
 
Department of Automatic Control 

 

Dynamic path planning of initially 
unknown environments using     

an RGB-D camera 

Sara Gustafzelius 



 
 

 

 

 

 

 

 

 

 

 

 

MSc Thesis 
ISRN LUTFD2/TFRT--5980--SE 
ISSN 0280-5316 

Department of Automatic Control 
Lund University 
Box 118 
SE-221 00 LUND 
Sweden 

© 2015 by Sara Gustafzelius. All rights reserved. 
Printed in Sweden by Tryckeriet i E-huset 
Lund 2015 

 



Abstract

In this thesis an RGB-D camera was used with the goal to perform dynamic path
planning in an initially unknown environment. Depth data from an RGB-D camera
together with a discretizising algorithm is continuously used for maintaining an
obstacle map of the environment which within the path planning algorithm D* Lite
[S. Koening, 2005] is performed on the flight.

Experiments were conducted on two different systems, on Combine’s hexa-
copter and on a Gantry Tau robot at the Robot Lab of the Department of Automatic
Control, LTH. On Combine’s hexacopter different tracking algorithms such as ICP,
Translation Approximation and SDF where evaluated for 3D positioning while the
robots internal positioning where used on the Gantry Tau robot.

For discretization purposes we compare the use of Box Approximation and
Signed Distance Function (SDF) for creating the obstacle map.

5





Acknowledgments

First of all I want to thank my company supervisor Simon Yngve who has guided
and supported me all through my thesis. His visual and sometimes overwhelming
ideas in combination with all kind words have been vital for this thesis.

I also want to thank my university supervisor Prof. Anders Robertsson from the
Department of Automatic control for sharing a little piece of this enormous exper-
tise in automation and robotics with me as well as my second university supervisor
Erik Bylow from the Department of Mathematics for all the help he gave me with
the image analysis and his patience with me.

I also want to thank Maj Stenmark from the Department of Computer Science
for her help with the Labcomm robot communication setup as well as her help with
RobotStudio.

Finally I want to thank my family for always pushing me in the right direction.

7





Symbols

A Weighting coefficient matrix

α Weighting coefficient

C Camera matrix

d Denotes a distance

H Homogenous transformation

Id Depth image

IRGB RGB image

M Transformation matrix that centers the cameras around the origin

P Denotes a centroid

R Rotation matrix

t Translation vector

X A 3D point

XG Global 3D point

XL Local 3D point
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Acronyms

CPU Central Processing Unit

ICP Iterative Closest Point

IMU Inertial Measurement Unit

RGB Red Green Blue, standard way of representing colors in images.

RGB-D Red Green Blue and Depth values

SDF Signed Distance Function

TLC Target Language Compiler

TUM Technische Universität München

UAV Unmanned Aerial Vehicle
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1
Introduction

There are currently many fields of applications where traversing non human friendly
environments with unmanned vehicles can be highly useful. Further, as the use of,
for example, Unmanned Aerial Vehicles (UAVs) increases it is not hard to see the
benefit of not only unmanned but also automated unmanned vehicles.

In this thesis an RGB-D camera was used with the goal to perform dynamic path
planning. Depth data from an RGB-D camera is used to create and continuously up-
date an obstacle map of the environment. The obstacle map contains information of
which coordinates can be traveled and not traveled. When a new obstacle is de-
tected by the RGB-D camera the location of the obstacle is calculated and marked
as untraversable in the obstacle map. The path planning algorithm is initially given
a start and goal position and a first path is calculated using the obstacle map. When
a new obstacle occurs on the obstacle map the path planning algorithm dynamically
re-plans the local path part affected by the obstacle.

1.1 Previous work

In [P. E. Hart, 1968] the authors presented an extension of the well known Edsger
Dijkstra’s algorithm called A*. It uses heuristics to achieve better time performance.
1994 A. Stentz introduces a dynamic version of A* called D* [Stentz, 1994]. The
algorithm is considered dynamic since the graphs edge costs can change during
the traversal. Thereafter a version called Focused D* [Stentz, 1995] was presented.
Focused D* reduced the run-time by two to three times by reducing state expan-
sions. This is accomplished by using heuristics that consider (focus) the direction
of the robot. If no costs are changed during the traverse the solution is identical
to A*. Later Lifelong Planning A* (LPA*) [S. Koening, 2002b] was presented.
LPA* is an incremental algorithm that uses heuristics from A*, focus the search
and reuses unchanged parts from previous searches. LPA* uses DynamicSWSF-FP
(dynamic SWSF fixed point) [G. Ramalingam, 1992] to recompute all goal dis-
tances affected by changes during the traverse and is able to re-plan faster than both
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Chapter 1. Introduction

A* and DynamicSWSF-FP. The first iteration is identical to A*. Short after pub-
lishing LPA* the same authors presented the D* Lite algorithm [S. Koening, 2005]
that build on LPA*. D* Lite plans the same path as the more complex algorithm
Focused Dynamic A* (D*) but is algorithmically different and easier to overview.
It is stated that that D* Lite is at least as efficient as D* [S. Koening, 2002a].

1.2 Problem formulation

This thesis aims to:

• Investigate how path-planning and automatic re-planning can be performed
using an RGB-D camera in an initially unknown environment.

• Investigate how depth data can be used to efficiently discretisize an initially
unknown environment and compare different approaches.

1.3 Thesis outline

Chapter 2 Preliminaries and Background - Here we present basic notations, the
pinhole camera model, depth images, rigid body transformation of local co-
ordinates into global coordinates and basic theory about signed distance func-
tions, iterative closest point and path planning algorithms.

Chapter 3 System description - Here we present the system overview and describe
the hardware setup of the UAV such as the Pandaboard and the chosen RGB-
D camera as well as an argumentation of this choice.

Chapter 4 Updating the obstacle map - In this chapter we show the basic transfor-
mations used and explain the need of a discrete grid for data representation
and two possible approaches of achieving this.

Chapter 5 Path planning - In this chapter we describe a method of path planning
in three dimensions.

Chapter 6 Gantry Tau robot - This chapter contains information about the Gantry
Tau robot experiments and covers previous work and brief information about
the Gantry Tay robot as well as the Labcomm robot communication protocol
and practical issues such as timing problems and how those where solved in
the experimental setup.

Chapter 7 Combine hexacopter - Here we talk about the Combine hexacopter ex-
periment and cover previous work done on the hexacopter, hardware assem-
bly and two different tracking algorithms for estimating the camera trajectory.
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1.3 Thesis outline

Chapter 8 Software implementation - In this chapter we motivate the basic soft-
ware implementation and explain the main software problems and found so-
lutions.

Chapter 9 Result - Here we show the results of the methods used in this thesis. We
compare time and performance of the different discretization methods for up-
dating the obstacle map. For the Combine hexacopter we compare the track-
ing algorithms on ground truth data sets and show the results of the camera-
robot transformation on the Gantry-Tau robot. Finally we evaluate the path
planning and overall model on live data.

Chapter 10 Conclusions - Here we present the conclusions that can be drawn by
this thesis.

Chapter 11 Discussion - In this chapter we evaluate the results in Chapter 9 and
discuss improvements of our methods and system setup.

17



2
Preliminaries and
Background

This chapter aims to give the reader basic knowledge about the different algorithms
and data structures needed to comprehend the content of this thesis.

It covers an introduction of the pinhole camera used to receive information from
the depth images, a short explanation of the signed distance function that can be
used for discretizaton and tracking and the well-known iterative closest point al-
gorithm (ICP) used for tracking. It also describes the programming data structure
called priority heap that is used to improve the efficiency of the path planning al-
gorithm, an introduction to the shortest path problem which describes basic graph
theory used in the path planning, as well as the path planning algorithm D* Lite.

2.1 Pinhole Camera

The pinhole camera model can be used to project a 3D point into the image plane,
this is illustrated in Figure 2.1. To project a 3D point into the image plane we need
to know the focal length f of the camera, which is the distance between the camera
center and the image plane, as well as the pixel coordinates cx and cy where the
principal axis and the image plane meets.

In Figure 2.2 which shows a regular RGB camera using the pinhole camera
model, only the relative distance between the x, y and z coordinates can be measured.
By using triangulation we can calculate where on the image plane a certain 3D point
is projected.

Looking at Figure 2.3 we see that there are two similar triangles (Oc, x, f ) and
(Oc, x′, z′) where (Oc, x, f ) is a triangle between the camera origin, the x coordinate
on the image plane and the focal length f and (Oc, x′, z′) is a triangle between the
camera origin, the x coordinate of the 3D point and the distance between the camera
origin and the 3D point along the optical axis. Using this the following equation can
be stated.
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2.1 Pinhole Camera

Figure 2.1 Pinhole camera model

Figure 2.2 Pinhole camera from RGB camera. The gray lines marks the relative
distance between the coordinates.

x
f
=

x′

z′
⇐⇒ x = f

x′

z′
(2.1)

The y coordinates are derived analogously.
We realize that a 3D coordinate X = (x,y,z) is projected onto a pixel on the

image plane Id(i, j) as,

Id(i, j) = (
fxx
z

+ cx,
fyy
z

+ cy),

where fx, fy,cx and cy are intrinsic camera parameters.
When using a RGB-D camera the distance d along the optical axis from the

camera to the 3D point can be measured. When a 3D point is projected on the image
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Chapter 2. Preliminaries and Background

Figure 2.3 Triangulation between the camera origin, the x coordinate on the image
plane along the z axis and the triangle between the camera origin and the x coordinate
of 3D point along the z axis.

plane the distance d is saved in every pixel. Since d is known in every pixel we can
use triangulation in the same way as above to calculate the x and y coordinates of
the 3D point. Looking at Figure 2.3 again we see that,

x
f
=

x′

z′
⇐⇒ x′ = z′

x
f
. (2.2)

Just as before the y coordinates are derived analogously.

Figure 2.4 Pinhole camera from depth sensor
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2.1 Pinhole Camera

Figure 2.4 shows the relationship between the pixel location on the image plane
and the 3D coordinates when an RGB-D camera is used. The blue lines marked with
x, y and z in Figure 2.4 illustrated the distances between the 3D coordinate derived
from the center pixel and the 3D coordinate derived from the pixel we are interested
in. Since the depth z is known the 3D coordinates can be fixed and therefore the
blue lines symbolizes the absolute distance.

We realize that a pixel (i, j) in a depth image Id with depth z = Id(i, j) is trans-
formed to its local 3D coordinate X = (x,y,z) as,

X = (x,y,z) = (
(i− cx)z

fx
,
( j− cy)z

fy
,z)T ,

where (i, j) ∈ Id , z = Id(i, j) and fx, fy,cx and cy are intrinsic camera parameters.
In order to combine local coordinates from different cameras we need to use

a common frame by using global coordinates. To move the local coordinates to
global coordinates we need to know the global configuration of the camera in terms
of rotation and translation.

