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Abstract

The objective of this thesis is to investigate the use of commercial devicesas us
interfaces on a quadrotor and to investigate solutions to the problem oflskhg
control. A slung load is a uniform mass attached with a wire which is allowed to
swing freely to the bottom of the quadrotor.

The purpose of substituting the radio control (RC) controller with a commiercia
smartphone is that they are more easy to grasp and might therefore bd@ase
for a novice than an RC controller.

The existing radio control link does not exist on a smartphone so it was
complemented by a wireless network connection via transmission controtploto
(TCP) or user datagram protocol (UDP). The smartphone does wetha same
interface as the RC controller either so the same functionalities were implemented
by using the touch screen and the inertial measurement unit (IMU) of the
smartphone. However, this requires altitude control since the lack of muhiiouc
Android does not allow several inputs at the same time, thus making it impossible to
adjust the thrust as the pitch and roll is adjusted.

Another commercial device that was investigated was a PlaySta@matepad

(PS3 gamepad), whose joysticks were very similar to the RC controlleritsbut
shape was smaller and more ergonomic. It also communicated via TCP or &DP ov
a wireless network connection.

The purpose of slung load control is to reduce the oscillations of the sladigaliod
its effect on the quadrotors flight performance, thus enabling it to hdredlieier
loads.

The slung load control consisted of several subproblems; model ofg klad,
altitude control, filtering of noisy sensors and the slung load control itsefsé
were all solved but the last one where the slung load control was not imptecthe
on the quadrotor due to lack of time.

The model of the slung load was done hy letting the dynamics of two traversed
simple pendulums approximate the slung load’s angular movement.

The altitude control consists of a PID controller extended with anti-winddp an
bumpless transfer which is combined with a feedforward control of the giean
The controller acts upon a low-pass filtered pressure sensor as areraastisignal
and receives its setpoint from one of the commercial devices mentiongd.abo

The low-pass filter of the pressure sensor is a second order Buttbriili@r, whose
purpose is to reduce noise and the impact of spikes induced by events in the
surroundings.
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Glossary

attitude and heading reference systemThe attitude and heading reference system
of the LinkQuad.

bill of material A bill of materials is a list of the parts and the quantities of each
needed to manufacture an end product.

unmanned aerial vehicle A powered, aerial vehicle that does not carry a human
operator.

Control MCU The microcontroller unit (MCU) that is responsible for control
inputs on the LinkBoard.

human interface device A device that provides direct interaction with humans.

inertial measurement unit An electronic device that measures and reports on a
craft’s velocity, orientation and gravitational forces.

linear quadratic regulator A state-feedback controller which optimizes its poles
according to a quadratic cost function.

least significant bit In computing, the least significant bit is the bit position with
the least significant value.

most significant bit In computing, the most significant bit is the bit position with
the most significant value.

proportional-integral-derivative controller A generic and simple feedback
controller..

PlayStation 3R gamepad Gamepad originally configured for Sony PlayStation
3{®console. It is possible to connect the gamepad to a computer via Bluetooth.

pulse-width modulation A technique for controlling power to a motor.

Simple DirectMedia Layer A cross platform hardware API widely used in Linux
games.

Sensor MCU The MCU that is responsible for sensor algorithms on the LinkBoard.

ad hoc network A network connection without Dynamic Host Configuration
Protocol (DHCP) between two devices.

Android Client The client application for connecting and controlling the LinkQuad
from a Android smartphone.

Android SDK The software development kit for android smartphones.

Computer Client The client application for connecting and controlling the
LinkQuad from a computer.

LinkBoard The LinkQuad hardware.

LinkGS Graphical User Interface used to configure, develop and operatieehe
LinkBoard..

LinkQuad A specific quadrotor used in the thesis as a test platform.

Server This is the server program that was made to take care of the outer loop
control in the gumstix on the LinkQuad.

simple pendulum A simplification of a pendulum, which consists of a mass
moving without friction on the circumference of a circle.

spherical pendulum A simplification of a pendulum, which consists of a mass
moving without friction on a sphere.
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Acronyms

AHRS attitude and heading reference system.
BOM bill of material.

