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Abstract

Recent research indicates that several neurological diseases that affect motor
functions could be diagnosed using analysis of detailed arm and hand motion.
This analysis has earlier been carried out manually by looking for certain mo-
tion patterns in patients and animals performing a skilled reaching task. In this
thesis we investigate the possibility of performing these tests in a more auto-
mated fashion by implementing image analysis methods for capturing arm and
hand motion data from RGBD recordings. We have used the Microsoft Kinect
sensor to capture motion both on a precise level, describing movements around
individual joints of the hand, and on a coarser level, finding directions and po-
sitions of the lower and upper arm.

Our methods take advantage of both the RGB photos, detecting skin colour and
finding arm/hand pixels, and the depth images, constructing 3D point clouds
that we try to match to a simple geometrical model of the hand. Our approach
is to model each phalanx of the hand individually, draw hypotheses for each of
these around their pose from the previous frame and then optimize to find the
most likely hand configuration using a Belief Propagation based algorithm.

We present results from running our algorithms on a few test sequences. The
algorithm works well under favourable circumstances but has problems giving
the correct pose for example when fingers occlude each other. Possible additions
to the framework that might help to overcome these issues are also discussed.
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Chapter 1

Introduction

This is a master thesis that has been carried out at the Centre for Mathemati-
cal Sciences at Lund University. In this chapter we give some background and
examples of previous work to the problems and theory we have considered. We
also describe our aim of the thesis and give some background and motivation
for the proposed medical application.

In Chapter 2 we have explained our methods and the theory behind them in
detail. The methods are explained in the chronological order of the algorithm
and the full structure of the algorithm can be found at the very end of Chapter 2.

In Chapter 3 we give account of our evaluation methods and present some
results.

Finally, Chapter 4 contains a discussion on improvements and some conclu-
sions that can be drawn from the results.

1.1 Background
Hand pose estimation using camera sensors is an inherently difficult task, due
to several different factors. The hand has more than 20 degrees of freedom [1]
and a parametrization typically has non-trivial dependencies between the pa-
rameters. The intricate tree-like structure of palm and fingers makes projections
contain self-occlusions which make it hard to reconstruct a three-dimensional
configuration. The hand model having so many degrees of freedom also makes
it exceedingly computationally expensive to use a brute-force technique, e.g. to
sample guesses from each parameter space and combine them to see how well
the values fit the data. To overcome these problems, many different techniques
have been proposed. The approaches can be divided into two main categories:
single-frame estimation and model-based tracking [1]. Of those two the latter
often yields better results since it uses temporal restrictions on hand and arm
motions.

For many years, hardware for capturing Depth of Field images was expensive
equipment. It is only recently that it has become affordable, foremost in the

1



2 Chapter 1. Introduction

form of the Microsoft Kinect sensor. Due to the low cost, the sensor has some
limitations, among others limited resolution and speed. Despite, or because of,
this it has become a common tool among academia to tackle computer vision
problems. Several papers has been written to specifically target the hand pose
estimation problem since the arrival of the Kinect [2, 3]. The ability to easily
and relatively precisely reconstruct 3D surfaces from the Depth of Field im-
ages makes the Kinect sensor better suited to tackle the hand pose estimation
problem than an ordinary camera.

1.2 Medical Motivation
This thesis was suggested by professor Per Petersson from the BioMedical Cen-
tre at Lund University who wanted to adapt the work by Palmér et al., on
motor control in rats [4], to humans. The skilled reaching task for rats was de-
veloped by Whishaw and colleagues some 20 years ago and has since then been
thoroughly characterized by this group [5]. The task is for the subject to reach
for a small piece of food, grasp it with its paw and eat it.

On a gross level, a great resemblance between human and rodent movements in
this task has been established [6] and specific motor deficits have been shown
to be present in rat models of Parkinson’s disease and in other models of
neurological conditions involving changes in motor control such as Attention
Deficit/Hyperactivity Disorder (ADHD) [7]. Interestingly, initial studies indi-
cate that clinical tests involving this motor task could in fact be used to detect
parkinsonian symptoms in patients even before they can be identified using
standard neurological evaluation methods [8].

In [6], the use of rodent skilled reaching is evaluated as a translational model
for investigating a number of neurological diseases. More or less manual frame
by frame analysis of the skilled reaching test is performed, comparing healthy
rats and humans to rats and humans suffering from diseases. The above men-
tioned article has made these comparisons for Parkinson’s disease, Huntington’s
disease and to stroke patients. The results show that the human movement and
its associated deficits can in fact be well understood by studying experimental
lesions to the same systems in rodents.

To analyze detailed reaching kinematics in rats with a higher spatial and tem-
poral resolution than previous techniques have allowed for, Palmér et al. have
recently developed an automated motion tracking system that can track detailed
movements in individual joints in rats during skilled reaching [4]. This system
is currently being used to investigate how different brain structures are involved
in the gradual acquisition of this motor skill in rats. By adapting the system
to work with human subjects, it would be possible to validate that the learning
currently being investigated in rats indeed corresponds to human motor adap-
tations. It would also be possible to extend the studies of motor dysfunction in
rats to patients suffering from various motor disorders. Automated systems for
this would provide more precise information about the movements and would
make it possible to perform the tests on larger groups of subjects.
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1.3 Aim of the Thesis
Our aim with this thesis is to develop an automated system for collecting de-
tailed hand motion data from RGBD video recordings of human hand motion.
We intend to develop an image analysis system to track motion on a fine scale
for the hand, where we track precise motion around individual joints, but also
upper-/lower arm motion on a larger scale. We will use the Microsoft Kinect
Sensor to capture the data. Our aim is to make the system work in a fully au-
tomated fashion with minimal requirements on the test environment and with
no, or as few as possible, physical markers on the test subjects. Our goal is
to implement a system that could be used to track arm and hand motion of
human subjects performing a skilled reaching task, which for example means
that we want to be able to track both free hand motion and hand motion when
interacting with simple objects.



Chapter 2

Methods

2.1 Kinect Software
The Microsoft Kinect was originally developed for use with the Xbox gaming
platform. It uses an infrared laser that projects a structured pattern of dots
onto the scene in front of the Kinect. An algorithm then recognizes individual
parts of the deformed pattern and can compute a depth for each portion. The
extracted depths are then interpolated in order to form a depth image. Patterns
of different resolution are used for different regions of the scene depending on
how far away the device estimates that the regions are. This makes it possible to
capture depth at ranges between 0.8-3.5 m, although with greater uncertainty
when further away. At the normal working distance of our algorithm, about
1.2-2 m, the depth resolution is about 1 mm [9]. The laser and the infrared
sensor in the device sit some distance apart, something that some areas where
there is pattern may be occluded from the sensor. This results in areas where
we have no information, typically appearing at one side of objects standing out
in the scene, see for example around the contours of the arm and hand in Figure
2.1.

Before long it became clear that the Kinect had interesting applications within
other fields than gaming. Many people hacked it to get to the built-in depth
camera. For this reason, independent drivers were developed to be able to
communicate with the Kinect using an ordinary personal computer. Microsoft
later released their own software for use with the Kinect, the Kinect SDK.
In this thesis we have used other packages, namely the OpenNI/NITE software
interface for accessing the functions of the Kinect and the SensorKinect driver for
communicating with the device. The OpenNI interface has several components
that we will reference throughout the thesis. First of all, we use the package to
record our RGBD video at 30 FPS. These videos are really two; one ordinary
video containing colour values (RGB) and another for the depth values (D) of
the corresponding pixels. Both videos are VGA resolution (640 ⇥ 480 pixels)
but the depth part does not contain any information near the edges. The depth
component is what really makes this thesis possible. With ordinary sensors you
need multiple cameras set up to capture the scene from different angles to do
a 3D reconstruction. In this thesis, we will rely on a single Kinect sensor for
reconstructing 3D points of a hand. The OpenNI also handles the conversion

4



2.1. Kinect Software 5

Figure 2.1: The depth component and the RGB component of a frame in a
Kinect video capture. This frame is from one of the test sequences we present
results for in Chapter 3. The pixels in the depth image where there is no
information are blue.

from pixels in the depth image to 3D points in a coordinate system defined
by the software. We will reference this conversion wherever it is used in the
algorithms. To make our task a little less monumental, we have also decided
to use the hand-tracking built in to the software package. This seems to be a
very simple algorithm that tries to identify the middle point of the palm, often
inexactly. We will refer to this point as the Kinect hand point. The tracking
output is used to identify which pixels in the images correspond to the hand. All
of the functionality that we use in the packages have to be accessed through the
common programming language c++. To be able to get this data into MATLAB,
we have written wrapper functions for much of the functionality that we need.
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2.2 Arm Detection

2.2.1 Skin Detection
In order to classify which pixels in each image that belong to the arm/hand we
perform skin colour detection. First of all, we take care of the problem that the
colour of the table used in many of our test setups is very skin-like. To get rid
of the points of the table we therefore use RANSAC (see Section 2.3.2) to fit
a plane to the 3D points captured by the Kinect and find the inliers. We then
delete all of the corresponding pixels in the depth image as well as in the colour
image and continue with the skin detection.

