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Abstract 

This study investigates the temporal correlation relationship between vegetation greenness and 

soil moisture in the African Sahel from 1982 to 2008 at different time lags (maximum five lags 

used in this study) and determines the extent which soil moisture explains vegetation dynamics 

in the Sahel. Monthly composites of remotely sensed Normalized Difference Vegetation Index 

(NDVI) from National Oceanic and Atmospheric Administration’s Advanced Very High 

Resolution Radiometer (NOAA-AVHRR) were used in this study as a proxy for vegetation 

growth, whereas modeled soil moisture data (1.6m column depth) provided by the NOAA 

National Centers for Environmental Predictions (NCEP) Climate Prediction Center (CPC) 

Global Monthly high resolution Soil Moisture (GMSM) was used as an indicator of moisture 

availability for plants. The analyses were applied for all-year months data (dry season included) 

and only for growing months season (from July to October) to estimate the effect of long dry 

season on the association between vegetation growth and soil moisture. Trends in vegetation 

greenness, soil moisture and NDVI residuals were calculated separately in Sahel to investigate 

the changes occurred in vegetation growth and soil moisture during the study period. The 

correlations relationship were evaluated against land cover and soil texture data to estimate the 

influences of land cover and soil type on the strength of correlation relationship between 

vegetation growth and soil moisture.  

The results showed a significant correlation relationship between vegetation greenness and soil 

moisture at lag0 (no time lag differences), lag1 (one month time lag) and lag2 (two months’ time 

lag) with a better association in northern parts of Sahel region by using only the growing season 

data. However, the significant correlations covered a larger area by using all the year data (long 

dry season included). The results indicated that using AVHRR NDVI data for studying the 

vegetation growth in response to soil moisture availability is limited in the southern parts of the 

study area. The significant correlation coefficients (r) are varied between low and moderate 

values (0.1-0.6) in the study area, suggesting that soil moisture is not only the main driver of 

vegetation dynamics in Sahel. Vegetation greenness showed a significant increase during the 

study period in many locations in Sahel region (center of Chad, Senegal and south of Mali), 

whereas soil moisture showed a small significant locations in the study area (center of Sudan, 

center of Mali and east of Mauritania) during the study period from 1982-2008. Land cover type 

(Croplands and Grasslands) and soil texture (Entisols and Alfisols) showed a significant 

association and high influences on the correlation relationship between vegetation greenness and 

soil moisture at lag0, lag1 and lag2.  

Keywords: NDVI, Soil moisture, Time series analysis, Sahel, Land cover, Soil type, remote 

sensing, temporal correlation 
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1. Introduction  

The Sahel is a semi-arid eco-climatic transition zone in Africa that lies between the Sahara desert 

to the north and the humid tropical Savannas to the south, with distinctive vegetation cover 

ranging from very sparse vegetation cover in north of Sahel, to grasslands, shrubs and thorny 

trees interspersed with grasses in center of Sahel, to woodlands characterized by taller and higher 

amount of vegetation cover in south of Sahel (Le Houerou, 1980). Lately, the African Sahel has 

become one of the most investigated study areas relative to other regions in the world because of 

its dynamic ecosystem that responds to both land use practices and climate change (IPCC, 

2007).Yet, there are still many unanswered questions connected to the assigning observed 

changes in Sahel ecosystems and direct human impacts. 

Semi-arid African areas are more vulnerable to climate change and climate variability that causes 

massive impacts on their economic situations that are usually accompanied with existence of 

many developmental challenges such as ecosystem degradation, disasters and conflicts, and 

limited infrastructure and technology (IPCC, 2007). Mitigation and adaptation strategies were 

selected as two possibilities for overcoming and addressing climate change. Mitigation focuses 

on reducing greenhouse gases (GHG) emissions to avoid a dangerous increase in global 

temperatures, while adaptation strategies refer to any reaction or adjustment in response to actual 

or expected impacts of climate change (IPCC, 2001). Sahelian countries will need to adapt to 

climate change because they are expected to experience some of the most negative impacts in the 

future (IPCC, 2001). This is will be particularly challenging for them because of their already 

low adaptive capacity in the face of low and variable rainfall levels, combined with societal 

vulnerability. 

Water availability is considered one of the most important climatic constraints on vegetation 

growth in Sahel. The projected number of Africans in semi-arid locations will suffer from 

increasing water stress by 2020s is between 75-250 million and this number is projected to 

increase to be between 350-600 million by 2050s (IPCC, 2007). However, other climatic 

constraints such as solar radiation, availability of nutrients and air temperature could also affect 

the vegetation growth as water becomes less limiting factor for plant growth in regions 

characterized by high amount of water availability (Herrmann et al., 2005). Owing to continuous 

presence of water shortages in the Sahel region, understanding the relationship between 

vegetation and soil moisture has become necessary for agriculture management in this region. 

Soil moisture is a crucial factor linking rainfall with vegetation growth, it is considered to be the 

most important factor for vegetation production in arid and semi-arid regions because yield of 

crop is more linked to the amount of water availability rather than lack of nutrients (Wilhelmi 

and Wilhite, 2002). Soil moisture represents the rainwater accumulated over a period of time, 

and is considered to be more tightly coupled with vegetation greenness than instantaneous 

rainfall measurements, because soil moisture is more representing the actual water available or 
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reached by plant roots. Besides, the best association between vegetation growth and rainfall 

occurs with rainfall total for concurrent month plus two previous months (Nicholson et al., 

1990). However, the relationships between vegetation growth and soil moisture are complicated 

by other several factors such as land cover/vegetation type, land use and soil type. There are 

many studies that investigate the relation between vegetation growth and rainfall in Sahel region 

(e.g. Eklundh, 1997; Nicholson, 2001). However, a few of them analyze the relation between soil 

moisture and vegetation growth due to the lack of accurate spatial soil moisture data for vast area 

like Sahel (e.g. Huber et al., 2011; Owe et al. 1993).  

Remotely sensed Normalized Difference Vegetation Index (NDVI) is a commonly used indicator 

for monitoring vegetation greenness. NDVI data have shown good association with rainfall 

fluctuations in semi-arid regions indicated by increasing NDVI values with increasing rainfall 

amounts at rainfall ranges from approximately 200 to 1200 mm yearly (Tucker et al., 1991; 

Nicholson et al., 1990). Vegetation phenology has a great role in different aspects not only in 

land use and environmental risk management but also modeling carbon exchange (Lucht et al., 

2002). Moreover, vegetation production is considered a sensitive indicator for monitoring cause 

and effect of global climate change which is mainly driven by changes in rainfall, surface 

temperature, soil moisture, and human activity (Kartschall et al., 1995). 

1.1.  Aims and Objectives 

The current study aims to evaluate the relationship between soil moisture and vegetation growth 

for the period spanning from 1982 to 2008 in Sahel at five different time lags (shifting the time 

of soil moisture back by five months) to recognize the best time of vegetation growth in response 

to concurrent and previous measurements of soil moisture, and to identify areas within Sahel 

region where vegetation growth shows a strong dependence on soil moisture. The specific 

objectives of this study are to: 1) Investigate changes that have occurred in the vegetation 

greenness and soil moisture during the study period, separately.  2) Analyze the correlation 

between vegetation growth and soil moisture.  3) Document the changes in strength of 

relationship between vegetation growth and soil moisture with time lag. 4) Assess if the 

maximum strength in the relationship between soil vegetation growth and soil moisture varies in 

space. 5) Investigate whether the strength of the relationship between vegetation growth and soil 

moisture varies with land cover and soil type. 

1.2. Research questions 

I. How does the soil moisture and vegetation greenness vary in Sahel from 1982 to 

2008? 

II. Is there a correlation between modeled soil moisture (SM) and vegetation growth 

(NDVI) during the study period from 1982 to 2008? 

III. Does the relationship between soil moisture and vegetation growth vary with 

changing time lag across the study area? 

IV. Does the lag of maximum correlation (optimal lag) vary across the Sahel? 

V. Is the pattern from IV related to land cover types and soil textures? 
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1.3.  Hypothesis 

Based on the research questions stated above, the following are the research hypotheses: 

Hypothesis 1 

Null hypothesis: Trends in soil moisture and vegetation greenness in Sahel are not observed.  

Alternative hypothesis: There is a significant trend in soil moisture and vegetation greenness 

in the Sahel. 

Hypothesis 2 

Null hypothesis: There is no significant relationship between NDVI and SM.  

Alternative hypothesis: Significant relationship exists between NDVI and SM. 

Hypothesis 3 

Null hypothesis: Correlation relationship is showing the same pattern with changing time lag. 

Alternative hypothesis: Correlation relationship is varying with changing time lag. 

Hypothesis 4 

Null hypothesis: Optimal lag correlation is not varying across the study area. 

Alternative hypothesis: Optimal lag correlation shows different spatial variability in Sahel 

region. 

Hypothesis 5 

Null hypothesis: Correlation between NDVI and SM is not influenced by land cover type and 

soil texture across the Sahel region. 

Alternative Hypothesis: Correlation between NDVI and SM is highly influenced by land 

cover type and soil texture across the Sahel region. 

 

1.4.  Thesis Outline  

This thesis structure is organized in several chapters. The first chapter consists of a brief 

introduction, objectives, research questions and hypothesis. The second chapter consists of 

background and literature review about the study area. Description of materials and methods and 

the justification behind selecting the methodology is provided in the third chapter. The fourth 

chapter consists of results. Results discussed in more details in chapter five. Finally, the thesis 

ends with a brief summary, conclusions and references. 
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2. Background and Literature review 

 2.1. Study area 

The Sahel word in Arabic language means “shore” or “coast” which is linguistically describes 

the appearance of vegetation in Sahel region as a shoreline defining the boundary of the Sahara 

desert (Le Houerou, 1980). The Sahel spans across northern Africa from the Atlantic Ocean in 

the west to the Red Sea in the east (about 5000 km) forming a belt extending roughly from 12ᵒ N 

to 18ᵒ N (about 1000 km). However, the biophysical characteristics are changing continuously in 

the Sahel region over time and space and leads to difficulty in pinpointing the precise geographic 

location of the Sahel (Le Houerou, 1980). Several different African countries are found in the 

Sahel (Fig.1). They not only share the same climatic conditions (Sahelian climate) but their 

inhabitants also share a lot in common in terms of their culture and livelihood systems 

(FAO/GIEWS, 1998). The study area covers most of Central and West Africa with geographic 

position extends roughly from 5ᵒN to 20ᵒN.  

 

Figure 1: Overview of the geographic location of the Study area and Sahelian countries. Note 

that the Cape Verde islands, although not included in the map are also defined as Sahel. 

The Sahel region is divided into four different eco-climatic zones based on the average annual           

rainfall and agricultural features, i.e.  Sahelian, Sudano-Sahelian zone, Sudanian zone and 

Guinean zone (FAO/GIEWS, 1998). The Sahelian zone characterized by average annual rainfall 

between 250 and 500 mm, while the Sudano-Sahelian zone is receives average annual rainfall 

between 500 and 900 mm. Finally, the Sudanian zone and Guinean zones have average annual 

rainfall ranges from 900 to 1100 mm, and > 1100 mm, respectively (FAO/GIEWS, 1998, 2007).  



 

  5   
  

2.1.1. Climate in Sahel 

The Sahel climate is characterized by a distinct seasonality with a long dry season and a short 

humid season (JASO months) occurring approximately between July and October with August 

being the wettest month (Anyamba and Tucker, 2005). The rainfall regime in the Sahel is 

characterized by inter-annual and inter-decadal variability (Fig.2), and it varies spatially from 

year to year, which makes it difficult to predict future characteristics of rainfall. Rainfall amounts 

in the 1961-1989 periods showed a 40% lower amount than previous early period in 1931-1960 

(Hulme, 2001). Rainfall in Sahel shows a steep north (low)-south (high) gradient distinguished 

by different vegetation species and agricultural crops that is mainly rain-fed and depends on 3 to 

4 months of summer rainfall (Hulme, 2001). The Sahel is characterized by dry tropical climate 

with mean maximum temperature around 40-42ᵒ C, while the mean minimum temperature is 

around 15ᵒC (Le Houerou, 1980).  

 

1
Figure 2: Average precipitation over Sahel (20 N-10 N, 20W-10E) from 1900-2011 during June 

to October based on climatology NOAA NCDC Global Historical Climatology Network data. 

