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Abstract

The all-sky survey of Gaia will generate vast amounts of astrometric data, in which there
are expected to be thousands of planets found. Finding a system of n, planets requires
fitting of a total 5 + 7n, parameters: five astrometric and seven Keplerian parameters
for every planet. The problem is thus highly non-linear and computationally prohibitive.
After exploiting the linear properties of the Thiele-Innes constants, the remaining three
non-linear parameters still limit the number of stars in the Gaia data that are practicable
to probe for planets. The aim of this thesis is to investigate the feasibility of further
eliminating two non-linear parameters, which is accomplished by assuming a circular orbit
in the fit. If this approach is successful at reliably finding planet candidates even for
eccentric orbits, it can possibly be used to expand the number of stars that can be searched
for planets in the Gaia data. The approach is tested in simulated Gaia observations of
known single- and multiple-planet systems from radial velocity (RV) measurements. Two
detection metrics are used to enable comparison with past studies: a simple signal-to-
noise (S/N) threshold and a more robust metric based on orbit fitting, the Ax? metric.
The results indicate that, assuming a circular orbit in the fit, the orbital period can be
correctly determined for planets with eccentricity < 0.8 in single-planet systems, and < 0.5
in multiple-planet systems. It is also found that around one third of the total number of
planets in the current RV catalog, and at least one sixth of its multiple-planet system
members, can reliably or somewhat reliably be detected and characterized by Gaia.






Popularvetenskaplig beskrivning

Nar Tycho Brahe pa 1500-talet stod i sin Stjarneborg pa 6n Ven utanfor Landskrona och
kartlagde stjarnhimlens rorelser utévade han vad vi i dag kallar for astrometri: att mata
himlakropparnas positioner och rorelser. I ett historiskt skede skulle precisionen i Tychos
matningar komma att knyta ihop astronomin med fysik for forsta gangen. Johannes Kepler,
Tychos medhjalpare och eftertradare, kunde med hjéalp av Tychos data riakna ut planeternas
omloppsbanor kring solen och till slut generalisera dessa till vad som i dag fortsatter vara
grundstenarna i den celesta mekaniken, namligen Keplers lagar. Dessa lagar kom sedan
att forklaras av Newtons gravitationslag, varvid astrofysiken sag dagens ljus. Utan tvekan
var Tychos noggranna iakttagelser ett viktigt tillskott i denna historiska handelsefoljd.

I december 2013 skickades den europeiska satelliten Gaia upp, som med sin utomor-
dentliga precision kommer att observera narmare en miljard stjarnor och, likt Tycho,
kartlagga deras positioner och rorelser. Precisionen av Gaia ar sadan att den hade fran
Ven kunnat méta vidden av ett harstra som befinner sig i Sundsvalll Detta mojliggor
matningar av de sma storningar som Newtons lagar forutsager att en planet utévar pa
sin vardstjarna, som forenat med den vida kartlaggningen kommer att leda till manga nya
planetupptackter. Det har uppskattats att Gaia under sina fem aktiva ar kommer att finna
och bestdmma egenskaperna hos mer an 20 000 storre planeter kring manga olika typer av
stjarnor.

Ett av problemen for de som jobbar med att skonja planetsignaler ur Gaias data ar
att det skulle kravas en oerhérd mangd datorkraft om man skulle soka igenom varje en
av de miljarder stjarnor Gaia kollar pa. Eftersom det inte &r praktiskt mojligt, far man
istallet noja sig med att sOka igenom nagra av de miljoner stjarnor som man berdknar ha
storst sannolikhet att harbérgera planeter. Darfor vill man hitta genvigar som gor det
mojligt att snabbare upptacka planetkandidater och saledes ocksa majligt att soka igenom
fler stjarnor. I denna uppsats gors ett forsok att, genom en synbart enkel taktik, hitta en
sadan genvag. I algoritmerna som soker efter planeter behéver man i regel ta hansyn till
alla egenskaper hos den omloppsbana man forsoker bestamma. Taktiken i denna uppsats
ar att anta att banan ar cirkular istallet for elliptisk. Eftersom en ellips kan se ut pa
ofantligt manga fler satt an en cirkel blir problemet pa detta vis manga ganger enklare.
Om denna taktik visar sig fungera val, skulle den kunna gora det praktiskt mojligt att leta
efter planetkandidater i &nnu fler av stjarnorna i Gaias data.

Om Gaia kommer att satta avtryck i historien aterstar att se, men klart ar att satelliten,
for planetforskningens rikning, kommer att generera en hel del data for ett rikt omfang av
planetomgivna stjarnor. Detta kommer att ge oss insikter i fordelningen och egenskaperna
av de storre planeterna som bland annat kan anvandas for att testa olika teorier om plan-
etbildning. I vilket fall som helst fortsatter Gaia Tychos tradition att kartlagga himlen
med oovertraffad precision, vilket, i ett historiskt perspektiv, kan ha oférutsagbara foljder.
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Chapter 1

Introduction

The inventory of exoplanets detected by astrometry is currently populated by zero ob-
jects. This number reflects the inherent difficulty of the technique, which derives from the
exceedingly small astrometric effect a planet has on its host star. Despite this difficulty,
the principles of planet detection by astrometry have frequently been applied throughout
history. One of its earliest pioneers was Erik Holmberg, who, working from Lund Observa-
tory, reported that Proxima Centauri had a companion with a mass ”only some few times
larger than the mass of Jupiter” (Holmberg, 1938). It was later realized, however, that
the instruments he used were not sensitive enough and that the suspected signal was likely
just noise (Perryman, 2011). Some decades later, in what is probably the most (in)famous
astrometric planet detection, van de Kamp (1963) announced a companion with about 1.6
times the mass of Jupiter orbiting the nearby Barnard’s star. The Barnard’s star compan-
ion was initially accepted by the astronomy community and even featured in textbooks as
the first exoplanet discovery (Livio et al., 2011). Nevertheless, what van de Kamp saw in
his 25 years of data was soon identified as a probable systematic error and the observa-
tion could not be reproduced by others. There are more examples of claimed astrometric
detections (see, e.g., Sozzetti (2010), and references therein), some of which still await
confirmation!, but most have not survived scrutiny. Instead, the first detected, and still
recognized, planet around a Sun-like star came in 1995 from radial velocity (henceforth
RV) measurements (Mayor & Queloz, 1995). Most of the subsequent ~1900 confirmed?
exoplanets have been detected by the RV and photometric transit methods, with a few by
direct imaging, pulsar timing and gravitational lensing techniques. However, the December
2013 launch of the European Space Agency’s (ESA) satellite Gaia is likely to turn the tide
for planet detection by astrometry. During its five-year astrometric all-sky survey mission
of nearly one billion stars, it is estimated that Gaia will detect and characterize some

'An astrometric detection of a planet in the binary system HD 176051 was recently claimed by
Muterspaugh et al. (2010).

2As of May 15, 2015, the total number of confirmed planets in the Extrasolar Planets Ency-
clopaedia (exoplanet.eu) is 1921, whereas the slightly more conservative Exoplanet Orbit Database
(exoplanets.org) lists 1523.
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20000 high-mass (1-15 Mj) planets in long-period orbits around a wide variety of host
stars (Perryman et al., 2014), and in the process provide some important missing pieces of
the current exoplanet catalog.
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Figure 1.1: The Gaia exoplanet discovery space compared to the RV and
transit methods, based on a S/N = 3 threshold. The upper and lower Gaia
curves (purple lines) show detectability of a 5-year mission with o,y = 10 pas
for a 1 Mg star at 200 pc and a 0.4 Mg star at 25 pc, respectively. The
upper and lower RV curves (red dash-dotted lines) assume ogy = 3 ms~! and
1 ms~!, respectively. The upper and lower transit curves (green dashed lines)
assume oy = 5 mmag and 10 pmag, respectively. Symbols show inventory (as
of May 2010) of RV-detected planets (pink circles), transiting systems (light-
blue diamonds) and planets detected by microlensing (red hexagons). The
green filled pentagons are solar system planets and the small yellow dots show
a theoretically predicted distribution of planets (Ida & Lin, 2008). Figure
from Sozzetti (2011).

There are a number of key advantages to using astrometry to detect planets. In addi-
tion to supplying almost complete information on the orbital parameters (see Section 2.3),
astrometry is sensitive in slightly different areas compared to other methods. In general, as-
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trometric sensitivity increases with the mass and semi-major axis (and thus orbital period)
of the planet, which can constitute a meaningful complement to the current catalog. The
Gaia exoplanet discovery space compared to various other methods is shown in Figure 1.1.
The contribution from Gaia may not seem very noteworthy if the discovery space is con-
sidered only in isolation; a more nuanced view of the prospect is considering the context of
an all-sky survey that is limited almost solely by the magnitude of the host star, that will
also provide accurate measurements of the stellar parameters such as luminosity, distance,
metallicity, spectral type and age of the star. Thus, Gaia will provide not only improved
constraints to already known systems, but will yield an abundance of new planets around
stars of all types. Notably, Gaia will provide unprecedented statistics of the giant planets,
with highly accurate information on their variability as a function of stellar parameters
(Sozzetti, 2010). Furthermore, by having access to the orbital inclination, 4, the unique
mass of the planet, M,, can be determined, in contrast to RV measurements, which only
yield the minimum mass of the planet, M, sini. For a small, but not insignificant, num-
ber of multiple-planet systems, Gaia can also provide measurements of the co-planarity,
a largely unexplored parameter in exoplanetary science (Casertano et al., 2008), that will
inform the models of planetary formation and evolution.