CMCU Control MCU.

GPS global positioning system.

HID human interface device.

IMU Inertial Measurement Unit.

LQR Linear Quadratic Regulator.
LSB least significant bit.
LTI linear time-invariant.

MCU microcontroller unit.
MSB most significant bit.

PID controller proportional-integral-derivative controller.
PS3 gamepadPlayStation &gamepad.
PWM pulse-width modulation.

RC radio control.

SDL Simple DirectMedia Layer.
SMCU Sensor MCU.

TCP transmission control protocol.

UAV unmanned aerial vehicle.
UDP user datagram protocol.
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1. Introduction

1.1 Quadrotors

A quadrotor, is a vertical take-off and landing aircraft that is propdieéour rotors
instead of using two rotors as a helicopter. The advantages of a quaidroto
comparison to a helicopter is that quadrotors do not require to alter the@ngle
attack of the rotors to tilt the aircraft. It increases the thrust on one ratbr a
decreases the thrust on the opposite rotor to affect an angle. Meaharkages to
vary the rotor blades’ angles are therefore omitted and thereby simplifyéng th
design and reducing maintenance time and cost.

The usage of four rotors allows each individual rotor to have a smalleretex than

an equivalent helicopter rotor to produce the same thrust, which lessekisigtic
energy that is produced. This reduces the damage the rotors would @y Hittan
object and thus it is safer to use in close proximity to humans or delicate equipmen

These advantages make the quadrotor an excellent air vehicle to beatised b
indoors and outdoors. This is one common reason why quadrotorseat@si$oth
radio control (RC) quadrotor models and as unmanned aerial vehiohsjU

Flight Dynamics
This section will give a general introduction to the dynamics of a quadrotor.

Definitions  The first coordinate system is called world coordina¥¥, Z],

whereX is horizontal, parallel to the equator and positive in a westbound direction.
Y is horizontal, perpendicular to the equator and positive in a northbouectidin.

Z is vertical and positive towards the center of the Earth. It can be usesfiteedhe
absolute position of a quadrotor.

The second coordinate system is called body coordinAte¥s, Zg|, whereXg is
parallel to the axis of the front and back rotors and positive towards diné rfotor.
Yg is parallel to the axis of the left and right rotors and positive towards tling rig
rotor. Zg is parallel to the normal of the plane spanneddgyandYg and positive in a
downwards direction.

Euler angles of the body axes df ¢, ] with respect to the world axes and are
referred to as pitch, roll and yaw in the given order.

The front and back rotors rotate clockwise and the left and right rotbase
counter-clockwise.

Dynamics The quadrotor’s acceleration and attitude can be controlled by
changing the rotation rate of each rotor and thus, the induced thrustiofe@r. A
guadrotor is said to be hovering when there is no horizontal movementratach
induces the same thrust and their combined thrust equals the force inguced
gravity. Each rotor’s thrust at hovering is called hover thriist= %’, wheremis
the mass.

The combined thrust of the rotors will control the acceleration in the Z-axi®if
guadrotor is horizontal. To change the thrust of all rotors, the rotatierofzall
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rotors shall be changed by an equal amount. This combined thrust ceebeas the
throttle of quadrotor if its attitude is stabilized.

Attitude control is achieved by controlling each angle, {pitch, roll, yaw},
individually. Pitch can be controlled by creating a difference in thrust betwthe

front and back rotor. If the front rotor’s thrust is increased, it vaike the front

rotor. The back rotor will be decreased with the same amount to maintain the total
thrust. By increasing the back rotor’s thrust and reducing the fraat’spthe front
rotor will be lowered. The behaviour for pitch and roll are analogoxset that for
roll, the left and right rotors are used.

The torque of a rotor is related to its rate of rotation and the torque can beagdr
increased by reducing or increasing the rate of rotation. Yaw is affégtétake
rotation created by the difference in total torque in between the rotorstdriaise
difference is usually cancelled out by having a pair of rotors rotatingkelse and
another rotating counter-clockwise. By increasing a pair of rotorstiortaate and
decreasing the other’s, a torque difference can be created anéddé&usontrol the
yaw. As before, the increase of rotation rate on the clockwise rotatingpato
requires a decrease on the other pair to maintain the total thrust.