Figure 2.2: Skin- and arm detection

Our approach is to classify each pixel as being skin coloured or not based on how
well the colour in each pixel fits to a parametric model of skin colour, with pa-
rameters estimated from training data. In order to get a good model for the skin
colour, invariant to different lightning conditions, we transform the RGB values
into a chrominance-luminance separated colour space and use only the chromi-
nance components for our model. We have experimented with two such colour
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spaces, namely HSV (or HSB) and Y C

b

C

r

. A number of surveys on modelling
skin colour using different colour spaces and their performance in skin detection
algorithms have been made [10, 11]. The results vary a bit but the two mentioned
above seem to be among the best performing ones that can be achieved by a
simple linear transformation from RGB. They both separate chrominance and
luminance effectively and when only considering the chrominance components,
they also share the property of invariance to surface orientation relative to the
light source [11, 12]. We compared these colour spaces using images captured
with the Kinect sensor and came to the conclusion that Y C

b

C

r

performed best.
Y C

b

C

r

is represented by luma Y constructed as a weighted sum of the RGB
values, and two colour difference values C

b

and C

r

, formed by subtracting luma
from the red and blue component of the RGB,

Y = 0.299R+ 0.587G+ 0.114B

C

b

= B � Y

C

r

= R� Y

.

Discarding the luminance component of this colour space we then model the skin
colour distribution as an elliptical Gaussian joint probability density function
(pdf), defined as

p(c|skin) = 1

2⇡ det (⌃)

1/2

· exp
✓
�1

2

(c� µ)T⌃�1

(c� µ)

◆
, (2.1)

where c is the 2D colour vector and µ and ⌃ are the standard estimates of the
mean and covariance matrix of the skin colour distribution. These estimates are
built from training data consisting of skin coloured patches. The training data
is built beforehand by extracting small patches around the Kinect hand point in
each frame of a sequence. These model parameters are then used for all frames
of a sequence (one at the time) to model skin colour and detect arm pixels.

We calculate the skin density (Figure 2.2A) for every pixel in a certain frame
according to (2.1) and then threshold the result to get an initial skin mask
(Figure 2.2B). This mask will contain ones for pixels that have been detected
as being skin coloured and zeros otherwise. To get rid of unwanted skin colour
regions in the mask (such as face and the "wrong" arm) we divide the mask into
connected regions (Figure 2.2C) and consider the connected region containing
the Kinect hand point to be the arm (Figure 2.2D).

2.2.2 Depth Segmentation
In the example shown in Figure 2.3 the skin detection algorithm managed to get
rid of other skin coloured body parts than the arm of interest. This is however
only true if these other body parts are not connected to the arm in the image.
It might very well be the case that the arm or hand is in front of e.g. the face
and that will make the face and arm connected in the skin colour mask. To take
care of this we perform a depth segmentation step built on the requirement that
the depth values in two neighbouring patches of the arm should not differ more
than some threshold.
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Figure 2.3: First and second iteration of depth segmentation.

We start by selecting the first centre point c0 to be the Kinect hand point.
Then, for each iteration, a circular patch P is selected from the depth image
D around the current centre point cn of radius r. We threshold the patch to
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create a mask

Mp =

8
<

:
1, if |Dp �Dcn | < ⌧

0, otherwise
, p 2 P.

The threshold ⌧ is set to be slightly larger than the radius of the patch and
the masks are for every iteration added to a total arm mask. The next centre
point should now be selected as a point on the circular boundary of M, i.e.
cn+1 = cn + rv̂

n

. To determine v̂

n

, we examine the connected regions on the
boundary of M and pick out the centre points xi of the regions i = 1, . . . , N

br

,
where N

br

is the number of boundary regions larger than some threshold ⌧

br

.
We finally set

v̂

n

=

xk � cn

|xk � cn| ,

with
k = argmax

i=1,...,N

br

|cn�1 � xi|,

i.e. pick the point x
k

furthest from the previous centre point. The reasoning for
this is to propagate the mask in a direction along the arm. Figure 2.3 shows the
masks M from the first two iterations together with the connected boundary
regions (white) and the selected centre points.

2.3 Arm Fitting and Hand Localization
In each frame we want to fit a model to the upper and lower arm before fitting
the hand model. Both because it could be of interest in the motion analysis
but also because if we can get a good fit on the arm we will know with more
precision which points belong to the hand. We will model the arm with two
cylinders and use a RANSAC-type approach for the fitting.
The output from the skin colour and depth segmentation is a depth image

D

i,j

=

8
<

:
d

i,j

, if pixel (i,j) was detected as an arm/hand point

0, otherwise
,

where d

i,j

is the depth value measured by the Kinect sensor. We then trans-
form the points {(i, j, d

i,j

);D

i,j

6= 0} into real world 3D coordinates X using
the Kinect Package and note x

i,j

to be the 3-dimensional cartesian point corre-
sponding to the pixel at position (i, j) in the depth image. We will refer to X

as the point cloud.

2.3.1 Computing Point Normals
To be able to more efficiently estimate the arm configuration we want to compute
an approximate surface normal for each pixel in the depth image. To compute
the normal for a depth value D

i,j

at position (i, j) in the discrete image we form
a square patch I = {(m,n) 2 N2

; |i�m|  k, |j � n|  k, |D
m,n

�D

i,j

| < T},
with k = 5 .The depth threshold T = 20 cm is applied to be sure that the points
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are part of the same surface. We then pick out the points x

m,n

in the point
cloud corresponding to the pixels (D

m,n

)

(m,n)2I

and form the matrix

X =

2

6664

x

T

a

1

x

T

b

1

...

3

7775
, a, b 2 I,

where each row corresponds to exactly one pixel position in I. One way to find
a plane to fit the points x

m,n

is to solve the minimization problem

min

||p||=1

||Xp||
2

,

where p is the implicit representation of the sought plane. This can be done us-
ing the singular value decomposition X = U⌃V

T of X by extracting the vector
of V corresponding to the smallest singular value in ⌃ [13]. If there is a plane
that perfectly fits the points that value will be �

i

= 0. The normal direction n

i,j

is the first three elements of the plane p. We choose the one pointing towards the
camera since the surfaces captured by the Kinect are the ones facing the camera.

2.3.2 Arm Fitting Using Random Sample Consensus
The RANdom SAmple Consensus (RANSAC) algorithm is an iterative parameter-
estimation method designed to cope with a large proportion of outliers in the
input data. It was first proposed by Fischler and Bolles in 1981 [14] and has
been a very popular model fitting technique in image analysis and computer
vision applications ever since. The basic idea is to generate a candidate solution
by randomly selecting the minimum number of data points needed in order to
estimate the parameters of the model, evaluate candidate solutions and repeat
until a good enough solution is found. The algorithm can easily be summarized
in the steps outlined below:

Algorithm 1 RANSAC
1. Select randomly from the data the minimum number of points required to
determine the model parameters.
2. Calculate model parameters from the selected points.
3. Evaluate how many points from the entire data fit well (within a predefined
threshold ✏) to the candidate model. We will refer to these points as inliers.
4. If the proportion of inliers exceeds a predefined threshold ⌧ , re-estimate
the model using all the inliers and terminate.
5. Otherwise, repeat Steps 1 through 4 ( a maximum of N times).

We model the arm with two connected cylinders of fixed radius and length,
one for the lower and one for the upper arm. We need three points and their
corresponding point normals to uniquely determine a model configuration. We
therefore start by randomly selecting three points x

0
1

, x

0
2

, x

0
3

from a modified
point cloud X

0. The points in X

0 are formed by subtracting the arm model
radius r from the point x

i,j

along the corresponding normal direction n

i,j

,
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x

0
i,j

= x

i,j

� r ·n
i,j

. This way, we hope to place all the points at the arm centre
line, see Figure 2.4.

Figure 2.4: Original point cloud X (left) and Normal subtracted point cloud X

0

(right).

We then determine which of these points are lying on the same line by examining
which of the corresponding point normals n

1

, n
2

and n

3

are pointing in (roughly)
the same direction. In the case of no similar pairs we break the iteration and
draw new random points. If they all have similar directions, we consider the
arm to be straight with direction v pointing along the points towards the Kinect
Hand Point h. We then calculate the elbow point as e = h� L

L

· v, where L

L

is the predetermined length of the lower arm. Otherwise, and most commonly,
two of the points, which we will now call x̃

1

and x̃

2

, will lie on the same line
l

1

and the third, x̃

3

, on a significantly different one. We then calculate e as
the intersection between l

1

and the plane formed by x̃

3

and its corresponding
normal direction. The line l

2

on which x̃

3

lies is determined by by e and x̃

3

.
We determine which of the lines represent the upper and lower arm respectively
by examining which is the closest to h. The endpoints of the cylinders are then
determined by the distances L

L

and L

U

(length of the upper arm) from e along
the respective lines. We then continue as in the standard RANSAC algorithm,
calculating the proportion of inliers in X

0. A point is considered an inlier if
it is closer than a predefined threshold T = 1.5 cm to either one (or both) of
the candidate upper- and lower arm lines. Figure 2.5 shows the matched arm
cylinders projected into the original photo. We have also projected and marked
the points that we have classified as hand points with green colour.

