-

View metadata, citation and similar papers at core.ac.uk brought to you by ., CORE

provided by Lund University Publications - Student Papers

LoadSplunker

Integration between HP Performance Center and
Splunk

LUND UNIVERSITY
Campus Helsingborg

LTH School of Engineering at Campus Helsingborg
Department of Computer Science

Bachelor thesis:
Markus Jonsson
Simon Karlsson

https://core.ac.uk/display/289943945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© Copyright Simon Karlsson, Markus Jonsson

LTH School of Engineering
Lund University

Box 882

SE-251 08 Helsingborg
Sweden

LTH Ingenjorshégskolan vid Campus Helsingborg
Lunds universitet

Box 882

251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2015

Abstract

IKEA 1is today using HP’s application lifecycle testing environment which
consists of several tools. One of the tools is Performance Center which is used
to schedule and run performance tests. When a test run is finished, the tester
uses LoadRunner Analysis which is another tool in HP’s testing environment.
This tool is used to visualize a test run in graphs. These graphs are used by the
tester to manually write a static report which is sent to the stakeholders. The
creation of graphs and test reports can be very time consuming and easing this
process would most likely result in a higher quality of testing and therefore
also result in better deliverables. This was the objective of this thesis work and
was accomplished by creating a system that could replace the analysis tool
with Splunk, a log analyzing tool that can manage several large amounts and
different types of data. The program that was developed during this thesis
work is called LoadSplunker and integrates Performance Center and Splunk.
LoadSplunker is a real time java system that is informed when a test run in
Performance Center is finished and automatically retrieves results from the
test run needed for an analysis. The test results are then uploaded into Splunk
where different views of the test results can be created and modified.

Keywords: IKEA, dashboard, Performance Center, Splunk, test, analysis

Sammanfattning

IKEA anvéander idag HPs applikations lifscykel testmiljo som bestar av flera
verktyg. Ett av verktygen &r Performance Center vilken &r anvand for att
schemaldgga och kora prestanda test. Nar en test korning ar fardig anvander
testaren LoadRunner Analysis, ett annat verktyg i HPs test miljo. Detta
verktyget anvénds for att visualisera en test korning i grafer. Graferna anvands
av testaren for att manuellt skriva en statisk rapport som skickas till
intressenterna. Att skapa dessa grafer of test rapporter kan vara valdigt
tidskrdvande och underldttandet av denna processen skulle férmodligen
resultera i en testning av hogre kvalité och darfor ocksa béttre leverabler.
Detta var avsikten med examensarbetet och blev uppnat genom att skapa ett
system som kan ersdtta analysverktyget med Splunk, ett log
analyseringverktyg som kan ta emot stora mangder och flera olika typer av
data. Programmet som utvecklades under detta examensarbetet kallas for
LoadSplunker och ar en integration mellan Performance Center och Splunk.
LoadSplunker dr ett java realtidsystem som vet nar test kérningar ar fardiga i
Performance Center och hamtar automatiskt ner det resultat fran en test
kdrning som behovs for att utfora en analys. Test resultaten laddas sendan upp
I Splunk dér olika vyer av test resultaten kan skapas och modifieras.

Nyckelord: IKEA, dashboard, Performance Center, Splunk, test, analys

Foreword

This thesis is written for the bachelor in Computer Science and Engineering at
Lund University. The thesis work has been done at IKEA and during that time
we have come in contact with many helpful people, they made our stay at
IKEA pleasant and for that we are very grateful. We would like to thank our
supervisor Jacek Goralski for the time spent to guide and support us. We
would also like to thank Ola Berggren for the fast response on questions and
for helping us in general. At Campus Helsingborg we would like to thank our
academic supervisor Christian Nyberg at the department of information
technology for his guidance throughout this thesis work.

List of contents

O [o Yo 10 T3 1o Yo T 1
1.1 Background and PUIrPOSE......cccceuuiiieiiiiieeeee e e e 2
1.2 GOl e 4
1.3 Problem specification.........ccccooevuiiiiiiiiii e 5
1.4 DeliMItatioNS .ooveeeiiiie e e e e 5

2 Technical backgroundccoiieiiiiiiii e 7
2.1 Application Lifecycle Management (ALM)cccoeeeviiiiiernnnnnnn. 7

2.1.1 Virtual User GENEIAtOr.......couieiiieeeeeeee e ee s 7
N A Lo 11 (0] | =Y 7
2.1.3 Performance CeNLENvuiieii e e 7
2.0 4 ANAIYSIS.. et 8
2.2 SPIUNK e 8
A N Y o] o 1 PP 9
2.2.2 DasShbDOArdsS.......c.oeuiiiiie e 9
G T |V, 0] 011 (0] £ 10
2.2.4 SEAICNES ... 10
2.3 Application Programming Interfaces (APIS)cccevvveennnnn. 11
2.3.1 HP ALM Performance Center........cocoveuvieiiiiiiiieeeeieeeenn, 11
2.3.2 SPIUNK ..ee e 11
2.3.3HP ALM Sit€ AdMN...couiiiniiiiieceeeee e 11
N U LY T B N1 o] = 1= 11

G 2017/ =18 o Lo 13

3.1 Information gatheringccovevvviieiiii e 14
3.1.1 LoadRunner and Performance Center.........ccocovvveveiiinnnnn. 14
3.1.2 SPIUNK fRALUIES .. ceeeeeeeee e e 14
3.1.3 IKEA's requirements of the product..............coeeviiiiiininnnnnn. 14
3.1.4 Development SOIULIONSoeviiiiiieiiie e 15

3.2 IMpPlementationooeeviiiii i 15

G TG T =T 41 o Lo 15
3.3.1 Performance Center teSt SEIVEr........ovvuviviiiiiiiiieeieiieieees 16
3.3.2 SPIUNK tESE SEIVEIuuiiiiieiiei e 16
BB LB CURL e 16

I A =0 =1 Y o 16
3.4.1 Communication With TKEAouiiiiieeee e 16

3.5 ANAIYSIS oo 17

3.6 SOUICE CIItICISIM ettt e e e e aaenns 17

Ty 1] 19
4.1 Download result from Performance Centerccocevevvivnnnees 20

4.2 TranS ate Gata .o e e e 20

V) 1Y | I (o] 1 1 F= | SRR 20

4.4 SPIUNK SEHINGS ..uuiiei e 23
4.4.1 Splunk forwarder..........coooeveiiiiiiiiie e 23
4.4.2 SPIUNK SEIVET ... 25
4.5 SEAICNES ...t 26
4.6 Dashboards........oooiiiiiii 27
4.6.1 ARErNAtiVE ONEcovuiiii e 27
4.6.2 ARREINAtIVE TWOcouniiiiciic e 29
4.6.3 Alternative three ..o, 29
4.6.4 EXPOIT PDF ... 32
4.7 User management ..o 33
4.7.1 Real time SYSIeM......ccviiii e 34
4.7.2 ScheduleThread. ..o, 34
4.7.3 RESURTRIEadcuiiiiiiiiiie e 35
4.7.4 SpluNKTRread. ... 36
A S o To To 11 o [P 36
O ST =1 1] o 1 37
5 CONCIUSION iiiiiieiee e e e e eaeans 39
5.1 Future posSibIlitieS.....ccooveeiiiiie e 42
S0 N =T o 42
5.1.2 Chart overlay...........ooovieiiiiie e 42
5.1.3 Customized dashboardsccccoeevviiiiiiiiiii e, 42
5.1.4 Dashboard legend...........coooouii i 43
5.1.5 Extended [0ggingoovviiiiiiiiieeeeie e 43
5.1.6 SIdeVIEW ULIIS.......covuiiii e 44
5.1.7 SLATUIBS ..o e 44
5.1.8 SYSIEM 1ESE . .euiiiiii e 44
B TermMiNOIOQY .ou i 45
RS 101 81 o S S PP 47
7.1 TrUSTEA SOUICES ...uuiiiiiiiiii et ee e e e e eennns 47

7.2 UNTrUSTEA SOUICES ..ttt e e e eeaens 49

B APPENAIX e 51

1 Introduction

With over 345 stores in 45 countries and around 775 million visits each year,
IKEA is one of the largest companies in the world. IKEA has over 9000
servers and each year they handle about 250 million cash transactions and 1.2
billion visits on their website. With this in mind one can understand that IKEA
is very dependent on a working IT environment. To secure that every new web
release works as expected, IKEA executes a large amount of performance
tests. These tests are executed to determine how the software affects the
stability and responsiveness of a system under a specified workload. For an
effective product development, communication between developers and
testers is essential. In some companies developers and testers work in different
countries which can complicate communication. IKEA is one of these
companies who outsource most of their development overseas.

After every test result, a report is written and sent to the developers and/or
other stakeholders. Writing these reports can be very time consuming. It
would be of great value to IKEA if these reports could be generated
automatically and be made dynamic so that information easily can be added
and modified. This thesis is going to be about creating a system that will
reduce the time IKEA IT has to spend on creating test reports. This thesis
work is for the bachelor’s degree in Computer Science at Lund University.

1.1 Background and purpose

This thesis work will be done on the behalf of IKEA IT Test & configuration
center. They are currently performing performance tests with the help of
Application Lifecycle Management (ALM), a suite owned by Hewlett
Packard, see 2.1. ALM includes three components for automated testing and
non-automated reporting, LoadRunner Virtual User Generator, Performance
Center and LoadRunner Analysis.

The workflow for testing with ALM has the following steps:

1. Script creation
In this step scripts are developed in LoadRunner Virtual User
Generator. The scripts will replicate a real user’s behavior and is called
a virtual user. They are then uploaded and utilized in Performance
Center.

2. Creation of a test run
The creation of test runs is done in Performance Center. A simulation of
the system in production can be done by loading virtual users on load
generators. These are chosen by the tester as well as which and the
amount of virtual users. A test run can in this way run virtual users with
different behavior at the same time.

3. Analysis of the test result
The test result is analyzed with LoadRunner analysis tool. Here
different graphs are created and modified. These graphs are then copied
and pasted into a report.

4. Analysis of the test report
The developers and other stakeholders will read the report and use the
information to fix flaws in a system. If information is missing, the
stakeholder will ask for a new report.

