packages available for numerical computations, NumPy [14],
and graph generation, pyplot in matplotlib [12].

For machine learning the scikit-learn [19] has been used. Scikit-learn contains imple-
mentations of multiple different classification, regression, and clustering models. Recom-
mended by the Expertmaker supervisor, a few of different models are used for this project:
among the linear models Logistic Regression; among the ensemble models Random For-
est, Extra Trees Classifier and Gradient Boosting Classifier; and among the neighbors
models Nearest Neighbors.

33

4. I

4.2 Framework
To fully experiment with, and understand, recommender systems, and their evaluation, a
modular framework was constructed from scratch. The background on which the frame-
work is built is explored in the section 4.2.1. In section 4.2.2 the sequence of the project
framework is described, and in section 4.2.3 its modularity is explained. Section 4.2.4 de-
scribes configuration of the framework, and finally section 4.2.5 describes other utilities
in the framework.

4.2.1 Recommender System Evaluation
A recommender system, in its simplest form, can be seen as a sorting function. The input
is an unsorted list of items, the allocation, A, and the output is the sorted list, the rec-
ommendation, R. The recommended items are sorted by importance, from most to least
important:

Figure 4.1: Recommender Evaluation System, RES, flow chart

RM (A) ⇒ R (4.1)

The recommender model, seen in figure 4.1, is usually a dynamically updated system
based on some training data, TrD. The model is created by an initialization function, IF:

IF (TrD) ⇒ RM (4.2)

34

4.2 F

In terms of evaluation, the resulting recommendation is compared to some test data,
TeD with an evaluation function, EF, which result in some score, S. The test data can be
collected from a live system, a user study, or a subset of historical data. The score can be
a value such as precision, or recall or a list of ranking scores such as gain, or nDCG. EF
can thus be written:

EF (TeD , R) ⇒ S (4.3)

When using a historical data, HD, for both training, and testing, the data must be split
into training, and test, subsets. How to do the split is itself an important step, and can be
done in several different ways. It's preferable to find a natural split, such as a cut-off in
time. If that is not possible the split can done randomly, or better with a balancing factor
that ensures ratios, such as classification target values between items, are the same in both
training, and test data. A split function SF can be written:

SF (HD)− > TrD ,TeD (4.4)

The allocation is then in turn extracted from the test data with an allocation function,
AF:

AF (TeD) ⇒ A (4.5)

Combining all 4.1, 4.2, 4.3, 4.4, 4.5 is essentially a complete recommender evaluation
system, RES:

RES (HD) ⇒ S (4.6)

To get a reasonably significant result the evaluation should be done for multiple users.
This may force each step to be done for each user. Even when it is not necessary to re-
run the data split, and model creation, the manual work to evaluate multiple models with
multiple users is at best tedious.

4.2.2 Sequence
Given the steps for creating a recommender model, and evaluating it, it is not unreasonable
to create a framework. Steps can be taken to do everything in one sequence. Considerations
are taken to allow configuration; storing, and saving, of partial results for faster re-run; and
having multiple, and modular, ways of inter-comparisons between models. A sequential
process, seen in figure 4.2, with the following steps is introduced:

• XML validation & internal configuration creation

• Data extraction and cleaning

• Sampling

– Sampling training and test data

35

4. I

– Sampling users
– Allocating items

• Model construction

• Model execution

• Simulating user behaviour

• Evaluating model result

Figure 4.2: Framework flow chart

XML validation
To allow for small changes in this system, like changing model, sampling, or evaluation
method, a configuration XML file is loaded when starting the framework. This also allows
for easy saving and loading of previously executed steps by comparing hashes of sequence
sections in configuration with saved section. Once loaded, the configuration is checked to
control whether it contains all essential information.

36

4.2 F

Data extraction and cleaning
As with most data from external sources, the data used need to be preprocessed. This
section removes unwanted information, as well as optimizes the data for fast iteration.
Extraction, and cleaning, are described in further detail in 4.3.1, and 4.4.1, for the churn,
and the retailer datasets, respectively.

Sampling
Sampling is done in three steps to set up a modular workspace that can be run with different
training data, test data, users, and allocations.

• Sampling training, and test data

• Sampling users

• Allocating items

Sampling is described in further detail in 4.3.2, and 4.4.2, for the churn, and the retailer
datasets, respectively.

Sampling train- and test- data To separate training and test data, specific
methods for a given dataset must be implemented. This can be done as random extrac-
tion, or by separation in continuity, for example in time, as in the retailer case 4.4.2. Too
exhaustive data can also be limited by extracting a portion, or too limited data can be ex-
tended by generating different permutations of the data. Generally a dataset is separated
into a large training set, and a smaller test set.

The training data is directly tied to the model construction, while the test data is directly
tied to the evaluation. They must as such be constructed to suit their respective purposes.
With different models, and simulations, several different topologies may have to be con-
structed, as is the case with the retailer described in 4.4.2.

Sampling users Users are sampled to correspond to a training- and test- pair. A
unique model will eventually be generated for each user, and the evaluation is done on a
per user basis. In datasets where there are many users, a sample may be selected to run
the evaluation system in a reasonable time, and memory, frame.

Allocating items The items allocated as input for the recommender model is a
subset of the test data without any additional information. The subset can essentially be
anything between a single item, and every single item, in the test data.

Model execution and testing
Models and evaluation are run in sequence for each user in an arbitrary order. Each user
has an individual allocation that is provided to the model along with the user id. The
model provides a recommendation for that user that is passed along, with the user id, to
the simulation and evaluation method.

37

4. I

Each model is executed with data, and parameters, according to the configuration. The
result is a sorted list of items with weights given by the model.

Simulation is done by giving each item in the test data a value. The value is created by
individually scoring each item in each user’s recommendation list, and adding them up per
position.

Simulation is described in further detail in 4.3.3, and 4.4.3, for the churn, and the retailer
datasets, respectively.

Evaluate model results
Since both the churn case, and the retailer case, are recommendations with preordained
lengths, ranking accuracy was selected as focus for evaluation. Lift, and nDCG, were
selected among the available metrics. Lift was selected because it has been frequently used
at Expertmaker, while nDCG is a natural development of Lift, but also takes position into
account. The classification accuracy metrics, Precision, Recall, Specificity, and Accuracy
are also computed.

While Lift, and nDCG, computes lists that can be displayed as graphs, they can also
provide a single metric value. This is a value at a certain preordained position, decided
based on knowledge of the data. The classification accuracies are computed at the same
preordained position. By considering all items before, and including, that position to be
predicted as the positive class and all items after to be predicted as the negative class.