The camera matrix C will move the local 3D coordinates (xL,yL,zL) into global
3D coordinates (xG,yG,zG) using a rigid body transformation.

C =

(
R t
0 1

)
where R is a rotation matrix in SO3, rotations about the origin in a three-dimensional
Euclidean space, and t is the translation in R3.

We then get,
XG =C ·XL,

where XL are the local coordinates and XG are the global coordinates.
It is well known that multiplication between two matrices is only defined if the

numbers of columns in the first matrix equals the number of rows in the second
matrix. To be able to do the calculation C ·XL we then have to choose XL as XL =

(xL,yL,zL,1). By using C =

(
R t
0 1

)
we are able to get XG = (xG,yG,zG,1)
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Chapter 2. Preliminaries and Background

2.2 Signed distance function

One way of representing the global model is by using a voxel grid of vertices equally
spread out in the room. Then a Signed Distance Function (SDF) can be used to
represent the location of surfaces in the room.

A signed distance function is a function which gives the signed distance d be-
tween a point X ∈ R3 and the closest point Xs on a surface S.

SDF(X) = d,

where d < 0 if X is outside the surface and d > 0 if X is inside the surface, as
described in [Bylow, 2012, p. 17].

The SDF of a vertex will be negative if the vertex is in front of the surface, zero
if the vertex is on the surface, and positive if the surface is closer to the camera then
the vertex. For two dimensions this can be illustrated as in Figure 2.5.

Figure 2.5 SDF example in two dimensions

22



2.3 Iterative closest point

2.3 Iterative closest point

The task of iterative closest point (ICP) is to find an optimal rigid body 3D trans-
formation M that moves a model set s to a data set r so that the total error between
corresponding points is minimal. ICP was introduced in [P.J. Besl, 1992]. Each
point in the data set should be matched to its closest model point. Then we want to
find a camera matrix C so that the sum of the square of the distances between the
transformed model set points s and the data set points r is minimized.

C = arg minCE,

where the error function is defined as,

Epoint−to−point = ∑
i
(Csi− ri)

2,

if we use point-to-point error metrics [Treiber, 2013, p. 141-142], and defined as

Epoint−to−plane = ∑
i
((Csi− ri)

T ni)
2,

if we use point-to-plane error metrics where ni is the unit normal vector at ri [Low,
2004, p. 1]

The point-to-point error metrics, as suggested by the name, is simply the dis-
tance between each source point si and its matched destination point ri. The point-
to-plane error metrics is the distance between each source point si and the tangent
plane at the matched destination point ri as shown in Figure 2.6.

Figure 2.6 Point-to-plane error in two dimensions as described in [Low, 2004, p.
1]
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Chapter 2. Preliminaries and Background

2.4 Shortest path problem

The path planning in this thesis can be reduced to a shortest path problem. A shortest
path problem is the problem of finding the shortest path between two vertices in a
graph so that the total cost for the path is minimized. In graph theory a map of roads
and intersections are called a graph. The roads are called edges and the intersections
between the roads are called vertices or nodes. Every edge has a cost for traveling
on it and this can be thought of as road fee or the length of a road.

An example of this is to find the shortest route from one city to an other. The
cities are then the nodes and the roads between two cities are the edges. The weight
of an edge is then the distance of the road.

Figure 2.7 Example of a shortest path problem

In Figure 2.7 we see an example on a shortest path problem. The goal is to find
the shortest path between vertex A and vertex G. The numbers next to the edges are
the cost for traveling on the edge. We realize that the shortest path between A and
G that minimized the total path cost is the path marked with red. A→C→ F → G
gives a total cost of 8.
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2.5 Priority heap

2.5 Priority heap

A binary heap is a programming data structure that can be used to structure data in
an efficient way. The data will be organized so that the node with highest priority
always will be at the top of the heap. This can be used in shortest path problems
where the highest priority symbolizes the edge with lowest travel cost.

The priority heap uses a binary tree but with two additional properties:

Structure property Each level except the bottom level must be completely filled.
The bottom level is filled from left to right. This means that no holes are tol-
erated in the binary heap and makes the height of the heap with N elements
log2(N).

Heap-order property The heap can be implemented in either a max-heap or a min
heap. In a max-heap the element with the highest key has the highest priority
and in a min-heap the element with the lowest key has the highest priority. In
this thesis a min-heap is used. The key of every node is lower than or equal
to the key of its parent node except for the root node which has no parents.
Therefore the root node always has the lowest key in the heap. Insert and
remove operations must preserve the heap-order property.

Figure 2.8 Example of structure and heap-order properties of a min-heap.

The main reason for using a priority heap is the fast insert and remove opera-
tions. An example of a min-heap can be seen in Figure 2.8.
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Chapter 2. Preliminaries and Background

Since the height of the heap is log2(N) the cost for insert and remove is
O(log2(N). A short explanation to the operation is given below.

Insert

1. Insert the new node at the next available slot in the heap.

2. Heap size is increased by one.

3. Percolate up the node until the heap-order property is satisfied.

Figure 2.9 Example of insert operation in a min-heap

Remove

1. Delete the node and move the last node into the hole.

2. Heap size is decreased by one.

3. Percolate down the node until the heap-order property is satisfied.

Figure 2.10 Example of remove operation in a min-heap
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2.6 D* Lite

2.6 D* Lite

D* Lite is a path-planning algorithm [S. Koening, 2005] that builds on Lifelong
planning A* (LPA*). D* Lite plans the same path as the more complex algorithm
Focused Dynamic A* (D*) by Stentz but is algorithmically different and easier to
overview.

The main idea of D* Lite is to do an initial search identical to the A* algo-
ritm and to start move along the calculated path. When an obstacle that affects the
planned route is detected the subsequent search uses information from the previous
searches to locally re-plan the path. D* Lite uses a priority heap to sort the vertices
with decreasing travel cost.

Terminology
Every vertex has a:

g The true distance from a specific node to the goal node.

h The Manhattan distance between the current start node and the current node.

rhs The estimated distance to the goal node.

Key The key is used to order the priority queue, where the lowest key has the
highest priority, i.e.,

key(s) = [min(g(s),rhs(s))+h(s,start)+ km,min(g(s),rhs(s))],

where s is the node of interest.

The key consists of two values: the first which is most significant, is the short-
est possible way left to the goal node, the smallest of the nodes g value and
the rhs value, plus the h value, plus km. km is the number of steps we moved
since the first start node. The second key value is the smallest of the nodes g
value and rhs value.

Every edge has a:

C The cost for moving on the edge from one node to another.

A vertex is called locally consistent if g(s) = g(rhs), this means that the vertex has
been expanded. If g(s) != rhs(s) the vertex is called locally inconsistent. A locally
inconsistent vertex is called locally overconsistent if g(s) > rhs(s) and a locally un-
derconsistent if g(s) < rhs(s).

If all vertices are locally consistent we can find the shortest path from any vertex
to the goal vertex. The algorithm uses a priority queue that contains locally incon-
sistent vertexes and are used to expand the vertices in increasing order of their keys.

In order to avoid reordering the heap every time the robot takes a step along the
chosen path a key modifier km is used.[S. Koening, 2005]
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Chapter 2. Preliminaries and Background

Figure 2.11 The figure to the left shows the initial h values and the figure the right
shows the h values after the first iteration
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3
System description

3.1 System overview

The system architecture is described in Figure 3.1 and below we give a description
for each of the blocks.

Image retrieval This block fetches the images from the RGB-D camera. This is
done by using the open source software OpenNI2 [OpenNI 2 SDK] interfaced
to Simulink see Chapter 8.

Updating the obstacle map In order to use the information stored in the depth im-
ages we need to transform pixel/depth information into coordinates. First the
local coordinates are calculated using the pinhole camera approach. Given the
camera position the global coordinates are calculated. To save computational
space and power the global coordinates are discretisized into a grid structure
forming an obstacle map.

Combine hexacopter Since the Combine hexacopter does not have any in-
ternal positioning a tracking algorithm is used. The tracking algorithm
calculates the camera position of a new image given the last image and
last camera position.

Gantry Tau robot The Gantry Tau robot implements internal position and
therefore no tracking algorithm is needed.

Path planning Given a defined start and goal position the algorithm should calcu-
late a suitable path (if one exist) from the start node to the goal node in an
initially unknown environment. The algorithm should be dynamic and auto-
matically update the chosen path if obstacles are positioned on the current
path.

Moving phase This is where the vehicle should move to the calculated position
given in global coordinates.
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Chapter 3. System description

Figure 3.1 Flowchart over the system blocks described in Chapter 3.1.

Figure 3.1 shows a flowchart of the system and gives a better understanding of
where he Gantry-Tau robot and Combine hexacopter uses different sub processes.
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3.2 Image retrieval

3.2 Image retrieval

In this thesis an RGB-D camera is to be used to collect depth data. We reviewed
two different cameras to see which best fitted our purpose, the Microsoft Kinect for
Windows and the Asus Xtion Pro Live.

The Kinect for Windows contains a RGB camera that stores three channel data
in a 1280× 960 resolution, an infrared (IR) emitter and detector that captures a
depth image, multi-array microphone and an accelerometer [Kinect for Windows
Sensor Components and Specifications 2011]. The product dimensions are 38.1×
38.1× 12.4 cm and it weights about 1.09kg. A 640× 480 RGB-D image can be
obtained at 30 Hz. The impossibility to lower the resolution if wanted is seen as a
disadvantage. Another disadvantage is that power is drawn from an external power
supply which is highly unpractical when mounted on a moving vehicle.

The Xtion Pro Live features an RGB camera, an infrared (IR) emitter and de-
tector that captures a depth image and a microphone. Xtion Pro Live has the prod-
uct dimensions 18×3.5×5 cm which makes it noticeably smaller than the Kinect
[Xtion PRO LIVE]. It weights about 170 grams and uses a USB2.0/ 3.0 interface for
power consumption. A 640×480 or 320×240 RGB-D image can be obtained at 30
Hz.

The small format and light weight in combination with the fact that an external
power supply is not needed and the possibility to receive 320×240 pixel resolution
made us decide to use the Asus Xtion Pro Live in our hardware setup.

The camera delivers two matrices, one with depth data and one with RGB data.
In the depth image we get a depth measurement in every pixel. In Figure 3.2 we see
depth data from the Freiburg1 Teddy sequence [Freiburg1 Teddy sequence 2011]
interpreted as an greyscale. In figure 3.3 we see the corresponding RGB image.