The test department of IKEA IT is not pleased with the LoadRunner Analysis
tool as it is very ineffective and unnecessarily complex. For example, when
the developers receive a test report from the test department they usually ask
for missing information about specific parts of the tests. To include this
specific part a new report has to be created by the test department. This
workflow is not efficient because more time is spent on writing different
reports than testing.

The purposes of this thesis work was to develop a system that could replace
the LoadRunner Analysis with Splunk a log analysis tool created by the
American multinational corporation Splunk INC, see 2.2. The Splunk product
has functionality to capture data and use it to generate graphs, reports, alerts,
dashboards and visualizations. Splunk can handle large amounts and different
types of data.

2

The system developed in this thesis work is called LoadSplunker.
LoadSplunker is a further development of a LoadSplunker prototype,
developed in the course ‘project year 3 included in the bachelor for Computer
Science and Engineering at Lund University. The prototype had the
functionality to connect itself to both a database server and Splunk. It also
created XML files of all the databases in a database server to a folder and then
uploaded the XML data into Splunk.

1.2 Goal

The main goal of this thesis work is to replace the LoadRunner Analysis tool.
For this it’s important that Splunk is able to show the same information as
LoadRunner Analysis, in other words, any data loss would not suffice. The
graphs in Splunk will include options for the stakeholders so they can easily
view specific information about a test. Some of that information might be
sensitive and therefore a role-based system is needed in Splunk. It is important
that the role-based system only grants access to the correct users. Another goal
was to find a possible way to ease the report management by making it more
flexible and reducing the amount of manual work needed.

The ideal test reporting at IKEA is shown in figure 2. A test run will first be
prepared by the tester and when a test run has finished, LoadSplunker uploads
its result data into Splunk. In Splunk, default dashboards can be created and
then modified by the tester as a replacement of the PDF report.

Figure 2 can be compared with how the test reporting is done today which is
shown in figure 1. A test run will first be prepared by the tester and when the
test run is finished, the tester will use LoadRunner Analysis to create one or
more reports which are sent as a PDF to stakeholders.

Tester

. o Testers
Preparation
R D Preparation of 0
a test run
Test run D
Test run
Tester
Loadrunner O
Analysis
LoadSplunker
\ Stakeholders Testers ﬂ Stakeholders

Figure 1: This figure Figure 2: This figure shows
shows how test result how test results ideally would
is compiled today. be viewed when using LoadSplunker.

1.3 Problem specification

For the goal of this thesis work to be met there are four main problems that
have to be solved, these are an automatic data flow between Performance
Center and LoadSplunker, an automatic report creation within Splunk, access
rights to these reports for users at IKEA and how to install this system in
IKEA’s environment.

The problem of finding an automatic data flow between Performance Center
and LoadSplunker was divided into three questions:
« Isit possible to gather all data points from performance tests without
any data loss?
« How can LoadSplunker be informed when a test is finished?
« How can LoadSplunker access result files from tests in Performance
Center?
The problem of an automatic report creation in Splunk was divided into two
questions:
. What information is the most interesting for testers, developers and
other stakeholders?
. Isit possible to make use of a template to create a default view of the
information?
The problem of implementing access rights for IKEA users in Splunk was
divided into three questions:
. How to gain access information about users at IKEA?
. How to create restriction in Splunk using that information?
« How to keep Splunk updated with changes on IKEA’s users?
The last problem of installing this system at IKEA will be solved by
answering the following question:
« How can this system be installed in IKEA s environment?

1.4 Delimitations

For this thesis work, IKEA will provide laptops and a test environment with a
Performance Center server and a Splunk server. The Performance Center
server will be in version 12.01 and the Splunk server in version 6.2.0.
LoadSplunker will be developed to be compatible with these versions of the
tools.

The thesis work will not include interviews with stakeholders for IKEA's test
reporting because it is out of the scope of this thesis work. Instead some
examples of graphs that are required for basic test reporting will be
recommended by the thesis workers supervisor at IKEA. Large test results will
also be created by the supervisor at IKEA for the same reason.

2 Technical background

This section provides the technical background needed to understand this
thesis work. Some prior knowledge of the reader is required. The knowledge
required is a basic understanding of API, Java, ALM and XML.

2.1 Application Lifecycle Management (ALM)

ALM [26] is owned by Hewlett Packard and is used by IKEA for testing
software. It is one of the most used test environments today. The part of ALM
used for performance testing by IKEA consists of three components: Virtual
User Generator, Performance Center and Analysis.

2.1.1 Virtual User Generator

In Virtual User Generator [27] the tester develops scripts to simulate the
actions of real users. The action of users varies greatly between projects. The
goal of these scripts is to simulate different scenarios, checking that the
software fits the requirements for it to be put into production.

2.1.2 Controller

The scripts created in Virtual User Generator can be uploaded into Controller
[28]. Controller simulates users by executing scripts on load generators. The
amount of users and load generators varies and are chosen by the tester.
Controller measures how the system’s performance is affected. CPU and
memory utilization are examples of what is measured. After the test run is
finished it can be opened in LoadRunner Analysis for an analysis of the test
result.

2.1.3 Performance Center

Performance Center [29] is an extension of Controller and is used by IKEA.
Its functionality is mainly to schedule test runs which is not possible with
Controller. The extension of Controller is implemented in Performance Center
by letting the tester choose a Controller unit at the scheduling of a test run.
Test runs can contain several different types of test results such as an output
log, raw results, analyzed results, a rich report and a HTML report, see figure
3. The analyzed results contain data from the test run, this is the data used for
an analysis in LoadRunner Analysis. The same data will be utilized by
LoadSplunker for the analysis in Splunk.

@ Application Lifecycle Management Domain: DEFAULT, Project: Splunk ~ | User: splunk_admin | £¥ ~ 1 @ 1 Logout

<> Test Runs

() Dashboard TestRuns Edit View Analysis

swajy| pauuld

l§ management ¥ X E S T-M| =~ B W GotoTestinstance | 39 | [B [% Data Processor Queve | 4 Performance Trending..
] Requirements Legend
&> Cloud Settings Sort By: Exec Date[D dingl:Exec Time[D
" | Run ID Run Name Test: Test Name Configuration:... Status State Duration Exec Date Exec Time Host
& Testing A o
B2 Tesl Resources i s AdhocRun_201.. Demo Demo @ Passed Finished & 2015-04-14 11.05:33
o TestPian 15 s AdhocRun_201... macketest1 macketest] @ Failed Finished 0 2015-04-10 1047:18
Il TestLab 14 o AdhocRun 201 mackstest] macketest] © Failed Finished 0 2015-04-10 1017:34
>
Q‘) Timeslots 13 2 AdhocRun 201 Demo Demo @ NotCompleted Finished & 2015-04-07 152017
L DS 12 T AutoStertRlun_ macketest! macketest! @ Mot Completed Finished 0 2015-03-31 132857
&l LabResources 1 Jo AutoStertRun_ macketest] macketest] @ Mot Completed Finished 0 2015-03-23 160115
B Detects 10 2 AdhocRun_201.. macketest] macketest] @ Mot Completed Failed Collating.. 0 20150323 151452
- K Deme Deme @ Passed Finished 5 20150323 145335
@ Performance Center 3 T AdhocRun_201.. Demo Demo @ Mot Completed Finished 5 2015-03-23 094515
8 -Eﬂ AdhocRun_201.. Demo Demo @ Mot Completed Finished] 2015-03-23 09:00:17
7 o AdhocRun 201 mackstest] mackstest] (D Mot Complsted Befors Cresting . 0 2015-03-23 085758
T AAkasBun M1 maclatectl rrzebatastt @ Failed Canealed n MIENLIR 7
ts | Results | Eventlog | Hist M
State: Finished &' > gl | @ RecalculateSLA | Reports: [p & | =2 ©& %
1d Name Type Modified 1 Download File(s) Lecription
1058 output. mdb.zip QOutput Log 2015-04-10 10:4.. splunk_admin
1058 = zip RewResults 2015-04-10 104 splunk_sdmin
1080 Bnalyzed Result 2015-04-10 10:4_ splunk_sdmin
1061 ahleveleport Rich Report 2015-04-10 104 splunk_sdmin
1062 Reports HTML Report 2015-04-10 104 splunk_admin
Run 2 of 14 Server Time: 2015-04-28 09:02

Figure 3: This figure is a screenshot in Performance Center showing a list of
runs and different types of results for the selected run.

2.1.4 Analysis

Analysis [30] is the program where testers analyze the test results visually. It
allows testers to create specific visualizations where problems are presented
and described for stakeholders. These visualizations can be many different
types of graphs, for example summarizing bar charts or line charts displaying
average response times.

2.2 Splunk

Splunk [31] will be used for analysis of test data from Performance Center.
Splunk has a web interface which means that it can be used from all devices
with a web browser. Splunk is a log analyzing tool focusing on handling large
amounts and different types of data. Handling large amount of data is
important since there can be several of measurements in a test run. Handling
different types of data is important since it allows the tester to correlate data in
test results with any other data. Splunk can collect data from virtually any
source in real time. This data can then be searched, monitored, analyzed and
visualized in different forms such as graphs and diagrams.

2.2.1 Apps

An app [1], see figure 4, in Splunk is typically used to address several use
cases and can contain one or more views. Examples of supported views [24] in
Splunk are dashboards, forms and searches. A view can show visualizations
[25] such as chart, event listing, map, table or single value. Different types of
charts are area, bar, bubble, column, filler gauge, line, marker gauge, pie,
radial gauge and scatter.

splunk Administrator Messages Settings Activity Help Find

Apps @ Explore Splunk Enterprise

N -

9

A
nd the

Add or 0 Splunk
p you

Apps an

capabilitie:

Close

Figure 4: This figure shows the home page in Splunk with apps to the left.

2.2.2 Dashboards

A dashboard [7] is a type of view that is associated with an app in Splunk. A
dashboard can contain one or more visualizations. The visualization objects
within a dashboard are often generated by searches. All dashboard views are
defined in XML. JavaScript and CSS can be added to develop more advanced
dashboards. Input fields can be added in dashboards so that users can modify
the visualizations. Dashboards with inputs are called forms in the XML source
but in this report the word dashboard will be used for forms as a
simplification. Drilldowns [9] can be used inside dashboards to provide a
detailed look at specific data. Drilldowns are triggered by clicking different
components inside a dashboard. Dashboards can also make use of tokens.
Tokens [8] are used to pass values inside dashboards and can be predefined or
set by input fields. The value of a token can be used inside the searches of the
dashboard.