4.2.3 Modularity
Each step is essentially modular, and can be replaced independently. There is, however,
dependence between the training data, and the model creation. The purpose of this is to
allow usage of completely different datasets, implementations of different models, and
evaluation, for each dataset.

Visualization
Each evaluation method computes a graph with all models used, and creates a numeric
score for them. Scores are normalized by dividing each numeric score by the lowest score,
e.g. the lowest score is 1 after normalization, and all other scores are larger than one
resulting in a simple comparison.

The purpose of evaluation is to compare two or more things. When comparing recom-
mender systems the specific purpose is to find which algorithm produces the best recom-
mendations. This could be the comparison between several significantly different can-
didate algorithms, or the comparison of one algorithm with different parameters. Two
important ways of comparisons have been identified for this project. A visual comparison:
a figure, or graph; allows a developer a quick overview of the evaluation. It is not difficult

38

4.3 C

for a human to determine difference to a certain degree. To automatically compare, a sin-
gle numeric value is the most straightforward. By calculating a score for each evaluation,
they can be sorted from best to worst.

The drawback with visual comparison is that it can be unclear what actually is better.
Two or more algorithms can give very similar results, making it difficult to determine
which one is better. A single score makes it easy to sort algorithms and see exactly which
one is better, but the score will always depend on, and be limited by, the method of scoring.

4.2.4 Configuration
Configuration is written as XML in a file that is called at execution, as a parameter. Several
configuration files can be called in sequence:

$ python app.py config/config_1.xml config/config_2.xml

Each configuration requires setting the path to the framework, and the path to the data
repository. Implementation of an import function, specific for each case, defines how to
find data within the data repository. Additionally each part in the sequence stores results in
the data repository, allowing loading import, and sample, results without the need to exe-
cute the functions each time. In the configuration it is also defined which sample methods,
with parameters, to use. Sampling is separated into data sampling, separation of training
and test datasets, user sampling when doing multiple personal recommendations, and offer
sampling, i.e., creating allocation as input for models.

Finally, and most importantly, it is defined in the configuration file what models to use,
evaluation methods, and how to display scores. Models are configured with references to
the data necessary and parameter values.

A configuration file template can be found in appendix B

4.2.5 Utilities
A logging system was also created to allow easy access to execution meta data.

4.3 Churn
As a single recommendation problem the churn case must be extended to simulate multiple
users. By extracting multiple permutations of the data it can be executed as if there were
multiple recommendations.

4.3.1 Data cleaning
The churn input provided by Wensäter [26] is remodelled to a numpy array, needed for the
scikit-learn models used.

39

4. I

4.3.2 Sampling
Extracts subsets of the data for N-fold cross evaluation. Both with, and without, replace-
ment is implemented. After experimentation it was decided there is no benefit to not using
replacement. Fractions of the data can be selected for training, and test, which will be
repeated N times. Each permutation is the user data, and the test data is directly applied
as the recommender allocation.

Models
The following models, from scikit learn classification models [19].

• extra tree [19]

is a meta estimator that fits a number of randomized decision trees (a.k.a.
extra-trees) on various sub-samples of the dataset and use averaging to
improve the predictive accuracy and control over-fitting.

• gradient boosting [19]

builds an additive model in a forward stage-wise fashion; it allows for
the optimization of arbitrary differentiable loss functions. In each stage
n_classes_ regression trees are fit on the negative gradient of the binomial
or multinomial deviance loss function. Binary classification is a special
case where only a single regression tree is induced.

• logistic regression [19]

implements regularized logistic regression using the liblinear library,
newton-cg and lbfgs solvers. It can handle both dense and sparse input.

• nearest neighbors [19]

provides functionality for unsupervised and supervised neighbors-based
learning methods. Unsupervised nearest neighbors is the foundation of
many other learning methods, notably manifold learning and spectral
clustering. Supervised neighbors-based learning comes in two flavors:
classification for data with discrete labels, and regression for data with
continuous labels.

• random forest [19]

is a meta estimator that fits a number of decision tree classifiers on various
sub-samples of the dataset and use averaging to improve the predictive
accuracy and control over-fitting.

Three additional models are used, random, average, and optimal.

• random will give random weights to each item

• average will score exactly average for every item for every user

• optimal will score optimally for every user

40

4.4 T R

4.3.3 Simulation
Each recommendation is scored according to the known result in the test data.

4.3.4 Evaluation
Evaluation is set at 10% of the total data. This is arbitrarily selected by the author, but
as the amount of churners is known to be around 6% it stands to reason a margin of error
is useful for the result. It is imagined that the mobile phone operator is willing to budget
money to contact 10% of its customers to reduces the amount of churners.

4.4 The Retailer
Without having any pre-made recommender systems to use it was necessary to first create
a few recommender models. These models are based on collaborative filters. In the real
use of the system a set of coupons is provided to a recommender system which outputs
individual, per household, sorting of the coupons, excluding all coupons that have already
been used. Since the coupons data was limited to only two months (November and Decem-
ber 2013), and the transaction history covered a longer period (January until December)
it was decided to approach the problem using only the transaction history data.

4.4.1 Data cleaning
• date to transaction

A data structure with a mapping system date → hh_id → upc_id

• user to transaction
A data structure with a mapping system hh_id → date → upc_id

• items
A data set with all existing upc_ids

4.4.2 Sampling
The following explains the configuration, and the details of the specific configuration for
the results in section 5.2.

Sampling training and test data
For each user the clean data consist of a list of dates with items bought at that date. In the
configuration two date intervals can be set, one for the training data, and one for test data.
Allowing for arbitrary training, and test, intervals allows for short tests as well as more
than one training, or test, interval, within the period of the data, without overlapping. For
the results in section 5.2 the training set is from 2013-01-01 until 2013-09-30, and the test
set is from 2013-10-31 until 2013-11-30.

41

4. I

Sampling users
Users can be sampled at random, or using the full set of 6553 users. The results in sec-
tion 5.2 includes all users.

Allocating items
The item data include more than two hundred and fifty million items. From this a set of
around fifty thousand items has been extracted. Those are all items that had been used at
any time in the historical data. Even this is too much to process in a reasonable amount
of time, on the machines provided, and most items are rarely used. To make a useful, and
manageable, dataset of items for the recommender systems a sample was needed. Three
ways of sampling items is implemented:

• Random
Selects N items randomly from the item dataset.

• First
Selects the N most common item from the item dataset.

• All
Selects all the, around fifty thousand, items in the item dataset.

Models
All models take a list of offers as input, and return the sorted list, as well as the weights
used for sorting internally.

