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courses in different departments, such compartmentalization is really artificial, and we

should take our intellectual pleasures where we find them.”
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The diffusion characteristics of water can be measured by using NMR methods. Specifi-
cally, the diffusion profiles in samples containing domains of water barriers are of major
importance to be able to describe in applications such as diffusion tensor imaging or
diffusion MRI-sequences. These sequences can be used to study the internal structure
of samples of complex diffusion profiles. The diffusion characteristics can be described
by a diffusion tensor matrix which can be parameterised by the isotropic diffusion coef-
ficient and the level of anisotropy. This thesis work aims to measure diffusion weighted
NMR signals from a triple-stimulated spin-echo pulse sequence to simultaneously de-
termine both the diffusion tensor characteristics and the orientation density function,
ODF. Traditionally, obtaining the ODF is based on assuming a fixed diffusion tensor in
a diffusion-weighted NMR experiment to describe the different signal attenuations along
different directions as differences in the shape of the microscopic water domains. By the
work presented in this report, it is proven by measurements on lyotropic liquid crystal
systems that the shape of the diffusion tensor and the ODF indeed can be extracted
from the same measurement. This is shown for samples having either prolate or oblate

diffusion tensors.
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Summary

Mapping the inside: Study of water diffusion using NMR experiment

This work shows how the internal structures of samples, which for instance could be cells
or crystals, containing microscopic water channels and other structures where the water
molecules can move in some directions but not in others can be determined in detail by
looking at the magnetic properties of atomic nuclei. In order to see the structures in
which the water molecules can move, two kinds of information about how the molecules
move around are needed. First, the way in which the water molecules can move inside
of the channels, i.e. the diffusion of water, must be known. Second, the difference
in how the water molecules can move around depending on the direction within the
sample must be known. Older ways of finding out the latter depends on guessing the
former. The technique described in this work shows a way to determine both in the

same measurement.

When you measure temperature with a thermometer it is the motion of molecules that
is measured. Every molecule in a liquid moves around freely and randomly while still
bumping into other molecules. This motion of molecules is called diffusion. Nuclear
magnetic resonance (NMR) spectroscopy is the study of how the magnetic properties
of atomic nuclei change from the influences of magnetic fields. As all nuclei are found
within molecules and the molecules move around, it is understandable that the NMR
signal can change if the molecules move around. In my work, I have shown that a NMR
method can be used to map the diffusion of water molecules inside samples that have
thin channels or corridors that the water molecules can move around in. Similar methods
are used to map diffusion of water in the neurons in the brain, which among other things
can show how the neurons are connected. The new thing that I showcase in my report,
is that it is possible to determine two important features of the sample; both how much
the water diffusion only can occur in one direction and also which directions the channels
and corridors are oriented in. Previously, it has not been possible to determine both
based on the same measurement. This improvement is important as it helps to make
the map of the channel orientations more reliable. In the future, this might be used
to study samples which is has a complex microscopical environment where the water
molecules move around in wide or narrow corridors, big halls, and across planes. One
very important application of this could be to gain more understanding of both the

ix
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types, conditions, and structure of cells and tissues of the brain if the experiment could

be performed in a clinical MRI scanner.
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1. Introduction

The study of samples in which diffusion of water is limited in some directions and less
in others, i.e. showing anisotropic diffusion profiles, using diffusion weighted nuclear
magnetic resonance, diffusion NMR, is an area of intense research [1-3]. Diffusion NMR
experiments are useful in that they can be used to study diffusion characteristics of
sensitive samples non-invasively, which is the key factor of its importance as a tool for
diagnosis of pathological conditions as well as the anatomy of healthy tissues [4, 5]. If
combined in imaging sequences, diffusion NMR techniques are generally collected under
the name of diffusion tensor imaging, DTI, and diffusion-weighted magnetic resonance
imaging, DW-MRI [6]. The techniques are especially useful to study white matter in the
brain, mainly consisting of bundled axons called nerve fibers, where DTT and DW-MRI
can be used to assess anatomical information such as axon diameter, dendrite density,
and degree of myelination [7] [8, 9]. By studying the difference in diffusion along differ-
ent directions, the orientations of the nerve fibers in a voxel, three dimensional pixel,
can be determined and described by an orientation distribution function, ODF [10, 11].
The ODF was introduced in the field of magnetic resonance neuroimaging to deal with
the fact that previous methods could not account for crossing fibers within a voxel [12].
Diffusion in microscopic domains can be described by a diffusion tensor. It has recently
been shown that by varying the way in which diffusion is encoded into the NMR signal,
the level of microscopic anisotropy, i.e. the shape of the microscopic diffusion tensor,
can be calculated [3]. This technique has been shown to provide a possible way of distin-
guishing between different kinds of brain tumors [4]. One problem of studying diffusion
using NMR techniques is that it requires long sequences of magnetisation manipula-
tion using magnetic gradients. Even as the studied signal is dependent on excitation
states that last for time-scales from milliseconds up to seconds the interactions between
the studied nuclei and other nuclei in the sample cause signal loss, an effect known as

transversal or Ty-relaxation [13]. This can cause a problem in diffusion-weighted NMR

2
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experiments in which the magnetisation must be manipulated for long periods of time

to encode effects of diffusion into the signal.

The aim of this thesis is to investigate the possibility of determining both the diffusion
tensor characteristics and orientation distribution function based on data gathered from
a recently developed diffusion NMR experiment encoding both directional and isotropic
diffusion called the triple-stimulated stimulated-echo diffusion NMR experiment ,TriPG-
STEbp [14, 15]. Determining the shape of the diffusion tensor prior to calculating the
ODF is important as techniques currently in use to determine the ODF rely on a priori
guesses of the shape of the diffusion tensor. This will inflict errors in the estimations of
the channel orientations based on the ODF [16, 17]. The determination of the shape of
the diffusion tensor is possible due to the recent discovery that the encoding of diffusion
is not only possible along on single direction but also equally in all spatial directions,
isotropically, in an elegant and fast way [14].This novel technique could prove useful in
future medical applications as it could provide important anatomical and physiological
information from brain tissue in a non-invasive way. Also, study of more complex sys-
tems consisting of microscopic water domains can be characterised. As model sample,
water, surfactant and oil was mixed in ratios providing supramolecular structures of
micro- to millimeter scale water channels of various orientations. Such samples have
been well-studied in the context of diffusion NMR [1, 15, 18-20]. Despite relatively
short Th-values, diffusion weighting is possible in three dimensions using the stimulated
echo-strategy [15]. To validate the orientation density function obtained, a standard
DTI experiment was performed on each studied sample and an ODF was constructed
from the DTI data. Also, the imaging sequence was used to ensure that the sample was
homogenous as the diffusion characteristics is provided for each voxel within the sample,

which the non-imaging sequence TriPGSTEbp does not show.