Reasons for rainfall variability in Sahel region are multiple and complex and several factors 

contribute, including the El Nino southern oscillation (ENSO) cycles (Nicholson, 2001), or non-

ENSO-related variations in sea surface temperatures (Brooks, 2004). Many others may be related 

to changes in land cover and land-atmosphere interactions (Nicholson, 2001; Hulme et al., 2001) 

while other studies linked between rainfall variability in Sahel and anthropogenic global 

warming (e.g. Eltahir and Gong, 1995). Changes in the African Easterly Jet (AEJ) and the 

Tropical Easterly Jet (TEJ) intensity and localization could be other factors influencing rainfall 

variability (Nicholson and Grist, 2003).  

 

1
Available at: http://jisao.washington.edu/data_sets/sahel/ 



 

  6   
  

According to Lebel and Ali, 2009, the driving force that controls the amount, timing and 

distribution of rainfall in the Sahel region is the Intertropical Convergence Zone (ITCZ) 

However, the West African Monsoon (WAM) also has a great effect on the rainy season (JASO 

months) that varies between 3 and 6 months long. WAM dynamics comes from differences 

between temperature, pressure and humidity in the North African continent and the tropical 

Atlantic regions (Tucker et al., 2005). By the 2080s, Climate change and variability with 

interaction of human activity through deforestation can lead to increase in size of arid and semi-

arid lands in Africa by 5-8% (IPCC, 2007). 

2.1.2. Vegetation in Sahel  

Vegetation in the Sahel area shows a gradient from north to south with denser vegetation in the 

south (Fig.3). The Sahelian zone is characterized by very sparse vegetation cover that is 

characterized by annual and perennial grasses with thorny shrubs interspersed in-between while 

the Sudanian and Guinean zones are characterized by higher amount of ground cover and more 

woody species with taller vegetation (Le Houerou, 1980). In the 20
th

 century, the Sahel has been 

subjected to a long period of desiccation interspersed with major droughts causing serious 

impacts on the vegetation growth (Lamb, 1982). However, the Sahel has experienced a recovery 

and increase in rainfall over the last years compared to the amounts in the late of 1960s (Hulme 

et al., 2001; Nicholson, 2001). 

2.1.3. Vegetation and rainfall in Sahel 

Vegetation activity in the Sahel is powerfully linked to rainfall at continental and global scales 

(Zhang et al. 2005) and therefore the Normalized difference vegetation index (NDVI) index has 

been used by many researchers as a good indicator for monitoring and estimating the amount of 

rainfall in the Sahel. However, the relationship between NDVI and rainfall does not show a 

linear relationship in all regions as this relationship can be affected by other factors such as soil 

properties (Nicholson and Farrar 1994), region (Nicholson et al. 1990), vegetation type 

(Davenport and Nicholson 1993), and human factors through repeated burning (Parr et al. 2004), 

limited sensitivity of NDVI at higher vegetation densities or beyond 200mm monthly
-1

 (1200 

mm yearly
-1

) rainfall (Nicholson et al., 1990) and grazing strategies that are mainly associated 

with soil erosion (Wessels et al. 2004). Therefore, blaming only low and irregular rainfall alone 

for impeded vegetation growth is a misunderstanding and oversimplification of the situation even 

if rainfall variability is considered the major driver responsible.  

The best relationship between vegetation growth and rainfall occurred at the concurrent month 

plus two previous rainfall months (two months’ time lag), as the peak of vegetation growth 

responds to the peak of rainfall two months later (Davenport and Nicholson, 1993; Eklundh, 

1997; Udelhoven et al., 2008). However, this relationship is highly variable in time and space 

and depends on the degree of aggregation of these variables in the time domain (Wang et al. 

2003). Tucker and Nicholson (1999) found that the vegetation greenness margins in Sahel 

fluctuated by up to 150km from a wet year to a preceding dry year in response to rainfall 

variations.   
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Figure 3: Major land cover classes across the study area based on global land cover (GLC 

2000) classification with the selected study sites locations. 

2.2.  Desertification Debate 

According to the current United Nations Convention to Combat Desertification (UNCCD), 

desertification means land degradation in arid and semi-arid areas that can be caused by many 

factors, such as climate change and human activities through over-use cultivation and soil 

nutrients (UNCCD website). Desertification is usually associated with a loss and reduction in 

areas of productivity. Desertification does not mean expansion of the existing deserts but occurs 

because dry lands are vulnerable to over-exploitation and mismanagement of land (FAO, 2011).  

Tucker et al. (1991) and Tucker and Nicholson (1999) indicate that there is a southward 

movement of the Sahara desert as a result of the severe drought that occurred in the mid-1980s. 

However, many studies held by (Seaquist et al., 2006; Anyamba and Tucker, 2005; Olsson et al., 

2005; Herrmann et al., 2005; Eklundh and Olsson, 2003) observed upturn in rainfall and 

vegetation growth in different regions in Sahel that prove there’s recovery in rainfall in 1988s 

and contradict claims of widespread permanent desertification in the African Sahel. Owing to 

lack of uniformity increasing in the greening trend across the entire Sahel region, rainfall is not 

likely the only driving factor responsible for the vegetation dynamics in Sahel. 

2.3. Agricultural Drought in Sahel 

Drought occurred in the Sahel region during the 1970-1980’s as a result of severe rainfall drop 

since the mid-1960s (especially in 1973, 1984 and 1990) that led to a large impact on the local 

economy. Food security was one of the reasons for establishing the United Nations Convention 
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to Combat Desertification and Drought (UNCCD) to mitigate the effects of drought and 

improving the living conditions of people in dry-lands (Hulme, 2001). 

Agricultural drought events are generally linked with reduction in crop yield and in many cases 

cause crop failure. The majority of the population in the Sahel region depends mainly on 

agriculture for their livelihood, and hence any long-term drought event is commonly associated 

with devastating hunger, famines, malnutrition and starvation (FAO, 2011). Droughts are natural 

and occur unexpectedly and slowly over time and their impacts could continue to be felt long 

after drought terminates (Wilhelmi and Wilhite, 2002). However, early warning of such drought 

events will minimize the risks that associated with droughts (Nicholson et al., 1990). Early 

warning can help the governments and international food aid agencies to plan in advance for 

redistributing food in the drought venerable areas to mitigate food insecurity and starvations. 

2.4. Remote sensing and vegetation 

Ecosystem monitoring has become much easier by using advanced remote sensing technology 

that is characterized by consistent delivery, presence of multi-decadal time series archive of 

several environmental variables, and datasets availability at different spatial, temporal and 

spectral resolution. Remote sensing is the art and science of collecting information about the 

Earth or any other object without a direct physical contact through using images acquired from 

satellite sensors or any synoptic perspective. The process is facilitated by analyzing the radiation 

emitted or reflected from the Earth’s surface in one or several regions of the electromagnetic 

spectrum (Campbell, 1996). Nowadays, it is possible to derive information about the 

characteristics of vegetation cover at different scales by using the visible and near-infrared (NIR) 

spectral bands.  

Owing to lack of spatially distributed climate data in the Sahel region, it is possible to use remote 

sensing at different scales from local to regional to observe vegetation growth or changes that 

cannot be easily observed from the Earth’s surface. Normalized Difference Vegetation Index 

(NDVI) time series data from National Oceanic and Atmospheric Administration’s Advanced 

Very High Resolution Radiometer (NOAA AVHRR) sensor is used intensively in many studies 

for analyzing vegetation changes in semi-arid areas (in particular in the Sahel region) and 

analyzing the relationship between vegetation greenness and rainfall regime (e.g. Eklundh and 

Olsson, 2003; Anyamba and Tucker, 2005). 

2.5. Normalized Difference Vegetation Index (NDVI) 

Vegetation indices are used for measuring vegetation canopy “greenness” that refers to leaf 

chlorophyll, leaf area, canopy cover, and structure. There are many attempts to have an index 

that is maximizing the spectral contribution of vegetation greenness, but also minimizing the 

contribution of atmosphere and soil background. One of the most widely used vegetation indices 

is the Normalized Difference Vegetation Index (NDVI, Rouse et al. 1974). It is used for 

monitoring vegetation dynamics and the index is defined as , where QNIR is 
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the reflectance in the Near-Infra Red (NIR) and QRED is the reflectance in Red band. NDVI is a 

relative measure of photosynthetic activity and green biomass because the healthy green leaves 

strongly reflects NIR radiation due to internal mesophyll structure and absorbs red radiations by 

leaf chlorophyll and other pigments (Tucker et al., 1985), good indicator for leaf area index 

(LAI) as reported by (Asrar et al., 1984) and Net Primary Production (NPP) as stated by many 

researchers (e.g. Nemani et al., 2003; Sjöström et al., 2009). 

NDVI values range from -1 to 1, where high positive values are represent increasing vegetation 

greenness (+1 is healthy dense vegetation and 0.1 is a less dense vegetation) while negative 

magnitude values representing non-vegetated areas such as water, ice or clouds. However, NDVI 

has limited sensitivity to high dense vegetation or saturated leaf area index (LAI).  NDVI values 

do not represent the amount of vegetation cover in low vegetation cover areas due to the effects 

of soil background, and using NDVI values as a proxy for vegetation growth in response to the 

water availability should be applied with caution as the relationship between NDVI and 

precipitation is not valid beyond 1200mm yearly
 
since the moisture is no longer the limiting 

factor of vegetation growth (Nicholson et al., 1990).  

NDVI composites satellite images derived from the NOAA AVHRR satellite are produced every 

two weeks by taking the maximum NDVI value during the two weeks period, this technique was 

done to minimize the effect of cloud coverage within the dataset (Wang et al., 2003). AVHRR 

NDVI data have been used in many early studies to monitor the vegetation greenness in response 

to changes in the climatic variables or other anthropogenic factors (e.g. Seaquist et al., 2006; 

Anyamba and Tucker, 2005; Olsson et al., 2005; Herrmann et al., 2005; Eklundh and Olsson, 

2003).    

2.6. Soil moisture and vegetation growth (NDVI) 

Soil moisture (quantity of water contained in soil) has a great influence on the land surface 

energy fluxes, hydrological processes and the interaction between land surface and atmosphere 

(Zhang et al., 2011). Vegetation growth (NDVI) is influenced by soil moisture which is affected 

by changes in precipitation and temperature. Therefore, soil moisture is considered a key 

parameter linked between NDVI, precipitation and temperature (Wang et al., 2003). Using field 

investigation for such variable like soil moisture is time consuming, expensive and impractical 

for monitoring over large areas. Hence, modeled soil moisture data is used effectively and 

efficiently for covering vast geographic regions such as Sahel region. Modeled soil moisture can 

give an indication about the residence time of moisture in the soil and moisture availability for 

plant growth.    

Root zone soil moisture represents a component of moisture that is accessible by plants roots 

linking surface vegetation with subsurface water stored in the soil, and varies with climate, type 

of vegetation and soil type (Guswa, 2008). Many studies suggested that NDVI data can be used 

as an indicator for the root zone moisture availability at large scale as any temporal variation in 

soil moisture affect the vegetation characteristics (e.g. Nicholson and Farrar, 1994; Schnur et al., 
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2010). Although much attention has been directed by many researchers to study the relationship 

between NDVI and climatic variables, few studies have emphasized the relationship between 

NDVI and soil moisture (e.g. Huber et al., 2011; Nicholson and Farrar, 1994). 

The best relationship between NDVI and soil moisture occurred in the concurrent month, while 

the best relationship between NDVI and rainfall occurred at multi-months average of rainfall, 

according to the study reported by Nicholson and Farrar (1994) in Botswana. Another study 

reported by Owe and et al. (1993) stated that the relationship between NDVI and modeled soil 

moisture in semi-arid Botswana is poorly correlated at the same month (no time lag), while the 

relationship is improved by using one month time lag (current NDVI with the previous month’s 

average soil moisture). Jamali et al. (2011) reported that the both NDVI and Enhanced vegetation 

Index (EVI) vegetation indices are highly correlated with soil moisture in the upper 1m depth 

with maximum correlation lag varies between 0-28 days in six different sites in Africa. Another 

study reported by Schnur et al. (2010) to estimate root zone soil moisture by using NDVI and 

EVI in southwestern of USA revealed that soil moisture values at distant sites and same depths 

are highly correlated (r= 0.53 to 0.85) and NDVI is more correlated with soil moisture than EVI 

and the correlation shows the maximum value when both NDVI and EVI lags soil moisture by 5 

to 10 days. 

