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Abstract 

The main goal with this thesis was to investigate the possibility to reduce the number of 

blades in a high pressure gas turbine row. The reason for this study was the interest to 

reduce the amount of cooling air needed within the blade row by reducing the wetted 

area, hopefully without losing efficiency. Another reason for reducing the number of 

blades was to reduce the costs. 

 

A new design of an uncooled scaled model blade for a first stage blade row in a modern 

industrial gas turbine was developed. The design process mixed a combination of new 

ideas and more proven design principles of Siemens Industrial Turbomachinery AB. 

The new blade row was designed so it would fit in the existing test turbine at the Royal 

Institute of Technology in Stockholm.  

 

This new blade row containing 50 blades was then compared to the existing BC7M 

blade row which has 60 blades. By the use of Siemens in-house codes beta2, MAC1, 

Multall and Cato such parameters as efficiency, Zweifel coefficient, degree of reaction 

and losses were studied. 

 

The final design of the new blade resulted in a reduction of the blades combined wetted 

area by 9320 mm
2
 or 9.7 %, this without losing more than 0.12 percentage efficiency 

from 92.02 % to 91.90 % according to the Multall results. According to the beta2 results 

the efficiency increased with 0.16 percentage from 92.03 % to 92.19 %. The profile 

hub-section area has though decreased by 1276 mm
2
 or 20.4 % which means that this 

extra uncovered platform wetted area on the rotor may need cooling. 

 

Even though these numbers appear to be good, some problem has to be solved before 

being able to manufacture this new blade row, e.g. the stagnation point at the leading 

edge, especially at the tip-section occurs on the pressure side. This will not be a problem 

for this uncooled model. However in case of a cooled full scale design, the shower head 

cooling at the leading edge will end up on the suction side, which may result in an 

overheated pressure side. Of course a structural analysis should be done as well. 
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1 Introduction 

 

1.1 Background 

During the last decades, international expertise in larger companies has driven gas 

turbine development towards reducing the number of blades on the rotor disc. This in 

order to decrease the cooling air needed and also reduce costs. 

 

It is of high interest for a world leading company as Siemens to continue to be in the 

forefront of gas turbine development, this since the customers make huge investments 

when buying a gas turbine worth millions of Euros. A small improvement in efficiency 

might be crucial to whether a contract is concluded or not. The main reason to have 

fewer blades is that the amount of cooling air needed can be significantly reduced, since 

the wetted area decrease. Fewer blades will also lead to savings opportunities in 

material costs, which will give opportunities for SIT to reduce the price of a gas turbine 

to be more competitive. 

 

Together with the Royal Institute of Technology (KTH), SIT wishes to get some test 

data for a rotor disc with fewer blades. However before it is even possible to 

manufacture a blisc containing fewer blades, SIT has to do a theoretical analysis and 

then design an aerofoil that can be used.  

1.2 Objective 

The objective will be to find out how the efficiency will vary when reducing the number 

of blades. Another objective will be to develop a new aero-design of a blade that can be 

tested later in the KTH test turbine. 

1.3 Method 

To investigate how the losses will be affected by a rotor with fewer blades, a profile loss 

study will be carried out to determine how losses vary with the pitch for the same 

profile geometry. A number of calculations will be made on a turbine cascade 

containing a blade row with 60 blades (BC7M). The BC7M is an uncooled model of a 

blade in the first stage of a high pressure turbine. Then the main work will be to design 

a new blade (B50) that is optimized at a higher loading, which will be the case when the 

blade row consists of fewer blades (50pcs). Many parameters will then be analysed both 

as 1D-results and as radial distributions. The main focus will be to study some loss 

parameters to find out how these affects the efficiency. To be sure that the parameters 

that will be analysed are comparable for BC7M and the new profile, some stage 

parameters will be analysed to make sure that they are unchanged. 
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1.4 Limitations 

This report will have its main focus on the aerodynamic part of designing blades. In 

other words, no greater efforts will be put on the strength of materials and hence no 

structural analysis will be performed. However there will be some smaller explanations 

about it where the author thought that it is of importance for the understanding. The 

designing process is limited by the existing test turbine, which means that the blade 

profile must fit in that turbine. No economic analysis will be performed. No 

improvements of the in-house codes used at Siemens will be made by the author. The 

analysis will be for stationary cases, no transient consideration will be taken into 

account due to that the programs that will be used do not offer the opportunity to run 

transient cases.  
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2 Theory 

 

2.1 Basic gas turbine principles 

Today gas turbines exist in many different applications worldwide. There are two main 

applications for gas turbines, as engine for aircrafts or in electrical power generation. 

An aircraft engine creates net thrust either by using a high velocity out from the gas 

turbine or using a high mass flow rate. The other alternative is the power generation 

applications where power is generated by a generator, making use of the rotational 

speed of the turbine shaft. This thesis is about the latter alternative.  

 

The terms simple cycle and combined cycle is often used in the gas turbine industry to 

explain which application the gas turbine will be used in. The combined cycle is when a 

steam cycle is connected to the gas cycle. This application is useful when both power 

and heat are required. When there is no steam cycle connected to the exhaust gas from 

the gas cycle, the cycle is called a simple cycle. From a simple cycle only power is 

extracted. This one is illustrated in Figure 1. 

 

To explain the thermodynamics in a gas turbine, the ideal open gas cycle will be used. 

This one is illustrated in Figure 2 where the numbers are related to the numbers in 

Figure 1. First air enters the compressor at point one and is isentropic compressed from 

one constant pressure to another constant pressure, and also to a higher temperature 

level at point two. Then the compressed air enters the combustion chamber where fuel is 

injected. Under constant pressure the gas composition is now heated up to a higher 

temperature level to point three. Under isentropic relation the gas composition is 

expanded through the turbine to point four which has an atmospheric pressure if the 

cycle is open, which is the case in Figure 1. If the turbine cycle were closed the gas 

would be cooled down under constant pressure. This closed cycle is called the Brayton 

cycle and is mainly used in steam cycles and is not so common in gas turbine 

applications. (Cengel & Boles, 2011, pp. 503-504) 
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Figure 1: Simple gas turbine cycle 

 

 

Figure 2: T-s diagram for the closed ideal cycle (Brayton cycle) and the open ideal cycle. 
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2.2 Turbine parameters 

2.2.1 Turbine efficiency 

The turbine efficiency can be defined in many different ways, isentropic total-to-static 

and isentropic total-to-total efficiency. The isentropic efficiency is defined as the actual 

work done compared to the isentropic (ideal) work done.  

 

The first efficiency mentioned above is commonly used when the stage exit kinetic 

energy can be used in the next stage or as a propulsive jet in an aircraft engine. The 

second one is used when the kinetic energy cannot be used as mentioned above. It can 

be said that since the total-to-total efficiency in addition to the internal losses in terms of 

increasing entropy also counts the remaining kinetic energy as a loss, the total-to-total 

efficiency will always be greater than the total-to-static efficiency. (Denton, 2012, p. 18) 

 

For a turbine the isentropic total-to-total- and total-to-static efficiency can be written as:  

 

 
𝜂𝑡𝑡 =

ℎ0
∗ − ℎ2

∗

ℎ0
∗ − ℎ2,𝑖𝑠

∗  (1) 

 

 
𝜂𝑡𝑠 =

ℎ0
∗ − ℎ2

∗

ℎ0
∗ − ℎ2,𝑖𝑠

 (2) 

 

2.2.2 Euler work equation 

In a turbine, the work is done by a fluid on the rotor blade. This work can be determined 

by the equation called the Euler work equation and the derivation will be presented in 

this section. The Euler work equation has been derived numerous of times in different 

literature. The following approach is according to (Denton, 2012, p. 7), (Mikaillian, 

2012, pp. 4-5) and (Anton & Wiberg, 2013, pp. 22-23). 

 

The work done in a turbine can be expressed as the tangential velocity change over the 

blade row. According to Newton’s second law of motion, the torque done by the rotor 

on the fluid can be written as the change of angular momentum in a row of blades as 

follows: 

 

 𝜏 = 𝑚̇ ∙ (𝑟2 ∙ 𝑐𝜃2 − 𝑟1 ∙ 𝑐𝜃1) (3) 

 

The power output can be expressed as the product of the torque and the angular 

velocity: 

 

 𝑃 = 𝜏 ∙ 𝜔 (4) 

 

The angular velocity can be expressed as 𝜔 = 𝑈/𝑟, where U is the blade speed. By 

combining Equation (3) and (4) the following expression can be stated: 

 

 𝑃 = 𝑚̇ ∙ (𝑈2 ∙ 𝑐𝜃2 − 𝑈1 ∙ 𝑐𝜃1) (5) 
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By dividing with the mass flow, the specific work is obtained in Equation (6). This 

equation is the equation that normally is called the Euler’s turbomachinery equation. 

  

 𝑤𝑠 = 𝑈2 ∙ 𝑐𝜃2 − 𝑈1 ∙ 𝑐𝜃1 (6) 

 

This equation shows the specific work done by the rotor on the fluid, which gives a 

positive work in a compressor, and a negative work in a turbine. To get a positive 

specific work in a turbine the sign is just changed: 

 

 𝑤𝑠,𝑡𝑢𝑟𝑏𝑖𝑛𝑒 = 𝑈1 ∙ 𝑐𝜃1 − 𝑈2 ∙ 𝑐𝜃2 (7) 

 

2.2.3 Mollier diagram 

In the Mollier diagram (enthalpy-entropy diagram), see Figure 3, the stagnation 

enthalpy drop can be seen. The specific work done by the stage, assuming that the stage 

is adiabatic can be written as the stagnation enthalpy drop over the stage. 

 

 𝑤𝑠 = Δℎ∗ = h0
∗ − ℎ2

∗  (8) 

 

Since no work is done in the stator (assuming no cooling air): 

 

 ℎ1
∗ = ℎ0

∗  (9) 

 

Thus 

 

 𝑤𝑠 = ℎ1
∗ − ℎ2

∗  (10) 

 

 

Figure 3: Mollier diagram describing a turbine expansion. Based on (Korpela, 2011) 
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2.2.4 Total-to-total isentropic efficiency 

Often stagnation temperatures and stagnation pressures are known from various 

calculation programs. Hence it might be a good idea to develop a more useful 

expression of the efficiency. The total-to-total isentropic efficiency can be written as 

mentioned in Equation (1). By assuming a perfect gas the stagnation enthalpy can be 

written as: 

 

 ℎ∗ = 𝑐𝑝 ∙ 𝑇∗ (11) 

 

Thus the total-to-total isentropic efficiency can be written as: 

 

 
𝜂𝑡𝑡

∗ =
ℎ0

∗ − ℎ2
∗

ℎ0
∗ − ℎ2,𝑖𝑠

∗ =
𝑐𝑝(𝑇0

∗ − 𝑇2
∗)

𝑐𝑝(𝑇0
∗ − 𝑇2,𝑖𝑠

∗ )
 (12) 

 

Assuming constant 𝑐𝑝 gives: 

 

 
𝜂𝑡𝑡

∗ =
𝑇0

∗ − 𝑇2
∗

𝑇0
∗ − 𝑇2,𝑖𝑠

∗  (13) 

 

The isentropic relation (Saravanamuttoo, Rogers, Cohen, & Straznicky, 2009, p. 56): 

 

 
𝑝2

∗

𝑝0
∗ = (

𝑇2
∗

𝑇0
∗)

𝛾
𝛾−1

 (14) 

 

The total-to-total isentropic efficiency can finally be written as: 

 

 
𝜂𝑡𝑡

∗ =
𝑇0

∗ − 𝑇2
∗

𝑇0
∗ ∙ (1 − (

𝑝2
∗

𝑝0
∗)

𝛾−1
𝛾

)

 

(15) 

 

2.2.5 Relative stagnation pressure for compressible flows 

The relative total pressure is of interest for a blade. In the following section an 

expression of the (relative) stagnation pressure as a function of (relative) Mach number 

and the specific heat for a compressible flow will be derived. 

 

To start with, the stagnation temperature can be written as: 

 

 
𝑇∗ = 𝑇 +

𝑐2

2 ∙ 𝑐𝑝
 (16) 
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By assuming a perfect gas (Saravanamuttoo, Rogers, Cohen, & Straznicky, 2009, p. 

231), the local sonic velocity can be written as: 

 

 𝑎 =
𝑐

𝑀
= √𝛾 ∙ 𝑅 ∙ 𝑇 (17) 

 

By inserting Equation (17) into Equation (16) the following expression is obtained: 

 

 
𝑇∗ = 𝑇 +

𝑀2 ∙ 𝛾 ∙ 𝑅 ∙ 𝑇

2 ∙ 𝑐𝑝
 (18) 

 

The definition of the specific gas constant R and the ratio of specific heats 𝛾 are: 

 

 𝑅 = 𝑐𝑝 − 𝑐𝑣 (19) 

 

 𝛾 =
𝑐𝑝

𝑐𝑣
 (20) 

 

Combining Equation (19) and (20) yields: 

 

 
𝑅 = 𝑐𝑝 −

𝑐𝑝

𝛾
= 𝑐𝑝 ∙ (1 −

1

𝛾
) (21) 

 

Equation (21) can then be simplified to: 

 

 𝑅

𝑐𝑝
= 1 −

1

𝛾
=

𝛾 − 1

𝛾
 (22) 

 

Input of Equation (22) into Equation (18) gives: 

 

 
𝑇∗ = 𝑇 ∙ (1 +

𝛾 − 1

2
∙ 𝑀2) (23) 

 

Or  

 

 𝑇∗

𝑇
= 1 +

𝛾 − 1

2
∙ 𝑀2 (24) 

 

Then by using the isentropic relation in Equation (14), the following equation can be 

written. The relative properties can be chosen if of interest. 