Figure 3.2 Depth data from the Freiburg1 Teddy sequence [Freiburg1 Teddy se-
quence 2011]
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Chapter 3. System description

Figure 3.3 RGB data from the Freiburg1 Teddy sequence [Freiburg1 Teddy se-
quence 2011]

3.3 The obstacle map

The main idea of the obstacle map is to avoid building a graph for the path planning
and instead use a structure that both the discretization algorithms and the path plan-
ning algorithm can use. The obstacle map will be represented as a three-dimensional
matrix. In Figure 3.4 we see an environment in two dimensions seen from above.
The environment contains two obstacles.

Figure 3.4 An environment in two dimensions seen from above.

We apply a grid in order to discretize the environment. The result can be seen in
Figure 3.5 where every square in the grid is an index in the obstacle map and will
be referred to as nodes in the path planning.

If a square contains an obstacle the corresponding index in the matrix will be
set to one. This means that this node will be untraversable when applying the path
planning algorithm. If a square is free from obstacles the corresponding index will
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3.3 The obstacle map

Figure 3.5 The environment seen in Figure 3.4 when a grid is applied.

be set to zero. For the path planning algorithm this means that this node will be
traversable. The result of this an obstacle map filled with ones and zeros as in Figure
3.6.

Figure 3.6 The obstacle map corresponding to the environment in Figure 3.4.
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4
Updating the obstacle map

4.1 Transforming depth data into global coordinates

The depth image data received by the RGB-D camera is transformed into local
coordinates using the pinhole camera model.

X = (x,y,z)T = (
(i− cx)z

fx
,
( j− cy)z

fy
,z)T ,

where (i, j) ∈ Id , z = Id(i, j) and fx, fy, cx and cy are intrinsic camera parameters
(see Section 2.1).

To be able to use data from different camera positions we need to transform the
local coordinates into global coordinates. We use,

XG =C ·XL,

where XL are the local coordinates, XG are the global coordinates and C is the camera
matrix i.e., the position and rotation of the camera.

4.2 Why do we need data discretization?

In order to generate a map of the world frame that later can be used for path planning
the global 3D coordinates should preferably be discretizised and entered into some
kind of grid.

If we for instance use the 640×480 format for the depth images one image will
contain 307200 uint16_t values that in the worst case will generate 307200 different
3D coordinates represented by floats or doubles. Since we are interested in viewing
the room in meters integer values are not suitable as data representation.

The standard sampling rate for the Kinect or Asus Pro live is 30fps. This means
that running for just one second will in worst case create 30× 307200 = 921600
3D coordinates which is 3686.4kB if floats are used and 7372.8kB if doubles are
used. If we decide to create 3D coordinates for 5 minutes with 30fps without using
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4.2 Why do we need data discretization?

some kind of discretizising grid we will end up with 921600×60×5 = 276480000
3D points, 1105.92MB if we use floats and 2211.84MB if we use doubles. We
understand that the data size will grow uncontrolled if we do not use some kind of
grid that it is needed for computational reasons.

Figure 4.1 Data growth over five minutes when not using a discretizising grid for
two different resolutions and two different data representations

In this thesis we have tried two different approaches to discretizise the room.
The first one is using an SDF in a voxel grid and the second one is to use a method
we call box approximation. In both cases we will use the same size of the room and
the same amount of nodes. The grid bounds of the room and grid resolution should
of course be chosen to fit the environment in which we want to use the application.

To symbolize the purpose of using a grid we will calculate the amount of 3D
points as above. If we assume that we want a resolution of 5 cm, a resolution that
should be good enough to perform path planning with our UAV and that our indoor
environment is 10× 10× 4m3 large we would need a grid of size 200× 200× 80
voxels. This gives us a total amount of 3200000 voxels and possible 3D coordinates.
If we do not care about the colors in the room and just want to know if a node in the
grid is occupied (1) or free (0) we just need to use a Boolean (1 byte) which gives a
total of 3,2MB. If we want to use the color values received by the RGB camera, that
is, if we want a colored map, we can use uint16_t (2 bytes) which gives a total of
6,4MB. Notice that the amount of 3D points in the discretizised room is independent
of sample rate and sample time.
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Chapter 4. Updating the obstacle map

4.3 Discretization methods

Signed distance function
We will use a voxel grid to symbolize the signed distances we get from the SDF.
We want to try to project each voxel in the voxel grid on to the image plane using,

Id(i, j) = (
fxx
z

+ cx,
fyy
z

+ cy),

where fx, fy,cx and cy are intrinsic camera parameters (see Section 2.1).
First we have to transform the global voxel VG into a local voxel VL. This is done

by multiplying the voxel with the inverse of the camera matrix that would transform
the local 3D point to a global 3D point. If z in VL is more than zero this means that
the voxel is in front of the camera and we can try to project the vertex onto the image
plane. If the vertex can be projected onto the image plane we calculate the signed
distance along the local z axis between the local 3D point XL and the local voxel VL.
Since the z value of the local 3D point z = D(i, j), where D(i, j) is the depth value in
the pixel the local voxel were projected on, we get dSDF = zVL - D(i, j). If the signed
distance is more than or equal to 0 it means that there is a surface on or between the
global voxel and the camera, and therefore we set the value of the global voxel to 1.
If the signed distance is less than 0 it mean that there are no surfaces on or between
the camera and the global voxel, and therefore we set the global vertex to 0. Listing
4.1 shows the Matlab implementation of the algorithm.

Figure 4.2 Example of how a voxel grid can look like where each red dot is a
voxel.
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4.3 Discretization methods

f o r g l o b a l V o x e l i n v o x e l G r i d
/ / Use camera m a t r i x t o go from g l o b a l t o l o c a l c o o r d i n a t e s .
l o c a l V o x e l = C∗ i n v ( g l o b a l V o x e l ) ;
vx = l o c a l V o x e l . x ;
vy = l o c a l V o x e l . y ;
vz = l o c a l V o x e l . z ;
i f ( vz >=0)

/∗ p r o j e c t v o x e l g r i d on image p l a n e ∗ /
imageX = round ( fx∗vx / vz + cx ) ;
imageY = round ( fy∗vy / vz + cy ) ;
/∗ Check i f i n d e x i s i n s i d e image r a n g e ∗ /
i f (0 < imageX && imageX <= x I m a g e R e s o l u t i o n && 0 < imageY &&
imageY <= y I m a g e R e s o l u t i o n ) {

/∗ C a l c u l a t e s i n g e d d i s t a n c e by u s i n g d i s t a n c e between l o c a l
v o x e l c o o r d i n a t e s and l o c a l s u r f a c e c o o r d i n a t e s ∗ /

s i g n e d D i s t a n c e = vz − D( ly , l x ) ;
/∗ I f sd i s l e s s t h a n z e r o v o x e l i s i n f r o n t o f t h e s u r f a c e

e l s e s u r f a c e i s i n f r o n t o f v o x e l so v o x e l s h o u l d be marked as
o c c u p i e d . ∗ /

i f ( s i g n e d D i s t a n c e >= 0) {
g l o b a l V o x e l . o c c u p i e d = 1 ;

} e l s e {
g l o b a l V o x e l . o c c u p i e d = 0 ;

}
}

}
}

Listing 4.1 Pseudocode for the SDF algorithm.
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Chapter 4. Updating the obstacle map

Box approximation
In our other approach we will use a box grid to symbolize if a space in the room is
free or not. We want to try to project each pixel in the image into the box grid using,

X = (x,y,z) = (
(i− cx)z

fx
,
( j− cy)z

fy
,z)T ,

where (i, j) ∈ Id ,z = Id and fx, fy,cx and cy are intrinsic camera parameters (see
Section 2.1).

First we have to be check if D(i, j) i.e., the local z value is greater than zero,
this means that the local 3D coordinate XL is located in front of the image plane.
Then we transform the local 3D coordinate XL into a global 3D coordinate XG. This
is done according to,

XG =C ·XL,

where XL are the local coordinates and XG are the global coordinates.
Then we have to calculate in which box the 3D coordinate is located. Since we

know the resolution and the size of the space in all dimensions we also know the
exact boundaries of each box so that the box grid can be easily indexed to find the
correct box using the global 3D coordinates. Finally, we just need to mark the cor-
rect box as occupied. Listing 4.2 shows the Matlab implementation of the algorithm.

Figure 4.3 Example of a box grid where every filled box is occupied and every
empty box is free.
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4.3 Discretization methods

f o r ( p i x e l s X = 0 ; p i x e l s X < x I m a g e R e s o l u t i o n ; p i x e l s X ++) {
f o r ( p i x e l s Y = 0 ; p i x e l s Y < y I m a g e R e s o l u t i o n ; p i x e l s Y ++) {

i f (D( pixelsXY , p i x e l s X ) > 0) {
l o c a l P o i n t = g e t L o c a l C o o r d i n a t e s ( p ixe l sX , p ixe l sX , D( p ixe l sY ,

p i x e l s X ) ;
/∗ P l a c e c o o r d i n a t e s i n t h e wor ld f rame ∗ /
g l o b a l P o i n t = C∗ l o c a l P o i n t ;
box = b o x g r i d ( g e t B o x C o o r d i n a t e s ( g l o b a l P o i n t ) ) :
box . o c c u p i e d = 1 ;

}
}

}

Listing 4.2 Pseudocode for the box approximation algorithm.
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5
Path planning

The reason for choosing D* Lite is that the algorithm is easy to overview and has
proven to be faster than both Focused D* and A* on both terrain with random
obstacles and on fractal terrain [S. Koening, 2005, Tables 1 and 2].

5.1 Implementation using the obstacle map

In this thesis we implemented the algorithm in 3 dimensions using an int*** matrix
with ones and zeros received by the discretization block. In the implementation
we used a 51× 51× 51 matrix, in a room of 2m× 2m× 2m this will give a node
resolution of 0.039m×0.039m×0.039m. The matrix size and resolution should of
course be fitted to available computational power and area of interest.

Every index in the matrix represents a global coordinate and is considered a
node. If a node is blocked and untraversable it has the value 1 and if it is free and
traversable it has the value 0. If a node is blocked there is no edges to or from that
node. If a node is free if got edges to all surrounding free nodes, at most eight edges.