2. Diffusion Tensor

Samples containing microscopic domains of water, e.g. biological tissue or lyotropic
crystals, can be examined using diffusion NMR techniques which encode the self-diffusion
of water in the domains within the sample. For samples showing diffusion anisotropy,
which are of particular interest to study, it is necessary to describe diffusion in three
dimensions. The apparent diffusion of water in three dimensions are described by the
diffusion tensor. Diffusion anisotropy is the characteristics of diffusion not being equal
in three dimensions. The diffusion tensor, in turn, can be parameterised in a number
of ways of which the most important are described below. Tensors are used to describe
a quantity of a physical property. In the simplest case, a case in which the property
has no direction or gradient, a physical property can be described as a scalar. This
corresponds to a tensor of rank 0. On the other hand, a property that has a magnitude
in one direction, such as a velocity, is described by a tensor of rank 1, meaning that the
tensor has one non-zero eigenvalue. The diffusion tensor of a sample with microdomains
of water is described by a second order tensor of rank 3, having 3 non-zero eigenvalues,
shown in 2.1 [21]
Dz Dyy Dy
D=|Dy, Dy, Dy |- (2.1)
D.y Dz D,
If the laboratory frame of reference and the tensor principle axis system, PAS, coincide,

D is symmetric and the off-diagonal elements are zero. The mean diffusivity, MD or D,

can be written as the mean of the diagonal elements of the diffusion tensor matrix,

Tr(D)  Duz+ Dyy+ Do A+ Xa+ A3
3 3 B 3 ’

D= (2.2)

where A1, Aoand A3 are the eigenvalues of the diffusion tensor, also known as the principal

diffusivities [22]. There are many ways of parameterising the diffusion tensor. Below
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follows the definition necessary to understand the experiments and analyses used in
this thesis report. The apparent diffusion coefficient, Dy or ADC, of a cylindrically
symmetrical sample observed in a standard PGSE experiment is defined by the angle,
0, between the PGSE gradient and the main axis of symmetry of the lamellar or reverse

hexagonal phase as

Dy = D cos> 0+ D sin? 6, (2.3)

where D) and D, are the self diffusion coefficients parallel and perpendicular to the
direction of the gradient . D and D, are also called the Axial, AD, and Radial, RD,
diffusion coefficients, respectively [23]. For samples containing domains of different ori-
entations the distribution of orientations, P(D), can, if random distribution of domains

is assumed, be written as [20]

P(D) = ! | (2.4)

2,/(D— D)D) - D)

where D are the apparent diffusion coefficient for a given direction. Also, and of major

importance in this thesis project, the diffusion tensor can, in its PAS, be parametrized

into
D D D

Diso = wz 3yy i ZZ7 (25)

1 Dy, +D
DN =— | p, — 2% —1° 2.6
A SDiso < 2z 2 )7 ( )

D,, — D

D, = 2w~ Zrr 2.7
K 2l)isol)A ( )

where Djg, is the isotropic value, Da the anisotropy and asymmetry, D, [15]. The
elements are ordered into |D., — Diso| > |Dyzy — Diso| > | Dy — Diso| out of convention.
Due to the choices of numerical factors, the parameters are within the range of —0.5 <
DA <1and 0 < D, < 1. Axial symmetry, D, = 0, will be assumed for the rest of
this report. The value of Da gives the shape of the diffusion tensor where negative,
0, and positive means oblate, spherical, and prolate tensors, respectively. Figure 2.1
shows the conceptual shapes of diffusion tensors of anisotropy values from -0.5 to 1.
To get complete grasp of the diffusion tensor parameterisations used in this report, the

connection between AD and RD and D;s, and Da is

DL = -Diso(1 - DA) (28)
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and

Dy = Diso(1+2Dn). (2.9)

D,=0.5 D,=1

PN Y Y
S e e v

D, =-0.25
D,=0.25 D,=0.75

FiGure 2.1: Conceptual shapes of diffusion tensors with anisotropies, Da, ranging

from -0.5 (furthest left) and +1 (furthest right). The extreme Da values, -0.5 and 1,

are given some three dimensional extension to make them visible although they should

have no thickness. Colours of the tensor shows position along the z-axis, blue as lowest
and red as highest.

An alternative description of the relative amount of anisotropic diffusion in a sample is
the fractional anisotropy, FA, index which compares the magnitude of the diffusion tensor
to the magnitude of the anisotropic part of the diffusion tensor [24]. The magnitude of

the diffusion tensor is given by the generalised tensor product

(2.10)

(2.11)

where I;; denotes the ij-element of the identity tensor. FA can thus be written

3vD:D
FA = \Em. (2.12)

Yet another model of diffusion anisotropy, commonly used in DTI, depends on the rank
of the diffusion tensor in each voxel, linear anisotropy, CL, spherical anisotropy, CS, and
planar anisotropy, CP, [2]. Each voxel can be described by a composition of the three

anisotropy measures. If the eigenvalues are ordered as Ay > A2 > A3 CL and CP are
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defined as
A=A

CL
A1

(2.13)

and
(A2 — A3)

CP =
A1

(2.14)

A high value of CL indicate that diffusion along a channel is dominant while a high
value of CP indicates that diffusion along a geometric plane dominates. High value of
CL would indicate prolate diffusion tensor (Da > 0) while a high value of CP would

indicate more of an oblate diffusion tensor (Da < 0).



3. Diffusion NMR

NMR spectroscopy is based on the effect of a strong magnetic field on the individual
spins of atomic nuclei. Specifically, nuclei that have non-zero spin that is recognised by a
measurable magnetic moment and angular momentum. For a thorough introduction on
NMR spectroscopy, the reader is referenced to textbooks such as [13] as this section will
be limited to remind the reader of a few important concepts. The first of these concepts
is that the angular frequency with which the magnetic angular moment of a nucleus
rotates under influence of a homogenous external magnetic field, By (T), depends on
the gyromagnetic ratio of the studied nucleus, v (rad T~! s71). This frequency is called

the Larmor frequency, wg (rad s~1), and is given by
wo = ’)/Bo. (31)

As a convention, the orientation of By is defined as the z-axis. For spatial encoding of the
spinning magnetisation vectors, a magnetic field gradient, G (T m~!), is applied over the
sample. This means that depending on the position of the spins within the sample, the
effective frequency of the precession of the spin will be different. Accordingly, the spins
will be out of phase with spins in other locations within the sample in a predictable
fashion. In the simplest case, the gradient is applied perpendicular to By and the

cumulative phase shift, ¢(¢) (rad), can be described as

#(t) = yBot + /Ot G(t"z(t")at', (3.2)

where t is the time during which the gradient along the z-axis, G(t), is applied and
z(t) is the time-dependent position of the nucleus along the z-axis [25]. The application
of well-defined magnetic gradients is the basis for both imaging and diffusion NMR

techniques. For diffusion NMR, the positions of the spins are first encoded by applying
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a gradient pulse. For a predetermined time, the diffusion time, the nuclei will move due to
random thermal motion, diffusion, unaffected by gradients. This will put them out of the
positions in which their frequency has been encoded. Thereafter, the position encoding
gradient is reapplied but in the opposite direction to rephase the spins. However, because
the nuclei have moved out of position, the rephasing will be imperfect and thus the
recorded signal will be lower than if the nuclei had not moved. This reduction can be
studied to determine the diffusion characteristics of the molecules containing the studied
nuclei, as will be shown and described in more detail in this chapter. The recordable
NMR signal is called the Free Induction Decay, FID. The signal decays due to that the
magnetic moment vector reorients to the By direction, a phenomenon called longitudinal
relaxation, and the effects of fluctuations in the local magnetic field around the nucleus
which dephase the spinning nuclei, which is called the transversal relaxation. 75 denotes

a decay constant for the magnetisation perpendicular to the By direction.