Searching for planetary signals in the vast amounts of astrometric data produced by
Gaia will be a computational challenge. For a system of n, planets, the total number of
parameters to be fitted algorithmically is 5 + 7n,, which can require substantial compu-
tational resources, especially for systems with many planets. Of the around one billion
stars that Gaia will observe, only millions can practically be expected to be thoroughly
inspected for planets, which necessitates high efficiency in the algorithms. The problem
can be mitigated somewhat by drawing on the linearity of 5 4 4n, of the parameters,
leaving 3n, non-linear parameters to be fitted (Wright & Howard, 2009). The aim of this
thesis is to evaluate the feasibility of removing two additional non-linear parameters, ac-
complished by assuming a circular orbit in the fit. This effectively limits the search to a
range of orbital periods and, if successful, makes the algorithm more efficient at finding
planet candidates. The approach can potentially be used to increase the total number
of stars in the Gaia data that are practicable to probe for planets. This more efficient
algorithm can later supply the most promising planet candidates as starting points for
more sophisticated algorithms. The approach is tested on simulated Gaia observations of
real single- and multiple-planet systems known from RV measurements. An orbit-fitting
algorithm assuming a circular orbit is applied to each planet, one at a time, in a blind
search for the orbital period. Two distinct investigations are conducted: an individual
orbit-fitting scheme to all (436) RV planets® with no distinction made between members
of single- and multiple-planet systems, and a composite orbit-fitting scheme to the (55)
RV multiple-planet systems, where the combined signal of all planets is searched and the
signal of the first fit is removed before searching for the next, etc. Further, the detectability
of the planets is estimated by two different metrics: a simple signal-to-noise ratio (S/N),
easily comparable to past studies, and a more robust metric based on statistical properties

3Their data taken from exoplanets.org.
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of the orbit-fitting, the Ax? metric, as utilized by Perryman et al. (2014).

This text is organized as follows. Chapter 2 introduces astrometry as planet detection
and characterization tool, wherein Section 2.1 describes the main observable in astrometric
planet detection, the astrometric signature; Section 2.2 describes the astrometric and Ke-
plerian parameters and to what extent the latter are available to astrometry; Section 2.3
provides the theoretical background for the modeling and fitting of a star-planet system;
and Section 2.4 describes the two detectability metrics used in the investigations. Chap-
ter 3 describes the methods used in this thesis, wherein Section 3.1 describes an empirical
determination of the Ax? threshold values; Section 3.2 gives a description of the Gaia
observation simulations and how the modeling of the star-planet systems is done; and Sec-
tion 3.3 gives a detailed description of the orbit-fitting algorithm used in the investigations.
The results of the experiments are showcased in Chapter 4. Finally, Chapter 5 provides a
discussion of the results, a brief overview of the prospects of astrometry in exoplanetary
science and some concluding remarks.



Chapter 2

Exoplanet detection using astrometry

2.1 The astrometric signature

Planet detection with astrometry is an indirect method, meaning that it does not directly
observe the photons of planets around other stars. Rather, the existence of the planet
is inferred by measuring the minute transversal components of the reflex motion of the
host star. The reflex motion is due to the gravitational pull from the orbiting planet and
is described by an ellipse with one of its foci at the barycenter (center of mass) of the
star-planet system. The semi-major axis of the star is

Mp Mp
= —2 Y~ (22 2.1
¢ (Mp+M*>a" (M)“" 1)

where M, is the mass of the star, M, and a, the mass and semi-major axis of the planet,
respectively (the last approximation holds since M, < M,). Since a, is likely to be mea-
sured in angular units', the observable for planetary detection, the astrometric signature,
is defined as (Perryman, 2011)

—1 -1
az( & )(i> ~ (Mp)< % )(i) as (2.2)

1 AU 1 pc M, 1 AU 1 pc
where d is the distance to the star. It is clear that « increases with the period of the
planet, P, due to Kepler’s third law, where P? af’,. Moreover, « increases with the mass
of the planet while it decreases with the distance to the system. Therefore, astrometry
favors the detection of long-period, high-mass planets in nearby systems. An illustrative

example of the size of the effect is that for an Earth-mass planet orbiting a Sun-like star at
1 AU, o ~ 3d~! pas. Earth-mass planet signals are thus too small to be detected by Gaia

1One degree (°) equals 60 arcminutes, or 3600 arcseconds (as). One milliarcsecond (mas) equals 0.001
arcseconds and one microarcsecond (nas) equals 0.001 mas.
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(see Section 2.4) but could be by future missions (see Chapter 5). On the other hand, for
a planet with the mass and orbit of Jupiter, o ~ 5d~! mas, which is readily detectable by
Gaia out to d ~ 50 pc.

2.2 The astrometric and Keplerian parameters

Astrometry is generally concerned with measuring the position and motion of objects on the
celestial sphere relative to some coordinate system, most commonly the equatorial system?.
The position and motion of a star without orbiting companions can be described by the
five astrometric parameters: right ascension, ag, and declination, dy, at some reference
epoch ty; the parallax, @w, due to the observer’s orbital motion; and the transversal proper
motions, jta. and ps, in right ascension and declination, respectively. The observed path
of a star with uniform space motion can thus be modeled as

A, (t) = Aags + 1o () + (t — to) e,
(2.3)
AS(t) = Ady + Hs(t)w + (¢ — to)ps

where Aag, and Ady are the astrometric displacements (the difference from the true po-
sition and the position at reference epoch ¢y) and II is a factor mapping the orthogonal
components of the parallax, given as (Perryman, 2011)

II,(t) = ry(t) sina — 7y (t) cos a
(2.4)
II5(t) = [ru(t) cos o+ ry(t) sina] sind — r,(t) cos §

where (r,,7,,7,) are the cartesian components of the position of the observatory*.

The three-dimensional orbit of a planet around a star is described by the seven Keplerian
parameters: ay, e, P,t,.1,Q,w (see Figure 2.1). The semi-major axis of the planet, a,, is
measured with respect to the host star; e is the eccentricity; P is the orbital period; ¢,
is the time of periapsis, a point in time when the planet is closest to the host star. The
last three angular parameters are completely dependent on the position of the observer:

2In the equatorial system, the fundamental plane is the plane projected from the Earth’s equator with a
primary direction defined at the point where the path of the Sun intersects the equatorial plane going from
south to north (the Sun’s longitude of the ascending node, see below). Because the equatorial and ecliptic
planes are moving due to precession and nutation, a reference epoch, e.g., J2000.0, has to be specified for
every set of equatorial coordinates («, d).

3Since the nominal right ascension is measured along the equator (where § = 0), the actual coordinate
needs to be given in great circle measure, written as a, = acosd. Thus pigs = i cOs 9.

4The values for IT can be obtained from the NASA JPL Solar System ephemerides (Seidelmann, 1992),
but for space-borne high-precision astrometry observatories such as Gaia, they have to be computed using
the precise location of the spacecraft, measured by telescopes on the ground.
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the inclination, i, is the angle of the orbital plane to the tangential plane of the celestial
sphere; the longitude of the ascending node, €2, is the point where the orbit of the planet
moves away (as seen from the observer) from the tangential plane; and the argument of
periapsis, w, is the node of closest approach to the host star, measured from the ascending
node.

orbiting
body

/2_/ pericentre

reference plane

U = descending

node \

Y=
reference
direction

0 = ascending node

ellipse focus =
centre of mass

> 4 Q=
./ longitude of
.~ ascending node

orbit plane U

S— to observer
apocentre

Figure 2.1: The Keplerian parameters of a body orbiting the barycenter. See
text for explanation. Figure from Perryman (2011).

A common way to characterize the elliptical orbit of a planet is by defining the true
anomaly, v(t), as the angle to the planet at a time ¢, as seen from the system barycenter
and measured from the argument of periapsis, w (see Figure 2.1). The true anomaly is
calculated by first defining the eccentric anomaly, E(t), which is the angle to the planet if
it were to trace an auxiliary circle with a radius equal to the semi-major axis of the orbital
ellipse, measured from the center of the ellipse, starting at ¢,. The geometric relation
between the true and eccentric anomalies can be expressed (Perryman, 2011)

cosv(t) = cosE(t) —e

 l—ecosBE(t)’ (25)

Moreover, the orbital frequency f = 1/P, associated with the mean motion of the planet
around the barycenter, is used to define the mean anomaly, a fictitious angle traced by the
planet since the last time of periapsis, t,:

M(t) = 27Tf(t - tp) = Mo + 27Tf(t — to) . (26)

As can be seen in Equation (2.6), the mean anomaly can also be measured from M,
which is M at a reference epoch t; and takes on a value 0-360°. M, can thus be used
as a substitute for the Keplerian parameter ¢, (which is done from here on). The mean

7
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anomaly can then be used to calculate the true anomaly by iteratively solving Kepler’s
equation
E(t) —esin E(t) = My +2nf(t — to) . (2.7)

All of the seven Keplerian parameters can in principle be determined by orbit-fitting
to astrometric data, with the exception that astrometric measurements yield no informa-
tion about which of the nodes is ascending (Perryman et al., 2014). Further, a, can be
determined from « (Equation (2.2)), given that the distance, d, is known (which can be
measured directly by astrometry for parallax stars). Importantly, and in contrast to RV
measurements, full astrometric orbit solutions give ¢ (Perryman et al., 2014), which can be
used to determine the unique mass of the planet with Equation (2.1), assuming M, < M,
and that M, is known from, e.g., spectral type or evolutionary models.

2.3 Joint modeling of the astrometric and Keplerian
parameters

The Keplerian parameters in the reflex motion of the star are identical to those of the
planet, except for the semi-major axis, a,, which differs by a factor M, /M, (Equation (2.1)),
and the argument of periapsis, w,, which is directly opposite to that of the planet, i.e.,
w = w, + 7. Consequently, four of the seven Keplerian parameters can be re-cast as the
so-called Thiele-Innes constants (see Binnendijk (1960) for a derivation):

= a4 (+ cos w, cos ) — sinw, sin € cos i)
= @, (+ cos w, sin  + sin w, cos 2 cos 1) (2.8)
= a,(— sin w, cos {2 — cosw, sin €2 cos 7) ’

( ) -

= q,(— sin w, sin Q + cos w, cos ) cos1

These constants are particularly useful in an orbit-fitting scheme, since they linearize four
of the seven parameters, making the problem more tractable for computation.

The barycenter motion of a star with n, planets can be modeled by introducing the Ke-
plerian parameters as perturbations to the purely astrometric motion described by Equa-
tion (2.3), such that (Wright & Howard, 2009)

Np

A (t) = Ao, + a(t)@ + (t = to)ptan + Y _ [BiXi(t) + GYi(t)]

(2.9)

AN(t) = Adg + s(t)w + (t — to) s + i [A;X;(t) + FYi(t)] ,

i=1
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where X and Y are the displacements in elliptical rectangular coordinates, defined as

X(t) =cosE(t) —e
(2.10)
Y(t) =V1—e?sin E(t).

