
Machine-Learning Techniques for
Customer Recommendations

Felix Glas

MASTER’S THESIS | LUND UNIVERSITY 2015

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2015-17

Machine-Learning Techniques for
Customer Recommendations

(A Practical Study in Data-Driven Customer Prediction for

Customer Relationship Management)

Felix Glas
felix.glas@gmail.com

June 9, 2015

Master's thesis work carried out at Lundalogik AB.

Supervisors: Pierre Nugues, Pierre.Nugues@cs.lth.se
Peter Wilhelmsson, peter.wilhelmsson@lundalogik.se

Examiner: Thore Husfeldt, Thore.Husfeldt@cs.lth.se

mailto:felix.glas@gmail.com
mailto:Pierre.Nugues@cs.lth.se
mailto:peter.wilhelmsson@lundalogik.se
mailto:Thore.Husfeldt@cs.lth.se

Abstract

Today, there is a demand for automated procedures for predicting future cus-
tomers using recommendation engines in the customer relationship manage-
ment market. There are already functions commonly available for finding
“twins”, i.e., possible customers that are similar to existing customers, and
for browsing through lists of customers partitioned into categories such as lo-
cations or lines of business.

Current recommendation engines are typically built using machine-learning
algorithms. Thus, it is of interest to determine which machine-learning algo-
rithms that are best suited for making a recommendation engine aimed at cus-
tomer prediction possible. This thesis investigates the prerequisites for deter-
mining suitability, and perform an evaluation of various off-the-shelf machine-
learning algorithms.

The supervised learner models are shown to have promise, as a direct
method of identifying new potential customers. A classifier algorithm can
be trained using a set that contains existing customers, and be applied on a
large set of various companies, to classify suitable prospects, provided there
is a sufficiently large number of existing customers.

Keywords: CRM, Recommendation Engine, Customer Prediction, Machine Learn-
ing, Classification, Clustering, Apriori, k-Nearest Neighbors, C4.5, Decision Tree,
k-Means Clustering

2

Acknowledgements

To my supervisor at LTH, Pierre Nugues, for his solid knowledge, valued feedback, and
support.

To my supervisor at Lundalogik, Peter Wilhelmsson, for his helpful suggestions and sup-
port.

To examiner Thore Husfeldt, for the helpful suggestions.

To all the employees at Lundalogik, for their friendly reception and help.

To my family and friends, for all their support.

Thank you all!

3

4

Contents

1 Introduction 7
1.1 CRM . 8
1.2 Recommendation Engine . 8
1.3 Machine Learning . 8

1.3.1 Supervised learning . 9
1.3.2 Unsupervised learning . 9

1.4 Data Requirements . 9
1.5 Previous Work . 10
1.6 Summary of Contributions . 10

2 Approach 11
2.1 Finding Potential New Customers . 11
2.2 Analysis of Existing Algorithms . 11
2.3 Evaluation Method . 11

2.3.1 Confusion matrix . 12
2.3.2 Accuracy and error rate . 12
2.3.3 Precision and recall . 13
2.3.4 Bias-Variance trade-off . 14
2.3.5 Visualizing performance trade-offs 15

2.4 Implementation . 17

3 Evaluation of Algorithms 19
3.1 Data Preparation . 19

3.1.1 Labeling . 19
3.1.2 Continuous attributes . 20

3.2 Frequent Set Counting using Apriori . 22
3.2.1 Implementation . 24
3.2.2 Performance evaluation . 27

3.3 k-Nearest Neighbors . 29
3.3.1 Implementation . 30

5

CONTENTS

3.3.2 Performance evaluation . 31
3.4 Decision Tree Induction using C4.5 . 35

3.4.1 Implementation . 37
3.4.2 Performance evaluation . 39

3.5 k-Means Clustering . 43
3.5.1 Implementation . 44
3.5.2 Performance evaluation . 46

4 Discussion 49
4.1 Performance Comparison . 49

4.1.1 Frequent set counting using Apriori 49
4.1.2 k-Nearest neighbors . 49
4.1.3 C4.5 decision tree . 50
4.1.4 k-Means clustering . 50
4.1.5 ROC graph . 51

5 Conclusion 53
5.1 Algorithm for recommendation engine 53
5.2 Future work . 54

Appendix A List of Attributes 61

6

Chapter 1
Introduction

Today, there is a demand for automated procedures for predicting future customers using
recommendation engines in the customer relationship management (CRM) market. Cur-
rent prediction techniques are limited to single attribute filtering, and simple observations
of equivalence. The quickly evolving clientele of sales-oriented businesses desire more
advanced recommendation techniques for identifying new prospects.

In other industries, complex recommendation systems are already put to use, e.g., by
well-known providers of music and movie entertainment. The prevalence of big data in
combination with machine-learning techniques are behind these high quality recommen-
dations.

As more data becomes available in the CRM industry, new possibilities arise for deriv-
ing deep insights from the accumulated amount of information. Such learning techniques
can benefit most users of CRM systems, enabling them to make accurate predictions on
future customers.

This master's thesis concerns the realization of a recommendation engine for CRM.
Current recommendation engines are typically built using machine-learning algorithms,
hence, it is of interest to determine which machine-learning algorithms that are best suited
for making possible a recommendation engine aimed at customer prediction. In this thesis
we will investigate the prerequisites for determining suitability, and perform an evaluation
of various off-the-shelf machine-learning algorithms.

The objective is to find a suitable algorithm with the following aspects in mind:

• Which criteria should be used to determine the suitability of an algorithm?

• Which algorithms are suitable for this type of problem?

• Which suitable algorithm have optimal performance?

This master's thesis project was carried out at Lundalogik AB.

7

1. I

1.1 CRM
Customer Relationship Management (CRM) is a system for managing the interaction be-
tween current and future customers to a company.

In a business world that is growing more and more competitive and where customer ex-
perience is becoming increasingly important, businesses need their products and services
to be better aligned with their customer's needs. To address this, businesses have increased
focus on their customers by examining the customer's perspective and deliberately man-
aging customer information and relationships more thoughtfully (Kostojohn et al., 2011).
CRM can be seen as the vendor's reaction to a more demanding and less loyal customer
base by collecting and refining information about individual customers and using it for
finding new and more effective ways of communication (Peel and Gancarz, 2002).

In order to support this new focus on customers and customer management there has
been an emergence of a new class of computerized tools and software. This software is
aimed at utilizing the power and capacity of modern technology for complex tasks, such as
statistical analysis and machine learning. Computers and software allow us to work with
large amounts of customer data in real-time. This allows for the discovery of new valuable
information, which would otherwise not have been available, and this information can be
used for further improving customer relations.

1.2 Recommendation Engine
In today's expanding CRM market, there is a demand for automated procedures that can be
used for customer prospecting. There are already functions commonly available for finding
“twins”, i.e., possible customers that are similar to existing customers, and for browsing
through lists of customers partitioned into categories such as locations or lines of busi-
ness. In the near future, computer algorithms will enable systems to automatically suggest
prospects that have a high potential for becoming profitable customers. Such systems need
a recommendation engine for making predictions on which companies are relevant.

A recommendation engine can use data associated with existing customers to automat-
ically produce new customer suggestions. To find new suggestions, data can be analyzed
for similarities that characterize the existing customers. These similarities can then be
used to find new customers that are similar to existing customers. The resemblance need
not necessarily be precise. It can in fact sometimes be desirable to get a broad range of
matches that extend somewhat outside the characteristic domain of existing customers.

The recommendation engine can potentially be based on a self-learning algorithm that
uses existing customers as a training set. Data associated with the customers can then be
used to identify new prospects in a large company database.

1.3 Machine Learning
Machine learning is a discipline that describe techniques used to make observations and
predictions about data algorithmically.

Machine-learning algorithms can be divided in two main groups: supervised learners,
used to train predictive models for classification tasks, and unsupervised learners, used to

8

1.4 D R

train descriptive models for clustering tasks (see James et al., 2013, chap. 2).

1.3.1 Supervised learning
Supervised learning is the process of training a predictive model that can learn to deter-
mine a plausible value from a set of known target values. A predictive model learns to
predict one value by using other values in the data set to model the relationship among the
target feature (the feature being predicted) and the other features. The model is given clear
instruction on what to learn and how to learn it and therefore the training of a predictive
model is called supervised (Lantz, 2013).

One of the most common uses of supervised machine-learning tasks is predicting
which category an example belongs to. This is known as classification and the model
trained for this task is called a classifier.

Supervised learning can be summarized in the following steps:

1. Training - train the model with the labeled training set.

2. Validation (optional) - tune the parameters of the model.

3. Testing - test the performance of the model against the test set.

4. Application - apply the model to real-world data.

1.3.2 Unsupervised learning
As opposed to predictive models that predict a target feature, descriptive models give no
special importance to any single feature. Because there is no target to learn, the process
of training a descriptive model is called unsupervised (Lantz, 2013).

A descriptive model tries to summarize data by dividing it into homogeneous groups.
This is known as clustering or cluster analysis. This can be used for segmentation dis-
covery where groups that are generally similar in some way can be identified in the data
set.

1.4 Data Requirements
All machine learning is based on analysis of existing data, and often, a learner will have
improved performance when it has access to large quantities of data. More samples will
make it easier for a model to make statistical assumptions about general characteristics in
the data.

The data used in this project consists of business data originating from a large database
of companies located in Sweden. This business data includes information about company
locations, lines of business, number of employees, and various financial properties. See
Table A.1 in Appendix A for a list of all attributes available in the company database.
Some of the attributes have discrete values, such as: location and line of business, while
most of the financial attributes have continuous ranges of values.

Only a selection of the available attributes were used when training the models. While
most of the attributes are relevant for use, many of the discrete attributes exists as both

9

1. I

a “code” variant, and a plain text variant, where the coded attribute conveys the same
information as the corresponding text variant, but translated into codes. Thus, it is only
necessary to use one of the variants. Furthermore, a few attributes contain no values what-
soever, and are omitted.

Additionally a second database was kept, containing lists of existing customers for the
individual companies in the company database. Using this information, it was possible
to create a directed graph of all the companies, where the edges represent company-to-
customer relationships.

All data used during this project was provided by Lundalogik AB.

1.5 Previous Work
Pazzani and Billsus (2007, chap. 10) describe different methods for recommending items
using a content-based filtering approach. Common algorithms, such as k-nearest neigh-
bors and decision trees are reviewed with respect to suitability for classification tasks.
Results show that good recommendations can be given if the data contain enough infor-
mation to distinguish desirable items from undesirable items.

Ungar and Foster (1998) explore the possibility of using common algorithms, such as
k-means clustering, for collaborative filtering. Cluster analysis is performed on a data set
consisting of movie and music history for individual users. It is indicated that clustering
using k-means is somewhat problematic as the data is too sparse for creating relevant
clusters with distinct characteristics, which suggests a dependence on suitable data for
producing good recommendations.

A previous master's thesis project, carried out by Buö and Kjellander (2014), inves-
tigated the possibility of utilizing data mining for predicting churn1, by exploiting the
same set of data used in this thesis. The data mining procedure was performed using the
well-known machine-learning algorithm C4.5. The conclusion from this project was that
the churn could in fact be predicted from the data by some degree, which implies that the
data is of sufficient quality for the extraction of new information using machine learning.