 

 𝑝(𝑟𝑒𝑙)
∗

𝑝
= (

𝑇∗

𝑇
)

𝛾
𝛾−1

= [1 +
𝛾 − 1

2
∙ 𝑀(𝑟𝑒𝑙)

2 ]

𝛾
𝛾−1

 (25) 
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2.2.6 Flow coefficient 

By assuming a fully axial turbine, the flow coefficient is defined as the axial velocity 

over blade speed as follows:  

 

 𝜙 =
𝑐𝑎

𝑈
 (26) 

 

For a non-axial turbine the flow coefficient will be written as the meridional velocity 

over blade speed instead. The meridional velocity can be written as in Equation (27). 

Note that for a fully axial flow the meridional velocity will be equal to the axial velocity 

since the radial velocity is equal to zero. 

 

 𝑐𝑚 = √𝑐𝑎
2 + 𝑐𝑟

2 (27) 

 

By studying the velocity triangles in Figure 5, it can be understood that if the flow 

coefficient is low, the relative angle becomes closer to tangential reference plane, giving 

a blade with higher stagger angle, and vice versa for a high flow coefficient. With the 

assumption that the rotational speed of the blade is constant, the rate of mass flow is 

proportional to the flow coefficient. This gives a relation where an increased flow 

coefficient increases the mass flow as well. (Denton, 2012, pp. 100-101) 

2.2.7 Stage loading 

The stage loading is defined as in Equation (28) and it is an approach to measure the 

work output from the stage. 

 

 
𝜓 =

Δℎ0

𝑈2
 (28) 

 

By assuming an adiabatic and fully axial turbine with constant radius, the Euler work 

equation can be used to rewrite the stage loading as follows: 

 

 
𝜓 =

Δℎ0

𝑈2
=

Δ𝑐𝜃

𝑈
 (29) 

 

Where Δℎ0 = 𝑈 ∙ Δ𝑐𝜃, where Δ𝑐𝜃 represents the turning of the flow through the stage. It 

is clear that for a high loaded stage, the turning of the flow has to be large. A high stage 

loading coefficient will affect the efficiency negatively since these high loaded blades 

will give low reaction and also an increased swirl between the stages (Denton, 2012, p. 

101).  
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2.2.8 Degree of reaction 

The difficulties with the degree of reaction are that there is more than one definition 

used in industry. The degree of reaction is the ratio between the static enthalpy, 

temperature or pressure drop in the rotor and the drop in the whole stage. These three 

definitions are presented in Equation (30) to (32), where Λp, Λh and ΛT are respectively 

based on pressure, enthalpy and temperature. 

 

 Λ𝑝 =
𝑝2 − 𝑝3

𝑝1 − 𝑝3
 (30) 

 

 
Λℎ =

ℎ2 − ℎ3

ℎ1 − ℎ3
 (31) 

 

 
Λ𝑇 =

𝑇2 − 𝑇3

𝑇1 − 𝑇3
 (32) 

 

It is of high importance to be aware of which definition that is used when comparing 

different degree of reactions, since the difference between these may vary by the 

amount of 5-10 % (Moustapha, Zelesky, Baines, & Japikse, 2003, p. 17). The degree of 

reaction will vary at different radii. A higher stagger and less turning of the flow in the 

rotor compared to the stator will give a higher degree of reaction (Denton, 2012, p. 12).  

 

2.2.9 Reynolds number 

Reynolds number is normally defined as the density times the velocity times a 

characteristic length divided by the dynamic viscosity. In turbines the most common 

way according to (Denton, 2012, p. 13) is to define the density and the velocity at the 

blade row exit and using the chord as the characteristic length as follows: 

 

 
𝑅𝑒 =

𝜌2 ∙ 𝑐2 ∙ 𝑏

𝜇
 (33) 

 

At lower Reynolds number the boundary layer will become more and more laminar. 

Laminar boundary layers will be discussed later on. However the main problem with 

them are that they will tend to separate much easier, however in return they will give 

less losses.  

 



11 

2.3 Blade profile design 

2.3.1 Blade notation 

In order to be able to understand the continuation of the report, a turbine blade angle 
and distance notation is shown in Figure 4. 

 

 

Figure 4: Turbine blade angle and distance notation 

2.3.2 Velocity triangles 

At SIT the designers prefer to define the angles from the tangential plane, unlike many 
textbooks that defines angles from the axial plane instead. In Figure 5 the velocity 
triangles of a turbine cascade are presented with both angle notations. As for the degree 
of reaction it is of high importance to make sure which angle notation that is used to 
avoid confusion. 

 

  
(a) (b) 

 

Figure 5: Velocity triangles describing a turbine cascade. Angles defined from (a) axial 
reference plane, (b) tangential reference plane. Based on (Genrup, 2014, p. 14) 
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2.3.3 Blade spacing 

The distance between the blades on the rotor disc depends primarily on how many 

blades that are attached to the rotor disc. The spacing or pitch does also depend on the 

radial position. For example close to the hub, the pitch is small and with increased 

radius the pitch is increased. The equation for the pitch is shown in Equation (34). 

 

 
𝑡 =

2 ∙ 𝜋 ∙ 𝑟

𝑛
 (34) 

 

Where r is the radius and n is the number of blades. 

 

The optimum pitch has to be carefully taken under investigation. Assuming a certain 

number of blades, decreasing the number of blades will then result in a decreased 

viscous loss due to the fact that the friction loss is reduced with decreased wetted area. 

The negative aspect by doing this is that turning of the flow field will be less as a result 

of a decreased guidance from the fewer number of blades. This may also result in a 

higher velocity on the blade suction side surface resulting in a larger diffusion on the 

suction side surface, giving an increased risk of boundary layer separation. The suction 

side diffusion describes the deceleration on the suction side close to the blade. If instead 

the number of blades is increased the guidance will be better resulting in less separation 

loss, however the wetted area is increased which gives higher friction loss. In Figure 6 it 

is illustrated how the losses are affected by the axial solidity which is the inverse of the 

pitch-to-axial chord ratio. 

  

 

Figure 6: Profile loss as a function of axial solidity. Based on (General Electric) 

2.3.4 Zweifel coefficient 

The empirical Zweifel coefficient is a designing parameter which main purpose is to 

find the optimum pitch-to-axial chord ratio and hence the optimum number of blades 

with the lowest losses according the previous discussion in blade spacing section. The 

Zweifel coefficient describes the ratio between the actual and the ideal tangential force 

on a blade. 
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The tangential load on the blade is actually the area between the pressure distribution on 

the suction side surface and the pressure side surface, which is shown in Figure 7. The 

ideal case assumes that the pressure on the suction side surface is constant with no 

diffusion which means that the stagnation pressure line is constant. On the pressure side 

the velocity is assumed to be zero giving that the stagnation pressure is equal to the 

static pressure and constant. (Hodson, 2012, p. 72), (Mikaillian, 2012, pp. 13-14) and 

(Dixon & Hall, 2010, pp. 85-87) 

 

 

Figure 7: Actual and ideal pressure distribution. Redesign of Figure 27 in (Hodson, 2012, 
p. 72) 

With this in mind, the Zweifel coefficient can be written as: 

 

 
𝑍𝑊 =

𝑚̇ ∙ (𝑐𝜃2 − 𝑐𝜃1)

(𝑝01 − 𝑝2) ∙ 𝐵 ∙ 𝐻
 (35) 

 

Where ṁ is the mass flow, B is the axial chord and H is the blade height. 

 

By assuming incompressible and loss free flow the following relation can be written: 

 

 
𝑝01 − 𝑝2 =

1

2
∙ 𝜌 ∙ 𝑐2

2 (36) 

 

And the assumption that the axial velocity is constant gives: 

 

 𝑚̇ = 𝜌 ∙ 𝐻 ∙ 𝑡 ∙ 𝑐𝑎 (37) 

 

Then Equation (35) can be simplified as: 

 

 
𝑍𝑊 =

𝜌 ∙ 𝐻 ∙ 𝑡 ∙ 𝑐𝑎 ∙ (𝑐𝜃2 − 𝑐𝜃1)

1
2 ∙ 𝜌 ∙ 𝑐2

2 ∙ 𝐵 ∙ 𝐻
 (38) 
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By looking in the velocity triangles in Figure 5a, it can be seen that: 

 

 𝑐𝜃 = 𝑐𝑎 ∙ tan 𝛼 (39) 

 

And 

 

 𝑐2 = 𝑐𝑎 ∙ sec 𝛼 = 𝑐𝑎 ∙ 1/ cos 𝛼 (40) 

 

This gives that: 

 

 
𝑍𝑊 =

2 ∙ 𝑡 ∙ 𝑐𝑎
2 ∙ (tan 𝛼2 − tan 𝛼1)

𝑐𝑎
2 ∙ 1/ cos2 𝛼2 ∙ 𝐵

 (41) 

 

More simplified: 

 

 
𝑍𝑊 = 2 ∙

𝑡

𝐵
∙ cos2 𝛼2 ∙ (tan 𝛼2 − tan 𝛼1) (42) 

 

In an empirical way, Zweifel decided that the Zweifel coefficient giving the lowest 

profile loss was approximately 0.8. This is true for turbines with a flow outlet angle of 

60-70 degrees (Dixon & Hall, 2010, p. 86). In modern low pressure turbines, the 

development has gone towards an increased value for the Zweifel coefficient, especially 

in the aviation industry where the weight of the engine is of great importance. An 

increased Zweifel coefficient gives the opportunity to reduce the number of blades and 

hence the weight. 

 

Equation (42) is according (Moustapha, Zelesky, Baines, & Japikse, 2003, p. 20) 

defined from the axial plane. As mentioned before Siemens prefer to define all angles 

from the tangential plane instead. In Figure 8 the angles are presented using both 

Moustaphas definition from the axial plane and from the tangential plane according to 

Siemens in Finspång. Some geometrical relations that can be seen in Figure 8 are stated 

below: 

 

 tan 𝛽1,𝑥 =
𝑤𝜃1

𝑐𝑥
= cot 𝛽1,𝜃 (43) 

 

 tan 𝛽2,𝑥 =
𝑤𝜃1

𝑐𝑥
= cot 𝛽2,𝜃 (44) 

 

 cos 𝛽2,𝑥 =
𝑐𝑥

𝑤2
= sin 𝛽2,𝜃 (45) 
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Figure 8: Velocity triangles with angle notation from both axial and tangential plane. 

This gives the Zweifel coefficient with angles defined from the tangential plane. 

 

 
𝑍𝑊𝐼 = 2 ∙

𝑡

𝐵
∙ (cot 𝛽1 + cot 𝛽2) ∙ sin2 𝛽2 (46) 

 

Another equation that will be used to determine the Zweifel coefficent is shown below 

in Equation (47). 

 

 
𝑍𝑊𝐼𝐼 =

𝜌2𝑠2𝑐𝑚2(𝑤𝜃,1 − 𝑤𝜃,2)

𝐶𝑎𝑥 (𝑝1
∗ − 𝑝2)

 (47) 

 

2.3.5 Velocity distribution 

The pressure distribution was discussed in the previous chapter.  It is now appropriate to 

study one of the most important parameter that is used when profiling blade geometry, 

the velocity distribution. This since the velocity at the blade surface describes how the 

boundary layers are built up and hence how large the losses will be (Hodson, 2012, p. 

49). There are normally two approaches that the velocity distribution can be shown 

graphically, either by having axial position or s/smax on the x-axis, where s/smax is the 

non-dimensional surface length. Both ways of describing the velocity distribution is 

shown in Figure 9. Note that both pictures are schematic ones however they are 

representing the same case. 
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(a) (b) 

Figure 9: Velocity distribution with (a) s/smax and (b) axial position on the x-axis. 

  
(a) (b) 

Figure 10: Velocity distribution for (a) front-loaded and (b) aft-loaded blade. Based on 
(Denton, 2012) 

 

The upper side (the convex side) of a turbine blade is called the suction side since the 

pressure is lower on this side compared to the other side and will be denoted with SS in 

the following part of the report. The other side is called the pressure side since the 

pressure is higher on this side compared to the SS and will be denoted PS. Two more 

abbreviations will be used in this chapter, the leading edge and trailing edge will be 

denoted LE and TE respectively.  

 

The profile loss varies with the velocity to the power of two for laminar boundary layers 

and the velocity to the power of three for turbulent boundary layers. Hence on the SS, 

approximately 80 % of the profile losses occur since the velocity is higher on the SS 

compared to the PS. Therefore the main focus for an engineer is to aerodynamically 

design this one correct. The most crucial part on the SS is the deceleration from the 

velocity peak to the TE, since a too large diffusion can give rise to a boundary layer 

separation. If this boundary layer separation occurs not too close to the trailing edge, the 

laminar boundary layer will be able to reattach as turbulent boundary layer before the 

TE, creating a separation bubble. However if boundary layer separation occurs close to 
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the TE, there might be a risk of having a boundary layer separation that will not be able 

to reattach. This will cause the losses to increase rapidly. 

 

The PS of the velocity distribution will be of less importance from an aerodynamic 

point of view. Hence the aerodynamicist chooses to optimize the SS surface, and then 

let other aspects affect the PS design e.g. in a cooled blade there has to enough space in 

the aerofoil for the cooling air. The blade cannot be too thin due to the risk of having 

too high material stress levels. 

 

A blade can be said to be front-, mid-, or aft-loaded. The front- and aft-loaded profiles 

will be discussed below. The mid-loaded profile is then somewhere in between the 

front- and aft-loaded profiles. 

 

The turning of the flow creates the pressure gradient on both the SS surface and the PS 

surface. 

 

2.3.5.1. Front-loaded 

The area between the SS and PS velocity distribution is simply the blade loading. 

Higher blade loading will be needed when having fewer blades. By having a fast and 

early acceleration on the SS surface it is possible to obtain this. The velocity profile for 

a front-loaded blade is shown in Figure 10a. 

 

2.3.5.2. Aft-loaded 

For an uncooled aft-loaded profile the surface distance with laminar boundary layer is 

longer than for a front-loaded profile due to the longer acceleration which gives thinner 

boundary layer.  A thin boundary layer give less losses since the area with shear stresses 

becomes smaller. Another reason for having  an aft-loaded profile is that the secondary 

losses becomes smaller since the pressure gradient is lower close to the leading edge 

where most of the secondary losses is created by this pressure gradient. If the profile is 

film cooled the film cooling at the leading edge will trigger transition to turbulent 

boundary layer. Then it is more important to keep the velocity peak low since the 

profile loss depends on the velocity to the power of three for turbulent boundary layers. 