The eccentric anomaly F is calculated iteratively with Equation (2.7). With the use of the
Thiele-Innes constants, only X and Y contain non-linear parameters in Equation (2.9) and
the problem is now only non-linear with respect to e, My and f and is thus manageable for
an orbit-fitting algorithm. An algorithm to determine the parameters can, e.g., perform a
simultaneous linear least-squares fit of the combined displacement from the astrometric and
Keplerian parameters. The best-fitting parameters are then determined by a minimization
of the chi-squared statistic, given by

X = Z (;—)2 (2.11)

where r is the residuals of the fit and o the uncertainty of the measurement (the along-scan
uncertainty per field of view crossing, oy, see Section 2.4). Such a linear least-squares
fitting procedure is detailed in Section 3.3.

2.4 Detectability estimation

In simulations estimating the detectability of planets, good knowledge of the expected mea-
surement uncertainty is required. For the purposes of this investigation, only instrumental
uncertainties are considered. Other noise sources, such as stellar jitter and relativistic
effects are either negligible or can be calculated accurately and thus accounted for. The
Gaia along-scan uncertainty per field of view crossing is given by (Perryman et al., 2014)

0_2 0.5
Otoy = (5’7 + o2, + a§a1> (2.12)

where o, and o, are the uncertainties of the attitude of the spacecraft and the calibra-
tion, respectively, both estimated around 20 pas. The centroiding uncertainty of the nine
Charged Coupling Devices (CCD), o,, is dependent on the magnitude® of the observed
object. The values of o, and oy, are shown in Table 2.1.

®Gaia observes in the so-called G magnitude band, with the wavelength coverage ~330-1050 nm
(see http://www.cosmos.esa.int/web/gaia/science-performance), which, for the purposes of this in-
vestigation, can be taken to be equal to the visual magnitude band V' (centered around 555 nm).


http://www.cosmos.esa.int/web/gaia/science-performance
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Table 2.1: The Gaia CCD centroiding uncertainty, o,, and along-scan uncer-
tainty per field of view crossing, oy, as a function of G (~ V') magnitude.
Most of the host stars in the RV sample used in this investigation have mag-
nitudes V' < 12. Values from Table 2 in Perryman et al., 2014.

G (mag) o, (1as) oy (nas)

6-12 57.8 34.2
13 91.7 41.6
14 145.4 06.1
15 230.9 82
16 367.5 125.7
17 588.9 198.3
18 958.1 320.6
19 1612.8 538.4
20 2898.3 966.5

With knowledge of the measurement uncertainty, a zeroth-order estimation of the planet
detectability is the signal-to-noise ratio

S/N = /oty - (2.13)

The S/N has been used, e.g., to show that the orbits of planets with a S/N > 3 (and
P less than the mission lifetime) can reliably and consistently be determined by Gaia
(Casertano et al., 2008). The fact that it has been used in past studies and that it does
not rely on detailed simulations make the S/N practical and useful as a comparison with
past estimates. However, the S/N does not take into account important factors that affect
the detectability, such as the inclination and eccentricity of the orbit and the number and
distribution of observations. This shortcoming is especially relevant since the all-sky survey
of Gaia follows a scanning law that does not provide a homogeneous temporal and spatial
covering of the whole celestial sphere (see Figure 2.2). Furthermore, the S/N requires
knowledge of the orbital parameters of the planet, which does not make it applicable to
real data.

10
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Figure 2.2: The Gaia nominal scanning law in Hammer-Aitoff projection of
the whole sky. The 0° on the vertical axis corresponds to the plane of the
ecliptic. The color bar indicates the number of field of view crossings, going
linearly from O (white) to 200 (red). After accounting for dead time (un-

planned spacecraft outages, data loss etc.), the average number of crossings
over the 5-year mission lifetime is 70. Figure and data from de Bruijne (2012).

An improved measure of detectability is therefore one that can take the Gaia nominal
scanning law into account, along with the relevant orbital parameters of the system. One
such measure is the Ax? metric, which is based on the statistical properties of orbit-fitting
(Perryman et al., 2014). It works by comparing the best value of the goodness-of-fit of a
12 parameter (astrometric and Keplerian) model for a star with planetary perturbations,
Xpin12> t0 the best goodness-of-fit of a five parameter (astrometric) model fitted to the
same star without any planetary perturbations, xZ,s. Hence, X2, 5 = X2 and the
increase in y? when going from the 12 parameter to the five parameter fit is

AX2 = Xr2nin,5 - X?nin,12 . (2~14)

The Ax? can be shown (done empirically in Section 3.1) to be related to the likelihood
ratio of the models and can thus be used as a measure of the significance of the orbit. A
Ax?(f) spectrum of the searched frequencies in the orbit-fitting algorithm can be obtained,
which is then similar to a Lomb-Scargle normalized periodogram®, a commonly used tool
to detect and gauge the false-alarm probability of a signal in unevenly spaced time series
(see, e.g., Section 13.8 in Press et al., 2007). For the present purposes of assuming e = 0 in
the orbital fit, there is no longer any point of periapsis, which makes w largely meaningless
and Equations (2.7) and (2.5) give M(t) = E(t) = v(t). Consequently, there are three
Keplerian parameters no longer in the linear fit and the 12 parameter fit above effectively
reduces to a nine parameter fit, explaining the notation x3 used in Section 3.3.

6A diagram with spectral power as a function of f, despite having the word 'period’ in the name.
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Chapter 3

Methods

There are two distinct investigations conducted in this thesis: a) individual orbit-fitting to
all (436) RV planets with no distinction made between members of single- and multiple-
planet systems, b) composite orbit-fitting to the (55) RV multiple-planet systems, where
the combined signal of all planets is searched and the signal of the first fit is removed before
searching for the next, etc. In this chapter, the methods used in both investigations are
explained in parallel with their variations highlighted throughout. Preceding the descrip-
tion of the orbit-fitting procedure is a description of an empirical determination of the Ax?
detection threshold, then followed by an explanation of the underlying Gaia simulations
and how the model for a star with orbiting companions can be combined with them.

3.1 Determining the Ay? detection threshold

Before doing any simulations to determine the detectability, a threshold value for what
counts as a reliable detection is needed. That Ax? is related to the likelihood ratio of the
models can be ”"proved” by repeatedly fitting the orbit-fitting algorithm to nothing but
the Gaussian noise used in the investigations, which will sometimes yield peaks with high
values of Ax? merely by chance. Thus, a search for the occurrence of these peaks over a
very high number of experiments enables an empirical determination of the probability, p,
of obtaining a given value of Ax? from just noise. The value of p is called the significance
level of the peak, which thus describes the false-alarm probability for a given value of Ax?.
That is, a large value of Ay? corresponds to a small value of p and a highly significant
orbit.

To determine the significance levels, the orbit-fitting algorithm (Section 3.3) is run with
no signal for 10000 experiments, each over a random direction in the sky (determined by
picking the direction of the host star of a random planet in the RV sample) and with a
different Gaussian noise realization (the standard deviation of which, oy, is determined

12
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by the magnitude of the selected host star). Thus, the point of maximum Ax? above which
there are, including itself, 10 000 x p points, corresponds to the respective significance level
p. So, in a diagram, there will be a total of, e.g., 10000 x 0.0005 = 5 points above a certain
value of Ax?, which is then taken to correspond to p = 0.0005. Such a diagram with the
resulting Ax? for all p-values is shown in Figure 3.1.

50 . . . .

p | Ax?

0.0001 | 43.8

307 0.0005 | 40.7

T 0.001 | 37.8
< 0.005 | 33.4
20 0.01 | 31.6
0.05 | 27.4

' 0.1 25.2

10 0.5 18.9

0 1 1 1 1

0 2000 4000 6000 8000 10000

Experiment #

Figure 3.1: The periodogram for the test to determine the Ax? detectability threshold.
The significance levels, the values of Ay? corresponding to p, are denoted by the hori-
zontal lines in the diagram. The numeric values of the empirical Ay? are shown in the
table to the right.
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3.2 Modeling a star-planet system with simulated Gaia
observations

Realistic simulations of the Gaia observations are obtained from the software package
AGISLab (Holl et al., 2012; their Appendix B). For the present purposes, AGISLab provides
a simulated five-year Gaia experiment over 48 different directions® on the celestial sphere,
based on the nominal scanning law (Figure 2.2). For a star in any given direction, AGISLab
has computed a list including the expected number of crossings, n, of the star over the
Gaia along-scan field during one experiment; the measurement epoch, t; the position angle
of the scan, #; and the parallax factor of each crossing due to the spacecraft, II,,.

The stellar image in the Gaia field of view is transformed into the along-scan field angle
7, as shown in Figure 3.2, such that

An = Aa,sinf + Ad cosf. (3.1)

The displacement due to the five astrometric parameters for a measurement epoch ¢ is then

modeled as 5 5 9 9 9
N+ SEAG+ i T S
oo, 85 Oow Olhas s
where the partial derlvatlve "L describes the contribution of the parameter p,. The values
of the partial derivatives at each measurement epoch are calculated by AGISLab using
the along-scan position angle 6 of the Gaia field of view and the associated parallax is
calculated using the position of the spacecraft (Equation (2.4)). The relations are

ATZSz -

11 (32)

on . on
o, =siné, %—COSQ,
aiz* = Atsinf, S—L:Atcosﬁ, (3.3)
and 877 = I, sin€ + Ilscos 6 = ,
0w

where At =t — tg and ty = 2017.0 a reference epoch set at approximately mid-mission.
The displacement (Equation (3.2)) can thus be written as

Ans; = [Aay + pa Aty sind; + 11, ;oo + [A6 + psAt;] cos 0; . (3.4)

'In this particular simulation, the celestial sphere is divided into 48 equiareal pixels, called a Hi-
erarchical Equal Area isoLatitude Pixelization (HEALPix), where each pixel center represents a direc-
tion. The celestial sphere can in general be divided into 3 x 4™ pixels, for any integer m > 1. See
http://healpix.jpl.nasa.gov/.
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Figure 3.2: Gaia’s astrometric field CCDs (gridded gray area) scans along
the direction 1. The along-scan position angle, 6, is used to transform the
motion of the star in the stellar frame (a,0) to the astrometric field frame
(1, (), where the motion of the star from ty to ¢ is represented by An.