2.4 Kinematic Hand Model
The human hand skeleton consists of 27 bones; 8 inside the wrist, 4 to make
up the palm and another 3⇥ 5 = 15 phalanges for the 5 fingers, see Figure 2.6.
Our kinematic hand model (inspired by [1, 3]) ignores the wrist bones and thus
consist of 19 links that imitate the corresponding human bones and 24 degrees
of freedom (DoF) that represent the joints between them. Links and joints
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Figure 2.5: Upper arm, lower arm and hand points matched using RANSAC.

Figure 2.6: Hand model

are denoted L

i,j

and ⇥

i,j

respectively, where i represents a finger (i=Thumb,
Index, Middle, Ring or Little) and j its corresponding link. The indexing of
a joint is the same as for the link above it. The four different links are named
j = (Metacarpal, Proximal, Intermediate and Distal). In Figure 2.6 all links
are named according to the above definition and each joint is marked with the
corresponding degrees of freedom. Moreover, the DoF’s represent the number
of different possible rotations for the corresponding joint. The different rota-
tions are flexion, abduction and twist. Note that the thumb has a different
kinematic configuration than the four fingers. For the four fingers, the proximal
joints have 2 DoF, supporting both flexion and abduction, while the other ones
are only able to rotate in one way (flexion). The thumb only have three links
(no intermediate link) and here it is the metacarpal joint that has 2 DoF. In
the same figure we have also put a wrist joint. The wrist joint has 6 DoF (3D
position (x,y,z) and all three rotations flex, abd, twist).
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2.4.1 Redundant Hand Model
In the algorithm we are using our own representation of the hand. In this model,
we first of all simplify by ignoring the four metacarpal links in the palm and
represent the whole palm as a single segment. This will make it impossible
to model the deformation of the palm that movement of the metacarpal links
results in. We believe these deformations to be small enough to ignore. This
leaves us with 16 phalanges/sections and in order to match and optimize our
geometrical model with the data, we need to be able to optimize and draw hy-
potheses for these phalanges independently. We therefore "separate" them and
let each phalanx have 6 DoF. We model the phalanges with cylinders for the fin-
gers, cylinders with spherical caps for the fingertips and a cut-off ellipsoid for the
palm. In total, this hand model will have 96 DoF, hence the name "redundant".

Each phalanx is modeled with variables (x, y, z) 2 R3 for the spatial coordi-
nates of the centre point. The z coordinate can only be positive since they
can only be detected in front of the camera. In reality there are more bounds
determined by the allowed ranges of the depth camera and the field of view.

Figure 2.7: The phalanx is placed along the x-axis with normal pointing upward
along the z-axis. It is then rotated with the rotation R determined by the Euler
angles ✓, � and r.

The orientation is modeled via standard Euler angles ✓ 2 (�⇡,⇡], � 2 [

⇡

2

,

⇡

2

] for
the direction and r 2 (�⇡,⇡] for the orientation around the direction axis. Euler
angles are chosen because they are well documented and fairly easy to handle.
It is also important that the rotation around the direction, r, can be factored
out of the total rotation in this representation. This allows the algorithm to
compute the model fit for a phalanx modeled with a cylinder simultaneously for
all hypotheses with the same value of ✓ and �. For those same angles, both the
endpoints will also be the same (since they are also invariant to the rotation
around the axis), something that will be important to the efficiency of our al-
gorithm. The phalanx is placed along the x-axis with the normal direction (the
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up side of a finger or palm) pointing in the direction of the z-axis. Each angle
defines a counter-clockwise rotation around their respective axis. r determines
the rotation

R

x

(r) =

2

6664

1 0 0

0 cos(r) �sin(r)

0 sin(r) cos(r)

3

7775
(2.2)

around the x-axis. Similarly � and ✓ describe the rotation about the y-axis

R

y

(�) =

2

6664

cos(�) 0 sin(�)

0 1 0

�sin(�) 0 cos(�)

3

7775
(2.3)

and z-axis

R

z

(✓) =

2

6664

cos(✓) �sin(✓) 0

sin(✓) cos(✓) 0

0 0 1

3

7775
(2.4)

respectively. The total rotation R is given by

R(✓,�, r) = R

z

(✓)R

y

(�)R

x

(r).

With this notation, the direction in which a phalanx is pointing is the rotated
x-axis, e.g. the first column R

1

of the total rotation matrix. The normal direc-
tion of the phalanx corresponds to the rotated z-axis, R

3

. One can get a sense
of how this system works by looking at Figure 2.7.

2.5 Belief Propagation
Our hand model can be viewed as a pairwise Markov Random Field, with de-
pendencies between adjacent phalanges. Exactly what those dependencies are,
will be discussed later on. In order to use a redundant hand model we need
to be able to fit individual phalanges to data and decide what combinations of
phalanx configurations form a possible hand. To do this we consider the Belief
Propagation algorithm to perform inference in the graphical model. The algo-
rithm will allow us to effectively decide which configuration maximizes the MRF
joint probability function. We begin with an overview of the BP algorithm and
continue explaining how we have used it.

Belief Propagation is a message-passing algorithm for performing inference in
graphical models such as Markov random fields or Bayesian networks. We will
discuss the case of a pairwise Markov random field (MRF), in which each two
non-adjacent random variables X

m

and X

n

satisfy the pairwise Markov property
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X

m

?? X

n

|X
V \{m,n}, (2.5)

i.e. are conditionally independent given all other variables. The Belief Propaga-
tion algorithm, proposed by Pearl in 1982 [15], efficiently calculates the marginal
distributions p

X

i

, i 2 V for MRFs without cycles, i.e. tree graphs. For each it-
eration of the algorithm, every node passes messages to the neighbouring nodes.
These messages are real valued functions containing information about how rel-
atively likely one node finds the states of its neighbouring nodes. Each random
variable X

i

in the MRF also has observations y
i

from a random variable Y

i

. We
denote the so called evidence of x

i

given the observation y

i

�

i

(x

i

) = p

X

i

|Y
i

(x

i

|y
i

). (2.6)

These observations of Y
i

, i 2 V are also taken into account when computing the
messages. The joint probability of a pairwise MRF is given by [16, 17]

p(x

1

, x

2

, . . . , x

n

) =P (X

1

= x

1

, X

2

= x

2

, . . . , X

n

= x

n

)

/
Y

(i,j)2V,i>j

 

i,j

(x

i

, x

j

)

Y

i

�

i

(x

i

),

(2.7)

where  
i,j

(x

i

, x

j

) is a real valued function of two individual states x

i

, x

j

of ad-
jacent nodes i and j measuring how likely the states are to occur together. It
is often called the compatibility function.

The message m

i!j

from a node i to an adjacent node j, concerning how
likely i finds the state x

j

of j, is computed by

m

i!j

(x

j

) =

X

x

i

0

@
�

i

(x

i

) 

i,j

(x

i

, x

j

)

Y

k2N(i)\j

m

k!i

(x

i

)

1

A
, (2.8)

where N(i) denotes the neighbours of node i in the tree graph. After propagating
all messages over the graph as shown in Figure 2.8, the algorithm calculates a
so called belief about the different states based on the incoming messages and
local observations. The belief for state x

i

of node i is given by

b

i

(x

i

) =

1

Z

�

i

(x

i

)

Y

j2N(i)

m

j!i

(x

i

), (2.9)

and signifies how likely x

i

is in comparison to the other states of i. Z is a nor-
malization factor that makes sure that the beliefs of i sum up to one. In order
to compute a message from i to j we need to have received messages from all
neighbours apart from j (see the product in (2.8)). The algorithm therefore has
to start at a node i that only has one neighbour, i.e. one of the leaves.

For tree graphs, as studied in this thesis, the beliefs can be shown to coincide
with the marginal distribution of the variables X

i

. In Appendix A, this is shown
by induction over the graph. For the purpose of convincing the lazy reader,
we illustrate the principle by a simple example, taken from [16]. Consider the
network of four hidden nodes in Figure 2.8. Let us consider the belief at node 1.
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Figure 2.8: Passing of messages in the pairwise MRF from our example.

We will show that it corresponds exactly to the marginal probability p

X1 . Let
us assume that we have propagated the messages over the graph, starting from
one of the leaves 1, 3 or 4. The belief is then

b

1

(x

1

) =

1

Z

�

1

(x

1

)m

2!1

(x

1

),

which, according to (2.8) can be successively developed

b

1

(x

1

) / �

1

(x

1

)

X

x2

 

2,1

(x

2

, x

1

)�

2

(x

2

)m

3!2

(x

2

)m

4!2

(x

2

)

= �

1

(x

1

)

X

x2

�

2

(x

2

) 

2,1

(x

2

, x

1

)

 
X

x3

�

3

(x

3

) 

3,2

(x

3

, x

2

)

! 
X

x4

�

4

(x

4

) 

4,2

(x

4

, x

2

)

!