• mostbought is a global model produces the same recommendations for all users. It
sorts the allocated items after what is most bought by all users over the train period.

• individualmostbought is an individual model that sorts the allocated items after what
is most bought by a user during the train period. Any item that is not in the users
individual history is placed after the individual recommendations, and sorted by the
mostbought model.

• randomweights generate random weights for each item and sorts them accordingly.

4.4.3 Simulation
Three user models are implemented to simulate user behaviour, exist_value, sum_value
and time_value, described below. The basic ranking value list (individual relevance list)
can be considered both individually per user, or for all users (combined relevance list).
Each simulation tries to model user behaviour based on historical test data. When time is
considered the first date in the test period is considered the test date.

• exist_value scores items if they exist in the test period for each user.

• sum_value scores items how many times they exist in the test period for each user.

• time_value scores items based on temporal distance from test date in the test period
for each user.

42

4.4 T R

4.4.4 Evaluation
Evaluation is set at 10% of the total data. This is arbitrarily selected by the author, but it is
deemed reasonable that a user would buy around a hundred different items, 1000 ∗ 10%,
on average during the one month test period a store.

43

4. I

44

Chapter 5
Results

This chapter presents the results of the executed implementations. The churn case 5.1 is
done in two parts: training the models one time, and evaluating their recommendations
against a validation set; running the same models multiple times with different permuta-
tions of the test data, and evaluated against a corresponding test data. The retailer case in
section 5.2 shows the results of evaluating the more complicated system.

5.1 Churn
The churn case shows that the framework can be run with different types of data, and with
different models suitable for the data without excessive amount of work. It also shows that
an average evaluation of multiple recommendations gives results similar to, and essentially
the same relative score as, an evaluation of a single recommendation. Since the different
ranking evaluations used are only transforms of the gain value only two, lift, and ideal
nDCG, are shown. They tend to be the most clear displays and are still slightly different,
nDCG has a discount function, while lift does not. A table with the classification metrics;
precision, recall, specificity, and accuracy, at 10%, is also displayed for each execution.

Section 5.1.1 shows the result from running a single validation execution. Section 5.1.2
shows the results from running the evaluation with 100-fold cross evaluation.

5.1.1 Single Evaluation
This section shows results from a single validation execution. The model has been trained
on the full dataset, that in section 5.1.2 has been split into multiple training, and test, subset
pairs. Evaluation has been done against a validation set that was isolated before import.

Scores at the 10% target of 5.1:

45

5. R

0 2000 4000 6000 8000 10000
Item Position

0

5

10

15

Li
ft

Ra
tio

Relevance Value / Avereage Relevance Value
Data from churn case

extra tree
gradient boosting
logistic regression
nearest neighbors
random forest
average
optimal

Figure 5.1: Lift for churn validation

• extra tree value at position Lift(1065) = 2.1362

• gradient boosting Lift(1065) = 3.5294

• logistic regression Lift(1065) = 2.1672

• nearest neighbors Lift(1065) = 2.5387

• random forest Lift(1065) = 2.5697

• average Lift(1065) = 1.0000

• optimal Lift(1065) = 10.0000

By displaying average, and optimal, a good frame is set for the contending models. All
models are expected to perform better than average and worse than optimal. By using
average, and optimal, as references a reasonable performance can easier be seen.

Scores at the 10% target of 5.2:

• extra tree nDCG(1065) = 0.2218

• gradient boosting nDCG(1065) = 0.3501

• logistic regression nDCG(1065) = 0.2106

• nearest neighbors nDCG(1065) = 0.2573

• random forest nDCG(1065) = 0.2530

• random nDCG(1065) = 0.0927

46

5.1 C

0 2000 4000 6000 8000 10000
Item Position

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 D

ic
ou

nt
ed

 C
um

ul
at

iv
e

Ga
in

 R
at

io

Discounted Cumulative Relevance
Divided by Ideal Relevance

Data from churn case

extra tree
gradient boosting
logistic regression
nearest neighbors
random forest
random

Figure 5.2: nDCG for churn validation

Since average has the same values in every position, and optimal is perfectly sorted,
they will both be equal to their ideal sorting. Equality with ideal means nDCG will give
a perfect result, i.e. the value will be 1 in every position. This makes them unusable as
reference. To compensate for this a random sorting is provided as reference instead.

Module Precision Recall Specificity Accuracy
nearest neighbors 0.254 0.154 0.910 0.870

average 0.100 0.061 0.900 0.851

random forest 0.257 0.156 0.911 0.871

extra tree 0.214 0.130 0.907 0.865

randomweight 0.105 0.064 0.900 0.852

gradient boosting 0.353 0.214 0.916 0.882

logit reg 0.217 0.131 0.907 0.866

optimal 1.000 0.607 0.958 0.961

Table 5.1: Classification accuracy for churn validation

It can clearly be seen from the Lift figure 5.1, the nDCG figure 5.2, and the classification
accuracy table 5.1, metrics, that gradient boosting performs the best among the models.
Extra tree, nearest neighbors, random forest, and logistic regression, performs very simi-
larly, in particular in the highest ranks. At 10% there is a difference between those models,
but it is difficult to determine the significance of that difference. With the optimal model
accuracy metric it can be seen that 95.9% of the first 10% items are relevant.

47

5. R

5.1.2 Multiple Permutations Evaluation
This section shows the results of running a 100-fold cross evaluation of the churn case
dataset. The models has been trained on 90% of the dataset, and tested against 10%, with
100 randomly split permutations of the data.

0 2000 4000 6000 8000 10000
Item Position

0

5

10

15

Li
ft

Ra
tio

Relevance Value / Avereage Relevance Value
Data from churn case

extra tree
gradient boosting
logistic regression
nearest neighbors
random forest
average
optimal

Figure 5.3: Lift for churn 100-fold cross evaluation

Scores at the 10% target of figure 5.3:

• extra tree Lift(1064) = 2.4289

• gradient boosting Lift(1064) = 3.5953

• logistic regression Lift(1064) = 2.0277

• nearest neighbors Lift(1064) = 2.8027

• random forest Lift(1064) = 2.6822

• average Lift(1064) = 1.0000

• optimal Lift(1064) = 10.0085

48

5.1 C

0 2000 4000 6000 8000 10000
Item Position

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 D

ic
ou

nt
ed

 C
um

ul
at

iv
e

Ga
in

 R
at

io

Discounted Cumulative Relevance
Divided by Ideal Relevance

Data from churn case

extra tree
gradient boosting
logistic regression
nearest neighbors
random forest
random

Figure 5.4: nDCG for churn 100-fold cross evaluation

Scores at the 10% target of figure 5.4:

• extra tree nDCG(1064) = 0.8874

• gradient boosting nDCG(1064) = 0.9586

• logistic regression nDCG(1064) = 0.8325

• nearest neighbors nDCG(1064) = 0.9147

• random forest nDCG(1064) = 0.9003

• random nDCG(1064) = 0.5552

As with the validation set gradient boosting performs better than the other models, seen
in figures 5.3, and 5.4, and table 5.2. The main difference that can be observed between
validation and 100-fold cross evaluation is that logistic regression tends to perform worse,
in the later case. Using the cross evaluation method it is possible to compute the signifi-
cance of the difference between models, as well as the confidence by how often a model
outperforms another. This is, however, at this point not implemented in this system.