To model the perturbations from a planet, the linear Thiele-Innes constants from Equa-
tion (2.9) are introduced. The displacement of the stellar image due to the seven Keplerian
parameters is then

where X and Y are from Equation (2.10), respectively, containing the non-linear parame-
ters e and E, which are calculated by iteratively solving Equation (2.7).

The total displacement of the stellar image due to the astrometric and Keplerian pa-
rameters is the sum of Equations (3.4) and (3.5):

AT}Z‘ = A775,i + AT]77¢ . (36)

Finally, to simulate an observation of the total stellar displacement, a noise term, v;,
containing independent, normally distributed noise over all measurement epochs and with
standard deviation oy, is added. The simulated observation of the total displacement at
measurement epoch ¢ is thus

An™ = An; +v;. (3.7)

()
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3.3 The orbit-fitting procedure for single- and multiple-
planet systems

In this section, one experiment for a single- or multiple-planet system is described in a
step-by-step fashion. The experiment includes simulating 5 years of Gaia observations
and applying a linear least-squares orbit-fitting routine. Subsequently, the detectability
metrics Ax? and S/N are calculated. The general procedure is similar for the single and
multiple-planet cases, with some crucial differences in the latter case, noted at the end of
the affected steps.

Before the modeled star-planet systems are put into the Gaia observation simulations,
some initial considerations and motivations are necessary. From the RV planet data, four
of the Keplerian parameters are known: e, w, a, and fyue = 1/P. The remaining three
parameters, 2, My and 4, are assumed unknown? and thus have to be simulated.  and
M, assume for each experiment a random value between 0° and 360°. Moreover, four
different values of ¢ are used, namely, 10°, 30°, 60° and 90°, where each is held constant
for a set number of experiments (10). The variation in ¢ is motivated by the two-fold effect
it has on the detectability (see Figure 3.3): a) since only the minimum masses of the RV
planets are known, i.e., M, o< 1/sin¢, a smaller value of i gives a larger M, and thus «
(Equation (2.2)); b) a smaller angle 7 results in a larger projection of the orbit in the sky
and thus permits a more complete observation of the orbital path. The effect a) has a
considerable impact on the detectability, while b) is negligible in comparison. Further, a
search in f, as opposed to P, is done because the resolution in f is largely independent of
P, while in P it varies as P? (Perryman et al., 2014), which would result in a non-constant
step-size. The step-size, Af = 0.01 yr~!, is empirically chosen such that an adequate
sampling of the peaks in the Ax? periodogram is obtained, with about five points at the
very top of an average-sized peak. The correct orbital frequency is then considered ” found”
when the best-fit frequency fg; is within 0.05 yr=! of fi,ue. The chosen range of searched
frequencies (0.01-500 yr~!) used in Step 5 is motivated by the range of frequencies in the
RV planet data sample (0.07-496 yr—'). The sampling of Gaia is highly irregular with
an average sampling rate of 14 yr~! (since the average number of crossings is 70) and a
minimum separation of At = 106.5 min (due to the 6 hr spin period). Thus, the theoretical
frequency for the sampling with minimum separation is 1/(2At) ~ 2500 yr~! (the Nyquist
frequency), which makes the upper limit of 500 yr~! reasonable.

Input data

The data output from AGISLab is organized such that the simulated crossings (¢, sin6,
cos 0 and I1,)) of each of the 48 directions are stored in 48 plain text files, in which each row
corresponds to a measurement epoch ¢. An additional text file contains the coordinates of
each of the directions and the name of the file containing the simulated crossings over that
direction.

2For some planets in the sample, i may be known from transit measurements, but this is ignored.
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The planet data is downloaded from exoplanets.org/table (filter "PLANETDISCMETH
== ’RV’") as a plain text file where each row is a planet with the following parameters:
planet name, ag, 09, M, [Ms], d [pc], V., M,sini [M,], a, [AU], P [d], w [°], e.

Step 1. Load simulated crossings data

The parameters of the planet selected for simulation is loaded from the planet data file.
To find which simulated crossings file to use, the angle ¢ = cos™ (1, - ig;;) between the unit
vector of the star, @1, = (cos a cos 4, sin v cos §, sin §), and the unit vector of each direction,
Ugir = (cos ay, cos Op, sin ay, cos Oy, sindy,) (h = 1,...,48), is compared. The direction with
the minimum ¢ is selected as the observing direction® and the corresponding crossings data
are loaded into the matrix

siny cost II,; Atysinf, Aty cosb,

sinf cosby Tz Afpsing, Atgcosty |- (3.8)

sinf, cos6, II,, At,sin6, At,cosb,

where n is the total number of crossings for the selected direction. The epochs of the
crossings are stored in a vector t = (t1,...,t,). To simulate the dead time (unplanned

spacecraft outages, data loss etc.), a random subset of 15% of the crossings is removed
from both M and t.

Step 2. Astrometric displacement

The displacement due to the motion of the star can be calculated by creating a col-

umn vector x with the five astrometric parameters of a simulated or real star, such that
An; =M - x (Equation (3.4)), i.e.,

Ans 4 sin; cos6; II,; Atisint, At;cost Aa,
A?]5’2 sin 92 COS 02 ng Atg sin 62 Atz COS 92 Ad

. = . : . . @ | . (3.9)
Ansp, sin@, cos@, II,, At,sinf, At,cosb, /fz:

However, for the present purposes of estimating the detectability (see Section 2.4), the star
parameters can all be set to 0, such that An; = 0. This is possible because the system
of equations is linear, so that the residuals of the least-squares fit does not depend on the
actual values of the parameters.

Step 3. Keplerian displacement

To calculate the displacement due to the planet (Equation (3.5)), the Thiele-Innes
constants A, B, I, G (Equation (2.8)) are calculated and put in a column vector y and the

3This approximate position of the star is computed in order to determine the number of field of view
crossings. A more accurate determination of the position is possible, but is not likely to have a large effect
on the results.
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rest of the Keplerian parameters in a matrix K, such that An, =K -y, i.e.,

Anzy sinf; X; sin6,Y; cosfX; costY; B
Ang o sinf, Xs sinfyYs cosfy, Xy cosbyYs

G
: : : : : Al (3.10)
AN p sin#,X,, sinb,Y, cosf,X, cosb,Y, F
where the eccentric anomaly FE(t;) of the planet in X; and Y; (Equation (2.10)) have

been calculated iteratively by solving Equation (2.7) with Newton’s method (see, e.g.,
Montenbruck et al. (2002)).

Step 4. Making the final observation

The total displacement of the star and planet is the superposition of the astrometric and
Keplerian displacements, i.e., the sum of Equations (3.9) and (3.10). To produce the final
observation, An°™, a column vector v with n elements containing normally distributed
noise with standard deviation o; (Equation (2.12)) is added to the sum:

AnTbS A775,1 Aﬁm 141
A'flgbs A775,2 AT}?,2 1)
. = . + . + 1 .

(3.11)

Anobs An5,n A777,n Vnp,

n

Note: To make the final observation for multiple-planet systems, Step 3 is repeated for
every planet in the system and the resulting displacements are added to An°™.

Step 5. Joint fitting of the astrometric and Keplerian parameters

The fitting of the astrometric parameters requires a solution to the system of linear
equations M -z; = An°™ (where z5 corresponds to the vector x containing the astrometric
parameters). Since M is not a square matrix, the resulting system of equations is overde-
termined and lacks a unique solution. Thus, the fitting of the astrometric parameters
requires a linear least squares method?, i.e., finding the best-fit solution

75 = MT - A, (3.12)

where M* is the pseudoinverse® of M. The parameters in z5 are then used to produce the
residuals of the observed and fitted astrometric displacement,

rs = A’f}ObS —M- Z5 , (313)

4In the commercial programming language and environment MATLAB, used in this thesis, there is a
built-in linear least-squares solver which can be called with the backslash operator, e.g., X = A\B solves
A*xX = B, where A and B correspond to M and AnObs, respectively, and X the solved-for vector zs.

5The generalized inverse of a matrix, applicable to rectangular matrices, as well as singular square
matrices.
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which is used to calculate the goodness-of-fit as measured by the chi-squared statistic

=2 <r05>2 . (3.14)

(2

For the fitting of the Keplerian parameters, €2, My and ¢ are simulated as before, but
firue 18 assumed to be unknown. For the purposes of this investigation, it is assumed that
e = 0 in the fit, which simplifies the problem to a search for a minimum in the chi-squared
statistic for a range of frequencies 0.01 < f < 500 yr~!. The stepping size for the frequency
is Af = 0.01. For each searched frequency, a new K is calculated (see Step 3). With e = 0,
w becomes largely meaningless, Equation (2.7) reduces to E = My and the solution for
the remaining nine parameters becomes linear. The solution is obtained by creating a
horizontally concatenated matrix with the M and K matrices: Q = (M, K), and solving,
as above, for a vector zg = QT - An°™, yielding the residuals ro = An°® — Q - zg. The
chi-squared statistic for the nine parameters, x2, is calculated as above, but for each of the
searched frequencies.

Note: For multiple-planet systems, the orbit-fitting procedure is run n, times. The first
run is on the composite observation signal of all the planets, An¢™. The subsequent runs
are on the residuals of the former observation signal after the former fitted observation has
been subtracted, e.g., AnsPs = Anobs — Anlit,

Step 6. Estimating the detectability
The detectability is estimated by calculating the Ax? metric (Equation (2.14))

AXP(f) = x5 — xs(f) (3.15)

for every frequency f. The result is a periodogram as shown in Figure 3.3, in which
the highest peak (in each diagram) corresponds to the minimum in y3 and best fitting
frequency, fs. The S/N (Equation (2.13)) is estimated by computing « (Equation (2.2))
using the planet data and the magnitude (assuming V = @) of the host star (giving oy
according to Table 2.1).