Since every node represents a global coordinate the weight of the edges are only
effected by how many dimensions it covers, this is showed in Figure 5.1. The cost
of an edge along one dimension is 1. The cost of traveling in two dimensions is the
cost of traveling along the hypotenuse i.e

√
2≈ 1.41. Finally the cost of traveling in

three dimensions is the euclidean distance between the nodes
√

3 ≈ 1.73. For sim-
plicity reasons we choose to scale the cost and use the values 10 for one dimension,
14 for two dimensions and 17 for three dimensions. The implementation is made
in C and uses a node object and a priority heap. The implementation of the node
object can be seen in Linsting 5.1 and the implementation of the priority heap can
be seen in Listing 5.2.
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5.1 Implementation using the obstacle map

Figure 5.1 This figure shows the edge costs for traveling from the black node to its
neighbors. The cost of traveling from black to green is 1, black to blue are

√
2 and

from black to red are
√

3

t y p e d e f s t r u c t NODE {
i n t row ;
i n t column ;
i n t d e p t h ;
i n t heap Index ;
i n t key [ 2 ] ;
i n t r h s ;
i n t g ;

} Node ;

Listing 5.1 Node implementation

i n t h e a p S i z e ( ) ;
i n t l e s s T h a n ( i n t ∗ key1 , i n t ∗ key2 ) ;
vo id i n s e r t ( Node∗ node ) ;
vo id removeNode ( Node∗ node ) ;
vo id p e r c o l a t e U p ( Node∗ node , i n t h o l e ) ;
vo id pe rco la t eDown ( Node∗ node , i n t h o l e ) ;
vo id percolateUpOrDown ( Node∗ node , i n t h o l e ) ;
Node∗ pop ( ) ;
Node∗ t o p ( ) ;
i n t ∗ topKey ( ) ;

Listing 5.2 Priority heap methods
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Chapter 5. Path planning

5.2 Method

The method calls and code structure is described with psuedo code in Figure 5.2.
Below we give a thorough description of the D* Lite algorithm.

Initialize The algoritm starts with an empty priority queue. The g value of all
vertices are set to infinity and the rhs values of all vertices except the goal node
are set to infinity. The rhs value of the goal node is set to zero and the goal node is
inserted to the heap.

Compute Shortest Path The node with the highest priority is obtained from the
heap. If the node is overconsistent we want to expand the node and the g value is
set to the rhs value. The node is removed and the vertices of all of its predecessors
are updated and added to the heap if they are inconsistent. If they are consistent and
already in the heap they are removed. If the node is locally underconsistent the g
value is set to infinity. The vertices of all of its predecessors are updated and added
to the heap if they are inconsistent. If they are consistent and already in the heap
they are removed. If a predecessor was affected by the change of the g value its rhs
value is set to the smallest of its successors g value plus the cost for moving from s
to the successor.

The iteration continuous until the rhs value of the current start node is smaller
or equal to its g value or until the key of the start node is greater or equal to the key
of the heap’s top node. If the rhs value of the start node is infinity it means that there
is no known path. Otherwise we move the robot to the successor of the start node
which has the smallest g value plus the cost for moving from start to the successor.
Finally the new start node is set to the robot’s current position and the key modifier
km is increased by the Manhattan distance between the new and old start node.

Before continuing we need to check if the cost of any edges has been changed.
If there are no changed edge costs we move the robot to the successor of the start
node which has the smallest g value + plus the cost for moving from start to the
successor. Otherwise we need to update the rhs value of all edges that have been
changed and may affect our current path.

There are two ways an edge can affect our planned path. The first is if an edge
which earlier had high cost has changed to a lower cost cold(u,v) > cnew(u,v). In
that case we set the rhs value of u to be the least of the current rhs value and the
cost for moving from u to v plus the g value of v.

The second way the planned path can be affected is if the vertex with a changed
cost is on our planned path rhs(u) = cold(u,v)+g(v). Then we set the rhs value of
u to the rhs value of the successor of u which has the smallest g value + plus the
cost for moving from u to the successor.

Finally, we update the vertices as described above and compute the shortest path
once again. This is iterated until the robot has reached the goal node.
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5.2 Method

Figure 5.2 D* lite pseudo code presented in Fast re-planning for navigation in
unknown terrain [S. Koening, 2005]
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6
Gantry-Tau robot

6.1 Previous work

The three degree-of-freedom (DOF) Gantry-Tau parallel kinematic robot has been
kinematically and dynamically modeled [Dressler, 2012].

6.2 Overview

The Asus Xtion Pro Live RGB-D camera was mounted on the Gantry-Tau robot
and connected to a stationary computer running the Simulink model. A new lab-
comm module, making the communication between our stationary computer and
the Gantry-Tau robot possible, was implemented and wrapped to work with our
Simulink model. When the model enters the moving phase it sends the global coor-
dinates (x,y,z) relative to the initial position along with the four quaternion elements
q1,q2,q3,q4 to the robot using the labcomm module. The quaternion elements will
for simplicity never be changed letting the robot keep the same rotation matrix along
the experiment.

Figure 6.1 Simulink to robot communication flow
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6.3 Camera-Robot transformation

The Gantry Tau structure was invented by Torgny Broghårdh and developed in
the SMErobot [SMErobot 2009] and MONROE [MONROE 2012] projects. In 2000
a new family of parallel kinematic 3 DOF robots developed at ABB was presented
by Broghårdh where the six carbon fiber links where clustered in a 3-2-1 configura-
tion [Dressler, 2012]. The robot has three prismatic joints implemented as carts on
linear guide ways connected to the end-effector plate [Dressler, 2012].

Figure 6.2 L2 Gantry Tao Robot with mounted Xtion Asus Pro Live RGB-D cam-
era.

6.3 Camera-Robot transformation

Since the coordinate system of the robot (world frame) and the coordinate system
of the camera (camera frame) are known it should be possible for us to find a trans-
formation from the camera to the robot that is good enough for our purpose.
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Chapter 6. Gantry-Tau robot

The camera is tilted downwards as can be seen in Figure A.1. To find the tilting
angle α we simply located the image center frame in the world frame by manually
looking at the image and then the distance from the camera to the center point was
measured along the world frames x axis and z axis (see Figure 6.3).

Then α was calculated as

α = arctan(
a
b
)

a

b

Camera

x
y

z
α

Figure 6.3 Simplified figure of the cameras downward tilt α

It might be hard to measure α with good precision. We solved this problem by
using the measured α as an initial guess and plot the global coordinates of some
images. The camera will always see a part of the floor and since we know that the
floor should be about parallel to the robot’s x, y plane we could manually tune α

until the floor’s global coordinates were parallel to the global x, y plane. The result
can be seen in Figure 6.4.

In this image a box was placed on the floor. The red point cloud shows the
downwards tilted camera which has not been compensated for. Here we measured
our initial guess to be 58◦ which seems to be quite close to the truth. Finally we
decided to go with α = 62◦.
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6.3 Camera-Robot transformation

Figure 6.4 Global points for different alpha

Rotation
The robot will only be ran in Cartesian mode so the tool oriantation will not change
in the global frame. To simplify our transformation matrix we lock the robot frame
to the global frame, this way we do not have to consider any change of rotation
in our transformation matrix. That means that once we calculated α the rotation
matrix can easily be calculated as can be seen in Figure 6.5. We want to calculate
the rotation matrix from the camera to the robot.

Frame 1 -> frame 2 First we want to un-tilt the camera by rotating−α around the
x axis.

Rx(−α) =

1 0 0
0 cos(−α) −sin(−α)
0 sin(−α) cos(−α)


Frame 2 -> frame 3 Then we want to rotate another −π around the x axis to align

the camera z axis with the world frame z axis.
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Chapter 6. Gantry-Tau robot

Rx(−π/2) =

1 0 0
0 0 1
0 −1 0


Frame 3 -> frame 4 Finally we want to rotate −π around the z axis to align the

camera frame’s x and y axes with the world frame’s x and y axes.

Rz(−π/2) =

 0 1 0
−1 0 0
0 0 1



x

y

z

1

z′′

x′′

y′′

x′

y′

z′α

2

′′

y′′
z′′

x′′′

y′′′

z′′′

π/2

3

x′′′ y′′′

z′′′

x

y

z

π/2

4

x

y

z

Figure 6.5 A modulation of the rotations between the camera and robot frame

The total rotation from the camera frame to the world frame is

Rc2w = Rz(−π/2) ·Rx(−π/2) ·Rx(−α) = 0 sin(α) cos(α)
−1 0 0
0 −cos(α) sin(α)

=

 0 −0.8829 0.4695
−1 0 0
0 −0.4695 −0.8829


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6.3 Camera-Robot transformation

Translation
When the rotation is known we just need to find the translation between the camera
and the robot along the camera axes (see Figure 6.6). We can measure the distance
∆Zr and ∆Xr between the robot and the camera. This is used to calculate the eu-
clidean distance e between the robot and the camera. Since we know the tilting
angle of the camera α and can calculate β we can calculate the angle γ between the
robot and the camera. Finally ∆Yc and ∆Zc can be calculated using trigonometrical
functions and the distance e. Since there is no offset along the camera’s x axis we
realize that ∆Xc = 0. The trigonometry can be seen in Figure 6.6.

zc

yc

xr

zr

Camera

Robot

∆Zr

∆Xr

e

∆Yc

∆Zc

α

γ
β

Figure 6.6 Simplified figure showing translation between camera and robot.

e =
√
(∆Z2

r +∆X2
r )

β = arctan(
∆Xr

∆Zr
)

γ = π/2−α−β

∆Yc = sin(γ)e

∆Zc = cos(γ)e
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Chapter 6. Gantry-Tau robot

Measurements gave:
∆Zr = 0.2m

∆Xr = 0.1m

e = 0.2236m

β = 26.56◦

γ = 1.44◦

∆Yc = 0.0056m

∆Zc = 0.2235m

We get tr2c =
[
∆Xc −∆Yc −∆Zc

]′
=
[
0 −0.0056 −0.2235

]′m and
tc2r =

[
∆Xr −∆Yr −∆Zr

]′
=
[
−0.1 0 −0.2

]′m.

Transformation
The final homogenous transformation Hc2r from the camera to the robot is then

Hc2r =

[
Rc2r tc2r

0 1

]
=


0 sin(α) cos(α) ∆xr
−1 0 0 ∆yr
0 −cos(α) sin(α) ∆zr
0 0 0 1

=


0 −0.8829 0.4695 0.1000
−1 0 0 0
0 −0.4695 −0.8829 −0.2000
0 0 0 1


If Hc2r is the homogenous transformation that transforms the camera position C

to the robot position Q the inverse of Hc2r is the homogenous transformation that
transforms the robot position Q to the camera position C.

Hr2c = H−1
c2r =


0 −1 0 ∆xc

sin(α) 0 −cos(α) ∆yc
cos(α) 0 sin(α) ∆zc

0 0 0 1


We can use this to get the first camera position C1 if we know the initial robot

position Q1,

C1 = HC2R ·Q1.

Since we assume that the robot orientation is fixed we get,

Q1 =


1 0 0 txr

c
0 1 0 tyr

c
0 0 1 tzr

c
0 0 0 1

 ,
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6.4 Experimental setup

where txr
c, tyr

c and tyr
c are the robot position in the camera frame. They can be cal-

culated by transforming the robot frame’s robot position to the camera frame using,
txr

c
Rr2c tyr

c
tzr

c
0 0 0 1

=


0

Rr2c 0
0

0 0 0 1

 ·


1 0 0 txr
r

0 1 0 tyr
r

0 0 1 tzr
r

0 0 0 1

 ,
where txr

r, tyr
r and tyr

r represent the robot frame’s robot position.