For laminar boundary layers the loss depends on the velocity to the power of two 

instead. The velocity profile for an aft-loaded blade is shown in Figure 10b. 

 

2.3.5.3 Laval and Mach number 

In the report both Mach and Laval distributions will be presented. Hence the two 

definitions will be described.  

 

The Mach number is defined as the local speed over the local speed of sound. 

 

 𝑀 =
𝑐

𝑎
 (48) 

Where 

 

 𝑎 = √𝛾 ∙ 𝑅 ∙ 𝑇 (49) 
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The Laval number is defined as the local speed over the critical speed of sound. 
 
 𝜆 =

𝑐

𝑎∗
 (50) 

 
Where the critical speed of sound is: 
 
 𝑎∗ = √𝛾 ∙ 𝑅 ∙ 𝑇∗ (51) 

 
The main difference is that the Laval number will refer to the same velocity under all 
circumstances. (Dahlquist, 2008) 
 
An equation that can be used to go from Mach number to Laval number has been 
derived by (Dahlquist, 2008). Note that for Mach number equal to one, the Laval 
number is also one. 
 

 

𝜆 = √
𝛾 + 1

2
𝑀2 + 𝛾 − 1

 (52) 

2.3.6 Diffusion coefficient 

If the diffusion is too large, the flow will separate. One rule that is used to get an 
acceptable diffusion is to use diffusion coefficients. As for many other parameters there 
is more than one definition. The one that will be used in this report is according to 
(Mamaev & Sandymirova, 1995, p. 37): 
 
 

𝐷 =
𝜆𝑚𝑎𝑥

𝜆2
− 1 (53) 

 
Where 𝜆𝑚𝑎𝑥 and 𝜆2 are the maximum isentropic Laval number on the SS and the 
average of the isentropic Laval number after the blade trailing edge. The blade velocity 
distribution should be designed to give a diffusion coefficient lower than a Dopt 
according to (Mamaev & Sandymirova, 1995, p. 38).  
 

 

Figure 11: Optimum diffusion coefficient according to Mamaev. Redesign of Figure 2 in 
(Mamaev & Sandymirova, 1995, p. 38) 

0.1

0.15

0.2

0.25

0.3

0.6 0.7 0.8 0.9 1

D
o
p

t 

Isentropic Laval number, λ2, is 

Mamaev



19 

2.3.7 Incidence 

The induced or design incidence is the angle between the inlet flow and the blade metal 

leading edge angle and is defined as follows: 

 

 𝑖 = 𝛽1,𝑚 − 𝛽1 (54) 

 

If the blade metal angle is larger than the flow inlet angle, the turning of the flow 

becomes greater and the incidence is said to be positive. Hence a negative incidence 

means less turning of the flow. The definition above may vary depending if the angles 

are taken from the axial or tangential direction. Equation (54) is defined from the 

tangential plane. With more positive incidence the stagnation point will move towards 

the pressure side and if the incidence is negative the stagnation point will move towards 

the suction side. In Figure 12 the blade surface velocity effects of positive and negative 

incidence are shown. If the blade is too front-loaded there might be a risk of getting 

velocities above Mach one at high incidence and hence a risk of having a shock wave.  

 

 

Figure 12: Effects of incidence. Redesign of Figure 4.3 in (Moustapha, Zelesky, Baines, & 
Japikse, 2003, p. 99) 

2.3.8 Shape parameter and skin friction coefficient. 

Where the transition point appears will have large effects of the total flow and the 

losses. This effect is hard to scale down. Hence in experiments the user often forces the 

transition to appear at a certain position where it is expected to appear for a full-scale 

airfoil by modifying the surface at this position (Cebeci & Bradshaw, 1977, p. 16). 

 

The shape parameter and the skin friction coefficient can be used to decide if the 

boundary layer is laminar or turbulent. These factors can then be used to find the 

transition point. 
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The shape parameter H is defined as the displacement thickness 𝛿∗ over the momentum 

thickness 𝜃 (Cebeci & Bradshaw, 1977, pp. 17-18): 

 

 
𝐻 =

𝛿∗

𝜃
 (55) 

 

The shape parameter is equal to one when boundary layer is absent. For constant 

pressure flows, normally the boundary layer is turbulent at a shape parameter equal to 

1.2-1.5 and laminar at 2.6 (Cebeci & Bradshaw, 1977, p. 18). At a shape parameter 

equal to 2-3 according to (Cebeci & Bradshaw, 1977, p. 18) there is a risk of having 

turbulent boundary layer separation and at a value of 4 there is a risk of getting laminar 

boundary layer separation. The skin friction coefficient can also be used to decide 

whether the boundary layer is turbulent or laminar and to decide where separation might 

occur. There might be a risk of separation for a skin friction coefficient value less than 

0.0015 for both turbulent and laminar boundary layers. 
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2.4 Losses 

Throughout a turbine many interesting phenomena are happening with the working fluid 

where some of them are creating losses. Four kinds of losses will be presented in this 

section namely the profile, secondary, trailing edge and tip clearance losses. There are 

many correlations describing these losses and a few of them is described by (Dahlquist, 

2008).  In Figure 13, these losses are shown schematically. 

 

 

Figure 13: Turbine losses. (Moustapha, Zelesky, Baines, & Japikse, 2003, p. 32) 

2.4.1 Profile losses 

The profile losses are the losses that occur due to the blade surface skin friction. The 

surface friction is depending on a few parameters such as the roughness, Reynolds 

number, the flow velocity and the size of the wetted area which is the area that is in 

contact with the working fluid (Moustapha, Zelesky, Baines, & Japikse, 2003). The 

annulus losses can be described in the same manner as the profile loss, but instead on 

the endwalls. These losses will depend on the aspect ratio. A lower aspect ratio will lead 

to higher endwall losses (Denton, 2012, p. 17). The velocity on the surface has a big 

impact on the losses due to the fact that the entropy generation is proportional to the 

velocity squared for laminar boundary layer (Miller & Denton, 2012, p. 150). Since the 

velocity is higher on the suction side compared to the pressure side the losses are much 

higher on the suction side. According to (Miller & Denton, 2012, p. 150) the difference 

between the suction side and pressure side may be a factor five. 

 

The profile loss can normally be mentioned as the energy loss (enthalpy) or the Traupel 

loss (enthalpy). The Traupel loss includes a correction factor for the trailing edge loss. 

For a turbine, the pressure loss is defined as the stagnation pressure drop over the 

reference dynamic pressure based on turbine exit values. The energy definition is loss of 

kinetic energy over reference kinetic energy where the loss of kinetic energy is the 

turbine exit enthalpy difference between isentropic and actual expansion. The 

denominator is based on turbine exit values. (Hodson, 2012, pp. 47-48) 
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2.4.2 Secondary losses 

All of the flows that do not follow the main direction are called secondary flows. These 

secondary flows are vortices created by boundary layers and the curvature of the flow 

passage. Multiple vortices that appear at the trailing edge when the flow separates create 

a wake. The two passage vortices that are shown in Figure 14 are created due to the 

boundary layers of the two endwalls and the pressure gradient that exist between the 

two blades.  On all rotors there is a gap between the blade and the casing. Due to the 

pressure difference between the pressure and suction side some fluid will take this way 

instead of performing work on the blade. This will of course act as a loss. Depending if 

the blade is shrouded or unshrouded the tip clearance losses will vary. The tip clearance 

can affect the flow far down on the blade. The tip clearance leakage will form a vortex 

sheet, which is shown in Figure 15. The secondary losses can in worst case stand for 2/3 

of the total loss through a blade row (Moustapha, Zelesky, Baines, & Japikse, 2003, p. 

33). 

 

Figure 14: Secondary losses. (Moustapha, Zelesky, Baines, & Japikse, 2003, p. 41) 
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Figure 15: Tip clearance leakage vortex sheet. Redesign of Figure 15 in (Longley, 2012, p. 
96) 

The horseshoe vortex is built up at the stagnation point close to the blade leading edge. 

Initially the static pressure in the boundary layer is assumed to be constant at an 

arbitrarily distance from the leading edge. In the boundary layer the velocity gradient is 

high, giving a larger stagnation pressure far from the wall and a lower stagnation 

pressure close to the wall. When the flow is approaching the stagnation point the 

dynamic pressure gradually is converted to static pressure until it reaches the wall where 

the flow velocity is zero. The static pressure will then be larger further from the wall 

creating a pressure gradient. The flow will be guided by this pressure field creating a 

vortex (Hedlund, Horseshoe vortex, 2015). This part of building up the horseshoe 

vortex is shown in Figure 16. This vortex will then be split between the pressure and 

suction side of the blade. There are different philosophies of what happens to these 

“legs” of the horseshoe vortex. According to (Sieverding, 1985) Langston says that the 

suction side leg of the horseshoe vortex merges with the passage vortex that is created 

by the boundary layer in the passage due to the pressure gradient. The pressure side of 

the horseshoe leg will act as a counter vortex in the corner of the blade and the endwall. 

This is shown in Figure 17. In the same part of the journal, Sieverding proclaims that 

Klein instead thinks that the suction side of the horseshoe leg will be dissipated close to 

the passage vortex.  
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Figure 16: Horseshoe vortex initialisation 

 

Figure 17: Schematically description of a horseshoe, passage and counter vortex 
according to Langston. (Lampart, 2009, p. 323)  
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3 Computational programs 

 

During this thesis a few in-house codes have been used, Cato, beta2, Multall, MAC1 

and GasTable. All program handles geometry and boundary conditions in different 

ways, which of course will affect the comparison of the results. 

3.1 Common Airfoil Tool (CATO) 

For 2-D profiling of both compressor and turbine blades, the Common Airfoil Tool 

(CATO) is used at Siemens in Finspång. This program uses Bezier polynomials to 

describe the geometry of the profile at each section. This program also includes the 

possibility to use a 2-D Mises and Navier Stokes solver, both which runs fast. This 

program comes with the opportunity to create sections from scratch or by importing 

coordinates. It also features the great possibility to see the whole turbine including 

vanes, blades and channel geometry in a 3-D view. It also produces output files that can 

be used in other in-house codes. 

3.2 Beta2 - 2D through flow solver 

The beta2 is a two dimensional through flow solver that has correlations for some 3D 

effects. The code is based on prof. Mamaev’s correlations. There are many built-in loss 

models that the user can choose between. It also gives the user the opportunity to 

choose if cooling air should be injected or not. Fillets, roughness, clearance are also 

some basic parameters that can be set by the user. It also offers the opportunity to 

decide where the transition point appears or if it should be left to the code to decide. The 

code is as fast as CATO and is therefore very good at an early state of the design 

process. During this thesis only version 2.07.04 is used. 

3.3 Multall - 3D solver 

The Multall solver is developed by Professor John Denton. This code offers the 

opportunity to analyse the 3D effects of the flow in a turbine or compressor. Since this 

is a 3D solver, the calculations take way longer time to complete compared to e.g. 

beta2. The user has to decide what kind of accuracy that is needed to speed up the 

calculation as much as possible. In Multall it is only possible to run with the assumption 

of a perfect gas. Only steady state conditions can be analysed in Multall i.e. a transient 

analysis cannot be done in Multall. Actually Multall by itself does not give any 

visualisation of the results. To visualize the results, the MayaVi Data Visualizer is used. 
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3.4 MAC1 

The MAC1 program is a mean line code. When a beta2 run is done a MAC1 input file is 

created. This very simple program will only be used to analyse the losses.  

3.5 GasTable 

The GasTable v1.9 program will be used to decide the mass fractions of the molecules 

that exist in the air. This program uses the NASA-SP 273 gas table. The molecules that 

are included are sulphur dioxide, water, carbon dioxide, nitrogen, oxygen, argon and 

helium. All other substances in the air are neglected in this program. There is an add-in 

for excel which can be used to get some gas properties e.g. enthalpy if the gas 

composition and some other properties e.g. pressure and temperature are known. 
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4 Method 

 

This thesis has been carried out in several small steps. The approach for each step 

depends on the previous stage results. Therefore the method will be described in 

chronological order with intermediate results during the method. To be able to 

understand which main steps that is included, a short description is presented below. 

 

First of all the boundary conditions for the KTH test turbine will be stated. 

 

Then the former profile BC7M is presented involving the blade geometry, some solver 

parameters and then a run with the Mises solver in Cato followed up with its result. This 

part is of interest since this provides the case that the new profile later will be compared 

to. Another reason for doing this calculation of BC7M is that this has not been fully 

done before.  Also beta2 and Multall setups followed by calculations will be done for 

the BC7M at this part. 

 

The next section will analyse how the profile losses will depend on the number of 

blades i.e. its dependence of the pitch-to-chord ratio. This will be done in two main 

sections, the simplest where the turning of the flow is not kept constant and one where 

the profile is closed or opened to keep the same flow outlet angle and thereby the 

turning of the flow. 

 

The next important step will be when the newer profile B50_v01_03 is designed. This 

profile will have fewer blades than the existing BC7M. How many will be decided in 

the profile loss study. The profiling is a multistep process that will be discussed as 

precisely that is needed to follow the process fairly well. 

 

The new profile will be analysed by running some calculations in beta2, Cato and 

Multall. This will be done with many different approaches. The steps that are going to 

be presented are the following: 

 

 In beta2, B50_v01_03 and BC7M will studied with tip recess.  

 For Multall the above two profiles will be studied with a channel with tip recess. 