2.2.3 Monitors

A monitor [32] is a type of data input in Splunk. Monitors are designed to
import data from files, directories, script outputs and network ports. If a
directory is chosen to be monitored all the data inside is imported, even data in
subdirectories. A batch [38] is the same as a monitor with the difference that it
will delete files after Splunk has finished indexing them. All data imported
into Splunk is divided into events [22]. It can be specified how the imported
files are divided into events, default is on row break.

2.2.4 Searches

Searches [23] can be used in Splunk to gather and manipulate data for
visualization in event, table or chart form, see figure 5. The searches are done
with Splunk’s own search language which resembles SQL but has more
functionality. The visualization from a search can be added to a dashboard
where visualizations can be viewed side by side.

Search Pivot Repons Alens Dashboards Search & Reporting

Search
altme~ | Q

How to Search What to Search

If you aren't familiar with searching in Splunk, or want to learn 284,909 Events 6 months ago 14 days ago
more, checkout ene of the following resources.

Documentation [2 Tutorial (2 Data Summary

About Support File 8 Bug Documentation Privacy Policy © 2005-2015 Splunk Inc. All rights reserved.

Figure 5. This figure shows search inside the default Splunk application
Search & Reporting. During this thesis work, mostly search and dashboard
were used in the menu to the left at the top. Here in search one can search for
data inside the Splunk system and then save the result in a dashboard.

10

2.3 Application Programming Interfaces (APISs)

2.3.1 HP ALM Performance Center

The Performance Center APl [2] is a REST API. Representational State
Transfer (REST) [4] is an architecture style for network applications using
only HTTP requests. The REST architecture works by separating resources
through giving them their own URISs, also called endpoints. This API provides
functionality for creating, managing and running tests in Performance Center
without using the user interface. The API also provides functionality to
download test results.

2.3.2 Splunk
The Splunk API [5] is a REST API. REST is explained in section 2.3.1. This
API provides methods for accessing every feature in Splunk.

2.3.3 HP ALM Site Admin

The Site Admin API [2] is a COM-based APIl. Component Object Model
(COM) APIs [19] are used to enable software components to communicate
within Microsoft Windows operating systems. This API allows integration
with third-party tools by providing functionality to organize, manage and
maintain all ALM users, projects, domains and connections. It also provides
functionality to query the content in the SQL database used by Site Admin.

2.4 Used libraries

For easier implementation of functionality, LoadSplunker makes use of a few
Java libraries. A short explanation is given on each of these libraries in this
section.

Com4j

This library is a bridge between Java and COM-based APIs. Com4j [11] does
not belong to any organization and was started in December 2010 now
consisting of 214 members. It is used by LoadSplunker for communication
with the Site Admin COM-based API.

11

Jackcess
This library is for reading and writing to Microsoft Access databases
developed by Health Market Science. Jackcess [12] is used by LoadSplunker
to read the Microsoft database files included in test results from Performance
Center. For the jackcess library to function, the following libraries had to be
included:

« Commons Lang

« Commons Logging

. Log4j

« JUnit

. POI
They have all been created by the Apache Software Foundation.

Jersey
This library is used for communication with RESTful APIs. For the jersey
library [13] to function, the following library has to be included in the project
it is used:

« Jax-RS
Both the javax.ws.rs and the jersey library were created by the Oracle
Corporation.

Joda time
This is a library for handling date and time in Java, it was created by Joda.org.
[14]

Ljrt

This is a real time system library for java, created by the faculty of
engineering in Computer Science at Lund University [33]. It is used to create
the periodic threads in LoadSplunker.

Log4j

This is a library for logging in Java, created by the Apache Software
Foundation. It is used for the logging of LoadSplunker for easier error
management. [15]

12

3 Method

This section will cover methods, tools and rules that were used in the process
of producing the result of this thesis work. This section will also cover an
analysis of the workflow and how the thesis workers worked with source
criticism.

At the start of this thesis work Kanban [36] was set as the project
methodology. It was mainly chosen because of its ability to respond to change
and that there are no prescribed roles. A very simple Kanban board was used
with only two columns, to-do and done. The WIP limit used was implicitly set
to two. This was because both thesis workers had to be able to work at the
same time. The WIP limit was not set higher than two because of the belief
that a person works better when focusing on only one thing at a time.

Google Drive was used for documentation because of its easy access from any
client and for the thesis workers to be able to work in the same documents at
the same time. For the ability to trace back in the thesis work, weekly
protocols were created where everyday thoughts, decisions and tasks in
progress was noted.

A meeting with the supervisor at IKEA was held discussing the resources
needed to carry out this thesis work. Needed resources were IKEA laptops,
IKEA pass card and a workplace at IKEA. The laptops and workplace were
essential because some servers could only be reached from the laptops using
IKEAs own network. After this, the rest of the thesis work was divided into
two main problems. One problem was the development of LoadSplunker and
the other was the search for reporting possibilities in Splunk. Implementation
and development in Splunk was less of a technical challenge than
implementing the integration. Considering this, the integration was prioritized
giving IKEA the possibility to improve the reporting in Splunk.

To solve the problems specified in 1.3, each one was divided into tasks and
listed in the to-do column. Each task went through a workflow of four steps,
see the list below:

« Information gathering

« Implementation

. Testing

« Validation

13

3.1 Information gathering

During this thesis work, different methods for gathering information have
been used depending on which of these four main domains the information
was gathered from:

« Performance Center and LoadRunner features

« Splunk features

« IKEA’s requirements of the product

« Development solutions.

3.1.1 LoadRunner and Performance Center

To gather basic knowledge about the ALM test environment, time was spent
experimenting in the graphical interface by creating simple test runs. To gain
knowledge on information specific for IKEA, employees in the test
department were consulted. This information was used to create a basic
understanding of how LoadSplunker and Performance Center could be
integrated. This information was then used to write the code to download test
results from Performance Center.

3.1.2 Splunk features

To explore the possibilities with Splunk, an example test result with a large
amount of data was created by the supervisor. If the result was opened in
LoadRunner Analysis, default graphs that were created could be observed.
The thesis workers then recreated these graphs using the same data in Splunk.
In this way it could be checked that everything that can be done in
LoadRunner Analysis also can be done in Splunk.

3.1.3 IKEA'’s requirements of the product

The requirement for LoadSplunker to work at IKEA was found in two ways.
One was by consulting the supervisor at IKEA because this person had good
knowledge of using ALM and also what information that is valuable to see in
a report. The other way was to explore the test environment at IKEA, see 3.3.1
and 3.3.2.

14

3.1.4 Development solutions

The design of LoadSplunker was modified several times during the thesis
work. This was mainly because one piece of the system was developed at a
time. Adding new parts to LoadSplunker often resulted in code having to be
changed. If all the parts had been thoroughly specified before implementation
it could have resulted in less rework and a more structured system. An
implementation specification could for example have been made. However it
is not until the implementation is tested that one can know if a solution is
possible. To design the LoadSplunker system before implementation would
therefore risk large amount of rework as well. In worst case the entire design
would have to be changed.

3.2 Implementation

The development environment used for Java development was IntelliJ for its
well-built features like code navigation, debugging, auto-completion and
refactoring. For parallel coding, GIT was used with a repository at a Linux
server at IKEA. For the most part of the development, documentation on
Splunk and ALM was used. When some needed functionality wasn’t
documented a trial and error approach was instead taken to solve the problem.
When an error occurred during development, a solution was looked for on the
internet. A solution could sometimes be found in forums where other users
have had the same errors. However, the answers in forums are not always as
comprehensive as needed but they will often point in the right direction.

3.3 Testing

During the development of LoadSplunker a test environment at IKEA was
used. This test environment consisted of two servers, a Performance Center
server and a Splunk server. Testing LoadSplunker was done by creating
dummy tests in the Performance Center server and verifying that the system
handles the test results correctly all the way into the Splunk server. The testing
part of the workflow was done very frequently by running LoadSplunker using
the main method to test different parts of the code. The focus of this thesis
work lied on finding and informing IKEA on the possibilities of this system.
Therefore almost all energy was put into finding out if a solution was reliable
and less energy was put into testing if that solution was implemented problem
free.

15

3.3.1 Performance Center test server

To test the integration between Performance Center and LoadSplunker, a test
environment with Performance Center was created. The environment was used
to test the LoadSplunker integration without disturbing any systems in
production at IKEA. The environment was also used to decrease the chance of
failure at installation and to avoid wasting time setting up the environment
locally on each laptop used by the thesis workers. In the Performance Center
environment test results were created. In Performance Center the thesis
workers ran dummy test to get data into Splunk. However these dummy tests
did not generate enough data for experimenting with different views in
Splunk. IKEAs test results can contain a large amount of data. Therefore
LoadSplunker must be able to process the same size of data to work in
production. For this an example result with large amount of data was provided
by the IKEA supervisor.

3.3.2 Splunk test server

To test the integration between LoadSplunker and Splunk, a Splunk test
environment was created at IKEA. This was also used to allow both thesis
workers to work with the others dashboard implementations. MobaXterm [35]
was used for remote access to the server for configuration.

3.3.3cURL

When developing the communication between LoadSplunker and Splunk
REST API cURL was used to test the API endpoints since the Splunk REST
APl documentation uses it in its examples. It was also used to find syntax
errors easier. The cURL commands were later translated into Java code.

3.4 Validation

Validation was chosen as the last step of solving a task. This was because
many solutions found during development have shown themselves not to work
and therefore time has been saved by not validating them before. The
downside with this method is if a solution would show itself to not meet
IKEAs requirements at all, the implementation and testing of the solution
would have been wasteful. Fortunately this never happened during this thesis
work but there were situations where the thesis workers did not really know
which solution that would fit IKEA. In these cases, all different alternatives
were researched and presented to the supervisor at IKEA.

3.4.1 Communication with IKEA

To validate significant solutions with IKEA, good communication was
needed. Throughout the thesis work, meetings with the supervisor at IKEA
were held about once a week. Because the supervisor at IKEA works in
Almhult and the thesis workers in Helsingborg, meetings could not be held

16

that often in person. Instead video and WebEx played a key role in the
communication. A WebEx meeting is a telephone conference with the
possibility to share computer screens. For less important communication either
email or an internal chat at IKEA was used. A couple of times meetings in
person were held at IKEA either in Almhult or Helsingborg.

