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Statistical Classification of Wooden Boards 

Johan Lindell 

 

 

Recent technological advances have 

created new opportunities in the sawmill 

industry. The quality inspection of sawn 

boards has traditionally been performed 

manually, but it is increasingly common to 

use cameras and laser technology to 

determine board quality. In addition to 

reducing the workload on manual quality 

inspectors, an automatic inspection 

system can potentially be used as a 

replacement for other machines. One such 

is a strength classification machine. In this 

project it has been investigated how the 

information from a quality inspection 

system, consisting of cameras and point 

lasers, can be used to perform the 

classification otherwise done by a strength 

grading machine. 

An automatic inspection system can be used 

to identify many different properties on a 

board. The information from laser scanning 

provides the direction of fibre angles, and 

cameras are used to capture color images of 

the boards. By combining these, board 

characteristics and defects such as knots, 

cracks etc. are identified. From this 

information the board is classified into one of 

several quality classes. Figure 1 shows a color 

image of a board, and figure 2 shows a laser 

measurement of the same board. 

 
Figure 1: Color image of a board, obtained 

from an automatic inspection system. 

 
Figure 2: Visualisation of laser point area. In 

the lighter regions the laser point spreads 

over a larger area. 

A new approach for board classification has 

been attempted in this project. Statistical 

classification methods have been applied to 

the board data, producing a classifier that 

attempts to divide boards into different 

strength classes. The classifier takes board 

characteristics, or features, from each board 

and makes a classification decision based on 

that information. Figure 3 shows a scatter 

plot of boards from two different strength 

classes. The red data points correspond to 

boards from a higher strength class 

compared to the green points. The black line 

is a decision boundary created by a 

classification model. The class belonging of a 

new observation is determined by which side 

of the boundary it is on. 

Figure 3: Boards from two strength classes. 

On the horizontal axis is standard deviation 

of fibre angles, and on the vertical axis is the 

mean color brightness. 



 

It seems that a lower value of standard 

deviation of fibre angles combined with a 

higher value of mean brightness results in a 

higher strength class. Even though only two 

features have been used in this case the 

classes can be separated so that most of the 

data points are on the correct side of the 

decision boundary. 

   For this project data from 1000 boards 

from three different strength classes were 

collected, and two main types of classification 

methods were tested, Support Vector 

Machines and Multinomial Logistic 

Regression. The best classification was 

obtained by a version of the Multinomial 

Logistic Regression model. On a test set of 

250 previously unseen boards from three 

strength classes this classifier managed to 

classify 191 correctly. 

   Apart from strength classification, another 

interesting application would be to create a 

classifier that can distinguish between 

different wood species. 



 

 

Abstract 

The quality inspection of wooden boards is experiencing a large change. By the use of 

camera and laser technology board characteristics and defects can be instantly 
identified and measured. This thesis investigates how the information from a quality 

inspection system can be used to classify boards into different quality classes, by the 
use of statistical classification models. Two types of classification models have been 

tested, Logistic Regression and Support Vector Machines. To deal with potential 

overfitting a regularized version of Logistic Regression is implemented, and to deal 
with ordinal dependent variables a logistic regression model for ordinal variables has 

been implemented. The classification models have been tested against board strength 
classes, and similar results have been obtained by most models. It is concluded that 

the regularized logistic regression is the model that manages to classify most boards 

correctly, but the Support Vector Machine produces a better result on classes where 
training data is scarce.  

The thesis was done on behalf of RemaSawco AB, a company that manufactures 
measurement systems and inspection systems for the sawmill industry. 
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1 Introduction 

 

1.1 Background 

Over the last decades the sawmill industry has gone through significant changes. 

Many of the processes on a sawmill have become increasingly automated, due to the 

rapid development of computers and measuring devices. It is now possible to 
measure each log and board with high precision allowing for faster and more 

accurate cutting and sorting decisions. Tasks that traditionally have been performed 
by hand are being replaced by computer controlled systems. 

The function of a sawmill can shortly be described as the processing of logs into 

boards. The logs are cut into boards, which are trimmed and sorted according to 
quality and dimension. A main goal of a sawmill is to get as much profit as possible 

from each log. This can be achieved both by converting a large volume of the log into 
boards and by producing high quality boards. 

An area where there has been a lot of progress is in the quality inspection and 

sorting of boards. This is one of the final steps in a sawmill and is done at a so-called 
sorting mill. Here the boards are transversely transported on a chain conveyor and 

sorted into different bins. The boards can also be trimmed lengthwise to remove bad 
parts and thereby increasing the board quality.  

Usually the boards are sorted into a number of different visual quality classes 

depending on the appearance of defects and other characteristics, such as the size of 
knots or the length of cracks. Traditionally this has been done by a person who 

determines the quality of each board as it passes by on the conveyor, but it is getting 
more common using a camera system to analyse the boards.  

The sawmills in Sweden often base their board qualities on the standards in [1]. 

The boards can also be sorted into strength classes according to the European 
standard [2]. A strength grading requires the combination of a machine grading and 

a visual grading of the boards. The machine grading is typically done by measuring 
the elasticity module of the boards, and the visual grading is done by a person or a 

camera system. 

 

1.2 RemaSawco 

This thesis was done at RemaSawco AB, a company that manufactures measurement 

systems and optimisation systems for the sawmill industry. One of RemaSawco’s 

main products is their system for quality inspection and sorting of boards and 
planks. 
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1.3 The Quality Inspection System 

The quality inspection system uses cameras and point lasers to collect data from the 

boards, as they pass through the scanner on a conveyor. The data is then translated 
into board features such as dimension, fibre angles or the sizes and positions of 

knots. Also many types of defects, such as cracks or rot can be detected. These 
features are used when sorting the boards into different quality classes. Typically the 

system sorts boards into 2-5 different classes at a time, depending on the tree species 

and the intended usage of the boards. Classifying a board into a quality class is done 
by checking if the board meets the requirements of the class. Requirements for a 

class could for example be that the number of knots must be less than some value, or 
that the presence of a specific defect is not allowed. The board is then classified as 

belonging to the highest possible quality class where the requirements are met. 

 

1.4 Aim of the thesis 

In this thesis it will be investigated how the board features can be used for 
classification without setting specific rules and requirements, and instead applying 

statistical classification methods. A potential use for this type of classification is the 
ability to predict the classification of a strength grading machine, or to make the 

system distinguish between wood species. In this project the classification objective 

will be to predict the classification of a strength grading machine. The goal is thus to 
find a classification method that can resemble the classification of a strength grading 

machine, based on features given by the quality inspection system. 
 