49

5. R

Module Precision Recall Specificity Accuracy
nearest neighbors 0.280 0.164 0.911 0.874

average 0.100 0.059 0.900 0.853

random forest 0.268 0.157 0.911 0.873

extra tree 0.243 0.142 0.909 0.870

randomweight 0.100 0.058 0.900 0.853

gradient boosting 0.359 0.210 0.916 0.884

logit reg 0.203 0.119 0.906 0.865

optimal 1.000 0.586 0.956 0.959

Table 5.2: Classification accuracy for churn 100-fold cross eval-
uation

5.2 The Retailer
This section shows the nDCG, and classification accuracy, results for an execution of the
framework with all 6553 users, and 1000 items at the 100 position for the three models,
"mostbought", "individualmostbought", and "randomweight". The models are described
in section 4.4.

0 200 400 600 800 1000
Item Position

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 D

ic
ou

nt
ed

 C
um

ul
at

iv
e

Ga
in

 R
at

io

Discounted Cumulative Relevance
Divided by Ideal Relevance

Data from retailer case

mostbought
individualmostbought
randomweight

Figure 5.5: nDCGfor three models with all users and the 1000
most common items

50

5.2 T R

Scores at the 10% target of figure 5.5:

• mostbought nDCG(100) = 0.5577

• individualmostbought nDCG(100) = 0.5727

• randomweight nDCG(100) = 0.0921

Module Precision Recall Specificity Accuracy
individualmostbought 0.070 0.134 0.892 0.735

mostbought 0.069 0.126 0.894 0.743

randomweight 0.019 0.013 0.894 0.833

Table 5.3: Classification accuracy metrics for three models with
all users and the 1000 most common items

By analysing figure 5.5, and table 5.3 it can be seen that the two models, "individual-
mostbought", and "mostbought", are similar, compared to the random model. Similarity
is not unexpected as they are essentially based on the same algorithm. It can clearly be
seen though, that "individualmostbought" performs slightly better at all points, with 2.7%
better in nDCG at the 10% mark. It may be prudent to statistically compute if is signifi-
cantly better, but as the result is consistent for the full length of the recommendation it at
least hints at a significant difference.

Precision, and Recall, similarly shows that "individualmostbought" is slightly better than
"mostbought". The random model has a better score in accuracy, this is expected as each
position has a high probability to have an item assigned to it. With 6553 randomly sorted
permutations of 1000 items it stands to reason that each position will get a correct item
once in a while. High Specificity for all models shows that most items among the top 100
sorted are relevant to some users.

51

5. R

52

Chapter 6
Discussion

6.1 Results
It is the opinion of the author that the results of the evaluations are inconclusive. The
analysis is not sufficient to determine if any of the models significantly outperforms the
other. From the knowledge gained from this project, however, it stands to reason that the
results are useful as a part of a larger evaluation. To get complete results the confidence
of each model should be tested against each other.

6.2 Evaluation
Evaluating with only historical data will only give a quantitative score, but given other
properties of both users, and items, it does not seem impossible to create a user model that
can give a qualitative score as well. With the power of a modular evaluation framework it
is then easy to create a combined evaluation. The qualitative scoring is, however, strongly
application dependant and will take further research to determine how to do properly.

6.3 Framework
The framework and how it executes is without a doubt a success. It is easy to see that the
platform created is generic enough to evaluate the two cases used. From those results it
can be extrapolated that it should function with only minor overhead work for any similar
recommender problem. For recommender problems of other nature, such as systems rec-
ommending whole sets of items rather than lists with order importance, additional evalua-
tion metrics is necessary to implement. It is also likely that, when applying the framework
to more different recommender problems, adjustments may be needed. These adjustments
will, however, only make the framework more generic.

53

6. D

The modularity of the framework has turned out to be useful for evaluation of recom-
mender systems. With the configuration methodology it is easy to add models, and change
parameters, of models, as well as implementing specific models. Models are easy to com-
pare by both graph, and single metric values extracted from the graphs. Different graphs
can be displayed to provide a good overview of the performance of models. With the im-
plementation of randomized models it is also easy to show a baseline of a least expected
performance.

By implementing variance on multiple evaluation tests it should be possible to evaluate
the significance of any comparison. It should also be possible to run pairwise comparisons
between models through the configuration system and from that compute the confidence
of which a model outperforms another.

6.4 Future
As the framework was implemented for experimentation, it does not seem prudent to con-
tinue the development of it specifically. However, the structure, and design, of the frame-
work is stable, and with the knowledge of how it is built a vastly improved version should
not be a difficult task. It is the hope of the author to implement the techniques learned
from this project in the big data framework Expertmaker is using for their live projects.

54

Chapter 7
Conclusion

While an evaluation framework for recommender systems cannot be completely generic,
there are several parts that can be, and others that only need slight modifications depend-
ing on application. With a modular framework it is only a matter of implementing suitable
modules to accommodate evaluation of a new recommender system. Data can often easily
be structured as numeric matrices, which can be used for basic models, and evaluation.
With the singular value score, and displayed graphics, a developer can get an idea of the
relative power of the models tested. It is only a matter of implementing more metrics to
make such a framework applicable with more different recommender systems. Ranking
accuracy metrics may be useful for certain problems, such as the churn and retailer cases,
but for other problems, classification accuracy and prediction accuracy may be more use-
ful. How to compare metrics must be considered to a greater degree than done in this
project, but as the focus of the project was to design and structure a generic platform, this
is only a consideration for the future.

55

7. C

56

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering, 17(6):734--749, June 2005.

[2] Amazon. http://www.amazon.com, 2014. [Online; accessed 03-December-
2014].

[3] Edgar Anderson. The species problem in iris. Missouri Botanical Garden, 23:457--
509, 1936. http://biostor.org/reference/11559.

[4] Joost de Wit. Evaluating recommender systems. Master's thesis, University of
Twente, May 2008. TNO Information and Communication Technology.