3.5 Analysis

An agile and lean project methodology like Kanban worked well for this thesis
work. Kanban made it easy for the thesis workers to change their priorities
when needed and when working side by side no more prescribed rules were
wanted.

The communication between the thesis workers worked well. When not
working in proximity, Skype was used for distant communication. The thesis
workers often worked with different solutions while keeping each other
updated. This results in actually working with two solutions at the same time,
trying to provide thoughts on both. Working this iteratively makes it hard to
get a perspective of what has changed since the change is continuous. This
was experienced as both effective and challenging.

The thesis workers tried to document this thesis work in a document during
the development process. A disadvantage was that almost everything has to be
rewritten when more knowledge is gained. The considered improvement on
this was to write this thesis after the thesis work is finished and simply
documenting everything in the daily protocol. Keeping in mind that one
should not delete anything used during the thesis work so that it can be found
for the documentation later.

3.6 Source criticism

The information searched for during this thesis work has been either a solution
to a practical problem or a specification on how some tool works. Solutions to
a practical problem were always tested if they worked and therefore the
credibility of the source wasn’t important. Untrusted sources encountered
were mostly forums where someone can ask a question and anyone can
answer. When reading an answer on a forum, consideration was taken on the
reputation of the user and the amount of votes. This was just a secondary
precaution to not waste time testing impossible solutions. When considering a
solution given by an untrusted source, the solution was tested and validated
more often than from a trusted source. This was because of the skepticism that
the solution could work.

The information on how a tool works were mostly taken from the
documentation which is considered a reliable source. Both Splunk and HP

17

Performance Center had documentation on their programming interfaces.
Some information was given to the thesis workers by IKEAs employees and
since they are experts in their testing tools and environment this was also
considered credible information. Another credible source that was used is
IKEAs own internal wiki where information between colleagues can be
shared.

18

4 Result

The result of this thesis work consists of the LoadSplunker system and the
development of dashboards for visualization of test results in Splunk.

LoadSplunker is a real time system and an integration of Performance Center
and Splunk. The integration is done by downloading analyzed test results from
Performance Center which contain raw data from events during the test run.
Then LoadSplunker translates the analyzed result to XML. The translated
XML data is then imported and parsed in a local Splunk instance before it is
forwarded to another Splunk server. The second Splunk server is the final
destination, i.e. where the data will be analyzed by testers and other
stakeholders. For LoadSplunker to accomplish all this it has to communicate
with several components, see figure 6.

Splunk S

T 1

: N R
Site Admin — Loadsplunker

Performance
Center

Figure 6: This figure shows the LoadSplunker’s communication.

Communication between LoadSplunker and Performance Center
LoadSplunker uses a REST-based APl to communicate with Performance
Center. Analyzed data is downloaded through this communication.

Communication between LoadSplunker and Site Admin

LoadSplunker uses a COM-based API to communicate with Site Admin.
Through this API, information is gathered about scheduled test runs, users and
their roles.

Communication between LoadSplunker and Splunk

LoadSplunker will make use of two Splunk instances. A local instance used as
a forwarder and an external Splunk server used as the receiver. LoadSplunker
uses the Splunk REST API to create roles and users.

Communication between LoadSplunker and XML folder
LoadSplunker uses a folder for storage of XML data.

19

4.1 Download result from Performance Center

To integrate Performance Center and Splunk, test results from Performance
Center have to be downloaded and then imported into Splunk. HP ALM
Performance Center REST API was used to download these test results. A test
result in Performance Center is uniquely identified with domain, project, run
and result id. There are different types of test results in Performance Center.
Analyzed results are the ones used in this system because they are the ones
containing the raw data collected during the test run. This means that if a test
run does not have an analyzed result, that run will not be handled by this
system. HP ALM Site Admin API is used for this system to know when a test
run should be downloaded and from which domain, project and run. This API
Is 32-bit COM-based and therefore it will only work on a Microsoft Windows
machine with a 32-bit Java Runtime Environment in version 1.8. Downloaded
test result is inside a zip archive so it has to be extracted. This is done by
LoadSplunker using the standard java library java.util.zip.ZipEntry and
java.util.zip.ZipInputStream.

4.2 Translate data

In test results downloaded from Performance Center, there will be a Microsoft
database file containing all the measured data points during the test run. The
test result will also have a folder SLA Config which contains
SLAConfiguration.xml and in this file Service Level Agreement (SLA) rules
are defined. SLA is an agreement between the customer and a service
provider. The rules in the SLA are requirements on the software, how it should
behave and respond in different situations. To read the Microsoft database file
the jackcess library was used. The LoadSplunker system iterates through the
database and writes it to XML files. Tables generated in Analysis are ignored
in the translation since these only contain already manipulated data. Before
translating each table the system reads the table result which contains the start
time of the test run. This is used to convert the time field which is included
with every data point. The time field is split into two attributes, absolute time
and relative time. Absolute time can be useful if you want to relate to other
events or logs during that time. Relative time might be used to compare test
runs within a project.

4.3 XML format

Test results handled by LoadSplunker contain large amount of data, all this
data had to be imported into Splunk. One standard format had to be chosen for
all this data, the chosen format was XML. The XML format is represented in
the following way: each row from a database table is represented as a row
element, see figure 7. The attribute name in the table element is the name of
the table. For every row there exist one element corresponding to columns in

20

the database table. XML was used since Splunk knows how to read elements
in an XML file, XML is also easily read by humans. Even though XML is a
very large format the advantages of a transparent and portable format
overweighs the loss of efficiency in memory and computing resources. The
XML files will be deleted when Splunk is done indexing them, so even though
several spaces may be required, it is only for a short period of time.

<table name="Event_meter">

<row>
<EventlnstancelD>187643</Eventinstancel D>
<EventID>49</EventID>
<EndTime>6784.555</EndTime>
<Value>0.046802</Value>
<Statusl>1</Statusl>
<GrouplD>20</GrouplD>
<VuserID>0</VuserID>
<HostID>0</HostID>
<ScriptiD>20</ScriptID>
<ResultID>0</ResultID>
<ThinkTime>0.0</ThinkTime>
<WastedTime>0.0</Wasted Time>
<LocationlD>0</LocationID>

</row>

</table>

Figure 7: This figure shows an example of data in XML format.

21

In the analyzed test results, SLA rules are provided in XML format, see figure
8.

<Rules>

<ComplexLoadRule>
<Measurement>transaction_response_time</Measurement>
<SubMeasurement>vuser_init_Transaction</SubMeasurement>
<CriteriaMeasurement>running_vusers</CriteriaMeasurement>
<CalcDirection>less_than_equal</CalcDirection>
<StartLoadValue>Negativelnfinity</StartLoadValue>
<MiddleValue>1</MiddleValue>
<EndLoadValue>Positivelnfinity</EndLoadValue>
<ThresholdValueFirst>0.000</ThresholdValueFirst>
<ThresholdValueSecond>3.000</ThresholdValueSecond>
<RuleType>ComplexLoadRule</RuleType>

</ComplexLoadRule>

<SimpleRule>
<Measurement>total throughput</Measurement>
<AggFunction>Total</AggFunction>
<CalcDirection>greater_than_equal</CalcDirection>
<Value>100000.000</Value>
<RuleType>SimpleRule</RuleType>

</SimpleRule>

</Rules>

Figure 8: This figure shows an example on SLARules.xml.

22

The thresholds for the SLA rules are modified by LoadSplunker see figure 9.
This modification was done for easier handling of the SLA rules in Splunk and
to get rid of the redundancy of repeating the middle value twice.

OLD:
<ThresholdsCollection>
<Threshold>
<StartLoadValue>Negativelnfinity</StartLoadValue>
<EndLoadValue>400</EndLoadValue>
<ThresholdValue>3.000</ThresholdValue>
</Threshold>
<Threshold>
<StartLoadValue>400</StartLoadValue>
<EndLoadValue>Positivelnfinity</EndLoadValue>
<ThresholdValue>5.000</ThresholdValue>
</Threshold>
</ThresholdsCollection>

NEW:
<StartLoadValue>Negativelnfinity</StartLoadValue>
<MiddleValue>1</MiddleValue>
<EndLoadValue>Positivelnfinity</EndLoadValue>
<ThresholdValueFirst>0.000</ThresholdValueFirst>
<ThresholdValueSecond>3.000</ThresholdValueSecond>

Figure 9: This figure compares the threshold structures that are modified in
LoadSplunker.

4.4 Splunk settings

Splunk is easily configurable through editing configuration files. Integrating
LoadSplunker and Splunk was done by using a Splunk forwarder. The Splunk
forwarder was used to parse, index and then forward data to the targeted
Splunk server. This instance used to forward is called Splunk forwarder and
the other one is called Splunk server. The configuration files that are
configured exists in %Splunk%/etc/system/local/. The forwarding will be done
because LoadSplunker will not be able to reside in the same server as the
Splunk server used by IKEA.

4.4.1 Splunk forwarder

The settings in figure 10 specify where and how Splunk should import data.
Batch in figure 8 is used as monitor input with the difference that the files are
deleted after they are indexed in Splunk. Move policy is the exact distinction
between monitor and batch input, this setting tells the batch input to destroy

23

files after they are indexed. Deleting the files after indexing is done so that the
memory used is cleared and can be reused by the next test result. Before
Splunk starts indexing files it will by default check the beginning of the file,
this is to check if the file has been indexed before or not. Therefore crcSalt is
set to <SOURCE> which means that the file path will be added as a salt to the
file. This allows Splunk to separate similar files if they are in different folders
or have different names. Path/xml is the path to the XML folder which is set in
connection.props, see figure 25.

[batch://path/xml]
move_policy
sinkhole

disabled = false
crcSalt =
<SOURCE>

queue =
parsingQueue

Figure 10: This figure shows settings in inputs.conf.

The settings in figure 11 specify how Splunk will handle incoming data and
will be applied to files that have a source path that matches
“OND)XmIEQN)*ONHrun_*(\[/)*.xml”. The incoming data will be parsed and a
timestamp will be added to each new event. This expression is used since it
will match all files that originate from the folder used to store all the XML
data.