=

X

x2

X

x3

X

x4

�

1

(x

1

)�

2

(x

2

) 

2,1

(x

2

, x

1

)�

3

(x

3

) 

3,2

(x

3

, x

2

)�

4

(x

4

) 

4,2

(x

4

, x

2

)

The expression inside the sums can now be recognized as (2.7) and we get that

b

1

(x

1

) =

1

Z

X

x2

X

x3

X

x4

p(x

1

, x

2

, x

3

, x

4

) = p

X1(x1

)

for some normalization factor Z.

2.5.1 Max-Sum Belief Propagation
In our application we are only interested in maximizing the joint probability
(i.e. finding the most probable state configuration). This can be achieved by
simply replacing the sum in the message update rule (2.8) with a max,

m

i!j

(x

j

) = max

x

i

0

@
�

i

(x

i

) 

i,j

(x

i

, x

j

)

Y

k2N(i)\j

m

k!i

(x

i

)

1

A
. (2.10)
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The beliefs b

i

(x

i

) will be calculated in the same way as before but instead of
calculating marginals they will now be measures on how likely a certain state x

i

is in node X

i

. At convergence (which again is guaranteed in our application),
b

i

(x

i

) becomes the maximum of the joint probability conditioned on x

i

[18],

b

i

(x

i

) = max

x̄

p

X|X
i

(x̄|x
i

).

A proof similar to the one we given for Belief Propagation is suggested at the
end of Appendix A. Because of this, the configurations that maximize the beliefs
will coincide with those that maximize the total joint probability.

When iterating through the network, we will successively multiply the mes-
sage of one node with those of all the previous ones. This will result in very
large numbers and possibly numeric overflow. This is often handled by taking
the logarithm of the expressions in the algorithm (the evidence- and compati-
bility function) and using sums instead of products. This is called the Max-Sum
algorithm and is the one that we have used. In the description of the algorithm,
it can effectively be ignored. In each step we have normalized the messages and
evidence by making sure that the maximum value is always zero.

2.6 BP on a Redundant Hand Model
Inserting our geometrical hand model into the Belief Propagation framework,
we view the phalanges X

I

as stochastic variables in R6 (see Figure 2.9). The
indices are defined as in Section 2.4 with I specifying the phalanx (for example
TD for the distal link of the thumb). For the palm node we will use X

P

.
The observations y

I

⇠ Y

I

for each node (I) will correspond to the hand point
cloud calculated in Section 2.3 and the hidden variables X

I

will be modeled
according to Section 2.6.2. The algorithm will run on one frame at the time,
generating hypotheses x

I

around the most likely configuration from the previous
frame (see Section 2.6.1). We will then propagate through the graph, starting
from the leaves (distal phalanges), going down to the root (palm) and then up
again. The evidence function �

I

(x

I

) is formed by calculating how well a certain
hypothesis (state) x

I

of a node (I) fits to the relevant area of the point cloud
(described in detail in Section 2.6.3). The compatibility function  is used to
enforce anatomical constraints to generate a realistic hand configuration. Due
to the structure of the algorithm, we are only able to apply constraints between
adjacent phalanges. The anatomical constraints consist of proximity  

prox

and
angular constraints  

ang

. Proximity constraints make sure finger parts stay
connected at the joints and angular constraints encapsulates the constraints of
the 24 DoF kinematic hand model (Section 2.4). The compatibility function
between two hypotheses of two adjacent nodes I, J is then formed as

 

I,J

(x

I

, x

J

) =  

prox

(x

I

, x

J

) 

ang

(x

I

, x

J

).

The two constraint functions are described in Sections 2.6.5 and 2.6.6. Messages
are updated according to (2.10) and when the propagation is finished, beliefs
b

I

(x

I

) are calculated as in (2.9). Finally, the best states for each phalanx are
calculated by

x

⇤
I

= argmax

x

I

b

I

(x

I

).
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Figure 2.9: The tree graph of our geometrical hand model.

2.6.1 Hypothesis Generation
Since the angular model is decoupled from the comparison we do in the BP
algorithm we need to be really careful about how we sample. In our kinematic
model we have constraints on how fast the angular constraints can change. Since
the phalanges move with the phalanges below them in the tree, the combined
motion of hand and arm will determine how much individual phalanges in the
hand can move between two frames. However, within those limits we do not
want to have any bias on how far the angles have moved. In order to distribute
our relatively few samples of ✓,� (in the order 5

2) we form a fixed number of
circles separated by an even angle distance on the unit sphere, each centred in
the previous point. We then distribute the points on those circles so that the
distances between two adjacent points are the same on all circles. The result is
illustrated in Figure 2.10.

The change in the variable r, however, corresponds with the change of the kine-
matic twist t of one phalanx with respect to another. Therefore the sampling
space of r will be determined by how fast the hand can twist (since the hand
model allows very little twist between most phalanges inside the hand). The
sampling is carried out with respect to a sample (✓,�)

i

with direction v

i

.
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Figure 2.10: The blue stars indicate samples of the direction ✓, �. The blue ring
in the middle is the direction from the previous frame and will be drawn now
as well. The red arrows represent the samples of r that we draw for each pair
✓, �.

First we project the normal direction n

0

of the phalanx from the previous frame
onto the normal plane of the direction v

i

. We then compute the corresponding
rotation r

0

around which we sample new hypotheses r linearly within a range.
The angle sampling procedure is illustrated in Figure 2.10. Hypotheses for the
spatial coordinates (x, y, z) are simply sampled on a grid pattern within a sphere
around the current point.

2.6.2 Model Generation
The surfaces of the phalanges are approximated with geometric primitives.
The finger phalanges are modeled with cylinders of different radiuses and the
palm with a truncated ellipsoid. For the distal links T

i,D

we also connect a
half-sphere to approximate the fingertips. The surfaces of both cylinders and
spheres can be represented by ellipsoids using quadratic forms x

T

Qx = 1, with
Q = diag(

1

r

2
x

,

1

r

2
y

,

1

r

2
z

). In our case, to get a cylinder along the length of the
x-axis, we set 1

r

2
x

= 0 and r

y

= r

z

. To rotate the ellipsoids to be aligned
along the axis defined by our parameters ✓ and � we define a rotation matrix
R = R

z

(✓)R

y

(�)R

x

(r) with the rotations defined according to the ones in Sec-
tion 2.4.1. We leave out the rotation R

x

(r) from this product when dealing with
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the phalanges modeled by a cylinder since they are rotationally symmetric. The
equation for the surface of the rotated ellipsoid centred around x

0

is then

(x� x

0

)

T

RQR

T

(x� x

0

) = 1. (2.11)

In our images we have VGA resolution, that is 480 ⇥ 640 pixels. We want to
compute which of these contain projections of a certain phalanx model and,
if contained, project a distance to the model. This will allow us to compare
the distances to the depth map obtained from the Kinect. But by knowing the
position of the phalanx model in 3D space, we can limit the space where we can
expect projections. This allows us to look at a smaller patch of coordinates in
the image. The Kinect Software is able to translate a image coordinate and a
depth value to its corresponding 3D point. This, together with the fact that the
image plane is situated at a constant depth z = 1, is then utilized to translate
the image coordinates in the patch to the corresponding points in the 3D image
plane. Say that we want to compute the intersection for one of these points v in
the image plane. We then form parametrized lines 0+tv from the camera centre
through the point. By inserting the parametrized line into (2.11) and solve for
t, we can compute where the ray captured in the camera intersect the ellipsoid.
We define A = RQR

T and observe that A

T

= (R

T

)

T

Q

T

R

T

= RQ

T

R

T

= A.
We get the equation

(tv � x

0

)

T

A(tv � x

0

) = 1

()
t

2

v

T

Av � tx

T

0

Av � tv

T

Ax

0

+ x

T

0

Ax

0

� 1 = 0.

But since v

T

Ax

0

is scalar

v

T

Ax

0

= (v

T

Ax

0

)

T

= x

T

0

A

T

v = x

T

0

Av,

as mentioned above. This gives us the standard quadratic equation

t

2

v

T

Av � 2tx

T

0

Av + x

T

0

Ax

0

� 1 = 0,

where the solutions are given by

t =

x

T

0

Av

v

T

Av

±
s✓

x

T

0

Av

v

T

Av

◆
2

� x

T

0

Ax

0

� 1

v

T

Av

.

Here, we only care for the minus sign since it will give us the intersection closest
to the camera centre. With this solution t, the distance to the intersection
along the z-axis is the third element of the intersection point, tv

3

. This is the
value corresponding to the values in the Kinect Depth of Field image. The
simplicity of the approach enables us to compute the intersection for all pixels
in the patch concurrently, using matrix multiplication. If there are only complex
solutions to the equation, we know that there is no intersection. This will be
used to determine which pixels in the model should correspond to a pixel in the
data. To cut off the ellipsoids we place two planes at the respective endpoints
orthogonally to the main direction and make sure that the points lie between
those planes.
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2.6.3 Calculating Evidence
For a certain phalanx and a certain hypothesis we want to evaluate how well
it fits with the corresponding phalanx’s data points. In the previous section
we transformed the generated 3D cylinder to the image plane which gave us a
rectangular model patch M containing depth values for the generated model
and zeros everywhere else. We then extract the same image coordinates from
the data depth image to get a data patch D. To evaluate the likelihood of a
patch, we compare the two patches with a simple distance measure � over all
nonzero pixels {(i, j); M

i,j

6= 0}. If a pixel at position (i, j) is nonzero (i.e. has
a depth value) in both M and D, we directly use the depth difference,

�

i,j

= M

i,j

�D

i,j

.