[5] Expertmaker. http://www.expertmaker.com. Online; accessed 24-May-
2015.

[6] Filmtipset. http://nyheter24.se/filmtipset/. Online; accessed 05-
May-2015.

[7] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and T. Riedl John.
Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on
Information Systems, 22(1):5--53, 1 2004.

[8] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending and
evaluating choices in a virtual community of use. http://www.sigchi.org/
chi95/proceedings/papers/wch_bdy.htm, 1995. Online; accessed 05-
May-2015.

[9] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. International Joint Conference on Artificial Intelligence (IJCAI),
1995.

[10] Yehuda Koren and Robert Bell. Advances in Collaborative Filtering, chapter 5.
Springer New York Dordrecht Heidelberg London, 2011. Recommender Systems
Handbook [17].

57

http://www.amazon.com
http://biostor.org/reference/11559
http://www.expertmaker.com
http://nyheter24.se/filmtipset/
http://www.sigchi.org/chi95/proceedings/papers/wch_bdy.htm
http://www.sigchi.org/chi95/proceedings/papers/wch_bdy.htm

BIBLIOGRAPHY

[11] Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-based Rec-
ommender Systems: State of the Art and Trends, chapter 3. Springer New York
Dordrecht Heidelberg London, 2011. Recommender Systems Handbook [17].

[12] matplotlib 1.2.1. http://matplotlib.org/. [Online; accessed 09-June-
2015].

[13] Netflix. https://www.netflix.com/. [Online; accessed 05-May-2015].

[14] Numpy 1.7.1. http://www.numpy.org/. [Online; accessed 09-June-2015].

[15] Python 2.7. https://www.python.org/. [Online; accessed 09-June-2015].

[16] Pradeep Ravikumar, Ambuj Tewari, and Eunho Yang. On NDCG Consistency of
Listwise Ranking Methods. In 14th International Conference on Artificial Intelli-
gence and Statistics, volume 15, Fort Lauderdale, FL, USA, 2011. AISTATS.

[17] F. Recci, L. Rokach, B Shapira, and P. B. Kantor, editors. Recommender Systems
Handbook. Springer New York Dordrecht Heidelberg London, 2011.

[18] Paul Resnick, Neophtos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.
Grouplens: An open architecture for collaborative filtering of netnews. http://
ccs.mit.edu/papers/CCSWP165.html, 1994. [Online; accessed 05-May-
2015].

[19] scikit-learn 0.13.1, Machine Learning in Python. http://scikit-learn.
org/stable/, 2015. [Online; accessed 09-June-2015].

[20] Guy Shani and Asela Gunawardana. Evaluating Recommendation Systems, chapter 8.
Springer New York Dordrecht Heidelberg London, 2011. Recommender Systems
Handbook [17].

[21] The New Yorker. http://www.newyorker.com, 2014. [Online; accessed 03-
December-2014].

[22] Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jianchang Mao. Learning to rank
by optimizing ndcg measure. Master's thesis, Computer Science and Engineering,
Michigan State University and Advertising Sciences, Yahoo! Labs, 2010.

[23] Dirk Van den Peol and B. Larivière. Customer attrition analysis for financial ser-
vices using proportional hazard models. European Journal of Operational Research,
157(1):196--217, 2004.

[24] W. Verbeke, K. Dejaeger, D. Martens, and B. Hur. New insights into churn prediction
in the telecommunication sector: A profit driven data mining approach. European
Journal of Operational Research,, 218(1):2011--229, 2012.

[25] Yining Wang, Liwei Wang, Yuanzhi Li, and Di He. A theoretical analysis of ndcg
type ranking measures. Master's thesis, Institute for Interdisciplinary Information
Sciences, Tsinghua University and School of Electronics Engineering and Computer
Science, Peking University, April 2013.

58

http://matplotlib.org/
https://www.netflix.com/
http://www.numpy.org/
https://www.python.org/
http://ccs.mit.edu/papers/CCSWP165.html
http://ccs.mit.edu/papers/CCSWP165.html
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://www.newyorker.com

BIBLIOGRAPHY

[26] Johan Wensäter. Approaching business problems with machine learning - churn
prediction using a three stage decision tree. Master's thesis, Lund Institute of Tech-
nology, 2015.

[27] Ke Zhou, HongYuan Zha, Yi Chang, and Gui-Rong Xue. Learning the gain values
and discount factors of discounted cumulative gains, March 2013. http://www.
cc.gatech.edu/~zha/papers/dcg.pdf.

59

http://www.cc.gatech.edu/~zha/papers/dcg.pdf
http://www.cc.gatech.edu/~zha/papers/dcg.pdf

BIBLIOGRAPHY

60

Appendices

61

Appendix A
Churn

The following document comes with the churn prediction dataset and includes introduction
and guidelines on how to analyse it. It also contains a summary of the different variables
provided in the original dataset. The dataset used in this project has been preprocessed
according to [26].

63

C
U

S
T

O
M

E
R

S
-

D
N

A

1 Mobile Telephony Churn Prediction dataset – Sample 1

WWW.CUSTOMERS-DNA.COM |MOBILE TELEPHONY CHURN PREDICTION DATASET | FULL VERSION | NOV 2010

Mobile Telephony

Churn Prediction Dataset

Introduction

This is a dataset from a Telecom operator with approximately

100.000 customers (active and disconnected) in a tab delimited

text file. Traffic type (outgoing, incoming, voice, sms, data), traffic

destination (on net, competition), Rate plan, loyalty, traffic

behavior etc. are the main attributes of this dataset.

This dataset is divided into two sub-datasets: The first one

(churn_dataset1) with the traffic figures for 3 months history

(approx 300.000 records) and the second one (churn_dataset2)

with the profile variables for each customer (Rate plan, contract

renewal date, status, Deactivation_date, value segment etc).

Customer_ID is the key variable for the two sub-datasets

The dependent variable is the Status (active or disconnected) of

the customer for the next 4 months from the month that traffic

occurred (ACTIVE, CHURN). Status must be combined with the

Deactivation month (The month that customer deactivated his

contract which is zero for customers that remained active during

the specific time period).

It can be used for deriving new variables, descriptive analysis,

association analysis and propensity modeling in order to predict

potential churners.

Analysis Guidelines

Create new variables that describe traffic trend, (for example:

percentage of traffic drop for the last 2 months vs previous 4

months, percentage of traffic (voice or SMS) to competition vs

total traffic, Average call duration etc.)

Use multiple propensity modeling techniques such logistic

regression and classification trees to estimate the propensity for a

customer to be disconnected in the following 4 months.