 

All these calculations will then be compared to each other to see the differences 

between the profiles. More precise explanation will be presented later on. 
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4.1 Stage boundary conditions 

The boundary conditions for the test turbine were decided by (Anton & Wiberg, 2013) 

during their thesis, and these conditions are still valid and will be used since comparable 

results would be preferable. Since the total-to-static pressure ratio was decided, the total 

inlet pressure and static outlet pressure was set as boundary conditions.  Adjustments 

will though be done. In (Anton & Wiberg, 2013) they had some problems with some 

CFX calculations that prevented them to use an inlet total pressure radial distribution 

that has been derived from experiments. They used a constant total pressure radial 

distribution instead. Since CFX will not be used during this project this experimental 

developed radial total pressure distribution will be used. This total pressure radial 

distribution is shown in Figure 18. A 1D value for the inlet total pressure is shown in 

Table 1. The rotational speed was set to be 10300 rpm instead of 10270 rpm that was 

stated in (Anton & Wiberg, 2013). This due to that they mentioned in their Appendix A 

that it was changed to 10300 for the BC6M. At the inlet the total temperature was set to 

be constant at all radii. Also the turbulence intensity was stated since the KTH test 

turbine has a perforated grid that produces approximately 6 % turbulence intensity at the 

turbine inlet. All these boundary conditions are presented in Table 1. 

 

Figure 18: Turbine inlet total pressure radial distribution 

Table 1: Boundary conditions for the test turbine stage 
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4.2 Existing profile BC7M. 

The BC7M is a manufactured blade profile which will be tested at the KTH test turbine 

in the fall 2015. That profile is very close to the BC6M that was developed during a 

previous master thesis by (Anton & Wiberg, 2013). The BC6M is an uncooled scaled 

model of a cooled modern industrial gas turbine blade. During the upgrade from the 

BC6M to the BC7M done in (Flydalen, 2013), a small velocity peak close to the leading 

edge was removed without any large geometry adjustments. 

 

4.2.1 BC7M - Geometry 

The BC7M has been designed in three radial sections named hub, mid and tip, where 

the hub-section is at the smallest radius and the tip-section at the largest radius. These 

sections have been designed as cylindrical sections. This means that the sections are not 

plain at one radius or in other words the leading edge has one radius and the trailing 

edge has another radius. A three dimensional view of the Cato model is shown in Figure 

19 and the whole blisc containing 60 blades in Figure 20. From the three dimensional 

view it can be worth mentioning that the blade is quite simple.  In Figure 21 the 

geometry for each section is shown. Some section parameters are also presented in 

Table 2. These sections will be compared to the newer profile further on. The optimum 

pitch-to-chord ratio was decided to be 0.827 in (Anton & Wiberg, 2013) by using the 

following correlation described in (Klebanov & Mamaev, 1969). 

 

 𝑡0̅𝑛𝑚 = 𝑡0̅𝑛𝑚𝑂
∙ 𝐾𝐾𝑃 ∙ (1 + Δ𝑡0̅𝑛𝑚) (56) 

 

Where 𝐾𝐾𝑃 is a correction for that the trailing edge diameter is finite. 𝑡0̅𝑛𝑚𝑂
 is the 

preferable pitch-to-chord ratio if the exit Laval number is 0.8 and Δ𝑡0̅𝑛𝑚 is a correction 

to that the Laval number is not 0.8. For more information of this the reader is referred to 

(Klebanov & Mamaev, 1969). Note that the final pitch-to-chord value did not become 

the same as the optimum value since the chord could not be set directly in Cato. 

 

Figure 19: 3D-view of the BC7M. 
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Figure 20: BC7M manufactured blisc. 

 

Figure 21: BC7M sections geometry. (Cato) 
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Table 2: Geometry parameters for the BC7M. (Cato) 

 BC7M - hub BC7M - mid BC7M - tip 

Section area [mm
2
] 104.08 91.44 84.74 

Area 2D/Chord 2D
2 

0.19 0.16 0.15 

Axial width [mm] 18.86 17.78 16.70 

CG X-coordinate [mm] 43.39 43.41 43.55 

CG Y-coordinate [mm] -0.00 0.00 -0.08 

Chord 2D [mm] 23.38 23.60 23.86 

Chord 3D [mm] 23.39 23.61 23.87 

Effective exit angle [°] 19.22 19.21 19.27 

Exit angle [°] 18.64 18.61 18.57 

Flexural resistance w3 102.94 82.45 65.83 

Flexural resistance w4 385.83 356.91 321.02 

Flexural resistance w5 77.70 59.30 47.23 

Flexural resistance w6 252.09 228.51 215.07 

Inlet angle [°] 56.00 61.00 65.00 

Inlet wedge [°] 66.41 59.12 54.32 

Lean [°] -2.49 -2.48 -2.47 

LE diameter  [mm] 2.32 2.32 2.31 

LE row distance [mm] 9.65 9.34 8.89 

Main axis angle [°] 0.84 0.75 0.67 

Maximum thickness [mm] 6.04 5.31 4.97 

Max. thick. pos./Chord 2D 0.19 0.18 0.19 

Max. thick. / Chord 2D 0.26 0.23 0.21 

Moment of inertia u 3856.80 3509.90 3300.80 

Moment of inertia v 423.20 304.38 220.21 

Pitch / Chord 2D 0.79 0.85 0.90 

Pitch / Chord 3D 0.79 0.85 0.90 

Radius TE [mm] 176.91 190.97 204.54 

Stagger angle [°] 52.07 47.54 43.29 

TE diameter [mm] 0.86 0.87 0.87 

Throat distance [mm] 6.09 6.57 7.06 

Uncovered turning angle [°] 22.36 22.63 23.31 

Blade wetted area [mm
2]

1
 1598.43 

 

  

                                                 
1
 Value is taken from the program Siemens NX 
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4.2.2 BC7M - Cato, Mises results 

To get results for reference, a Mises run was done for the BC7M. In the Mises solver 

only the rotor is analysed, hence the rotor boundary conditions had to be stated. The 

relative stagnation pressure at inlet, outlet Mach number and the relative flow inlet 

angle was set as boundary conditions for the rotor. The values for these at hub-, mid- 

and tip-section are shown in Table 3, where the pressure and Mach number are taken 

from new beta2 calculations, while the inlet flow angle is taken from (Anton & Wiberg, 

2013, p. 105).  

 

Also some other conditions had to be stated. These input parameters to the Mises solver 

will be mentioned as the solver parameters. The solver parameters can be found in 

Appendix A. All three sections, hub, mid and tip had their own solver parameters. After 

all the solver parameters have been chosen, the next step was to run the Mises solver. 

The result is shown in Table 4. In Figure 22 to Figure 25 the Mach number, static 

pressure, shape parameter and skin friction coefficient are presented. These results will 

not be discussed any more in this section, but will be used to compare with later on. 

 

Table 3: Boundary conditions for the rotor 

 hub mid tip 

p
*
1,rel [bar]  149580 152575 155410 

M2,rel [-] 0.782 0.785 0.785 

β1 [°] 49.14 56.59 60.24 
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Table 4: Mises results for the BC7M in Cato. 

Aerodynamic results BC7M_hub BC7M_mid BC7M_tip 

Section name hub mid tip 

Mises solver parameters BC7M_v07_hub BC7M_v07_mid BC7M_v08_tip 

M1,real [-] 0.24 0.2158 0.2087 

M2,real [-] 0.78 0.78 0.78 

M1,is [-] 0.24 0.22 0.21 

M2,is [-] 0.80 0.80 0.80 

β1 [°] 49.15 56.59 60.24 

β2 [°] 18.85 18.82 18.93 

p1 [Pa] 143700 147700 150800 

p2 [Pa] 97790 99620 101700 

p
*
1 [Pa] 149600 152600 155400 

p
*
2 [Pa] 146500 149600 152700 

T
*
1 [K] 312.5 313.6 315.0 

T
*
2 [K] 312.5 313.6 315.0 

w1 [m/s] 84.52 76.36 74.03 

w2 [m/s] 262.00 263.20 263.80 

Re1 (chord) [-] 149200 134700 125600 

Re2 (chord) [-] 366000 366000 353100 

    

Forces and moments    

Force in x-direction/(mass V1) 5.02 5.70 5.87 

Torque about y/(mass r1 V1) 3.60 3.82 3.88 

Torque about z/(mass r1 V1) -0.079 -0.071 -0.072 

    

Losses    

Outlet ref. viscous [%] 5.99 5.67 5.11 

Outlet ref, inviscid [%] 0.00 0.00 0.00 

Outlet ref. total [%] 5.99 5.67 5.11 

Energy viscous, [%] 4.65 4.39 3.96 

Energy inviscid [%] 0.00 0.00 0.00 

Energy total [%] 4.65 4.39 3.96 

Traupel, TE [%] 4.89 4.58 4.31 

Hart TE (unrealiable yet) [%] 4.50 4.18 3.87 
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Figure 22: Mach number as a function of s/smax for BC7M (Mises, Cato). 

 

 

 

Figure 23: Static pressure as a function of s/smax for BC7M (Mises, Cato). 
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Figure 24: Shape parameter as a function of s/smax for BC7M (Mises, Cato). 

 

 

 

Figure 25: Skin friction coefficient as a function of s/smax for BC7M (Mises, Cato). 
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4.2.3 BC7M - Setup in beta2. 

When the Cato reference cases were set, it was appropriate to run the in-house code 

beta2 v.2.07.04aa to get a beta2 reference case as well. 

 

A geometry file was exported from Cato v.4.5.3.0.  Then the easiest way to establish a 

beta2 input file is to use an old one and replace the old profile in this case the BC6M 

with the new one (BC7M). 

 

It cannot be concluded which version of Cato that has been used creating the BC6M 

Cato output files, however in older versions of Cato the sections which are exported are 

always plain no matter how they are designed. In newer version the user can choose 

how to export the sections. The BC6M was designed at cylindrical sections (mentioned 

as conical in Cato) in a time where it only could have been exported at plain sections.  

 

The amount of sections that was exported could easily be chosen by the user in older 

versions of Cato. In newer versions it is more difficult. Therefore only three sections 

were exported from Cato for the BC7M compared to the ten sections for the BC6M.  

 

When using the beta2 software, the whole stage is analyzed. The stator row is the B4M 

row, which is an old profile that was used in the previous analysis by (Anton & Wiberg, 

2013). The channel geometry is also needed, and for this, the same geometry will be 

used as in previous calculations by (Anton & Wiberg, 2013). The channel geometry, the 

B4M vane and the BC7M blade are shown in Figure 26. As can be seen, there is a tip 

recess at the casing. The reason for using tip recess is to reduce the tip clearance losses. 

 

 

Figure 26: Channel geometry with the B4M vane and BC7M blade. 
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Since the whole stage is studied in this case, the whole turbine boundary condition 

should be set. The same properties that (Anton & Wiberg, 2013) used will be used again 

since this will give comparable results. These values are shown in Table 1. Note that the 

inlet total pressure which is set in the input file is the inlet total pressure radial 

distribution shown in Figure 18. 

 

In addition to these boundary conditions, other input parameters had to be set, e.g. gas 

composition, more geometrical description, which loss model that is used, if cooling air 

is used and numerical parameters. These parameters will be further described in 

Appendix B. 

 

The results of these calculations will not be presented separately here, however they will 

be presented in comparisons with a different profile later on in this report.   
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4.2.4 BC7M - Multall setup 

To be able to improve the Cato model of the blade profile later on, Multall 3D 

calculations were performed. This gives the opportunity to analyse vortices, tip leakage 

and other parameters. As for beta2, the easiest way to create Multall input files is to use 

old files. 

 

As a start, the blade BC7M was exported to a Multall (vda) file. The mesh was then 

created including 1.24 millions of nodal points. This mesh is in need of a careful 

analysis to ensure that the result will not be affected by a poor mesh. Since the inlet 

flow is axial the mesh upstream of the vane leading edge will be axial and thereby 

following the flow direction. No finer or coarser mesh will be studied since the mesh 

used is a standard mesh used at SIT. 

 

Worth mentioning is that the Multall solver does not model the trailing edge of a profile 

well. Actually the flow will accelerate when it turns around the trailing edge creating 

some velocity peaks due to the high curvature and unnecessary unrealistic data will be 

presented. To avoid this, a cusp is made at the trailing edge giving a sharp edge to the 

mesh to force the flow to separate. There will also be a cusp at the leading edge to avoid 

getting too skewed mesh. A stretching of the mesh is done to make sure that the mesh is 

fine enough at the boundary layers and close to leading and trailing edges.  

 

The boundary conditions that were set were the total pressure at the turbine inlet which 

is presented in Figure 18. At the turbine exit the static pressure is assumed to be 

atmospheric pressure as presented in Table 1. Axial flow is assumed into the turbine. In 

the control file that will be presented soon, there is an option to choose how the static 

pressure at the outlet will be determined. The decision was taken to set the static 

pressure at the hub and then let the program use radial equilibrium to decide the radial 

distribution. The value set at the hub was set in an iterative approach so that the 1D 

Dzung average result will be equal to the boundary condition presented in Table 1. The 

total temperature at the inlet was set as constant across the radius and the rotational 

speed was set to 10300 rpm according to Table 1. The gas constant and the specific heat 

were set to be 287.9 J/kgK and 1009.5 J/kgK according to previous beta2 results. There 

will be more values in the boundary condition file, however these will only be a guess 

for the first iteration. Later on Multall will create a restart file that will be used instead 

of these guesses.  

 

The control file is also needed before it is possible to run Multall. Multiple parameters 

were set in the control file and only the one of interest will be described. The tip 

clearance modelling is set in this control file. Analysis of the input data used by Anton 

& Wiberg showed that they had done a tip clearance modelling with much smaller gap 

than it was meant to be.  According to (Flydalen, 2015) this gap should be decided 

using the following equation: 

 

 𝑀𝑢𝑙𝑡𝑎𝑙𝑙 𝑖𝑛𝑝𝑢𝑡 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑑𝑎𝑡𝑎 =
𝑔𝑎𝑝

𝑏𝑙𝑎𝑑𝑒 𝑠𝑝𝑎𝑛
∙ 𝑓𝑎𝑐𝑡𝑜𝑟 (57) 
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The factor that is used is 2/3, obtained from (Flydalen, 2015), which is not the same 
which is mentioned in the Multall manual where they say that a factor of 0.6 should be 
used. The gap should be 0.3 mm and the blade height is 26.5 mm. Making use of 
Equation (57) the Multall input data for the clearance will be 0.0075. The mesh 
stretching and the Reynolds number were also set in the control file. The Reynolds 
number was adjusted so that the result Reynolds number was consistent with the beta2 
results.  
 