Note: For multiple-planet systems, each planet has an associated Ay? calculated from the
X2 of each planet.
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Figure 3.3: Example of two (individual orbit-fitting) Ax?(f)-spectra for the planet G.J
876 ¢ (Mpsini = 0.61 Mj), assuming two different values of ¢, shown in the upper
right corner (in both cases simulated Q = 100° and My = 0°). firue = 12.14 yr~! is
marked by the red dotted vertical line in each diagram. The highest peak in the left
diagram (i = 60°) is at Ax? = 49.7 with fg; = 12.18 yr~!. The highest peak in the
right diagram (i = 90°) is at Ax? = 34.2 with fz = 345 yr—!. The horizontal lines
mark the significance levels of the peaks (see Section 3.1).

Step 7. Collecting the results
To quantify the detection of a planet, the reliability is defined as

Ndet

R= (3.16)

Nexp

where ngee is the number of times fg is determined within 0.05 yr=! of fiue and Nexp

the total number of experiments. Three levels of reliability are defined: secure detection
(R = 1), marginal detection (0.5 < R < 1) unreliable or no detection (R < 0.5).
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Results

In this chapter, the statistics of the simulation experiments in the form of diagrams and a
table are presented without comments. The discussion of the results is instead deferred to
Chapter 5.

Figures 4.1 and 4.2 show the detectability metrics for the individual orbit-fitting inves-
tigation. Figures 4.3 and 4.4 show the performance with respect to the true eccentricity of
the individual and composite orbit-fitting investigations, respectively.

Figure 4.5 shows how well the orbital periods could be determined in the individual and
composite orbit-fitting in a side-by-side comparison, by showing the average of the fitted
period against the true period. Figure 4.6 shows the same as Figure 4.5 but all the fitted
periods instead of the average. Note that the symbols in Figures 4.5 and 4.6 now represent
the value of Ax?, as explained in the caption.

Table 4.1 shows the percentage of the planets of different reliability levels in both inves-
tigations. For the interested reader, the detailed results of the composite, multiple-planet
orbit-fitting investigation are shown in Table A.1 in Appendix A.

Table 4.1: The percentage of planets found in the individual and composite
orbit-fitting investigations, represented by the different levels of reliability, R.
Each of the four inclinations, ¢, was run through 10 experiments.

Individual Composite
i \ 10° 30° 60° 90° | 10° 30° 60° 90° | Unit
R=1 52 31 21 14 | 21 13 8 6 %
0b<R<1|37 12 10 12 |18 14 8 8 %
R<0.5 11 57 69 74|61 73 84 86 %
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Figure 4.1: Results from the individual orbit-fitting investigation. The diagrams show the arith-
metic mean of the Ayx? detectability metric over the 10 experiments versus (true) orbital period.
The upper and lower horizontal dashed lines indicate the empirical Ay?-values 43.8 and 18.9,
respectively, corresponding to the p-values 0.0001 and 0.5, respectively (see Figure 3.1). The
vertical dotted line marks the mission lifetime of Gaia (5 years).
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Figure 4.2: Results from the individual orbit-fitting investigation. The diagrams show the S/N
versus orbital (true) period. The symbols represent planets with different reliability R (Equa-
tion (3.16)). The horizontal dashed line shows the S/N = 3 threshold. The vertical dotted line

marks the mission lifetime of Gaia (5 years).
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Figure 4.3: Results from the individual orbit-fitting investigation. The diagrams show the (true)
eccentricity versus (true) orbital period. The symbols represent planets with different reliability
R (Equation (3.16)). The vertical dotted line marks the mission lifetime of Gaia (5 years).
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Figure 4.4: Results from the composite orbit-fitting investigation. The diagrams show the (true)
eccentricity versus (true) orbital period. The symbols represent planets with different reliability
R (Equation (3.16)). The vertical dotted line marks the mission lifetime of Gaia (5 years).
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Figure 4.5: Results from the individual (left) and composite (right) orbit-fitting investigations.
The diagrams show the arithmetic mean of the fitted period (Pg = 1/fg¢) for 10 experiments
versus the (true) orbital period. The vertical dotted line marks the mission lifetime of Gaia (5
years).

26



CHAPTER 4. RESULTS

5

<
T T T T T T T o
2
. . oo o XXX X XXX . KX X 0K
H H T ST N ® R e Xy
i Poe o e o "0t 2 { w000 "x o mk
H H PRy IR - H oowmx(
[ . ° . . xe ox e eex 00 300
w X XX x X X X %o X n.uo
. .ok 0t oo SORE « gRpEE] 2
co @ ey o .o o A
* o BX RS LPONE x x T2
° xo o R RO o 35S
Y el exose YL
- . . . ° ° X X X0 00
° o o ooy ® 8 X o @90 OX o
L0 L3 oxo SR PR KK w K EewoR 20 2 xxww%
X e X0 R % oot Dok
% X & % x° o eyl B Sl . 3
XX K XX umk X X K oMK o
F K xx xwx F XK XXX XM ] m
00X ooomaN xo o memx
- Yoo e x % oock
XX X X,
“ Cox % . R RE o 00 & Kok
ce XX o % x ¥
B ¥ Ll A
x x x¥ o xX
.. RN %%
X% o X X ¥ X % X —
3 ° Yo oK e T T E=
° 3K KXo XPRORK ° © 00K, X X
% 203K R % X0 5
° o eoe o w o
x ° X% of wekid x Yoo % SRR
XX X SOK x XD
Q jo) @
2 o « wee 2 o o T @ o o o &
a = a 3 e 3
E E E o
FS =~ +8 - 8 - 41 ©
© EF 4 © 1 1 1 1 b © -
t t t t t f Lass
. . .
] | I .
i L.
JRO S ! :
. . 000
e OX o ges XD
Po * %% w8 @O R
o Saa..m
Sadpieoo
2850 &
o
o
v
a
v
L i )
o9
S ©
o~
x x |18 <S5
o % o
Vi N
~
v e
® %o
— - = PR
W o .M o .M o ¥ v o
T 2 B B SNV
2 = < © s @ XSM_A
5 | 5 2 |9 o
FE £ =~ 2 o o x 4 ©
1 1 2006 X 1 1 1 X 1 D 200M L 1 £ 20006 X -
< () =2s] < @ o -~ (="} < — o
o =] o o o =) o o o o o o o =)
— — — - - — — — — - - — — —
¥
13 p] ¥

Pld

(right) orbit-fitting. Similarly to Figure 4.5,

Figure 4.6: Results from the individual (left) and composite

where the spread in Pj; appears in a column-like fashion. The vertical dotted line marks the mission

of the average, all the fitted periods are shown. Thus, every planet appears 10 times in each diagram,
lifetime of Gaia (5 years).

the diagrams show the fitted periods for 10 experiments versus the (true) orbital period. However, instead
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Chapter 5

Discussion and conclusions

It is evident that there is a significant difference in the overall detectability of the RV
planets in the four assumed values of 7, which necessitates a discussion of their respective
applicability. For example, looking at Figure 3.3, it can be seen that the correct period
is found for ¢ = 60° but not 90°. Figure 5.1 shows a representative part of the mass
distribution in the RV planet sample. As seen, the variability in mass is quite large between
the smallest and largest values of ¢ used in the investigations, with a less pronounced
variability between the three larger angles, which explains the large difference between
1 = 10° and 90°, and the smaller difference between i = 60° and 90°, common to all
the results. From geometric arguments it can be shown, assuming random inclinations,
that the median inclination for exoplanet systems should be ¢ = 60°. Therefore, the most
optimistic and less realistic cases are assumed to be i = 10° and 30°. The results from
these two inclinations can still be useful in measuring the performance of the algorithm
and the detectability metrics, but probably says little about reality. With the geometric
argument in mind and disregarding the selection effects of the RV method, which favors
larger inclinations, the most realistic case is assumed to be ¢ = 60°, and ¢ = 90° is seen as
the most restrictive, worst-case scenario.

In general, all diagrams in Figures 4.1-4.4 restrict most of the secure detections to
periods between about 0.2 and 6 years, confirming the conclusion of Perryman et al. (2014)
that this is the period range where Gaia is most efficient at detecting exoplanets. The
results from this investigation thus indicate that, taking the i = 60° as the most realistic
case, Gaia will likely be able to detect and characterize around a third (with 21% secure
and 10% marginal detections, see Table 4.1) of the planets in the current RV catalog, most
of which with periods between 0.2 and 6 years. This could be taken as a lower bound,
since a fit assuming a circular orbit is probable to have missed some planets, but must
also be seen in the context of the 55 multiple-planet systems in the sample, with a total of
132 members (30% of the total sample). For the multiple-planet systems, the composite
orbit-fitting yields only 16% detections with ¢ = 60° (with 8% secure and 8% marginal
detections, see Table 4.1). This low number may reflect the fact that the majority of the
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multiple-planet system members have periods outside the most efficient range of Gaia, or
be due to poor performance of the algorithm in the composite orbit-fitting.

There are a number of potential reasons for the reduction in performance in the com-
posite orbit-fitting of the multiple-planet systems: a) in systems where the algorithm, for
whatever reason, finds the wrong period, it simply removes the corresponding fitted stellar
image displacement, which could overlap the displacements from the real signals or produce
other significant peaks in Ay?, thus reducing the detectability of any planet in the system;
b) the introduction of several Keplerian signals increases the risk of significant peaks due
to aliasing; c) the adding of several eccentric Keplerian signals may produce resonances
that show up as significant peaks.

35 T T T T
B sin i = 10°
I sin i = 30°

30 F sin i3 = 60° R
P sin iy = 90°
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Planet number

Figure 5.1: The discrete mass distribution of a representative part of the RV
planet sample. The areas under the curves are colored to facilitate visibility.