Use 31/10/1997 as reference date in order to calculate the tenure

of the customer (tenure = reference_date – renewal_date)

It is mentioned that you can succeed 5-6 times better targeting

(LIFT) than a random sample.

Applications

− Simple Data Management

− Descriptive Statistics

− Association Analysis

− Cohort Analysis

− Cluster Analysis

− Propensity Modeling

C
U

S
T

O
M

E
R

S
-

D
N

A

2 Mobile Telephony Churn Prediction dataset – Sample 1

Full Version 1.0 Fields Description (TAB DELIMITED TXT FILES)

Churn Dataset 1

CUSTOMER_ID This is the unique key variable for each customer

MONTH The month that traffic figures refer to

ACTIVITY_DAYS_INC Number of days per month with incoming traffic (1-30)

ACTIVITY_DAYS_OUT Number of days per month with outgoing traffic (1-30)

DATA_VOLUME Total volume from internet sessions (KB)

DISTINCT_CALLERS_INC
Number of distinct callers per month that called the
subscriber

DISTINCT_CALLERS_OUT
Number of distinct callers per month that the subscriber
called

DURATION_CMP_GSM_OUT Total minutes from outgoing calls to competition (GSM)

DURATION_CMP_INC
Total minutes from incoming calls from competition
(GSM)

DURATION_FIXED_INC Total minutes from incoming calls from fixed lines

DURATION_FIXED_OUT Total minutes from outgoing calls to fixed lines

DURATION_INTER_INC Total incoming minutes from international

DURATION_INTER_OUT Total outgoing minutes to international

DURATION_ONNET_INC Total incoming minutes from On net customers

DURATION_ONNET_OUT Total outgoing minutes On net

DURATION_VAS_OUT
Total minutes from outgoing calls to Value Added
Services

NUM_CALLS_CMP_GSM_OUT Number of outgoing calls to Competition (GSM)

NUM_CALLS_CMP_INC Number of incoming calls from Competition (GSM)

NUM_CALLS_FIXED_INC Number of incoming calls from fixed lines

NUM_CALLS_FIXED_OUT Number of outgoing calls to fixed lines

NUM_CALLS_INTER_INC Number of incoming calls from international

NUM_CALLS_INTER_OUT Number of outgoing calls to international

NUM_CALLS_ONNET_INC Number of incoming calls from On net customers

NUM_CALLS_ONNET_OUT Number of outgoing calls On net

NUM_MMS_OUT Number of outgoing MMS events

NUM_SMS_CMP_INC Number of incoming SMSs from competition (GSM)

NUM_SMS_CMP_OUT Number of outgoing SMSs to competition (GSM)

NUM_SMS_INTER_INC Number of incoming SMS events from international

NUM_SMS_INTER_OUT Number of outgoing SMS events to international

NUM_SMS_ONNET_INC Number of incoming SMS events from On net customers

NUM_SMS_ONNET_OUT Number of outgoing SMS events On net

NUM_SMS_VAS_INC Number of incoming SMSs from Value Added Services

NUM_SMS_VAS_OUT Number of outgoing SMSs to Value Added Services

NUM_VAS_OUT Number of outgoing calls to Value Added Services

NUM_EVENTS_WKDAYS_OUT
Number of outgoing events (calls or SMSs) during week
days (Monday-Friday)

NUM_EVENTS_WKENDS_OUT
Number of outgoing events (calls or SMSs) during
weekends (Sunday-Saturday)

C
U

S
T

O
M

E
R

S
-

D
N

A

3 Mobile Telephony Churn Prediction dataset – Sample 1

Customers Status Dataset (use this file for creating the Churn Flag)

Use this file for selecting appropriate disconnection months in order to manage latency (see

below).

Churn Dataset 2
CUSTOMER_ID This is the unique key variable for each customer

VALUE_SEGMENT

Total revenue (monthly fees &outgoing revenue&
incoming revenue) per month in € (very high, high,
medium, low)

RATE_PLAN The rate plan for each customer

FIRST_RENEWAL_DATE The date of the first contract

LAST_RENEWAL_DATE The date of the last contract’s renewal

STATUS The status of the customer (ACTIVE,CHURN)

DEACTIVATION_MONTH The month of contract's deactivation

PAYMENT_TYPE Cash, credit card or bank

CREDIT_SCORE
The credit score of the customer from zero risk (0) to
high risk (100)

RATE_PLAN_CHANGES Number of rate plan changes during the last 6 months

PENALTIES_FOR_NON_PAYMENT Number of penalties due non payment

AREA The area that customer belongs

Special Tips & Tricks

Use latency period: It is very critical to use time-lag in your churn prediction models in order to

have time to fully synchronize CRM actions (try to predict customers who deactivated their

contract in 3
rd

 or 4
th
 month and ignore customers that deactivated their contract during the first

2 months).

You can use the book ‘Data Mining Techniques in CRM’ (pages 33-36) for more details.

Send us your conclusions to info@customers-dna.com

Appendix B
Configuration File

Listing B.1: Test
1 <?xml ver s i on =" 1 . 0 " ?>
2 < r o o t >
3 < a n a l y s e >
4 < !−− i f empty f i n d s c u r r e n t run i n samples and a n a l y s e s−−>
5 < !−− i f non−empty f i n d s f o l d e r i n samples and a n a l y s e s −−>
6 < !−− r e q u i r e s d a t a _ p a t h and e v a l t a g s −−>
7 < !−− u s e s p l o t t a g −−>
8 < / a n a l y s e >
9

10 < g i t _ p a t h > < !−− f u l l p a t h t o l i b r a r y −−>
11 / home / j ohan / Documents / g i t /
12 < / g i t _ p a t h >
13

14 < d a t a _ p a t h > < !−− f u l l p a t h t o d a t a −−>
15 / home / j ohan / Documents / d a t a /
16 < / d a t a _ p a t h >
17

18 < d a t a _ s a m p l e r name=" i n t e r v a l ">
19 < t r a i n >
20 < s t a r t >
21 2013−01−01
22 < / s t a r t >
23 < s t o p >
24 2013−11−30
25 < / s t o p >
26 < / t r a i n >
27 < t e s t >
28 < s t a r t >
29 2013−12−01
30 < / s t a r t >
31 < s t o p >
32 2013−12−31

67

B. C F

33 < / s t o p >
34 < / t e s t >
35 < / d a t a _ s a m p l e r >
36

37 <hh_sample r name=" random ">
38 <n> 2000 < / n>
39 < / hh_sample r >
40 <hh_sample r name=" a l l " / >
41 <hh_sample r name=" o ld ">
42 <hash> ## < / hash>
43 < / hh_sample r >
44 <hh_sample r name=" app ">
45 < d a t e > MMDD < / d a t e >
46 < / hh_sample r >
47