Not exactly the same channel geometry will be used for Multall and beta2 that (Anton 
& Wiberg, 2013)  did use. There will be two differences. First of all (Anton & Wiberg, 
2013) did not use the tip recess channel in Multall, however for this study a channel 
with tip recess will be used. It will not look exactly the same due to the fact that Multall 
cannot create a mesh if it is like in the beta2 chapter. Hence the tip recess will be 
modelled differently and this is shown in Figure 28 where the black line shows the 
beta2 tip recess and the red one represents the Multall tip recess. Another thing that 
occurred after the first Multall calculation was that the pressure contours from the 
stagnation point did affect the boundary conditions at the inlet. Therefore the inlet was 
made longer for the Multall calculations compared to the geometry used in beta2 and 
the geometry used by (Anton & Wiberg, 2013), as can be seen in Figure 27. 
 
As for the beta2 results, the results of these calculations will not be presented separately 
here. Instead these results will be presented in comparisons with a different profile later 
on in this report. 

 

Figure 27: Multall (red) and beta2 (black) channel 

 

Figure 28: Tip recess for Multall (red) and beta2 (black) channel. 
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4.3 Profile loss study for variation of the pitch-to-chord ratio, BC7M 

When the reference case was set, the first real analysis started. The aim of the first 

analysis was to see how the profile loss varies with different pitch-to-chord ratio. This 

was done in the mid-section of the existing profile geometry of BC7M.  

 

This profile loss study with different pitch-to-chord ratio had two different main 

approaches. The first and the simplest one was just to remove or add some blades, 

which according to the previous theory will give more or less turning of the flow and 

hence a smaller or larger flow outlet angle. The second approach also closes or opens 

the passage to get the same flow outlet angle as the reference case with 60 blades. Both 

approaches used the Mises solver in Cato version 3.5. 

 

4.3.1 BC7M - Different flow outlet angle 

As mentioned before the first approach was to just adjust the number of blades without 

closing or opening the passage. Cato does not offer the opportunity to just change the 

number of blades in the geometry interface without changing the whole geometry. 

Instead this had to be solved in another way. There are at least two different approaches 

that will work. The first is to calculate the pitch-to-chord ratio for different number of 

blades, using constant chord since the profile geometry is fixed. The pitch was given in 

Equation (34). Hence the pitch-to-chord ratio can be written as: 

 

 
𝑡

𝑐
=

2 ∙ 𝑟 ∙ 𝜋
𝑛
𝑐

=
2 ∙ 𝑟 ∙ 𝜋

𝑛 ∙ 𝑐
 

(58) 

 

In the Mises solver in Cato, the pitch-to-chord ratio can then be used as a solver 

parameter. Then the calculation can be done using the solver parameters described in 

Appendix A and of course using the calculated value of the pitch-to-chord ratio instead 

of the default value for 60 blades that is mentioned in Appendix A. Then the Traupel 

and Energy profile losses were plotted as functions of pitch-to-chord ratio.  

 

The other approach to do the same calculation was more complicated than the first one. 

This method used the export and import features in Cato. By exporting the geometry for 

the BC7M mid-section as coordinates and then import it again, the opportunity to 

change the number of blades without changing the whole geometry appears. It is of 

importance to note the pitch-to-chord ratio that then is given, since this will disappear 

when running the Mises solver. This import and export coordinates method will have a 

slight impact of the chord since the chord is calculated in a different way when just 

using coordinates compared to when Bezier functions is used. The same solver 

parameters as in the previous method was used and is described in Appendix A. 

 

4.3.2 BC7M - Same flow outlet angle 

The second approach keeps the turning of the flow at a constant value compared to the 

reference case with 60 blades, when changing the number of blades. For this case it is 

not possible to just rotate the blades in the Mises solver input parameters. The only 
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possibility is to use the import and export feature again since this also offers an option 

to rotate the coordinates. This becomes an iterative method, were the rotation needed to 

get the right flow outlet angle has to be guessed. Then the import and export procedure 

has to be done until the right flow outlet angle is achieved. This has to be repeated for 

all of the number of blades studied. The solver parameters were the same as in previous 

methods and are described in Appendix A. Of course by rotating the blade the metal 

inlet angle will be changed, and since the flow inlet angle is fixed, the incidence will be 

changed. The profile loss were then plotted and compared to the export and import 

method with different flow outlet angle. 

 

4.3.3 Comparing profile losses for the BC7M mid-section. 

The comparison between the two different methods of changing the pitch-to-chord ratio 

without opening and closing the passage is shown in Figure 29. It can be seen that the 

methods that should be doing the same thing actually gives a result that is not equal. 

The main reason for this is assumed to be that the chord is actually not calculated in the 

same way in both methods since the first method uses Bezier functions describing the 

curve and the other one uses coordinates. Nevertheless, the Traupel loss tends to be 

higher in almost the whole area studied.  

 

By taking into account that the turning of the flow should be the same as before 

removing or adding blades the results looks different as can be seen in Figure 30. For 

pitch-to-chord ratios higher than approximately 1.05 the whole solution does not 

converge any more due to strong separation.  

 

Figure 29: Profile loss comparison between the two different methods, import and export 
coordinates method and calculating the pitch-to-chord ratio method, both with changed 
flow outlet angle β2. (Mises, Cato) 
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Figure 30: Profile loss comparison between two different cases, one where the flow 
outlet angle β2 is kept constant and one where it is changed. 
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4.4 Profiling of B50_v01 

As a result of the previous profile loss study, the decision was made to try to design a 

row with 50 blades with a pitch-to-chord ratio at approximately one at the mid-section. 

This since at this pitch-to-chord ratio the profile loss starts to increase rapidly. It is 

important to note that this optimum only takes profile loss into account. For the Traupel 

loss also the trailing edge loss is included, however no secondary losses are taken into 

account for none of them at this stage. The new design will be a re-design of the BC7M. 

The new profile should be as similar to the BC7M as possible, to avoid having problems 

with the strength of materials and to avoid being forced to do a structural analysis. 

Another main aspect was to keep the throat area constant to get the same mass flow 

through it. To keep the work done by the rotor at the same level as before, the turning of 

the flow will still be kept constant.  

4.4.1 Import and adaption of BC7M. 

To get a good profile to start with the BC7M coordinates for the tip-, mid- and 

hub-sections were exported and then imported back to Cato v.4.5.3.0, now with 50 

blades. No rotations were made since the axial chord was desired to be constant. 

 

When the coordinates are exported back, it gives a curve side by side with the default 

Bezier curve, as shown in Figure 31. The input design parameters that Cato offers has to 

be adjusted to get the Bezier curve to fit or match with the coordinate curve. This can be 

done in many different ways. However it can still be useful to follow a certain method 

to obtain suitable values of the design parameters and to get a smooth curvature. It is 

possible to get the curves to look the same with unsuitable values of the design 

parameters. To avoid this, the method described by (Flydalen & Sohaib, 2011) will be 

used and described below. 

 

 

Figure 31: To the left, the imported coordinates for BC7M mid-section (orange) and 
default Bezier curves (blue) and to the right, the deviation in mm between the curves. 
(Cato v.4.5.3.0) 
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The first section of the profile that is adapted is the trailing edge and close to it. Then 

the distance between the trailing edge and the throat on the suction side is adapted. This 

is done by adjusting the parameters in the two upper boxes in Figure 32. These steps 

should be repeated until the distance between the coordinate curve and the Bezier 

curves is small enough.  

 

Then the inlet angle was adjusted followed by the slope, pressure side camber and curve 

LE. Then all steps were repeated to make sure that the adaption was as good as possible 

close to the trailing edge. 

 

 

Figure 32: Trailing edge and suction side adaption method. Redesign of (Flydalen & 
Sohaib, 2011, p. 13) 

When the deviation or error was small enough the next step that was done was to let 

Cato make a loop containing more fine adjustment parameters to fit the Bezier curves 

much closer to the coordinate curve. The parameters included in these loops have been 

listed by (Flydalen & Sohaib, 2011, p. 16) and are shown below. 

 

 Inlet wedge 

 Uncovered turning angle 

 Leading edge diameter 

 Slope 

 Curve throat 

 Curve trailing edge 

 Curve leading edge 

 Pressure side camber 3 

 Pressure side camber 4 
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This loop was done until the deviation did not get any smaller. Then the whole process 

was restarted at the trailing edge diameter. This method progressed until the adaption 

was good enough. Since these coordinates were exported from Cato it was not that 

difficult to get the adaption to match the Bezier functions. In Figure 33, the deviation 

can be seen for the finished adaption of the mid-section. The largest deviation can be 

seen to be approximately 0.02 mm which is assumed to be good enough. Of course this 

adaption process had to be done for all three sections tip, mid and hub, however since 

these adaptations only will be used as starting values for the continued development of 

the new profile, the tip- and hub-section adaptions will not be presented in this report. It 

can though be mentioned that at this stage the uncovered turning angle is 30, 30 and 32 

degrees at the hub-, mid- and tip-section. At the same sections the effective exit angle is 

approximately 22.5 degrees. At this stage the profile is named B50_v01_00, where B50 

means 50 blades, and v01 is the overall version number, and 00 is a smaller update 

number. 

   

Figure 33: To the left the imported coordinates for BC7M mid-section (orange) and the 
adapted Bezier curves (blue) and to the right the deviation in mm between the curves. 
(Cato v.4.5.3.0) 

4.4.2 Adapted profile B50_v01 run with Mises in Cato. 

When the profile was adapted, it was used as a starting geometry for the continued 

designing process. The new profile could have been designed directly from the default 

Bezier curves however this would have been even more complicated, and since the 

geometry should be as close as possible to the old geometry, the option to adapt the 

profile first was the best alternative.  

 

To get an idea of what adjustment that was needed to be made in addition to the obvious 

that the turning is not enough, the sections were run in the Mises solver in Cato 

v.4.5.3.0. To start with, the Mises solver parameters were kept at the same values as 

before and these are shown in Appendix A. The results of all three sections are 

presented in Table 5 and in Figure 34 to Figure 37. These results cannot be compared 

directly to the BC7M results, since the Reynolds number, throat distance and turning of 

the flow is different. This will be further investigated in the next section.  
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Table 5: Mises results for the adapted profile B50_v01. Note that the flow outlet angle is 
not adjusted at this stage. (Mises, Cato) 

Aerodynamic results B50_v01_hub B50_v01_mid B50_v01_tip 

M1,real [-] 0.27 0.25 0.24 

M2,real [-] 0.78 0.78 0.78 

M1,is [-] 0.27 0.25 0.24 

M2,is [-] 0.80 0.80 0.80 

β1 [°] 49.14 56.59 60.23 

β2 [°] 21.35 21.42 21.67 

p1 [Pa] 142000 146200 149300 

p2 [Pa] 98210 100100 102100 

p
*
1 [Pa] 149600 152600 155400 

p
*
2 [Pa] 147100 150200 153300 

T
*
1 [K] 312.5 313.6 315 

T
*
2 [K] 312.5 313.6 315 

w1 [m/s] 96.47 87.44 85.23 

w2 [m/s] 262.00 263.20 263.80 

Re1 (chord) [-] 149000 134600 125400 

Re2 (chord) [-] 323600 322400 309100 

    

Forces and moments    

Force in x-direction/(mass V1) 3.64 4.15 4.22 

Torque about y/(mass r1 V1) 3.19 3.36 3.38 

Torque about z/(mass r1 V1) -0.094 -0.089 -0.088 

    

Losses    

Outlet ref. viscous [%] 4.81 4.43 3.98 

Outlet ref, inviscid [%] 0.00 0.00 0.00 

Outlet ref. total [%] 4.81 4.43 4.98 

Energy viscous, [%] 3.74 3.44 3.09 

Energy inviscid [%] 0.00 0.00 0.00 

Energy total [%] 3.74 3.44 3.09 

Traupel, TE [%] 4.26 4.08 3.93 

Hart TE (unrealiable yet) [%] 3.82 3.45 3.34 
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Figure 34: Mach number distribution as a function of s/smax for B50_v01. Note that the 
flow outlet angle is not adjusted at this stage. (Mises, Cato v.4.5.3.0) 

 

Figure 35: Static pressure distribution as a function of s/smax for B50_v01. Note that the 
flow outlet angle is not adjusted at this stage. (Mises, Cato v.4.5.3.0) 
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Figure 36: Shape parameter distribution as a function of s/smax for B50_v01. Note that the 
flow outlet angle is not adjusted at this stage. (Mises, Cato v.4.5.3.0) 

 

Figure 37: Skin friction coefficient distribution as a function of s/smax for B50_v01. Note 
that the flow outlet angle is not adjusted at this stage. (Mises, Cato v.4.5.3.0) 

  

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
h
ap

e 
p

ar
am

et
er

 [
-]

 

s/smax [-] 

B50_v01_hub - Cato

B50_v01_mid - Cato

B50_v01_tip - Cato

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
k
in

 f
ri

ct
io

n
 c

o
ef

fi
ci

en
t 

s/smax [-] 

B50_v01_hub - Cato

B50_v01_mid - Cato

B50_v01_tip - Cato



49 

4.5 B50_v01_03 

4.5.1 Design principles for B50_v01_03 

The hub-, mid- and tip-section are now fully adapted. To go any further, some design 

requirements are listed below.  

 

 Keep the trailing edge thickness at the same value as for the BC7M, to make 

sure that it will be possible to manufacture. Casting methods demands a certain 

thickness to be able to make space for two walls and a cooling slot in the middle.  

(TE diameter) 

 The total throat distance should also be kept constant to avoid affecting the 

degree of reaction. 

(Throat distance) 

 Axial chord should be constant to be able to fit the blade in the existing turbine. 