LINE_BREAKER = (\<\?2.+2\?2\>) |
(\<V/?(table|row).*?\>) |
(\<\/?(ComplexLoadRule|SimpleRule|Rules).*?\>)
TIME_PREFIX = \<AbsoluteTime\>
TIME_FORMAT = %5.%3Q

Figure 11: This figure shows settings in props.conf.

matches any number of characters

* matches anything except directory separator

| used as OR

parentheses | used to limit the scope of OR

Figure 12: This figure explains the syntax used to match source path.
24

The syntax of the settings in figure 11 and 15 is explained in figure 12. The
settings in figure 11 tell Splunk how the data will be parsed before it is sent to
the Splunk server. Line breaker will tell Splunk how to divide a file into
events and this is set by defining a regular expression. Each time the regular
expression finds a match, a new event is started and the old one is ended. The
match will not be included in any of the events. The line breaker is configured
to divide files into events. One event will correspond to one row in the
database table in a test result. Time prefix tells Splunk where in each event it
will find its time attribute. Time format only tells Splunk which format that
time is in. Adding this configuration for time is important since events in test
results are worthless if it is unknown when they happened. In figure 13
settings for how the local Splunk instance will forward its data is shown.

[tcpout]
defaultGroup = default-autolb-
group

[tcpout:default-autolb-group]
server = ip-address:port

[tcpout-server://ip-address:port]
disabled = false

Figure 13: This figure shows settings in outputs.conf.

4.4.2 Splunk server
The settings in figure 14 specifies from where the Splunk server will import
data.

[splunktcp://9997]
disabled = false
queue =
parsingQueue

Figure 14: This figure shows settings in inputs.conf.

25

In figure 15, KV mode is used to tell Splunk that the events are in XML
format. This is set to XML since all data from test results are saved in this
format. When searching events in Splunk, attributes in the event can be
searched. So if <Value>1</Value> exists inside an event then Value can be
used to refer to the value 1. A field for the test run is added to each event
which is done by extracting the information from its path. This run field is
important for comparing different runs and therefore the extraction is done.

KV_MODE = xml
EXTRACT-run = ([\]run_)(?<run>\d+) in
source

Figure 15: This figure shows settings in props.conf.

45 Searches

When Splunk parses events it adds some fields to the event, one of those fields
Is source, which is from where the event originates. In the LoadSplunker
system, XML files are imported from the directory hierarchy,
“.../xml/<project name>/run_<run id>/<table name>.xml”. This information
is utilized in all searches to find data for specific projects and runs. When
searching in Splunk, a base search is used to find specific data. A typical base
search looks like the following:
source="*\\xml\\<project_name>\\run_<run_id>\\<tablel name>.xml" |
join type=inner <join-field> [search
source="*\\xml\\<project_name>\\run_<run_id>\\<table2_name>.xml"].

There are different types of tables used in the data from the test results, two
Important types of tables are meters and maps. Meters are tables containing
raw data points with IDs and maps are tables linking the IDs to names. Tablel
will usually be a meter table and table2 a map table. The reason the meter
table is first is that Splunk will use the timestamps from the events in the first
table and not the second when performing a join. When the specific data has
been found it can be manipulated and viewed in many different ways. An
example on a search generating a chart:

<base_search> | chart values(Value) over <over_field> by <by field>

26

This search will generate a chart for viewing all values with the x axis as
<over_field>, typically this is a time field, and this can also be done by using
timechart which is a chart with values over time. Grouping the data will be
done by specifying <by_field> which for example can be on runs, see figure
16.

Average response time

‘ﬂ\/\/ \//\A/\W ﬂ/ \f\f\/\u/ ’\/\/\J\ / \W \/\\p’/ Ay \

12:01:00 AM 12:02:01 AM 12:03:02 AM 12:04:03 AM 12:05:04 AM
Frijan 2
1870

H

1s 1
5 1
1

0.5

A

Figure 16: This figure shows a chart for average response time which is
grouped by runs in Splunk with the default legend provided by Splunk shown
to the right.

4.6 Dashboards

In this project three different solutions on how to divide projects and runs
when displaying test results were investigated. In the paragraph below, these
alternatives will be described and analyzed. How these solutions should be
used for the best result was not found. The best option may be to use one or
even a combination of them but this can only be answered with a more
detailed survey. However, prototypes of the different solutions have been
developed and tested. Input fields, visualizations, tokens, JavaScript and CSS
were used to implement these prototypes.

4.6.1 Alternative one

Every dashboard has an XML source which describes the view of a dashboard.
Changing the XML source will change the layout of the dashboard. The first
solution is based on being able to create a dashboard for each run in a project
from a template. The template should be retrieved and used by LoadSplunker
every time a run finishes in Performance Center. The XML template that is
used has marked those variables that will vary with each run with curly
brackets. Figure 17 shows an example of how the XML would look. The
LoadSplunker system would then replace all these marked variables to the
correct value and store the result in a string which would be used to create the
dashboard.

27

16
— 25

<dashboard>
<label>{label}</label>
<panel>
<chart>
<title>Summary Transaction</title>

;duery>source="*\\XM L\\{run}\\Event_meter.xml"</query>
</EHart>
</panel>
</dashboard>

Figure 17: This figure shows an example of an XML template.

The Splunk REST API was used to create the dashboards using this string. To
do this, a POST to /servicesNS/admin/search/data/ui/views/ was used with
XML source and dashboard title as parameters. The title of the dashboard
would be the project name followed by the run id. This was to name every
dashboard uniquely. The benefit of this solution is that all information needed
from a specific test run, can be viewed in one dashboard. A downside to this
solution is that it would result in a large amount of dashboards. It would also
be very performance demanding because a large amount of data would be
handled by only one dashboard. To be able to compare runs within a project
the administrator of the dashboard would be forced to add every new test run
manually to the XML source. This would result in a large amount of manual
work and is not a dynamic solution.

For each new test run, LoadSplunker will create a new dashboard in the
following way:
1. Retrieve a dashboard XML source template.
2. Set the values that vary between each run:
e Runid
e Label
3. Create the dashboard using the modified XML source.

28

4.6.2 Alternative two

The second alternative would be to create one dashboard for each project.
With this alternative, a comparison of runs will be available in each
dashboard. It would also result in fewer dashboards if compared to alternative
one. The downside of this alternative is the difficulty to correlate description
fields dynamically to runs and comparison of runs. No solution to make this
correlation was found during this thesis work. It would however be possible to
add a text field that describes the project itself. This because the user would
not be able to change which project is viewed in the dashboard.

For each new project, LoadSplunker will create a new dashboard in the
following way:
1. Retrieve a dashboard XML source template.
2. Set the values that vary between each project:
e Runid
e Project
e Label
3. Create the dashboard using the modified XML source.

4.6.3 Alternative three

The third solution is based on only creating one dashboard for each graph. The
user can chose what project and which runs the dashboard will display data
from. The advantage of this is that Splunk will not overflow with dashboards
and no dashboards would have to be created or modified by LoadSplunker.
Instead one dashboard would be created manually for each graph and when
new runs and projects appear in Splunk the user will automatically be able to
select them in an input field. It’s also the easiest way for dashboard
management because a dashboard only needs to be created one time for it to
represent all runs and projects available.

To implement the third alternative, input fields were added so project and run
could be specified. Input fields that were added to the dashboards were test
run, project and time span. Tokens were used to save and use these values.
Test run and project was added so that the dashboards could be used for all the
projects and test runs. Time span was added so that the viewer can set
granularity in the chart. This is important since duration and number of
transactions differs between test runs, see figure 18.

29

splunk App: LoadSplunker Adminisirato

Search Pivot Reports Alerts Dashboards LoadSplunker
art Edit v | Morelinfo v E]
Praject Runs Time span Time

Spiunk % 16 100ms ' Absolute time

® Relative time

EventType EventGroup EventName Grouped by
Transaction Q| All [0S Al Q| EventName [0%

Average response time

2
15|
1
0.5
12:01:00 AM T2:01:58 AM 12:02:58 AM 12:03:57 AM 12:04:56 AM
FriJan 2
1370
Q i D Loading - 28%
Legend
EventName

Action_Transaction
r1

vuser_end_Transaction
vuser_init_Transaction

Q4+ i D

About Support File aBug Documentation Privacy Policy D 2005-2015 Splunk Inc. All rights reserved

Figure 18: This figure shows an example of a dashboard that was developed
during the thesis work.

3

(@)

IKEA wanted a similar legend in Splunk as in LoadRunner Analysis, see
figure 109.

& HP LoadRunner Analysis - Example_Result.Ira - 0
File Edit View Graph Reports Tools Windows Help
& B4 5 Bk % T EG ThE: W B B KR
Sessien Explorer A | <. n Response Time | Business Brocess..n Response Time | Business Process..n Response Time | Transaction Resp. Time [Percentile) | HTTP Responses per Second | SiteScope 4 b X
(23R G R

HTTP Responses per Second
5 Reports A

[] summary Report 45

HTTP Responses per Second

Displays the number of the differeri AR ;
None 00:10 20 00:30 00:40 00:50 01:00 0110 01:20 01:30 0140 0150 02:00 0210 02:20 0230 02:40 02:50 03.00 0310 03:20 03:30 0340

5 Seconds Elapsed scenario time hh:mm

[

HTTP Responses per Second =] [= 8
e[~ |Measurement ~ [Giraph Minimum ~ [fwerage ~|[Graph Masimum [=]| Graph Median ~ [Graph Std. Deviatior [~ |
HTTF_200 0.000 8.291 45,800 6,800 7548
HTTP_302 0000 0639 3400 0600 0558
HTTP_500 0,000 0,017 0,400 0,000 0,057
Displays m numh Hh dlf tHTTP saiue codes
from the Web server during each e oot
X R

Efjc omplete data

Figure 19: This figure shows a graph with its legend in LoadRunner Analysis.

In Splunk every graph should have its own legend as viewed in figure 20.

Color in/link | Business Transaction | Average | 95th Fail/Pass
to graph process name response | response
name time time

Link/color | Taken from | Taken The Compare

will relate to | the directly percentile | with the

the graphical | “Transaction | from the should be | SLA rule

presentation. | name”. test result. dynamic. | of response
Default time.
95%

Figure 20: This figure shows Splunk’s wanted fields for the legends in the
dashboard.