48 < o f f e r _ s a m p l e r name=" random ">
49 <n> 4000 < / n>
50 < d e f a u l t _ w e i g h t > 0 < / d e f a u l t _ w e i g h t >
51 < / o f f e r _ s a m p l e r >
52 < o f f e r _ s a m p l e r name=" f i r s t ">
53 <n> 4000 < / n>
54 < d e f a u l t _ w e i g h t > 0 < / d e f a u l t _ w e i g h t >
55 < / o f f e r _ s a m p l e r >
56 < o f f e r _ s a m p l e r name=" a l l ">
57 < d e f a u l t _ w e i g h t > 0 < / d e f a u l t _ w e i g h t >
58 < / o f f e r _ s a m p l e r >
59 < o f f e r _ s a m p l e r name=" o ld ">
60 <hash> ## < / hash>
61 < d e f a u l t _ w e i g h t > 0 < / d e f a u l t _ w e i g h t >
62 < / o f f e r _ s a m p l e r >
63

64 < imp l s >
65 < t r a n s s o r t >
66 < d a t a > h h 2 t r a n s < / d a t a >
67 < f i l e > i m p l _ t r a n s s o r t < / f i l e >
68 < c l a s s > I mp lT r a n s So r t < / c l a s s >
69 < p l o t >
70 <marker> r− < / marker>
71 < / p l o t >
72 < / t r a n s s o r t >
73 < t r a n s s o r t _ r d >
74 < d a t a > h h 2 t r a n s < / d a t a >
75 < f i l e > i m p l _ t r a n s s o r t < / f i l e >
76 < c l a s s > I mp lT r a n s So r t < / c l a s s >
77 < p l o t >
78 <marker> r− < / marker>
79 < / p l o t >
80 < / t r a n s s o r t _ r d >
81 <mos tbought>
82 < d a t a > upc < / d a t a >
83 < f i l e > impl_mos tbough t < / f i l e >
84 < c l a s s > ImplMostBought < / c l a s s >
85 < p l o t >
86 <marker> g− < / marker>
87 < / p l o t >
88 < / mos tbought>

68

89 < i n d i v i d u a l m o s t b o u g h t >
90 < d a t a > h h 2 t r a n s < / d a t a >
91 < f i l e > i m p l _ i n d i v i d u a l m o s t b o u g h t < / f i l e >
92 < c l a s s > Imp l I nd i v i dua lMos tBough t < / c l a s s >
93 < p l o t >
94 <marker> g− < / marker>
95 < / p l o t >
96 < / i n d i v i d u a l m o s t b o u g h t >
97 <random>
98 < d a t a > n o t h i n g < / d a t a >
99 < f i l e > impl_random < / f i l e >

100 < c l a s s > ImplRandom < / c l a s s >
101 <we igh t > 0 < / we igh t >
102 < p l o t >
103 <marker> k− < / marker>
104 < / p l o t >
105 < / random>
106 <randomweight>
107 < d a t a > n o t h i n g < / d a t a >
108 < f i l e > impl_randomweigh t < / f i l e >
109 < c l a s s > ImplRandomWeight < / c l a s s >
110 < / randomweight>
111 <wlm0612_X i n i t =" wlm0612 ">
112 < d a t a > s c o r e s < / d a t a >
113 < f i l e > impl_wlm0612 < / f i l e >
114 < c l a s s > ImplWLM0612 < / c l a s s >
115 < !−− Used i f s c o r i n g i s wanted , can be hash or xml

f i l e n a m e −−>
116 <hash> c o n f i g / c o n f i g . xml < / hash>
117 < !−− t y p e o f s c o r e . one=one va l u e pe r impl , a l l =each pos

has va lue , none=no precomputed s c o r i n g bu t v a l u e s i n
imp l s w i l l s t i l l be used . d e f a u l t =none−−>

118 < s c o r i n g >one< / s c o r i n g >
119 < !−− L i s t o f used impls , r e q u i r e d , can have v a l u e s −−>
120 < imp l s >
121 < t r a n s s o r t >3< / t r a n s s o r t >
122 < t r a n s s o r t _ r d / >
123 <mos tbought / >
124 < i n d i v i d u a l m o s t b o u g h t / >
125 <random / >
126 <random_weight / >
127 < / imp l s >
128 < !−− p o s s i b l e m e t r i c s : min , max , sum , norm2 . d e f a u l t max

−−>
129 < m e t r i c > max < / m e t r i c >
130 < p l o t >
131 <marker> b− < / marker>
132 < / p l o t >
133 < / wlm0612_X>
134 < !−− Not working
135 < p r e g e n e r a t e d >
136 < d a t a > p regen < / d a t a >
137 < f i l e > i m p l _ p r e g e n e r a t e d < / f i l e >
138 < c l a s s > P r e g e n e r a t e d < / c l a s s >
139 < d a t e > MMDD < / d a t e >
140 < / p r e g e n e r a t e d > −−>

69

B. C F

141 < / imp l s >
142 < e v a l >
143 < d a t a > h h 2 t r a n s < / d a t a >
144 < !−− s i m u l a t i o n v a l u e s : i n t r a n s , t r a n s v a l u e −−>
145 < s i m u l a t i o n > i n t r a n s < / s i m u l a t i o n >
146 < !−− p o s s i b l e a n a l y s i s . l i f t , cg , dcg , ndcg −−>
147 < !−− OBSOLETE
148 < a n a l y s i s > ndcg < / a n a l y s i s > −−>
149 < / e v a l >
150 < e v a l >
151 < s i m u l a t i o n > t r a n s t i m e < / s i m u l a t i o n >
152 < d a t a > h h 2 t r a n s _ t i m e s < / d a t a >
153 < / e v a l >
154 < e v a l >
155 < s i m u l a t i o n > l i v e < / s i m u l a t i o n >
156 < d a t a > l i v e < / d a t a >
157 < d a t e > YYYYMMDD < / d a t e >
158 < e v a l >
159 < d a t a > h h 2 t r a n s < / d a t a > < !−− must c o r r e s p o n d t o c u r r e n t <

subs im> −−>
160 < d a t a > h h 2 t r a n s _ t i m e s < / d a t a > < !−− must c o r r e s p o n d t o