3.1 Pulsed Gradient Spin Echo Pulse Sequence

A simple example of a diffusion NMR experiment is the pulse-gradient spin-echo se-
quence, PGSE [26] [27]. An overview of this sequence is found in figure 3.1. The
function of the 180-degree inversion pulse is to remove the dephasing of the spins due to
magnetic inhomogeneities in the sample or the applied magnetic fields. The expression

for the signal intensity for a pulse-gradient spin-echo sequence is given by
I(b) = I(0)e™"P, (3.3)

where

b= (vG6)%(A —6§/3), (3.4)

where b is the diffusion-weighting variable, 1(0) is the signal with no applied magnetic
gradient, and D is the diffusion coefficient of the studied nucleus. The diffusion coefficient
can be calculated by comparing the signal from multiple PGSE sequences with varying
G magnitude, §, or A. However, in samples with short 75 times, i.e. the spins dephase
quickly in the x-y-plane, it is useful to instead of applying one 180° apply two 90° pulses
in succession, allowing diffusion between them. It is necessary for the spins to be in

the xy-plane during times in which they are diffusion-encoded by the applied gradients.
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T T
90 180
‘i‘ ;\
G G
Ly,
A V

FIGURE 3.1: A pulsed-gradient spin-echo pulse sequence with two equal magnetic

gradients, GG, of duration § between the 90-degree pulse and the 180-degree echo pulse.

A denotes the time from the leading edges of the gradient pulses and is also the time

during which diffusion can affect signal attenuation and is hence called the diffusion

time. Signal acquisition is performed at the echo time, 27, is indicated by the decaying
sinusoidal curve to the right in the figure.

This strategy is referred to as ”z-storage” as the signal is stored along the z-axis during
the diffusion time. Spin-echo sequences dividing the 180-pulse into two 90-pulses are
called stimulated-echo sequences, an example of which is shown in figure 3.2. Although
equation 3.3 gives the signal for encoding of diffusion in one dimension, the underlying

theory is viable for diffusion encoding in all spatial dimensions.

3.2 Three Dimensional Diffusion NMR

In order to obtain information about translational motion in all three spatial dimensions,
the NMR signal can be encoded using a three dimensional magnetic gradient, G (t),

that varies with time [14]. This gives rise to a dephasing vector, q(t)
G () = {Ga(t), Gy (1), G: (1)}, (3.5)

q(t) :7/0 G(t')dt'. (3.6)

The diffusion weighting matrix, b is given by

b= /0 “a(t)aT (@, (3.7)
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— S
90 90 90
2 o
G G
Lan

FIGURE 3.2: A pulsed-gradient stimulated-echo pulse sequence with two equal magnetic

gradients, G, of duration ¢ between the first and second 90-degree pulse and after the

third 90-degree pulse. The first 90-degree stores the magnetisation along the z-axis,

making it invulnerable to transversal relaxation during most of A. Signal acquisition

is indicated by the decaying sinusoidal curve to the right in the figure. This is the

important difference compared to the pulsed-gradient spin echo experiment described
in figure 3.1.

where 7 is the echo time at which the spin magnetisation is rephased. As recently shown,
the b-matrix can be characterised by the total diffusion weighting b, anisotropy ba, and

asymmetry b, [15]

b=bLA5 + bl A5+ pEAY

| prAS 4 pPAS
ba = (b7 — =), (38)
3 bPAS o bPAS
b= 2 Yy Tx
79 bba ’

where PAS denotes the principal axis system of the tensor. Interestingly, by varying
the angles at which the g¢-vector is spun the b-parameters shown in equation 3.8 can
be controlled independently of each other. This is achieved through control of applied

magnetic gradients that build the g-vector, see 3.6.

If Gaussian diffusion can be assumed, the recorded signal amplitude can be described as

I =1y e PP, (3.9)
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where Iy corresponds to the signal intensity at no applied gradient and b : D denotes

the generalised scalar product as defined as

b:D=> Y b;Dij, (3.10)
tog
which, in the b-matrix’s PAS, can be written as

zZz

b:D =b Doy + 04Dy, + 029D (3.11)

In the parameterisation shown in equation 3.8 is used and axially symmetric diffusion-
encoding is used, i.e. b, = 0 and the diffusion tensor has axial symmetry, D, = 0,

equation 3.11 can be written as
b: D = bDigo[1 + 2bA DA Pa(cos ()], (3.12)

where [ is the angle between the z-axis unit vectors of the b and D vectors PAS, ny, and
np, respectively,

cos 5 = np - np. (3.13)

3.3 Diffusion Tensor Imaging Experiment

Obtaining spin echo sequence data in slices along some axis in the sample allows for
mapping the diffusion characteristics of the sample [28]. By phase encoding in two
directions, x and y, and frequency encoding in the z-direction, spatial resolution is
obtained. By repeating the experiment with incrementations of the phase encoding
gradient strengths, a 3D image with contrast given by the FA value, described in equation
2.12, and color coded to show the directionality of the diffusion tensor parameters can
be constructed. Diffusion encoding is performed by using a diffusion encoding gradient,
Gaiie The increments of the gradient strengths of Ggig give rise to changes in signal
attenuation in accordance with equation 3.9. If the total time the spins are subjected
to transverse relaxation is longer than the average T for a voxel, the DTI data from
that voxel will be non-representative. To compensate for the effects of the T5 relaxation,
a map of the T, values for each voxel can be measured. By only using the voxels in

which T, are long enough to ensure a signal to be obtained, the data is ensured to
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provide reliable results of diffusion encoding. 75 can be measured in a sample voxel per
voxel and shown as a Ty image which can, if using the same imaging settings as for the
standard DTT experiment, be used to mask the DTI data unusable for ODF production.

For details on how this is performed, see chapters 4 and 6.

The ODF and DTI obtained using this method can be used to compare to the ODF
resulting from the triple-stimulated spin-echo pulse sequence as it offers a visualisation
of the diffusion tensor both in the resulting diffusion tensor image and through the

constructed ODF.

3.4 Triple-stimulated echo pulse sequence with bipolar gra-

dient pulse pairs

The strength of the triple-stimulated echo sequence with bipolar gradient pulse pairs,
TriPGSEbp, is that it allows for equal diffusion encoding in three successive direction
[14]. The sequence is shown in figure 3.3. For each gradient direction, a stimulated echo
is carried out, assuring that the total time for 7T5-relaxation is limited to as short time as
possible, in total 67;. Even in stimulated echo experiments, transverse relaxation occurs
during times in which the spins are in the xy-plane, i.e. during diffusion encoding. The
reason for choosing bipolar gradients is to mitigate effects of internal gradients and eddy
currents. Eddy currents are induced currents in surrounding conducting material of the
NMR-spectrometer which, in turn, induce magnetic fields that distort the gradient fields

[29]. The directions in which the stimulated blocks encode the signal for diffusion are

given by,
T; cos Y; sin
n;= |y | =| siny;sin¢ |, (3.14)
% cos (

where ( is the inclination angle and ; is the azimuthal angle of the unit vectors of
the gradient directions. The vectors are symmetrically spaced around the z-axis. This

means that
2
by = %(i “1),i=1,2,3, (3.15)
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FiGUurE 3.3: The triple-stimulated echo pulse sequence with bipolar gradient pulse

pairs. In the radio frequency, RF, pulse line, thin and broad lines correspond to 902

and 180; pulses, respectively. The colours of the gradient pulses correspond to the
direction of the gradient. Taken with consent from [14]

¢ can be used to encode diffusion with various directional information.

sin? ¢
bye =byy =0
9y 9
b.., = bcos® ¢ (3.16)

bxy = bym = bmz = bzx = byz = bzy =0

where b is the diffusion weighting matrix defined by the pulse sequence parameters found

in figure 3.3
2 3
b= 2A-c -t 4 1
B0 (A =3 -5-5 "6 1z52) (3:17)
At the so-called "magic angle”, acos( %) isotropic diffusion encoding is achieved as the
b-tensor can be written as
byz = byy = b, = b/3. (3.18)

Also, it is useful to notice that truly directional diffusion encoding is achieved at { = 0

where

baw = byy = 0, (3.19)

b.. = b. (3.20)
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The resulting signal is, if powder-averaged, dependent on the diffusion tensor as well as

on the b-matrix as

ebDisobADA

I(b,ba) = IoefbDiS"@—
2 /3bDisoba DA

erf(\/SbDisobADA>, (3.21)

or, described as Dy and D, [14]

I_vm_ e (oD —D 3.22
572 gy oo WHBI=20) .