During this thesis work an example test result was provided to work with. This
test result did not have any SLA rules or transaction names in the format
needed to extract the business process name. Test results with this included
were planned to be delivered by an IKEA employee but the test environment
used to create this test result did not work as planned. With this said, the
legend was not created as shown above, the only thing included was the
coloring and the transaction name.

31

[erouis 5] [rrares @] [=enen b

To correlate a transaction name in the legend and a line in the chart, coloring
was used. This coloring was done by using CSS. Since the coloring was done
in order, the coloring will be wrong if the sorting inside the legend is changed.
Coloring was very important and implementing it in this flawed way was the
only solution found during the thesis work.

4.6.4 Export PDF
Every dashboard can be exported into a PDF format but the design done by
CSS in the dashboard will not be shown. Compare figure 21 and 22.

splunk> App: Splunk 6.x Dashboard Examples

i) Messages Settings v Activity Help Find

Overview Examples Dashboards Search Splunk 6.x Dashboard Examples

Table Cell Highlighting Eatv | Morefo || L | &
Cell Highlighting
_time user active_hist_searches active_realtime_searches
2015-05-18 11:00:00 admin 027
2015-05-18 11:00:00 splunk-system-user 2.00 000
2015-05-18 11:00:00 system total 005
2015-05-18 12:00:00 admin 0.00
2015-05-18 12:00:00 system total 000
2015-05-18 13:.00:00 splunk-system-user 2.00 000
2015-05-18 13:00:00 system total 000
2015-05-18 14:00:00 splunk-system-user 200 0.00
2015-05-18 14:00:00 system total 000
2015-05-18 15:00:00 system fotal 000 000

2 next

Description

Related examples:
+ Tabl

Figure 21: This figure shows a dashboard where cells are colored with CSS.

Cell Highlighting

e e st i saarnes [rp—

o aarin oscom0n azseser
o [—— 2o00000 oo
o — - ooimss
o atrin +o00000 aotons
o sy armean oo
o — 2o00000 aovons
o J— o— aotons
o —— 2o00000 oo
o opeman oomn aovons
o J— p— aotons
o —— 2o00000 oo
o — ascomon aovons
o J— 2000000 aotons
o Jo— oerusa oo
o — pp— aovons
o atrin +o00000 aotons
o [—— 2o00000 oo
o Jo— - aovons

Figure 22: This figure shows figure 18 as exported PDF.

32

4.7 User management

There was a desire to grant all IKEA stakeholders read access to static
dashboards in Splunk. A solution relying on using IKEAs Active Directory
database was considered to automatically provide the correct access right to
information in Splunk. The solution was based on using a LDAP filter to grant
access to specific users in the database. This did not work since the access
controls in Splunk are implemented by using roles and a role could only be
provided to groups inside of the database. Without the possibility to provide
default roles to users, read access had to be provided manually. This could be
done either by adding users into Splunk or mapping users to groups in the
database. None of these manual solutions were considered viable for IKEA
since the number of employees and other stakeholders at IKEA is too large.

The testers for projects at IKEA exist as users in Performance Center. Using
the Site Admin REST API information about an ALM project’s users and
roles can be retrieved and with the Splunk REST API it is possible to create
users in Splunk. By using these two APIs, LoadSplunker can create a new user
in Splunk for every user in Performance Center. With LoadSplunker informed
on users and roles in Performance Center, users can be given the same roles in
Splunk as in Performance Center. Some users in Performance Center have a
specified email. When these users are created in Splunk a randomly generated
password will be sent to them using IKEAs mail service. For users not having
an email registered, a default password is provided. This password is provided
within the installation manual of LoadSplunker. See figure 23 for
LoadSplunker’s user management flow chart. This implementation depends on
how dashboards will be utilized later on which probably will result in desired
changes of LoadSplunker in the future.

‘H 3
2.
Loadsplunker |—=——=>| Splunk
1ﬂ”

Site Admin
[(API)]

Figure 23: This figure shows how LoadSplunker manages users.

33

4.7.1 Real time system

LoadSplunker is a system consisting of three periodic threads, see figure 24.
With periodic threads, each thread will be idle a given amount of time until it
executes again. In this way LoadSplunker will not take computing resources
unnecessarily. The different threads are named ScheduleThread,
SplunkThread and ResultThread. ScheduleThread will get information on test
runs such as when they are finished. This information will be sent to
ResultThread which will download and handle the analyzed result from the
test run. ResultThread will in turn inform SplunkThread of the new test run.
SplunkThread will create a role and several users in Splunk. One role will be
created for each project in Performance Center. All the users in a project will
be created in Splunk with the information stored in Performance Center.

Performance

Site Admin .

Splunk server

> >

Figure 24: This figure shows the sequence of the threads and which monitors
they communicate with, the large arrows representing a message being sent
from one thread to another.

4.7.2 ScheduleThread

ScheduleThread will get a priority queue with information on scheduled test
runs in Performance Center which has not already been handled by
LoadSplunker. Separation on which tests that has been handled is done by
using time as a reference point. The result is stored in a file so that
LoadSplunker can be restarted without losing this value. The priority queue
with scheduled tests is sent to ResultThread. ScheduleThread also checks if
there are any empty folders in the XML folder because the Splunk batch only
deletes the indexed files, not folders. Some simplified and clean code for this
thread is provided in figure 25.

34

DateTime lastTime = updateTime();
PriorityQueue<Run> queue =
sa.getDownloadQueue(lastTime);
if(queue!= null && !queue.isEmpty()){
RunEvent event = new RunEvent(this, queue);
rt.putEvent(event);

}

cleanFolders();

Figure 25: This figure shows simplified and cleaned code on how
SchedueleThread works.

4.7.3 ResultThread

ResultThread will check if it has received a new message from
ScheduleThread and concatenate the sent priority queue with its own internal
priority queue. ResultThread then checks if the first run in the priority queue
has passed its finish time. When a run has passed its finish time, a message is
sent to SplunkThread. After this ResultThread downloads, extracts and
translates the test result to XML files. This is only done if the result is
downloadable. The result is downloadable if the test run has finished and the
test result has not been deleted. Some simplified and clean code for this thread
is provided in figure 26.

RunEvent msg = (RunEvent) mailbox.tryFetch();

if (msg !'= null && msg.queue !=null) {
queue.addAll(msg.queue);

¥

DateTime now = new
DateTime(System.currentTimeMillis());
Run first = queue.peek();
if (first = null && first.compareTo(now) <0) {
Run run = queue.poll();
if (sa.isDownloadable(run)) {
sendSplunkEvent(run);
downloadResult(run);
Unzip.unzip(projectPath + ".zip");
translateResult(run);
delete(projectPath + ".zip");
delete(projectPath);

}

}

Figure 26: This figure shows simplified and cleaned code on how
ResultThread works.

35

4.7.4 SplunkThread

SplunkThread will check if it has received a new message from ResultThread.
Messages from ResultThread contain the following information: domain,
project, run and users with their roles from the project in Performance Center.
If a new message has been received, SplunkThread will create a new role if
the project is being handled by LoadSplunker for the first time. All the users in
the project will be added in Splunk with the role created. Some simplified and
clean code for this thread is provided in figure 27.

SplunkEvent msg = (SplunkEvent)
mailbox.tryFetch();
If (msg !'= null && msg.users !'=null) {
String role = "LoadSplunker-"+msg.project;
splunk.createRole(role);
for(User user: msg.users){
if('splunk.userExists(user.username, true)){
String pass = ""changeme™;
if(user.hasMail()){
pass = passwordGeneration(8);
sendMail(user.mail, pass);
}
splunk.createUser(user, pass, role, true);
b
}
}

Figure 27: This figure shows simplified and cleaned code on how
SplunkThread works.

4.7.5 Logging

For easier management of the LoadSplunker system logging has been
implemented with log4j. Log4j uses different logging levels, these are: debug,
error, info, warn and trace. The levels are used in different situations. For
example, trace is used as a finer grained tracing of a bug than debug. This
logging was implemented for easier error management. [16]

36

4.7.6 Settings

LoadSplunker uses property files which are placed in
%L oadSplunker%/props/, see figure 28 and 29. Figure 28 contains connection
information for Site Admin, Performance Center and Splunk. This file also
contains the paths to the XML folder, the results folder and the dashboard
template. The property file format was chosen because of its simple
management with the standard Java library java.util.Properties.

#Performance Center
pc.name=username
pc.pass=password
pc.host=ip-address/LoadTest/rest

#Site Admin
sa.name=username
sa.pass=password
sa.host=ip-address/gcbin

#Splunk
splunk.name=username
splunk.pass=password
splunk.host=ip-address

#Paths

choose directory separator depending on operating
system

[or \ for Windows

[for Linux

. for Mac

path.results=path/results

path.xml=path/xml

Figure 28: This figure shows settings in connection.properties.

37

Path to the log file
log = path/log

Define the root logger with appender file
log4j.rootLogger = DEBUG, APPEND

Define the file appender
log4j.appender. APPEND=o0rg.apache.log4j.FileAppender
log4j.appender.APPEND.File=${log}/log.out

Define the layout for file appender
log4j.appender.APPEND.layout=org.apache.log4j.SimpleLayout

Figure 29: This figure shows LoadSplunker’s settings in log4j.properties.

38

5 Conclusion

This section contains conclusions of the result, answers of the questions from
the problem specification and some ideas for future development.

Today more and more processes are being automated with technology. This
should not be any different for testers since they are extremely important in all
kind of development. If the analysis process becomes more automated for
testers, more time can be spent on actual testing and this should result in a
higher quality of testing and therefore better deliverables. Default reporting is
a viable way for testers to save time. This is unfortunately very difficult since
testing can differ in so many ways. At IKEA a project can last for years, so
building default reporting for one specific project might be a viable option.
This would also improve the knowledge on implementing default reporting
which may be an investment with great technical development outgrowth.

The assignment of this thesis work was also to develop software for IKEA that
could replace their current test analysis tool with Splunk. To schedule
performance test IKEA is using HP’s software called Performance Center. In
this thesis work, integration between HP Performance Center and Splunk was
developed and named LoadSplunker. The LoadSplunker system downloads
new test results from Performance Center and creates XML files of the result
data. LoadSplunker then automatically uploads the XML data into Splunk
where it’s indexed and presented in dashboards. LoadSplunker also retrieves
user information from Performance Center and recreates them in Splunk.