If D
i,j

= 0 we add the pixel distance to the nearest pixel {(m,n); D

m,n

6= 0}
and set

�

i,j

=

q
(i�m)

2

+ (j � n)

2

+ w(M

i,j

�D

m,n

)

2

. (2.12)

The weight w is set to 1 for all phalanges except the palm where we use w = 0.5.
This is because the shape of the human palm is quite complex and can change
a lot during different movements, meaning we can expect worse depth fit for
the hand using a cutoff ellipsoid than for the fingers using cylinders. We then
calculate the likelihood for the hypothesis that generated M as

�(x) =

1

Z

exp

 
�
✓
¯�

�

◆
2

!
, (2.13)

where ¯� is the mean over all considered distances, Z is used to normalize the
likelihood (so that it sums up to 1) and � is a parameter to specify the accuracy
of the depth data, we have found � =

p
8 to be a good value.

2.6.4 Calculating Evidence - Exception for Fingertips
When testing our algorithm we found that it consistently matched poses where
the fingers was not matching the data all the way out to the fingertips. To
take care of this we introduced a new term ✏ to the distance value (2.12) that
punishes hypotheses that lie such that there are many data points in front of (in
the direction of) the finger tip hypothesis. We do this by generating a slightly
longer model for the fingertips and calculate ✏ as the proportion of data points
that can be seen as inliers (thresholded with 1 centimetre) to the extension part
of the tip model. The likelihood (2.13) is then extended to

�(x) =

1

Z

exp

 
�
✓
¯

�

�

◆
2

�
✓
✏

�

✏

◆
2

!
,

where we have used �
✏

= 0.8.

2.6.5 Constraints
Since each phalanx is generated individually, constraints are required to ensure
that neighbouring phalanges stay connected at the joints, and that their respec-
tive orientations result in a valid hand configuration. To make sure phalanges
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stay (more or less) connected, we employ proximity constraints, i.e. we penalize
configurations of neighbouring phalanges proportionally to the distance between
their end points. To ensure valid joint angles, we use angular constraints. As
mentioned earlier, the traditional anatomical limits for the free hand are no
longer valid in contact with objects, so enlarged ranges has to be used. Note
that the constraint network is a tree (with the root at the palm and leaves at
the fingertips) obeying the first order Markov property (i.e. the constraints only
apply to adjacent phalanges). Hence, constraint enforcement by Belief Propaga-
tion will yield a globally optimal configuration. When sending a message from
phalanx i to phalanx j, a N

h

⇥N

h

constraint matrix (where N

h

is the number
of hypotheses for each phalanx) is computed for all possible combinations of
hypotheses for the two phalanges. The matrix entries are the measures on how
likely a hypotheses pair u

i

, u

j

is to occur, and are defined as

 (u

i

, u

j

) =  

prox

(u

i

, u

j

) ·  
ang

(u

i

, u

j

).

There is uncertainty concerning the placing of the fingers at the palm and the
length of the fingers. This is the justification for the loosely coupled model that
we use. In our approach, we have emphasized that there is more uncertainty
for the length of the phalanges than how the individual endpoints are placed
orthogonally to the direction (especially within the fingers). We therefore allow a
greater variance of the distance between the endpoints along the mean direction
of two phalanges at a joint. To do this, we use a multivariate normal distribution
with zero covariance between the variables. Further, we assign the same variance
�

2

prox

for the axes perpendicular to the mean direction of the phalanges and the
variance �2

length

for the mean direction. Say that we have hypotheses of two
adjacent phalanges L

i

and L

j

with a common joint that is associated with
the respective endpoints x

i

and x

j

. L

i

has direction vi and L

i

has direction
v

j

(pointing away from the palm). We form the mean direction v by taking
v

i

+ v

j

and normalizing the result. The error vector of the endpoints is d =

x

i

� x

j

and the component for the mean direction are computed by projection
d

length

= d

T

v. The rest is put into the factor d

2

prox

= ||d||2 � d

2

length

. We then
define L

i

and L

j

’s compatibility function as

 

prox

= exp(�d

2

prox

�

2

prox

� d

2

length

�

2

length

).

�

prox

and �
length

could be seen as parameters specifying the importance of the
observed error, and also the relative weight of the proximity error against the
angular constraint errors to be defined next. In the experiments the values are
�

prox

= 15 and �

length

= 50. Note again that for all phalanx pairs except the
five pairs that involve the palm, the proximity constraints are independent of the
twist rotation which we’ll take advantage of to calculate proximity constraints
for many (N2

r

) hypotheses combinations at a time.

2.6.6 Calculating Kinematic Angles
In the Belief Propagation algorithm we want to compute the kinematic angles
flex, abduction and twist between two phalanges to be able to form a message.
This is not straightforward with the angular representation we have chosen and
we need to go through some steps in order to do so. Let us consider the case
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when we want to compute the kinematic angles of a phalanx P

1

relative to the
phalanx P

0

below it in the graph. We let R
1

and R

0

denote the rotation matrix
of one sample ✓, �, r of the respective phalanges. These matrices give us the
bases E

0

= R

0

E and E

1

= R

1

E by rotation of the canonical base E. The first
step is to express the rotation of P

1

in the coordinate system E

0

of P
0

. This is
given by

ˆ

E = E

T

0

E

1

.

From the base ˆ

E in E

0

we want to reconstruct the angles f (flexion), a (ab-
duction) and t (twist) yielding the corresponding rotation matrix. In order to
do so we need to consider what kind of rotation the kinematic angles actually
represent. The main difference with our Euler angles is that the initial rotation
around the x-axis, t manipulates the coordinate system for the following rota-
tions f and a. Instead of the reference z- and y-axis, the rotations are defined
around the rotated axes. Thus the rotation for t, R

x

(t), will be the same as
for r, described in Section 2.4.1. The rotation for f on the other hand will be
around the y-axis rotated by t. This corresponds to the rotation R

y

(f) from
Section 2.4.1 carried out in the basis defined by R

x

(t). This yields

R

0
y

(f) = R

x

(t)R

y

(f)R

x

(t)

T

.

Similarly R

z

(a) in the new basis is given by

R

0
z

(a) = R

x

(t)R

z

(a)R

x

(t)

T

.

The total equation for the rotation is then

R(f, a, t) =R

0
z

(a)R

0
y

(f)R

x

(t)

=R

x

(t)R

z

(a)R

x

(t)

T

R

x

(t)R

y

(f)R

x

(t)

T

R

x

(t)

=R

x

(t)R

z

(a)R

y

(f),

which seems natural, given what the rotations are supposed to do. If we insert
the values we get

R(f, a, t) =

2

6664

cos(f) cos(a) � sin(a) cos(a) sin(f)

cos(f) cos(t) sin(a) + sin(f) sin(t) cos(a) cos(t) cos(t) sin(f) sin(a)� cos(f) sin(t)

cos(f) sin(a) sin(t)� cos(t) sin(f) cos(a) sin(t) cos(f) cos(t) + sin(f) sin(a) sin(t))

3

7775
.

To get the values of f , a and t we compare this matrix element-wise with
the values of ˆ

E. We’ve chosen to enforce the constraint ˆ

E

11

> 0 for valid
configurations, i.e. the phalanges can’t point in opposite directions. This is
not always the case, for example some of the joints between the distal and
proximal links can bend slightly more than ⇡

2

. To simplify the calculations, we
have chosen to ignore this rather rare scenario. Because of this we know that
|a| < ⇡

2

and we get a = � sin

�1

(

ˆ

E

12

). The same goes for f , which gives us
f = sin

�1

(

ˆ

E13
cos(a)

). We choose the sin term because sin

�1 has the desired range
[�⇡

2

,

⇡

2

]. Finally, t has to be defined on (�⇡,⇡] and we therefore need to use
both of the terms cos(t) =

ˆ

E22
cos(a)

and sin(t) =

ˆ

E32
cos(a)

. The angle t is then given
by the four quadrant inverse tangent function through t = atan2(

ˆ

E

32

,

ˆ

E

22

).
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2.6.7 Angular Constraints
What we want to do in the algorithm is to take one hypothesis of a joint and
compare it to all the hypotheses of a previous joint. The kinematic angles that
are allowed as a valid configuration are to have probability one, while the rest
should have little or no probability depending on how far they are from a valid
configuration. Similar to [3], we allow the range to be somewhat larger because
we could be dealing with hands manipulating objects, which modifies some of
the standard allowed ranges. We let R

flex

, R

abd

and R

twist

denote the sets
of valid angles for a particular joint. Apart from the kinematic constraints we
have also chosen to incorporate temporal constraints here. As an example we
can look at the abduction of a joint. It moves quite slowly and can not change
very much between two frames. The valid angles are the intersection of the
interval around the previous value and the valid kinematic intervals of each an-
gle. If there is no intersection, the set will simply consist of the point in the
kinematic interval closest to the value in the previous frame.