By fitting simulated signals based on estimations of D;s, and Da and the knowledge
of the used b-matrix to the recorded data, the values of D;s, and Da can be obtained.
Repeating the sequence in a number of directions of the symmetry axis of the b-matrix
gives a chance of obtaining a representative powder-averaged signal as well as an ODF.
The data acquired in the TriPGSTEbp experiment provides diffusion weighted signals
from multiple directions of the gradient frame which are evenly distributed in three
dimensions based on the electrostatic repulsion scheme [30]. Figure 3.4 shows a concep-
tual figure of the process of determining the ODF of a sample through analysis of the
TriPGSTEDbp data as shown above. Both the isotropically and directionally diffusion
weighted signal is powder-averaged in order to obtain the same signal to noise ratio.
The isotropically diffusion weighted signal, however, should be the same independent on

the measured direction.

Orientations

within sample Diffusion Tensor shape ODF

FicUre 3.4: Example of DT and ODF estimation of a sample with anisotropic diffu-

sion domains, channels, along two different directions (left). As diffusion NMR mea-

surements are made along various directions, the shape of the DT (centre) is estimated,

and by using the signal of various directions and the DT shape, the fiber ODF can be
calculated.



4. Orientation Distribution Function

As useful as the diffusion tensor model is, it lacks in that it does not describe the
spread of orientations of structures in which self-diffusion is dominant. This is especially
troublesome in DT experiments carried out on samples where multiple fiber orientations
can exist within the resolution attainable by current diffusion weighted MRI-techniques,
such as brain tissue. One application in which it is of uttermost importance to correctly
determine the direction of the underlying fibers is fiber tracking in which nerve fiber
tracks are traced by examining the diffusion profile of the whole or part of the brain,
voxel per voxel [31]. The first strategy of obtaining the fiber tracks was by assuming
that the direction of the dominant eigenvector shows the average fiber direction within
the voxel. However, at the current obtainable spatial resolutions, each voxel might
contain fiber populations that cross, making approaches based on tracking the dominant
eigenvector insufficient [11]. The term ”fiber” originates from the DTI application of
neural fiber tracking and is, in this report, interchangeable with any kind of channels
within which the apparent diffusion coefficient of water is much greater in one direction
than in others. The challenges of disparate orientations within one voxel can be tackled
by some different strategies such as g-ball imaging and high angular resolution diffusion
imaging (HARDI) experiments [32, 33]. Experiments that are designed to produce ODFs
can either stop at determining the diffusion ODF, which represents the motion of water
molecules, or the fiber ODF, which attempts to represent the fiber orientations [34].
However, the calculation of the fiber ODF is currently dependent on guessing the shape
of the diffusion tensor to adjust the diffusion ODF to only account for the directions along
which the diffusion tensor is prolate. The data acquired in the TriPGSTEbp experiment
provides diffusion weighted signals from multiple directions of the gradient frame which
are evenly distributed in three dimensions based on the electrostatic repulsion scheme
[30]. This means that both diffusion tensor characterisation, as shown in the diffusion

NMR-chapter, and ODF reconstruction is possible from data from the same experiment.
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An approach to describe an unknown number of orientations of fibers within a voxel is
the Orientation Distribution Function, ODF, also called Orientation Density Function
or Fiber Orientation function [10]. Orientations are given in spherical coordinates where
f is the inclination angle and ¢ is the azimuthal angle. 6 is defined to be along the z-
axis. It is here useful to see the factors after the b value in equation3.12 as an effective
diffusion value, Dog. The ODF, P(0, ¢), gives the fraction of the fibers oriented along a

certain direction, (6, ¢) and is related to the diffusion-weighted signal attenuation as

I(b) T 27
T = / / K(baDiSO7DA79, ¢)P(9a¢)d9d¢a (41)
0 0 0
where
K (b, Diso, Da, 0, ¢) = e 7Pt (4.2)
and
Det = Degi(1 + 2bA DAP2(cos ), (4.3)

where [ is the angle between the z-axis unit vectors of the b and D vectors PAS as given

by equation 3.13 and Py is the 2"¢ Legendre polynomial
3z2 -1
Po(z) = 5 (4.4)

It is noteworthy that S will be dependent on 6 and ¢

Solving equation 4.1 to obtain P(6,¢) can be achieved by using a kernel based on
the most anisotropic voxels in the data[l0]. The major strength of the TriPGSTEbp
experiment is that it measures both Djs, and Da directly, thus making it possible to
directly and correctly build the correct fiber ODF based on the diffusion tensor shape
via Dgg. This means that all the information needed to describe the kernel is obtained in
one experiment. To obtain the ODF the signal attenuation is discretised onto a spherical
mesh and solve the problem using a non-negative least-squares fit of equation 4.1 [35].
The plotted ODF is the mean of multiple obtained ODF's from random sampling of the
TriPGSTEDbp data using bootstrap resampling.



5. Lyotropic Liquid Crystals

Lyotropic liquid crystalline materials consist of molecules that self-assemble into su-
permolecular structures who possess a long-range orientational order when a solvent is
introduced. Typically, and in the context of this report, the constituents of the lyotropic
crystals are amphiphilic molecules, water, and oil. Depending on the concentration ra-
tios of the constituents, the structure of the crystalline phases differ [36]. For studying
anisotropic diffusion, lamellar and reverse hexagonal phases are of most interest as the
water molecules can, ideally, only diffuse in one direction or a plane, respectively. Con-

ceptual figures of the lamellar and reverse hexagonal phases are found in figure 5.1.

n
“y,

FIGURE 5.1: Conceptual figure showing the sheet structure in lamellar phase (left) and
the water channels in reverse hexagonal phase (right) lyotropic liquid crystals.

Lyotropic liquid crystals are used in diffusion NMR because of the control that is attain-
able over the shape of micro- and millimeter-scale structures of water barriers [1, 15, 18—
20]. Magnetic fields are known to be able to orient liquid lyotropic crystals if these show
an anisotropy in magnetic susceptibility of aggregated structures [37, 38]. The effective
anisotropic magnetic susceptibility is a summation of contributions from the molecular
components including the aliphatic chains, such as in the dioctyl sodium sulfosuccinate
molecule or C14E5 used as surfactant in the studied samples in this work. This means
that the magnetic field induces a torque on the molecules within its effect. In liquid
lyotropic crystal systems, the alignment effect can be immediately observed if the sam-
ple is heated to an isotropic phase and allowed to cool to a reversed hexagonal phase

18
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while within the magnetic field. Alignment can be observed in field strengths of a few
T for molecules of high anisotropy in magnetic susceptibility. The control of anisotropic
diffusion domains, i.e. the structures of water barriers, the availability of the substrates,
and the fact of it being a well-studied system makes the AOT/Hy0 /iso-octane liquid

crystal system a good choice for using in a diffusion NMR experiment.



6. Materials & Methods

This chapter describes the equipment, methods and samples used for the experimental

work and data analysis.