The purpose of the assignment was also to investigate how to automatically
create default reports in Splunk. For automatic reporting in Splunk some
different possibilities have been explored in this thesis work. The first one was
creating a new dashboard every time a test run is finished. In this way, static
description fields can be added by the tester to visualizations which is an
important part of test reports. One flaw with this solution is the amount of
dashboards considering the amount of projects at IKEA. Another flaw with
this solution is the performance demand with the amount of data that would be
shown when several projects are displayed inside the same dashboard. The
second possibility was to create one dashboard for each project and in this way
also make comparison of test runs available in the same dashboard. This
solution has the same flaws as the first solution and it also restricts the
possibility to add description fields in the dashboards. A description should
correlate to one specific graph and how this correlation could be done in a
dynamic dashboard is unknown. In the third possibility only one dashboard
would be created for each graph. This solution will not overflow Splunk with
dashboards. This also restricts the amount of data inside one dashboard to the

39

amount of data in one single graph. With the third possibility, analysis can be
done in Splunk with the dashboards but the reporting will not be automatic.
One idea for easing the workload of the tester is to make use of alerts in
Splunk which is mentioned in future possibilities. The dashboards built during
this thesis work were implemented to show IKEA how dynamic dashboards
can be built but no final choice was made on how the reporting in Splunk
should be done. Three alternative dashboard solutions were examined but how
to utilize these was not found. A more detailed investigation will be needed to
answer this and with more knowledge on how this reporting should be done,
more functionality may have to be added to LoadSplunker.

The result of this thesis work did not lead to any automatic reporting at IKEA.
However, replacing LoadRunner Analysis with LoadSplunker and Splunk
would result in some important advantages. Developing dashboards is almost
only restricted by the imagination with the option of using HTML, JavaScript
and CSS. Therefore dashboards can be built for a more flexible analysis than
in LoadRunner Analysis. Test results can be compared over test runs and can
also be correlated with other data residing in Splunk. This other data can be
logs or anything else from any part of the environments used for testing.

In the beginning of this thesis work, problems to be solved were specified, see
1.3. The following paragraphs contain the conclusions of these problems.

Is it possible to gather all data points from performance tests without any data
loss?

In the analyzed results that are downloaded from Performance Center there is
a database which contains tables with raw data. This data can be downloaded,
translated and then imported into Splunk without any loss.

How can LoadSplunker get informed when a test is finished?

In the Site Admin database there is a table to keep track of when test runs are
scheduled and will finish. This information is fetched by querying the
database.

How can LoadSplunker access result files from tests in Performance Center?
Using the REST API provided for Performance Center all test results can be
downloaded in form of a zip archive. The test result is then extracted from the
downloaded zip archive.

40

What information is the most interesting for testers, developers and other
stakeholders?

The supervisor of this thesis work specified some basic graphs which are
created by Analysis. Unfortunately not much time was spent answering this
since there are still some questions on how to best utilize Splunk for default
reporting and dynamic analysis.

Is it possible to make use of a template to create a default view of the
information?

Creating dashboards as default reports will result in an overflow of dashboards
in Splunk. Instead dashboards can be created for an easier analysis of the test
result than LoadRunner Analysis. Alerts may also be used to provide
information about things out of the ordinary in the test.

How to gain access to information about users at IKEA?

In the database for Site Admin there are tables in each project containing
information about the users and groups in that project. LoadSplunker queries
this database on what groups and users exist.

How to create restriction in Splunk using that information?

User roles in Splunk can be used to provide access to apps, dashboards, alerts
and more. This gives great possibilities on giving stakeholders access to very
specific information. No final decision on how Splunk would be used for
default reporting was made during this thesis work and therefore, no exact
user management can be chosen.

How to keep Splunk updated with changes on IKEAs users?

An update of user information in a project can be done every time a new test
run is handled by LoadSplunker. Another possibility is to add one more thread
to the LoadSplunker system. This thread can periodically update all the user
information in Splunk. This other possibility might be very demanding
depending on the amount of projects and users that are handled but a very long
period on the thread can be used to reduce this disadvantage.

How can this system be installed in IKEA's environment?

At the start of this thesis work, the goal was that LoadSplunker should be
operating system independent. The Site Admin API is unfortunately COM-
based and therefore LoadSplunker will only work in a Windows environment.
This can be solved by running LoadSplunker either in a real or a virtual
windows environment. Using a virtual windows environment will result in
some performance loss.

41

Since the reporting in Splunk was not finished in this thesis work, any official
installation at IKEA did not take place. Instead a general installation manual
was written to ease the transition of LoadSplunker from the thesis workers to
IKEA.

5.1 Future possibilities

This section includes some information that might be useful for future
development of the LoadSplunker system and the reporting in Splunk.

5.1.1 Alerts

When a tester analyzes test results it is often things out of the ordinary that are
interesting. Splunk enables user to specify saved searches and perform actions
depending on the result of that search. Using this functionality, basic
troubleshooting can be done which gives the tester time to focus on testing.

5.1.2 Chart overlay

Splunk has the possibility of adding a chart overlay, this overlay is done by
using a field from the search. This field is often calculated by using stats or
some similar function at the end of the search. Examples on chart overlays are
shown in figure 30.

* L e
| Al) i .t
IS SN YR N NN RN A NN NN NN NN ROV RS AR AR i all

B cours — erenge

Figure 30: This figure shows lines running right above the bar charts, these
are chart overlays.

5.1.3 Customized dashboards

Different people have different knowledge, with this in mind, not everyone
wants to see test data shown in the same way. A tester would want to be able
to view all the specific data in a test and a stakeholder on the business side
would probably like to see more of a summary. With this in consideration,
several customized dashboards viewing the same data could be created with
each different dashboard being targeted to a specific group of stakeholders.

42

5.1.4 Dashboard legend

The dashboard legend was not created according to plan because of some
unfortunate reasons as mentioned in 4.6, see figure 31. Only the coloring and
the transaction name were included which is a very small part of the goal. The
coloring was done by using an ordered color palette for the chart and coloring
the legend table with the same colors in the same order. This means that the
coloring was not dynamic as wanted, since the colors are wrong if the sorting
inside the legend is changed. This flawed solution was used because no better
solution was found within the time frame of this thesis work.

Adding business process name to legend will not be difficult since
LoadSplunker adds a field named BusinessProcess for each event. This is
extracted from the transaction name. If the transaction name not is in the
format expected then the BusinessProcess is set as unknown. Average
response time can be calculated by using the avg function available in Splunk.
Calculating the 95th percentile column might be the most difficult in this
legend. The 95th percentile is often calculated by sorting the data set and then
finding the value which is greater than the other 95 percent. How to calculate
the 95th percentile response time has not been solved during this thesis work.

Fail/Pass can be implemented by comparing the threshold in SLARules.xmi
with the response time. A symbol for failure or success can be showed in this
column by using JavaScript and CSS.

Color in/link | Business Transaction | Average | 95th Fail/Pass
to graph process name response | response
name time time

Link/color | Taken from | Taken The Compare

will relate to | the directly percentile | with the

the graphical | “Transaction | from the should be | SLA rule

presentation. | name” test result dynamic. | of response
Default time.
95%

Figure 31: This figure shows wanted fields for the legend in the dashboard.

5.1.5 Extended logging

Logging in LoadSplunker can be modified so that it is possible to import the
logs into Splunk. If the logs are imported into Splunk, alerts can also be set up
to give notification. This is used so that if something goes wrong with
LoadSplunker, the logging makes it easier to troubleshoot.

43

5.1.6 SideView utils

SideView utils is an application in Splunk that can be used to ease the
development process of dashboards with advanced XML. Advanced XML has
become less popular amongst Splunk dashboards developers for its high
complexity. With HTML, JavaScript and CSS great dashboards can be built in
a less complex way. The disadvantage with this is that CSS will not be shown
if the dashboard is saved as a PDF which is a very important functionality.
The SideView utils application has not been used during this thesis work
because it is not free to use but could be one of the best options for building
dynamic and default reporting.

5.1.7 SLA rules

LoadSplunker translates the SLA rules that are included in analyzed test
results and they are imported in Splunk but not yet utilized. SLA rules often
consist of thresholds, showing this threshold can be done in charts by adding a
chart overlay, see 5.1.2. SLA rules will be used for implementing the desired
legend as mentioned in 5.1.4. The SLA rules could be altered in Splunk if
input fields are added. Then if the tokens are set those values are used, if not
then the values from the SLA rules set in Performance Center are used. This is
desired since SLA rules might change along with the goal of a project which
means that it should be easily modifiable.

5.1.8 System test

The LoadSplunker system has not been formally tested in a system test. This
Is something that needs to be done before LoadSplunker is put into production.
This could be done by using Performance Center to test LoadSplunker and
then use LoadSplunker to get the test results into Splunk so that the analysis of
this system can be done in Splunk.

44

6 Terminology

Active Directory(AD)

A special-purpose database designed to handle a large
number of changes and updates. [20]

App Typically used to addresses several use cases and can
contain one or more views in Splunk. [1]

Batch A type of monitor that deletes the files after they are
indexed. [32]

cURL A command line tool and library for transferring data
with URL syntax. [21]

Dashboard A view in Splunk which can show a collection of
visualizations. [7]

Domain A group of projects in Performance Center.

Git A distributed version control system designed to

handle everything from small to very large projects.

[6]

Lightweight Directory
Access
Protocol(LDAP)

Provides a mechanism used to connect to, search, and
modify existing internet directories. This is used in
this project to connect to an Active Directory. [17]

Load generator

The hardware used during testing.

Monitor Can point to directories. All the data in these
directories are imported and indexed in Splunk. [32]

Project A project in Performance Center with a group of
users.

Project id Each project in Performance Center has a unique
Project id.

Prototype The code that was produced in the course EDT655

(project year three).

Regular Expression

A sequence of characters that forms a search pattern,
mainly for use in pattern matching with strings, or
string matching, i.e. ‘find and replace’-like operations.

[3]

45

Run id

Each run in Performance Center has a unique run id.

Search

A query to modify and display data in Splunk. [23]

Service Level

A contract between a service provider and the

Agreement(SLA) customer.