(Axial width) 

 Keep constant profile area to ensure that the strength of material is not changed 

drastically. Actually there would probably not be any problem at the test turbine, 

however problems may occur at the full scale turbine. 

(Section area) 

 The leading edge diameter should be kept as close to the BC7M as possible. 

(LE diameter) 

 Keep the Mach number peak below one or even lower if possible, to avoid shock 

waves. 

 The flow outlet angle should be kept at the same values as for the BC7M, due to 

the fact that the turning of the flow should be the same to keep the same total 

work done by the blades. 

 Design the blade inlet angle according to Figure 4.2 in (Moustapha, Zelesky, 

Baines, & Japikse, 2003). 
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4.5.2 Further B50_v01_03 design development 

As when adapting the profile, the mid-section will be described below and the hub- and 

tip-sections will not be fully described, however the results for the hub- and tip-sections 

will of course be stated.  

 

The LE- and TE-diameters were directly set to the same values as for BC7M. The result 

from the Mises calculation showed that the flow outlet angle was 21.42 degrees. This is 

a much higher value than for the reference flow outlet angle which is 18.82 degrees. 

Hence the effective exit angle was decreased with approximately the size of the 

difference. Reducing the effective exit angle will decrease the throat distance. 

 

To get the correct blade metal inlet angle, Figure 38 was used. The flow inlet angle was 

56.59° at the mid-section, giving an induced incidence at approximately 0.5°. The flow 

inlet angle is 49.14° and 60.23° for hub- and tip-sections respectively. This gives an 

induced incidence at 2.0° and -0.5°. As described in the theory, positive incidence 

means that the metal angle is larger than the flow inlet angle. This gives a blade metal 

inlet angle rounded to 51°, 57° and 60° at the hub-, mid- and tip-section respectively. 

 

 

Figure 38: Induced incidence as a function of flow inlet angle. Redesign of Figure 4.2 
(Moustapha, Zelesky, Baines, & Japikse, 2003, p. 99) 
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To get the same total throat it has to be taken into account that there will be fewer 

passages when having fewer blades. For each section the throat distance has to be 

calculated as: 

 

 
𝑇ℎ𝑟𝑜𝑎𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵50_𝑣01_03 =

60 𝑏𝑙𝑎𝑑𝑒𝑠

50 𝑏𝑙𝑎𝑑𝑒𝑠
∙ 𝑇ℎ𝑟𝑜𝑎𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐵𝐶7𝑀 (59) 

 

Use of Equation (59) resulted in that the throat distance for the B50_v01_03 should be: 

Table 6: Target values for B50_v01_03 throat distance 

 Throat distance [mm] 

B50_v01_03 - hub 7.308 

B50_v01_03 - mid 7.887 

B50_v01_03 - tip 8.474 

 

The uncovered turning angle is a parameter that will adjust the throat distance, however 

not in the same range as the effective exit angle does. The uncovered turning does 

explain how much turning of the flow that appears after the throat. During the adaption, 

the uncovered turning angle was set to approximately 30 degrees. Since the total turning 

of the flow is given, a decrease of the uncovered turning angle leads to less turning of 

the flow after the throat and more before.  

 

As can be seen in Figure 34 the velocity peaks are above Mach one at each section. The 

adjustment of the uncovered turning angle will be the best alternative to move and 

decrease these peaks. By decreasing the uncovered turning angle, more turning of the 

flow will occur before the throat. This will lead to that a part of the blade load will be 

moved upstream and hence a decreased velocity peak. 

 

In turbine design in subsonic flows the velocity peak may occur optimally at the throat. 

In some cases when having supersonic flows the velocity peak will occur downstream 

the throat, since the flow is choked in the throat.  The convergent-divergent nozzle will 

then act as a Laval nozzle creating supersonic flows (Hedlund, 2015). The choice of the 

value for the uncovered turning angle is also based on designer’s experience.  

 

The Reynolds number was also changed as a Mises solver parameter to make sure that 

the outlet Reynolds number was kept constant, since when closing the profile the chord 

will be changed affecting the Reynolds number since it is based on chord. 

 

A large part of this process was of course iterative. Small adjustment of the other blade 

parameters had to be made to get a good velocity distribution and a smooth curvature, 

especially on the suction side.  

 

When all sections are considered to be complete, the sections were stacked at the centre 

of gravity for each section.  
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4.5.3 Final design B50_v01_03 

The final design of the B50_v01_03 will be presented below. 

 

In Table 7, section output parameters are presented for B50_v01_03 including a 

comparison to BC7M. These parameters are geometrical parameters that are 

automatically presented in Cato. The inlet wedge angle can be seen to be smaller for 

B50_v01_03 compared to BC7M. It can also be seen that even though the goal was to 

design a profile with the same size of the section area, the new profile was 2-6 % 

smaller. The total profile area has changed even more since there is a difference in 

number of blades. The total section area that will affect the cooling mostly is the area at 

the hub since if this decrease, this will give raise to an increased cooling need on the 

rotor platform.  

 

 𝐴𝐵𝐶7𝑀,ℎ𝑢𝑏,𝑡𝑜𝑡 = 60 ∗ 104.08 = 6244.8𝑚𝑚2 (60) 

 

 𝐴𝐵50_𝑣01_03,ℎ𝑢𝑏,𝑡𝑜𝑡 = 50 ∗ 99.385 = 4969.3𝑚𝑚2 (61) 

 

This means that the hub-section area will decrease by 20.4 % or 1276 mm
2
, which is the 

extra area on the rotor platform that has to be cooled. 

 

The B50_v01_03 blade also has an increased wetted area compared to BC7M by 8.3 %. 

However the total blade wetted area has decreased by 9.7 % or 9320 mm
2
. 

 

 𝐴𝐵𝐶7𝑀,𝑤𝑒𝑡𝑡𝑒𝑑,𝑡𝑜𝑡 = 60 ∗ 1598.43 = 95906𝑚𝑚2 (62) 

 

 𝐴𝐵50_𝑣01_03,𝑤𝑒𝑡𝑡𝑒𝑑,𝑡𝑜𝑡 = 50 ∗ 1731.71 = 86586𝑚𝑚2 (63) 

 

 

In Figure 39 both the section geometry and curvature are shown for the hub-, mid- and 

tip-section. The new B50_v01_03 can be seen to have much longer chord compared to 

BC7M. The thickness is almost the same, however B50_v01_03 is more slender. The 

curvature is almost the same, however a tendency is that it is higher close to the leading 

edge compared to BC7M and almost zero on the other half of the profile 

 

A Mises solver result comparison is shown in Table 8.  Only small differences occur for 

the flow outlet angle and Reynolds number. The biggest difference can be seen for the 

losses where all losses are lower for the B50_v01_03. 

 

At the end of this section a comparison for the Mach number, static pressure, shape 

parameter and skin friction coefficient is shown in Figure 40 to Figure 43, followed by a 

Mach number distribution at the hub-, mid- and tip-section for the BC7M and the 

B50_v01_03. The stagnation point can be seen to have been moved more to the pressure 

side than before.  
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Table 7: Section output parameters for B50_v01_03. The difference is compared to BC7M. 
(Mises, Cato) 

Section Output Parameters 
B50_v01_03 

hub 

B50_v01_03 

mid 

B50_v01_03 

tip 

Section name B50_v01_14_hub B50_v01_05_mid B50_v01_05_tip 

 Diff Value Diff Value Diff Value 

Section area [mm
2
] -4.5 % 99.39 -2.5 % 89.19 -5.7 % 79.93 

Area 2D/Chord 2D
2 

-15.7 % 0.16 -17.7 % 0.14 -22.3 % 0.12 

Axial width [mm] 0.0 % 18.86 0.0 % 17.78 0.0 % 16.70 

CG X-coordinate [mm] -0.2 % 43.32 -0.2 % 43.32 -0.5 % 43.32 

CG Y-coordinate [mm] 62.1 % -0.00 -267 % -0.00 -95.4 % -0.00 

Chord 2D [mm] 6.4 % 24.88 8.9 % 25.70 10.2 % 26.29 

Chord 3D [mm] 6.4 % 24.89 8.9 % 25.70 10.2 % 26.30 

Effective exit angle [°] -0.2 % 19.17 -0.3 % 19.15 -0.2 % 19.22 

Exit angle [°] 6.5 % 19.84 1.6 % 18.90 5.0 % 19.50 

Exit wedge [°] -6.6 % 9.000 -11.9 % 8.400 -1.0 % 9.400 

Flexural resistance w3 4.0 % 107.06 -0.6 % 81.97 -4.2 % 63.06 

Flexural resistance w4 9.1 % 420.98 13.3 % 404.37 16.8 % 374.97 

Flexural resistance w5 -6.6 % 72.60 -8.6 % 54.20 -14.9 % 40.18 

Flexural resistance w6 3.4 % 260.55 10.1 % 251.53 11.2 % 239.10 

Inlet angle [°] -8.9 % 51.00 -6.6 % 57.00 -7.7 % 60.00 

Inlet wedge [°] -6.2 % 62.29 -3.7 % 56.94 1.5 % 55.16 

Lean [°] 24.2 % -3.09 15.3 % -2.86 7.5 % -2.66 

LE diameter  [mm] 0.0 % 2.32 0.0 % 2.32 0.0 % 2.31 

LE row distance [mm] -1.0 % 9.55 -0.5 % 9.29 -1.4 % 8.77 

Main axis angle [°] -11.5 % 0.74 -12.9 % 0.65 -13.5 % 0.58 

Maximum thickness [mm] -4.3 % 5.78 -7.3 % 4.92 -11.0 % 4.42 

Max. thick. pos./Chord 2D -31.4 % 0.13 -32.5 % 0.12 -39.3 % 0.11 

Max. thick. / Chord 2D -10.1 % 0.23 -14.9 % 0.19 -19.2 % 0.17 

Moment of inertia u 15.6 % 4459.70 23.1 % 4320.20 25.9 % 4156.40 

Moment of inertia v 1.2 % 428.26 -6.7 % 284.01 -14.0 % 189.28 

Pitch / Chord 2D 12.8 % 0.89 10.2 % 0.93 8.9 % 0.98 

Pitch / Chord 3D 12.8 % 0.89 10.2 % 0.93 8.9 % 0.98 

Radius TE [mm] 0.0 % 176.91 0.0 % 190.97 0.0 % 204.54 

Stagger angle [°] -8.2 % 47.80 -10.5 % 42.54 -11.3 % 38.40 

TE diameter [mm] 0.0 % 0.86 0.0 % 0.87 0.0 % 0.87 

Throat distance [mm] 20.0 % 7.31 20.0 % 7.89 20.0 % 8.47 

Uncovered turning [°] -9.2 % 20.30 -2.8 % 22.00 -5.6 % 22.00 

Blade wetted area [mm
2
] 8.3 % 1731.71 
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(a) (b) 

  

  

(c) (d) 

  

  

(e) (f) 

Figure 39: Geometry comparison between BC7M and B50_v01_03 at the sections: (a) tip, 
(c) mid and (e) hub. A comparison of the curvature for the same profiles at the sections: 
(b) tip, (d) mid and (f) hub. (Mises, Cato) 
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Table 8: Mises run results for B50_v01_03 in the right column for each section and 
difference compared to BC7M is the percent values in the left column for each section. 
(Mises, Cato) 

Aerodynamic results 
B50_v01_03 

hub 

B50_v01_03 

mid 

B50_v01_03 

tip 

Section name B50_v01_14_hub B50_v01_05_mid B50_v01_05_tip 

Mises solver parameters B50_v01_14_hub B50_v01_05_mid B50_v02_01_tip 

 Diff Value Diff Value Diff Value 

M1,real [-] 0.6 % 0.24 -0.4 % 0.22 0.2 % 0.21 

M2,real [-] 0.0 % 0.78 0.0 % 0.78 0.0 % 0.78 

M1,is [-] 0.6 % 0.24 -0.4 % 0.22 0.2 % 0.21 

M2,is [-] -0.4 % 0.80 -0.4 % 0.80 -0.3 % 0.80 

β1 [°] 0.0 % 49.15 0.0 % 56.58 -0.1 % 60.20 

β2 [°] 0.2 % 18.89 -0.6 % 18.70 0.0 % 18.93 

p1 [Pa] 0.0 % 143700 0.0 % 147700 -0.1 % 150700 

p2 [Pa] 0.3 % 98100 0.3 % 99910 0.2 % 101900 

p
*
1 [Pa] 0.0 % 149600 0.0 % 152600 0.0 % 155400 

p
*
2 [Pa] 0.3 % 146900 0.3 % 150000 0.2 % 153000 

T
*
1 [K] 0.0 % 312.5 0.0 % 313.6 0.0 % 315 

T
*
2 [K] 0.0 % 312.5 0.0 % 313.6 0.0 % 315 

w1 [m/s] 0.6 % 84.99 -0.3 % 76.10 0.3 % 74.23 

w2 [m/s] 0.0 % 262.00 0.0 % 263.20 0.0 % 263.80 

Re1 (chord) [-] 0.3 % 149600 -0.6 % 133900 3.7 % 130200 

Re2 (chord) [-] 0.0 % 366000 0.0 % 366100 3.7 % 366000 

       

Forces and moments       

Force in x-direction/(mass V1) -1.8 % 4.93 0.2 % 5.72 -1.0 % 5.81 

Torque about y/(mass r1 V1) -0.5 % 3.58 0.3 % 3.84 -0.3 % 3.87 

Torque about z/(mass r1 V1) 1.8 % -0.081 4.2 % -0.074 13.4 % -0.081 

       

Losses       

Outlet ref. viscous [%] -14.1 % 5.15 -14.0 % 4.87 -11.6 % 4.52 

Outlet ref, inviscid [%] -100 % 0.00 -95.7 % 0.00 - 0.00 

Outlet ref. total [%] -14.1 % 5.15 -14.0 % 4.87 -11.6 % 4.52 

Energy viscous [%] -14.1 % 4.00 -14.0 % 3.78 -11.6 % 3.51 

Energy inviscid [%] -100 % 0.00 -96.5 % 0.00 - 0.00 

Energy total [%] -14.1 % 4.00 -14.0 % 3.78 -11.6 % 3.51 

Traupel, TE [%] -13.8 % 4.21 -11.8 % 4.04 -10.6 % 3.85 

Hart TE(unrealiable yet) [%] -18.0 % 3.69 -15.8 % 3.52 -14.0 % 3.32 
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Figure 40: Velocity distribution difference between the BC7M and B50_v01_03 at the hub-
, mid- and tip-section. (Mises, Cato) 

 

 

 

Figure 41: Static pressure distribution difference between the BC7M and B50_v01_03 at 
the hub-, mid- and tip-section. (Mises, Cato) 
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Figure 42: Shape parameter distribution difference between the BC7M and B50_v01_03 at 
the hub-, mid- and tip-section. (Cato) 

 

 

 

Figure 43: Skin friction coefficient distribution difference between the BC7M and 
B50_v01_03 at the hub-, mid- and tip-section. (Cato) 
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Figure 44: Mach number distribution at tip-, mid- and hub-section for BC7M and 
B50_v01_03. The scale is from Mach number equal to zero to Mach number equal to one. 
(Mises, Cato) 
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4.6 Incidence sensitivity  

The flow inlet angle that the rotor feels is depending on its relative position to the stator. 