1.5 Overview of the thesis 

A more detailed description regarding information available from the quality 

inspection system is given in Chapter 2. Here is also a discussion about which 

information to use in the classification models. Chapter 3 describes the tools and 
classification methods used. It contains a description of Support Vector Machines, 

Logistic Regression, and the Lasso. Chapter 4 contains a description of the software 
used and implementation of the classification models. In Chapter 5 results and 

comparisons from testing of the classification methods on real data are presented, 

and Chapter 6 contains conclusions and suggestions for future work. 
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2 Data 

 

2.1 Available Data 

Data from the cameras and lasers is collected from all sides of a board except the 

ends. The data is divided into seven channels. Three of the channels correspond to 
the color channels of the cameras - red, green and blue. The other four are different 

types of measurements from the point lasers – called Profile, Area, Scatter and Angle. 

The Profile measures the shape of the board using triangulation. The Area and 
Scatter are different types of measures of how the laser point spreads on the board, 

and the Angle corresponds to the angle of fibers on the wood surface. The color, area 
and scatter channels range from 0 to 255 and the fibre angles range from -90° to 

90°, where 0° is the direction along the board.  

Figure 2.1 shows the color channels from one side of a board converted into an 
RGB image. Figure 2.2 shows the laser point area, and figures 2.3-2.4 shows the fibre 

angles and scatter measurement. 

 

 
Figure 2.1: RGB image. 

 

 

 
Figure 2.2: Laser point area. 

 

 

 
Figure 2.3: Absolute value of fiber angles. 
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Figure 2.4: Laser point scatter. 

 

 

Defects are detected on these images using image processing. Up to 20 different 
types of defects can be detected by combining information from the images. The first 

step to identify defects is to find the defect regions on a board. These regions are 

found from thresholding, by finding values in each channel that exceeds a 
predetermined level. Image processing is then used to merge regions and to remove 

small or insignificant regions. The regions corresponding to the RGB channels are 
merged creating one “map” of regions, and the regions corresponding to the Scatter, 

Angle and Area measurements are merged into a different map. There is also a defect 

region map for the profile channel. Thus, there are in total three defect region maps 
for a board – visual (RGB), laser point and profile. Shown in figure 2.5 is the visual 

(RGB) defect region map for the board in figure 2.1-2.4. 

 

 
Figure 2.5: Visual defect regions 

 
The dimension (width and height) and faults in the shape are also detected, using the 

profile measurement. There are four types of shape faults that are measured; twist, 
spring, bow and cup. These are given in deviation from 0 (in mm). 

The quality inspection system processes information from the measurement 

devices using a program built in C#. The implementation and testing of classification 
models has been done in Matlab, so all the necessary information from each board 

has been exported from the quality inspection program into Matlab. Some of the 
board features have been imported directly from the quality inspection program, and 

some have been calculated from the different data channels, after importing the data 

to Matlab. 
 

2.2 Features for Board Classification 

The intention is to use as much of the information already available in the system as 

possible. Primarily because all additional computation will take extra time from the 
system, but also because the implementation of new features is time consuming for 

this project. 
Some new features will however be taken from the data. Since the classification is 

based on strength grades, features that correlate with wood strength would be useful 

here. Wood strength has been proven to be dependent on the fibre angles, among 
others. In [3], the standard deviation of fibre angles is estimated to have a 

correlation to wood strength (Modulus of Rupture) of r=-0.53. Also the mean fibre 
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angle has an estimated correlation of r=0.28 and the mean laser area a correlation of 
r=0.29 with the strength. Other properties that have an effect on wood strength are 

annual ring width and density. The density is not available in the quality inspection 

system so it cannot be used. The annual ring width could possibly be found by image 
analysis, but this will not be attempted in this project. 

Considering the strength correlations and what features that easily can be 
extracted from the data – the mean, standard deviation and median from the 

different data channels will be computed. For the profile channel the mean and 

median gives nearly the same information as the width and height measurements, so 
only the standard deviation will be used. For the fibre angle channel the mean of the 

absolute values will be used instead of the mean. A merging of the color channels 
into a gray scale channel will also be added. 

Apart from computing these new features some of the already available data will 

need to be adjusted before being used in a classification model. Since the boards can 
be of different sizes and dimensions, some of the information will need to be scaled 

so that the measurements are independent of the size of the board. The dimension of 
the board will not be taken directly as a feature. The ratio between the measured 

dimension and the nominal dimension will be used instead, to get a measure of how 

much the board differs from its nominal dimension.  
The defect detection is customized for specific sawmills, so the identified defects 

are not very good to use in a statistical model that is supposed to work at different 
sawmills. The defect regions are however found in the same way at all sawmills and 

are therefore more appropriate. The number of defect regions and the total size of 

these regions will be scaled so that they are equivalent for all sizes of boards, i.e. they 
will be divided by the surface size of the board. The shape faults can be used as they 

are, as they are not dependent on the dimension.  
To summarize, the following features are taken from each board to be used in a 

statistical classification model: 

 
 Shape properties; twist, spring, bow, cup. 

 Width and height deviation. 
 Number of defect regions found for visual, laser point and profile maps, 

along with the mean size of these regions. 

 Mean, standard deviation and median for the 7 channels. 
 Standard deviation for the profile channel. 

 
In total this gives 34 features that could be used as explanatory variables in a 

classification model. 

 

2.2.1 Extracting Features 

For every board there is one matrix of data for each side of the board and each data 

channel. This sums up to 4·8=32 matrices of data for each board. To reduce the 

number of features the data matrices from each data type have been merged 
together, creating one matrix of data for each data type. 