The relationship between NDVI and root-zone soil moisture at five depths (5 cm, 10 cm, 20 cm, 

50 cm, and 100 cm) in three sites in USA (New Mexico, Arizona, and Texas) was investigated to 

determine the possibility of using optical remote sensing techniques as an approach for assessing 

root zone soil moisture (Wang et al., 2007). Results showed that the significant correlation 

relationship between root zone soil moisture and deseasonalized NDVI varied between 0.46-0.55 

at the three sites indicating that NDVI is a good proxy for root zone soil moisture mapping, and 

the vegetation in the humid site (Texas) need more time to respond to soil moisture than 

vegetation in the semi-arid sites (New Mexico and Arizona). The relationship between NDVI 

and soil moisture showed spatial-temporal variation in Sahel by using the rainy season (JASO 

months), the relationship strengthen in the north of Sahel and declined in south part of Sahel 

(Huber et al., 2011). The modeled root zone soil moisture showed a stronger correlation with 

NDVI than with precipitation in the Mongolian steppe during the period 1982-2005, suggesting 

that soil moisture has an important role on the vegetation dynamics (Nandintsetseg et al., 2010).    
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3. Materials and Methods 

3.1. Datasets 

Remotely-sensed NDVI and modeled soil moisture time series data sets for 27 years, spanning 

from 1982 to 2008 were used to perform this investigation. Descriptions of these data sets are 

provided below (in detail) with a description of other ancillary data such as land cover type and 

soil texture.  

3.1.1. GIMMS Data Set (NDVI) 

Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modelling and 

Mapping studies (GIMMS) NDVI time series data were used in this study. The data was monthly 

NDVI with maximum value composites (MVC) at 8 km spatial resolution. GIMMS NDVI data 

were processed by the GIMMS group at NASA’s Goddard Space Flight Center (Tucker et al., 

2005; Pinzon et al., 2005). 

The GIMMS dataset is a normalized difference vegetation index (NDVI) product derived from 

the AVHRR instrument onboard of National Oceanic and Atmospheric Administration (NOAA) 

polar orbiting satellite series 7, 9, 11, 14, 16 and 17. AVHRR acquires data in five different 

spectral bands at 1.1 km spatial resolution; one visible, one infrared and three thermal bands; 

GIMMS data are using only the first and second band. Although, NOAA AVHRR satellite 

sensor series were originally designed as a weather satellites. However, it started from the early 

of 1980s to monitor the characteristics of land vegetation. The product NDVI dataset available 

for a 25 year period spanning from 1981 to 2006 (Note: 2007 and 2008 years data used in this 

study provided from Eklundh, L. by contacting the data provider).  

The GIMMS NDVI dataset has been adjusted by the GIMMS group at NASA’s Goddard Space 

Flight Center to eliminate and minimize the effect of inaccuracies produced by lack of on-board 

band calibration, atmospheric effects, variation in solar illumination, volcanic aerosols, effects of 

satellite drift and sensor view angles. According to Tucker et al. (2005), there is no atmospheric 

correction done to GIMMS data except for volcanic stratospheric aerosol periods (1982-1984 

and 1991-1994), and even after correcting NDVI signals, there is still a reduction in NDVI over 

densely vegetated land covers for limited time periods. Pinzon et al. (2005) used a transformation 

method to correct the satellite orbital drift by using empirical mode decomposition (EMD) that 

removed common trends between time series of solar zenith angle (SZA) and NDVI to minimize 

the effects of orbital drift. Composite images were constructed (two 15-day composites per 

month) in order to have a cloud-free view of the Earth by choosing pixels with the MVC NDVI 

values during regularly spaced intervals, this method minimize the effects of water vapor and 

cloud cover that strongly reduce NDVI values (GIMMS data documentation).  

AVHRR Pathfinder (PAL) and GIMMS NDVI are the two mostly commonly used datasets in 

Sahelian studies. According to McCloy et al. (2005), the pathfinder and GIMMS datasets are 

moderately correlated (r
2
= 0.73) globally, however the NDVI in the Sahel has increased by 2-
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20% by using the Pathfinder dataset and 6-50% by using the GIMMS dataset during 1981-2000 

period. 

Justification for Use of GIMMS NDVI Data 

The GIMMS NDVI dataset was preferred for this study for several reasons. Firstly, it provided 

the longest, continuous NDVI time series from 1981 until 2008 and it is updated weekly with the 

shortest composition period (10 -15 days). Secondly, GIMMS NDVI dataset has been calibrated 

to be comparable with other newer vegetation remote sensing like Moderate Resolution Imaging 

Spectroradiometer (MODIS). A study by Fensholt et al. (2006) shows that the AVHRR GIMMS 

NDVI data is more consistent with SPOT-4 VGT NDVI data compared to other AVHRR data 

sets (e.g. PAL) and can therefore be considered highly accurate for monitoring the vegetation 

dynamics.  

For more information about GIMMS NDVI data set or for downloading the product, go to: 

(http://glcf.umiacs.umd.edu/data/gimms/) Data accessed in April, 2012 . 

3.1.2. Modelled Soil Moisture Data 

Monthly soil moisture data sets spanning from 1982 to 2008 (covering the same period of time as 

the NDVI data) were used in this study. Modelled soil moisture data was provided by the NOAA 

National Centers for Environmental Predictions (NCEP) Climate Prediction Center (CPC) 

Global Monthly high resolution Soil Moisture (GMSM). The monthly soil moisture data sets 

were produced globally with a 0.5
 
degree spatial resolution by using one-layer “bucket” water 

balance (hydrological) model from 1948 until to the present (Fan and van den Dool, 2004). The 

data updated monthly which improves utility for near real-time purposes. 

The model is driven by monthly Climate Prediction Center (CPC) global precipitation over land 

that uses over 17,000 gauges worldwide (Chen et al., 2002). For more recent years the analysis is 

based on radar and satellite measurements with gauge data. Monthly global temperatures from 

the CDAS- Re-analysis product were selected as the second input in this model owing to its 

availability and monthly updating (Kistler et al., 2001). The outputs from this model are global 

monthly soil moisture, evaporation and runoff.  

Modelled soil moisture data validated with observed soil moisture measurements in different 

places around the world such as Russia, China, India and USA, the validation results shows that 

the modeled soil moisture simulates the seasonal to inter-annual variability of observed soil 

moisture very well in many locations (Fan and van den Dool, 2004). The anomaly correlation 

between modeled soil moisture and observed soil moisture is about 0.60-0.75 over the Illinois 

state in USA during the time period 1984 to 2001 (Van den Dool et al., 2003).  

The model had set the effective water holding capacity to 76 cm of water, which is equal to 1.6 

m deep “leaky” bucket at porosity of 0.047 (van den Dool et al., 2003). The maximum soil 

moisture value was set to 760 mm in the model with output units in mm for soil moisture data. 

http://glcf.umiacs.umd.edu/data/gimms/
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For more information about modelled soil moisture data set or for downloading the product, go 

to: (http://www.cpc.ncep.noaa.gov/soilmst/leaky_glb.htm) Data accessed in April, 2012 . 

 

3.1.3. Land Cover Data 

Global land cover (GLC) 2000 map is based on observations made by the VEGETATION sensor 

on the SPOT 4 satellite from 1
st
 November 1999 to 31

st
 December 2000, to provide a harmonized 

land cover database over the whole globe. The land cover map was mainly produced by 

unsupervised classification aided by thematic maps and class spectral statistics. The GLC 2000 

validation strategy includes systematic review by experts for the regional products, comparison 

with reference and ancillary data; and using stratified random sampling for quantitative accuracy 

assessment of the global products (Mayaux et al., 2006). The study area was clipped from the 

downloaded Africa land cover map (Fig.4), and then the land cover map was resampled to 8 km 

spatial resolution using nearest neighboring method as the original downloaded map had 1 km 

spatial resolution at the Equator. The GLC 2000 legends with 27 classes in Africa were based on 

the FAO LCCS (land cover classification system) (Mayaux et al., 2006). Land cover classes 

were merged in the study area to eight major classes based on similarity of their signatures for 

easier interpretation afterwards (Table A1, in appendix).  

For more information about GLC 2000 Land cover data or for downloading the product, go to: 

(http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php) Data accessed in August, 2012 . 

3.1.4. Soil Texture Data 

Soil texture data was provided by FAO-UNESCO soil map of the world. The digitized soil map 

by ESRI (Environmental Systems Research Institute) was classed by Soil Taxonomy suborders 

into twelve soil orders with their suborder classes. The Global soil regions were based on a 

reclassification of both FAO-UNESCO soil map of the world and the soil climate map. The soil 

map data produced in a global coverage in April, 1997 and revised in September, 2005 with a 

minimum scale equal to 1:5,000,000 and geographic projection. The Sahel study area clipped 

from the global soil map of the world and was resampled to 8 km spatial resolution using nearest 

neighbor method (Fig.4). Soil suborder classes were merged to a major order classes according 

Table 1: Summary of NDVI and modelled soil moisture dataset characteristics. 

Datasets 
Spatial 

resolution 

Spatial 

extent 

Temporal 

resolution 

Temporal 

extent 

Availability 

and cost 
Limitations 

GIMMS 

NDVI 

datasets 

8 km* 8km Global Monthly 
1981 to 

2008 

Available 

online and 

free 

In highly dense 

vegetation areas, NDVI 

has a lower accuracy. 

CPC -

GMSM 
0.5ᵒ * 0.5ᵒ Global Monthly 

1948 to 

present 

Available 

online and 

free 

Maximum soil moisture 

is 760 mm and the great 

modelled depth (=1.6 m) 

http://www.cpc.ncep.noaa.gov/soilmst/leaky_glb.htm
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to the USA Soil Taxonomy (Table A2, in appendix). 
2
Descriptions of the twelve soil order 

characteristics with their percentage and location in the world can be found in (Table. 2).  

For more information about FAO-UNESCO soil map of the world or for downloading the 

product, go to: (http://soils.usda.gov/use/worldsoils/mapindex/order.html) Data accessed in 

August, 2012 . 

Table 2: Characteristics of the major soil order classes according to NRCS (Natural Resources 

Conversation Service) distribution center website. 

Soil order Location Description 

Area 

(%) 

in the 

world 

Alfisols Semiarid to moist areas Characterized by holding water and nutrients to plants, occurs 

under high dense vegetation regions like as forest or mixed 

vegetation cover and it’s a good productive soil for crops. 

10% 

Andisols Cool areas with moderate 

to high precipitation  

High water and nutrient-holding capacity associated with 

volcanic materials and tend to be highly productive soils. 

1% 

Aridisols Deserts of the world Highly dry soil for the growth of plants, characterized by lack 

of moisture and accumulating gypsum, and salt. 

12% 

Entisols Occur in many  

environments 

Characterized by absence of pedogenic horizon development 

and likely to found in flood plains, dunes and steep slopes. 

16% 

Gelisols Common in higher 

latitudes or at high 

elevations 

Characterized by a permafrost or ice aggregation near the soil 

surface. 

9% 

Histosols Occur in highly saturated 

areas all the year round 

Have a high content of organic matter and no permafrost and 

commonly called bogs, peats or mucks. 

1% 

Inceptisols Semiarid to humid 

environments 

Characterized by a moderate degree of soil weathering and 

development in a wide variety of climates. 

17% 

Mollisols Occurs on the steppes of 

many countries. 

Characterized by moderate to high moisture deficiency and 

high content of organic matter. Usually occurs under grass. 

7% 

Oxisols Tropical and Subtropical 

regions 

Characterized by low fertility and a low capacity to retain 

additions of lime and fertilizer. 

8% 

Spodosols Under coniferous forests 

of humid regions 

Occur in areas of coarse-textured deposits and it tends to be 

acid and infertile. 

4% 

Ultisols Humid areas Nutrients are concentrated in the upper zone of soil, and it is 

classified as acid soils that can’t retain addition fertilizer and 

lime easily. 

8% 

Vertisols Occur in many  

environments 

Characterized by high content of expanding clay minerals that 

transmit water very slowly and tend to be high in natural 

fertility. 

2% 

 

 

 

 
2
Descriptions of soil classes Available at: (http://www.soils.usda.gov/technical/soil_orders/) 

Data accessed in August, 2012 . 

http://www.soils.usda.gov/technical/soil_orders/
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Figure 4: Major aggregated classes of land cover and soil types in the Sahel area. 

3.2. Methodology 

Procedures undertaken in this study can be categorized into three different steps beginning with a 

data pre-processing (data harmonization) step, a data processing step and data post-processing 

step. The analyses were applied for all the year data (dry season included) and only for the rainy 

season months from July to October (JASO months) that also representing the start and end of 

growing season. Flow chart of methodology analyses followed in this study will be found in 

Fig.8.  