In Figures 4.5 and 4.6 the filled blue circles on average follow a diagonal line, which
implies that the Ax? > 43.8 (p < 0.0001) mostly ensures a correct period estimation. The
spread of the many blue filled circles in the longer periods (the upper right corners of the
diagrams) also indicate that the quality of the fits degrade as the periods become larger
than the mission lifetime. (It is worth pointing out that the log-scale makes the spread
of the points in the lower part of the diagram look larger than in the upper part, but in
reality it is the other way around.) It is interesting to note that in the spread of the filled
blue circles, many lie along the same horizontal line. These lines are probably due to the
step-size in f in the Ax?(f)-spectrum being too large for the peaks to be distinguishable
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at the lowest frequencies, and many of the found frequencies are at the lowest frequency
(0.01 yr=!). Another interesting feature is that the average of the fitted periods over the
10 experiments (Figure 4.5) for true periods larger than five years tend to the diagonal line
and thus the true period. Another suspected case of aliasing (or the other effects due to
the composite signal, see above) can be seen in the right-hand side diagrams in the figures,
where many filled blue circles do not follow the diagonal line. The orbits found in these
cases are, by their large Ax?, clearly highly significant, but also clearly wrong.

Perhaps the most striking overall result is that the assumption of a circular orbit in the
fit still yields the correct orbital period for a sizable fraction of the detectable planets. It is
evident from Figure 4.3 that there is a large spread in e of secure and marginal detections
across all four inclinations. A tantalizing conclusion is that a detection with this algorithm
is largely independent of the actual eccentricity of the planet. It seems that the periods
of most of the planets with eccentricity below 0.8 can be reliably determined. The same
positive result is not as evident in the composite multiple-planet fits, as seen in Figure 4.4,
where a smaller number of planets are correctly determined, especially for inclinations 60°
and 90°. In the composite case, the upper threshold seems to be e ~ 0.5. However, there
are evidently no multiple-planet system members with e > 0.5 in the period range where
Gaia is most efficient, which might be what is limiting the threshold. Arguably, there is
an overall lack of planets in the higher eccentricities in the RV sample to definitively set
a threshold in either case. Therefore, further similar investigations with synthetic planets
and a flatter distribution of eccentricities is proposed.

It is found that the orbit-fitting algorithm performed largely in agreement with past
estimates of the two detectability metrics Ax? and the S/N. The majority of the overall
detections (blue triangles and circles) in Figure 4.1, for all four inclinations, consistently
reside above Ayx? = 43.8 (p = 0.0001), with almost none below. However, the secure
detections start being in the majority only above Ax? ~ 100. Thus, it seems reasonable to
require Ax? > 100 to ensure secure detections. This requirement is in line with Perryman
et al. (2014), who considered a Ax? ~ 30 as providing marginal detections and saw that a
Ax? > 100 yielded solutions with orbital parameters determined to 10% or better, which
is here taken to be roughly equivalent to a secure detection (R = 1). Concerning the S/N,
it can be inferred from Figure 4.2 that the threshold of S/N = 3 is quite restrictive for all
inclinations. In ¢ = 10°, there are a large number of secure and marginal detections above
even S/N = 1. For the remaining three inclinations, a majority of detections reside above
S/N = 2. A detection threshold of S/N = 2 could therefore be used without risking too
many false detections, likewise in accordance with Perryman et al. (2014).

If the algorithm is employed on, e.g., 107 stars in the Gaia data, the number of false
alarms with Ax? > 43.8 (p < 0.0001) is 103. The same number for planets with Ax? > 100
is not quantified here, but a reasonable guess is that it is at least one order of magnitude
smaller. Moreover, since the false alarm probability increases with the searched frequency
range, ways to decrease this range is desirable. E.g., an upper limit at a period near the
Gaia mission lifetime can be set, or the algorithm can be made to check for stars where high
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frequencies can be ruled out, due to e.g. engulfment, and decrease the range accordingly.

There is an effect from the parallax seen as either a sharp peak or dip at f = 1 yr—!
in the Ax?(f)-spectrum, resulting from the orbital period of Gaia around the Sun. It
was suspected that this would affect the detectability of planets with orbital periods close
to one year. However, in a test with all four inclinations used in the investigation for a
handful of planets with such a period (e.g., HD 96063 b, HD 38283 b and HD 212771 b with
respective periods 361.1, 363.2, 373.3 d), there was either no evidence of any peak from
the orbit-fitting at all, which could be attributed to a too small astrometric signature, or
the peak was found to dominate the small parallax dip/peak. It is still recognized that the
parallax could be a factor in cases with noise close to the single-measurement uncertainty,
but considering the fact that no significant effect was found in the small inspection above
and that not many RV planets have a period very close to one year, the overall impact of
the parallax effect in this investigation is deemed to be negligible.

The potential for the combination of Gaia data with other types of measurements is
substantial. The synergies between RV and astrometry is particularly notable. Both can
determine the parameters ap, e,w, My and P, which will consequently improve their con-
straints in a combined measurement. Importantly, astrometry provides i (for non-transiting
planets), and thus enables the determination of the unique mass of the planet. Further-
more, information on which of the nodes is ascending can be supplied by RV, something
astrometry alone cannot decide (Perryman et al., 2014). Another notable feature is that,
by doing follow-up measurements of stars with long-period, high-mass planets identified
by Gaia, high-precision RV can potentially detect planets with smaller semi-major axes
that Gaia might have missed due to not being sensitive enough in that region (Sozzetti,
2015). In addition to high-precision follow-up of the potentially thousands transiting plan-
ets detected by Gaia photometry, there is expected to be on the order of 100 transiting
planets with intermediate separation in the Gaia astrometric data (Perryman et al., 2014).
The intermediate separation transiting planets constitute particularly interesting follow-up
targets for a systematic comparison with the Hot Jupiters (Sozzetti, 2015). As for targets
of direct optical imaging, Gaia will be able to identify the optimal visibility of a list of
planets by providing the epoch and location of maximum brightness (Sozzetti, 2015).

Looking to the future, after the full release of its datal, Gaia will likely have provided
many new insights into the properties of many of the known planets, supplied a large
amount of new giant planet detections, generated rich statistics and informed planetary
formation and evolution theories, as well as yielded many opportunities for synergies with
other techniques. Beyond Gaia, the tantalizing advent of sub-pas astrometry will enable
the detection of terrestrial planets around nearby stars. However, since the ambitious
Space Interferometry Mission (SIM) by the U.S. National Aeronautics and Space Adminis-
tration (NASA) was discontinued, there are few concrete plans for space-based astrometric
observatories. One glimmer of hope is that the Chinese Strategic Pioneer Program (SPP)

!The first orbital solutions are expected earliest in 2017. The full catalog is scheduled for release in
2022. For up-to-date information, see http://www.cosmos.esa.int/web/gaia/release.

31


http://www.cosmos.esa.int/web/gaia/release

CHAPTER 5. DISCUSSION AND CONCLUSIONS

on Space Science approved in 2013 the Search for Terrestrial ExoPlanets (STEP) mis-
sion with a purported ~0.5—1 pas accuracy, thus capable of detecting Earth-mass planets
around solar-type stars out to 20 pc (Chen, 2014). However, no launch date is set and
not much information about STEP is available. The prospects for ground-based sub-pas
astrometry remain limited by the practical limits imposed by atmospheric noise (Sozzetti,
2010). Possible technological workarounds utilizing adaptive optics and interferometry are
being developed, but overcoming atmospheric noise remains a great challenge (see, e.g.,
Sozzetti (2010)).

In conclusion, an orbit-fitting algorithm assuming a circular orbit in the fit can correctly
and reliably determine the orbital period for planets with eccentricity < 0.8 in single-
planet systems, and < 0.5 in multiple-planet systems. Further investigations with synthetic
planets are called for to set more stringent limits on the eccentricity and further evaluate
the overall feasibility of this approach. The small investigation conducted in this thesis
tentatively indicates that this approach, which significantly reduces computational load,
can potentially be used to expand the number of stars that can be searched for planets
in the Gaia data. Further, this investigation has found that around one third of the total
number of planets in the current RV catalog, and one sixth of the multiple-planet system
members, can reliably or somewhat reliably be detected and characterized by Gaia.
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Appendix A

Table of the multiple-planet
composite fit results

Table A.1 shows the results of the multiple-planet composite fits.
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Table A.1: Detailed results of the composite orbit-fitting investigation. All 55 multiple-planet systems are subjected to four sets of 10 experiments, each set with a different assumed
inclination, 4. For each set, the average fg; (determined within 0.05 yr~! of firue), and the average Ax? are shown. The reliability, R, is shown with zeros redacted to facilitate
oversight. All system host stars have V' < 12 and thus ofo, = 34.2 pas. The minimum mass of the planet, M} sini, is given in M and the astrometric signature, «, in pas.