Some modifications to the data were made before extracting the features. One thing 
that was noticed was that the laser measurements near the edges of the board often 

showed a much higher deviation than on the rest of the board. Table 2.1 shows part 
of the data for the fibre angles near an upper edge. 
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--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 

--- -12 -12 -5 71 71 --- --- --- -31 -31 --- --- --- --- --- --- 

-2 0 0 2 16 16 2 2 5 5 5 -24 -24 -22 21 21 -2 

0 4 4 -4 5 5 -1 -1 2 0 0 -24 -24 -11 21 21 -5 

2 4 4 -5 -8 -8 0 0 1 6 6 1 1 -1 -9 -9 2 

-1 -1 -1 0 -1 -1 -1 -1 0 -1 -1 1 1 -1 -2 -2 1 

-1 -1 -1 0 -1 -1 -1 -1 0 -1 -1 1 1 -1 -2 -2 1 

-2 0 0 0 -1 -1 -3 -3 -2 -3 -3 0 0 0 0 0 4 

1 1 1 -5 0 0 -1 -1 0 -1 -1 -1 -1 -1 -2 -2 -1 

0 0 0 -1 0 0 1 1 -2 1 1 -1 -1 -1 -1 -1 1 

1 0 0 0 -2 -2 -1 -1 -1 -3 -3 1 1 0 -1 -1 0 

-1 0 0 4 -1 -1 0 0 -1 1 1 -2 -2 -4 -1 -1 0 

0 0 0 0 1 1 0 0 -1 1 1 1 1 1 -1 -1 0 

Table 2.1: Fibre angle values on the edge of a board. 

 
For the fibre angles the measurements vary a lot near the edges, but a bit further in 

the board it stays near 0 unless there is a defect. This could lead to inaccurate 

estimates of the features that are to be calculated. To solve this potential issue the 5 
pixels that are closest to the edges have been removed from all data matrices 

belonging to the laser measurements.  
Another thing that was noted was that there often were errors in the 

measurements, possibly because of dirt on the measurement devices. Figure 2.6 

shows the laser area measurement from one side of a board. 

 

 

 
Figure 2.6: Error on laser area measurement. 

 
The pixels corresponding to the white lines have much higher values than the rest of 

the data, possibly resulting in inaccurate calculations of the mean and standard 
deviation. To deal with this problem all pixels that are above a certain level have 

been set equal to the median of that data channel. Figure 2.7 shows the result from 

this. 
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Figure 2.7: Error on laser area measurement reduced. 

 

2.3 Strength Classes 

As mentioned in Chapter 1 the classification methods will be tested on board strength 

classes. These classes are obtained from a strength grading machine, which 
measures the resonance frequency of the board combined with the density. This 

gives an estimate of the modulus of elasticity of the boards, which is used for 
classification by setting limits for minimum value for each class. For example, one 

class may contain all boards with an estimated modulus of elasticity between 10000 

and 15000 MPa. It is thus not actually the strength (i.e. modulus of rupture) that is 
measured, but the stiffness. This since measuring the actual strength would require 

breaking the boards. The boards in this project were strength classified according to 
the classification system in the European Standard EN-14081. Two strength classes 

were obtained – C30 and C24, where boards in the C30 class have a higher quality 

than those in the C24 class. There is also a Reject class, which contains boards that 
do not meet the requirements of the other classes. 
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3 Theory 

 

This chapter contains the theory used in this thesis. The first section describes basic 

classification theory and methods for comparing and selecting classification models. 
The second section describes the classification models used, as well as methods for 

fitting the models to data. 

3.1 Classification 

Classification in statistics means constructing a model based on past observations 

which can make decisions regarding the class belonging of new observations. A 

simple classification example is given in figure 3.1, which shows data points from 
two classes together with a linear decision boundary. 

 

 
Figure 3.1: Two classes of data separated by a linear decision boundary. 

 
The decision boundary is created so that it separates the data points from the two 

classes. A new observation is then classified based on which side of the decision 
boundary it is on. More formally the class belonging can be expressed as a categorical 

variable taking values in {1,2,3,…,K}, where K is the number of classes. Let Y be the 

categorical variable and X be a vector of explanatory variables, i.e. 
  

Y ∈ {1,2,3,…,K}, 

X = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑝] 

 
where 𝑝 is the number of variables. Classification uses the feature vector, X, to 

predict the class, Y0. There are a variety of different models that can be used to solve 

classification problems. The following sections describe methods for training models 
and for comparing the classification outcome of different models. 
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3.1.1 Evaluating Classification Models 

A simple way of comparing the performance of different classification models is by 

calculating the misclassification error, i.e. the proportion of data points classified 
incorrectly. However, to analyse the classification outcome more thoroughly a 

confusion matrix can be used. It displays the classification outcome in a matrix 

where the columns represent the predicted classes and the rows represent the actual 
classes. Fig. 3.2 shows a confusion matrix for three classes; C1, C2, C3. Ideally the 

diagonal is the only one containing non-zero elements, i.e. none of the observations 

are incorrectly classified. 

 

 

 

 C1 C2 C3 

C1    

C2    

C3    

  

Figure 3.2: Confusion matrix for the classes C1, C2 and C3. 

 

 

3.1.2 Cross-validation 

When dealing with limited amount of data and many explanatory variables there is a 
risk of overfitting the model, i.e. the model fits well to the training data but not very 

well when applied to unseen data. A way to avoid overfitting is to perform cross-

validation. When training a model the data is divided into training data and test data, 
where the model is trained using the training data and the test data is used to 

determine if the model performs well on data not seen in training. K-fold cross-
validation means dividing the data into K groups of equal size, and using one of the 

groups as test data and the other K-1 as training data. The test group is then 

alternated among the K groups giving K different estimates of the classification error 
for unseen data. The training error can be defined as 

  

𝑒𝑟𝑟̅̅̅̅̅ =
1

𝑁
∑ 𝐿

𝑁

𝑖=1

(𝑌, �̂�(𝑿)) 

 

where 𝐿 (𝑌, �̂�(𝑿)) is a loss function and 𝑁 is the number of observations. An 

example of a loss function is 

 

𝐿 (𝑌, �̂�(𝑿)) = 𝐼 (𝑌 ≠ �̂�(𝑿)) 

 

Predicted class 

A
ct

u
al

 c
la

ss
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which gives 0 if a classification is correct and 1 if it is wrong. The training error is 
thus the loss function averaged over the number of observations. The test error can 

be defined as  

 

𝐸𝑟𝑟𝜏 = 𝐸 [𝐿 (𝑌, �̂�(𝑿)) |𝜏] 

 
i.e. the expected value of the loss function, given τ, the specific training data used.  As 

the complexity of a model increases, the training error will always decrease. 

However, the test error will not always decrease. As model complexity becomes 
sufficiently large overfitting will start to increase the test error. Choosing a model 

can therefore be done by finding the model that minimizes the test error. Fig. 3.3 
illustrates the relationship between model complexity and test- or training error. 

 

 

 
Figure 3.3: Training error in red and test error in blue. On the horizontal axis is 

model complexity and on the vertical axis is error. 
 