1.6 Summary of Contributions
This master's thesis begins with an introductory explanation of the essential concepts,
such as CRM, recommendation engines, machine learning, data requirements, and other
matters of relevance, in Chapter 1 (Introduction).

Chapter 2 (Approach), gives a detailed description of the evaluation methods used to
analyze the properties of machine-learning models, such as various measures of perfor-
mance, and methods for visualizing differences between results. Chapter 3 (Evaluation of
Algorithms), contains evaluation results of the individual algorithms that were analyzed.
In Chapter 4 (Discussion) the evaluation results are discussed.

Finally, in Chapter 5 (Conclusion), the thesis results are presented, and future work
suggested.

1Churn rate refers to the rate by which customers or subscribers leave a supplier during a given time
period.

10

Chapter 2
Approach

2.1 Finding Potential New Customers
The main goal of the evaluation is to determine a successful method for automatically
identifying new prospects among the company data. As new prospects will be based on
existing customers, the effort should be focused on finding a predictive model that can
identify characteristic properties among the data trained upon, and that can use this infor-
mation to predict new customers with similar properties.

2.2 Analysis of Existing Algorithms
As there alrady exist a large array of off-the-shelf machine-learning algorithms that are
well documented, the evaluation will consist of measuring the performance of a selection
of existing algorithms. The choice of algorithms must be based upon research of suitability
for the problem at hand. The chosen algorithms must also be common and readily available
from well-known providers of machine-learning services, such as PredictionIO or Apache
Mahout.

2.3 Evaluation Method
The first requirement for comparing performance between different learner models is to
determine a method of evaluation. This section will present a number of common statistics
for measuring the performance of machine learners. These statistics will range from simple
measures of model accuracy to measures of specific characteristics of the models as, for
example, the proportion of relevant instances when dealing with information retrieval.

Performance in the terms of computational speed or memory consumption are con-
sidered second-rate as computational power is often not an issue with modern hardware.

11

2. A

More important is how well a learner is able to learn and successfully identify relevant in-
stances. However, the running time must not become impractically long during execution
of an algorithm when it is applied on large sets of data.

2.3.1 Confusion matrix
A confusion matrix is a table used to categorize predictions according to how they match
the actual value in the data. One of the table's dimensions represents the possible categories
of predicted values and the other dimension represent the actual values. A confusion ma-
trix can be used to categorize the predictions of a model predicting any number of target
values, but it is mostly used for binary predictions represented by the 2 × 2 confusion
matrix.

The prediction outcomes of interest are known as the positive classes, while the other
outcomes are known as negative. The relationship between positive class and negative
class predictions can be represented by the 2× 2 confusion matrix (Figure 2.1) depicting
the four categories (see Lantz, 2013, chap. 10):

True positive (TP): Correctly classified as outcome of interest

True negative (TN): Correctly classified as outcome of no interest

False positive (FP): Incorrectly classified as outcome of interest

False negative (FN): Incorrectly classified as outcome of no interest

True Class
Positive Negative

Hypothesized Class Positive TP FP
Negative FN TN

Figure 2.1: Confusion Matrix.

2.3.2 Accuracy and error rate
There are many measures of performance in machine learning that have been developed
for specific purposes. Accuracy is perhaps the simplest one, describing the success rate
of a prediction. It is defined as the proportion of correct classifications in relation to all
classifications made (see Lantz, 2013, chap. 10).

accuracy =
TP + TN

TP + TN + FP + FN
.

The terms TP , TN , FP and FN refer to the number of times the predictions fell into
each of these categories.

12

2.3 E M

The opposite of the success rate is the error rate, describing the proportion of incorrect
classifications. It is defined as the number of incorrect classifications divided by the total
number of classifications, or simply: 1− accuracy (see Lantz, 2013, chap. 10).

error rate =
FP + FN

TP + TN + FP + FN
= 1− accuracy.

Accuracy and error rate are simple measures of how well a model performs in general
terms. However, it can be misleading when used alone. If the number of positive target
values in the test set is small in relation to other values, say 10%, then a model that, e.g.,
classifies all instances as negative will still have an accuracy of 0.9 as 90% of the instances
are correctly classified as negatives.

2.3.3 Precision and recall
Precision and recall are two other measures of performance that are used primarily in the
domain of information retrieval. Both measures are meant to give an indication of how
interesting and relevant a model's results are.

Precision is defined as the proportion of positive classification that are truly positive
(see Lantz, 2013, chap. 10). In other words, when a positive prediction is given, how
often is it correct? A high precision might suggest that a model is trustworthy. To take an
example of a precise model in the context of information retrieval, this would correspond
to, e.g., a search engine returning a high degree of related results. A search engine using
an imprecise model would return mostly unrelated results.

precision =
TP

TP + FP
.

Recall is instead a measure of how complete the results are. It measures the proportion
of positive examples that were correctly classified (see Lantz, 2013, chap. 10). A model
with high recall will correctly classify a high portion of the positive instances as positive.
That being said, there is no guarantee that there will not also be a lot of incorrectly clas-
sified positives. For example, a search engine using a model with high recall will return
a large number of results. A search engine with low recall will return a low number of
results.

recall =
TP

TP + FN
.

The two measures precision and recall are closely related and there exists an inherent
trade-off between having a high value of either. It is easy to be precise by only classifying
the most obvious instances, and conversely, it is easy for a model to achieve a high recall
by being overly optimistic when classifying instances. However, it is difficult to build a
model that has both high precision and high recall. It is often a balance between being
conservative and overly aggressive in decision making (see Lantz, 2013, chap. 10).

13

2. A

Precision and recall can be combined into a single number known as the F-measure.
The F-measure combines precision and recall using the harmonic mean. This measure
can be valuable to determine an overall performance from the perspective of information
retrieval. It is defined according to the following formula:

F -measure =
2× precision× recall

recall + precision
=

2× TP

2× TP + FP + FN
.

2.3.4 Bias-Variance trade-off
The trade-off between precision and recall is a symptom of the general trade-off dilemma
called the bias-variance trade-off. The bias-variance trade-off applies to all supervised
learning tasks and represents two sources of error that prevent a learner to generalize be-
yond its training set (Geurts, 2002).

If a model is too simple with respect to the complexity of the Bayes model1, there will
always be an error due to the fact that the model is too simple to cover all instances of
the training set. This lack of complexity of the model is called bias (Domingos, 2000).
To illustrate, the regression problem described in Figure 2.2 shows that an overly simple
model will inevitably fail to account for small variations in the training set. A model with
high bias will make false assumptions about the data and can cause the learner to miss
relevant relations between features and target features. High bias will generally tend to
cause underfitting.

Figure 2.2: Overly
simple model.

Figure 2.3: Overly
complex model.

On the other hand, if a model is overly complex it might achieve a near perfect match on
the training set. However, it will also learn the noise in the training set and will therefore
not generalize well on different sets of data. If the model will achieve a perfect match on
the training set, it will generally tend to overfit. Even if there is no noise, the model will
have errors due to being overly complex. This exaggerated complexity in respect to the
complexity of the training set is called variance (Domingos, 2000). The analogy in the
regression problem can be seen in Figure 2.3. A model with high variance will be overly
sensitive to small fluctuations in the training data and can cause modeling of random noise.
High variance will generally tend to cause overfitting.

As both bias and variance depend on the complexity of the model, but in opposite di-
rection, there must exist a trade-off effect between these sources of error. Due to bias, care
must be taken not to use an overly simple model. And vice versa, care must be taken not

1The Bayes model is an ideal optimal classifier with perfect accuracy (Bayes and Price, 1763).

14

2.3 E M

to use an overly complex model with respect to the complexity of the problem due to vari-
ance. The bias-variance trade-off applies to all supervised learning such as classification
and regression. Apart from the generalization errors produced by bias and variance there
is also an unavoidable error that is always present called the irreducible error caused by
noise in the data.

2.3.5 Visualizing performance trade-offs
Visualizations are often helpful for human comprehension. They also provide a method
for comparing machine-learning models side-by-side in a single diagram.

The ROC graph (Receiver Operating Characteristic) can be used to visualize the trade-
off between the detection of true positives and false positives. This can be a good mea-
sure of the general efficiency of machine-learning models. The ROC graph is a two-
dimensional space that is defined by showing the proportion of true positives (true positive
rate) on the vertical axis, and showing the proportion of false positives (false positive rate)
on the horizontal axis (see Lantz, 2013, chap. 10).

The True Positive Rate (TPR) is estimated by dividing the number of true positives
(TP) by the total number of positives (T). TPR is also called hit rate or recall (see
Fawcett, 2006, Classifier performance section).

TPR =
TP

TP + FN
=

TP

T
.

The False Positive Rate (FPR) is estimated by dividing the number of false posi-
tives (FP) by the total number of negatives (N). FPR is also called fall-out or cost (see
Fawcett, 2006, Classifier performance section).

FPR =
FP

FP + TN
=

FP

N
.

A discrete classifier model, that outputs a target feature label (as opposed to a prob-
abilistic classifier that outputs a probability), will produce a single measure of TPR and
FPR corresponding to a point in the ROC graph. Depending on where a classifier's cor-
responding point is positioned in the graph, some conclusions can be drawn. Classifiers
appearing on the left-hand side of the ROC graph, may be considered as conservative as
they will only make positive classifications when there is strong evidence, hence they will
generate few false positives. The downside with a conservative classifier is that it will
also have a low true positive rate. Classifiers appearing on the upper right-hand side of
the ROC graph may inversely be considered as liberal as they will make positive classifi-
cations with weak evidence and will classify a high proportion of the positives correctly.
However, a liberal classifier will likely also have a high false positive rate. Inductively, a
classifier appearing to the northwest of another classifier is better as its TPR is higher,
its FPR is lower or both. See Figure 2.4 depicting the ROC graph. Performance on the
left-hand side of the ROC graph is often more interesting as real-world problems are likely
dominated by large numbers of negative instances. The point positioned at the uppermost
left-hand side of the ROC graph at coordinates (0, 1) represents a perfect classifier with
perfect performance (see Fawcett, 2006, ROC space section).

15

2. A

Classifiers appearing along the diagonal y = x represent models that randomly guesses
a target feature. To move away from the diagonal, a classifier must be able to exploit some
information in the data. Points positioned in the lower right triangle of the ROC graph will
perform worse than random guessing and therefore this region is usually empty. However,
if a classifier performs worse than random guessing it will exhibit deterministic behavior
and its output can simply be negated to produce a point in the upper left triangle (see
Fawcett, 2006, ROC space section).

Figure 2.4: ROC curve and AUC.

A classifier that outputs a probability or a score representing the likeliness that an
instance is considered positive is called a probabilistic classifier. Such a classifier can
easily be used as a discrete classifier by comparing the output to a threshold. If the output
is above the threshold the instance is considered positive. By varying the threshold, a
varying degree of the instances in the test set will be classified as positives. It is therefore
possible to produce multiple TPR and FPR value pairs on the same classifier model by
using multiple threshold values. This can be used to create a ROC curve, by connecting
the points produced. A discrete classifier can even be made into a probabilistic one by
applying ensemble learning methods2 and averaging the results. The ROC curve is useful
as it can visualize if a model performs better in the conservative or liberal region of the
graph. Further it can be revealed at which threshold the classifier has optimal accuracy
(the point on the curve that has the smallest distance to the upper left corner has the best
accuracy) (Fawcett, 2006).