Test result Result in Performance Center generated in different
stages of testing.

Test run A project is often tested several times, each time a
new test run is created.

This system The LoadSplunker system.

Token A way to store values from input fields inside of
dashboards in Splunk. [8]

View Can show one or more visualizations in Splunk. [18]

Visualization A visual object such as a chart or a table in Splunk.
[25]

WebEXx Used for web and video conferencing online. [10]

46

7 Sources

7.1 Trusted sources

[1] http://docs.splunk.com/Splexicon:App
Electronic resource, available on the internet 2015-05-20

[2] HP ALM help documentations (see figure 32 in appendix)
Electronic resource, available in Performance Center 2015-05-20

[5] http://dev.splunk.com/restapi
Electronic resource, available on the internet 2015-05-20

[6] http://git-scm.com/
Electronic resource, available on the internet 2015-05-20

[7] http://docs.splunk.com/Splexicon:Dashboard
Electronic resource, available on the internet 2015-05-20

[8] http://docs.splunk.com/Documentation/Splunk/6.2.2/Viz/tokens
Electronic resource, available on the internet 2015-05-20

[9] http://docs.splunk.com/Splexicon:Tablechartdrilldown
Electronic resource, available on the internet 2015-05-20

[10] http://www.webex.com/
Electronic resource, available on the internet 2015-05-20

[11] http://mvnrepository.com/artifact/org.jvnet.com4j/com4;j
Electronic resource, available on the internet 2015-05-20

[12] http://jackcess.sourceforge.net/
Electronic resource, available on the internet 2015-05-20

[13] http://mvnrepository.com/artifact/com.sun.jersey/jersey-bundle

Electronic resource, available on the internet 2015-05-20

[14] http://www.joda.org/joda-time/
Electronic resource, available on the internet 2015-05-20

[15] http://mvnrepository.com/artifact/log4j/log4;
Electronic resource, available on the internet 2015-05-20

47

http://docs.splunk.com/Splexicon:App
http://dev.splunk.com/restapi
http://git-scm.com/
http://docs.splunk.com/Splexicon:Dashboard
http://docs.splunk.com/Documentation/Splunk/6.2.2/Viz/tokens
http://docs.splunk.com/Splexicon:Tablechartdrilldown
http://www.webex.com/
http://mvnrepository.com/artifact/org.jvnet.com4j/com4j
http://jackcess.sourceforge.net/
http://mvnrepository.com/artifact/com.sun.jersey/jersey-bundle
http://www.joda.org/joda-time/
http://mvnrepository.com/artifact/log4j/log4j

[16] https://logging.apache.org/log4i/1.2/apidocs/org/apache/log4y/
Level.html
Electronic resource, available on the internet 2015-05-20

[17] https://msdn.microsoft.com/en-
us/library/aa367008%28v=vs.85%29.aspx
Electronic resource, available on the internet 2015-05-20

[18] http://docs.splunk.com/Splexicon:View
Electronic resource, available on the internet 2015-05-20

[19] https://www.microsoft.com/com/default. mspx
Electronic resource, available on the internet 2015-05-20

[20] https://msdn.microsoft.com/en-us/library/bb742424.aspx
Electronic resource, available on the internet 2015-05-20

[21] http://curl.haxx.se/
Electronic resource, available on the internet 2015-05-20

[22] http://docs.splunk.com/Splexicon:Event
Electronic resource, available on the internet 2015-05-20

[23] http://docs.splunk.com/Splexicon:Search
Electronic resource, available on the internet 2015-05-20

[24] http://docs.splunk.com/Splexicon:View
Electronic resource, available on the internet 2015-05-20

[25] http://docs.splunk.com/Splexicon:Visualization
Electronic resource, available on the internet 2015-05-20

[26] http://www8.hp.com/us/en/software-solutions/application-lifecycle-

management.html
Electronic resource, available on the internet 2015-05-20

[29] http://www8.hp.com/us/en/software-solutions/performance-center-

testing/index.html
Electronic resource, available on the internet 2015-05-20

[31] http://www.splunk.com/en_us/homepage.html
Electronic resource, available on the internet 2015-05-20

48

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html
https://msdn.microsoft.com/en-us/library/aa367008%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/aa367008%28v=vs.85%29.aspx
http://docs.splunk.com/Splexicon:View
https://www.microsoft.com/com/default.mspx
https://msdn.microsoft.com/en-us/library/bb742424.aspx
http://curl.haxx.se/
http://docs.splunk.com/Splexicon:Event
http://docs.splunk.com/Splexicon:Search
http://docs.splunk.com/Splexicon:View
http://docs.splunk.com/Splexicon:Visualization
http://www8.hp.com/us/en/software-solutions/application-lifecycle-management.html
http://www8.hp.com/us/en/software-solutions/application-lifecycle-management.html
http://www8.hp.com/us/en/software-solutions/performance-center-testing/index.html
http://www8.hp.com/us/en/software-solutions/performance-center-testing/index.html
http://www.splunk.com/en_us/homepage.html

[32] http://docs.splunk.com/Splexicon:Monitor
Electronic resource, available on the internet 2015-05-20

[33] http://cs.lth.se/english#0
Electronic resource, available on the internet 2015-05-20

[34] http://sideviewapps.com/apps/sideview-utils/
Electronic resource, available on the internet 2015-05-20

[35] http://mobaxterm.mobatek.net/
Electronic resource, available on the internet 2015-06-04

[37] Data Structures, Abstraction and Design Using Java, Koffman &
Wolfgane, second edition, Course literature, published 2010 by John Wiley &
Sons Inc.

[38] http://docs.splunk.com/Documentation/Splunk/6.2.3/Data
[Editinputs.conf
Electronic resource, available on the internet 2015-06-18

7.2 Untrusted sources

[3] http://www.princeton.edu/~mlovett/reference/Reqular-
Expressions.pdf
Electronic resource, available on the internet 2015-05-20

[4] http://rest.elkstein.org/
Electronic resource, available on the internet 2015-05-20

[27] http://www.quru99.com/understanding-vugen-in-LoadRunner.html
Electronic resource, available on the internet 2015-05-20

[28] http://www.quru99.com/how-to-use-controller-in-LoadRunner.html
Electronic resource, available on the internet 2015-05-20

[30] http://www.quru99.com/how-to-use-analyzer-in-LoadRunner-
12-0.html
Electronic resource, available on the internet 2015-05-20

[36] https://www.crisp.se/file-uploads/Kanban-vs-Scrum.pdf
Electronic resource, available on the internet 2015-06-04

49

http://docs.splunk.com/Splexicon:Monitor
http://cs.lth.se/english#0
http://sideviewapps.com/apps/sideview-utils/
http://mobaxterm.mobatek.net/
http://docs.splunk.com/Documentation/Splunk/6.2.3/Data%0d/Editinputs.conf
http://docs.splunk.com/Documentation/Splunk/6.2.3/Data%0d/Editinputs.conf
http://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf
http://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf
http://rest.elkstein.org/
http://www.guru99.com/understanding-vugen-in-loadrunner.html
http://www.guru99.com/how-to-use-controller-in-loadrunner.html
http://www.guru99.com/how-to-use-analyzer-in-loadrunner-12-0.html
http://www.guru99.com/how-to-use-analyzer-in-loadrunner-12-0.html
https://www.crisp.se/file-uploads/Kanban-vs-Scrum.pdf

50

8 Appendix

- —

; - > P i D v, T = 2
e : J|-".J http://ptpseelm-ntd188.ikeadt.com/qcbin/start_ajsp D = & || 2 HP ALM - Performance Cen... % ‘GTstCenter EGroupware [Chat] : 8 s s
@ Application Lifecycle Management Domain: DEFAULT, Project: Splunk ~ | User splunk_admin | £¥ ~ 1 @) | Logout
<> TestRuns Help on this page ...
m Dashboard v TestRuns Edit View Analysis
i Management ¥ ® E | - ‘ = - B, 3 GotoTestinstance ‘ 5l | (=] ‘ [Data Processor Queue | & Performance Trending.
R - N Legend
e) a — e .
& Cloud Se S
[- . & - - - Host
L Testing @ Application Lifecycle Management « = [F 8 & #% @
£ TestRe! —
i M Build Verification 4] -
;“ Test Plal i Timesiots API References
] TestLal il Test Runs
@ Times| @ Viewing Test Runs APl References
2 TestRu [Test Runs Overview
£, LabResa [How to View Test Runs This section lists available API references for working with ALM and Performance Center.
— il Test Runs User Interface
W Defects [} Test Runs Module Wir
4 performal| [} Test Runs Madule Me! HP ALM AP| References | Description
—% [Test Runs Module Fiel
[Run Details Dialog Ba: HP ALM Project Provides a complete online reference for the project £ database tables and fields.
[Run Step Details Dialc Database Reference
[} Test Set/BV'S Run Det
M Purge Runs Wizard HP ALM Open Test Provides a complete online reference for the ALM COM-based API. You can use the ALM L
I Defects Architecture API open test &2 architecture to integrate your own configuration management, defect ¥
Ml Analysis Reference tracking, and home-grown testing tools with an ALM project. F
M ALM Administrator Guide
Bl ALM Lab Management Guide HP ALM Site Provides a complete online reference for the Site Administration COM-based API. You can
M ALM Business Views Microsoft Ex Administration AP use the Site Administration API to enable your application to organize, manage, and
[ALM Extension Guides Reference maintain ALM users, projects, domains, connections, and site configuration parameters.
M Business Process Testing User G
8 Performance Genter Guide HP ALM REST API Provides an online reference for the ALM REST-based AP You can use the REST APl to
[7) Best Practices Guides . N |
Reference (Technical access and work with ALM data.
[[] API References Previ
D Troubleshooting Guides TE\“EW)
[7] Docs on Tap Mobile Reference
[} Instaliation Guides o
[Glossary ~1| HPALMPerformance Center = Description
« »[| APIReferences
i@ Contents K .
G, Search HP ALM Performance Center | Provides an online reference for the ALM Performance Center REST-based API. You
~ o REST API Reference can use the REST API to write applications to run load tests without using the
Perfarmance Center user interface.
-
T ——

Run 2 of 14 Server Time: 2015-04-29 10:48
=

Pl borterm ® Uniitled

Figure 32: This figure shows ALM API reference.

o1