As described in Chapter 5 the data in this project is divided into three sets. Cross-
validation is only performed on the data called “Training set”. The training and test 

data described in this section should not be confused with the “Training set” and 

“Test set” mentioned in Chapter 5. 
 

3.2 Classification Models 

3.2.1 Logistic regression 

Logistic regression is a classification model that uses logistic functions to produce the 

probabilities of different outcomes. A logistic function has the form 
 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

 

For values in −∞ < 𝑥 < ∞, the logistic function produces a value between 0 and 1, 
which can be used to express a probability. The following description of logistic 
regression and multinomial logistic regression follows the outline in [4]. When 
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distinguishing between two classes, i.e. a binary classification, the logistic regression 
model has the form 

 

 

ln
𝑃(𝑌 = 1|𝑋 = 𝑥)

𝑃(𝑌 = 2|𝑋 = 𝑥)
= 𝛽0 + 𝛽𝑇𝑥 

 

To calculate the odds of a specific outcome, this can be re-written into the logistic 
functions (using the fact that 𝑃(𝑌 = 1) + 𝑃(𝑌 = 2) = 1). 

 

𝑃(𝑌 = 1|𝑋 = 𝑥) =
1

1 + 𝑒−(𝛽+𝛽𝑇𝑥)
 

 

𝑃(𝑌 = 2|𝑋 = 𝑥) =
1

1 + 𝑒𝛽+𝛽𝑇𝑥
 

 
For 𝐾 > 2 classes the logistic regression model can be replaced by a multinomial 

logistic regression model. Using the 𝐾:th class as denominator when calculating the 

probabilities of the other classes the model becomes 
 

ln
𝑃(𝑌 = 1|𝑋 = 𝑥)

𝑃(𝑌 = 𝐾|𝑋 = 𝑥)
= 𝛽10 + 𝛽1

𝑇𝑥 

 

ln
𝑃(𝑌 = 2|𝑋 = 𝑥)

𝑃(𝑌 = 𝐾|𝑋 = 𝑥)
= 𝛽20 + 𝛽2

𝑇𝑥 

 
∙ 
∙ 
∙ 

 

ln
𝑃(𝑌 = 𝐾 − 1|𝑋 = 𝑥)

𝑃(𝑌 = 𝐾|𝑋 = 𝑥)
= 𝛽(𝐾−1)0 + 𝛽𝐾−1

𝑇 𝑥 

 

The probability of any class 𝑘 < 𝐾 is then 
 

𝑃(𝑌 = 𝑘|𝑋 = 𝑥) = 𝑃(𝑌 = 𝐾|𝑋 = 𝑥)𝑒𝛽𝑘0+𝛽𝑘
𝑇
 

 
 

Since all class probabilities should sum up to 1, the probability of class K is given by 
 

𝑃(𝑌 = 𝐾|𝑋 = 𝑥) =
1

1 + ∑ 𝑒𝛽𝑖0+𝛽𝑖
𝑇𝑥𝐾−1

𝑖=1

 

 
Thus the probabilities for a class 𝑘 < 𝐾 can be expressed as 

 

𝑃(𝑌 = 𝑘|𝑋 = 𝑥) =
𝑒𝛽𝑘0+𝛽𝑘

𝑇𝑥

1 + ∑ 𝑒𝛽𝑖0+𝛽𝑖
𝑇𝑥𝐾−1

𝑖=1

 

 
For the K classes this results in K-1 sets of coefficients,  
𝛽10 + 𝛽1

𝑇 , 𝛽20 + 𝛽2
𝑇 , … , 𝛽(𝐾−1)0 + 𝛽𝐾−1

𝑇 .  
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3.2.2 Proportional Odds Model 

The proportional odds model can be used when there is a specific ordering between 
the classes (e.g. small, medium, large). It models the probability of an observation 

being less than or equal to a certain category. Denoting the classes as 𝑌𝑖, where  𝑌1 <

𝑌2 < ⋯ < 𝑌𝑘, the model is 
 

𝑙𝑛 (
𝑃(𝑦 ≤ 𝑌1)

𝑃(𝑦 > 𝑌1)
) = 𝛽01 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 

 

𝑙𝑛 (
𝑃(𝑦 ≤ 𝑌2)

𝑃(𝑦 > 𝑌2)
) = 𝛽02 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 

∙ 
∙ 
∙ 

𝑙𝑛 (
𝑃(𝑦 ≤ 𝑌𝑘−1)

𝑃(𝑦 > 𝑌𝑘−1)
) = 𝛽0(𝑘−1) + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 

 

 

The model uses the same 𝛽-coefficients throughout, except for the 𝛽0:s (intercepts). 
This results in K-1 parallel separating hyperplanes. Figure 3.4 shows a separation of 

100 data points into three classes by two decision boundaries created by a 
proportional odds model. 

 

 
Figure 3.4: Two-dimensional separation into three classes by proportional odds 

model. 
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3.2.3 Lasso 

To deal with overfitting on a logistic regression model, regularization can be applied, 
i.e. a penalty that increases with the complexity of the model. Lasso is a method for 

regularization introduced in [5], and stands for “Least Absolute Shrinkage and 

Selection Operator”. The idea of lasso is to constrain the sum of the absolute values 
of the coefficients in the model. Depending on how much the model is constrained, 

some of the coefficients will be forced to zero, and the corresponding variables are 
thereby removed from the model. This is also called L1-regularization. 

For an Ordinary Least Squares model the Lasso is defined as 

 

(𝛽0̂, �̂�) = arg min {∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑖𝑗𝑥𝑖𝑗

𝑗

)

2
𝑁

𝑖=1

}                        subject to ∑|𝛽𝑗|

𝑝

𝑗=1

≤ 𝑡 

 
where 𝛽 is the vector of coefficients, 𝛽0 is the intercept, 𝑦𝑖 are the responses from 

the underlying process, 𝑥𝑖 are the explanatory variables and t is a constraint. The 
above expression is equivalent to, see [4] for details, 

 

(𝛽0̂, �̂�) = arg min {
1

2
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑖𝑗𝑥𝑖𝑗

𝑗

)

2
𝑁

𝑖=1

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

}  

 

where 𝜆 is a penalty term on the sum of the absolute values of the coefficients. When 
applying lasso on a logistic regression model the probabilities for 𝐾 > 2 classes can 

be written as 
 

𝑃(𝑌 = 𝑘|𝑋 = 𝑥) =
𝑒𝛽𝑘0+𝛽𝑘

𝑇𝑥

∑ 𝑒𝛽𝑖0+𝛽𝑖
𝑇𝑥𝐾

𝑖=1

 