2 Ensemble learning is a method for using multiple classifiers concurrently on the same instance to be
classified. The final classification can be achieved by averaging or voting on the results of the classifiers.

16

2.4 I

The AUC (Area Under the ROC Curve) is a statistic that can be used to depict general
performance from a ROC curve. It treats the ROC graph as a two-dimensional square and
measures the total area under the ROC curve. AUC will range from 0.5 (random guessing)
to 1.0 (perfect classifier). There is also a convention using classes similar to academic let-
ter grades for interpreting the AUC scores (see Lantz, 2013, chap. 10).

0.9–1.0 - A (outstanding)

0.8–0.9 - B (excellent/good)

0.7–0.8 - C (acceptable/fair)

0.6–0.7 - D (poor)

0.5–0.6 - F (no discrimination)

2.4 Implementation
Implementing code did inevitable cover a large portion of the algorithm evaluation process.
To help reduce the effort put into implementation, existing software and libraries have been
used, such as Weka, SciPy, NumPy and Armadillo. Weka is a desktop application that
comes packaged with a collection of machine-learning algorithms that can be applied on
custom data. SciPy, NumPu, and Armadillo are libraries oriented at statistical, mathematic
and scientific computing for Python and C++, respectively.

Some of the algorithms were tested using different implementations, however, as all
evaluated algorithms were simple to implement, custom implementations were created in
C++ for reasons of flexibility, speed, control, freedom of parallelization, and last but not
least --- for fun.

Languages used during implementation: Matlab, R, Python, Java and C++. Most of
the data sets used during evaluation were structured as comma-separated-value (CSV) text
files.

17

2. A

18

Chapter 3
Evaluation of Algorithms

The chosen algorithms for this evaluation are: frequent set counting, k-nearest neigh-
bors, C4.5, and k-means clustering. These algorithms are all well-known off-the-shelf
algorithms with readily available implementations in most programming languages. The
first three algorithms are designed to solve classification problems, while the fourth is
intended for performing cluster analysis.

The selected algorithms were chosen as they are well documented, easy to understand,
and seem fitting for solving the problem at hand. They are also known for having perfor-
mance that is competitive with more advanced algorithms, such as Neural networks, given
suitable data.

This section contains descriptions of the implementations tested and evaluation mea-
sures for each algorithm, respectively. The evaluations were performed using a test ma-
chine equipped with a 2.6 GHz quad-core CPU using 8 GB DDR3 SDRAM.

3.1 Data Preparation
Before the algorithms were evaluated, the data needed some preparation. The goal of the
preparation was to produce a diverse collection of high quality training sets and test sets
for evaluation of the algorithms.

3.1.1 Labeling
All training sets used to train the classifiers need a way of distinguishing between desirable
and undesirable outcomes. In order to define a notion of positiveness and negativeness
among the instances in a training set, a distinction was made between customers and non-
customers. The purpose of this distinction is to be able to train a classifier to identify all
customers in a set of data. Hence, the notion of a positive instance was related to customers,
and the notion of a negative instance was related to non-customers.

19

3. E A

As the company database stores information about existing customers for individual
records, it is possible to label all instances in a training set as positive, or negative, depend-
ing on the customer states of the instances, respectively. Hence, an additional attribute was
added to all training sets and test sets, containing the value “positive” or “negative” which
denotes each instance as either a customer, or a non-customer.

3.1.2 Continuous attributes
Continuous attributes contain numeric values which potentially range from negative infin-
ity to positive infinity. This presents a problem as the number of attribute values that need
to be accounted for by the models is possibly infinite, and most machine-learning models
require a small number of attribute values (Chmielewski and Grzymala-Busse, 1996).

Another problem with attributes containing continuous ranges of values is that it is
hard to make generalizations about the values, as many models generalize using equality.
For example, given a range of numbers 1–100,000, it can be reasoned that the numbers
5,000 and 5,001 are similar, but to a machine-learning model using symbolic equality as
the measure of similarity, this is not true. To the model, the numbers 5,000 and 5,001
are equally dissimilar as 1 and 100,000. In order for the model to be able to make gener-
alization about the data, the range of numbers would need to be partitioned into discrete
intervals: {[a1, b1], [a2, b2], . . . , [an, bn]}, where bi − ai >= 1, and i = 1, 2, . . . , n.
This process of partitioning continuous ranges into discrete values is called discretization.

In this project, two different methods for discretization was evaluated. The first method:
entropy-based partitioning, is part of the C4.5. decision tree algorithm, as an extension,
and the second method was invented during the course of this project as an improvement
over the first method.

Entropy-based partitioning works by partitioning the range of continuous values in
two partitions, by splitting the sorted range at a threshold value. The threshold value
is found by performing an exhaustive search for the maximum gain score over the at-
tribute values (gain is a measure of gained information, as described in section 3.4.1).
In other words, the maximum threshold is found by iterating over the set of sorted values:
{v1, v2, . . . , vn}, using vi as the threshold in the ith iteration, and computing the summed
gain for the the two partitions {v1, v2, . . . , vi} and {vi+1, vi+2, . . . , vn}. The threshold
that maximizes the summed gain values of the partitions is chosen as the final value.

The improved discretization method analyses the distribution of attribute values, and
tries to identify multiple partitions of attribute values that are frequently occurring in the
set. The method works by first iterating over all attribute values and counting individual
occurrences, creating a distribution of values. As depicted in Figure 3.1, the attribute
value distribution will form a jagged curve (most likely). The local maxima of the curve
represent the most frequently occurring attribute values, which a classifier should be able
to generalize from. When e.g., two local maxima of near equal value happen to be located
far from each other, it becomes hard to create a well-performing discretization by using a
binary split, as only one of the maxima will be included. It would be better if the continuous
range could be partitioned into multiple parts somehow.

20

3.1 D P

Figure 3.1: The distribution of attribute values among existing
customers.

Our method partitions the distribution by first approximating a polynomial fit on the
distribution curve using Least squares (Legendre, 1805), then forms new segments by
splitting the distribution at the approximation's minima. Figure 3.2 shows the Least squares
approximation of the distribution and Figure 3.3 shows the new segments, partitioned at
the approximation's minima. The number of segments created by the approximation fit
can be controlled by varying the degree of the polynomial fit.

Figure 3.2: The Least squares approximation for the distribution.

Next, if the new bell-shaped segments are treated as normal distributions, it is possi-
ble to compute the expected values µi and the standard deviations σi for the individual
segments. The attribute values can now be partitioned into discrete groups by creating

21

3. E A

intervals of size 2σi around the expected values of the individual bell-curve segments:

{[µ1 − σ1, µ1 + σ1], [µ2 − σ2, µ2 + σ2], . . . , [µn − σn, µn + σn]},

where n i the number of segments created from the approximation. Finally, all values in
the continuous range are partitioned into two groups: the representative range consisting
of the values that lie within any of the intervals created from the approximation-curve
segments, and the non-representative range consisting of the rest of the values.

Figure 3.3: Four segments are created by splitting the distribution
at the approximation's local minima. The dotted lines mark the
split points.

The second method was tested to perform marginally better than Entropy-based par-
titioning, when used in combination with all three classifier algorithms evaluated in this
project. Additionally, the second method was much faster, generally completing the dis-
cretization process in seconds, compared to many minutes using Entropy-based partition-
ing, which is computationally expensive due to the amount of iterations needed for its
exhaustive search for maximum gain.

3.2 Frequent Set Counting using Apriori
Frequent Set Counting (FSC) is often used as an unsupervised learning method for finding
frequently occurring subsets of values in a data set (Orlando et al., 2001). The method
is similar to n-gram extraction used in natural language processing. n-gram extraction
works by counting the frequency of n consecutive words in a corpus 1 for determining the
statistical probability of a specific order of n words (see Nugues, 2010, chap. 4). The same
principle can be applied on data sets with unordered and unrelated attribute values. All
possible combinations of n attribute values are created using every available pair in the

1In linguistics, a corpus is a large structured set of texts.

22

3.2 F S C A

data, i.e., the power set2 is created, and then all corresponding occurrences are counted.
By applying FSC on labeled data, the method can be used for supervised learning by
counting frequently occurring n-itemsets (an n-itemset consists of n attribute values or
items) that are labeled as positive. Consequently, n-itemsets with a high probability of
representing a positive instance can be identified and used to classify unlabeled data.

By varying the size of n, the complexity of the model can be increased or decreased.
Using a small n will yield a model with high bias and low variance. Conversely, a large n
will yield a model with low bias and high variance, however, finding frequent occurrences
of large n-itemsets will become increasingly difficult as the size of n increases.

When the method is applied for classification, a threshold can be used for determining
the minimum number of occurrences of an n-itemset that is needed for it to be used for
positive classification. In other words, an n-itemset needs to be sufficiently frequent for it
to be representative of the set of data labeled as positive. It is even possible to use combi-
nations of frequently occurring n-itemsets that have different sizes of n for classification.

Company Location Revenue (SEK) # of employees Label
A Stockholm 2 mn 300 Customer
B Copenhagen 2 mn 100 Non-Customer
C Helsinki 1 mn 100 Non-Customer
D Stockholm 2 mn 300 Customer
E Copenhagen 1 mn 200 Non-Customer
F Stockholm 1 mn 300 Customer

Table 3.1: Training set of labeled companies.

Table 3.1 shows a training set of companies that are labeled as customers or non-
customers of a hypothetical company aspiring to use frequent set counting for identify-
ing new customers. Companies labeled as customers are considered as positive instances
and companies labeled as non-customers are considered as negative instances. Table 3.2
shows the most frequently occurring n-itemsets among the 3 positive instances. Here, the
threshold is set to 0.5, i.e., the table only shows the n-itemsets present in at least 50% of
the positive instances. Observe that the 2-itemset {Stockholm, 300} is present in all of the
positive instances (n = 2 as two items are present), as well as the 1-itemsets {Stockholm}
and {300} (1-itemsets consist of a single item), which are also present in all instances. The
3-itemset {Stockholm, 2 mn, 300}, the 2-itemsets {2 mn, 300} and {Stockholm, 2 mn}
and the 1-itemset {2 mn} are present in two thirds of the positive instances.

Using this information it can be hypothesized that companies located in Stockholm
which have 300 employees are likely to fit the current customer profile and should therefore
be classified as positive instances. Companies located in Stockholm, having 300 employ-
ees and that additionally have a revenue of SEK 2 million could also be hypothesized to
be positive instances if the threshold is set to a lower value. Note that using the 1-itemsets
will yield a model with very high bias as, for example, if a classifier would classify all
companies located in Stockholm as positive instances, this would likely result in a large
number of irrelevant positives (underfitting). On the other hand, using only the biggest

2The power set of a set S is the set whose members are all possible subsets of S, e.g., the power set of
{1, 2} is {{ }, {1}, {2}, {1, 2}}

23

3. E A

n-itemset n Occurrence
{Stockholm, 300} 2 3 of 3
{Stockholm} 1 3 of 3
{300} 1 3 of 3
{Stockholm, 2 mn, 300} 3 2 of 3
{Stockholm, 2 mn} 2 2 of 3
{2 mn, 300} 2 2 of 3
{2 mn} 1 2 of 3

Table 3.2: List of most frequently occurring n-itemsets among
companies labeled as customers.

n-itemset available will likely result in very few positive classifications, although most,
if not all, will be relevant. Moreover, if the intent is to find new customers then finding
the exact same companies labeled as existing customers in the training set is of no use.
Therefore it can be concluded that using a too high value for n will not generalize well to
different sets of data and will lead to overfitting.