6.1 Simulations

Data from the TriPGSTEDbp experiment can be used to estimate the diffusion tensor and
through this estimation obtain the ODF. The algorithm used to analyse the TriPGSEbp
experiment data was used to draw ODFs of simulated data to test the angular resolution,
resilience to noise, and ability to resolve a disc-shaped ODF constructed of 1000 prolate
tensor structures. All simulations of data was performed in Matlab. The simulated
data was based on a diffusion tensor of Djs, = 1072 m2/s and Da = 0.8 or, for the
test of angular resolution, Da = 0.83. Simulation of the signal and reconstruction of
the ODF was performed using acquisition parameters of b = 5-10°[0.01 0.2 0.5 0.75 1]
s/m?/, ba = [0 0.96] and Ny;, = 51. This signal was then used to test different sets of b-
parameters and number of directions in which to analyse the sample. As one acquisition
of NMR data using the triple-stimulated spin-echo sequence for each value of b, ba,
and direction the total number of acquisitions, IV, will be the product of the number of
directions, N _dir, and the number of b- and ba values. In order for the test to be feasible
to useful in clinical applications a limitation of N was put to around 512. The testing
resulted in the following parameters that were used to define the gradients using an
in-house made Matlab script to adopt the b-matrix and defined directions into steering
parameters for the gradient coils in the NMR spectrometer probe for the TriPGSTEbp-
experiment. b, gives the relative values as compared to the maximum gradient strength

of the spectrometer that must be adapted to each sample in order to obtain proper signal
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6.2 AOT/H,0/iso-octane sample preparation

As a model system, liquid crystals of 10 % w/w D20 in HoO (Milli-Q quality), iso-octane
(Fluka AG) and detergent sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate
(analytical grade, Sigma-Aldrich, Sweden) with the trade name Aerosol OT or AOT
mixed in proportions to generate a reversed hexagonal phase at room temperatures.
Proportions were based on the ternary phase diagram shown figure 6.1 and mixed in
proportions shown in table 6.1 and as crosses in figure 6.1. All samples were mixed in
15 mL centrifuge tubes and centrifuged in alternating direction (cap-up/cap-down) for
2 minutes per direction in 25°C in 2400 rpm until a homogenous mixture was achieved.
About 500 uL of each sample was put into 5 mm NMR tubes which were centrifuged at
3300 rpm at 25°C for 2 minutes.

Sample | HoO/D2O / (w/w %) | AOT / (w/w %) | iso-octane / (w/w %)
A 45 40 15
B 35 45 15

TABLE 6.1: Weight percent ratios of the studied liquid crystal samples.

Also, a sample of C14E5 mixed to 61.8 % w/w with D20 in HO solution was lent by
Professor Topgaard whom had prepared the sample to form concentric circular channels

according to the protocol described in [19].
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FIGURE 6.1: Ternary phase diagram marked with the selected mass percentage ratios
for the made samples. The red cross marks the ratio of the A sample while B is marked
by the blue cross. Figure adopted from [36]

6.3 NMR measurements

All NMR experiments were performed on a Bruker Avance-I1 500 MHz spectrometer with
an 11.7 T magnet equipped with a Bruker MIC-5 microimaging probe giving maximum
magnetic field gradients of 3 T/m in three orthogonal directions (Bruker, Germany).
Spectrometer data were processed using the standard spectrometer software TopSpin 2.1
(Bruker, Germany) and Matlab. The liquid crystalline phase structure was determined
by recording 2H NMR. spectra using a probe fitted with a 5 mm 2H/'H RF insert.
Relaxation rates were measured by standard 77 inversion recovery and 75 measuring

spin echo experiments. All NMR measurements were performed at 18.4°C.

6.3.1 Triple-stimulated spin-echo experiment

The maximum value of G was on the order of 0.5 T/m and adjusted for the different
samples to reach reasonable signal attenuations. The b-matrix was defined in accordance
with the obtained values under ”Simulations” 6.1. Timing values used were § = 0.6 ms,
A =671.2ms, e =0.1ms, 7 =0.2ms, 74 = 1.2 ms, and 5 = 670 ms. 7. used was 1
ms for sample A and C and 2 ms for sample B. The experiment was also repeated on

a sample of free 10 % w/w D20 in HoO with the same settings of timing parameters
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except a set 7, of 2 ms. The b-space used was also the same except that only 5 directions

were used.

The time-domain signals were converted to frequency spectra using Fourier transforma-
tion and subsequently phase corrected and baseline corrected using Matlab scripts coded
in the department of Physical Chemistry at Lund University. The powder-averaged wa-
ter signal S(b,ba) was analysed using a least-square fitting Matlab routine ”lsqcurve-
fit” to equation 3.21 with the adjustable parameters of initial signal intensity Sp, the
isotropic diffusivity, D;s,, and the diffusion tensor anisotropy, Da. Initial guesses for the
fitting was both done from DA=-0.47 and 0.98 and the best fit was chosen. The fitting
was repeated for 10000 randomly chosen data sets acquired through use of bootstrap

resampling [39].

Using in-house Matlab scripts, an ODF was produced by least-square fitting with a non-
negativity constraint of the signal attenuation to a kernel based on the D,y as described

in equations 4.1 to 4.3.

6.3.2 Diffusion Tensor Imaging

To be able to compare the data from the triple-stimulated spin-echo pulse sequence with
bipolar gradient pulse pairs, high resolution DTIs were obtained through the single-
stimulated echo with bipolar pulse pairs experiment [19]. In order to compensate for
signal loss due to substantial T5 relaxation, an imaging sequence measuring 75 values

for each voxel was performed with the same imaging settings as for the standard DTI.

The DTT data was interpreted and visualised using in-house Matlab scripts that calculate
and plot CL, CP, and Diffusion tensor element xx, yy, and zz, values in each voxel.
This shows the colour-coded directions of normalised values of the linear anisotropy, the
direction of the normal vector to the planar anisotropy, and the directions of the diffusion
tensor elements, respectively. CL and CP are calculated as shown in equations 2.13 and
2.14, respectively. Thereafter, an ODF was constructed by from masked values from
the DTI to extract only the data not severely affected by 75 relaxation. The DTI data
chosen to produce the ODF was the \j-associated eigenvector for the assumed prolate

samples, A and B, and the As-associated eigenvector for the assumed oblate sample, C.



7. Results

7.1 Simulations

Data from the TriPGSTEbp experiment can be used to estimate the diffusion tensor and
through this estimation obtain the ODF. The algorithm used to analyse the TriPGSEbp
experiment data was used to draw ODFs of simulated data to test the angular resolution,
resilience to noise, and ability to resolve a disc-shaped ODF constructed of 1000 prolate
tensor structures. Figure 7.1 shows estimated Da values and true and reconstructed
ODFs of two channels separated by an angle. At 36° separation, the reconstructed ODF
start to become unable to resolve the channels. The sensitivity to noise is shown in
figure 7.2 which shows that the accuracy of Da estimation and ODF reconstruction
increases with increasing SNR. Reconstruction of a disc shaped ODF shows a certain

exaggeration of some directions than others.