 
This expression is however not estimable without constraints [6]. The log-likelihood 

function to be maximized for fitting the coefficients is then 

 

𝑙(𝜃) = ∑ 𝑙𝑛 (
𝑒𝛽𝑦𝑖0+𝛽𝑦𝑖

𝑇 𝑥𝑖

∑ 𝑒𝛽𝑙0+𝛽𝑙
𝑇𝑥𝑖𝐾

𝑙=1

) − 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

 

 

The parameter 𝜆 can be tuned using cross-validation, by finding the value of 𝜆 that 

minimizes the error of the model. In figure 3.5 is a plot of the cross-validated mean 
error at different values of 𝜆. The corresponding standard deviation is also shown. 
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Figure 3.5: Cross-validated error for a sequence of 𝜆-values. On the x-axis is model 

complexity and on the y-axis is model error. 

 

A larger value of 𝜆 (to the right) means the model is more regularized, i.e. smaller. 
The left dotted vertical line corresponds to the model with the minimum error, and 

the right dotted line corresponds to the model chosen using the “one standard 
error”-rule. The idea of this rule is to choose the smallest model where the mean 

error is within one standard deviation of the minimum error [4].  Since there is an 

uncertainty in the error estimates, choosing a less complex model is a safer 
approach. 

 

3.2.4 Support Vector Machines 

Support Vector Machines (SVM) is a method of classification introduced in [7]. It is 
used to separate data points from two classes by finding a hyperplane that makes the 

margin between the two classes as large as possible. The hyperplane can be defined 
as  

 

w · x – b = 0 

 

where x ={x1,x2,..,xp}  is the feature vector and w is a vector of weights. Denoting the 

class as yi ϵ{-1,1} for the data points (xi,yi), a new observation is classified based on 
the decision function  

 

-1 if w · x – b < 0 

1 if w · x – b > 0 

 

The size of the vector w is chosen so that the distance from the hyperplane to the 

nearest data points is 
1

‖𝒘‖
. The size of the margin is thus 

2

‖𝒘‖
. Figure 3.6 [8] shows a 

separation of two classes in two dimensions. 
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Figure 3.6: Separation of two classes by maximizing the margin. 

 

Only some of the data points influence the positioning of the decision boundary here. 
These are called the support vectors, and lie on the margin in this case. 

If the classes are not separable another approach was developed in [7]. The idea is 

to allow some of the training data to be on the wrong side of the margin, and instead 
add a penalty for these misclassifications. This is done by introducing the slack 

variables 𝜉 = {𝜉1, 𝜉2, … , 𝜉𝑁}, which represent how much on the wrong side of the 
margin each training point is. The object is then to minimize the sum of the errors 
∑ 𝜉𝑖

𝑁
𝑖=1  subject to 

 
𝑦𝑖(𝒘 ∙ 𝒙i + 𝑏) ≥ 1 − 𝜉𝑖  𝜉𝑖 ≥ 0 

 

So in this case not only the points on the margin have an effect on the decision 
boundary, but also the points that are on the wrong side of the margin. The optimal 

separating hyperplane is chosen to minimize 

 

1

2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖            (1)

𝑁

𝑖=1

 

 

where 𝐶 is a constant defining the penalty on misclassified training data. When 
optimizing the expression in (1) for a given dataset the Lagrange primal function  

 

𝐿𝑃 =
1

2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

− ∑ 𝛼𝑖[𝑦𝑖(𝑥𝑖
𝑇𝑤 + 𝑏) − (1 − 𝜉𝑖)] − ∑ 𝜇𝑖

𝑁

𝑖=1

𝜉𝑖

𝑁

𝑖=1

 

 
can be used [8], where α are the Lagrange multipliers. This expression is minimized 

with respect to 𝑤, 𝑏 and 𝜉𝑖. However, to make the optimization simpler this can be 

reformulated into maximizing the dual Lagrange function 
 

𝐿𝐷 = ∑ 𝛼𝑖

𝑁

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝑇               (2)

𝑁

𝑗=1

𝑁

𝑖=1

 

 

subject to ∑ 𝛼𝑖𝑦𝑖 = 0𝑁
𝑖=1  and 0 ≤ 𝛼𝑖 ≤ 𝐶. The expression in (2) uses the fact that  

 



18 

 

𝒘 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

 

 

0 = ∑ 𝛼𝑖𝑦𝑖

𝑁

𝑖=1

      

 
𝛼𝑖 = 𝐶 − 𝜇𝑖        

 

when the derivatives for 𝑤, 𝑏 and 𝜉𝑖 are set to zero in the primal Lagrange function. 

 

3.2.4.1 Kernels 

The class boundaries created with SVM are linear in the input feature space. Using 
linear boundaries makes calculations simpler and decreases the computation time. 

There may, however, be cases where a good separation of the classes cannot be 

obtained with a linear boundary. SVM deals with this by transforming the input 
space into a new feature space, where the usual SVM approach for finding an optimal 

separating hyperplane can be used. Using linear class boundaries in the new feature 
space then results in non-linear boundaries when transformed back to the original 

feature space. The new feature space is created by transforming the input vector by 

an 𝑁-dimensional function 𝜙(𝒙) = 𝜙1(𝒙), 𝜙2(𝒙), … , ∅𝑁(𝒙). A new observation is 
then classified as 

 

-1 if  𝒘 ∙ 𝜙(𝒙) − 𝑏 < 0 

  1 if  𝒘 ∙ 𝜙(𝒙) − 𝑏 > 0 

 
Finding the optimal separating hyperplane is done by maximizing (2) as before, but 

replacing 𝑥𝑖𝑥𝑗
𝑇 with a “kernel function” - 𝐾(𝒙𝑖, 𝒙𝑗). A kernel function is a dot product 

of input data transformed into the new feature space, i.e. 𝐾(𝒙𝑖 , 𝒙𝑗) = 𝜙(𝒙𝑖) ∙ 𝜙(𝒙𝑗). 