3.2.1 Implementation
The FSC learner model consists of the process of identifying the frequently occurring n-
itemsets and storing these for future classification use. The algorithm used for identifying
the frequent itemsets was implemented by first creating a sparse matrix representation of
all the features in the training set. A feature is an attribute-value pair used to describe
a value related to an attribute. This is needed as values need to be distinct among the
attributes e.g., the value “3” will have different meanings when observed within either of
the two different attributes employees or revenue. The training set depicted in Table 3.1
have 8 distinct features as can bee seen in Table 3.3

Feature # Attribute Value
1 Location Stockholm
2 Location Copenhagen
3 Location Helsinki
4 Revenue 1 mn
5 Revenue 2 mn
6 Employees 100
7 Employees 200
8 Employees 300

Table 3.3: All features present among the positive instances in the
training set.

The purpose of using a sparse matrix representation is to get an ordered set of all the
features, to save storage space and also to produce a compact representation of the data
to utilize locality of reference3 for performance gains. The sparse matrix saves storage

3Locality of reference is a principle that states that working with data located in close proximity, both in

24

3.2 F S C A

space as all features can be stored in a binary matrix as opposed to storing the features
themselves. An example of a sparse matrix representation can be seen in Table 3.4.

Company Feature 1 Feature 4 Feature 5 Feature 8
A x x x
D x x x
F x x x

Table 3.4: Sparse matrix representation of the positive instances
in the training set where “x” indicates that the feature is present.
Columns for features 2, 3, 6 and 7 are not displayed as those fea-
tures are not present in any of the positive instances.

The next step consists of creating the power set of the set of features by producing su-
persets from all the combinations of all features in the training set. Creating the supersets
is performed in a bottom up manner, i.e., first, 1-itemsets are created from all features, then
2-itemsets are created from all possible combinations of the 1-itemsets, and so on until all
combinations of n-itemsets have been created. However, identifying all itemsets from all
combinations of features using a brute force approach will become very expensive both in
time and space when the number of features is large (Orlando et al., 2001). The number
of supersets that can be generated from a data set containing k different features is 2k − 1
(Tan et al., 2006). Thus, the search space of itemsets is exponentially large. See Figure 3.4
for a graph depicting all itemsets produced from a data set containing only 5 features.

Figure 3.4: The lattice structure shows the 31 possible itemsets
produced from a data set containing 5 features.

To remedy the problem of exponential growth, the Apriori principle (Agrawal and Srikant,
1994) can be applied to the problem.

time and space, can make better use of the built-in CPU cache.

25

3. E A

The Apriori principle states:

“If an itemset is frequent, then all of its subsets must also be frequent.” (Tan et al., 2006)

i.e., suppose that the set {b, c, d} is frequent, then all of its subsets {b, c}, {b, d}, {c, d},
{b}, {c} and {d} must also be frequent. Conversely, if a subset {a, b} is infrequent, then all
of its supersets must also be infrequent (Agrawal and Srikant, 1994). Using this strategy,
it is possible to immediately prune the entire subtree of supersets that contains the subset
{a, b}, i.e., the subsets {a, b}, {a, b, c}, {a, b, d}, {a, b, e}, {a, b, c, d}, {a, b, c, e} and
{a, b, d, e} can be removed from the search space. By trimming the search space using
the Apriori principle, the number of possible itemsets that need to be identified by the
algorithm is reduced drastically.

To take advantage of the conclusions drawn above, the frequent set generation can be
implemented by using a threshold value indicating the minimum support required for an
itemset to continue generating supersets. Starting at the 1-itemsets, the frequency of each
itemset is counted among all occurrences in the actual data set (e.g., the training set). If
the frequency is found to be less than the threshold value, the algorithm will discard the
itemset from further use. Take, for example, the set of positive instances represented in the
sparse matrix in Table 3.4, if an algorithm were to identify all itemsets using the Apriori
principle it would start with counting the frequency of all 1-itemsets. Given a threshold
value of 0.5, a single feature itemset must be present in at least 2 of the 3 instance rows
to qualify for further itemset generation. Itemsets {1}, {5} and {8} is present in at least 2
instances, but itemset {4} is only present in 1 instance, hence it is removed from further use.
Next, 2-itemsets are created by merging the available 1-itemsets resulting in the itemsets
{1, 5}, {1, 8} and {5, 8}, of which all are present in 2 or more instances. Finally, a 3-itemset
{1, 5, 8} can be created by merging the frequent 2-itemsets. The 3-itemset itself is present
in 2 instances and will thus also qualify as frequent. No more itemsets can be identified as
the full search space has been explored. When comparing these results with the frequently
occurring itemsets in Table 3.2, it can be seen that the same itemsets have been identified
(use Table 3.3 to translate feature numbers into features, respectively).

Pseudocode for the FSC algorithm using the Apriori principle, is showed in Algo-
rithm 1.

Algorithm 1 Frequent set counting using the Apriori principle.
1: procedure FSC(L, t)
2: F1 ← {frequent 1-itemsets}
3: k ← 2
4: while Fk−1 ̸= ∅ do
5: C ← Generate all possible k-itemsets from Fk−1

6: Fk ← Filter C, keeping only itemsets that are frequent above threshold.
7: k ← k + 1

8: return ∪Fk

26

3.2 F S C A

3.2.2 Performance evaluation
Our tests show that the model have high accuracy when performing classification using
large itemsets. However, identifying larger itemsets during training requires using a low
threshold value, resulting in increased running time. Measured running time for varying
threshold values is showed in Table 3.5. As can be seen by the figures, the running time
seems to be inversely exponential in relation to the threshold value. The relation between
running time and threshold value is also depicted in Figure 3.5.

Threshold Running time (s) Max set size
0.85 1 2
0.8 1 4
0.77 2 6
0.76 7 6
0.75 35 7
0.74 202 7

Table 3.5: Time spent training for varying threshold values.

The size of the itemsets identified during training is also related to the choice of thresh-
old value, as can be seen by our measures showed in Table 3.5. Using lower threshold
values will enable the model to identify larger frequent itemsets, but at the cost of longer
running times. Thus, it becomes impractical to identify itemsets consisting of more than
approximately 7 items, as it simply will take too long.

Figure 3.5: Time spent training for varying threshold values.

During classification, different intervals of itemset sizes can be chosen for different
performance results. By using a broader range of itemset sizes, a higher bias is achieved.
For example, using an interval of 1 to 7 means that all itemsets with sizes 1 through 7 are
used for classification. Performance results are showed in Table 3.6. The tests was per-
formed using a threshold value of 0.75. The results show that higher accuracy is achieved

27

3. E A

when using only larger itemset sizes (see Figure 3.6). This however, comes at the cost of
reduced recall scores. Also, the precision score is constantly low for all set intervals, never
exceeding 0.01 (see Figure 3.7).

Set interval Accuracy Precision Recall F-measure
1–7 0.004 0.002 1.000 0.004
2–7 0.012 0.002 0.999 0.004
3–7 0.105 0.002 0.995 0.004
4–7 0.562 0.004 0.949 0.008
5–7 0.832 0.010 0.867 0.019
6–7 0.838 0.010 0.823 0.019
7–7 0.841 0.010 0.809 0.019

Table 3.6: FSC performance results using threshold = 0.75.

Figure 3.6: Accuracy increases as the choice of itemset interval
becomes more conservative.

28

3.3 -N N

Figure 3.7: Recall decreases when the set interval is limited to
only the larger sizes. Precision is at a constant low.

3.3 k-Nearest Neighbors
k-nearest neighbors (k-NN) is one of the oldest and simplest algorithms for pattern classi-
fication (Cover and Hart, 1967). Despite this it often yields good results in many domains
compared to other algorithms. k-NN is considered to be a lazy learner, as it delays gen-
eralization on the training data until the model is applied for classification (Lantz, 2013).
This is opposed to an eager learner, which performs generalization on the data during the
training phase. The algorithm usually has good accuracy, but suffers from being compu-
tationally expensive both in time and space.

The algorithm works by classifying unlabeled instances by the majority label of its k-
nearest neighbors in the training set. Neighboring instances are determined to be near by
means of some distance metric that can be calculated and compared among all instances.
See Figure 3.8 for a depiction of a two dimensional k-NN classification model. In the
figure, an unlabeled instance is classified by measuring the distances between all labeled
instances in the training set, here depicted as black and white dots, and determining the
majority vote among the k-nearest instances. For example, if k = 3, the unlabeled instance
will be classified as being associated with the white class as two out of three of the 3-
nearest instances are white. A different choice of k might produce different results, e.g.,
the unlabeled instance in the figure will belong to the black class when k = 15. Note that
using odd numbers for k is preferable when performing binary classification as it avoids a
tied vote (see the example in the figure where k = 8).

When training the model, every instance in the training set is represented by a vector
consisting of all the features present in the respective instance. If the vectors carries n
features, respectively, then all vectors are modeled in an n-dimensional space, where the
features represent the vector coordinates (see, e.g., Lantz 2013 for a more detailed descrip-
tion). The model creates the space of neighboring instances from a labeled training set,
and then classifies each unlabeled test-set instance by inserting them one by one into the

29

3. E A

Figure 3.8: k-nearest neighbors classification visualized in two
dimensions. The big black centerpiece is the unlabeled instance
to classify. Black and white dots represent instances with different
labels in the training set.

space and finding the k-nearest neighbors, respectively.
The choice of k is user-defined. Choosing a good value for k is reliant on the char-

acteristics of the data. Choosing a small k may yield accurate results as closer neighbors
will likely be more similar, but it will also cause the learner to be more sensitive to noise
in the training data. A larger k will cause the learner to be less dependent on noise, but
as k approaches the total number of neighbors in the training set, the result will have less
and less predictive value (a majority vote among all instances will be entirely dependent
upon the balance of class membership in the training set).

3.3.1 Implementation
There are many different methods for calculating the distance between instances, but it
is common to use Euclidean distance for continuous attributes, and Hamming distance
or Levenshtein distance (also called edit distance) for discrete attributes. These methods
are usually good enough, but sometimes the model accuracy can be increased significantly
by using more advanced distance metrics (Weinberger and Saul, 2009). The Euclidean
distance between two points P and Q in an n-dimensional space can be calculated using:

d(P,Q) =
√
(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2.

30

3.3 -N N

The Hamming distance can be calculated for two strings of equal length by count-
ing the number of characters for which the strings differ (Hamming, 1950). For example,
the Hamming distance between “paper” and “vapor” is 2. For strings of unequal length a
generalization of the Hamming distance metric, called the Levenshtein distance (or edit
distance), can be used (Levenshtein, 1966). The Levenshtein distance between two strings
can be determined as the minimum number of single-character insertions, deletions, or
substitutions needed for the strings to become identical. See Algorithm 2 showing pseu-
docode for an implementation of a recursive Levenshtein-distance function. A dynamic
programming approach can be used to avoid the inefficiency of recomputing the distances
of the same substrings multiple times.