3.2.1. Data pre-processing 

GIMMS NDVI data was converted from 8-bit into real NDVI. Raw NDVI values has been 

divided by 10000 (i.e. water pixels have a value of -10000 in the raw data) and to recover the -1 

to 1 range of NDVI, the following formula used: (NDVI = (Raw NDVI/10000). The GIMMS 

data was projected to Albers Equal Area Conic projection using Clarke 1866 ellipsoid. 

Soil moisture (SM) dataset was re-projected to Albers Conical Equal Area Projection and 

resampled from 0.5ᵒ to 8 km by using nearest neighbour algorithm that duplicating pixels 
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without changing the original cell values to be in match with GIMMS NDVI data resolution and 

projection. 

GIMMS NDVI data and SM data were provided in a global spatial cover and to emphasis only 

on Sahel region, the two datasets clipped only to the study area. 

3.2.2. Data processing 

NDVI and SM time series data can be decomposed into three main components: trend, seasonal 

and irregular fluctuations or errors (Fig.5). Any time series data characterized by autocorrelation 

and non-stationary properties affect the statistical relations between dependent and independent 

variable through violating the assumption of dependency or uncorrelated errors in the regression 

analysis (Salvatore and Reagle, 2001). 

Autocorrelation or serial correlation occurs when the error term for one time period is positively 

or negatively correlated with the error term neighboring time periods. Autocorrelation will affect 

the cross correlation between variables through overestimating and sometimes underestimating 

cross correlation coefficients, and leads to downward-biased standard errors that give incorrect 

statistical tests and confidence intervals (Salvatore and Reagle, 2001). The presence of 

autocorrelation between NDVI and SM series data was tested by using Durbin –Watson statistics 

(Fig.6) and also by studying autocorrelation functions (ACF) and partial autocorrelation 

functions (PACF) for both NDVI and soil moisture data (Salvatore and Reagle, 2001).  

Non-stationarity is defined as the gradual change in mean and standard deviation of time series 

over time, which will affect or inflate cross correlation coefficients as the relationship should 

Figure 5: Seasonal decomposition of NDVI (left) and SM (right) into trend, seasonal and irregular 

components based on one pixel size (8*8 km) at 15° 16' 20" N, 7° 28' 15" E. 
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depend on difference of lag only and do not change with time (Milionis and Davies, 1994). The 

presence of non-stationarity is tested by plotting data over time and fitting first-order trend 

(Fig.7) and also by a parametric approach through the auto-correlation function (ACF) that 

shows very slowly decline (or trails off) to zero. 

 

Figure 6: Showing the first order autocorrelation in residuals from a regression analysis 

between NDVI and soil moisture data before detrending and deseasonalizing. A value of 2 

indicates no serial autocorrelation, values less than 2 indicates evidence of positive serial 

autocorrelation and values greater  than 2 indicates evidence of negative serial autocorrelation. 

3.2.2.1. Data De-trending 

De-trending is the process of removing trend from the time series data to convert non-stationarity 

data to stationary data for a further analysis. Non-stationarity is identified as the long-term 

gradual change in the mean or variance over time or position in the time series data. De-trending 

by the differencing approach was applied in this study analysis. This method is implemented by 

differencing value of the series at times t and t-1 according to this equation: Wt = Xt - Xt-i, where 

Wt is the difference image series at time t, Xt - Xt-i is the difference between original time series 

Figure 7: Shows the presence of non- stationarity in the NDVI and soil moisture data, as the trend 

is increasing with increasing time. This figure is based on only one pixel (8*8 km) with 

geographic location 15° 16' 20" N, 7° 28' 15" E. 
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at time t and original time series at a previous time series step (t-1). The result from this 

approach is expected to remove the serial correlation that exists in the data. Another de-trending 

method is accomplished by the fitting low-order polynomials to the time series data through time 

by using TIMESAT software (Eklundh and Jonsson, 2004), and then subtracting the newly 

created trend images from TIMESAT from the original time series data. The two methods were 

applied for comparison and in order to identify which method is more effective for removing the 

trend from the NDVI and SM time series data.   

3.2.2.2. De-seasonalization 

Seasonality is one of the time series components and is identified by regularly spaced peaks and 

troughs around the trend line in one year or less. The presence of seasonal components in NDVI 

and soil moisture time series data spanning the same period of time will lead to a spurious cross 

correlation and it will influence the autocorrelation structure of the two time series data 

(Chartfield, 2004). So, removing the long-term effect of seasonal components from the two 

variables is necessary to correctly assessing the correlation relationship between NDVI and soil 

moisture. The standardized seasonal anomalies method was applied in our study to eliminate the 

effects of seasonality (Udelhoven et al., 2009) by using seasonal z-score transformation; 

-
, Where  is the standardized anomaly (z-score) for month (j) and a time index (t), 

Xtj is the original image series, xj is the long term mean and Sj is the standard deviation. The 

standardized anomalies will not preserving the characteristic differences in the original data. 

3.2.2.3. Data Pre-whitening 

Errors characterized by time series structure will violate the assumption of errors independency 

in the ordinary least square regression, which will lead to inaccurate estimation of the standard 

errors and regression coefficients and give wrong statistical relationship between the dependent 

and independent variables. So, estimating the true serial correlation is essential to get a robust 

result from the relation between NDVI and SM. Pre-whitening is the approach used in our study 

analysis to remove the effect of serial correlation in the error components of NDVI and SM time 

series data. This procedure, described by Wang and Swail (2001), is used to remove the serial 

correlation through an iterative process until the error series becomes white noise (normally 

distributed errors with mean zero and variance ). 

3.2.3. Data post-processing 

3.2.3.1. Trend analysis 

The non-parametric median trend (Theil-Sen trend) was calculated for the GIMMS NDVI and 

SM dataset to investigate trends over time in both of time series data across the Sahel region. 

Non-parametric trend (Theil-Sen) calculates the non-parametric slope and intercept of data by 

determining the median of all estimates of the slopes from all pairs of observation (Sen, 1968; 

Then, 1950) and the trend have to be persistent for more than 29% of the length of the time series 

in order to be considered (Hoaglin et al., 2000). Significance of trend was calculated by Mann-
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Kendall test (kendall, 1955; Mann, 1945)  that gave image values in z-scores, where a positive 

slope or trend (z ≥ 1.96) represents a significance increase at 5% significance level and a 

negative slope or trend (z ≤ -1.96) represents a significance decrease at 5% significance level, 

while other pixels were indicated to have no trend. Non-linear monotonic trend “Mann-Kendall” 

test was calculated to indicate to what degree the trend is consistently increasing (values > 0) or 

decreasing (values < 0) and zero value represents absence of consistent trend. 

Residual trend analysis (RTA) was calculated from the regression analysis between raw NDVI 

data as dependent variable and raw SM data as explanatory variable for both all-year data and 

JASO month’s data, then searching for any significant long term trends in residuals. RTA was 

used to detect any possible trends that can be explained by any other factor than soil moisture.  

3.2.3.2. Linear correlation “Pearson’s correlation coefficients” 

In order to test the strength of correlation relationship between GIMMS NDVI and SM time 

series data, Pearson’s correlation coefficients were calculated for each pixel across the Sahel area 

with different time lags ranging from zero time lag (current values of NDVI versus current 

values of soil moisture) to five time lag (current values of NDVI versus previous five months lag 

soil moisture values). Significance correlation maps were produced at the 5% significance level 

(95% confidence intervals) for all the different time lags (lag0 to lag5) according to t-test 

analysis. The correlation analyses were done for all seasonal months and just for JASO rainy 

months. An optimal lag map was generated by calculating the highest correlation coefficient 

values for all the pixels when all the correlations coefficients of all the five lags were considered. 

Correlation relationship between NDVI and SM calculated based on the following equation: 

 

Where r is the correlation coefficient, COV(X1, X2) is the covariance relationship between 

dependent and independent variable, S1 and S2 are the standard deviations of the two variables, n 

is the number of time series images, (X1i-x1) is the original time series data of the first variable 

subtracted from the long term mean of that variable and (X2i-x2) is the original time series data 

of the second variable subtracted from the long-term mean of that variable. 

3.2.3.3. Logistic regression 

Logistic regression analysis was calculated in this study to evaluate the effect of land cover and 

soil texture on the correlation relationship between NDVI and SM. Logistic binomial regression 

is a type of regression analysis used in estimating a model that describes the relationship between 

a binary dependent variable and one or more continuous independent variable(s). The logistic 

regression model in this analysis aims to gauge the direction and strength of the relationship 

between independent variables (land cover and soil texture) and a binary dependent variable 

(optimal lag correlation). The logistic regression was selected instead of a normal linear 

regression because the response values are categorical or not measured on a ratio scale (1 is the 
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presence of significant correlation and 0 is the absence of significant correlation at this lag) and 

the error terms are not perfectly normally distributed. The logistic regression model uses the 

maximum likelihood estimation to find the best fitting of the parameters through finding the set 

of parameters for which their observed data probability is the greatest. 

To evaluate the logistic regression model quality, the sensitivity which measures the ability to 

identify dependent variable “positive response” and specificity which measures the ability to 

identify the absence of independent variable were calculated. To determine the strength of 

association between independent variable and dependent variable, the odds ratio (OR) was 

calculated. The degree of association is calculated according to these values in (Table 3). In 

addition, the ROC (Relative Operating Characteristics) was calculated to measure the goodness 

of fit of logistic regression with values ranges from 0 to 1 (Table 3). 

Table 3: Shows the description of logistic model parameters. 

Parameters Method Interpretation 

Sensitivity a/ (a+c) 100% is a robust model and <50% is 

a weak model 

Specificity d/ (b+d) 100% is a robust model and <50% is 

a weak model 

Odds Ratio (OR) (a*d) / (b*c) Strong (OR>3), moderate (OR= 1.5-

3) and weak (OR<1.5) 

Relative Operating 

Characteristics (ROC) 

ROC module in 

IDRISI software 

1 indicates a perfect fit and 0.5 

indicates a random fit 

 

 Where,  

 

 

2.2.3.4. Modeled Soil Moisture Evaluation 

Four different sites were selected in the study area to evaluate the relationship between modeled 

soil moisture and in situ soil moisture measurements at 15cm, 30cm and 150cm depth with 

GIMMS NDVI (Fig.3). Soil moisture measurements were provided by the CarboAfrica project 

and Ardö, J. for the period 2005-2009 at different depths (Ardö, 2012). The soil moisture 

measurements were recorded each half-hour in (volumetric %). The measurements were 

converted to mm unit and then converted to monthly measurements (mm) by taking the average 

of the measured values during this month to be in match with monthly modeled soil moisture 

data. Pearson correlation coefficients (r) were calculated between GIMMS NDVI and both of 

soil moisture data (measured and modeled) at different locations and depths in the study area 

(Table 4). 

a: number of correctly predicted occurrences  

b: number of incorrectly predicted occurrences 

c: number of incorrectly predicted absences 

d: number of correctly predicted absences  
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Figure 8: Flow chart showing the methodology analysis followed in this study. 

Sites Country Location 
Land cover 

(GLC) 

Soil 

type 

(FAO) 

Data time 

period (SM) 

SM depth 

(cm) 

ML-AgG 

(Agoufou G) 

Mali Lat: 15° 20' 35", 

Long:  -1° 28' 50" 

Open grassland 

with sparse 

shrubs 

Entisols 2007 15 

ML-Kem 

(Kelma) 

Mali Lat: 15° 13' 25", 

Long:  -1° 33' 58" 

Open grassland 

with sparse 

shrubs 

Entisols 2007-2008 15 

NE-Waf 

(Wankama 

fallow) 

Niger Lat: 13° 38' 51", 

Long:  2° 38' 1" 

Open grassland Alfisols 2005-2006 15,30,150 

SD-Dem 

(Demokeya) 

Sudan Lat: 13° 16' 58", 

Long: 30° 28' 41" 

Open grassland 

with sparse 

shrubs 

Sand 2005-2009 15,30,150 

Table 4: Biophysical characteristics of the selected four study sites. 

GIMMS 

NDVI
Modelled 

SM

SM

Deseasonalized

Standardized anomalies

NDVI 

Deseasonalized

Standardized anomalies

Remove serial correlation in errors Remove serial correlation in errors

Series 

Trend 

Analysis
Differencing Differencing

Linear
Correlation

Linear
Correlation

Logistic regression with
Land cover and soil texture

SM 

prewhitening

NDVI

Prewhitening

SM

Detrended

NDVI

Detrended

Correlation 

maps at 

different 

lags

Final maps 

at different 

lags 

Residual 
Trend 

Analysis
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4. Results 

4.1. NDVI and SM data after de-trending and de-seasonality 

Figure 9 shows the absence of autocorrelation in the NDVI-SM relationship after detrending, 

deseasonalizing and pre-whitening processes. A value of 2 indicates no serial correlation, values 

less than 2 indicates evidence of positive serial autocorrelation and values greater than 2 

indicates evidence of negative serial autocorrelation. The study area characterized by absence of 

first order autocorrelation between NDVI and SM series data in major parts across the study area 

as the majority of values close or equal to 2 (Fig.9). However, northern parts of the study area 

still maintaining a small negative serial autocorrelation between NDVI and SM series data, also 

other few areas shows a small positive autocorrelation between the two datasets. 