c u r r e n t <subs im> −−>
161 < s i m u l a t i o n > ndcg < / s i m u l a t i o n >
162 < !−− use one <subs im> −−>
163 <subs im> i n t r a n s < / subs im>
164 <subs im> t r a n s v a l u e < / subs im>
165 <subs im> t r a n s t i m e < / subs im>
166 < a n a l y s i s > l i f t < / a n a l y s i s > < !−− must use l i f t f o r ndcg

s i m u l a t i o n −−>
167 < / e v a l >
168 < p l o t >
169 < !−− C r e a t e a f i g u r e wi th c o n t e n t s .
170 i f " save_png " i n c o n f i g : png f i l e s wi th name
171 < f igu r e_name_ #> w i l l be g e n e r a t e d −−>
172 < f igu r e_name_ #>
173 < i n c l u d e >
174 <impl_names / >
175 < / i n c l u d e >
176 < exc l ude >
177 <impl_names / >
178 < / exc l ude >
179 <name> name < / name>
180 < s u b p l o t _ #>
181 < !−− l i f t , cg , dcg or ndcg −−>
182 < a n a l y s i s > l i f t < / a n a l y s i s >
183 < / s u b p l o t _ #>
184 < / f i gu r e_name_ #>
185 < f igu r e_name_ #>
186 <name> name < / name>
187 < !−− l i f t , cg , dcg or ndcg −−>
188 < a n a l y s i s > l i f t < / a n a l y s i s >
189 < / f i gu r e_name_ #>
190 < no t / > < !−− add t a g t o no t do any p l o t −−>
191 < / p l o t >
192 <save / > < !−− use i f s ave d a t a −−>
193 <show / > < !−− use t o show f i g u r e s −−>

70

194 <save_png / > < !−− save f i g u r e s t o png −−>
195 < / r o o t >

71

Hur man utvärderar rekommendationssystem finns det mycket litteratur om. Att
göra det i praktiken är dock mindre tydligt. Den akademiska metoden bygger ofta på
en skillnad mellan in- och test-data. I praktiska sammanhang är det sällan så enkelt.

Rekommendationssystem är automatiska system som
genererar förslag utifrån tidigare information eller be-
stämda regler. En modell byggs upp baserat på informa-
tion om användare. Därefter används modellen till att
värdera föremål. De högst värderade föremålen kommer
sen visas för användarna. På t.ex. Amazon får kunder
som tittar på produkter förslag om andra produkter som
de kan tänkas vara intresserade av.
  Målet är att upprätta en plattform där information
och algoritmer* ska kunna appliceras. Plattformen ska
fungera till olika projekt och kunna avgöra vilka algorit-
mer som fungerar bäst. Till projektet finns det tillgång
till två praktiska problem. Det ena är ett rekommenda-
tionssystem för att ge kunder i en snabbköpskedja an-
vändbara rabattkuponger. Det andra är ett rekommen-
dationssystem för en mobiloperatör. Operatören vill ha
förslag på vilka kunder som behöver kontaktas för att de
inte ska säga upp kontrakt.
  Svenska IT-företaget Expertmaker utvecklar ett re-
kommendationssystem för en stor snabbköpskedja i
USA. Kunder får tillgång till rabattkuponger genom en
mobilapplikation. Det tenderar att finnas hundratals
kuponger men det är endast ett fåtal som förväntas vara
användbara för varje enskild kund. Från både butikens
och kundens perspektiv är det viktigt att kunden inte
ska behöva leta efter intressanta kuponger.

  Mobiloperatören är ett vanligt exempel på hur den
här typen av system kan byggas. Med information om
kunders mobilanvändande kan det försöka förutspås
vilka kunder som kommer säga upp sina kontrakt. För-
slagen som ges till operatören är de kunder som är mest
benägna att säga upp kontrakt.
  Att hitta vilka delar av en sådan plattform som kan
göras utan förändringar för olika miljöer blev centralt
för hela projektet. Först och främst behöver informatio-
nen vara i ett standardiserat format, detta görs enklast
genom att strukturera om den till ett lämpligt format.
När informationen väl är strukturerad kan de flesta steg
göras oberoende av miljö.
  Informationen ska delas upp i indata, för att träna
modeller, och testdata, för att generera och utvärdera
förslagen. Modeller ska initieras och förslag ska gene-
reras från modellerna. Slutligen måste förslagen utvär-
deras och även om själva utvärderingen är specifik kan
metoden fungera oavsett problemmiljö. Att plattformen
fungerar för både snabbköpskedjan och mobiloperatö-
ren visar att plattformen fungerar för olika problem.
  Nästa steg är att bygga ett liknande system i Expert-
makers ramverk. Därefter är det inte långt ifrån att börja
använda systemet, initialt för att ta fram lämpliga algo-
ritmer bland kandidater, och senare pågående under ett
projekt för att förbättra en algoritm.

EXAMENSARBETE Recommender System Validation Platform

STUDENT Johan Ullén

HANDLEDARE Jacek Malec (LTH), Johan Wensäter (Expertmaker)

EXAMINATOR Jonas Skeppstedt (LTH)

Generell utvärderingsplattform för
rekommendationssystem
POPULÄRVETENSKAPLIG SAMMANFATTNING Johan Ullén

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2015-06-04

*En algoritm är ett sätt att lösa ett problem. Algoritmer i rekommendationssystem utvärderar ofta föremål som ska föreslås
genom att jämföra hur lika de är andra föremål. Alternativt kan en algoritm jämföra rekommendationssystemets använ-
dare. Då ges användare förslag som liknande användare värderat högt.

	2015-25 Framsida
	Tom sida
	2015-25 Rapport
	2015-25 Rapport
	Introduction
	Domain
	Recommender Systems
	Evaluation of Recommender Systems

	Problem
	Why is it interesting?

	Work Distribution

	Background
	Recommender systems
	Basic Techniques
	Complications with Recommender System

	Evaluating recommender systems
	Experimental Settings
	Dimensions
	Comparison
	Complications with Evaluation

	Approach
	Philosophy
	Modularity
	Average

	Churn
	Data
	Recommender Purpose

	The Retailer
	Data
	Recommender Purpose

	Implementation
	Development
	Framework
	Recommender System Evaluation
	Sequence
	Modularity
	Configuration
	Utilities

	Churn
	Data cleaning
	Sampling
	Simulation
	Evaluation

	The Retailer
	Data cleaning
	Sampling
	Simulation
	Evaluation

	Results
	Churn
	Single Evaluation
	Multiple Permutations Evaluation

	The Retailer

	Discussion
	Results
	Evaluation
	Framework
	Future

	Conclusion
	Bibliography
	Appendix Churn
	Appendix Configuration File

	Tom sida
	2015-25 Popvet