Algorithm 2 Computing Levenshtein distance.
1: procedure LD(s, t)
2: if Length of s is zero then ◃ Base case: empty string s
3: return Length of t
4: if Length of t is zero then ◃ Base case: empty string t
5: return Length of s
6: if s and t have same last character then
7: cost← 0
8: else
9: cost← 1

10: return The minimum of:
LD(s− 1, t) + 1 ◃ Remove last letter from s
LD(s, t− 1) + 1 ◃ Remove last letter from t
LD(s− 1, t− 1) + cost ◃ Remove last letter from s and t

In this project, all continuous attributes was discretized prior to the model being trained,
hence, only the Levenshtein metric was needed (if desired, a lookup table containing type
mappings for all attributes in the data can be used to keep the attribute types apart).

3.3.2 Performance evaluation
Tests performed by us show that the k-nearest neighbors algorithm is computationally
expensive when applied on large sets of data. Because of the time required, only small
fractions of the training set data could be used for testing. Table 3.7 shows the measured
performance of the evaluation implementation on the test machine for varying training set
sizes (the number of instances in the training set). The training sets used was balanced
using 30% positive instances and 70% negative instances. In this measurement, classifi-
cation was performed on the full set of test data containing 2,227,831 unlabeled instances.

The data suggests a linear increase in running time as the number of instances in the
training set increases. By approximating a linear fit on the data, it is possible to produce a
model that can be used for estimating the running time required when using the reference
training set in its entirety (it consists of 13,933 labeled instances). This approximation
model suggests a running time of approximately 11 hours, which is clearly too much for
the existing application (see Figure 3.9 for a linear model of the running time).

31

3. E A

Running time (s) Accuracy Precision Recall F-measure
22 72 0.83 0.01 0.86 0.019
83 241 0.88 0.009 0.54 0.017
167 478 0.90 0.012 0.68 0.024
250 712 0.86 0.012 0.75 0.024
333 946 0.88 0.012 0.75 0.023

Table 3.7: Measured performance results for varying training set
sizes. k = 3 was used for all measurements.

The results in Table 3.7 show that accuracy is above 80% even for the smallest training
set, but the precision is very low at around 1%. This is reflected by the small training set
sizes used, as the model have a hard time determining the relevancy of information with
such a low amount of training data.

Figure 3.9: Measured running time on the test machine with vary-
ing training-set sizes (logarithmic scales used).

When using a smaller test set, however, the full training set could be used for per-
formance evaluation. Classification-performance results using this method are showed in
Table 3.8. The reference training set used consists of 13,933 labeled instances (30% pos-
itive instances), and the test set used contained about 14,000 unlabeled instances. The
performance metrics are presented for different values of k. The results show that the
model is accurate with both precision and recall reaching almost 90% for small values of
k. The running time using this method was around 4 minutes for all values of k. The
graph showed in Figure 3.10 depicts a trend of decreasing accuracy as larger values of k
are chosen.

32

3.3 -N N

k Accuracy Precision Recall F-measure
3 0.92 0.86 0.88 0.87
5 0.91 0.84 0.85 0.85
9 0.90 0.82 0.83 0.83
15 0.89 0.82 0.82 0.82
19 0.89 0.82 0.81 0.81
25 0.89 0.82 0.80 0.81
33 0.88 0.81 0.80 0.81
45 0.88 0.81 0.79 0.80

Table 3.8: k-nearest neighbors performance results.

Figure 3.10: Measures show that accuracy decreases as k is in-
creased.

33

3. E A

Figure 3.11 shows that both precision and recall are subject to the same falling trend
as larger values of k are chosen.

Figure 3.11: Both precision (left) and recall (right) decreases as
k is increased (the same horizontal scale as for accuracy is used).

Further, our results show that the bias-variance trade-off can be controlled somewhat
by varying the degree of positives in the training set. Training sets with the proportion of
instances labeled as positive was varying from 30% to 70% was used for testing and the
results can be seen in Figure 3.12.

Figure 3.12: Precision and recall varies as the proportion of pos-
itives in the training set is changed.

34

3.4 D T I C4.5

The learning curve of k-NN (see Figure 3.13) shows that the algorithm has an accu-
racy above 80% even when used with smaller training set sizes (as have been previously
shown).

Figure 3.13: k-nearest neighbors learning curve.

3.4 Decision Tree Induction using C4.5
Decision tree induction is a machine-learning method used for supervised learning tasks.
The method focuses on the modeling of the relationships between inputs and outputs in
the form of if-then rules (originally described by Hunt et al. 1966). Decision tree learning
is at the top of the list of various classification learning methods for meeting the require-
ments of being an off-the-shelf method for data mining. It is quite fast, produces models
interpretable to humans, is resistant to irrelevant variables, immune to outliers4 and can be
easily extended to be used with many data types such as: discrete classes, numerical and
time series (Hastie et al., 2013). Decision tree models often have low bias and high vari-
ance and might suffer from bad generalization when used on different sets of data (Geurts,
2002). There are, however, techniques for addressing this e.g., by simplifying the model
using discretization, tree pruning and ensemble learning.

Decision tree induction works by creating a tree structure from a labeled training set
representing the multiple decisions required to reach a leaf of the tree. Each leaf in the
tree determine a target-feature or class while the nodes represent attribute based tests with
a branch for each possible outcome. The task of the induction is to create a classification
model that can decide the class of any instance from its attributes and values (Quinlan,
1986).

Classification of an instance is performed by starting at the root of the tree, evaluating
its test and continuing on the branch with the most appropriate outcome. If the selected
branch leads to another node, its test is evaluated and the classification algorithm will

4In statistics, an outlier is an observation point that is distant from other observations.

35

3. E A

continue onto another branch. The process will continue until a leaf has been reached, at
which point the instance can be determined to be a member of the class named by the leaf.

Table 3.9 shows a training set depicting some weather data over 14 days (Quinlan,
1986). The set has been labeled with the coincidence of a person playing golf or not on
that day. By using decision tree induction, it is possible to create a classification model
that can be used for determining the likelihood of a person playing golf on any future day,
provided that enough weather data is supplied.

Day # Outlook Temperature Humidity Windy Play golf
1 sunny hot high false no
2 sunny hot high true no
3 overcast hot high false yes
4 rain mild high false yes
5 rain cool normal false yes
6 rain cool normal true no
7 overcast cool normal true yes
8 sunny mild high false no
9 sunny cool normal false yes
10 rain mild normal false yes
11 sunny mild normal true yes
12 overcast mild high true yes
13 overcast hot normal false yes
14 rain mild high true no

Table 3.9: A labeled training set with weather data.

An example of a decision tree created from the weather data is showed in Figure 3.14.
Notice how the “overcast”-branch is connected directly to a leaf node as all instances in
the training set that have the value overcast for attribute Outlook have the label yes

Figure 3.14: Decision tree for the weather data.

36

3.4 D T I C4.5

Take, for example, a particular Sunday morning, which is not included in the training set,
that has the weather characteristics as follows:

Outlook: overcast

Temperature: cool

Humidity: normal

Windy: false

Using the aforementioned decision tree, it can be concluded that the Sunday morning can
be classified as a member of the class yes, and is thus a probable candidate day for playing
golf.

It is always possible to construct a decision tree that can correctly classify all instances
in a training set given that there is enough attribute data available. However, there are
usually many such correct decision trees as there is no predetermined order in which the
attribute tests should be evaluated. Which attribute should be tested at the root of the tree
and which attributes should be tested at the nodes? In the example given in Figure 3.14,
the attribute Outlook is tested at the root, but it could just as well be replaced with the
attribute Humidity and the tree would look very different. A different tree might perform
equally well as a classification rule on the training set, but generally a smaller tree will
generalize better to different sets of data as it will suffer less from having high variability
being overly complex (Quinlan, 1986).

3.4.1 Implementation
To create a good decision tree during the induction process the algorithm C4.5 was used
(Quinlan, 1993). C4.5 is an extension to the original algorithm ID3, invented by Ross
Quinlan. It provides some improvements over ID3 by being able to handle both con-
tinuous and discrete attributes, working with missing attribute values and by providing
some built-in pruning capabilities. There is also another extension C5.0, but it is limited
to commercial use and was not explored in this project. The C4.5 algorithm has gener-
ally been found to construct simple enough decision trees with good performance, but it
can not guarantee that better trees have not been overlooked (Quinlan, 1986). This was,
however, not a problem with the particular task of classifying companies as customers,
or non-customers, because the models never showed the characteristics of being exces-
sively complex. Some of the extensions provided by C4.5 over ID3 was not of interest in
this project and was thus not implemented. Also, the discretization extension providing
the algorithm the ability to handle continuous numeric attributes was implemented sepa-
rately and executed as a separate step in the classification process. This was done, in order
to enable evaluation of different types of discretization algorithms, independently of the
classifier algorithm.

As C4.5 works in the same way as its predecessor, aside from providing some extended
capabilities, the core implementation steps are identical to ID3. The steps of the ID3
algorithm are showed in Algorithm 3 (Quinlan, 1993). Here, R is the set of attributes to
evaluate at the different nodes of the tree and S is the set of instances (the training set).
The algorithm works by using a divide-and-conquer strategy for partitioning the set of

37

3. E A

Algorithm 3 ID3 decision tree induction algorithm.
1: procedure ID3(R,S)
2: if S contains one or more instances, all belonging to the same class then
3: return A leaf identifying the class
4: if S is empty then
5: return A leaf identifying the most frequent class in the parent node
6: if R is empty then
7: return A leaf identifying the most frequent class in S

8: A← largestGain(R, S) ◃ Get attribute with largest gain in S among R.
9: {vi | i = 1, 2, . . . , n} ← the values of attribute A.

10: {Si | i = 1, 2, . . . , n} ← the subsets of S consisting respectively of instances
with value vi for attribute A.

11: return A tree with a root node evaluating attribute A and branches labeled
v1, v2, . . . , vn going respectively to trees:
ID3(R− {A}, S1), ID3(R− {A}, S2), . . . , ID3(R− {A}, Sn)

instances according to the values they contain in respect to the attribute being evaluated.
This will continue until all instances in the current subset belong to the same class or until
the subset is empty (Quinlan, 1993). The problem is to determine in which order the at-
tributes should be evaluated. Our implementation used the standard method of measuring
the information gained by branching on a particular attribute. Given a probability distri-
bution T = {t1, t2, . . . , tm}, the information conveyed by this distribution (also called
the entropy of T) is (Quinlan, 1986):

I(T) = −
m∑
i=1

(ti log2(ti)).

For example, if T = {0.5, 0.5} then I(T) = 1, if T = {0.8, 0.2} then I(T) = 0.72,
and if T = {1, 0} then I(T) = 0 (note that a more uniform distribution conveys more
information). When performing binary classification, the information needed to identify
the class of an instance in the training set S is the information conveyed by the probability
distribution of the class affiliations in the set. If p is the number of instances that belong
to class Positive, and n is the number of instances that belong to class Negative, then the
probability distribution is:

T =

{
p

p+ n
,

n

p+ n

}
.

In the case of the weather training set showed in Table 3.9, the information needed to
identify the class of an instance is I(T) = I({ 9

14
, 5
14
}) = 0.94.