6.4 Experimental setup

Timing
In order to get the Simulink simulation to run in real time we used the realtimer
block developed by the Department of Automatic Control, LTH. The realtimer syn-
chronizes the simulation time with the system clock making the simulation run with
a controllable sampling time. For safety reasons an additional control was imple-
mented on both the model and the robot side. The model uses an assertion triggered
every sample that pauses the execution after the moving coordinates have been sent
to the robot. The execution is then continued when the correct behavior of the robot
is verified and the operator presses enter in the Matlab terminal. At the robot side
the user needs to acknowledge the new coordinates before the robot starts to move
there.

Labcomm
Labcomm is a binary protocol developed at LTH. Labcomm only requires one way
communication and keeps the communication to a minimum. It consists of a proto-
col specification and a compiler that generates C or Java code for needed methods
such as encode/decode [Labcomm 2014].

The Labcomm module sets up a TCP IP socket to the robot computer. The sta-
tionary computer running the Simulink model is server and the robot is the client.
After the server is started the client can connect to the server. The Labcomm mod-
ule also initializes and registers a reader and a writer that will handle the stream
input/output on the server side.

The method used by the server side in the moving phase is

f l o a t s e t T a r g e t ( f l o a t x , f l o a t y , f l o a t z , f l o a t q1 , f l o a t q2 , f l o a t
q3 , f l o a t q4 )

which encodes and sends the robot target and then calls the decoder that locks exe-
cution until an acknowledgement is sent from the client application. The robot target
used in this experiment can be seen in Listing 6.1.
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Chapter 6. Gantry-Tau robot

# i f n d e f PREDEFINED_LCRobot_robtarget
t y p e d e f s t r u c t {

s t r u c t {
f l o a t x ;
f l o a t y ;
f l o a t z ;

} t r a n s ;
s t r u c t {

f l o a t q1 ;
f l o a t q2 ;
f l o a t q3 ;
f l o a t q4 ;

} r o t ;
i n t 3 2 _ t s t a t u s ;

} L C R o b o t _ r o b t a r g e t ;
# e n d i f

Listing 6.1 The robot target used in the experiement contaning needed data

The client code that controls the robot is written in ABB’s robot programming lan-
guage RAPID [Berlin, 2012].

Experiment
In this experiment we test the system’s overall performance as well as the path
planning implementation. The Gantry-Tau robot was set into a well suited starting
position with a goal position in front of it. Then an obstacle was placed between the
Gantry-Tau robot and the goal position. The system starts with an empty obstacle
map. After the first iteration the obstacle map starts filling with what the camera
sees. After some iterations when the Gantry-Tau robot approaches the obstacle it
appears on the camera and is marked in the obstacle map. The obstacle will then be
located on the planned path and the algorithm is forced to re-plan and travel around
the obstacle. The result of this experiment can be seen in Section 9.5.

52



7
Combine hexacopter

7.1 Previous work

This thesis is the third in a series of thesis done on Combine Control Systems in
cooperation with the Department of Automatic Control, LTH, concerning the Com-
bine hexacopter.

Model-Based Approach to Computer Vision and Automatic
Control using Matlab Simulink for an Autonomous Indoor
Multirotor System
In the first thesis by Niklas Ohlsson and Martin Ståhl [Niklas Ohlsson, 2013] the
main focus was to assemble hardware and implement computer vision algorithms,
position control and some autonomous behavior using a model based approach to
get a working UAV fit for maneuvering in GPS-denied environments such as indoor
environments. A Pandaboard [OMAP TM 4 PandaBoard System Reference Manual
2010], which is a portable software platform not very different from the popular
Raspberry Pi [Rasberry Pi], was attached to the hexacopter. An Ethernet commu-
nication protocol was created to make communication between the Pandaboard and
the hexacopter autopilot possible. Finally a Matlab Simulink model was developed
controlling the hexacopter behavior. At the end of their thesis the UAV still had
some stability problems left, due to the nature of the chosen computer vision al-
gorithm (template matching), bad altitude hold and some lag probably caused by
Simulink.

Autonomous navigation and control of a hexacopter in an
indoor environment
The second thesis was performed by Johan Fogelberg in 2013 [Fogelberg, 2013].
The main objective of the thesis on the UAV was to improve the altitude control for
the UAV with hope of thereby improving the performance of the computer vision
algoritm, to improve horizontal control and thereby reduce the drif and, finally, use
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nonlinear filtering for sensor fusion of IMU data and computer vision measurements
to improve position and velocity estimates.

The system was modeled and various nonlinear filters were used in simulation
according to the rules of model based approach. Finally, the Square root unscented
Kalman filter was implemented fusing all useful data together and added together
with the previous Matlab Simulink model. A simple PID controller was imple-
mented with anti-windup, derivative filtering, and set point scaling. Even though
this thesis made huge improvements on the stability of the UAV the estimation is
only able to keep the UAV stable in a hovering state and is unable to follow a tra-
jectory.

7.2 Hardware assembly

Pandaboard Hardware
The Pandaboard features a Dual-core ARM Cortex-A9 processor [OMAP TM 4
PandaBoard System Reference Manual 2010]. It uses the hexacopter’s 12.6V LiPo
battery and an external 5V switching regulator for power supply [Niklas Ohlsson,
2013]. The pandaboard is supported by native Simulink code generation and runs
a MathWorks supplied Linux distribution on a SD memory card. It has two USB
connections that can be used for a regular or RGB-D camera, an Ethernet port, and
a Wi-Fi connection that makes external computer communication possible.

APM Autopilot
The ArduPilot Mega 2.5+ features an ATMEGA2560 micro processor as well as
data storage, programming logics. An inertial measurement unit (IMU) with a 3-
axis gyro, 3-axis accelerometer and magnetometer for attitude and yaw estimation,
and a barometer and external sonar sensor are used for altitude measurements.

ArduCopter Software
The hexacopter features the open source autopilot software ArduCopter [Ar-
duCopter]. The ArduCopter is responsible for reading sensors, receiving RC radio
input as well as stabilizing the hexacopter during flight.
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7.3 Tracking

7.3 Tracking

Since the initial computer vision algorithm implemented on the UAV did not work
sufficiently well when it came to position estimation and keeping the UAV stable a
new tracking approach was needed. The angle estimates of the UAV done in previ-
ous thesis work comparably well so our idea was to use the known rotation together
with a tracking algoritm.

Rotation fused ICP
In this approach we want to fuse the rotation matrix achieved by the traditional ICP
algoritm with the estimated rotation matrix,

R = ARestimate +(I−A)RICP

, where A is a weighting coefficient matrix A =

α 0 0
0 α 0
0 0 α

 and α is a weighting

coefficient 0≤ α ≤ 1.
The weighting coefficient is used according to how much we trust the estimated

rotation matrix in relation to the ICP rotation matrix. For example, if we are sure
that the estimated rotation matrix is 100% correct we will use α = 1.

Since the ICP algoritm has been implemented many times before we choose
to use a C++ implementation called LIBICP by Dr. Andreas Geiger, research sci-
entist at the Perceiving Systems department, Max Planck Institute for Intelligent
Systems, Tübinge. [Geiger, 2008]. A related publication where the software was
used is [Geiger et al., 2012]. The implementation allows use of both point-to-point
and point-to-plane error metrics and uses k-d tree to speed up the matching process.

Translation approximation
The main idea of translation approximation is to use the known rotation matrix and
only calculate the relative translation. The relative translation is approximated as
the relative translation between two point clouds centroids. Notice that since we
can only calculate the relative translation, the centroids are calculated from local
point clouds.

A centroid P is calculated as,

P =
1
M

n−1

∑
i=0

miXi,

where X = (x,y,z) , M is the total weight and mi is the weight at Xi.
Since we decided to use the weight wi = 1 the centroid is simply,

P =
1
n

n−1

∑
i=0

Xi,
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i.e the mean value.
Then the translation is calculated as,

∆t = ∆R−1Pk+1−Pk,

where Pk is the local point cloud generated by the old frame and Pk+1 is the point
cloud generated by the new frame. We can now calculate the absolute translation
using,

tk+1 = tk +∆t,

the new camera matrix will be

Cn+1 =

[
Rn+1 tn+1
000 1

]
Cn

The greatest advantage of using translation approximation is the linear complex-
ity O(n) making the processing time extremely low.

7.4 Experimental setup

For measuring ground truth performance tests we have been using the automatic on-
line evaluation tool for evaluation of tracking methods supplied by the TUM com-
puter vision group [Submission form for automatic evaluation of RGB-D SLAM re-
sults 2009-2013]. As ground truth we used the freiburg1_teddy sequence [Freiburg1
Teddy sequence 2011]. In Table 7.1 some basic information about the test sequence
is shown.

Table 7.1 Freiburg1 Teddy sequence [Freiburg1 Teddy sequence 2011]

Duration: 50.82s
Duration with ground-truth: 50.78s
Ground-truth trajectory length: 15.709m
Avg. translational velocity: 0.315m/s
Avg. angular velocity: 21.320◦/s
Trajectory dim.: 2.42m x 2.24m x 1.43m
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Software implementation

The software was mainly implemented in a Matlab/Simulink environment and some
additional modules was done in C/C++. In the Combine hexacopter experiment we
used the Simulink generate to target platform feature which generates C code to the
chosen target hardware, in our case the Pandaboard. In the Gantry-Tau experiment
we used the same code base which were slightly modified omitting the tracking
algorithm and run locally on the stationary computer used.

8.1 Simulink - C/C++ interface

One of the main problems when it came to software implementation is that Math-
works does not support use for Asus Xtion Pro Live or the Microsoft Kinect. There-
fore we needed to use an additional module for receiving the depth images from
the RGB-D camera. Initially we tried using the open source libfreenect interface
developed by openKinect but later decided to use OpenNI2 instead due to the poor
status of the libfreenect interface. OpenNI2 is an C++ open source SDK used for
3D sensing applications [OpenNI 2 SDK].

Matlab/Simulink supports use of external C/C++ code using S-functions. Un-
fortunately if does not support code generation to C from C++ S-functions calls,
therefore an additional C wrapper solution is needed for code generation to the tar-
get platform.