The function to be maximized is then 

 

𝐿𝐷 = ∑ 𝛼𝑖

𝑁

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝒙𝑖, 𝒙𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

              (3) 

 

Three examples of kernel functions are 

 
Linear kernel function: 𝐾(𝒙𝑖, 𝒙𝑗) = 𝒙𝑖𝒙𝑗

𝑇 

 

Quadratic kernel function: 𝐾(𝒙𝑖, 𝒙𝑗) = (1 + (𝒙𝑖𝒙𝑗
𝑇))2 

 

Radial basis kernel function: 𝐾(𝒙𝑖 , 𝒙𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝒙𝑖 − 𝒙𝑗
𝑇‖

2
) 
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3.2.4.2 Tuning Parameters 

The parameters 𝐶 and 𝛾 can be tuned by minimizing (3) over a search grid, which 
means searching through all the combinations of 𝐶 and 𝛾 from given sets of possible 

values (for example 𝐶=1,2,..,10, 𝛾=1,2,..,10). The values that produce the smallest 

test-error can then be found by cross-validation. In [9] it is recommended that 
exponentially growing sequences are used for the grid search, e.g.  {2-5,2-4,…,25}. 

 

3.2.4.3 SVM for Multiple Classes 

SVM is constructed as a binary classifier, but classifying into more than two classes 
can be done by combining several binary classifiers. One way is a “one-vs-all”-

approach, where K classifiers are created (K=number of classes), and for each 

classifier one of the classes is given one label and the rest of the classes the other 
label. A new observation is assigned to the class with the largest value in the decision 

function. Another approach is a “one-vs-one”-classification, where K(K-1)/2 
classifiers are trained, one for each pair of classes. Classifying a new observation is 

then done by counting the number of times the observation is assigned into each 

class. The final assigned class is the one that gets the most “votes”. Other approaches 
to classify into multiple classes have also been suggested, such as the DAGSVM [10].  
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4 Implementation 

 

4.1 Multinomial Logistic Regression in Matlab 

For the multinomial logistic regression and the proportional odds model the built-in 

Matlab function mnrfit has been used to find the coefficients in the models. In the 

case of three classes and a multinomial logistic regression mnrfit produces two sets 
of 𝛽-coefficients. The coefficients are used to compute the probabilities of a new 

observation belonging to each of the classes, as described in section 3.2.1. For the 
proportional odds model one set of 𝛽-coefficients and two intercepts are produced, 

as described in section 3.2.2. To predict the outcome of unseen data the function 

mnrval has been used. The regularized logistic regression models have been 
implemented using the Glmnet package [11] for Matlab, described below. 

4.2 Glmnet 

Glmnet is a package for Matlab and R which is used to produce penalized models 
based on the algorithms described in [11]. It can be used for a number of different 

models, e.g. linear regression, logistic regression and multinomial logistic regression. 

Glmnet produces a sequence of 𝜆-values, and for each 𝜆 it computes the coefficients 
of 𝛽 that produces the optimal model for that particular 𝜆. For a multinomial logistic 

regression model it produces K sequences of 𝛽-coefficients, where K is the number of 

classes. 
The value of 𝜆 that corresponds to the model with the minimum error is then 

found by cross-validation on the dataset, using the cvglmnet function. Cross-
validation also produces the standard deviation of the model for each 𝜆. The plots of 

cross-validated error in this thesis, such as fig. 3.5 were all produced with Glmnet. 

4.3 SVM in Matlab 

For the support vector machines the Matlab function svmtrain has been used for 
training and the function svmclassify for classification of unseen data. As described 

in chapter 3 SVM is a binary classifier, so when classifying into three classes the one-
vs-one approach has been used, producing three binary classifiers. The possibility 

that all classes gets one “vote” has been taken into account by letting those cases be 

classified as the middle class, C24. Three types of kernels have been tested on the 
data, linear, radial basis and quadratic. Figure 4.1 shows an example of a separation 

of 100 data points into two classes using an SVM classifier with quadratic kernel 
function. The data comes from two board strength classes.  
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Figure 4.1: Two-dimensional SVM classification produced by the Matlab function 
svmtrain. On the x-axis is mean absolute value of fibre angles and on the y-axis is 

mean gray. The data points with a circle around them are the support vectors. 
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5 Results 

 

5.1 Test Setup 

Data from 1000 boards in two different dimensions have been collected. 500 boards 

of the dimension 50x100 mm (height x width), and 500 of the dimension 50x150 
mm. All data comes from the same sawmill and the wood species is spruce. The data 

has been divided into three sets; training set, validation set and test set. The training 
set will be used in training the models, the validation set will be used to compare the 

outcome of different models, and the test set will be used to test the final model on 

unseen data. Table 5.1 shows the dimension of the boards in the different sets. 

 

 50x100 50x150 Total 

Training set 250 250 500 

Validation set 125 125 250 

Test set 125 125 250 

Table 5.1: Dimension on collected boards divided into training, validation, and test 

set. 
 

Shown in table 5.2 is the distribution of the boards among the three classes – C30, 

C24 and R (Reject). 

 

 C30 C24 R Total 

Training set 222 256 22 500 

Validation set 130 114 6 250 

Test set 125 117 8 250 

Whole set 477 487 36 1000 

Table 5.2: Distribution of boards in the classes C30, C24 and R. 
 

5.2 Choice of Classification Methods 

When selecting classification methods for this project some aspects must be 

considered. A main requirement is that the classification of a board should be fast, 
since there is a limited time before a decision has to be made. It is therefore 

important that the actual classification is fast, but it is also good if the number of 

features can be reduced so that less computation has to be made. The features used 
now are not very time consuming to compute, or they are already being computed in 

the system for other purposes, so this will not be an issue here. However, if more 
time consuming features were added to the classification it would be very good to be 

able to choose a subset of those features. It is also important that there is a way to 

deal with possible overfitting, which is a risk here since the data is limited (especially 
for the Reject class) and the number of explanatory variables is quite large. 
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Two types of classification methods were chosen for this project – the logistic 
regression model and support vector machines. The logistic regression model was 

chosen because it is simple to implement and has good possibilities of regularization. 

It can also be modified into the proportional odds model, which will be tested here 
since there is a natural ordering between the classes. The fact that the Reject class 

has much fewer observations might also be a good reason to use the proportional 
odds model. This means the information from the classification between the C24 and 

C30 classes will help in creating the decision boundary between the Reject and C24 

classes. The support vector machine was chosen because it is very adaptable. By 
using different kernels and different values of the penalty parameter 𝐶 it can be 

adjusted to fit many types of data.  
The results of the different models are compared using confusion matrices and 

misclassification error, i.e. the ratio of boards wrongly classified. Since there are 

more boards in some classes the overall misclassification error may be misleading, 
i.e. the misclassification error of a small class will not affect the overall 

misclassification error very much. This will be taken into account when comparing 
the models. Another possibly negative aspect of only using the misclassification error 

is that it is worse if a board from the C30 class is classified as a Reject than if a board 

from the C24 class is classified as a Reject, since the difference between the C30 and 
the Reject class should be greater. This will also be taken into account when 

comparing the models. 