 

Figure 3: Showing the first order autocorrelation in residuals from a regression analysis 

between NDVI and soil moisture data after detrending and deseasonalizing.  

Six different locations across the study area were selected in order to examine the differences 

between NDVI and SM data “before and after” de-trending and de-seasonalization. The selected 

locations are representing different eco-climatic zones in the study area (Table 5).  

Table 5: Biophysical characteristics of the selected locations, analysis based on only one pixel 

window (8km*8km) in the study area. 

Sites Country Latitude Longitude Land cover  Soil texture  

Location 1 Niger 15° 16' 20" N 7° 28' 15"   E Grassland Entisols 

Location 2 Central African 

Republic 

10° 17' 59" N 23° 7' 46"   E Shrubland Inceptisols 

Location 3 Mauritania 12° 55' 40"   N 14° 17' 24" W Cropland Alfisols 

Location 4 Central African 

Republic 

6° 4' 34"     N 23° 7' 47"   E Mixed forest Oxisols 

Location 5 Algeria 19° 29' 53" N 5° 47' 12"   E Bare ground Entisols 

Location 6 Ghana 10° 40' 31"   N 1° 28' 16" W Shrubland Inceptisols 
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Figure 10 illustrates the differences between NDVI series before (a) and after (b) Z-score 

normalization in the selected six locations. The raw NDVI values were varying differently from 

0.1 to 0.8 approximately in the six locations, while the detrended and deseasonalized NDVI 

values (Z-score) were deviating differently in the selected locations from the zero mean 

(approximately fluctuating from -10 to 10) represent monthly positive and negative NDVI 

anomalies. 

 

 

Figure 10: Shows the differences between raw NDVI data (a) and detrended and deseasonalized 

NDVI data (b) in the selected six locations, based on 1 pixel size (8*8 km) in all the locations. 
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Figure 11 presents the changes of soil moisture values before (a) and after (b) Z-score 

normalization in the selected six locations. The raw soil moisture values were varying 

approximately between 50-600 mm in the selected sites, while the soil moisture anomalies (Z-

score values) after de-trending and de-seasonalizing were varying  approximately from -20 to 40 

around the zero mean represent monthly positive and negative soil moisture anomalies. The soil 

moisture Z-score values were fluctuated highly in the last three years of the study period 

especially in 2007 at locations 2, 3, 4 and 5.    

 

Figure 4: Shows the differences between raw soil moisture data (a) and detrended and 

deseasonalized soil moisture data (b) in the selected six locations, based on 1 pixel size (8*8 km) 

in all the locations. 
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Figure 12 illustrates the fluctuations of detrended and deseasonalized NDVI and soil moisture 

series at location 1. The soil moisture values are more strongly fluctuating around the mean zero 

value than NDVI values. NDVI and soil moisture series data displays absence of trend as the 

trend line occurred at zero in the two datasets.      

 

Figure 5: shows stationarity (absence of trend) of NDVI and SM series data at location 1 

through the study period from 1982-2008 (324 months), based on one pixel size (8*8 km). 

  

Figure 6: Partial Autocorrelation Function (PACF) and Autocorrelation Function (ACF) for 

NDVI data detrended by curve fitting method in TIMESAT (upper left and right) and by 

differencing method (lower left and right) at location 1. 

Autocorrelation Function (ACF) plots show the correlation coefficients between NDVI series 

and lags of itself at location 1 after detrending by using curve fitting method in TIMESAT (Fig. 
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13, upper right) and a differencing method (Fig. 13, lower right). Stationarity data with absence 

of trend shows a very quick decline of ACFs values to zero. The ACFs dies out or trails off 

quickly and became close to zero by using differencing method, whereas trails off slowly with 

ACFs not close to zero by using the curve fitting method in TIMESAT. The Partial 

Autocorrelation Function (PACF) describes the amount of correlation between NDVI series and 

lags of itself that is not explained by correlations at low order lags (previous lags) over time. 

PACFs plot of NDVI after detrending by differencing method shows a large significant spike at 

lag1 accompanied with gradual decaying of PACFs by increasing number of lags (Fig. 13, lower 

left), whereas PACFs plot for NDVI after using curve fitting method characterized by abruptly 

cuts off after high significant spike at lag1 (Fig. 13, upper left).  

4.2. Trends in NDVI and SM data 

Trend analyses were employed for both NDVI and SM data after deseasonalizing and removing 

the effect of serial correlations in errors by a multi-stage pre-whitening technique to investigate 

changes in NDVI and SM across the study area from 1982 to 2008.  

Highest increase in vegetation greenness (NDVI) for the period 1982 to 2008 occurred in many 

locations in the study area especially in south-western Mali, central Chad, south of Sudan, east of 

Burkina Faso and north of Nigeria, whereas areas of significant decline in NDVI occurred in 

north of Mauritania, north of Niger and central of Sudan. Different locations in the study area 

display insignificant trend in NDVI at 5% significance level during the study period (Fig.14, 

right). NDVI trend show high consistency during the study period in southern parts of Sahel 

region. Soil moisture trend over the period 1982-2008 exhibits a significant increase in a few 

places in our study area especially at east of Mauritania, central Mali, west of Chad, south of 

Somalia and south of Sudan. Large areas in Sahel region does not exhibit any significant trend in 

soil moisture at 5% significance level over the last 27 years (Fig.14, left). Soil moisture trend 

displays a high consistency in a few locations across the study area especially in east of 

Mauritania, center of Mali and center of Sudan. 

Trends in the residual time series data were calculated from the regression analyses between raw 

NDVI (dependent variable) and raw soil moisture data (independent variable) to investigate the 

effect of other factors than soil moisture in increasing vegetation greenness in our study area. All 

year data (include dry season) and JASO data (only rainy season) were used for this analysis. As 

can be seen in (Fig.15, left) most areas with significant increase in trends by using all year data at 

5% significance level occurs in southern part of our study area especially in South Sudan and 

many locations in Nigeria and south of Mauritania. Areas with significant decline in trends 

occurred in many locations in northern part of the Sahel region. For JASO month’s data, the 

significant trends that shows increased vegetation greening over the 27-year study period were 

distributed mainly in the southern part of Sahel region with high significance in Chad, Senegal 

and south of Mali, whereas northern part of the study area shows absence of significance trend 

with a negative residual trends in many parts of the northern Sahel region (Fig.15, right).     
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Figure 7: Trend maps of NDVI (right) and modeled soil moisture (left) in the study area from 

1982 to 2008. 

 

Figure 8: Residual trend map of all year data NDVI (left) and JASO NDVI (right) for 1982-

2008, based on a regression analysis between NDVI (dependent variable) and modeled SM 

(independent variable).  
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4.3.Correlation between NDVI and SM 

Pearson correlation coefficients between NDVI and modeled SM datasets throughout the study 

area were calculated for two different time frames on a pixel-by-pixel basis; full year data (long 

dry season and rainy season) from lag 0 to lag 5, as well as only to the rainy season (JASO 

months) from lag0 to lag 3. The correlation coefficients (r) were calculated at the 95% 

confidence intervals.  

According to Fig. 16, significantly positive correlation coefficients (r) between NDVI and SM 

were not exceeding 0.5 with highest significant values at lag0, lag1 and lag2, while significant 

correlations at lag3, lag4 and lag5 were showing small values with also a limited spatial 

distribution in the study area. Highest values of lag0 occurred in Burkina Faso, south of Mali and 

north of Senegal, highest values of lag1 occurred in south of Sudan, central of Niger and east of 

Mali, whereas highest values of lag2 occurred in central of Mauritania and central of Chad with 

many insignificant locations in Sahel region. 

 

Figure 9: Temporal correlation relationship between NDVI and SM data (all seasons) at 

different time lags in the study area from 1982 to 2008. 
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For the JASO analyses, the significant correlations were tested from lag0 to lag3 (Fig. 17). JASO 

correlations at lag0 showed high significant correlation in many areas across the Sahel region 

with highest values in south of Sudan, south of Mali and north of Senegal. Correlation 

coefficient relationship (r) decreased with increasing number of lags. Highest values of lag1 

occurred in central of Sudan and central of Mali, highest values of lag2 occurred in north central 

of Sudan, east of Mauritania, whereas highest values of lag3 occurred in central of Chad and 

western of Mauritania. 

 

Figure 10: Temporal correlation relationship between NDVI and SM data (JASO months) at 

different time lags in the study area from 1982 to 2008. 

Optimal correlation coefficient maps for all year-data and JASO months were calculated for each 

lag that reflects the best and highest significant correlation relationship between NDVI and SM 

when all the correlation coefficients of all lags were compared. An optimal lag map was 

produced in corresponding to the lag of highest correlation coefficient (Fig.18). 

According to (Fig.18), the optimal lags for both time frames (all year data and JASO months) 

were mainly constrained to lag0, lag1and lag2 which correspond to the correlation between 

NDVI and SM with zero, one and two month time lags. For all year-data, the optimal lag0 

dominates in the west of the Sahel region, whereas optimal lag1 dominates in east and central of 
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Sahel region and optimal lag2 in central Chad and east of Mauritania. For JASO month’s 

correlation, optimal lag0 was spatially distributed in Sahel region with high domination in south 

of Sudan, south of Mali and Senegal, whereas optimal lag1 was focused in several location in 

northern part of Sahel especially in central of Sudan and Niger, optimal lag2 was dominated in 

Sudan and Mauritania and finally optimal lag3 was mainly found in central of Chad and west of 

Mauritania. 

 

Figure 11: Optimal lags of NDVI and SM correlation in the study area from 1982 to 2008 for 

both all year data and JASO months. 

Lag0 and Lag1 are considered the largest optimal lags in the study area with percentage covering 

area reaches to 40% and 39% respectively from the total significant areas by using all the year 

data. For JASO data, the significant percentage covering area reaches to 44% and 32% from total 

significant areas at optimal lag0 and optimal lag1 respectively. The percentage covering areas of 

other lags are lower than 10 % in all year data, whereas for JASO data the percentage covering 

areas of lag2 and lag3 are 14% and 10% respectively (Table 6). 
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      Table 6: Shows significant area percentage of each optima lag in the study area. 

Significant area of each lag in  % Lag0 Lag1 Lag2 Lag3 lag4 lag5 

All year data 40 % 39 % 7 % 5 % 4 % 5 % 

JASO data 44 % 32 % 14 % 10 % − − 

4.4.Correlation coefficient differences between JASO data  and all-year data 

For a more in-depth investigation between correlation coefficient results by using only the JASO 

months or using all the year data, three locations were selected (Location1, Location2 and 

Location3) for further analysis (Table 5). Detrended and deseasonalized NDVI was plotted 

against detrended and deseasonlized modelled SM (five time lags) for both JASO and all-year 

data during the study period from 1982 to 2008 in the selected three locations.  

Cross-correlations used as an indicator for the degree of the relationship between NDVI and SM 

data with values between -1(strong negative relationship) and +1 (strong positive relationship). 

Cross-correlations were calculated at different time lags to determine the best time delay 

between NDVI and SM, maximum cross-correlation value means this lag is considered the best 

time where the two variables are best aligned and the vice versa for lowest cross-correlation 

value. The analysis was based on only one pixel window  (8*8 km).  

The first location in Niger exhibited a low cross-correlation between NDVI and modelled SM by 

using all-year data at lag0 (0.08) and it was improved by using only JASO months (0.26). The 

correlation fluctuated in this site by using all-year data from positive to negative low correlation 

values through increasing the number of lags. Whereas for JASO months data, the correlation 

was negative at lag1 and lag4, and positive in the rest of lags with high positive correlation value 

in lag3 (Fig. 19). 

The second location in Central African Republic country exhibited similar results to the first 

location in Niger with correlation results improved with using only the JASO month’s data 

(0.16) than using all-year data (0.09) at lag0. At lag1, the correlation was positive by using all 

year data and negative by using JASO month’s data. The rest of lags were fluctuated from low 

positive to low negative correlation values in the both of data (Fig. 20).  