If the training set S is partitioned on the basis of the value of an attribute A, with
possible values {a1, a2, . . . , av}, into subsets {S1, S2, . . . , Sv}, then Si will contain the
instances in S that have value ai of A. The information needed to identify the class of an
instance of Si is I({ pi

pi+ni
, ni

pi+ni
}), where pi is the number of instances in Si that belong to

class Positive, and ni is the number of instances in Si that belong to class Negative. Now,

38

3.4 D T I C4.5

the information needed to identify an element in S after the attribute A has been selected
for testing is the weighted average (Quinlan, 1986):

E(A) =
v∑

i=1

(
pi + ni

p+ n
I

({
pi

pi + ni

,
ni

pi + ni

}))
.

Finally, the information gain obtained by branching on A is defined as (Quinlan, 1986):

gain(A) = I

({
p

p+ n
,

n

p+ n

})
− E(A).

This can be used to determine the evaluation order of the attributes when performing the
induction task, by always choosing the attribute to branch on which has the highest infor-
mation gain (Quinlan, 1986).

3.4.2 Performance evaluation
The performance evaluation of C4.5 shows that classification can be performed on large
datasets with high accuracy. It is also possible to get high precision scores or recall scores,
but as there is an inherent trade-off between the two, it becomes hard to achieve a high
value of both measures at the same time. See Table 3.10 for a detailed summary of the
performance results. These results where produced from the reference training set with
varying proportion of positive instances. The lowest accuracy of 77% was achieved when
training the model using a training set consisting of 90% positive instances. The best
accuracy score of 99.9% was achieved when the model was trained on the entire data set
consisting of 2,227,831 labeled instances giving a positive ratio of only 0.19%.

Positive ratio Accuracy Precision Recall F-measure
0.0019 0.999 0.980 0.35 0.52
0.005 0.998 0.560 0.44 0.50
0.01 0.997 0.360 0.53 0.43
0.025 0.99 0.185 0.65 0.29
0.05 0.99 0.116 0.74 0.20
0.1 0.98 0.071 0.82 0.13
0.2 0.96 0.044 0.89 0.083
0.3 0.95 0.032 0.96 0.063
0.5 0.91 0.020 0.95 0.038
0.7 0.87 0.014 0.97 0.027
0.9 0.77 0.008 0.99 0.016

Table 3.10: C4.5 classification performance results with respect
to varying proportions of positives in the training set.

The measures of accuracy depicts a falling trend as the number of positive instances
increases. Figure 3.15 shows the relationship between the proportion of positives and the
accuracy. The horizontal scale in the figure is logarithmic to better show the variations of
accuracy at lower positive ratios, as there are more measures in the lower range.

39

3. E A

Figure 3.15: Measures show that high accuracy is achieved when
the proportion of positives in the training set is low.

Our tests show that the precision score increases as the complexity of the model is
increased by using a larger training set. Figure 3.16 depicts how precision increases as
the proportion of positives increase. There also seems to be a steep rise of precision at
positive rates below 10%, as can be viewed in the same figure.

Recall score seems to be subject to the inverse trend, as predicted by the trade-off effect.
Figure 3.17 visualizes the rising trend as the proportion of positive instances increases. As
with precision, there seems to exist a threshold at around 10%, causing a fast decline at
rates below this threshold.

In practice, the apparent inverse relationship between precision and recall means that
there is a trade-off between getting a high degree of relevancy among the results, and
aggressively rounding up a large number of positive instances, which consequently will
create a larger number of peripheral hits. Tests show, however, that this trade-off can be
controlled by varying the proportion of positive instances in the training set. By using a
low positive rate, a high degree of relevancy can be achieved among the results. The rela-
tionship between precision and recall is depicted in Figure 3.18 using logarithmic scales.
This shows how the metrics coincide at a rate of around 0.5 and at a proportion of positives
of approximately 0.65%.

The learning curve, displayed in Figure 3.19, shows that a high accuracy score persists
as the training set size decreases. A small increase in accuracy can be observed as the
training set size is increased. Precision, also depicted in the figure, is also subject to a small
rise as the training set size is increased. The factor that seems most effected by training set
size is recall, which increases as the training set size is increased. The overall low precision
scores presented in the learning curve can be explained by the relatively high proportion
of positive instances in the training set used during these measures. The learning curve
was produced using training sets with varying sizes consisting of 10% positively labeled
instances.

40

3.4 D T I C4.5

Figure 3.16: High precision is achieved when the proportion of
positives in the training set is low.

Figure 3.17: High recall is achieved with a high proportion of
positives in the training set.

41

3. E A

Figure 3.18: There seems to be a trade-off between precision and
recall related to the proportion of positives.

Figure 3.19: The learning curve of C4.5.

42

3.5 -M C

Overall running time during classification using the evaluation implementation of C4.5
never exceeded 1.5 minutes, including time spent training the model. The training phase
make up for most of the time spent, with running times ranging from a few seconds up to
approximately 1 minute when using the entire test set as training set. Time spent during
classification was almost linear with respect to the size of the test set, and never exceeded
15 seconds.

3.5 k-Means Clustering
k-means clustering is an old, but popular algorithm that is known for its simplicity and
speed (MacQueen, 1967). The algorithm belongs in the domain of unsupervised learning,
and is used for cluster analysis of data. There are some variations of the basic algorithm,
but the most common algorithm uses a technique that iteratively refines the results using
geometric clustering (Arthur and Vassilvitskii, 2006). The common algorithm is based on
work by Lloyd (1982).

This algorithm works by partitioning a set of unlabeled data into k clusters so that
the local homogeneity of each cluster is maximized. It does this by representing the data
points (the instances) as vectors in a feature space (similar to how k-NN represents its
data). Then, the algorithm iteratively assigns the data points to the respective cluster whose
mean has the least distance from the point. This continues until the means have converged
to k points in the feature space and no longer changes position.

The algorithm can be summarized in three steps:

1. Initialize
2. Assign
3. Update

The initialization starts by creating the k means at arbitrary positions in the feature space.
At this point the means are not necessarily the means or centroids of the respective clusters.
Next, the assignment step proceeds to assign all data points to the cluster whose mean has
the least calculated distance measure. Finally, the update step moves all the mean points
to the centroid of the respective cluster.

The centroid or the geometric mean of an object in a d-dimensional space is the mean
position of all the points in the space, i.e., the arithmetic mean of all coordinates in all
directions.

After the final step, the algorithm repeats steps 2-3 until no more points move between
the clusters, in which case the means have converged into their final positions (see Lantz,
2013, chap. 9). The algorithm has an upper bound of the maximum number of iterations
required to converge, determined by O(kn), where n is the number of points in the set
(Arthur and Vassilvitskii, 2006). Thus, the algorithm is guaranteed to eventually converge
on k clusters, but it is, however, not guaranteed to converge on the exact same clusters
multiple times as the initial mean positions are randomized. Nevertheless, the clusters
will still have a high probability of converging in the same way more than once when the
data is sufficiently distinct by nature, and when the choice of k matches the number of
natural segments that exist in the data.

43

3. E A

Figure 3.20: k-means clustering illustrated.

See Figure 3.20 for an example of the k-means clustering process, illustrated for k = 3.
In square 1, the data points are depicted at their positions as white shapes (circles, trian-
gles, and squares). Three mean points are placed at random positions, as depicted by the
black circles (the initialization step). Square 2 visualizes the clusters consisting of the data
points assigned to their nearest mean point (the assignment step). Notice how the dotted
lines denote the boundaries between the clusters. Next, in square 3, all of the means are
moved to the mean position of all the data points in their clusters (the update step). This
also moves the cluster boundaries, as showed in square 4. All data points can now be
reassigned to the nearest mean, and new clusters have been produced.

3.5.1 Implementation
The implementation of k-means clustering that was evaluated in this project used data
points represented as vectors denoting the presence of features in the point. In other words,
each data point consists of a binary vector of 0s and 1s, where the number 1 denote the
presence of a feature. This representation serves to allow for all attribute types, discrete
and continuous, to be treated the same when computing the means. The feature space can
be thought of as a d-dimensional hypercube, where all the data points are located in the
corners of the hypercube. See Table 3.11 showing an example of a data set consisting of
3 instances and their coordinates, respectively.

Instance Data point coordinates
{Location=A, Rating=1, Revenue=100} [1, 0, 1, 0, 1, 0]
{Location=B, Rating=1, Revenue=200} [0, 1, 1, 0, 0, 1]
{Location=A, Rating=2, Revenue=100} [1, 0, 0, 1, 1, 0]

Table 3.11: Data set consisting of 3 instances with a total feature
count of 6. Each point is represented by a vector with magnitude
6, denoting the presence of the features.

The choice of the initial means is very important in order to avoid empty clusters during
the first iteration (Coates and Ng, 2012). There are two general methods for choosing the
initial means: first, randomly selecting k points from the existing data points as means, also
called the Forgy method (Forgy, 1965), and second, randomly assigning each point to a
number ranging from 1 to k, denoting the cluster assignments, as described by James et al.

44

3.5 -M C

(2013, chap. 10). The implementation evaluated in this project used the Forgy method for
the the initial means.

The assignment step consists of computing the distances between all data points and
the means. Hence, it is necessary to decide on the method for computing the distance. In
this project, we chose to calculate distance using Euclidean distance as given by:

distance(P,Q) =
√

(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qd − pd)2,

where P and Q are data points in the d-dimensional feature space.
To compute the mean vectors during the update step, the centroid of each cluster was

calculated using the arithmetic mean of all coordinates in all directions, i.e., for a physical
object with uniform density, this would be the center of mass. It can be calculated using:

mean(Cu) =

{∑|Cu|
i=1 ci1
|Cu|

,

∑|Cu|
i=1 ci2
|Cu|

, . . . ,

∑|Cu|
i=1 cid
|Cu|

}
,

where Cu is the uth cluster, |Cu| is the number of data points or vectors in Cu, and cij is
the jth element of vector ci in cluster Cu. For example, if the data set from Table 3.11
would form a cluster, the mean of this cluster would be:

∑

1
0
1

)
3

 ,

∑

0
1
0

)
3

 ,

∑

1
1
0

)
3

 ,

∑

0
0
1

)
3

 ,

∑

1
0
1

)
3

 ,

∑

0
1
0

)
3

 ,

where ⌊x⌉ is the nearest integer of x.
Due to the randomized initial mean points, the algorithm will converge on different

clusters when it is run multiple times using data that is not sufficiently distinct. It is obvious
that there exists a problem in determining the best configuration of clusters. To address
this, a method can be used to find the configuration of clusters for which the within-cluster
variation is as small as possible. The within-cluster variation is a measure of how much
the data points within a cluster differ from each other. The most common way of measuring
this is by using the squared Euclidean distance (see James et al., 2013, chap. 10):

W (Cu) =
1

|Cu|
∑

i,i′∈Cu

∑
j∈F

(fij − fi′j)
2,

where Cu is the uth cluster, |Cu| is the number of data points in the uth cluster, and F is the
set of feature coordinates that represent the coordinates of each data point. In other words,
the within-cluster variation for the uth cluster is the sum of all of the pairwise squared
Euclidean distances between the points in the uth cluster, divided by the total number of
points in the uth cluster.

45

3. E A

It is now possible to determine the total measure of cluster variation for all clusters
by summing the measures of the individual clusters (see James et al., 2013, chap. 10):

V (C) =
k∑

u=1

(W (Cu)),

where C = {C1, C2, . . . , Ck} is the set of all clusters.
The best cluster configuration can now be found by running the algorithm multiple

times, and selecting the configuration that has the lowest total within-cluster variation, as
given by V (C).