We define the distance from a set A to a point x as

d

A

(x) = min

y2A

|x� y|.

Particularly, d

A

(x) = 0 for x 2 A. With this notation, our formula for the
probability of a configuration f, a, t can be written as

 

ang

(f, a, t) = exp(�
✓
d

R

flex

(f)

�

flex

◆
2

) exp(�
✓
d

R

abd

(a)

�

abd

◆
2

) exp(�
✓
d

R

twist

(t)

�

twist

◆
2

),

with the denominators signifying how strongly the constraints should be en-
forced. In our tests we use �

flex

=

⇡

18

, �
abd

=

⇡

20

and �
twist

=

⇡

18

.

2.6.8 Improving Algorithm Efficiency
One positive aspect of the BP algorithm is that the message propagation can
often be done in parallel, making use of modern multicore processors. In our
application we begin the propagation at each of the five fingers’ distal links
simultaneously and propagate down to the palm in parallel. We then send mes-
sages from the palm and continue the propagation back up to the leaves at all
fingers simultaneously.

We also take advantage of the fact that �,  
prox

and  

ang

are independent
of some of the parameters of the phalanx models. The evidence (model fit)
function � is independent of the twist rotation for the cylinder shaped pha-
langes (all except palm). The same goes for  

prox

since it only measures the
distance between endpoints on the centre lines of the cylinders. Moreover, the
angular constraints  

ang

are totally independent of the 3D position (x, y, z). We
use this in the algorithm by looping through the different model parameters in
a separated fashion. In an outer loop we go through the orientation parameters
✓ and �. Inside the orientation loop we first loop over position parameters to
calculate the evidence and proximity constraints and then go through a second
loop over the rotation r to calculate the angular constraints.
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2.6.9 Algorithm Summary
In the table below we have summarized the Max-Sum algorithm for one frame
in the tracking system.

Algorithm 2 Max-Sum Algorithm on Hand
1: Simulate hypotheses for each phalanx around the configuration from the

previous frame.
2: Start by computing the evidence � for the distal links.
3: Compute downward messages (with constraints  ) and evidence successively

for the links down to the palm.
4: Compute upward messages successively for the links back to the distal links.
5: For each link, compute beliefs from messages and evidence.
6: Pick the hypotheses with the highest beliefs to form the new hand configu-

ration.

2.7 Collision Correction

Figure 2.11: Illustration of the message passing in the correction step. This
time, the palm is effectively considered evidence.
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To take care of an apparent fault in the Belief Propagation, namely the lack
of handling of crossing fingers, we propose a post-processing step. After an it-
eration of the algorithm, we check if there are any crossing distal links in the
estimated pose. For the thumb, we check if the tip intersects the index finger’s
proximal link. If any of the fingers intersect, the post processing is run.

We assume that the palm has found a good fit in the first step, irrespective
of the crossing fingers. With this assumption we fix that palm configuration
and consider it an observation x

p

⇠ X

p

of the true pose, similar to y in Section
2.6. The iteration will then largely be the same as previously but without mes-
sages including the palm and with messages between the fingertips reflecting
if they are crossing or not. This way, the pairwise MRF of the variables will
form a tree graph, see Figure 2.11, and thus have an exact solution via Belief
Propagation. The propagation again starts at the leaves, which are now the
proximal links. They then propagate to the distal links in parallel. Message
passing between the fingertips are then carried out from left to right and then
from right to left. Messages are then passed back to the proximal links in par-
allel and the iteration is complete. In the algorithm, we use the hypotheses
drawn in the standard Belief Propagation step, which allows us to reuse for
example the model fitting evidence. However, since X

p

is now considered an
observed variable with value x

p

, we need to reformulate the evidence function
of the proximal links.

2.7.1 Modified Evidence Function for Proximal Links
With the observation x

P

of the palm we can formulate the evidence of a hypoth-
esis x of a proximal link, �

p

(x), as the product of the compatibility function  
and the evidence function � from Section 2.6.

�

p

(x) =  (x, x

P

) · �(x).
It is intuitive to reuse the compatibility function for this purpose because the
constraints between the static palm and the phalanx should effectively be the
same. This palm configuration allows for the same range of endpoints and angles
that a palm hypothesis in the standard algorithm would.

2.7.2 Structural Constraints
We also need to define the compatibility function  

struct

for the message passing
between distal links. The function should prohibit any configuration where
the links intersect. To check if two phalanges intersect we simply check if the
minimum distance between the line segments along the phalanges’ centres are
smaller than the sum of their respective radius. The function  

struct

is defined
as

 

struct

(x

i

, x

j

) =

8
<

:
1, if x

i

and x

j

do not cross

0, otherwise
.

These new evidence and belief functions are taken into account when computing
the messages and also at the end of the iteration, for calculating new beliefs.
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2.8 Tracking System Summary
The table below provides an overview of the different steps in the tracking
system. It is worth noting that the skin detection algorithm is actually trained
over a larger number of the frames before we initialize the tracking system.

Algorithm 3 Tracking Algorithm
1: Load the Kinect RGB- and depth image for the frame. Compute the point

cloud.
2: Remove the plane with the most inliers (hopefully the table).
3: Run the trained skin detection algorithm to remove pixels that do not look

like skin.
4: Use the depth segmentation to isolate the connected region recognized as

the arm.
5: For these points, compute the point normals.
6: Run the RANSAC algorithm to match two connected cylinders to the upper-

and lower arm.
7: Isolate the pixels at the end of the lower arm in the depth image.
8: These points are the evidence for the Max-Sum algorithm described in Al-

gorithm 2, which is now run.
9: If any of the distal links intersect, run the Collision Correction algorithm to

part them.
10: Go to the next frame.

2.9 Test Setup
Already in an early phase of this thesis, we decided that we wanted the system
to work well with very few requirements on the test environment. The algorithm
will now work with almost any background and there is no real need for it to be
of solid colour. Even if we use light intensity invariant colour spaces for the skin
colour detection, it is preferable if the test environment is bright and evenly lit
for the skin colour detection to work at its best. Moreover, the Kinect sensor
has some serious drawbacks. It will not capture any depth data for objects that
are too close. On the other hand we get very low resolution on objects that
are far away. The limit for how close an object can be is around 1 metre away
from the sensor. The best results are obtained if the test subjects hand stay
at around 1.2 - 2 metres away from the sensor during the whole recording. We
have found that the optimal test setup for our algorithm is to have the subject
seated at a table with the Kinect sensor positioned obliquely from above (see
Figure 2.12). The subject should keep the hand of interest above and the other
hand below the table at all times.
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Figure 2.12: Illustration of an optimal test setup
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Evaluation and Results

3.1 Evaluation Methods
Validating an algorithm like the one described in this report is no easy task.
The goal is to track precise movements of individual joints from RGBD video
recordings but how can we evaluate the correctness of our results when the true
positions and directions of the phalanges are unknown. One approach, used in
[2, 3], is to use a computer generated hand and run the algorithm on the syn-
thetic data. A problem with this approach however, is that the synthetic hand
data would not look much like the data we get from the Kinect recordings and
since it would be generated by a geometric model, probably very similar to the
one we use in the algorithm, the results would be biased and not really a good
measure of how well this method works in reality. At the same time, one can get
a pretty good idea of how well the tracker works by just examining the results
visually, frame by frame. It is not the most scientific method and we will not
get any measure of the precision of the model fitting, but it does say something
about if the tracker has found the, more or less, right pose or not. To do this
we both look at the hand model in 3D plotted together with the point cloud of
the hand. We also project the best hand hypothesis in each frame to the image
plane and colour the model phalanges in the same image as the original RGB
photo. We then, for each frame, grade the result with GOOD if it fits ’perfectly’
(pose is correct and the model fits well with the points), OK if the overall pose is
correct but the fitting might be a bit off, and BAD if the pose is totally wrong,
typically when phalanges match with data from the wrong finger. To get some
numbers on the model fitting we also calculate the proportion of 3D points that
deviates more than 1 centimetre from the point cloud captured by the Kinect.

We will present the results of 2 sequences recorded in an optimal test setup (see
Section 2.9). The first sequence consist of mainly abduction movements and
the second of mainly flex movements. Both sequences have been run using the
same algorithm parameters presented in the table below. For the abduction
sequence, we will present two runs, one without the collision correction and one
with. Input data for one frame in this sequence is presented in Figure 2.1.
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Parameter Value Description

N

✓�

20 Number of direction hypotheses

N

r

5 Number of orientation hypotheses

N

xyz

81 Number of position hypotheses

I

x

= I

y

= I

z

[-18, 18] Ranges for position hypotheses

I

✓

= I

�

= I

r

[�2⇡/9, 2⇡/9] Ranges for direction/orientation hypotheses

Table 3.1: Parameters used in the test runs.