 

5.3 Test of Classification Models 

5.3.1 Logistic Regression 

 

Fitting a multinomial logistic regression model to the training set produced the 
following results. 

 

Training set            Validation set 
 

 C30 C24 R   C30 C24 R 

C30 189 33 0  C30 91 39 0 

C24 33 218 5  C24 29 84 1 

R 0 9 13  R 2 3 1 

  
 Misclassification error: 0.16         Misclassification error: 0.2960 

 

The misclassification error is significantly larger on the validation set, which could 
imply on model overfit.  
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5.3.2 Regularized Logistic Regression 

 
To reduce the model size and avoid overfitting, the Lasso method described in 

chapter 3.6 has been used to regularize the multinomial logistic regression model. A 

20-fold cross-validation was applied to find the value of 𝜆 that minimizes the error of 
the model.  The classification results for the model are 

 
Training set            Validation set 

 

 C30 C24 R   C30 C24 R 

C30 184 38 0  C30 91 39 0 

C24 34 222 0  C24 22 92 0 

R 0 16 6  R 1 4 1 

  
  Misclassification error: 0.1760        Misclassification error: 0.2640 

 
Multinomial deviance is used as a measure of error on this model. The multinomial 

deviance is a measure on how much the fitted model differs from a perfectly fitted 

model. Figure 5.1 shows a plot of the cross-validated deviance at different values of 𝜆. 
The expected deviance of the model is at its minimum when regularized. However, 

too much regularization gives a larger deviance. 

 

 

Figure 5.1: Regularization of a Multinomial Logistic Regression model. On the 
horizontal axis is the size of the penalty parameter 𝜆, and on the vertical axis is 

Multinomial deviance, i.e. the error of the model. 
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The minimum deviance found was 0.9972 with the corresponding 𝜆 = 0.0011. The 
standard deviation for this deviance is 0.0555. Using the “one standard-error”-rule 

described in section 3.2.3 leads to a 𝜆-value of 0.0037, corresponding to a deviance of 

1.0526. The 𝛽-values for this model are non-zero for 18 of the 34 features for class 
C30, 13 of the features for class C24 and 9 of the features for the Reject class. This 

means the model uses 18 features for calculating the probability of class C30, 13 
features for C24 and 9 features for R. The C30 class has 9 features in common with 

the C24 class, and the R class has only 3 features in common with both of the other 

classes. It thus seems that the C30 and C24 classes use quite similar features, but R 
uses mostly features that none of the other classes uses. Looking at the sequence of 

𝛽-coefficients it can be seen that the first feature that is non-zero for the C30-class is 
standard deviation of fibre angles. The first feature that is non-zero for the C24-class 

is the mean absolute value of fibre angles. Both of these are expected since the fibre 

angles have a proven correlation with wood strength [3]. For the R class however, 
the first feature that is non-zero is the number of visual defect regions. The standard 

deviation of fibre angles and the mean absolute value of fibre angles are not among 
the 9 features used for the R class at all. An explanation to this could be found in fig 

5.2, which shows the standard deviation of fibre angles plotted against the mean laser 

scatter of the training set. These features are among the first used for calculating the 
probabilities of C30 and C24, but not used at all for R. 

 

 

 
Figure 5.2: Standard deviation of fibre angles vs. mean laser scatter. C30 shown in 

red, C24 shown in green, and R shown in blue. 
 

From the C30 and C24 classes in fig. 5.2 it seems that a lower value of standard 

deviation of fibre angles, and a lower value of mean scatter corresponds to a higher 
strength class, and vice versa. There is also a little tendency for the R class to have 

high standard deviation of fibre angles and a high mean laser scatter-value, but the 
data points are quite few and quite spread out. It is therefore probably difficult for a 
linear classifier such as logistic regression to distinguish the R class from the rest of 

the data based on these two features. 
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Another thing that can be noted in the 𝛽-value sequences is that when two 
features have high correlation one of them is often zero while the other is non-zero. 

This is probably because little extra information is gained from using both of them at 

the same time. For example, in the 𝛽-coefficients for the C30 class corresponding to 
the model chosen with the “one standard error”-rule, none of the median values for 

the color channels are used and none of the values for the green channel at all. As 
shown in table 5.1 the color channels are highly correlated, and the median values 

have very high correlation with the mean values. 

 

 

 mR sdR mdR mG sdG mdG mB sdB mdB 

mR 1 0.04 0.98 0.99 0.05 0.98 0.98 0.09 0.97 

sdR 0.04 1 0.01 0.03 0.99 -0.02 -0.01 0.97 -0.06 

mdR 0.98 0.01 1 0.97 0.02 0.98 0.96 0.06 0.97 

mG 0.99 0.03 0.97 1 0.03 0.98 0.99 0.08 0.98 

sdG 0.05 0.99 0.02 0.03 1 -0.01 0.01 0.99 -0.04 

mdG 0.98 -0.02 0.98 0.98 -0.01 1 0.98 0.03 0.98 

mB 0.98 -0.01 0.96 0.99 0.01 0.98 1 0.05 0.98 

sdB 0.09 0.97 0.06 0.08 0.99 0.03 0.05 1 0.01 

mdB 0.97 -0.06 0.97 0.98 -0.04 0.98 0.98 0.01 1 

 

Table 5.1: Correlation of color parameters (m=mean, sd=standard deviation, 

md=median, R=red, G=green, B=blue). 
 

Another approach for a regularized logistic regression model is to find the value of 𝜆 

that minimizes the expected misclassification error of the model. Figure 5.3 shows 
the misclassification error at different values of 𝜆, as before produced by a 20-fold 

cross-validation. 
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Figure 5.3: Regularization of a Multinomial Logistic Regression model. On the 

horizontal axis is the size of the penalty parameter 𝜆, and on the vertical axis is the 

misclassification error. 

 
The figure shows some sudden larger increases in the misclassification error as the 

model gets more regularized. This could be explained by the removal of explanatory 
variables that had a positive effect on the classification. 