7.2 NMR Characterisation of Lyotropic Liquid Crystal Sam-

ples

The resulting spectra resulting from Fourier transform of 90°-acquire experiment data
using the 1H and 2H probe of the AOT/H50 /iso-octane samples are shown in figures 7.4
to 7.5. The relative height of the water peak compared to the peaks at lower frequency
from AOT and iso-octane are as would be expected between the A and B samples
as A has a higher relative water content. The deuterium spectra clearly show that
the samples are in the reverse hexagonal phase. The total peak-to-peak width in the
deuterium spectra are smaller for the A sample than for the B sample. Proton and

deuterium spectra for sample C are found in figures 7.6 and 7.7, respectively.
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True ODFs
Reconstructed ODFs
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FiGure 7.1: ODF reconstruction of two channels separated by 5 different angles,
equally distributed from 90 to 18 degrees. True ODFs are shown in the top row while
the reconstructed ODFs are shown below for each angle of separation. Colour in the
ODF shows orientation, red and blue correspond to orientations parallel to the x-axis
and z-axis, respectively. The separate orientations are distinguishable to some degree
at 36 degrees but completely indistinguishable at 18 degree separation. Simulation of
the signal and reconstruction of the ODF was performed using acquisition parameters
of b =15-100.01 0.2 0.5 0.75 1], ba = [0 0.96] and Ny; = 51. Dacss and opa show
the estimated DA and the standard deviation of the estimation, respectively. Also,
noise was added to an extent which granted a signal to noise ratio of 50.

Table 7.1 shows the population weighted mean relaxation times for the studied sam-
ples. As the sample consists of domains with different orientations of anisotropic water
diffusion structures, 75 will depend greatly on the orientation along which the signal is
measured. T» measurements were not performed on sample C. Sample A has slightly

higher population weighted mean 77 and 75 values than sample B.

Sample | Ty / (s) | T2 / (ms)
A 1.38 15
B 1.11 11
C 1.80 NA

TABLE 7.1: T; and population weighted mean T4 values of water in the studied sam-
ples.
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FIGURE 7.2: A simulated ODF with 5 channel orientations shown in the top recon-
structed after added noise to provide simulated data of signal to noise ratios of 10, 30
and 50, as shown above the reconstructed ODF's. Colour in the ODF shows orientation,
red, green and blue correspond to orientations parallel to the x-axis, y-axis and z-axis,
respectively. Daest and opa show the estimated Da and the standard deviation of the
estimation, respectively. At low signal to noise ratio, the z direction is completely lost
and the relative sizes of the channel directions are skewed and the standard deviation of
the estimated Da is large. Simulation of the signal and reconstruction of the ODF was
performed using acquisition parameters of b = 5-10[0.01 0.2 0.5 0.75 1], ba = [0.96 0]
and Ny, = 51.

-
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F1GURE 7.3: Reconstruction of the ODF of a disc of 1000 water channels in an evenly
distributed in the x-y-plane was performed using acquisition parameters of b = 5 -
10°[0.01 0.2 0.5 0.75 1], ba = [0.96 0] and Ny;,. = 51. The true D, 0.8, was estimated
to 0.79 with a standard deviation of 0.0388. Colour in the ODF shows orientation,
red, green and blue correspond to orientations parallel to the x-axis, y-axis and z-axis,
respectively. Also, noise was added to an extent which granted a signal to noise ratio
of 50. The effects of a limited number of directions and a prolate diffusion tensor are
seen as edges sticking out in the circle.
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FIGURE 7.4: Proton spectra of the studied AOT/H0/iso-octane samples acquired
using a 90-acquire NMR pulse sequence experiment. Black line shows the A-sample, of
higher water content, and the red line shows the B-sample, of lower water content.
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FIGURE 7.5: Deuterium spectra of the studied AOT /HyO/iso-octane samples acquired
using a 90-acquire NMR pulse sequence experiment. Black line shows the A-sample, of
higher water content, and the red line shows the B-sample, of lower water content.
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FIGURE 7.6: Proton spectrum of sample C acquired using a 90-acquire NMR pulse
sequence experiment.
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FIGURE 7.7: Deuterium spectrum of sample C acquired using a 90-acquire NMR, pulse
sequence experiment.

7.3 Diffusion tensor estimations & ODF reconstruction

Table 7.2 show the results of the fit of data from the TriPGSTEbp experiment to the
equation 3.22. The data points and fitted curves are shown in figure 7.8. It should also
be noted that the normalised signal intensity plotted as a function of b-values are clearly
separated for the two ba for higher b-values which indicates a high level of anisotropy.
The theoretical connection between D |, Dy and Djis, and Da shown in 2.8 and 2.9 was
used to calculate values to compare with the parameter estimation of the fit of the same
data to equation 3.21. For samples A and B the axial diffusion coefficient was much
greater than the radial whilst for sample C, the radial was greater than the axial. The
10 % w/w D20 in HyO sample, results of TriPGSTEbp experiment shown in figure 7.9,
shows isotropic diffusion characteristics. The D and D, value of free water was higher
than that for the lyotropic liquid crystal samples. Samples A and C show a higher mean

diffusion than the B sample.

Sample MD / (m?/s) | AD / (m®/s) | RD / (m?/s) | Diso / (m?/s) | Da

A 3.70-1071° | 1.10-107° | 3.30-107' | 3.73-1071 [ 0.91
B 2.90-10-1% [ 8.10-10719 | 2.70-10" | 2.88-10719 [ 0.91
C 7.6-10°10 4510711 1.10-1077 | 7.65-10719 | -0.47
10 % w/w D20 in HoO | 1.98-1077 1.98 1079 1.98 1079 1.98 1077 | 0.00

TABLE 7.2: Mean, axial and radial diffusion coefficients from fitting of TriPGSTEbp
experiment data on samples A-C and a sample of 10 % w/w D2O in HyO for comparison.
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FIGURE 7.8: Normalised signal intensity, I/ vs. the total diffusion weighting, b, with
fitted curves to equation 3.21 for sample A, B, or C.
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FIGURE 7.9: Normalised signal intensity, I/I, vs. the total diffusion weighting, b,
with fitted curves for the 10 % w/w D2O in HyO sample.

Table 7.3 shows the fitted parameters, Dis, and Da, to equation 3.21. The Djg, values
of sample C are greater than the B and A samples. A and B samples show D values

that show a clear prolate diffusion tensor while the sample C shows an oblate tensor.

Graphical representations of the diffusion tensors are included in figures 7.10 to 7.12
diffusion tensor images are shown to the left and the constructed ODF from the DTI

experiment, masked by results from Ts-imaging, shown to the right of the DT1Is, is shown
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Sample Diso / (m?/s) Da

A 3.69+0.03-10710 | 0.90+ 0.02
B 2.77+0.02-1071° | 0.90 +0.01
C 7.63+0.1-10710 | —0.48 £0.05

TABLE 7.3: Djs, and Da values from fitting of triple stimulated echo experiment on
samples A-C. The uncertainties correspond to 95% confidence interval as determined
with bootstrapping.

on the top right. The constructed ODF from the triple stimulated echo-experiments is
found in to the lower right in the figures. The shape of the diffusion tensors based on
the estimations of the Dis, and Da are included as elongated, prolate, or The diffusion
tensor image show maps of, in order from left to right, the linear diffusion tensor, CL,
the normal vector to the planar diffusion tensor, CP, and the diffusion coeflicient in the
tensor’s PAS. The level of CL and CP in the figures give an estimate of how correctly the
diffusion tensor can be assumed to have one shape. Sample A seems to have a majority
of voxels having a high CL value, while sample B has a slightly more share of voxels
showing a higher CL value. Sample C has one central channel clearly shown in the CL
image and, due to the circularity of the lamellas, a high CP value in the rest of the
sample. The ODFs from the different datasets are very similar. The ODFs from the
TriPGSTEbp-data are slightly more spiny.