The numbers in the table above yield an astounding (20 · 5 · 81)16 ⇡ 3.43 · 1062
number of hand configurations to evaluate. Both sequences were run on a Mac-
book Pro 2.2 Ghz Intel Core i7 with 4 GB RAM taking advantage of 4 physical
and 4 virtual cores. Arm detection, arm fitting and hand localization was all
done separated from the Belief Propagation beforehand. With the parameters
stated above the BP algorithm took about 60 seconds to run for each frame.

3.2 Abduction Movements
The first sequence consists of 220 frames (⇡ 7 sec) and contains a hand perform-
ing 4 full abduction movements. Figure 3.1 shows the proportion of 3D points
deviating more than 0.5 centimetres from the model for each frame.

Figure 3.1: Proportion of 3D points deviating more than 0.5 centimetres from
the model in the abduction sequence without running the collision correction.

The algorithm successfully tracks the hand and reproduces the correct pose
(with some exceptions) for the first three abduction movements. Exceptions
are occurring on a few subsequent frames when all fingers lie tight together (i.e.
zero abduction). What happens is that fingers cross each other and find matches
with the same data points. The tracker does however seem to recover from these
bad states pretty fast. For the fourth abduction movement, the thumb get stuck
"inside" the hand and stays there for the whole movement. In Figure 3.1 we
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can see when the fourth abduction movement starts (around frame 155). We
have selected 5 of the frames (marked with red dots in Figure 3.1) for which
we have plotted the model together with the corresponding point cloud and the
projection of the model to the original photo. These are shown in Figure 3.2-3.6
and they are marked with the grade we gave them in our visual evaluation.
Figure 3.2 , 3.4 and 3.5 shows examples of frames graded as GOOD. The poses
are correct and the fit looks good.

Figure 3.3 shows frame 32, which was graded an OK frame. The pose is roughly
correct with all fingers lying approximately where they should but the middle
and little finger do not match the data quite all the way out to the fingertips.
The biggest problem however, and the main reason to why there is a peak in
Figure 3.1, is that the orientation/direction of the palm is pretty off, which can
be seen clearly in the middle plot of Figure 3.3. We believe the problem in this
frame is due to the fact that we have been to strict constraining the possibility
for fingers to bend slightly backwards. Figure 3.6 shows frame 161, which is a
part of the fourth abduction movement and was graded as BAD. The thumb is
stuck inside the hand, matching some data points of the index finger.

Classification BAD OK GOOD

Proportion of frames 0.42 0.25 0.33

Table 3.2: Proportion of frames classified as BAD, OK and GOOD respectively
for the visual evaluation.

Figure 3.2: 3D plot and image projection for frame 4 of the abduction sequence
without running the collision correction.
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Figure 3.3: 3D plot and image projection for frame 32 of the abduction sequence
without running the collision correction.

Figure 3.4: 3D plot and image projection for frame 42 of the abduction sequence
without running the collision correction.
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Figure 3.5: 3D plot and image projection for frame 96 of the abduction sequence
without running the collision correction.

Figure 3.6: 3D plot and image projection for frame 161 of the abduction se-
quence without running the collision correction.

3.3 Abduction Movements with Collision Correc-
tion

Classification BAD OK GOOD

Proportion of frames 0.23 0.44 0.34

Table 3.3: Proportion of frames classified as BAD, OK and GOOD respectively
for the visual evaluation.
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Figure 3.7: Proportion of 3D points deviating more than 0.5 centimetres from
the model in the abduction sequence with the collision correction being run
when fingers intersect (blue) and without (red). The yellow intervals are where
all the fingers lie closely together.

Many frames of the first sequence suffered from problems with intersecting fin-
gers and as we could see, the thumb got totally stuck for the whole of the last
movement. We graded over 40 % of the frames as BAD and therefore decided
to run the algorithm one more time on the same sequence but this time running
the collision correction (described in Section 2.7) for those frames when fingers
crossed each other. Figure 3.7 shows the proportion of 3D points deviating more
than 0.5 centimetres from the model for each frame and we can see a slight im-
provement in the intervals where the fingers lie closely packed (yellow areas in
Figure 3.7). We can also more easily identify the four abduction movements
in-between. When the hand is fully stretched out there are much more points
that are not explained by the model than when fingers lie tight together. This
is partly due to the webbings (the skin in-) between fingers (especially between
the thumb and index finger) that appear when the the hand stretch out. In
this sequence, the thumb gets stuck on the index finger during the abduction
movement between frames 115 and 130. However, it manages to retain a valid
configuration for the fourth movement, contrary to the previous run.

In Table 3.3 we present the result of our visual evaluation. We can see that
there are a lot less BAD frames, almost no frames suffered from intersection
problems after the collision correction was run. In Figure 3.8 and 3.9 we have
plotted two BAD frames from running the sequence without the correction step
next to the same frames when running the correction step.
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Figure 3.8: 3D plot for frame 43 of the abduction sequence, without and with
the collision correction respectively.

Figure 3.9: 3D plot for Frame 197 of the abduction sequence, without and with
the collision correction respectively.
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3.4 Flex Movements
The second sequence consists of 641 frames (⇡ 21 sec) and contains a hand
performing flex movements. Figure 3.10 shows the proportion of 3D points de-
viating more than 0.5 centimetres from the model for each frame.
The algorithm successfully tracks the hand and gives the more or less correct

Figure 3.10: Proportion of 3D points deviating more than 0.5 centimetres from
the model in the flex sequence.

pose throughout the sequence. The faster changing behaviour in this figure
compared to Figure 3.10 is due to the hand is moving around faster in this
sequence. This could be resolved by increasing the ranges in the hypothesis
generation. Increased ranges would however require an increased number of
hypotheses to get as precise matches. Especially the inprecise fits after Frame
500 can be explained by the rapid arm movement during this segment. During
a few frames of the segment, after Frame 517, the middle finger positions itself
at the ring finger, a similar problem to the one we had in the first sequence.
This time, however, the algorithm recovers after only a few frames. At frame
531, the Kinect returned no data points at all, leading the algorithm to ignore
the evidence completely. It did not seem to effect the tracking on the following
frames notably.

Classification BAD OK GOOD

Proportion of frames 0.06 0.30 0.64

Table 3.4: Proportion of frames classified as BAD, OK and GOOD respectively
for the visual evaluation.

This time, we have considered the results to give a much better fit, according
to Table 3.4. The fingers are almost always associated with the correct data
points, resulting in very few being labeled BAD. We also see the same problems
as in the previous sequence with the palm being a bit off in direction, see
Figures 3.12 and 3.15. Again, this probably has something to do with angular
constraints between the proximal phalanges and the palm. It could also be that
the hand has moved too fast in between frames. It is also worth noting that the
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resolution was much better in this second sequence than in the first one. The
flex sequence contained an average of about 4500 hand pixels per frame, which
should be compared to an average of 6000 pixels for the abduction sequence.

Figure 3.11: 3D plot and image projection for Frame 90 of the flex sequence.

Figure 3.12: 3D plot and image projection for Frame 106 of the flex sequence.
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Figure 3.13: 3D plot and image projection for Frame 244 of the flex sequence.

Figure 3.14: 3D plot and image projection for Frame 421 of the flex sequence.

Figure 3.15: 3D plot and image projection for Frame 457 of the flex sequence.
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3.5 Time Complexity
Below, we have plotted the running time (in seconds per frame) for the Belief
Propagation algorithm while varying the number of drawn hypotheses. Figure
3.16 shows the running time against the total number of hypotheses for each
phalanx. In Figure 3.17 we have varied the number of drawn hypotheses for the
three different kind of hypotheses (position, direction and orientation around
direction axis) respectively and plotted the resulting running time in the same
figure.

Before running these tests we thought that increasing the number of different
kinds of hypotheses would affect the running time differently. This seems not
to be the case. Instead all plots below look very similar and the running time
seem to grow quadratically with the number of hypotheses for each phalanx.
This goes hand in hand with our intuition. In the heaviest step, the algorithm
evaluates a total of 30 messages between every hypothesis of two phalanges.
This yields a complexity of approximately O(30N

2

) = O(N

2

).
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Figure 3.16: Plot of the BP algorithm’s running time (in sec.) against the total
number of hypotheses for each phalanx.

Figure 3.17: Plot of the BP algorithm’s running time (in sec.) against the
number of position hypotheses (red) , the number of direction hypotheses (green)
and the number of hypotheses around the direction axis (blue).
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Conclusions

We have evaluated the algorithm on two sequences, one to test the quality when
tracking abduction movements and one for flex movements. One could argue
that the test set is too small to come to any conclusions about the performance
of the tracker. It is however important to keep in mind that the set contains
a total of 858 frames. Even if we can’t really tell how it will work over longer
sequences, we can say that it will find the correct pose in most situations, with
some notable exceptions. If we look at the behaviour of the tracker on a larger
scale it finds roughly the correct pose in almost all frames in the test sequences.
The collision correction removes most of the frames where the base tracker had
problems, i.e. the ones with close fingers. Overall, we came away impressed
by how well the Belief Propagation approach works in this particular case. We
believe this may be the way forward for developing a fully automated system
for medical analysis of precise hand motion.