3.5.2 Performance evaluation
k-means clustering is an algorithm used for cluster analysis of data, and as such, it can not
be used for classification like the other algorithms evaluated in this project. However, we
chose to include it as an example of how an unsupervised learner can be applied to gain
insights into the test data.

Unsupervised learning algorithms can not be evaluated using the same approach as
for supervised learners as there is no concept of a predetermined outcome. However, the
algorithm was tested for its ability to detect the distinct classes of positive instances and
negative instances in a labeled training set.

The testing procedure was carried out by conducting cluster analysis, using k = 2,
on training sets with varying proportion of positives. The resulting clusters were com-
pared to the true segments of positive and negative instances, and evaluated with respect
to accuracy. For example, a hypothetical training set consisting of 1000 instances with
30% positives would optimally be clustered into two segments of 300 and 700 instances,
respectively. The segment consisting of 300 instances would also exclusively contain true
positives, in the case of a perfect model.

Accuracy can be measured if we presume the cluster containing the greatest number
of true positives, to be the matches (the positives), and the cluster containing the greatest
number of true negatives to be the negative matches (the negatives).

Positive rate Size Measured ratio Variation Accuracy

30%
13933 0.383 79110 0.844
3777 0.352 23803 0.813
3520 0.383 20980 0.842

50%
8360 0.524 50636 0.855
2266 0.471 15378 0.804
2112 0.522 13697 0.853

70%
5971 0.662 38082 0.867
1619 0.589 11447 0.796
1509 0.663 10489 0.851

Table 3.12: k-means clustering performance results using 3 sep-
arate training sets with varying proportion of positives.

46

3.5 -M C

The performance results from this evaluation is showed in Table 3.12. The column
“Measured ratio” in the table depicts the proportion of instances found in the positive
cluster after performing cluster analysis. This should be compared to the true proportion
showed in the leftmost column. The column “Variation” shows the sum of the within-
cluster variations for the two clusters. It is a relative measure of how homogeneous a
cluster is, and should not be used for comparison between different training sets. In the
last column, accuracy scores are presented, showing the proportion of true positives in
the positive cluster combined with the proportion of true negatives in the negative cluster,
with respect to the total number of instances.

The performance results can be viewed as a measure of how well the algorithm can dis-
tinguish between positive and negative instances when partitioning the data in two clusters.
As is depicted in Figure 3.21, the cluster proportions matches quite well with the intended
proportion of positives.

Figure 3.21: Cluster proportion viewed in relation to intended
proportion.

47

3. E A

48

Chapter 4
Discussion

4.1 Performance Comparison
4.1.1 Frequent set counting using Apriori
A consideration of using FSC for supervised learning is that the model has a small capacity
for giving complex insight of the data. It can not make logical assumptions such as e.g.,
if two frequent itemsets intersect each other (the itemsets have items that are common to
both sets), but have subsets that are disjoint, then a model using FSC can not make the
logic assumption that an itemset consisting of the union of the intersection and either of
the disjoint subsets is frequent in the training set. Take, for example, the two 3-itemsets
{a, b, c} and {a, b, d}, which both have a frequency of 50% in a training set. If the model
would have been capable enough to understand that an itemset containing the items a,
b and either of the items c or d, the itemset {a, b, c|d} would have a frequency of the
combined occurrences, i.e., 100% in the training set. However, this is not possible with
FSC and a threshold value of 0.5 or lower would be needed to ensure the inclusion of the
aforementioned itemsets. Using a low threshold value will make the model suffer from
high bias, which should be avoided. This lack of logic insight into the data compared to
other models can sometimes result in reduced accuracy and fewer relevant classification
rules being identified.

4.1.2 k-Nearest neighbors
k-Nearest neighbors performs very well when applied on small sets of data. Accuracy
is marginally lower compared to C4.5 when using small values of k. The model is also
showed to suffer less from the bias-variance trade-off compared to C4.5, and maintains
both high precision and recall throughout all tests. The model can thus be expected to
provide accurate results of high relevancy. However, tests show that the model is compu-

49

4. D

tationally expensive with respect to time when larger sets of data are used. Running times
of many hours can be expected when performing classification on the full data set used
during evaluation.

An alternative method of using smaller training sets can be used to decrease the running
time of the model, but our tests show that this will yield much lower precision scores,
approximately around 1%.

Although the algorithm is computationally intensive, it is well suited for paralleliza-
tion. The computationally hardest part of the algorithm is the computation of distances
between the points in the training set. As all distances between all points must be com-
puted, the algorithm has a time complexity of at least O(n2m), where n is the number
of instances in the training set, and m is the number of distinct features. However, as
all distance calculations can be performed independently, they can be parallelized. The
evaluated implementation of the algorithm was parallelized prior to evaluation, using the
multicore capabilities of the test machine, producing an almost linear increase of perfor-
mance with respect to time. The test machine was, nevertheless, limited to 4 hardware
cores providing, at maximum, a four-fold increase of performance.

4.1.3 C4.5 decision tree
Our tests show that a precision of 98% can be achieved by labeling the entire test set, and
using this set to train the model. This will result in very high relevance, although few
in numbers. It has also been shown that by varying the proportion of positive instances
in the training set, precision can be traded for recall, which might be desirable in certain
situations. Decision trees are often prone to achieving high variance, and because of this
they might not generalize well to different sets of data (Geurts, 2002). As a consequence,
classification on real data might not yield enough positive classification when the model
is too complex. Yet, using the observed trade-off effect, the complexity of the model can
be lowered, thus producing more positive classifications.

Accuracy score is observed to be sufficiently high in all tests, reaching just below 80%
at its lowest when using a 90% positive rate in the training set. By keeping the proportion of
positive instances below 50%, an accuracy of at least 90% can be achieved. The accuracy
does seem to suffer some from smaller training set sizes, still the difference is marginal,
according to the tests.

Run-time performance of C4.5 is acceptable using even the largest test set as training
set, never exceeding 1.5 minutes.

4.1.4 k-Means clustering
This algorithm stands out as it is used for cluster analysis, as opposed to classification. As
such it is hard to compare it against the other algorithms. k-Means clustering is, neverthe-
less a well performing algorithm in its own domain. Our tests show that the model can be
used to successfully produce distinguishable clusters of data.

It would have been interesting to evaluate the algorithm for other values of k, but as
it turns out, it is hard to define a desirable result for such an evaluation. Without a pre-
determined outcome, there is no way of knowing if the clusters produced are relevant or
not. It is, however, possible to determine the internal variation within a cluster, but such

50

4.1 P C

a measure does only tell how homogeneous a cluster is when compared to other clusters
created at the same time. An external measure would require comparison of the results
against a set of manually created clusters, which would be distinct in some way.

The run-time performance when performing cluster analysis is very good. Hundreds of
iterations was completed in seconds when the model was applied using training sets con-
taining thousands of instances. While the algorithm is guaranteed to converge eventually,
it is sometimes practical to limit the number of iterations. During these tests the number of
iterations were limited to 200, although the algorithm often managed to converge in 1-10
cycles.

4.1.5 ROC graph
All three classification algorithms are depicted side by side in the ROC graph in Figure 4.1.
However, the curves in the graph are not actual ROC curves, but are instead a series of
connected points in ROC space, depicted for each algorithm, respectively. This is the case
as all three classifiers output discrete classes instead of numeric scores or probabilities,
which is required for producing a true ROC curve. Thus, the curves should not be viewed
for comparison, instead they depict the relative performance between different measures
of the individual algorithms. For instance, the curve that represents the k-NN algorithm
shows that this model is very conservative for all measures, staying at a low false positive
rate as the true positive rate increases. C4.5, on the other hand makes less of a sharp turn,
which shows that there is more of a trade-off between the true positive rate and the false
positive rate when the algorithm performs optimally.

Although the curves should not be viewed for comparison, the optimal points can be
compared. The optimal points on the curves are the measures that lie closest to the up-
per left corner of the graph, hence they should have higher accuracy, according to the
ROC. The optimal points can be compared between the models as they represent the best
measurement of performance produced during the evaluations for the different models,
respectively. The optimal points in ROC space are surrounded by circles in the graph.

As can be seen in the graph, the C4.5 model has its optimum closest to the upper-left
corner. The distances between the upper-left corner and the optimum points, respectively,
are listed as follows:

C4.5 distance: 0.093 k-NN distance: 0.125 FSC distance: 0.194

The curve for FSC was created using different measures of the algorithm produced
by varying the itemset size used during classification. For k-NN, different measures were
produced for varying values of k. It should be noted that classification results for k-NN
were evaluated using only a fraction of the full test set, as performing classification on the
full test set would have been overly expensive with respect to time. The other models were
evaluated using the full test set, hence it might not be an entirely fair comparison between
k-NN and the other models. The C4.5 curve was produced using training sets with varying
proportion of positives.

Finally an AUC score is presented for each algorithm in Table 4.1. The AUC scores
were computed by using the trapezoidal Riemann sum approximation.

51

4. D

Figure 4.1: The supervised learning algorithms plotted in ROC
space.

Algorithm AUC Grade
C4.5 0.987 A (outstanding)
k-NN 0.938 A (outstanding)
FSC 0.860 B (excellent/good)

Table 4.1: AUC scores.

52

Chapter 5
Conclusion

Current recommendation engines are typically built using machine-learning techniques
and the results provided by this project show that relevant customer predictions can be
made using common algorithms. In this thesis, four common off-the-shelf machine-learning
algorithms have been evaluated. Three of the algorithms belong in the domain of su-
pervised learning, and one in the domain of unsupervised learning. The algorithms that
belong among the supervised learners have been measured with respect to performance
of accuracy, relevancy of results, and run time using real-world data. The unsupervised
learner was tested for its ability of producing distinguishable clusters.

5.1 Algorithm for recommendation engine
The supervised learner models show a lot of promise as a direct method of identifying
new potential customers. A classifier algorithm can be trained using a set that contains
existing customers, and be applied on a large set of various companies, to classify suitable
prospects.

The FSC algorithm shows some promise with respect to accuracy, but the model suffers
from lack of complexity, resulting in matches of low relevance. Tests show that the main
drawback of FSC is its tendency of having very high bias, causing an evident underfit when
applied on large sets of data. FSC is traditionally not counted as a full-fledged machine-
learning algorithm, but its simplicity and apparent use in data mining makes it a suitable
starting point when entering into the domain of machine learning.

k-Nearest neighbors is simple to implement, easy to understand, and shows great per-
formance in most evaluated areas. However, the model suffers from being computationally
expensive when applied on large sets of data. Hence, it becomes impractical in a real-world
scenario where classification needs to be performed on a country-wide company database.

Among the evaluated classifiers, C4.5 decision trees shows the most promise. It is fast
and accurate, as well as producing matches of high relevancy. The main issue with the

53

5. C

model is its tendency of high variance, which might cause overfitting of the data. For-
tunately, our tests show that variance can be decreased by using a higher proportion of
positives in the training set (at a small cost of precision). During the evaluation, it was
found that there exists an apparent trade-off effect between achieving high precision and
high recall. Nevertheless, this trade-off can be easily controlled by proper balancing of the
training sets.