The last location in Mauritania displayed a negative correlation relationship in both timeframe 

data at lag0, and a positive correlation at lag1 with a high correlation value by using JASO 

month’s data. At lag2, the correlation was negative by using JASO data and positive by using all-

year data. The cross-correlation was fluctuated from a negative value at lag3 to positive values at 

lag4 and lag5 by using JASO data. Whereas the cross-correlation values were negative at lag3 

and lag4 and turned to a positive value at lag5 by using all the year data (Fig. 21). 
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Figure 19: Scatterplots for detrended and deseasonalized NDVI and modeled SM by using all-

year data (left) and JASO data (right) at location1 in Niger at different time lags during the 

study period from 1982-2008, with the cross-correlation values in blue. 

 

Figure 12: Scatterplots for detrended and deseasonalized NDVI and modeled SM by using all-

year data (left) and JASO data (right) at location2 in Central African Republic at different time 

lags during the study period from 1982-2008, with the cross-correlation values in blue. 
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Figure 13: Scatterplots for detrended and deseasonalized NDVI and modeled SM by using all-

year data (left) and JASO data (right) at location3 in Mauritania at different time lags during the 

study period from 1982-2008, with the cross-correlation values in blue. 

4.5.Optimal correlation in relative to land cover and soil texture 

The global land cover (GLC) map and soil texture map for Sahel region were used to evaluate 

the effect of land cover type and soil texture on the strength and direction of the correlation 

relationship between NDVI and modeled SM. Land cover and soil type were produced in 

correspondence to significant optimal correlation coefficients at each different lag in the study 

area. Significant areas in percentage for land cover classes and soil types were generated for both 

all the year data and JASO data.  

According to Table.7 with including all year-data, the largest significant land cover type at lag0 

in our study area was croplands followed by grassland “savanna” and shrublands, the largest 

significant land cover type occurred in lag1 was croplands, bare ground and Grasslands, whereas 

the dominant significant lands cover type at lag2 was bare ground class. The other three lags 

showed a low significant coverage in the remaining land cove classes. For JASO months, the 

major statistically significant land cover type occurred at lag0 is croplands and grasslands, while 

at lag1 the dominant land cover type is bare ground followed by grassland and cropland, lag2 

and lag 3 showing large significant areas in bare ground and grassland classes (Table.8). 

For all the year data, the largest significant soil type at lag0 is Entisols (minimal soil 

development with no diagnostic horizons) soil texture followed by Alfisols (moderately 

weathered and rich in iron and aluminum) and Vertisols (rich in expansive clay) soil textures. 

Major statistically significant soil type coverage at lag1 is Entisols, Alfisols and Aridisols 
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(formed in arid and semi-arid areas and have a low content of organic matter). The other lags 

showed soil texture with area percentage less than 1% (Table.9). For JASO months, the major 

significant soil type at lag0 is Entisols, followed by Alfisols and Vertisols. The main statistically 

significant soil type at lag1 is Entisols, followed by Aridisols and Alfisols. Whereas at lag2, the 

dominant soil texture is Entisols. Lag3 showed a significant soil texture with percentage area 

coverage less than 1 % in all soil textures (Table.10).    

Table 7: Describes the major significant land cover classes at 95% significant for different time 

lags by using all the year data during the study period from 1982 to 2008.  

Lags 

 (Area % from the total significance area in Sahel) – all year data 

Evergreen 

Forest 

Mixed 

Forest 

Deciduous 

Forest Croplands 

Bare 

Ground Shrublands 

Grassland 

"Savanna" 

Lag0 
0.20  0.25 1.77 6.75 0.51 2.24 4.92 

Lag1 
0.18 0.43 1.18 4.36 4.32 1.38 4.08 

Lag2 
0.01 0.03 0.02 0.17 2.22 0.14 0.12 

Lag3 
0.06 0.14 0.19 0.56 0.73 0.15 0.45 

Lag4 
0.05 0.08 0.23 0.22 0.63 0.15 0.16 

Lag5 
0.12 0.10 0.20 0.57 0.73 0.27 0.30 

 

Table 8: Describes the major significant land cover classes at 95% significant for different time 

lags by using JASO data during the study period from 1982 to 2008. 

Lags 

(Area % from the total significance area in Sahel)– JASO data 

Evergreen 

Forest 

Mixed 

Forest 

Deciduous 

Forest 
Croplands 

Bare 

Ground 
Shrublands 

Grassland 

"Savanna" 

Lag0 0.06 0.04 0.34 6.02 0.91 0.64 4.50 

Lag1 0.07 0.11 0.61 1.54 4.58 0.81 1.58 

Lag2 0.07 0.14 0.26 0.56 2.31 0.43 0.28 

Lag3 0.06 0.10 0.21 0.34 1.00 0.23 1.06 
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Table 9: Describes the major significant soil types at 95% significant for different time lags by 

using all the year data during the study period from 1982 to 2008. 

Lags 
(Area % from the total significance area in Sahel)- all year data 

Bedrock Oxisols Vertisols Aridisols Ultisols Alfisols Inceptisols Entisols 

Lag0 0.71 0.54 1.66 1.23 1.76 4.28 1.21 5.27 

Lag1 1.39 0.74 0.80 1.93 1.17 2.81 1.24 5.90 

Lag2 1.06 0.02 0.17 0.21 0.04 0.05 0.02 1.16 

Lag3 0.28 0.26 0.13 0.10 0.09 0.28 0.05 1.10 

Lag4 0.18 0.19 0.04 0.13 0.09 0.26 0.05 0.60 

Lag5 0.22 0.31 0.21 0.09 0.19 0.20 0.09 0.96 

 

Table 10: Describes the major significant soil types at 95% significant for different time lags by 

using JASO data during the study period from 1982 to 2008. 

Lags 
(Area % from the total significance area in Sahel)– JASO data 

Bedrock Oxisols Vertisols Aridisols Ultisols Alfisols Inceptisols Entisols 

Lag0 1.17 0.09 1.65 0.90 0.55 2.76 1.10 4.33 

Lag1 1.20 0.38 0.54 1.21 0.37 1.06 0.28 4.30 

Lag2 0.67 0.25 0.16 0.16 0.20 0.40 0.18 2.05 

Lag3 0.97 0.18 0.12 0.17 0.12 0.37 0.08 0.99 

4.6.Logistic regression based on all-year and JASO data 

Logistic model parameters such as sensitivity, specificity, odds ratio (OR) and relative operating 

characteristics (ROC) were calculated to recognize time lags with the best logistic model and 

defines the importance of land cover and soil texture on the relationship between soil moisture 

and vegetation growth at each different lag. Lag with the best logistic model confirms that the 

degree of association of land cover and soil type with optimal correlation coefficient is high at 

this lag. Logistic regression was analyzed for all year data and JASO data. 

The sensitivity of logistic model in all year data is decreasing with increasing the number of lags 

(Table 11). OR values showed the highest value in lag2 followed by lag3, lag 4 and lag0, 

whereas the best fit in all lags according to ROC values occurred in lag2. The best suitable 

logistic model that describes the association between dependent variable (optimal correlation) 

and independent variables (soil type and land cover) in all year data was found at lag2 and lag0. 

For the JASO months, the sensitivity was higher in lag1 with high OR value and a good fitting 

(ROC) between dependent and independent variables, while the other lags showed a low 

sensitivity with approximately similar ROC values (Table 12). The best suitable logistic model 
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that describing the association between dependent and independent variable in JASO months 

data was found at lag1. 

Table 11: Logistic regression models from the regression relationship between a binary 

dependent variable (optimal lag correlation) and independent variable (soil texture and land 

cover) for all the year data across the study area from 1982-2008. 

Lags Sensitivity Specificity Odds ratio (OR)  ROC 

lag0 24 % 89 % 2.51 0.65 

lag1 12 % 85 % 0.75 0.56 

lag2 13 % 99 % 9.91 0.82 

lag3 5 % 98 % 3.39 0.62 

lag4 4 % 98 % 2.36 0.59 

lag5 2 % 98 % 0.83 0.56 

 

Table 12: Logistic regression model results from the regression relationship between a binary 

dependent variable (optimal lag correlation) and independent variable (soil texture and land 

cover) for JASO months data across the study area from 1982-2008. 

lags Sensitivity Specificity Odds ratio (OR)  ROC 

lag0 2 % 89 % 0.15 0.64 

lag1 18 % 93 % 3.14 0.66 

lag2 2 % 97 % 0.54 0.69 

lag3 5 % 98 % 2.51 0.67 

4.7. Modelled SM data versus in situ SM measurements. 

The relationships between modelled SM and in situ measurements of SM with GIMMS NDVI 

were calculated in different four sites (Table 4). The modelled SM at the first site in Mali (ML-

AgG) showed a high correlation with NDVI than in situ SM measurements (15 cm depth) with 

the highest significant value at lag1; however the correlation relationship at lag0 was 

approximately similar for both modelled SM and in situ SM measurements (Fig. 22).  

 

Figure 14: NDVI-soil moisture (modeled and measured) correlation coefficient vs. time lag of 

raw NDVI (six lags) in ML-AgG (Mali) study site, with the statistical significance at 95 % 

(dashed line). 
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Modelled SM showed a positive correlation until lag3, while the positive correlation in measured 

SM was only at lag0 and lag1and the both of them displayed a negative correlation at the last 

three lags with a higher negative values for measured SM at lag3 and lag4 (Fig. 22). 

The highest correlation at the second site in Mali (ML-Kem) occurred at lag0 between measured 

SM (15 cm depth) and NDVI, while the correlation between Modelled SM and NDVI was 

significantly higher at lag1. The correlation relationship was positive at lag2 with modelled SM 

and negative with measured SM. Measured SM showed a significant negative relationship with 

NDVI at lag3 and lag4 and both of SM data (measured and modelled) were giving a negative 

correlation relationship from lag3 to lag6 (Fig. 23). 

 

Figure 15: NDVI-soil moisture (modeled and measured) correlation coefficient vs. time lag of 

raw NDVI (six lags) in ML-Kem (Mali) study site, with the statistical significance at 95 % 

(dashed line). 

 

The third site in Niger (NE-Waf) exhibited a strong significant correlation relationship between 

modelled SM and NDVI at lag0 and lag1 in comparison with measured SM at 15 cm, 30 cm and 

150cm depth. Correlation of measured SM at 15cm depth with NDVI in lag1 was near from 

zero; while at 30 cm depth the correlation was significant and higher than at 150 cm depth. 

Modelled SM and SM at 30 cm depth preserved the positive correlation at lag2, while the 

measured SM at 15 cm and 150 cm exhibited a negative correlation. The two data (modelled SM 

and measured SM at 15 cm, 30 cm and 150 cm) displayed a negative correlation relationship 

from lag3 to lag6 with more significant negative correlation at lag3 and lag4 by using the 

measured SM data (Fig. 24). 
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Figure 16: NDVI-soil moisture (modeled and measured) correlation coefficient vs. time lag of 

raw NDVI (six lags) in NE-Waf (Niger) study site, with the statistical significance at 95 % 

(dashed line). 

The fourth site in Sudan (SD-Dem) showed high significant correlation between NDVI, 

modelled SM and measured SM at 150cm depth. Measured SM at 15 cm and 30 cm depths in 

lag1 showed a negative correlation, whereas measured SM (150 cm depth) and modelled SM 

displayed a positive correlation. In lag 2, modelled SM preserved the positive correlation and all 

of measured SM showed a negative correlation with NDVI. The last lags displayed a negative 

correlation between NDVI and SM (modelled and measured) with more negative correlation 

with the measured SM especially at 150cm depth (Fig. 25). 

 

 

Figure 17: NDVI-soil moisture (modeled and measured) correlation coefficient vs. time lag of 

raw NDVI (six lags) in SD-Dem (Sudan) study site, with the statistical significance at 95 % 

(dashed line). 
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5. Discussion 

5.1. NDVI and SM data after de-trending and de-seasonality 

According to (Fig.9, Fig.10 and Fig.11), NDVI and SM datasets were de-trended and de-

seasonalized effectively and the output data from this process were not showing any gradual 

changes in the mean value (Fig.12), and the seasonal effects has been eliminated. The Durbin 

Watson statistical map created after de-trending and de-seasonality process showed that the 

presence of first order correlations between NDVI and SM data were reduced and even 

eliminated in major areas in the study area. The autocorrelation function (ACF) and partial 

autocorrelation function (PACF) assured that differencing method removed the trend and helped 

in minimizing the serial correlation more efficiently than the curve fitting method used in 

TIMESAT software (Fig.13). 