As we saw when studying the results, the tracker has a tendency to place fin-
gers over each other when the fingers are close together. This is because these
structural constraints are not reflected in the basic algorithm. The results from
running the collision correction does however seem to take care of this in almost
all cases. Another approach opposed to running a separate iteration, would
be to introduce loops in the graph and send messages between fingers already
in the basic algorithm. With loops in the graph we would however loose the
guaranteed convergence and moreover, it would probably be slower since we
would need to run more iterations. The collision correction adds some time to
the already rather time consuming algorithm but does so only when there is a
need for it to run and the fact that it reuses the same hypotheses saves some
computation time because it can reuse a lot of calculations, such as the evidence
for the different hypotheses.

Even if many of the poses are correct, the fit is often slightly off. This is
probably due to a too low number of hypotheses being drawn. With the current
implementation and hardware it would be very expensive to refine the sampling
with more hypotheses. At the end of the abduction sequence the tracker has
some difficulties of finding a good fit due to rapid movement of the hand. A
solution to this may be to increase the ranges around the previous parameters,
something that would also require an increased number of hypotheses.
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Experimenting with the algorithm, we have found that the tracker is very sen-
sitive to certain parameters. Especially the valid angles for the different joints
have shown to be hard to determine. Small changes in the parameters of the
"allowed error" does also change the outcome of the algorithm notably. The
parameters that we have chosen seem to work well but there is much room for
investigation here.

The algorithm works very well given valid previous positions and a large enough
amount of data. If the resolution gets too low or parts of the hand get occluded,
the tracker encounters difficulties. If the tracker in one frame identifies a false
pose, there is a big risk of getting bad poses also for the following frames.

The aim was to develop a fully automated tracker for use in a skilled reach-
ing test setup. In this thesis, we have laid the foundation for such a system.
There are still some limitations that need to be overcome to use the system for
medical research. Most notably, the fit would have to be improved from what
was demonstrated in the test sequences to yield more precise estimates of the
kinematic angles. As we will discuss, this can be solved rather easily by doing
more iterations or by higher resolution hypotheses sampling. As for now, we
also need a manual initialization, as mentioned above, and manually measured
proportions of the subject’s hand. The need for precise measurements has been
reduced from previous implementations by introducing greater variance to the
length of the links. Further, it would be practical to speed up the algorithm to
be able to run it for more and longer sequences. An implementation in a c-based
language instead of MATLAB would probably solve the speed issues. Hamer et al.
have implemented a very similar algorithm in c++/Cg, which they run in ⇡ 6.2

sec/frame [3].
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Discussion

5.1 Initial Guess
As for now, we have initiated the tracking using a manually specified start-
ing position and orientation of the hand. Naturally, we would like to have a
fully automated tracker that could find a rough but good starting guess without
knowing anything about the configuration from the previous frame. A rough
hand pose recognizer like this could also be used to get the tracker back on track
when it loses the correct pose completely. This could probably be implemented
using the same BP algorithm working over much larger ranges, with successive
iterations over finer search spaces to refine the pose.

Another approach, which we have tested without success, is to take the result
from our arm pose estimate to find a position and direction of the palm. The
palm could then be fitted to a plane to find an orientation. The problem for us
seems to be finding good starting guesses for the fingers, something that could
be solved by the approach above. It may also be possible to do some kind of
database search over common poses.

For the lengths of the phalanges, we have introduced a greater allowed vari-
ance. Our idea is that the tracking of a hand could be initialized with the same
lengths for all subjects and then gradually refined. Depending on how far apart
the algorithm estimates the phalanges to be, the lengths can be adjusted in the
first part of the sequence. Simultaneously, the allowed variance can be made
smaller as we come to a decision on how long the phalanges are.

5.2 Using Multiple Kinect Sensors
As mentioned several times earlier, the depth images captured from the Kinect
sensor are quite low-resolution. We have also found that its not very reliable,
depth data can disappear from parts of the image from frame to frame, giving
our algorithm a really hard time to fit a model. We believe that both these
problems could be taken care of using more than one Kinect sensor. Our algo-
rithms could very easily be extended to accommodate more sensors. One would
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need to calibrate the camera system (i.e. computing the Kinect sensors relative
position and orientation) and instead of computing the mean projection error in
one camera, take the mean in both. The only possible problem we can think of
is that the structured dot patterns might interfere with each other, something
that seems to be solvable [19].

Another thing to keep in mind is that the current version of the Kinect has
been out since 2010. There is speculation about a new version being released in
the near future. This will most probably have a higher resolution. Especially a
larger amount of pixels in the depth image would benefit our algorithm. Added
resolution would also have very little impact on the speed of the algorithm. The
algorithm could also easily be made to work with any camera producing a depth
of field image.

5.3 Handling Self-Occlusion and Object-Occlusion
One of the goals was to be able to track hands interacting with simple objects.
Due to lack of time we haven’t however had the time to implement and test this.
As for now our algorithm will not work very good when hand points are occluded
by some object or even when parts of the hand itself occlude other parts of the
hand. Hamer et. al [3] suggest a very easy solution to this, namely to calculate
the evidence dependent on the fraction ↵ of unoccluded pixels within the patch
in question. Our evidence function (2.13) would then become

�(x) =

1

Z

exp

 
�↵

✓
¯�

�

◆
2

!
,

and thus the yield the same results for when no pixels are occluded, and make
all hypotheses as likely when a phalanx is totally occluded. To label occluded
pixels one could just look for data within the patch, that is substantially closer
to the camera then predicted by the current model hypothesis. One could also
extract the same patch from the photo to label object pixels as those closer to the
camera (in depth) that are not skin coloured. Much of the current self-occlusion
problems would however get solved by just using multiple Kinect sensors.

5.4 Smarter Hypothesis Generation
In order to speed up the algorithm or increase the number of hypotheses, the
hypotheses generation could be improved by studying the depth data. For ex-
ample, if there is no data in the depth image corresponding to a certain 3D
point, it is probably a bad hypothesis for the position of a phalanx. It would
also be possible to calculate better ranges for ✓ and � hypotheses based on the
depth data and the fact that the corresponding 3D points are quite closely sit-
uated.

Another improvement could be to keep track of the larger motion of the hand
and adjust the parameter ranges to take the current velocity of both position
and direction into account.
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Appendix A

Belief Propagation Proof

Belief Propagation is really just a clever way of reorganizing the sums in the
marginals derived from (2.7). We will consider the tree graph T = (V,E), where
V are the nodes and E the edges. We let X

v

denote the variable corresponding
to a node v 2 V . We want to verify that the belief computed for a node variable
X

a

is the marginal p
X

a

(x

a

). To do this we place the node X

a

at the top of the
tree and consider it the root. This can be done for all nodes, also the leaves.
The adjacent nodes of a are then roots of the subtrees springing out from those
nodes. We will refer to the subtree with root r as T

r

= (V

r

, E

r

). We will

Figure A.1: A tree can always be arranged so that any node can be considered
the root.

pursue an induction based proof, starting at the leaves and iterating upwards
toward the root. The message from one of the neighbours X

j

, (j, r) 2 E

r to the
subtree root is given by

m

j!r

(x

r

) =

X

x

j

0

@
 

j,r
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j

, x

r

)�

j

(x
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1

A
. (A.1)
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48 Appendix A. Belief Propagation Proof

We now look at the subtree with root j below r, T j . By (2.9) the belief for the
node variable X

j

in this subtree is given by

b

j

j

(x

j

) / �

j

(x

j

)

Y

k2N(j)\r

m

k!j

(x
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). (A.2)

Inserting this into (A.1) gives us

m
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(x
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) /
X

x

j

 

j,r

(x

j

, x

r

)b

j

j

(x

j

).

We now consider the induction approach. Assume that the belief of the root in
the subgraphs really are the correct marginals p

j

X

j

. This clearly holds for the
leaves, since the subgraph contains only one node and according to (2.7) the
marginal (joint probability in this case) is simply equal to �; the same as the
belief (A.2). Hence the base step is proven. We proceed with the induction
step. We consider the subtree T

r at any height (might be the whole graph T

a)
in the tree with root r. Assume that the neighbours of r in T

r have correct
beliefs in their respective subgraphs. The belief for the root X

r

in the subtree
is then
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where p

j

X

j

(x

j

) can be developed according to (2.7). The first sum should be
understood as the sum over all configurations of states in T

j with x

j

fixed,
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Inserting this into (A.3) gives us
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Here the sums of the configurations for each subgraph are multiplied together.
One configuration (element) in one subgraph (sum) is multiplied with another
configuration in another subgraph. This is equivalent to summing over the
possible configurations for all subgraphs,
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The last equality is given by the definition of the joint probability on the pair-
wise MRF (2.7). The resulting expression is exactly equal to the marginal pr

X

r

by definition. This concludes the induction step and thus the proof, we have
shown that b

a

= p

X

a

.⇤

The proof for the Max-Product algorithm in Section 2.5.1 is exactly the same
with the sums exchanged for maxima and the marginals exchanged for the max-
imum of the joint probability given one of the states.
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