This since the rotor is rotating and will therefore alternate between feeling the wake 

from the stator and the freestream. To analyse how these effects will affect the velocity 

distribution, Mises calculations at plus and minus ten degrees incidence were performed 

at the mid-section for both BC7M and B50_v01_03. The velocity distribution is shown 

in Figure 45 and the shape parameter is shown in Figure 46. In Figure 45 it can be seen 

that both B50_v01_03 and BC7M are more sensitive for positive incidence than 

negative incidence since both gets a small velocity peak close to the leading edge due to 

over acceleration. However, in Figure 46 it can be seen that these over accelerations will 

not lead to any separation. 

  

(a) (b) 

Figure 45: Velocity distribution at plus and minus ten degrees incidence for 
(a) B50_v01_03 and (b) BC7M. (Mises, Cato) 

  

(a) (b) 

Figure 46: Shape parameter at plus and minus ten degrees incidence for (a) B50_v01_03 
and (b) BC7M. (Mises, Cato) 
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4.7 Comparisons 

4.7.1 Calculations done 

When a final design of B50_v01_03 was achieved it was time to make a full 

comparison to the BC7M. This was done by some calculations in Cato, beta2, MAC1 

and Multall. The cases that were analysed in the different programs were: 

Cato 

 B50_v01_03 

 BC7M 

 

Beta2 

 B50_v01_03 with tip recess and the boundary layer loss model 

 BC7M with tip recess and the boundary layer loss model 

 

MAC1 

 B50_v01_03 with tip recess 

 BC7M with tip recess 

 

Multall 

 B50_v01_03 with tip recess 

 BC7M with tip recess 

 

4.7.2 Comparison 

The comparison will include the following parts: 

 An overall comparison of the stage parameters  

 Profile losses in Cato 

 Losses in beta2 

 Losses in MAC1 

 Laval number and static pressure distribution 

 Diffusion factor (Multall) 

 Radial distribution of (relative) total pressure, static pressure, (relative) total 

temperature, (relative) Mach number and (relative) flow angles 

 3D results 
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5 Results 

 

5.1 Overall stage parameters 

In Table 9 below, one dimensional result are presented. Some values are directly taken 

from result files and some are calculated values. See footnotes for more information. 

Table 9: Overall parameters for the BC7M and B50_v01_03 turbine 

Profile B50_v01_03 BC7M B50_v01_03 BC7M 

Program Multall Multall Beta2 Beta2 

Loss Model - - BL BL 

Tip Recess Yes Yes Yes Yes 

𝑝0
∗ [bar] 2.167 2.167 2.168 2.168 

𝑝0 [bar] 2.152 2.152 - - 

𝑝2
∗ [bar] 1.066 1.065 1.070 1.070 

𝑝2 [bar] 1.013 1.012 1.013 1.013 

𝑝0
∗/𝑝2

∗ [-] 2.034
2
 2.035

2
 2.026 2.026 

𝑝0
∗/𝑝2 [-] 2.140

2
 2.141

2
 2.139 2.139 

inin [kg/s] 3.421 3.433
3
 3.48 3.48 

inout [kg/s] 3.421 3.430
3
 3.48 3.48 

Revane [-] 684574 684848 670000 669000 

Reblade [-] 378975 347564 395000 364000 

𝜂𝑡𝑡,𝑖𝑠 [%] 90.25
3
 90.26

3
 90.9

4
 90.75

4
 

𝜂𝑡𝑡,𝑖𝑠 [%] 91.90
5
 92.02

5
 92.19

6
 92.03

6
 

ZWI 1.043
7
 0.938

7
 - - 

ZWII 0.800
7
 0.670

7
 - - 

N [MW] 0.195
3
 0.197

3
 0.201

4
 0.201

4
 

Ψ - - 1.356
4
 1.354

4
 

Φ - - 0.420
4
 0.420

4
 

Λp 0.400 0.401 - - 

                                                 
2
 Calculated value 

3
 Value from Multall.out file 

4
 Value from Output1.bta file 

5
 Calculated value using Equation (15) with the mass averaged 1D results in Multall.out.file 

6
 Calculated value using Equation (15) with the mass averaged 2D results from Output2.bta 

7
 Calculated value using Equation (46) and (47) with the mass averaged values for the radial distribution 

of the Zweifel coefficient 
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5.2 Losses 

5.2.1 Losses - Mises 

As a result of the Mises solver in Cato, the profile loss is presented either as energy or 

Traupel loss. It can be seen in Figure 47 and Figure 48 that the profile loss is lower for 

the new profile in all studied sections. 

 

 

Figure 47: Energy profile loss at hub-, mid- and tip-section. (Mises, Cato) 

 

 

 

Figure 48: Traupel profile loss at hub-, mid- and tip-section. (Mises, Cato) 
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5.2.2 Losses - beta2 

From beta2 the losses are presented in eleven different groups. These are presented in 

Table 10 and in Figure 49. It is worth mentioning that the friction loss is higher for the 

case with fewer blades which is not consistent with the previously described theory. In 

beta2 the transition point is let to the code to decide by itself. For the BC7M the 

transition point on the blade appears at the s/smax equal to 0.53. For the B50_v01_03 this 

is instead 0.39. In other words the boundary layer is laminar for a longer distance on the 

BC7M suction side surface, giving lower profile loss. The secondary loss is larger for 

the row with larger pitch as expected. The total loss is also surprisingly seen to be lower 

for B50_v01_03. 

 

Table 10: Loss comparison between the blades BC7M and B50_v01_03. (beta2) 

Blade Losses [%] BC7M B50_v01_03 

Friction 2.59 2.69 

Roughness 0.00 0.00 

Edge 1.95 1.64 

Angle of attack (incidence) 0.51 0.31 

Turbulence 0.00 0.00 

Reynolds number 0.00 0.00 

Shock 0.00 0.00 

Secondary 3.47 3.78 

Cooling 0.00 0.00 

Radial clearance 2.38 2.19 

Extra 0.00 0.00 

Total 10.90 10.62 

 

 

 

Figure 49: Loss comparison between the blades BC7M and B50_v01_03. (beta2) 
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From beta2 calculations the radial distribution of the losses is also obtained and can be 

seen in Figure 50 and Figure 51. Here it can be seen that the friction loss is larger for 

BC7M. Some parameters are zero since they are included in the friction loss in the 

boundary layer loss model.  

  

(a) (b) 

  

  

(c) (d) 

  

  

(e) (f) 

Figure 50: Radial distribution comparison between the blades BC7M and B50_v01_03 for 
(a) friction loss, (b) roughness loss, (c) edge loss, (d) incidence loss, (e) turbulence loss, 
(f) Reynolds number loss. (beta2) 
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(a) (b) 

  

  

(c) (d) 

  

  

(e) (f) 

Figure 51: Radial distribution comparison between the blades BC7M and B50_v01_03 for 
(a) shock wave loss, (b) secondary flow loss, (c) cooling loss, (d) radial clearance loss, 
(e) extra loss, (f) total loss. (beta2) 
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5.2.3 Losses - MAC1 

For the MAC1 code the losses are presented in Table 11 and Figure 52 in the same 

manner as for beta2.  Since MAC1 is a 1D solver, there is no radial distribution. The 

friction loss is almost the same for BC7M and B50_v01_03. The biggest difference is 

for the trailing edge, secondary and radial clearance loss.  

 

Table 11: Loss comparison between the blades BC7M and B50_v01_03. (MAC1) 

Blade Losses [%] BC7M B50_v01_03 

Friction 2.61 2.64 

Roughness 0.00 0.00 

Edge 1.96 1.65 

Angle of attack (incidence) 0.23 0.09 

Turbulence 0.00 0.00 

Reynolds number 0.00 0.00 

Shock 0.00 0.00 

Secondary 2.95 3.25 

Cooling 0.00 0.00 

Radial clearance 2.57 2.34 

Extra 0.00 0.00 

Total 10.32 9.97 

 

 

 

 

Figure 52: Loss comparison between the blades BC7M and B50_v01_03. (MAC1) 
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5.3 Laval number and static pressure distribution 

5.3.1 Laval number distribution – Multall 

The Laval number distribution at the blade pressure and suction side surface for 

B50_v01_03 and BC7M at blade span 10, 25, 50, 75 and 90 % are shown in Figure 55 

and Figure 56 respectively. The largest difference can be seen at blade span 90 %. In 

Figure 57 it can be shown that the profile with larger pitch is more front-loaded. The 

peak values are quite constant. However at the 75 % span for B50_v01_03 the peak is 

higher.  

 

5.3.2 Diffusion coefficient - Multall 

Due to the fact that the velocity peak is higher for the B50_v01_03 at 75 % span the 

diffusion coefficient was much larger at this section, which can be seen in Figure 53. 

Comparing this to the diffusion coefficient for BC7M in Figure 54, it can be seen that at 

all spans the diffusion coefficient is higher for B50_v01_03. All spans for both profiles 

except the 75 % span for the B50_01_03 have a diffusion coefficient lower than the 

maximum diffusion coefficient recommended by Mamaev. 

 

 

Figure 53: Diffusion coefficient for the blade in B50_v01_03. (Multall) 

 

 

 

Figure 54: Diffusion coefficient for the blade in BC7M. (Multall) 
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Figure 55: Laval number at the five different blade spans 10, 25, 50, 75 and 90 % for 
B50_v01_03. (Multall) 

 

Figure 56: Laval number at the five different blade spans 10, 25, 50, 75 and 90 % for 
BC7M. (Multall) 
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(a) 10 % span (b) 25 % span 

  

  

(c) 50 % span (d) 75 % span 

  

 

 

(e) 90 % span  

Figure 57: Laval number distribution for B50_v01_03 and BC7M at span: (a) 10 %, (b) 
25 %, (c) 50 %, (d) 75 % and (e) 90 %. (Multall) 
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5.3.3 Static pressure – Multall 

As for the Laval number the static pressure is shown at five different spans for 

B50_v01_03 and BC7M in Figure 58 to Figure 60. 

  

(a) 10 % span (b) 25 % span 

  

  

(c) 50 % span (d) 75 % span 

  

 

 

(e) 90 % span  

Figure 58: Static pressure for B50_v01_03 and BC7M at span: (a) 10 %, (b) 25 %, (c) 50 %, 
(d) 75 % and (e) 90 %. (Multall) 
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Figure 59: Static pressure at five different blade spans 10, 25, 50, 75 and 90 % for BC7M. 
(Multall) 

 

 

Figure 60: Static pressure at five different blade spans 10, 25, 50, 75 and 90 % for 
B50_v01_03. (Multall) 
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5.4 Radial distribution 

A few important parameters are presented as radial distributions in Figure 61 to Figure 

65.   

 

In Figure 61 and Figure 62 the radial distribution for the vane leading and trailing edge 

are presented. At the leading edge there is no significant difference. At the trailing edge 

the differences are very small, however a little difference in static pressure and Mach 

number exist. 

 

The radial distribution for the blade leading and trailing edge is presented in Figure 63 

and Figure 64. At the blade leading edge the difference is small; at the trailing edge the 

difference is larger. However the B50_v01_03 results follow the same pattern that the 

BC7M results have. Note that the relative pressures and temperatures are calculated by 

using Equation (25). 

 

In Figure 65 the total-to-total isentropic efficiency, degree of reaction and Zweifel 

coefficient is presented. These values are manually calculated using Equation (15), (30), 

(46) and (47). At the 47 % to 69 % span BC7M has better efficiency and from span 

69 % to 88 % the B50_v01_03 is better. At other spans there is no major difference in 

efficiency between the two blade profiles. 

 

For the degree of reaction the target was to keep the degree of reaction constant. In the 

radial distribution it became some minor differences between the profiles, however the 

pattern is the same. 