1= 10° 1= 30° i = 60° 1 =90°
Planet Mp sins e Srrue a  (Ax?) R (fat) a  (Ax?) R (frit) a  (Ax?) R (fae) a  {(Ax?) R (fas)
24 Sex b 1.84 0.18 0.80 101.6 138 .6 0.80 35.3 51 1 0.79 20.4 26 184.17 17.6 24 262.31
24 Sex ¢ 1.52 041 0.40 133.3 361 7 0.40 46.3 23 399.88 26.7 14 368.03 23.1 14 302.89
47 UMa b 2.55 0.03 0.34 1967.9 79478 1.0 0.35 683.4 8610 1.0 0.35 394.6 2138 1.0 0.35 341.7 1342 1.0 0.35
47 UMa c 0.55 0.10 0.15 717.1 1692 0.01 249.0 179 12.77 143.8 53 133.85 124.5 45 151.37
55 Cnc b 0.80 0.00 24.93 44.7 26 133.11 15.5 11 116.08 9.0 9 194.38 7.8 8 181.67
55 Cnc ¢ 0.16 0.07 8.23 19.2 7 169.45 6.7 6 318.99 3.9 5 340.48 3.3 5 309.10
55 Cnc d 3.54 0.02 0.07 9553.2 60712 1.0 0.07 3317.8 6691 1.0 0.07 1915.5 1780 .6 0.09 1658.9 1178 7 0.09
55 Cnc e 0.03 0.00 495.90 0.2 12 420.76 0.1 22 395.25 0.0 17 424.42 0.0 17 431.36
55 Cnc f 0.17 0.32 1.40 65.8 84 1 1.40 22.9 3 397.57 13.2 3 382.51 11.4 3 370.61
61 Vir b 0.02 0.12 86.65 0.5 22 352.48 0.2 18 339.66 0.1 17 339.66 0.1 17 357.59
61 Vir c 0.03 0.14 9.61 4.9 9 257.73 1.7 7 277.98 1.0 7 305.95 0.9 7 297.30
61 Vir d 0.07 0.35 2.97 23.2 5 416.58 8.1 4 405.85 4.6 4 385.65 4.0 4 406.45
BD -08 2823 b 0.05 0.15 65.22 0.4 36 324.67 0.2 18 221.53 0.1 16 306.97 0.1 16 307.17
BD -08 2823 ¢ 0.33 0.19 1.54 39.0 11 .5 1.54 13.5 8 336.22 7.8 8 344.55 6.8 8 330.22
BD +20 2457 b 11.89 0.15 0.96 323.7 1383 1.0 0.96 112.4 154 1.0 0.97 64.9 47 1 0.98 56.2 37 .2 0.97
BD +20 2457 ¢ 6.90 0.18 0.59 122.8 198 9 0.59 42.7 31 .2 0.59 24.6 15 297.86 21.3 13 374.25
GJ 163 b 0.03 0.11 42.32 1.9 22 347.31 0.7 18 326.04 0.4 23 232.04 0.3 21 233.38
GJ 163 ¢ 0.02 0.10 14.25 2.5 15 149.27 0.9 13 320.00 0.5 14 354.60 0.4 14 312.60
GJ 163 d 0.09 0.37 0.60 87.5 306 1.0 0.61 30.4 39 9 0.61 17.5 11 237.79 15.2 10 309.73
GJ 581 b 0.05 0.03 68.03 5.8 11 281.67 2.0 10 335.36 1.2 11 335.36 1.0 11 344.20
GJ 581 ¢ 0.02 0.07 28.27 3.5 6 331.91 1.2 6 308.98 0.7 6 303.07 0.6 6 336.93
GJ 581 e 0.01 0.32 11597 0.5 19 298.73 0.2 19 278.69 0.1 19 278.69 0.1 19 278.69
GJ 667 Cb 0.02 0.15 50.73 2.0 20 251.42 0.7 19 249.39 0.4 19 251.11 0.4 19 254.49
GJ 667 C c 0.01 0.27 13.00 3.8 14 249.89 1.3 14 269.25 0.8 14 253.32 0.7 14 230.35
GJ 876 b 1.95 0.03 5.98 1484.7 47216 1.0 5.98 515.6 5091 1.0 5.98 297.7 1247 1.0 5.98 257.8 809 1.0 5.98
GJ 876 ¢ 0.61 0.26 12.14 290.7 1356 9 12.14 101.0 146 9 12.14 58.3 15 2 12.12 50.5 13 2 12.13
GJ 876 d 0.02 0.21 188.49 1.4 176 107.29 0.5 28 292.96 0.3 39 399.15 0.2 28 304.57
GJ 876 e 0.04 0.06 2.94 47.9 68 70.18 16.6 14 171.83 9.6 9 262.28 8.3 8 388.45
HD 10180 ¢ 0.04 0.08 63.42 0.4 21 280.30 0.1 25 319.41 0.1 22 300.09 0.1 22 303.64
HD 10180 d 0.04 0.14 22.33 0.6 12 237.37 0.2 15 244.14 0.1 13 240.09 0.1 13 244.70
HD 10180 e 0.08 0.07 7.34 2.9 8 359.23 1.0 9 277.37 0.6 8 340.86 0.5 8 257.84
HD 10180 f 0.07 0.13 2.98 4.9 5 368.25 1.7 5 273.21 1.0 5 366.27 0.8 5 343.63
HD 10180 g 0.07  0.00 0.61 12.7 3 318.52 4.4 4 387.07 2.6 4 337.86 2.2 3 360.61
HD 10180 h 0.21 0.15 0.16 93.8 106 7 0.17 32.6 3 383.50 18.8 3 415.80 16.3 3 464.07
HD 108874 b 1.29 0.13 0.93 123.5 168 .6 0.93 42.9 26 1 0.88 24.8 43 83.10 21.4 33 131.45
HD 108874 ¢ 1.03 0.27 0.22 258.6 1168 .8 0.21 89.8 136 .5 0.22 51.8 14 .1 0.24 44.9 11 1 0.24
HD 11964 b 0.61 0.04 0.19 294.9 867 1.0 0.19 102.4 92 7 0.19 59.1 11 331.24 51.2 9 368.65
HD 11964 c 0.08 0.30 9.63 2.7 13 207.81 0.9 13 170.34 0.5 31 176.60 0.5 25 200.66
HD 125612 b 3.07 0.46 0.65 388.4 2040 1.0 0.65 134.9 223 1.0 0.65 77.9 61 7 0.65 67.5 44 .5 0.64
HD 125612 ¢ 0.06 0.27 87.91 0.3 55 48.11 0.1 16 209.59 0.1 13 222.67 0.0 12 266.24
HD 12661 b 2.34 0.38 1.39 271.7 891 7 1.40 94.4 103 .6 1.39 54.5 32 89.04 47.2 25 205.76
HD 12661 c 1.95 0.03 0.21 787.8 12229 9 0.21 273.6 1333 9 0.21 158.0 337 9 0.21 136.8 207 7 0.21




1 =10° i =30° i = 60° 1 =90°
Planet My sini e Srrue o (Ax?) R (frit) o (AX?) R (frt) o (AX®) R (frit) o (Ax?) R (fait)
HD 128311 b 1.46 0.35 0.80 637.1 7714 1.0 0.80 221.3 819 1.0 0.80 127.8 185 1.0 0.80 110.6 108 .8 0.80
HD 128311 ¢ 3.25  0.23 0.40 2281.6 115096 1.0 0.40 792.4 12208 1.0 0.40 457.5 2827 1.0 0.39 396.2 1677 1.0 0.39
HD 134987 b 1.56 0.23 1.41 251.5 1221 7 1.42 87.3 139 .6 1.42 50.4 43 2 1.43 43.7 32 2 1.43
HD 134987 ¢ 0.80 0.12 0.07 933.4 264 .2 0.09 324.2 29 129.87 187.2 14 283.03 162.1 11 304.67
HD 13908 b 0.87 0.05 18.84 8.0 56 7.64 2.8 20 232.17 1.6 18 220.89 1.4 18 188.67
HD 13908 ¢ 5.13 0.12 0.39 624.6 17706 1.0 0.39 216.9 1879 1.0 0.39 125.2 434 1.0 0.40 108.5 253 1.0 0.40
HD 147018 b 2.13 047 8.26 70.2 377 0.73 24.4 47 83.15 14.1 24 181.04 12.2 21 266.82
HD 147018 ¢ 6.59 0.13 0.36 1750.6 79993 1.0 0.36 608.0 8587 1.0 0.36 351.0 2035 1.0 0.36 304.0 1189 1.0 0.36
HD 154857 b 2.25 0.46 0.89 144.6 615 1.0 0.89 50.2 68 9 0.88 29.0 23 .2 0.87 25.1 19 1 0.92
HD 154857 ¢ 2.58 0.06 0.11 688.4 3153 4 0.11 239.1 331 3 0.09 138.0 75 1 0.07 119.5 52 1 0.08
HD 155358 b 0.82 0.17 1.88 73.6 62 1 1.84 25.6 39 142.19 14.8 23 237.43 12.8 22 234.11
HD 155358 ¢ 0.81 0.16 0.93 115.7 292 .5 0.93 40.2 18 2 0.96 23.2 13 276.59 20.1 13 324.59
HD 159243 b 1.13  0.02 28.94 8.8 16 356.87 3.1 15 281.37 1.8 23 226.81 1.5 20 278.37
HD 159243 ¢ 1.90 0.08 1.47 108.0 306 1.0 1.47 37.5 43 .6 1.46 21.7 13 312.39 18.8 12 320.69
HD 159868 b 2.20 0.01 0.31 407.9 8461 1.0 0.31 141.7 899 1.0 0.31 81.8 214 1.0 0.31 70.8 130 1.0 0.31
HD 159868 ¢ 0.73 0.15 1.04 60.5 147 1.0 1.04 21.0 23 2 1.02 12.1 18 290.21 10.5 18 296.86
HD 163607 b 0.77 0.73 4.85 20.2 24 274.12 7.0 17 364.35 4.0 17 379.00 3.5 16 408.16
HD 163607 c 2.29 0.12 0.28 405.2 3790 1.0 0.28 140.7 418 1.0 0.27 81.3 109 .8 0.28 70.4 71 .8 0.27
HD 168443 b 7.70  0.53 6.29 334.0 5470 1 6.24 116.0 570 1 6.24 67.0 121 48.99 58.0 59 99.57
HD 168443 ¢ 17.39 0.21 0.21 7323.5 808725 1.0 0.21 2543.4 84753 1.0 0.22 1468.4 18697 1.0 0.22 1271.7 10778 .8 0.22
HD 169830 b 2.89 0.31 1.62 250.9 2265 .6 1.61 87.1 247 .6 1.61 50.3 65 7 1.61 43.6 43 7 1.61
HD 169830 ¢ 4.06 0.33 0.17 1562.8 61737 1.0 0.20 542.8 6389 9 0.20 313.4 1357 .6 0.18 271.4 739 3 0.17
HD 181433 b 0.02 0.40 38.96 0.5 137 113.29 0.2 25 215.32 0.1 33 199.02 0.1 25 248.12
HD 181433 ¢ 0.64 0.28 0.38 296.3 2661 .8 0.40 102.9 296 8 0.40 59.4 83 3 0.41 51.4 57 3 0.39
HD 181433 d 0.54 0.48 0.17 426.3 1053 .6 0.18 148.1 125 .5 0.18 85.5 17 212.27 74.0 13 1 0.19
HD 183263 b 3.57 0.36 0.58 474.2 2377 3 0.58 164.7 258 4 0.58 95.1 183 .2 0.57 82.3 129 4 0.56
HD 183263 ¢ 3.48 0.24 0.12 1329.2 7172 2 0.16 461.6 760 2 0.11 266.5 68 .1 0.15 230.8 40 157.97
HD 187123 b 0.51 0.01 117.95 2.4 18 353.88 0.8 17 349.54 0.5 16 363.63 0.4 14 357.38
HD 187123 ¢ 1.94 0.25 0.10 1030.9 1619 .8 0.08 358.0 182 .8 0.11 206.7 50 3 0.13 179.0 37 1 0.14
HD 190360 b 1.54 0.31 0.13 2151.2 18797 .5 0.13 747.1 2013 .5 0.15 431.3 472 .5 0.15 373.6 276 4 0.12
HD 190360 c 0.06 0.24 21.35 2.7 86 188.30 0.9 21 272.96 0.5 18 349.15 0.5 17 303.85
HD 192310 b 0.05 0.13 4.89 13.3 22 302.60 4.6 18 231.75 2.7 20 284.39 2.3 20 294.94
HD 192310 ¢ 0.07 0.32 0.69 67.2 189 1.0 0.70 23.3 28 3 0.69 13.5 15 250.01 11.7 15 284.48
HD 200964 b 1.95 0.04 0.60 155.3 601 .5 0.57 54.0 78 3 0.59 31.1 31 1 0.59 27.0 26 176.67
HD 200964 c 0.95 0.18 0.44 91.8 57 1 0.40 31.9 17 290.15 18.4 14 1 0.49 15.9 13 379.77
HD 202206 b 16.82 0.44 1.43 1542.5 38703 9 1.43 535.7 4167 9 1.43 309.3 1005 9 1.43 267.8 603 9 1.43
HD 202206 ¢ 2.33  0.27 0.26 655.5 5898 9 0.27 227.7 638 7 0.27 131.4 151 .5 0.29 113.8 88 3 0.29
HD 204313 b 3.50 0.23 0.19 1194.3 49648 9 0.20 414.8 5468 .8 0.21 239.5 1439 .8 0.21 207.4 912 9 0.21
HD 204313 d 1.61 0.28 0.13 719.4 275 1 0.15 249.9 38 2 0.15 144.3 20 2 0.14 124.9 19 1 0.11
HD 207832 b 0.56 0.13 2.26 34.5 42 2 2.25 12.0 20 248.43 6.9 17 198.74 6.0 16 132.86
HD 207832 ¢ 0.73 0.27 0.32 165.7 1305 1.0 0.32 57.6 141 1.0 0.31 33.2 36 .5 0.32 28.8 26 1 0.31
HD 20794 b 0.01  0.00 19.94 1.3 20 321.46 0.5 20 296.47 0.3 20 296.47 0.2 20 296.47
HD 20794 ¢ 0.01  0.00 9.11 2.0 13 308.78 0.7 13 326.50 0.4 13 333.67 0.3 13 350.99
HD 20794 d 0.01  0.00 4.04 6.7 10 279.35 2.3 10 293.67 1.3 9 288.36 1.2 9 244.85
HD 215497 b 0.02 0.16 92.84 0.1 18 287.48 0.0 22 330.92 0.0 19 293.38 0.0 19 265.21