An illustration of the code wrapping can be seen in Figure 8.1. First an .so
library file needs to be generated on the target platform and moved into a folder on
the host computer reachable for the Simulink model. The same .so file also needs
to be installed into the targets /usr/lib folder and the used .h header files should
be copied to the targets /usr/include folder. This is so that the files and libraries
can be reached from another map then the one where they where built. Then we
need a C wrapper file on the host computer which interfaces the C++ methods we
want to use from our .so library. After creating the C wrapper file we use Matlab’s
build in legacy code commands to create an S-function C file, a .tlc file (Target
Language Compiler), a rtw makefile (makes it possible to use dependent source and
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Figure 8.1 Illustration of the code wrapping process

header files in another folder than the S-function where they where generated) and
a Simulink block in Matlab. Finally we compile the S-function C file into a mexfile
using legacy code commands. Below is an example on how we used Matlab legacy
code to generate a Simulink block for the OpenNI2 interface.
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8.2 Simulink model

d e f = l e g a c y _ c o d e ( ’ i n i t i a l i z e ’ ) ;
d e f . SFunctionName = ’ a s u s _ s f c n ’ ; % S−f u n c t i o n name
% P o l l e d f u n c t i o n wi th s p e c i f i e d o u t p u t d i m e n s i o n s
d e f . Outpu tFcnSpec = ’ a s u s C a p t u r e ( u i n t 1 6 y1 [ 2 4 0 ] [ 3 2 0 ] ) ’ ;
d e f . S t a r t F c n S p e c = ’ a s u s I n i t ( ) ’ ; % C o n s t r u c t o r
d e f . Te rmina teFcnSpec = ’ a s u s T e r m i n a t e ( ) ’ ; % D e c o n s t r u c t o r
d e f . H e a d e r F i l e s = { ’ a s u s _ c a p t u r e . h ’ } ;
d e f . I n c P a t h s = { ’ mypath \ i n c l u d e ’ } ;
d e f . SampleTime = ’ p a r a m e t e r i z e d ’ ;
d e f . O p t i o n s . i sMacro = t r u e ;
d e f . O p t i o n s . u seT lcWi thAcce l = f a l s e ;
l e g a c y _ c o d e ( ’ s f c n _ c m e x _ g e n e r a t e ’ , d e f ) ; % S−f u n c t i o n
l e g a c y _ c o d e ( ’ compi l e ’ , d e f ) ; % Compile
d e f . H e a d e r F i l e s = { ’ a s u s _ c a p t u r e . h ’ ’ NI . h ’ ’ wrapper . h ’ } ;
d e f . S o u r c e F i l e s = { ’ wrapper . c ’ } ; % Our C wrapper f i l e
d e f . I n c P a t h s = { ’ mypath \ i n c l u d e ’ } ;
d e f . S r c P a t h s = { ’ mypath \ s r c ’ } ;
d e f . T a r g e t L i b F i l e s = { ’ l i b N I . so ’ } ; % Our . so f i l e
l e g a c y _ c o d e ( ’ s f c n _ t l c _ g e n e r a t e ’ , d e f ) ; %Tlc f i l e
l e g a c y _ c o d e ( ’ r t w m a k e c f g _ g e n e r a t e ’ , d e f ) ; %r tw m a k e f i l e
l e g a c y _ c o d e ( ’ s l b l o c k _ g e n e r a t e ’ , d e f ) % Si m u l i n k b l o c k
\ l a b e l { m a t l a b _ w r a p p e r }

LIBICP, the ICP C++ implementation we choose to use, can be wrapped in the
same way as OpenNI2. The files asus_capture.h, NI.h, wrapper.h and wrapper.c can
be seen in Appendix A.

8.2 Simulink model

Due to to the lack of performance of the investigated tracking algorithms (see Chap-
ter 9.3) the tracking was omitted in the final software implementation. Instead the
internal positioning of the Gantry-Tau robot where used by using the position de-
manded by the path planning algorithm as translation in the camera matrix. Since
we know that the Gantry-Tau robot will in fact move to the commanded positioning
we do not need the positioning feedback from the tracking algorithm and our sys-
tem can still be used even though tracking is omitted. Note that it was not possible
to run the entire system on the Combine hexacopter due to the tracking algorithm’s
lack of performance and the limited processor power on the Pandaboard. The Com-
bine hexacopter’s internal positioning that was intended to be used in this thesis did
not work sufficiently [Fogelberg, 2013]. The Simulink model for the main functions
can be seen in Figure 8.2.

CaptureNI This block uses the openNI implementation and wrappers to receive
images from the Asus Xtion Pro Live camera, see Figure 8.3.
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Figure 8.2 Simulink model showing the algorithm blocks.

Flip dimensions The initial image is mirrored so we flip it back to simplify further
calculations.

Get local coordinates Transforms the depth data into local coordinates

Get global coordinates Transforms the local coordinates into global coordinates
using the robot-camera transformation and the current camera position which
is the previous coordinates given by the path planning algorithm. Since we
currently don’t have a need for changing the camera rotation we simply use
the identity matrix.

Update obstacle matrix Performs box approximation to discretizise the global co-
ordinates.

Step Runs D* Lite path planning algorithm where start and goal position are given
as block arguments on index form and the obstacle matrix is an input param-
eter and next step indexes as out parameter.

Matrix to global Calculates the next step indexes into global coordinates.

Robot communication This block uses the Labcomm implementation and wrap-
pers and sends the target coordinates to the robot.

Timing block This group makes the simulation run in real time and asserts a pause
every h second, where h is the sample time. The assertion then needs to be
acknowledged in the terminal to re-assume simulation, this is a safety precau-
tion. The model can be seen in Figure 8.4.
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8.2 Simulink model

Figure 8.3 Simulink model showing the capture block.

Figure 8.4 Simulink model showing the timing setup.
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9
Result

This section presents the results of this thesis. First in Section 9.1 the time perfor-
mance of the Asus Xtion Pro Live with the OpenNI2 C++ software implementation
is presented. In Section 9.2 the measured CPU time over 1000 iterations are pre-
sented in a table and a plot for SDF and Box Approximation using every pixel and
box approximation using every fifth pixel.

Then in Section 9.3 the results of Tracking are discussed. It includes results of
the different tracking approaches including rotation fused ICP (Point-to-Point and
Point-to-Plane) and translation approximation. Tables and plots of the measured
CPU time for 1000 iterations show the time performance of the different algorithms.
Performance on ground truth data sets are presented in an analogous way. Section
9.4 shows the result of the Camera-Robot transformation where the global coordi-
nates of different camera positions are shown in a plot.

Finally, the results of the path planning algorithm implemented on the Gantry-
Tau robot are shown in Section 9.5.
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9.1 Image retrieval

9.1 Image retrieval

For timing reasons we are interested in knowing the CPU execution time of the Asus
Xtion Pro Live OpenNI2 C++ implementation. In Table 9.1 and Figure 9.1 we see
the results of 1000 executions on the Pandaboard when a frame rate of 30fps and a
resolution of 320×240 pixels were demanded.

OpenNI2 CPU time / s
Mean 0.0279
Median 0.0300
Max 0.0700
Min <0.01
Std 0.0108

Table 9.1 CPU time for Asus Xtion Pro Live OpenNI2 C++ implementation with
demanded framerate 30fps for 1000 executions.

The results in Table 9.1 tells us that the mean frame rate is 35.84 Hz, median
frame rate is 33.33 Hz and that the minimum frame rate achieved in this test is 14.29
Hz.

Figure 9.1 CPU time for Asus Xtion Pro Live OpenNI2 C++ implementation with
demanded frame rate 30fps for 1000 executions.
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9.2 Updating the Obstacle map

Time measurements
In Figure 9.2 we see the execution time of discretization using SDF, box approxima-
tion using every pixel and box approximation using every fifth row and every fifth
column (every 25th pixel). Notice that this is not CPU time measured on the Pand-
aboard and can only be used for relative time performance between the different
discretization algorithms. The time measurements are done on the freiburg1_teddy
sequence [Freiburg1 Teddy sequence 2011]. The statistics are presented in Table
9.2.

Figure 9.2 Executions time for discretization using SDF, box approximation using
every pixel and box approximation using every fifth pixel over 1400 samples.
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9.2 Updating the Obstacle map

CPU time SDF / s Box 1.1 / s Box 5.5 /s
Mean 1.51 1.307 5.29 ×10−2

Median 1.50 1.305 5.28 ×10−2

Max 2.28 2.002 8.40 ×10−2

Min 1.39 1.127 4.53 ×10−2

Std 8.92 ×10−2 6.78 ×10−2 0.30 ×10−2

Table 9.2 Executions time for discretization using SDF, box approximation using
every pixel and box approximation using every fifth pixel over 1000 samples.

Performance on ground truth data sets
In Figure 9.3 we see the discretisized version of the environment and a visual com-
parison between the box approximation and SDF method.

Figure 9.3 This figure shows the discretization of the freiburg1_teddy sequences
first depth image. The box approximation approach can be seen to the left and the
SDF approach can be seen to the right.
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9.3 Combine hexacopter

Tracking
Rotation fused ICP
For time measurements we have measured the CPU times used by the implemen-
tation of interest while running on the Pandaboard. This was done by using the C
method clock() as follows:

b e g i n = c l o c k ( ) ;
/∗Do ICP ∗ /
end = c l o c k ( ) ;
t ime = ( do ub l e ) ( end − b e g i n ) / CLOCKS_PER_SEC) ;

Time measurements For time measurements we have measured the CPU time for
the original ICP implementation. Notice that this is the fused version. We see the
time meassurements for Point-to-Point ICP in Figure 9.4 and for Point-to-Plane in
Figure 9.5. The corresponding statistics are shown in Table 9.3.

Figure 9.4 CPU time using fused ICP point to point C++ implementation with
α = 1 for 1000 executions.
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Figure 9.5 CPU time using fused ICP point to plane C++ implementation with
α = 1 for 1000 executions.

ICP Point to Point / s Point to Plane / s
Mean 0.674 1.38
Median 0.615 0.930
Max 2.45 3.36
Min 0.140 0.310
Std 0.288 0.934

Table 9.3 CPU time using fused ICP C++ implementation with α = 1 for 1000
executions.

Performance on ground truth data sets For performance measurements we used
the freiburg1_teddy sequence [Freiburg1 Teddy sequence 2011] as ground truth.
We see the ground truth performance for Point-to-Point ICP in Figure 9.6 and for
Point-to-Plane in Figure 9.7. The corresponding statistics are shown in Table 9.4.

ICP Point to Point / m Point to Plane / m
Rmse 0.751 0.422
Mean 0.659 0.380
Median 0.687 0.351
Std 0.360 0.183
Min 0.0430 0.0473
Max 1.38 0.755

Table 9.4 Absolute translation error for fused ICP C++ implementation with α = 1
for 1400 samples.

67



Chapter 9. Result

Figure 9.6 Absolute translation error using fused ICP point-to-point C++ imple-
mentation with α = 1 for 1400 samples.