 

For both definitions of the Zweifel coefficient it can be seen that the increase in Zweifel 

coefficient is greatest in the middle of the blade span. Closer to the tip, the tip clearance 

affects the possibility for the blade to be highly loaded. 
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(a) (b) 

  

  

(c) (d) 

  

 

 

(e)  

Figure 61: Radial distribution comparison between B50_v01_03 and BC7M at vane 
leading edge for (a) total pressure, (b) static pressure, (c) total temperature, (d) Mach 
number, (e) tangential flow angle. (Multall) 
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(a) (b) 

  

  

(c) (d) 

  

 

 

(e)  

Figure 62: Radial distribution comparison between B50_v01_03 and BC7M at vane 
trailing edge for (a) total pressure, (b) static pressure, (c) total temperature, (d) Mach 
number, (e) tangential flow angle. (Multall) 
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(a) (b) 

  

  

(c) (d) 

  

 

 

(e)  

Figure 63: Radial distribution comparison between B50_v01_03 and BC7M at blade 
leading edge for (a) relative total pressure, (b) static pressure, (c) relative total 
temperature, (d) relative Mach number, (e) relative tangential flow angle. (Multall) 
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(a) (b) 

  

  

(c) (d) 

  

  

(e) (f) 

Figure 64: Radial distribution comparison between B50_v01_03 and BC7M at blade 
trailing edge for (a) relative total pressure, (b) static pressure, (c) relative total 
temperature, (d) relative Mach number, (e) relative tangential flow angle, (f) absolute 
tangential flow angle. (Multall) 
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(a) (b) 

  

  

(c) (d) 

Figure 65: Radial distribution for B50_v01_03 and BC7M for (a) total-to-total isentropic 
efficiency, (b) pressure based degree of reaction, (c) Zweifel coefficient based on 
Equation (46) and (d) Zweifel coefficient based on Equation (47). (Multall) 

  

0

0.2

0.4

0.6

0.8

1

0.7 0.76 0.82 0.88 0.94 1

N
o
rm

al
is

ed
 r

ad
iu

s 
[-

] 

η*
i s [-] 

B50_v01_03

BC7M

0

0.2

0.4

0.6

0.8

1

0.3 0.34 0.38 0.42 0.46 0.5

N
o
rm

al
is

ed
 r

ad
iu

s 
[-

] 

Λp [-] 

B50_v01_03

BC7M

0

0.2

0.4

0.6

0.8

1

0 0.4 0.8 1.2 1.6 2

N
o
rm

ai
li

se
d

 r
ad

iu
s[

-]
 

ZwI [-] 

B50_v01_03

BC7M
0

0.2

0.4

0.6

0.8

1

0 0.4 0.8 1.2 1.6 2

N
o
rm

al
is

ed
 r

ad
iu

s 
[-

] 

ZwII [-] 

B50_v01_03

BC7M



78 

5.5 3D results - BC7M and B50_v01_03 

In Figure 66 to Figure 69 the velocity is shown on the suction side surface on the blades 

BC7M and B50_v01_03. Here it can be seen where the secondary flows exist, close to 

the tip and hub. At the mid-span the flow is not disturbed by the secondary flows. The 

vortex that is created in front of the blade is another secondary flow. This does actually 

affect the mixing plane. A test was done to try to move the mixing plane to get rid of 

that problem. Unfortunately the problem was not solved, since the secondary flows 

from the vane trailing edge also started to affect the mixing plane. The cylindrical 

vortex in front of the blade that can be seen in Figure 67, Figure 69 and Figure 70 is a 

result of many different factors, e.g. the blade loading and the relative velocity 

difference between the blade and casing. Also the blade leading edge relative position to 

the vane trailing edge might affect the size of this vortex. In Figure 71 the losses close 

to the suction side surface for B50_v01_03 blade are shown. The top vortex is the tip 

clearance vortex shown earlier in the theory chapter. The other two are the suction side 

horseshoe vortices. The last two pictures are just shown to give the reader a clearer 

picture of what happens.  

 

 

Figure 66: Relative velocity distribution at BC7M blade suction side surface. (Multall, 
MayaVi) 
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Figure 67: Relative velocity distribution at BC7M blade suction side surface close to 
leading edge. (Multall, MayaVi) 

 

 

Figure 68: Relative velocity distribution at B50_v01_03 blade suction side surface. 
(Multall, MayaVi) 
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Figure 69: Relative velocity distribution at B50_v01_03 blade suction side surface close 
to leading edge. (Multall, MayaVi) 

 

 

Figure 70: B50_v01_03, -1 m/s axial velocity ISO-surface. (Multall, MayaVi) 
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Figure 71: Losses at B50_v01_03 blade suction side surface. (Multall, MayaVi) 
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6 Conclusion and discussion 

 

A new blade row B50_v01_03 was designed with 50 blades instead of 60 blades which 

was the case for the BC7M. The pitch-to-chord ratio has increased from 0.85 to 0.93 at 

the mid-section for the new blade. The new blade has an increased blade loading to 

make sure that the new blade row produces the same work output as the BC7M blade 

row. 

 

By examining the results, it was a positive surprise that the total-to-total isentropic 

efficiency for the new blade row B50_v01_03 with 20 % fewer blades was almost 

unaffected compared to the BC7M. In Multall the efficiency decreased from 92.02 % to 

91.90 % but in beta2 it has increased from 92.03 % to 92.19 %. 

 

Another interesting result was that the rotor platform wetted area has increased by 

1276 mm
2
. This actually provides an increased cooling demand on the rotor platform. 

However since the blade profile wetted area has decreased with 9.7 % or 9320 mm
2
 

there will be a significant cooling air need net profit. How much cooling air that can be 

saved depends on other things as well.  

 

One problem that can be seen in the results is that the stagnation point is located on the 

pressure side, downstream the geometric leading edge. The effects of this will not have 

a great significance for this uncooled blade. However, this study should preferably be 

applicable to a full-scale blade where cooling air is needed. For this it would not be 

optimal to have the stagnation point at the pressure side, because then the flow will 

bring all the showerhead film cooling to the suction side, leaving the pressure side 

undercooled. There is not only one solution to this rather serious problem. The 

stagnation point can be moved towards the suction side by designing the blade with 

negative incidence. Another idea might be to use a much larger inlet wedge angle, since 

a quite small one has been used. This will reduce the tendency of over acceleration since 

there will be less curvature at the leading edge. Unfortunately a larger inlet wedge angle 

leads to increased section area and hence increased mass in the blade. Since the number 

of blades has decreased, the mass has been reduced by having almost the same section 

area, so maybe it would be acceptable to have a small increase of mass at each section. 

However the tensile stresses will then increase. With increased section area it could 

have been possible to remove some material inside the blade. This would though affect 

the cooling system. The cooling air velocity would decrease due to an increased area 

giving a less effective cooling system. Increasing the axial chord could also be a 

solution to the stagnation point problem however this will lead to a smaller pitch-to-

chord ratio. There are pros and cons with every solution, hence which one that is 

preferable is hard to decide. 
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As expected the secondary flow losses increased for the B50_v01_03. The diffusion 

looks reasonable at almost every section for the B50_v01_03 except at the 75 % span. 

The reason for that is not determined. Even though it is assumed not to be a problem, 

this will be fixed before manufacturing the blisc. The Mach number distribution curves 

at different spans have a tendency not to be smooth. This problem is more likely a 

numerical problem than a physical problem. It was shortly investigated by a test with a 

finer mesh in that region, unfortunately without any improvements. This is assumed to 

be more of an esthetical problem. However it could be of interest to look further into 

this problem. 

 

Early in this thesis, a decision was made to design a blade with a pitch-to-ratio of 

approximately one. Unfortunately this was not fully completed in the presented version 

since the chord became longer when the profile was closed.  

 

During the profile loss study with changed pitch-to-chord ratio not much work was done 

with the mesh. It could have been possible to get the solution to converge at even higher 

pitch-to-chord-ratio, however it has been seen that a change in mesh would have a large 

influence of the result. 
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7 Further work 

 

If decision will be taken to continue to develop the B50_v01_03, more analysis should 

be done, e.g. a part load and incidence analysis should be of interest to implement. No 

cavity flows have been analysed so far, however it should be of interest for further 

work. 

 

There are also some adjustments that can be made especially on the tip. As have been 

seen, it looks like there is a lot of tip leakage. One alternative to decrease the tip leakage 

loss can be to move a small part of the loading from close to the tip downwards to the 

mid-section, and simultaneously fix the problem with to high diffusion at the 75 % 

span.  

 

Since the B50_v01_03 blade became very slender, it must be studied very carefully to 

make sure that it is possible to design the internal cooling system in a full scale version 

of this blade. It might actually be appropriate to develop a new concept with a new 

thicker blade with shorter chord to make room for more cooling. By designing a new 

shorter and thicker blade, maybe it will be possible to decrease the wetted area as well. 

 

Further investigations should be carried out in order to improve where the stagnation 

point is located. One approach might be to abandon the old design philosophies 

regarding the incidence. A solution might be to have a few degrees negative incidence. 

Another solution might be to increase the inlet wedge angle. However this will affect 

the cross-sectional area. 

 

No matter what decision that will be taken, further structural analysis or mechanical 

integrity parameter check should be performed since the blade is so slender.  

 

Finally, calculations should be made on a full-scale version of the designed blade 

profile to make sure that it will fulfil its requirements. In the full-scale blade, cooling air 

should be included in the calculations. 
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Appendix A - Mises solver 

parameters 

 

The solver parameters that were used for the Mises solver in Cato for the BC7M and the 

new profile with 50 blades are shown in Table 12. Note that these values are not equal 

to the boundary conditions for the whole turbine stage since the Mises calculations are 

only done on the blade profiles at the rotor. The Reynolds number was adjusted until the 

outlet Reynolds number based on chord was equal to 366 000. Another parameter that is 

decided iteratively is the inlet Mach number. It is assumed to be equal to the result inlet 

Mach number. This inlet Mach number is not a strict boundary condition. 

Table 12: Solver parameters for BC7M and the new profile with 50 blades (Mises, Cato) 

 hub mid tip 

Drive inlet slope True True True 

Drive inlet total pressure True True True 

Drive outlet Mach True True True 

Set LE Kutta True True True 

Set TE Kutta True True True 

Specific gas constant
8
 287.9 287.9 287.9 

Specific Heat Ratio
8
 1.4 1.4 1.4 

Pitch/Chord 3D
9
 0.79 0.85 0.90 

Flow inlet angle
10

 49.14 56.59 60.24 

Inlet Mach number 0.24 0.22 0.20 

Inlet pressure ratio 0.96 0.97 0.97 

Inlet relative tangential 

velocity 
0 0 0 

                                                 
8
 Values are taken from a beta2 calculation for the BC6M, (Anton & Wiberg, 2013, p. 130) 

9
 Geometry specified parameter for the case with 60 blades. (For the rotor row with 50 blades, the values 

will be different.) 
10

 Values are taken from own beta2 BC7M calculation at stream tube 2 and 19 and the mean value of 

stream tube 10 and 11. 
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Inlet total pressure
10

 149580 152575 155410 

Inlet total temperature
10

 312.5 313.6 315.0 

Inlet-condition location 24.31 25.18 26.31 

Artificial dissipation coeff. 1 1 1 

Critical Mach number 0.98 0.98 0.98 

Flow outlet angle 18.6 18.6 18.6 

Outlet Mach number
11

 0.78 0.78 0.78 

Outlet pressure ratio 0.68 0.67 0.65 

Outlet relative tangential 

velocity ratio 
0 0 0 

Outlet static pressure 101500 101500 101500 

Outlet-condition location 61.62 60.38 59.38 

Number of iterations 50 50 50 

Thickness mode 1 amplitude 1 1 1 

Thickness mode 2 amplitude 1 1 1 

Calculate Reynolds Nr False False False 

Crit. Amplifications number
12

 -5 -5 -5 

Reynolds number 6382000 5707000 5261000 

Side 1 surface transition trip 

location 
1 1 1 

Side 2 surface transition trip 

location 
1 1 1 

 

                                                 
11

 Values are taken from own beta2 BC7M calculation at stream tube 2, 19 and the mean value of stream 

tube 10 and 11. 

 
12

 Crit. amplification number equal to minus five means that the turbulence intensity is five percent. 
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Appendix B - beta2 input parameters 

 

To be able to use the beta2 software, some input parameters have to be stated. The 

boundary conditions that are needed are presented in the boundary condition section.  

Also the gas composition needs to be decided. The KTH test turbine uses standard air as 

working fluid. The absolute humidity is obtained from laboratory measures at KTH, 

where the relative humidity was measured and then the absolute humidity was 

calculated. They had 0.3 % absolute humidity in January and 1 % in June. From this the 

absolute humidity was decided to be 0.5 %. 

  

There is an option to choose which gas table beta2 uses. Both the Rumer-Ryvkin and 

the NASA SP-273 were tested. Due to problems with the Rumer-Ryvkin gas table, the 

NASA SP-273 gas table was considered to be more accurate. The problem with the 

Rumer-Ryvkin gas table was probably that negative enthalpies were calculated due to 

the fact that smaller pressures than for a normal gas turbine were studied. However, this 

statement is not confirmed and should be taken with caution. 

 

The program GasTable v1.9 was used to get the gas composition values. These values 

can be seen in Table 13. 

Table 13: Mass fractions for the working fluid in the KTH test turbine. 

Gas Chemical formula Mass fraction 

Oxygen O2 0.23028 

Nitrogen N2 0.75147 

Water H2O 0.00500 

Carbon Dioxide CO2 0.00045 

Sulphur Dioxide SO2 0.00000 

Argon Ar 0.01280 

Helium He 0.00000 

 

Further it was stated that the clearance, the gap between the casing and the tip of the 

blade should be 0.3 mm. This clearance will be 1.1 % of the blade height. This gap will 

then be measured during the tests for the BC7M with some carbon pins in the casing. 

The disadvantage with this method is that it will only measure the smallest gap during 

all operating modes. The smallest gap will not necessary be in the design operation, it 

can also happen during start up and cool down. When the blade is heated up the blade 

will be longer due to thermal expansion. This expansion will take longer time for the 

casing, since this is a bigger object to be heated. Also the centrifugal effect comes into 

account since the rotor is rotating, which give some extension. The gap should never be 

too large since this will give huge secondary losses, and not too small to avoid that the 

rotor will get stuck in the casing.  
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The roughness was assumed to be 0.8µm for the rotor blade surface and 1.6µm for the 

stator vane surface. As long as the roughness peaks appears in the laminar boundary 

layer, it will not have any major effect, however if some small peaks of the surface 

enters the turbulent boundary layer it will affect the losses. The roughness is of most 

importance at high Reynolds number (Denton, 2012, p. 10). 

 

Since the vane is placed in a cut in the rotor, the fillet radius (the radius between the 

blade and the casing) will be zero. At the tip of the rotor, the fillets radius will of course 

be zero, and at the hub there will be a 1.5 mm fillet. 

 

Since the throats are calculated differently in Cato compared beta2, there is an option to 

adjust the throat in beta2 to get the same value as in Cato.  
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