7.4 Test of Diffusion Coefficient Estimation

The diffusion coefficients of the 10 % w/w D20 in HoO sample shown in the lowest row
of table 77 obtained through analysis of a TriPGSEbp experiment correspond to values
extrapolated from values found in previously published data to 99.85% [40] [41]. This
assumes that there is a linear correlation to the influence of DO on the self-diffusion
coefficient of HoO in a D3O in HoO mixture. No correction of the measured diffusion

coefficients were deemed necessary.
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FIGURE 7.10: DTIs (left), Ts-image, shape of diffusion tensor (centre) and recon-
structed ODFs (top based on Tp-weighted DTI data, bottom based on TriPGSEbp
data) of sample A. Colours in the Ts-image is correlated to the value of Ty in each
voxel as a logarithmic scale between maximum 100 ms, blue, and 2 ms, red as indicated
by the colourbar. The diffusion tensor shape is based on the D value. All colours
in the figures are depending on the direction of either the diffusion tensor, DTIs, or
the orientations, ODF. Red, green, and blue means x-, y-, and z-direction, respectively.
The DTIs show the CL, CP, and directional diffusion tensor values, from left to right.
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Ficure 7.11: DTIs (left), Te-image, shape of diffusion tensor (centre) and recon-
structed ODFs (top based on Tp-weighted DTI data, bottom based on TriPGSEbp
data) of sample B. Colours in the Ty-image is correlated to the value of Ty in each
voxel as a logarithmic scale between maximum 50 ms, blue, and 3.3 ms, red as indi-
cated by the colourbar. The diffusion tensor shape is based on the Da value. All colours
in the figures are depending on the direction of either the diffusion tensor, DTIs, or
the orientations, ODF. Red, green, and blue means x-, y-, and z-direction, respectively.

The DTIs show the CL, normal vector of CP, and directional diffusion tensor values,
from left to right.
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FIGURE 7.12: DTIs (left), To-image, shape of diffusion tensor (lower left corner) and
reconstructed ODF's (top based on T»-weighted DTI data, bottom based on TriPGSEbp
data) of sample C. Colours in the To-image is correlated to the value of Ty in each voxel
as a logarithmic scale between maximum 1000 ms, blue, and 1 ms, red as indicated by
the colourbar. The diffusion tensor shape is based on the Da value. All colours in
the figures are depending on the direction of either the diffusion tensor, DTIs, or the
orientations, ODF. Red, green, and blue means x-, y-, and z-direction, respectively.
The DTIs show the CL, normal vector of CP, and directional diffusion tensor values,
from left to right.



8. Discussion

8.1 Simulations

The angular resolution of this technique is limited by the number of directions of the
gradient frame, as the encoding of diffusion information is performed in these directions.
Second, the angular resolution in the ODF reconstruction method used to produce the
ODFs is limited by the choice of the number of points that build up the spherical mesh
onto which the amplitude of the reconstructed ODF is projected. This is hardly the
limiting factor for the simulations shown in the figure, however, since 1000 points evenly

spaced rather densely covers the sphere.

The effects of different noise levels is shown in figure 7.2. A sample with many different
directions of channels was chosen in order to put larger strain on the reliability of the
reconstructed ODF. It is evident that the estimations of Da increase in reliability with
increasing SNR as the standard deviation of the estimations decrease with increasing
SNR. The reconstructed ODFs show increasing similarities to the true ODF although,
interestingly, the channel direction along the z-axis seems to be harder to resolve. This
should be evaluated further to assess whether this is a systematic error that can be

compensated for.

Simulation of 1000 evenly distributed channels in the x-y-plane is shown in figure 7.3.
The over-estimated edges along some orientations in the plane is most probably due to
the limited number of directions of the gradient frame that are measured as discussed

regarding the angular resolution.

The use of simulations to get a first-glance estimate of the parameters of the diffusion-

weighted matrix and test the limits of data analysis is indeed very useful. However, for
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diffusion weighted experiments it is limited by how well-described the theoretical signal

attenuation profile is.

8.2 Lyotropic Liquid Crystals

The AOT/H50 /iso-octane lyotropic liquid crystals are suitable as model systems as they
are cheap to produce, relatively well studied and easy to mix into reverse hexagonal
phase. For future experiments, amphiphilic molecules specialised for desired function
could be used. For instance, amphiphilic molecules with higher anisotropic magnetic
susceptibility would cause a higher degree of orientation along the tube length, which
could serve as an interesting test sample for future dMRI-experiments. Alternatively,
the sample could be allowed to be affected by the strong magnetic field for a longer
period of time. Also, possibly, diffusion NMR could be used to study functionally
designed lyotropic crystalline structures to measure transport through lamellar barriers
or between rods in reverse hexagonal phase. This could be a useful alternative as a first
step to study diffusion effects in biological samples as the lyotropic crystals might be

more stable over time than cells.

Figure 7.6 shows the proton spectrum of samples A and B. The water peak is visible
at 4.7 ppm chemical shift for both samples. The relative height of the water peak as
compared to other peaks in the spectrum is larger in the spectrum for sample A than
to sample B. This is to be expected as the relative water content of sample A is higher

than that for sample B, as can be seen in table 6.1.

Deuterium spectra can be used to observe the phase of the lyotropic liquid crystal
structures [1, 28]. The deuterium spectra of the A and B-samples, shown in figure 7.5,
show clear anisotropic phase, which was exactly as wanted and is in accordance to the
literature for the studied concentration ratios between AOT, HoO and iso-octane [36] .
If the main axis of symmetry of the liquid crystal, i.e. the channels or lamellas, is along
the same axis as for the By-field, the width of the quadropolar splitting is more narrow
than if the axes are in some angle. This could be explained, observing the ODFs and
DTTIs in figures 7.10 and 7.11, as a consequence of a higher variety of directions in sample
B. The shoulder peaks of sample A are more pronounced than those for sample B in

the deuterium spectra. This might be due to fewer orientations of channels in sample
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A than in sample B which would give less spread in the quadropolar splitting. Figures
7.6 and 7.7 shows the proton and deuterium spectra of sample C, respectively. The
deuterium spectrum shows that the lyotropic liquid crystal structures are anisotropic
and of extremely highly uniform direction, as is confirmed by the DTI images in figure

7.12.

The T, relaxation constants of water shown in table 7.1 are measured in one direction
but due to the anisotropy within the sample, the values will be a population-weighted
average. These values should be compared to the T>-images found in figures 7.10 to 7.12

which show that the spread of Th-values are great in samples A and B but less in sample

C.

8.3 Diffusion Tensor Estimations

The mean, axial, and radial diffusion coefficients, shown in table 7.2 of the studied sam-
ples show that the samples show anisotropic diffusion coefficients. Specifically, samples
A and B show highly prolate diffusion tensors while sample C shows an oblate diffusion
tensor. It is worth noticing that the signal attenuation of the B sample is poorer than
for the A sample and the C sample. This might be an effect of too strong or too weak
diffusion encoding gradients being used. Too low gradient field strength would not cause
enough signal attenuation while too high would risk that the attenuation would be too
high, risking the signal becoming too noisy to analyse. While measuring, it could be
observed that the signal was very low for the highest b-values, making the case of too
high b-values implausible. It is worth noticing that the lowest relative b-value is not
zero but 1%. When using strong enough gradients, this might cause differences in sig-
nal attenuations for the lowest b-values at the different diffusion encoding angles. This
would explain the small differences that can be seen in relative signal for samples A, B,
and C, most pronounced on measurements on sample B. For future studies, it should
be studied if the minimum relative b-values could be decreased further, without risking
too many artefacts [15]. The effect of too low signal attenuation would be that the
Diso value might be underestimated and that the Da value would be harder to deter-
mine since the difference in signal attenuation is lower for stronger gradients. In future

experiments, the signal attenuations should be more thoroughly controlled after each



Discussion 37

measurement. The measurements on the sample of free water shows perfect isotropic

diffusion characteristics.