Figure 9.7 Absolute translation error using fused ICP point-to-plane C++ imple-
mentation with α = 1 for 1400 samples.
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Translation approximation
Time measurements For time measurements we have measured the times used
by the implementation of interest while running on a Asus laptop. The laptop were
running 64-bit Windows 7 Proffesional N featuring a Intel(R) Core(TM) i3-2310M
CPU @2.10GHz processor and 8GB RAM.

This was done by using the tic toc Matlab method as follows:

t i c
/∗Do TA∗ /
t ime = t o c ;

The time measurements can be seen in Figure 9.8 and the statistics are presented
in Table 9.5.

Figure 9.8 Execution time using translation approximation implementation for
1000 executions.
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Translation approximation /s
Mean 0.0093
Median 0.0093
Max 0.0172
Min 0.0079
Std 4.63×10−4

Table 9.5 Execution time using translation approximation implementation for
1000 executions.

Performance on ground truth data sets For performance measurements we used
the freiburg1_teddy sequence [Freiburg1 Teddy sequence 2011] as ground truth. The
ground truth performance can be seen in Figure 9.9 and the statistics are presented
in Table 9.6.

Figure 9.9 Absolute translation error using translation approximation for 1400
samples.
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9.4 Gantry-Tau robot

Translation approximation / m
Rmse 1.04
Mean 0.965
Median 0.922
Std 0.399
Min 0.145
Max 2.12

Table 9.6 Absolute translation error using translation approximation for 1400 sam-
ples.

9.4 Gantry-Tau robot

Camera-Robot transformation

Figure 9.10 Global coordinates from multiple images and positions.

In Section 6.3 we calculated the transformation Hc2r from the camera to the
robot needed to relate robot position to global point clouds. In Figure 9.10 we see the
global coordinates of the floor and an obstacle from multiple images with different
robot positions. The point clouds of each image have a unique color. The green dots
are the camera positions and the red dots are the robot positions. Notice that the
coordinate system used is the coordinate system of the robot and the plotted dots
have been transformed using the calculated Hc2r. The consistency of the obstacle
and the floor as well as the even distribution of points from different images implies
that the calculated transformation Hc2r is a good approximation.

71



Chapter 9. Result

9.5 Path planning

Since the performance of ICP has a mean absolute error of 0.380m (point-to-plane)
it could not be used in the experimental setup to verify the behavior of the path
planning and discretisation. Therefore we used the robot’s internal positioning to
create the discrete environment needed for the path planning.

Performance
In this experiment a paper cylinder was placed about 30cm in front of and about
40cm under the robot (since the camera is pointed downwards). The start position of
the robot is the upper blue dot marked in Figure 9.11. Then the robot is commanded
to move to a position behind the cylinder, marked as the lower yellow dot in Figure
9.11. The shortest path from the start to the goal position would be straight through
the cylinder but as the discrete map is created the path planning needs to re plan to
avoid the obstacle resulting in a path traveling around the cylinder. The environment
can be seen in Figure 9.11 where the discrete map of each camera is painted with
the same color as the camera dot.

Figure 9.11 This figure shows camera position (circles) and obstacle map while
running path planning. The left blue camera is the start position and the lower right
yellow camera is the goal position.

We clearly see how more and more of the environment is discovered as the robot
moves.
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Conclusions

10.1 Image retrieval

After a comparison of the different avaliable RGB-D cameras the Asus Pro Live
was chosen before the Kinect due to lower power consumption and the benefits for
the image retrieval to use a lower resolution more suited for the task.

The Asus Pro Live performs good on timing test with a mean of 0.0279s and
standard deviation of 0.0108s while claiming a sample time of 0.03s. The compact
format of 320×240 is definitely an advantage since we do not want to handle more
data than we can use with the chosen resolution of the box grid.

10.2 Updating the Obstacle map

Results show that box approximation using every pixel is faster than SDF and that
Box Approximation using every fifth pixel is much faster than SDF. Performance
wise SDF is better suited for image reconstruction with a higher need of precision
but for graph generation box approximation is to prefer. SDF expects the area be-
hind known objects to be untraversable until it is proven to be clear of obstacles and
box approximation expects all areas to be traversable until an obstacle is spotted
making it more compatible with the D* Lite algorithm which expects all paths to
be free until proven otherwise. The main motivation for using box approximation
in this application is that since SDF operates on the voxels a small object, for ex-
ample a thin pole or hanging string, may lie in between two voxels and will not be
represented in the discretization. Box Approximation on the other hand that oper-
ates on the pixels will instead fill the box even if just a small item is located there.
This can of course lead the algorithm to believe that areas that could in fact be trav-
eled are untraversable. Considering the nature of the application a rather diminished
area avaliable for travel is better than a larger area with hidden and unrepresented
obstacles.
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10.3 Combine hexacopter

Hardware
From the results we can clearly see that the Pandaboard is not powerful enough to
run all calculations online. Running rotation fused ICP alone on the Pandaboard had
a mean time of 0.6735s using Point-to-Point ICP and 1.3774s using Point-to-Plane
ICP. This is not nearly fast enough for the intended application.

Tracking
Looking at Table 9.3 we see that neither Point-to-Point ICP nor Point-to-Plane ICP
are not nearly fast enough for running on the Pandaboard on-flight. Point-to-Point
has a worst case of 2.45s while Point-to-Plane has a worst case of 3.36s, both un-
exceptionably slow. Looking at Table 9.4 we see that ICP Point-to-Plane is better
than Point-to-Point performance wise but is still not good enough to be used in this
application. The translation approximation algorithm is extremely fast but do not
seem to work at all (see. Section 9.3).

10.4 Gantry-Tau robot

Camera-Robot transformation
As can be seen in Figure 9.10 the Camera-Robot transformation seems accurate.
The plotted floor is well aligned with the robot’s y axis. If the Camera-Robot trans-
formation was not near the ideal transformation local coordinates from different
camera positions would not be able to reconstruct the global coordinates of the
floor and cylinder in an uniform way.

10.5 Path planning

The D* Lite performs well. When a new obstacle occurs it re-plans the path and
manages to avoid the obstacle. Looking at Figure 9.11 we see that the shortest path
from the start node to the end node is on the diagonal, which is the initially planned
path. We can easily see that the path has been re-planned to avoid the cylinder.
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11
Discussion

11.1 Problems

The problems which have shown up during the thesis work have mainly been related
to Matlab and hardware restrictions. The Pandaboard was too slow to run the needed
applications and the Asus Xtion pro live.

If a tracking algorithm is to be used with the current setup it needs to take the
behavior of the depth data into consideration. Objects too close to the camera will
be represented as zeros, this means that if we are traveling towards an obstacle even-
tually the distance to the obstacle will be reported as zeros even thought it in fact
will be in the range between 0 and 0.8m [Xtion PRO LIVE]. If the tracking algo-
rithm then simply tries to compare the transformation between two images where
one contains zeros and the other contains the accurate distance to an obstacle it
might be impossible to calculate the transformation.

11.2 Further work

If the setup is to be used on a UAV a more powerful processor is needed as well as
an internal positioning system.
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A.1 Camera calibration

In order for the camera to give correct images the camera was calibrated using the
Camera Calibration Toolbox for Matlab following the guide First calibration exam-
ple - Corner extraction, calibration, additional tools [Camera Calibration Toolbox
for Matlab]. The calibration was done by calculating the intrinsic and extrinsic cam-
era parameters. The intrinsic parameters describe the lens and camera attributes.

Focal length The camera focal length for a (perfect) Asus Xtion pro live is 525px.

Principal point The principal point for a (perfect) Asus Xtion pro live is cx =
319.5 cy = 239.5.

Skew coefficient In a (perfect) camera the screw coefficients are 0◦ since they de-
fine the angle between the x and y pixel axes.

Distortions The radial and tangential distortions in the camera lens.

The extrinsic parameters describe the 3D location of the calibration grid in the
camera reference frame. In Table A.1 we see the calibrated intrinsic camera param-
eters. The calibration setup can be seen in Figure A.1.

Rotation The 3×3 rotation matrix.

Translation The 3×1 translation vector.
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Figure A.1 Asus Xtion pro live camera mounted on Gantry-Tau robot.

Focal Length (mm) (fx, fy) 525.50 531.17
Focal Length uncertainty (mm) 8.70 8.99
Principal point (mm) (cx, cy) 327.97 245.57
Principal point uncertainty (mm) 8.58 8.61
Skew (rad) 1.90 ×10−3

Skew uncertainty (rad) 2.09×10−3

Distortion: 11.52×10−3 -210.41×10−3 -5.76×10−3 -1.54×10−3 0
Distortion uncertainty 34.95×10−3 132.85×10−3 4.48×10−3 3.87×10−3 0
Pixel error 0.26 0.24

Table A.1 Calibration results (with uncertainties). Note: The numerical errors are
approximately three times the standard deviations (for reference) [Camera Calibra-
tion Toolbox for Matlab].

In Figure A.2 we see a comparison of the estimates intrinsic parameters and the
standard intrinsic parameters. In this image a rectangular box where placed on the
floor. The box was 15.5 cm wide and 38 cm long which can be verified by looking
at the data tips in Figure A.2. We also see that a small difference in the intrinsic
parameters will not have a large impact on the local coordinates.
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Figure A.2 Local coordinates generated with estimated intrinsic parameters from
Table A.1 as well as standard intrinsic parameters.

A.2 Hand-Eye Calibration

Since our camera is mounted on the robot we also need to calculate the transforma-
tion between the robot and the camera. This is done by doing a hand-eye calibration
using a Camera Calibration Toolbox for Matlab add-on implemented by Christian
Wengert [Fully automatic camera and hand to eye calibration]. The calibration got
its name from the robotics community since the camera (eye) is mounted on the
robot gripper (hand) while doing the calibration [Hand-Eye Calibration]. The im-
plementation is based on the Tsai-Lenz papers [R.Y. Tsai, 1988] [R.Y. Tsai, 1989].

The main idea is to log the robot position while taking numerous picture of a
stationary pattern. The robot’s coordinate system is considered the world coordinate
system. From the extrinsic image parameters a camera-to-grid transformation can
be calculated. Given the homogeneous transformation from the robot’s coordinate
system to the world’s coordinate system Hr2w and the homogeneous transforma-
tion from the camera’s coordinate system to the grid’s coordinate system Hc2g the
homogeneous transformation from the camera’s coordinate system to the robot’s
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Figure A.3 Homogenous transformations between coordinate systems.

coordinate system Hc2r can be calculated using the Tsai-Lenz approach.
Running the application did not give a suiting result. Some of the matrices used

in the Tsai-Lenz got ill conditioned and the applications was unable to give good
results. Maybe this is due to the steep angle that the camera is mounted on the robot
with.