A possible use of k-means clustering is to apply the model on sets of existing customers
for identifying homogeneous segments. These segments can then be examined with the
purpose of identifying relationships to other segments of existing customers. Using these
relationships, it is possible to predict members of the associated segments, as possible new
customers.

5.2 Future work
The k-NN learner has the property of being easily parallelized. If this property could be
properly exploited, the algorithm may prove to be useful in practice. Current techniques
for massively parallel execution on GPUs or distributed cloud computing might emerge as
possible solutions.

Regarding decision trees much can be done in order to improve performance. High
variance can be countered using tree pruning methods, intended to simplify the structure
of the tree. Other methods involve ensemble learning, where multiple decision trees can be
trained in parallel and used for classification by means of tree majority voting. Ensemble-
learning techniques such as, e.g., random forest, and AdaBoost have been proven to in-
crease accuracy (Freund and Schapire, 1999).

Finally, there are various other machine-learning algorithms available. More advanced
models, such as neural networks (NN), and support vector machines (SVM) often have su-
perior performance compared to simpler models. However, they are harder to implement
and harder to understand. NN and SVM are often viewed as black-box algorithms using
complex self learning structures which are hard to interpret from the outside. Neverthe-
less, they might be worth looking into when implementing an advanced recommendation
engine.

54

Bibliography

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules. In
Proceedings of the 20th International Conference on Very Large Data Bases, pages 487-
-499, Santiago, Chile.

Arthur, D. and Vassilvitskii, S. (2006). How slow is the k-means method? In Proceedings
of the twenty-second annual symposium on Computational geometry, pages 144--153,
Sedona, Arizona, USA. ACM New York.

Bayes, T. and Price, R. (1763). An essay towards solving a problem in the doctrine of
chances. by the late rev. mr. bayes, communicated by mr. price, in a letter to john canton,
m. a. and f. r. s. Philosophical Transactions of the Royal Society of London, 53(0):370-
-418.

Buö, D. and Kjellander, M. (2014). Predicting customer churn at a swedish crm-system
company. Master's thesis, Linköpings Universitet.

Chmielewski, M. R. and Grzymala-Busse, J. W. (1996). Global discretization of continu-
ous attributes as preprocessing for machine learning. International Journal of Approxi-
mate Reasoning, 15(4):319--331.

Coates, A. and Ng, A. Y. (2012). Learning feature representations with k-means. In
Neural Networks: Tricks of the Trade, volume 7700, pages 561--580. Springer Berlin
Heidelberg.

Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13(1):21--27.

Domingos, P. (2000). A unified bias-variance decomposition. Technical report, Depart-
ment of Computer Science and Engineering, University of Washington, Seattle.

Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8):861-
-874.

55

BIBLIOGRAPHY

Forgy, E. W. (1965). Cluster analysis of multivariate data: Efficiency versus interpretabil-
ity of classification. Biometrics, 21(3):768--769.

Freund, Y. and Schapire, R. E. (1999). A short introduction to boosting. Journal of
Japanese Society for Artificial Intelligence, 14(5):771--780.

Geurts, P. (2002). Contributions to Decision Tree Induction: Bias/Variance Tradeoff and
Time Series Classification. Doctoral thesis, University of Liege Belgium.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell System
Technical Journal, 29(2):147--160.

Hastie, T., Tibshirani, R., and Friedman, J. (2013). The Elements of Statistical Learning.
Springer Science and Business Media.

Hunt, E. B., Marin, J., and Stone, P. J. (1966). Experiments in induction. Technical report,
University of Michigan.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical
Learning: with Applications in R. Springer Science & Business Media.

Kostojohn, S., Johnson, M., and Paulen, B. (2011). CRM Fundamentals. Apress.

Lantz, B. (2013). Machine Learning with R. Packt Publishing Limited.

Legendre, A.-M. (1805). Nouvelles méthodes pour la détermination des orbites des
comètes [new methods for the determination of the orbits of comets]. Paris: F. Didot.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707--710.

Lloyd, S. P. (1982). Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129--136.

Lundalogik AB (2015). www.lundalogik.se. http://www.lundalogik.se. Ac-
cessed: 2015-02-04.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate
observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability, pages 281--297. University of California Press.

Nugues, P. (2010). An Introduction to Language Processing with Perl and Prolog. Springer
Publishing.

Orlando, S., Palmerini, P., and Perego, R. (2001). Enhancing the apriori algorithm for
frequent set counting. Lecture Notes in Computer Science, 2114(8):71--82.

Pazzani, M. J. and Billsus, D. (2007). The Adaptive Web. Springer Berlin Heidelberg.

Peel, J. and Gancarz, M. (2002). CRM Redefining Customer Relationship Management.
Digital Press.

56

http://www.lundalogik.se

BIBLIOGRAPHY

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81--106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers.

Tan, P.-N., Steinbach, M., and Kumar, V. (2006). Introduction to Data Mining. Pearson
Addison Wesley.

Ungar, L. H. and Foster, D. P. (1998). Clustering methods for collaborative filtering. In
AAAI Technical Report WS-98-08, pages 114--129, Madison, Wisconsin, USA. AAAI
Press.

Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research, 10(1):207--244.

57

BIBLIOGRAPHY

58

Appendices

59

Appendix A
List of Attributes

61

A. L A

Attribute Type Description
1 id discrete Internal identification number
2 postalzipcode discrete Postal code
3 postalcity discrete City name
4 visitzipcode discrete Postal code
5 visitcity discrete City name
6 municipalitycode discrete Municipal code
7 municipality discrete Municipality name
8 countycode discrete County code
9 county discrete County name
10 postalcountrycode discrete Country code
11 worksitestatuscode discrete Work site status code
12 worksitestatus discrete Work site status, e.g., “active”
13 worksitestypecode discrete Work site type code.
14 worksitetype discrete Work site type, e.g., “headquarters”
15 worksitecount continuous No of physical work site locations
16 lineofbusinesscode discrete Line-of-business code
17 lineofbusiness discrete Line-of-business name
18 legalformcode discrete Legal-form code
19 legalform discrete Legal-form, e.g., “Joint-stock company”
20 employeecountworksitecode discrete No of employees at work sites code
21 employeecountworksite discrete No of employees at work sites (intervals)
22 employeecounttotalcode discrete No of employees code
23 employeecounttotal discrete No of employees (intervals)
24 sharecapital continuous Financial amount
25 turnoverrange empty Empty for all records in data
26 visitcountrycode discrete Country code
27 rating discrete Financial credit raiting
28 employeecount empty Empty for all records in data
29 turnover continuous Financial amount
30 turnoverperemployee continuous Financial amount
31 turnoverrangecode empty Empty for all records in data
32 financialinfodividends continuous Financial amount
33 financialinfoequityratio continuous Financial rate
34 financialinfoquickratio continuous Financial rate
35 financialinforesultbeforetax continuous Financial amount
36 financialinfodividends continuous Financial amount
37 financialinfosalariesboardmembers continuous Financial amount
38 financialinfosalariesothers continuous Financial amount
39 financialinfoturnovergrowth continuous Financial amount
40 financialinfonumberofemployees continuous Financial amount
41 financialinfonumberofsubsidaries continuous Financial amount
42 basicinfototalturnover continuous Financial amount

Table A.1: List of attributes in the test data.

62

Results show that software sales tools can predict potential new customers using
well-known machine-learning algorithms such as: k-nearest neighbors, C4.5 decision
tree induction, and k-means clustering, provided that there is enough data available.

Today, there is a demand for automated procedures
for predicting future customers using recommenda-
tion engines in the customer relationship management
(CRM) market. Imagine you are in sales and you are
getting suggestions on possible new customers in the
same way that Netflix recommends movies and Spotify
helps you find new songs and genres. Machine-learning
techniques are behind these high quality recommenda-
tions that derive deep insights from large amounts of
past customer data. Such techniques can benefit most
users of CRM systems, provided that they have gathe-
red enough data to train models so that they can make
accurate predictions on their customers. Our results
show that relevant prospects can be extracted using off-
the-shelf algorithms such as decision trees and k-means
clustering.
 The purpose of CRM is to help companies better ma-
nage their customers, present and future. It is an overall
strategy for finding promising prospects and keeping ex-
isting customers by collecting and refining information
about individual companies and learning their behavi-
ors and needs. In today’s expanding CRM market, there
is a demand for automated procedures that can be used
for customer prospecting. There are already functions
commonly available for finding “twins”, i.e., possible
customers that are similar to existing customers, and for
browsing through lists of customers partitioned into ca-
tegories such as locations or lines of business. In the near
future, computer algorithms will enable systems to au-
tomatically suggest prospects that have a high potential

for becoming profitable customers. Such systems need
a recommendation engine for making predictions on
which companies are relevant.
 Current recommendation engines are typically built
using machine-learning techniques and the results
provided by this project show that relevant customer
predictions can be made using common algorithms.
During the project, an array of machine-learning algo-
rithms were evaluated using measures of accuracy and
relevancy of the data predicted. Using a decision tree
classifier based on the C4.5 algorithm we showed that
a manageable number of similar customers can be pre-
dicted, provided there is a sufficiently large number of
existing customers to train on. However, observations
show that there is a trade-off effect between getting high
precision of relevancy and getting a large number of pre-
dictions. This trade-off can nevertheless be controlled
by adjusting the complexity of the model. By decreasing
the number of existing customers in relation to the pro-
portion of non-customers in the training set, the model
will obtain a higher bias, thus shifting the predictions
toward being greater in number and of having less rele-
vance. This can sometimes be desirable when targeting
new customers more aggressively. Also, by performing
k-means cluster analysis on the set of existing customers,
homogeneous groups of customers can be identified. By
storing the relationships between commonly occurring
clusters of existing customers, new companies can be
given recommendations based on these relationships.

EXAMENSARBETE Machine-Learning Techniques for Customer Recommendations

STUDENT Felix Glas

HANDLEDARE Pierre Nugues (LTH), Peter Wilhelmsson (Lundalogik)

EXAMINATOR Thore Husfeldt (LTH)

Recommendation Engines in Customer
Relationship Management Systems
POPULÄRVETENSKAPLIG SAMMANFATTNING Felix Glas

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2015-06-04

	2015-17 Framsida
	Tom sida
	2015-17 Rapport
	2015-17 Rapport
	Introduction
	CRM
	Recommendation Engine
	Machine Learning
	Supervised learning
	Unsupervised learning

	Data Requirements
	Previous Work
	Summary of Contributions

	Approach
	Finding Potential New Customers
	Analysis of Existing Algorithms
	Evaluation Method
	Confusion matrix
	Accuracy and error rate
	Precision and recall
	Bias-Variance trade-off
	Visualizing performance trade-offs

	Implementation

	Evaluation of Algorithms
	Data Preparation
	Labeling
	Continuous attributes

	Frequent Set Counting using Apriori
	Implementation
	Performance evaluation

	k-Nearest Neighbors
	Implementation
	Performance evaluation

	Decision Tree Induction using C4.5
	Implementation
	Performance evaluation

	k-Means Clustering
	Implementation
	Performance evaluation

	Discussion
	Performance Comparison
	Frequent set counting using Apriori
	k-Nearest neighbors
	C4.5 decision tree
	k-Means clustering
	ROC graph

	Conclusion
	Algorithm for recommendation engine
	Future work

	Appendix List of Attributes

	Tom sida
	2015-17 Popvet