The minimum expected error is 0.19, found at 𝜆=0.0019 with standard deviation 

0.0161. The most regularized model within one standard deviation of this is the one 
found at 𝜆=0.0028, with expected misclassification error 0.2040. The classification 

result for this model is 
 

Training set            Validation set 

 

 C30 C24 R   C30 C24 R 

C30 187 35 0  C30 90 40 0 

C24 34 220 2  C24 22 92 0 

R 0 16 6  R 1 4 1 

  

  Misclassification error: 0.1740        Misclassification error: 0.2680 

 

5.3.3 Proportional Odds Model 

Taking into account that C30 is the finest, C24 the medium and Reject is the worst 

quality, the proportional odds model might be more appropriate than the 
multinomial models above.  The model produced the following results. 
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Training set            Validation set 
 

 C30 C24 R   C30 C24 R 

C30 193 29 0  C30 94 36 0 

C24 32 220 4  C24 31 83 0 

R 0 13 9  R 2 3 1 

  
  Misclassification error: 0.1560        Misclassification error: 0.2880 

The outcome of the Proportional Odds model is very similar to the other Logistic 

Regression models. There are no indications that the model produces a better result. 
 

5.3.4 Support Vector Machines 

Linear Kernel Function 

Using a linear kernel function on the form K(xi,xj) = xi
Txj, performing a grid search 

on 𝐶 in {2-15,2-14,…,215} and cross-validating on the training set the smallest error was 

found when 𝐶 = 2-2. The corresponding results are: 

 

Training set            Validation set 
 

 C30 C24 R   C30 C24 R 

C30 182 38 2  C30 89 38 3 

C24 33 184 39  C24 19 88 7 

R 0 1 21  R 1 2 3 

  
Misclassification error: 0.1920             Misclassification error: 0.2800 

 

Radial Basis Kernel Function 

Using a radial basis kernel function on the form K(xi,xj) = exp(-γ‖𝒙𝒊 − 𝒙𝒋
𝑻‖

𝟐
), and 

performing a grid search on the parameters 𝐶 and γ in {2-15,2-14,…,215 } gives the 

smallest error when 𝐶= 210 and γ = 25. The corresponding classification results are 
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Training set            Validation set 
 

 C30 C24 R   C30 C24 R 

C30 192 30 0  C30 92 37 1 

C24 20 215 21  C24 22 87 5 

R 0 1 22  R 1 4 1 

  
  Misclassification error: 0.1440        Misclassification error: 0.2800 

 

Quadratic Kernel Function 

Applying a quadratic kernel function, i.e. K(xi,xj) = (1+(xi,xj
T))2 , and using the same 

procedure as before produces the smallest error when 𝐶=2-7. 

 

Training set            Validation set 
 

 C30 C24 R   C30 C24 R 

C30 196 25 1  C30 75 51 4 

C24 18 232 6  C24 28 83 3 

R 0 0 22  R 1 5 0 

  
  Misclassification error: 0.1000                   Misclassification error: 0.3680 

 

These results indicate an overfit since the training error is much smaller than the 
validation error. Testing on higher degrees of kernels produces almost perfect fits on 

the training set, but quite poor results when applied to unseen data.  
 

5.4 Comparison of the results 

There is not a significant difference between the results of the different models. The 

classification result on the Reject class is poor in most cases, possibly because of an 
insufficient amount of training data for that class. When comparing the 

misclassification error, the model that produced the best results on the validation 

data was the regularized logistic regression model. Applying the regularized logistic 
regression model on the “test set”, which contains previously unseen data, gives the 

following results. 
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Regularized logistic regression – Test set 

 C30 C24 R 

C30 105 20 0 

C24 31 83 3 

R 0 5 3 

Misclassification error: 0.2360 

 
Taking into consideration the proportion of misclassifications of each class, the linear 

SVM was the best performing model. This was the only model that showed a 
tendency to classify the Reject class correctly. 

 

Linear SVM – Test set 
 

 C30 C24 R 

C30 100 23 2 

C24 31 70 16 

R 0 3 5 

 
Misclassification error: 0.30 

 

Also on the test set the linear SVM classifies the Reject class better. It has a higher 
misclassification error, mainly because of more boards wrongly classified as Rejects. 
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6 Discussion 

 

6.1 Conclusions 

There is an uncertainty in the classification for all the models tested. There may be 

properties on a board which cannot be explained by the features from the quality 
inspection system, and there may also be an uncertainty in the strength grading 

machine from which the classes were obtained. 

In the comparison of the models, the logistic regression models produced slightly 
better results on the misclassification error. However, most models do not give 

acceptable results classifying the Reject class. This is most likely due to the small 
amount of boards that belong to the class, limiting the training data. Making sure the 

Reject class has more data will probably make the classification of that class better. 

The linear SVM model classified the Reject class a bit better than the other models, at 
the expense of classifying more boards from the other classes as Rejects. The 

misclassification error is around 0.25-0.30 for almost all models. With this degree of 
accuracy, a classification from any of the models could be used as a decent prediction 

of strength grade, and probably help improve the interaction between the quality 

inspection system and a strength grader. It however seems to be too much 
uncertainty in the classification to be able to use the quality inspection system alone 

for strength grading. 
The choice of method to use would ultimately be the Support Vector Machine 

classifier. The reason is that there are many ways to adjust the model to fit a 

particular data set. This makes it suitable for data sets where the class sizes differ a 
lot, and it also has a good potential to perform well on other types of classification 

problems, such as wood species. 

6.2 Future work 

To improve the classification results an initial approach is to make sure that the 
features that are extracted from the board data can be used to explain the type of 

classification that is made. In this case it is important that the features are dependent 
on the strength in some way. A way to make the classification better would therefore 

be to find out what other features can be extracted from the board data that has 

some correlation to wood strength. 
The data set used comes from one sawmill and contains only two dimensions of 

the same wood species. For future work, it would be a good idea to use a more 
diversified data set to make sure that a classification model produces good results on 

different data. Using data from more than one sawmill is especially important since 

the properties of wood may differ a lot depending on the area of growth [12]. 
There are also possible improvements to make on the classification methods 

tested. A regularized version of the proportional odds model was not tested, and 
might lead to a good result. In the support vector machine classification the same 

parameters for 𝜆 and C were used for all three binary classifiers. It is possible that 
different values of these parameters for the different classifiers could produce better 
results, especially since the classes differ a lot in size. 
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