When we used just a few carefully selected images the application managed to
find a transformation matrix,

Hc2r =


−0.0530 0.7818 0.6212 −0.1938
0.9163 −0.2092 0.3415 −0.8496
0.3970 0.5873 −0.7053 0.3789

0 0 0 1.0000

 ,

with err =
(

0.1293
234.4

)
px and back projection_error = 55.84px.

The result can be seen in Figure A.4. We can see that there is an impossible
relationship between the camera in [-0.1938 -0.8496 0.3789] and the floor since the
right part of the point cloud should be pointed towards the camera. We also see that
the floor is not aligned with the x-y plane. We conclude that this transformation is
not good enough.

82



A.2 Hand-Eye Calibration

Figure A.4 Global coordinates generated with the Tsai-Lenz transformation ma-
trix and robot placed in the origin.
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B.1 Labcomm client

In Listing B.1 we see the client’s mainmodule for the Labcomm communication.

MODULE mainModule

TASK PERS r o b t a r g e t n e x t T a r g e t :=
[ [ 3 7 5 . 2 6 9 , −8 3 . 8 4 6 2 , 6 2 9 . 1 4 3 ] , [ 0 . 7 0 0 9 0 9 , 0 , 0 . 7 1 3 2 5 , 0 ] ,

[ 0 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 0 , 0 , 0 ] ] ;
TASK PERS r o b t a r g e t i n i t P o s i t i o n :=
[ [ 3 7 3 . 9 8 9 , −8 4 . 1 6 6 2 , 6 2 8 . 7 4 3 ] , [ 0 . 7 0 0 9 0 9 , 0 , 0 . 7 1 3 2 5 , 0 ] , [ 0 , 0 , 0 , 0 ] ,
[9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E + 0 9 ] ] ;
TASK PERS j o i n t t a r g e t i n i t P o s i t i o n J : = [ [ 0 , 0 , 0 , 0 , 1 , 0 ] ,
[ 9E9 , 9E9 , 9E9 , 9E9 , 9E9 , 9E9 ] ] ;

VAR L C R o b o t _ r o b t a r g e t tmp ;

PROC handle_command ( L C R o b o t _ r o b t a r g e t v a l )
VAR r o b t a r g e t s l a s k ;
s l a s k := CalcRobT ( i n i t P o s i t i o n J , t o o l 0 ) ;
n e x t T a r g e t . t r a n s . x := s l a s k . t r a n s . x + v a l . t r a n s . x ;
n e x t T a r g e t . t r a n s . y := s l a s k . t r a n s . y + v a l . t r a n s . y ;
n e x t T a r g e t . t r a n s . z := s l a s k . t r a n s . z + v a l . t r a n s . z ;
n e x t T a r g e t . r o t . q1 := s l a s k . r o t . q1 ;
n e x t T a r g e t . r o t . q2 := s l a s k . r o t . q2 ;
n e x t T a r g e t . r o t . q3 := s l a s k . r o t . q3 ;
n e x t T a r g e t . r o t . q4 := s l a s k . r o t . q4 ;
TPWrite " Rece ived v a l u e s −−−−−−−−−−−−−− " ;
TPWrite " x " \Num:= v a l . t r a n s . x ;
TPWrite " y " \Num:= v a l . t r a n s . y ;
TPWrite " z " \Num:= v a l . t r a n s . z ;
TPWrite " q1 " \Num:= v a l . r o t . q1 ;
TPWrite " q2 " \Num:= v a l . r o t . q2 ;
TPWrite " q3 " \Num:= v a l . r o t . q3 ;
TPWrite " q4 " \Num:= v a l . r o t . q4 ;
TPWrite "New p o s i t i o n −−−−−−−−−−−−−− " ;
TPWrite " x " \Num:= n e x t T a r g e t . t r a n s . x ;
TPWrite " y " \Num:= n e x t T a r g e t . t r a n s . y ;
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TPWrite " z " \Num:= n e x t T a r g e t . t r a n s . z ;
TPWrite " q1 " \Num:= n e x t T a r g e t . r o t . q1 ;
TPWrite " q2 " \Num:= n e x t T a r g e t . r o t . q2 ;
TPWrite " q3 " \Num:= n e x t T a r g e t . r o t . q3 ;
TPWrite " q4 " \Num:= n e x t T a r g e t . r o t . q4 ;

move n e x t T a r g e t ;

ENDPROC

PROC main ( )
VAR LabComm_Stream s t ;
S o c k e t C r e a t e s t . soc ;
Socke tConnec t s t . soc , " 1 3 0 . 2 3 5 . 8 3 . 2 4 5 " , 6555 ;
TPWrite " Connec ted t o s e r v e r ! " ;
R e c e i v e _ t a r g e t s s t ;

ENDPROC

PROC R e c e i v e _ t a r g e t s (VAR LabComm_Stream s t )
VAR Decoder d ;
VAR LabComm_Decoder_Sample s { 1 } ;
VAR LabComm_Encoder_Sample en { 1 } ;
VAR Encoder enc ;

I n i t _ E n c o d e r enc , s t ;
I n i t _ D e c o d e r d , s t ;

%" LCRobot : E n c _ R e g _ r o b t a r g e t "% enc , s t , en { 1 } ;
%" LCRobot : D e c _ R e g _ r o b t a r g e t "% s {1} , " handle_command " ;
WHILE TRUE DO

Decode_One d , s t , s ;
%" LCRobot : E n c o d e _ r o b t a r g e t "% enc , s t , en {1} , tmp ;

ENDWHILE
ERROR

S o c k e t C l o s e s t . soc ;
RETURN;

ENDPROC

PROC move ( r o b t a r g e t t a r g e t )
S ingArea \ W r i s t ;
MoveL t a r g e t , v100 , z5 , t o o l 0 \ WObj := wobj0 ;

ENDPROC

ENDMODULE

Listing B.1 Client mainModule run on the ABB IRC5 system during experiments
with the Gantry-Tau robot.
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B.2 Simulink wrappers

In Listing B.2 we see the C wrapper and in Listing B.3 the respective header file
used to interface the C++ code in an S-function. In Listing B.5 we see the headerfile
used by Simulink’s s-function and in Listing B.4 we see the header file for the C++
code.

# i n c l u d e " wrapper . h "
# i n c l u d e " NI . h "

vo id a s u s I n i t ( ) {
i n i t N I ( ) ;

}
vo id a s u s C a p t u r e ( u i n t 1 6 _ T ∗ d e p t h ) {

c a p t u r e N I ( d e p t h ) ;
}
vo id a s u s T e r m i n a t e ( ) {

t e r m i n a t e N I ( ) ;
}

Listing B.2 wrapper.c used to make it possible to run Openni C++ code with the
Simulink code generation (see Listing 8.1).

# i f n d e f _wrapper_H_
# d e f i n e _wrapper_H_
# i n c l u d e " r t w t y p e s . h "

# i f d e f i n e d (_RUNONTARGETHARDWARE_BUILD_)

e x t e r n vo id a s u s I n i t ( ) ;
e x t e r n vo id a s u s C a p t u r e ( u i n t 1 6 _ T ∗ d e p t h ) ;
e x t e r n vo id a s u s T e r m i n a t e ( ) ;

# e l s e
/∗ Used i n r a p i d a c c e l e r a t o r mode ∗ /
# d e f i n e a s u s I n i t ( )
# d e f i n e a s u s C a p t u r e ( d e p t h )
# d e f i n e a s u s T e r m i n a t e ( )
# e n d i f

# e n d i f /∗ _wrapper_H_ ∗ /

Listing B.3 wrapper.h
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# i f n d e f NI_H
# d e f i n e NI_H
# i f d e f _ _ c p l u s p l u s
e x t e r n "C" {

t y p e d e f u n s i g n e d s h o r t u i n t 16 _ T ;
vo id c a p t u r e N I ( u in t 1 6 _ T ∗ d e p t h ) ;
vo id i n i t N I ( ) ;
vo id t e r m i n a t e N I ( ) ;

}
# e n d i f /∗ _ _ c p l u s p l u s ∗ /
# e n d i f /∗ _NI_H_ ∗ /

Listing B.4 NI.h

/∗ C o p y r i g h t 2012 The MathWorks , I n c . ∗ /
# i f n d e f ASUS_CAPTURE_H
# d e f i n e ASUS_CAPTURE_H

# i f d e f i n e d (MATLAB_MEX_FILE)
/∗ Thi s w i l l be compi l ed by MATLAB t o c r e a t e t h e S i m u l in k b l o c k :

∗ /

/∗ Model S t a r t f u n c t i o n ∗ /
# d e f i n e a s u s I n i t ( )

/∗ Model S t ep f u n c t i o n ∗ /
# d e f i n e a s u s C a p t u r e ( d e p t h )

/∗ Model T e r m i n a t e f u n c t i o n ∗ /
# d e f i n e a s u s T e r m i n a t e ( )

# e l s e

# i n c l u d e " wrapper . h "
/∗ Thi s w i l l be c a l l e d by t h e t a r g e t c o m p i l e r : ∗ /

/∗ F o l l o w i n g p r o t o t y p e mapping i s done i n t h e code g e n e r a t i o n ∗ /

# e n d i f /∗MATLAB_MEX_FILE∗ /
# e n d i f /∗ASUS_CAPTURE_H∗ /

Listing B.5 Asus_capture.h

87





Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER´S THESIS
Date of issue
June 2015
Document Number
ISRN LUTFD2/TFRT--5980--SE

Author(s)

Sara Gustafzelius
Supervisor
Simon Yngve, Combine Control Systems AB
Erik Bylow, Mathematics, Faculty of Engineering,
Lund University, Sweden
Anders Robertsson, Dept. of Automatic Control, Lund 
University, Sweden
Karl-Erik Årzén, Dept. of Automatic Control, Lund 
University, Sweden (examiner)
Sponsoring organization

Title and subtitle

Dynamic path planning of initially unknown environments using an RGB-D camera

Abstract

In this thesis an RGB-D camera was used with the goal to perform dynamic path planning in an 
initially unknown environment. Depth data from an RGB-D camera together with a discretizising 
algorithm is continuously used for maintaining an obstacle map of the environment which within the 
path planning algorithm D* Lite [S. Koening, 2005] is performed on the flight.

Experiments were conducted on two different systems, on Combine’s hexacopter and on a Gantry 
Tau robot at the Robot Lab of the Department of Automatic Control, LTH. On Combine’s hexacopter 
different tracking algorithms such as ICP, Translation Approximation and SDF where evaluated for 
3D positioning while the robots internal positioning where used on the Gantry Tau robot.

For discretization purposes we compare the use of Box Approximation and Signed Distance Function 
(SDF) for creating the obstacle map.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-87

Recipient’s notes

Security classification

http://www.control.lth.se/publications/


	Blank Page