5.2.Trends in NDVI and SM data 

Vegetation greenness (NDVI) during the study period (1982 to 2008) has significantly increased 

in several locations across the study area as illustrated in Fig. 14, and is consistent with earlier 

findings (Eklundh and Olsson, 2003; Anyamba and Tucker, 2005; Herrmann et al., 2005; Huber 

et al., 2011). NDVI trends mapped in this study is similar in spatial variability to those reported 

by Huber et al. (2011) from 1982-2007 as both studies used the “Theil-Sen method” for 

estimating the NDVI changes. However, NDVI trends in this study showed a stronger trend in 

the southern part of Sahel region in comparison with Huber et al. (2011) study. Similar results 

are also reported by Anyamba and Tucker, 2005 for the Sahel from 1981-2003. However, 

comparing the trend analysis with other studies is difficult because of differences in analysis 

techniques, differences in significant levels (5% in our analysis), length of study period and data 

pre-processing. For instance all the cited articles run the analysis on the raw NDVI, whereas in 

this study analysis the seasonality and also the autocorrelations in errors that can affect the trend 

relation were removed before calculating the trends in NDVI.  

NDVI trends from 1982-2008 showed a persistent increase in central of Chad, Senegal, south of 

Mali and south of Sudan. This significance persistence trends could be related to the vegetation 

cover trees (Acacia trees) characterized by deep roots and being able to reach the water table 

without much depending on the fluctuation of rainfall and soil moisture (Do et al., 2008).  

Few pixels are exhibiting a positive soil moisture trend at the 95% level across the study area 

from 1982-2008. The positive significant trends found in central Sudan, and the center of Mali 

and east of Mauritania as illustrated in Fig.14. The SM trends obtained in this study corresponds 

best with the results reported by Huber et al., 2011 except that the areas of significance were 

smaller in our study with presence of significant trends in central of Mali. The high positive SM 

trend in a few areas in central Sudan could be related to the presence of high volcanic mountains 

that complicate the modeled SM measurements and give overestimation for the real soil moisture 

data, a complex topography like that need more in situ measurements than that used in the 

modeled SM data to accurately estimate the diverse microclimatic process on a small scale. The 
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high significant SM values in other parts of Sudan could be related to increasing water 

availability from the Nile River (IPCC, 2007), whereas in Mali the moisture support could be 

provided from the Niger River or Lake Faguibine that helped in keeping the moisture trend 

persisted through the study period (Herrmann et al., 2005). Other possibility for increasing soil 

moisture is related to advanced techniques used by farmers to improve water conversation (such 

as contour bunding) in response to long term droughts (Reij et al., 2005). 

Comparing the significant trends of NDVI to the significant trends of SM in the study area (Fig. 

14), indicates that maybe other factors than soil moisture have contributed to the vegetation 

greenness changes from 1982-2008 in the study area. For instance, central Chad showed a non-

significant increasing in SM trend throughout the study period from 1982-2008, whereas the 

same area showed a significant increase in the vegetation greenness in the same study period. 

Low or non-significant of soil moisture trends in many parts of the Sahel region could be related 

to the great column depth (1.6 m) that used for modeling soil moisture data. 

5.3. Trends in NDVI residuals 

For all the year data, NDVI residual trends did not reveal statistically significant trends in many 

parts of the study area especially in the northern part of Sahel region (vegetation greenness 

trends corresponds with what is expected from soil moisture trend), whereas the southern part of 

the study area showed a positive significant trend (soil moisture is not enough for explaining the 

variation in vegetation greenness) especially in south of Sudan, south of Chad and many parts in 

Mauritania, Niger and Senegal (Fig. 15). The positive trend in southern parts of Sahel region 

could be related to other factors such as availability of nutrients (Ridder et al., 1982) or amount 

of solar radiation (Nicholson et al., 1990) as the moisture is not any longer the main driver of 

vegetation growth and maybe related to human induced factors through decisions on farming 

strategies and land use (Herrmann et al., 2005). Existence of positive trends in several locations 

in the northern part of Sahel could be explained by the direct influence of instantaneous rainfall 

as the vegetation start growing when the water starts travelling through the soil.    

The relationship between NDVI and rainfall generally levels off beyond 200 mm monthly
-1

 

rainfall (1000 mm yr
-1

) as the water is no longer the limiting factor (Nicholson et al., 1990) and 

this also can be considered for NDVI-soil moisture relationship.  The spatial variability of NDVI 

residual trend analysis was similar to what was reported by Herrmann et al. (2005) with 

differences in the degree of significance in many parts across the study area. The study done by 

Herrmann et al. (2005) calculated the overall trend in NDVI residuals from 1982-2003 based on 

a regression analysis of NDVI on 3-monthly cumulative rainfall.  

For JASO data, the significant positive NDVI residual trends occurred in several parts in Sahel 

region with high significant values in south of Sudan, south of Chad, south of Mali and Senegal 

(Fig.15), which indicates that these regions do not depend on moisture availability especially 

during the rainy seasons when the availability of water is not a limiting factor. The degree of 

high positive NDVI residual values was much higher with JASO months than using all-year data, 
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as the moisture factor in the growing season is less important for vegetation growth, and 

including the dry season in our calculation led to low positive NDVI residual values as the 

moisture is considered one of the limiting factors controlling the vegetation growth. 

Compared to Huber et al. (2011) who calculated the residual NDVI for 1982-2007 based on a 

regression analysis of JASO NDVI and a 3-months sums rainfall, the spatial variability of 

significant positive trend was higher across the area in the present study. However, central Chad 

showed a high significant positive trend in this analysis, and exposed a low positive significant 

and non-significant trend in Huber et al. (2011). The differences between the two results might 

be due to the differences in the independent variables as in this study used soil moisture and the 

Huber et al. (2011) study used 3-month rainfall sums. 

5.4. NDVI and SM correlation relationship 

Significant correlations calculated from all-year data occupies a larger area than significant 

correlations calculated only by JASO month’s data. However, the significant correlation areas 

are more present in the northern part of Sahel region by using JASO data at lag0 (no time lag 

difference). Differences in significant correlations between all-year data and JASO month’s data 

could relate to the effect of movements of the ITCZ during the rainy season causing more water 

available during the growing season and a limited amount of water during the dry season 

(Hiernaux et al. 2009). 

Soil moisture content in the upper 20-30 cm is more representative of soil moisture available for 

shorter plant roots in the northern and central parts of the Sahel, while water available at greater 

depths will not be accessed by plants (Fensholt et al., 2010). This likely explains low values of 

correlation coefficient between NDVI and SM or even absence of significant relationship in 

many areas across the study area, because the large column depth (1.6m) used in modeled soil 

moisture data does not reflect the characteristics of vegetation rooting depths in northern and 

central of Sahel region. 

However, the correlation relationship between modeled SM and NDVI did not improved too 

much in the southern part of the study area, though the large column depth used in SM data 

which declaring that moisture is not anymore a limiting factor for vegetation growth in southern 

areas, as other factors such as solar radiation and availability of nutrients will be more important. 

Our results confirm the results found by Huber et al. (2011), that there is a shift in the variable 

that constrain vegetation growth in the Sahel region from moisture and rainfall in the northern 

and central of Sahel to the availability of plant nutrients (Ridder et al., 1982) or the effect of solar 

radiation especially in the humid areas in south of the study area (Nicholson, 1990). 

According to (Fig. 19, Fig. 20 and Fig. 21), the strength of the relationship between NDVI and 

SM improved by using JASO data rather than using all-year data at lag0, because introducing dry 

months into the correlation relationship between the two variables reduces it. The SM introduces 

a larger bias during the dry periods in particular in the northern part of Sahel because SM values 
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are very small and NDVI values oscillate independently of available soil moisture due to 

presence of vegetation cover that can tolerate or survive with a low amount of water availability 

which will introduce a bias in the correlation analysis when using all the year data (dry season 

included). 

The existence of negative correlation in several parts in northern part of the study area might be 

related to the deep roots of trees (40m depth) that can reach water table during the dry season 

(Dupuy and Dreyfus, 1992). NDVI MVC products were selected in this study for its ability to 

reduce the effect of cloud cover. However, existence of negative correlation relationship between 

NDVI and SM in the southern part of the Sahel region might be related to the effect of cloud 

cover that influences the observed NDVI values as the higher rainfall is associated with more 

clouds and thereby reduced NDVI values recorded by satellite sensors.   

 

The vegetation growth lags responses to rainfall in the Sahel region, varying from 10-20 days 

(Justice et al., 1991) to 2-3 months (Eklundh, 1997; Nicholson et al., 1990), whereas in this study 

the more effective relationship between the NDVI and SM in the Sahel are mainly restricted to 

one and two months’ time lags and corresponds to the study based on field data, reported by 

Jamali et al. (2011) for different six sites in Africa. The areas of significant correlation are 

decreasing with increasing lags; the significant area at lag0 is 40% and 44% for all-year data and 

JASO data respectively, whereas at lag1 is 39% and 32% for both all-year data and JASO data 

respectively (Table 5). Lag0 and lag1 are considered the dominant optimal lags in the study area 

that best reflects the NDVI-SM relationship.   

Low correlation coefficient values between NDVI and SM data indicate that using SM as the 

only explanatory variable for vegetation greenness in our study area is not sufficient and maybe 

other factors have their influences such as solar radiation, availability of nutrients, human 

impacts and actual plant available soil moisture. The estimation of trends and correlation 

relationships between NDVI and SM data is relevant for understanding the relationship between 

water availability and vegetation growth and can be used to help understand how these 

ecosystems might respond to projected climate change. 

 Relationship of land cover and soil texture with correlation 

The optimal correlation coefficient was evaluated against the land cover types to determine the 

effect of land cover on NDVI-SM relationship. The results indicated that croplands and 

Grassland “savanna” are the most dominant significant land cover classes at lag0 and lag1 (0-1 

months). The reasons for that are the majority of croplands and grasslands roots located at 

shallow depths and might be the vegetation starts growing when the water infiltrates from 

surface soil layer to the root zone (20-30 cm depth). Higher correlation for bare ground class at 

lag1 and lag2 indicated that the sparse tree covers and woody shrubs existing in the northern part 

of the study area acquired more time (1-2 months) to access accumulated moisture water in the 

soil (Table 6 and Table 7). The effect of soil moisture on vegetation growth in evergreen forest 
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and mixed forest is not high in all of lags as the soil moisture availability is not anymore a 

constraining factor for vegetation increases in these classes. 

Entisols and Alfisols soil classes are the highest significant classes at lag0 and lag1 in our study 

area, because both of these two classes allow quick infiltration of water to the root zone that 

helps the plants access quite quickly. The southern part of Sahel region is characterized by dense 

vegetation cover reaches to approximately 30% (Hanan et al. 1991) and with less sandy soil that 

slowing the time travelling of water from the surface zone to the root zone area. However, the 

vegetation cover in the southern part of Sahel region can reach the water table below surface by 

their roots making affecting of soil texture as a constraining factor are limited (Dupuy and 

Dreyfus, 1992). 

5.5. Logistic regression 

Land cover classes and soil textures were used as explanatory variables for the optimal 

correlation lags in our study area. For all year data, land cover and soil texture showed high 

influence on the relationship between soil moisture and vegetation growth at lag2. When using 

JASO data, the high influence of land cover and soil texture occurs at lag1. Bare ground and 

Grasslands are the two mainly land cover classes at lag2 (all year data) and lag1 (JASO data), 

whereas Entisols are the main soil type in the both lags. Importance of land cover and soil type 

on the NDVI-SM relationship at two months’ time lags by using all year data and one month 

time lag by using JASO data might be related to time needed by water to infiltrate the soil or 

even generate enough soil moisture content to be accessed by plant roots. Our model cannot 

detect which factor (soil type or land cover) is most important on the relationship between NDVI 

and soil moisture as both of them used as explanatory variables inputs in the logistic model. 

However, our model gave an indication on the overall contribution effects of land cover and soil 

texture on the optimal correlation lags. For all year data, Lag2 showed a significant positive 

correlation between soil moisture and vegetation growth in east of Mauritania and central of 

Chad as the tree covers were mainly distributed on the alluvial fan deposits close to the high 

mountainous areas. Lag1 (by using JASO data) showed a significant positive correlation around 

the mountainous areas in western-central of Sudan, central of Chad and east of Mauritania. 