The Diso/Da parameterisation fit function seems to work well as the fitted values seem
to be within acceptable spread. Comparing the calculated Dis, and Da values from the
fitted MD, AD, RD-values to the fitted values show that the fit function strategy used
in the analysis algorithm for obtaining the Dis, and Da-values is suitable. By guessing
for both prolate and oblate diffusion tensors at each round of fitting in the Bootstrap
loop, both prolate and oblate tensors can be detected. This is explicitly shown by the
analysis of sample C which, due to the oriented lamellar layers showcase a near perfect

oblate diffusion tensor.

8.4 Orientation Distribution Function Reconstruction

The reconstructed ODFs from the TriPGSEbp experiment, shown together with calcu-
lated diffusion tensor shape and DTT images in figures 7.10 to 7.12 , generally accentuate
the directionality of the channels more than those reconstructed from T5-masked DTI
data. Looking at the reconstruction of the ODF of simulated data of a disc shape shows
that, probably due to the limited number of measurement directions, this accentuation
seems to be inherent in the mesh-based ODF reconstruction method. The method still
seems to be appropriate due to the, relatively, simple approach and the decreased need
of hands-on reconstruction manipulations to fulfil the criteria of the ODF being real and

non-negative compared to other spherical deconvolution methods.

The ODF reconstruction is based on the eigenvector associated with the largest or
smallest eigenvalues of the To-masked DTI data or the Deg for the TriPGSEbp data. In
the reconstruction of the ODF from the DTI experiment the direction of the vector along
which axial symmetry is formed is used in order to reconstruct the ODF in a randomly
selected representative subset of the DTI data. This is true for the prolate tensors
while for the oblate tensors, the direction of the channels will be the least dominant
eigenvector, associated to the direction of the diffusion perpendicular to the channel.
The decision of which vector to base the ODF on from the DTI experiment must be
decided before producing the ODF, which is not needed for the TriPGSTEbp-data. It

can be seen in the DTI of sample B that planar voxel-averaged tensor domains are also
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present. Even if this should not affect the ODF reconstruction because of the choice
of prolate tensor data, it might cause a lower SNR. Also, too strong gradients would
generate noisy signals which might cause detections of false directions in the ODF.

Hence, sufficient SNR should be ensured in the measurements.

If this technique is to be used to track the orientation of nerve fibers, the matter of
angular accuracy must be analysed [11, 42]. Even if the angular deviation between the
reconstructed ODF and the true fiber direction is small, if the error is systematic then
it follows that the accumulated deviation will lead the fiber tracking algorithm astray.
Samples with well known orientations of millimetre-length structures should be analysed

and the algorithm corrected to account for known deviations.

8.5 Triple-stimulated echo-sequence

It is evident that the triple-stimulated echo experiment shows great promise to be used
to study samples with short T5-times such as the lyotropic liquid crystal systems studied

in this work.

Diffusion MRI techniques encoding diffusion both directionally and isotropically can be
used to distinguish between tumours in different tissues [4]. The TriPGSTEbp exper-
iment can provide reliable estimations of the shape of the diffusion tensor, especially
distinguishing between oblate and prolate shapes, and from the data an accurate fibre
ODF based on the shape of the diffusion tensor can be calculated. A logical next step
would be to evaluate a pulse sequence based on being able to vary ba on neuronal tissue
using a clinical MRI scanner to evaluate the ODF reconstruction strategy using Deg for
DTTI and fiber tracking applications, possibly providing more clinically meaningful infor-
mation regarding the anatomy of analysed tissues. For this, a suitable balance between
the number of diffusion encoding directions and number of values of b and ba should be
produced. The best balance of these parameters would be dependent on which informa-
tion is desirable to assess. Varying ba to more values would provide a better estimation
of the shape of the diffusion tensor while an increased number of encoding directions

could improve the angular resolution of the ODF.

The technique is useful for studying lyotropic liquid crystals and it is shown that the data

obtained can, using relatively few sequence acquisitions, be effectively used to estimate
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the diffusion tensor elements and ODF of the sample. An alternative to simulations
to obtain a guess of a vector of relative b- and ba-values to use would be to measure
an excess of b-matrix settings and in the analysis try out which subset of parameters
give the most efficient fitting. This strategy would be very time-consuming but useful
in complex samples where the reliability of the simulated data might be questionable
due to simplifications in the diffusion tensor and ODF specifications. This is especially
true if concern should be given to samples containing domains of more than one kind of
diffusion characteristics. As lyotropic liquid crystal systems are investigated as possible
materials for controlled release systems, diffusion profiles are of growing importance [43].
The TriPGSTEbp-experiment could provide a more detailed estimation of the diffusion
profile within the carrier structures that might be of use for testing new approaches
of drug delivery systems [44, 45]. This will be of growing importance as drug delivery
systems grow more complex. Also, TriPGSTEDbp could be used to study other molecular
diffusion than water. Larger molecules would require longer times for diffusion which
would mean a higher sensitivity T»-relaxation which might cause problems for diffusion
encoding in multiple directions. However, there might be time-resolution benefits in the
measurements if this could be circumvented. The ODF could be of interest if complex
drug delivery systems include structures in which water is supposed to be able to enter

and transport through some drug delivery material in an ordered fashion.



9. Conclusions

The work in the thesis project accounted for in this report examines a diffusion weighted
experiment, the triple-stimulated pulse echo experiment, which encodes diffusion both
directionally and isotropically. The possibility of the latter is a recent discovery and
makes it possible to obtain direct information of the shape of the diffusion tensor, which
describes how water can diffuse inside of the studied sample. This is shown by studying
three samples of lyotropic liquid crystal systems, prepared in ways as to show lamellar
or channel structures on the nano- to millimetre scale. The experiment was repeated in
multiple directions of diffusion encoding. This allows for a more correct diffusion ten-
sor estimation as the signals are measured along more of the water channel directions,
hence, when averaged for all directions, providing a more representative measurement.
Moreover, the multiple directions measured also provides the necessary data to pro-
duce a three dimensional map of the microscopic crystalline structure, the orientation
distribution function (ODF). The number of encoding directions and variations of the
parameters tuning the diffusion encoding gradients are restricted to show that the tech-
niques are feasible to use in practical applications, as each extra parameter setting equals
one extra measurement adding to the total time needed for the experiment. The ma-
jor finding of this thesis work is that the diffusion tensor shape and the ODF can be
determined from the data of a single diffusion-weighted NMR experiment and that the
diffusion tensor can be used in the estimation of the ODF directly. Of special importance
is that the technique can be used to determine whether the diffusion tensor is oblate, i.e.
lentil shaped, or prolate, i.e. cigarr-shaped. This is shown explicitly by measurements
on samples containing regions of water channel structures and concentric lamellar water

planes with subsequent data analysis.

For future work, an optimised balance between the number of diffusion encoding di-

rections and parameters governing the diffusion encoding magnetic gradients, which

40
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together make up the total number of scans needed and thus the time the experiment
consumes, should be produced. This means somewhat of a tradeoff between optimis-
ing for estimating the diffusion tensor, which improves with more tested parameters of
diffusion encoding magnetic gradients, and calculation of ODF, which would gain in
resolution from more number of diffusion encoding directions. Moreover, samples that
show more complex diffusion patterns can be studied in order to check the possibil-
ity of detecting these diffusion profiles and still gaining a correct ODF, which should
be theoretically possible using the same strategy as described in this report as long as
the signal attenuation due to diffusion can be theoretically described. The experiment
could also be introduced into a clinical setting to gain more insight in the structure of
the microstructure of tissues without the need of guessing the diffusion characteristics

beforehand.
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