1 =10° i =30° i = 60° 1 =90°
Planet My sini e Srrue a  (Ax?) R (frit) o (AX?) R (frit) o (AX) R (frit) o (Ax?) R (fat)
HD 215497 ¢ 0.33 0.49 0.64 60.8 66 .6 0.64 21.1 12 189.00 12.2 12 302.23 10.6 12 268.00
HD 217107 b 1.40 0.13 51.25 26.3 188 81.29 9.1 29 253.43 5.3 19 348.28 4.6 18 331.45
HD 217107 ¢ 2.62 0.52 0.09 3486.6 25193 1 0.05 1210.9 2633 2 0.09 699.1 566 3 0.10 605.4 295 1.62
HD 37124 b 0.67 0.05 2.37 69.1 64 46.64 24.0 39 114.78 13.9 19 277.37 12.0 54 152.27
HD 37124 ¢ 0.65 0.13 0.41 212.9 312 1 0.46 73.9 15 136.66 42.7 9 208.23 37.0 16 280.50
HD 37124 d 0.69 0.16 0.20 370.2 2737 2 0.20 128.6 302 3 0.21 74.2 81 1 0.22 64.3 8 323.07
HD 37605 b 2.80 0.68 6.64 99.3 55 12.85 34.5 19 306.28 19.9 15 243.46 17.2 14 240.91
HD 37605 ¢ 3.37 0.01 0.13 1606.4 11737 1.0 0.14 557.9 1243 1.0 0.14 322.1 292 .6 0.15 279.0 177 .6 0.15
HD 38529 b 0.80 0.24 25.52 10.7 2875 2.66 3.7 329 43.36 2.1 92 93.06 1.9 53 179.41
HD 38529 ¢ 12.26  0.36 0.17 4611.3 229061 4 0.20 1601.5 24058 4 0.20 924.6 5276 .6 0.19 800.7 2831 .6 0.19
HD 40307 b 0.01  0.00 84.72 0.3 20 341.29 0.1 20 324.61 0.1 20 324.61 0.1 20 324.61
HD 40307 ¢ 0.02 0.00 37.97 1.0 11 245.60 0.3 12 259.32 0.2 12 257.48 0.2 12 286.04
HD 40307 d 0.03 0.00 17.85 2.1 7 361.02 0.7 7 382.69 0.4 7 385.23 0.4 7 387.42
HD 45364 b 0.19 0.17 1.61 26.2 21 1 1.57 9.1 35 186.90 5.2 21 201.09 4.5 19 193.89
HD 45364 c 0.66 0.10 1.07 121.2 231 1.0 1.06 42.1 11 1 1.05 24.3 9 384.50 21.1 8 386.28
HD 47186 b 0.07 0.04 89.42 0.5 15 245.26 0.2 35 281.03 0.1 20 211.43 0.1 19 240.70
HD 47186 ¢ 0.35 0.25 0.27 116.6 228 1.0 0.27 40.5 11 .5 0.28 23.4 9 352.80 20.3 9 304.04
HD 4732 b 2.38 0.13 1.01 154.7 147 3 1.03 53.7 27 148.10 31.0 14 186.82 26.9 34 146.48
HD 4732 ¢ 2.36  0.23 0.13 594.0 1417 .3 0.14 206.3 158 2 0.18 119.1 46 227.06 103.1 12 354.51
HD 60532 b 1.03 0.28 1.81 118.6 164 .6 1.82 41.2 29 86.73 23.8 17 .1 1.83 20.6 15 1 1.83
HD 60532 ¢ 2.46 0.02 0.60 587.4 6113 1.0 0.60 204.0 659 1.0 0.60 117.8 164 1.0 0.61 102.0 107 9 0.61
HD 69830 b 0.03 0.10 42.14 1.3 19 294.62 0.4 17 366.09 0.3 17 320.10 0.2 17 320.10
HD 69830 ¢ 0.04 0.13 11.57 3.5 8 329.35 1.2 8 336.45 0.7 7 373.63 0.6 7 391.12
HD 69830 d 0.06 0.07 1.85 18.3 4 387.30 6.4 4 359.11 3.7 4 346.32 3.2 4 356.91
HD 73526 b 2.86 0.19 1.94 99.4 725 3 1.93 34.5 82 1 1.94 19.9 28 144.98 17.3 25 148.75
HD 73526 ¢ 242 0.14 0.97 134.0 137 .8 0.99 46.6 24 1 1.00 26.9 18 1 1.00 23.3 16 205.56
HD 74156 b 1.77  0.63 7.07 35.6 394 21.82 12.4 46 141.52 7.1 19 248.67 6.2 17 309.28
HD 74156 ¢ 8.25 0.38 0.14 2216.8 32751 4 0.17 769.9 3437 .5 0.16 444.5 772 2 0.17 384.9 462 1 0.10
HD 82943 b 1.59 0.20 0.83 332.7 2123 .8 0.83 115.6 234 .6 0.84 66.7 18 3 0.85 57.8 15 1 0.82
HD 82943 ¢ 1.59 043 1.67 208.4 432 .6 1.66 72.4 54 1 1.68 41.8 66 178.80 36.2 46 136.53
HD 9446 b 0.70  0.20 12.15 13.9 16 189.28 4.8 31 179.81 2.8 20 230.35 2.4 19 271.37
HD 9446 ¢ 1.82  0.06 1.89 124.6 189 1.0 1.89 43.3 12 4 1.89 25.0 10 404.08 21.6 9 384.89
HIP 14810 b 3.87 0.14 54.73 27.9 50 212.09 9.7 15 274.62 5.6 23 232.19 4.8 19 300.95
HIP 14810 c 1.28 0.15 2.47 72.3 22 153.44 25.1 43 184.65 14.5 9 428.63 12.5 9 268.37
HIP 14810 d 0.58 0.17 0.38 113.8 328 9 0.39 39.5 8 2 0.38 22.8 6 369.29 19.8 5 359.25
HIP 57274 b 0.04 0.19 44.90 0.8 26 252.25 0.3 18 317.57 0.2 27 287.94 0.1 25 276.96
HIP 57274 c 0.41  0.05 11.40 21.2 13 241.79 7.4 9 322.01 4.2 14 271.85 3.7 12 322.14
HIP 57274 d 0.53  0.27 0.85 154.6 503 1.0 0.85 53.7 59 .6 0.84 31.0 8 328.51 26.9 7 353.03
mu Ara b 1.75 0.13 0.57 823.9 50117 1.0 0.56 286.1 5132 1.0 0.57 165.2 1077 1.0 0.56 143.1 568 1.0 0.56
mu Ara ¢ 1.89 0.10 0.09 3117.9 18667 2 0.08 1082.8 1987 2 0.09 625.2 416 4 0.10 541.4 197 1 0.12
mu Ara d 0.03 0.17 37.89 1.0 1203 1.02 0.3 120 9.80 0.2 58 175.61 0.2 33 216.38
mu Ara e 0.54 0.07 1.18 157.8 2475 1 1.17 54.8 264 1 1.17 31.6 28 1 1.18 27.4 19 1 1.17
upsilon And b 0.67 0.01 79.11 12.4 1723 20.99 4.3 180 29.89 2.5 49 184.59 2.1 101 146.02
upsilon And ¢ 1.92  0.22 1.51 495.7 6356 7 1.50 172.1 686 7 1.50 99.4 179 .6 1.50 86.1 34 3 1.50
upsilon And d 412  0.27 0.29 3232.5 215528 1.0 0.29 1122.6 23092 1.0 0.28 648.2 5530 1.0 0.28 561.3 3327 1.0 0.28
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