5.6. Modelled SM versus measured SM 

Modelled SM and measured SM at 15 cm depth displayed a similar correlation relationship with 

NDVI at lag0 in ML-AgG and ML-Kem sites indicating that both modelled and measured SM 

data are comparable with each other. However, the relationship between measured SM and 

NDVI decreased at lag 1 and even switched to negative correlation relationship in the greater 

lags indicating that the modelled SM is more correlated with vegetation growth (NDVI) more 

than measured SM at 15 cm depth even the modelled SM data was modelled for a column depth 

reaches to 1.6 m.   

The two other selected sites in NE-Waf (Niger) and SD-Dem (Sudan) revealed that the modeled 

SM still shows high correlation more than measured SM at 15, 30, 150cm depths. The measured 
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SM showed a significant positive correlation at lag0 at both sites but it was still lower than 

correlation values obtained from modeled SM. The good correlation between modeled SM and 

NDVI could be related to presence of trend and seasonality in both of data that increase the 

autocorrelation and makes an overestimation for the correlation relationship between them. The 

raw modeled SM and NDVI data used in this analysis (instead of detrended and deseasonalized 

data) are comparable with the measured SM datasets that were not pre-processed by any kind of 

analysis. 

5.7. Research answers 

Based on the research questions and hypotheses stated in chapter 1, the following are the 

research questions with their answers: 

I. How does the soil moisture and vegetation greenness vary in Sahel from 1982 to 2008? 

Vegetation greenness (NDVI) trend showed a significant increase at 5% significance level in 

many parts in central and south of Sahel region (in particular south-western Mali, central Chad, 

south of Sudan, east of Burkina Faso and north of Nigeria) during the study period from 1982-

2008. When, soil moisture trend showed a significant trend in small areas in Sahel region 

especially at east of Mauritania, central Mali, west of Chad, south of Somalia and south of 

Sudan. NDVI trend increasing in these regions could be related to a recovery in rainfall or by 

humans through applying good farming strategies or due to presence of vegetation cover trees 

have accessibility to reach water table without much depending on the fluctuations of rainfall or 

soil moisture. Insignificant soil moisture in many parts in Sahel region might be related to the 

great modelled soil moisture depth (1.6 m) used in SM data or owing to lack of more in-situ 

measurements than that used in modelled SM data to accurately estimate soil moisture in diverse 

and complex topography regions.           

Conclusion: There is a significant variation exists in trend of vegetation greenness (in many 

areas) and soil moisture (in small areas) in Sahel region during the study period. 

II. Is there a correlation between modeled soil moisture (SM) and vegetation growth 

(NDVI) during the study period from 1982 to 2008? 

For all-year data (dry season included), the significant correlation coefficients (r) at 5% 

significance level based on pixel by pixel inspection were varying between low and moderate 

values (0.1-0.5). However, it varies between (0.1-0.6) by using only the JASO data (growing 

season only). These low and moderate values indicating that soil moisture is not only the main 

driver for vegetation dynamics in Sahel and might be related to other factors such as nutrient 

availability, solar radiation and human impacts.  

Conclusion: There is a low and moderate significance correlation exists between soil moisture 

and vegetation growth during the study period from 1982-2008.  
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III. Does the relationship between soil moisture and vegetation growth vary with changing 

time lag across the study area? 

Significance correlation relationship between soil moisture and NDVI by using all-year data are 

showing highest values at lag0 (especially in Burkina Faso, south of Mali and north of Senegal), 

lag1 (particularly in south of Sudan, central of Niger and east of Mali) and lag2 (mainly in 

central of Mauritania and central of Chad). For JASO data, the significant correlation values at 

lag0 are highly present in the northern parts of Sahel region (largely in south of Sudan, south of 

Mali and north of Senegal), whereas at lag1 occurred in central of Sudan and central of Mali and 

significant values of lag2 occurred in north central Sudan, east of Mauritania. This results 

indicating that the relationship between NDVI and SM is highly variable in time and space and 

depends on the degree of association of these variables in the time domain.     

Conclusion: The significant relationship between NDVI and soil moisture is varying with 

changing the time lag. 

IV.  Does the lag of maximum correlation (optimal lag) vary across the Sahel? 

Optimal lags (lag with the highest significant correlation coefficient in comparison to other lags) 

by using all the year data are mainly confined to lag0 and lag1 that were occupying areas reaches 

to 40% and 39% respectively from the total significance areas. For JASO data, the significant 

percentage areas were reaching to 44% and 32% for lag0 and lag1, respectively. The results 

showed that the best relationship between vegetation growth and soil moisture occurred at the 

concurrent month (no months’ time lag) and one previous soil moisture month (one month time 

lag).  

Conclusion: Optimal lag correlation was dominant at lag0 (no time lag) and lag1 (one month 

time lag). 

V. Is the pattern from IV related to land cover types and soil textures? 

The optimal correlation coefficients were evaluated against land cover and soil texture data by 

using all year data and JASO data. The results showed that croplands, grasslands and shrublands 

are the largest significant land covers at lag0, whereas at lag1 croplands, bare ground and 

grasslands are the major significant land cover classes. The largest significant soil types at lag0 

and lag1 are Entisols and Alfisols in Sahel region.  

Conclusion: The correlation relationship between NDVI and SM is highly influenced by land 

cover type and soil texture especially at lag2, lag0 and lag1 respectively across the Sahel region. 

 



 

  46   
  

5.8. Uncertainties 

NDVI and SM time series data characterized by seasonal variations and trends tends to make the 

data distribution skewed which contradicts many statistical assumptions. After de-trending and 

de-seasonalization, NDVI data showed a normal distribution curve more than SM data. This 

problem should be investigated properly to be sure that our results is robust. Uncertainties in the 

modelled soil moisture data itself, especially in areas of complex topography, need more in-situ 

measurements more than used to accurately estimate the diverse microclimatic process on a 

small scale. The depth of the modeled SM data does not represent plant available soil moisture 

and other types of vegetation with short roots especially, in the northern part of Sahel region. 

The limited temporal (monthly) resolution of NDVI and SM data used in this analysis can also 

be another problem as the lag of best correlation between NDVI and SM cannot be precisely 

defined (it could be in the first ten days or in the last ten days during the month). According to 

Justice at al. (1993), the best correlation between rainfall and NDVI was consistent at 10-20 days 

for the Sahel region. Also, the limited spatial resolution (8*8 km) for both NDVI and SM data 

could be another factor for not accurately differentiate between different vegetation types and 

their responses to water availability. NDVI shows a limited sensitivity in the dense vegetation 

canopies (Field et al., 1995) and also effects of soil background in low vegetation cover areas can 

lead to inaccurately NDVI estimating values.   

5.9.Future work 

This study showed the importance of using the moisture as an indicator for vegetation growth, 

but for accurately estimating this relationship there is a need for modeling plant available soil 

moisture. So, future task would be to build a model that computes only the moisture accessed by 

plants and correlate this with NDVI. Other factors could also be included like farming strategies 

and land use change to strengthen the correlation relationship explanation and to have a good 

understanding on the human impacts through changes in grazing pressure, de- and afforestation 

and changes related to use fertilizers in cultivated areas.  

Using radar techniques in estimating of soil moisture is also considered one of the promising 

techniques that can be used for estimating the amount of available soil moisture. Comparing 

NDVI with other vegetation index such as Enhanced Vegetation Index (EVI) could also be 

interesting for determining the responses of vegetation greenness to moisture availability in areas 

where the NDVI has limited sensitivity. Limitations of AVHRR sensor with 8*8km spatial 

resolution to detect the vegetation and land managements at finer scales could be another aspect 

to tackle, and maybe using data with a higher spatial resolution than used in this study could add 

more information for understanding the low correlation relationship between NDVI and SM. 
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6. Conclusions 

This study has evaluated the correlation relationship between vegetation greenness (NDVI) and 

modeled soil moisture (SM) at different time lags in Sahel region from 1982-2008 depending on 

whether the dry season was included or not in the analyses, documented the changes that have 

occurred in NDVI and SM during the study period and investigated the influences of land cover 

and soil type on the correlation relationship. The most important results from this study can be 

concluded as follows: 

 Highly significant NDVI-SM correlation relationship were found at no time lag and one 

month time lag, the strength of association between NDVI and SM increased in the 

northern part of Sahel region by using only growing season (JASO months) and this 

relationship was vague in central and southern area of the Sahel region. 

 The significant correlation coefficients between NDVI and SM varied from 0.1 to 0.5 

when using all year data (dry season included) and varied from 0.1 to 0.6 when using the 

growing season (JASO months). The correlation relationship decreased by increasing the 

number of time lags with high correlation at lag0, lag1 and lag2.  

 Using NDVI as a proxy of vegetation response to moisture availability in the southern 

areas in Sahel region should be employed with caution as the soil reaches saturation or 

moisture water availability is not any longer a limiting factor for vegetation growth. 

 Soil moisture data produced at a great column depth (1.6 m) is not representing the actual 

root zone depth in the northern and central part of Sahel region (20-30cm). However, the 

SM product performed quite well in our analysis when it was compared with measured 

soil moisture at different depths. Sahelian trees in dry season can reach water table at 40 

m below the surface which makes the current soil moisture data inefficient in explaining 

the variation in vegetation growth (NDVI). Better to use soil moisture data describing the 

plant available soil moisture. 

 The NDVI-SM correlation relationship is influenced by the land cover type (especially 

croplands and grassland) and soil type (especially Entisols and Alfisols) in our study area 

during the study period from 1982 to 2008.   

 Low- moderate correlation coefficient values and presence of positive trends in the NDVI 

residuals from a regression analysis between NDVI and SM data indicated that there are 

other factors than SM affecting the vegetation growth in the study area such as 

instantaneous precipitation, plant nutrients, availability of solar radiation and human 

impacts. 

 Vegetation greenness (NDVI) has increased over the study period from 1982 to 2008 in 

many locations in Sahel region, whereas modeled SM exhibited a significant increasing 

in a few locations in the study area during the study period. 

 A good understanding of the relationship between vegetation greenness and soil moisture 

can help us to know how water affects plant growth, help in agricultural planning and 

food security to better understand the impact of climate change on these ecosystems. 
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Appendices 

Appendix A 

 

 

Table A1: Major Global Land Cover (GLC) classes used in the study. 
 

 

 

 

 

 

 

GLC classes Major classes 

Closed evergreen lowland forest 
Evergreen Forest 

Degraded evergreen lowland forest 

Submontane forest (900 -1500 m) 

Mixed Forest (forest+savana) 

Montane forest (>1500 m) 

Swamp forest 

Mangrove 

Mosaic Forest / Savanna 

Closed deciduous forest 
Deciduous Forest 

Deciduous woodland 

Deciduous shrubland with sparse trees 
Shrublands 

Open deciduous shrubland 

Closed grassland 

Grassland "Savanna" 

Open grassland with sparse shrubs 

Open grassland 

Sparse grassland 

Swamp bushland and grassland 

Mosaic Forest / Croplands 

Croplands 

Croplands (>50%) 

Croplands with open woody vegetation 

Irrigated croplands 

Tree crops 

Sandy desert and dunes 

Bare Ground 

Stony desert 

Bare rock 

Salt hardpans 

Cities 

Water bodies water bodies 
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Table A2: Major soil order classes used in this study from aggregation suborders soil types. 

 

 

Order Suborders 

Alfisols Aqualfs,  Cryalfs, Udalfs, Ustalfs, Xeralfs 

Andisols Aquands, Gelands, Cryands, Torrands, Ustands, Udands, 

Xerands, Vitrands 

Entisols Aquents, Arents, Fluvents, Orthents, Pasamments 

Aridisols Argids, Calcids, Cambids, Cryids, Durids, Gypsids, Salids  

Oxisols Aquox, Perox, Torrox, Ustox, Udox 

Vertisols Aquerts, Cryerts, Xererts, Torrerts, Usterts, Uderts 

Histosol Folists, Fibrists, Hemists, Saprists 

Mollisols Albolls, Aquolls, Cryolls, Gelolls, Rendolls, Udolls,Ustolls, 

Xerolls 

Gelisols Histels, Turbels, Orthels 

Inceptisols Anthrepts, Aquepts, Cryepts, Udepts, Ustepts, Xerepts 

Ultisols Aquults, Humutts, Udults, Ustults, Xerults 

Spodosols   "Podosols" 
/ 
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Appendix B 

 

Figure B1: Scatter plot of raw NDVI values versus lagged raw soil moisture values at location 1 

with the cross-correlation values in blue.  
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Figure B2: Scatter plot of raw NDVI values versus lagged raw soil moisture values at location 2 

with the cross-correlation values in blue.  
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Figure B3: Scatter plot of raw NDVI values versus lagged raw soil moisture values at location 3 

with the cross-correlation values in blue.  
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