1.2 The LinkQuad

The LinkQuad is the quadrotor that has been used as a test platform ingis. tih
has the capability to act as a UAV, but in the normal case it is controlled frR/@ a
that communicates to the LinkQuad through a radio link. An application for
monitoring and configuration, LinkGS, is delivered together with the LinkfQua
This application can be used to change how the LinkQuad should be codizolte
change how the LinkQuad internal control algorithms should behave.

The LinkQuad contains the high performance circuit board LinkBoarith#it is

built up by two Gumstix computer-on-module boards, two microcontrollersrezfe
to as Sensor MCU (SMCU) and Control MCU (CMCU), sensors, camedaame
other components. The LinkBoard contains the following sensors: Oris 3 a
accelerometer, three gyrosensors, a magnetometer, a GPS and egmsesnsor. The
LinkQuad also has an external analog camera, whose video outputdsaessible
through the LinkQuad. However a computer on the ground can receideafeed
from the analog camera through a framegrabber.

The SMCU handles all the communication with the sensors. For other components
to use any sensor data, a request query to the SMCU must be sent.git@stre
containing identifiers for the data that is requested, is sent via a seritd bus

SMCU. The SMCU will respond by continously pushing the latest sendoesaf

the requested data. In the same way, if another component should sattsetbthe
existing attitude control instead of steering with the RC, a serial connect®toha

be maintained and inputs sent through it to the CMCU, which handles the inner
control loops and the pulse-width modulation (PWM) outputs to the motors.
Through LinkGS, the inputs and the parameters of the inner control l@pbe
configured to assign the user specified inputs from the serial bus asnsetipstead.

The Gumstix boards have a WiFi circuit, which supports the 802.11 b/g miciod
allows a wireless connection from computers or other WiFi-supporting uniteeto
LinkQuad. The Gumestixs can be used as the components that can resnsest s

data and send inputs to the motors via the CMCU and they are the hosts for all the

10



1.3 Problem Description

software developed for the LinkQuad in this thesis. A sketch of the diftere
components and the connections in between them can be seen in Figure1.2.Th
dimensions of the LinkQuad [AB11] can be seen in Figure 1.1.

Existing Control

The existing control, previously mentioned as the inner control loopsjstertd
stabilization of attitude and an open loop control of the thrust. The natureof th
dynamics allows pitch, roll, yaw and thrust to be controlled individually.

Each angle is stabilized with a PD controller and the thrust is not controlled but
forwarded directly to the motors through the mixer, see Figure 1.3.

Each PD controller use the corresponding input from the RC controlieisagpoint
and the angle to be controlled and its corresponding angular velocity as
measurement values. The output is the reduction or increase in thrushthed be
put on each rotor, which is aligned with the angle.

Each controller is then connected to a mixer, which calculates each mototieico
input. This is done by adding the thrust input to the output from the PD d@arso
of yaw and the angle which is parallel to the current motor. As an examplbattie
motor’s input is the sum of the output from the thrust control, the output fifee
yaw control and the negated output from the pitch control. The outpnrt fhe pitch
control is negated to have the inverse effect on the back rotor comizatieel front
rotor.

Each angle and its angular velocity are derived from an attitude and lgeadin
reference system (AHRS).

6.5 ¢
. 68.5 cm
]
E A | — : —
3 ——{ - |: -
- | L.—-f | =
o |
' L] .
—
(a) Top View (b) Front View

Figure 1.1.Dimensions of the LinkQuad [AB11]

1.3 Problem Description

Thesis extends the existing system in two ways:

1 User control via a commercial device, i.e. a smartphone or a
PlayStation &gamepad (PS3 gamepad), will be introduced. the user should
be able to steer the LinkQuad via this device without using the existing RC.

2 The LinkQuad should be able to function as a mobile crane with a slung load.
A slung load is a uniform mass attached with a string to the bottom of the
quadrotor and it is allowed to swing freely.

11
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Figure 1.2:This sketch shows the different components of the LinkBoard and the
known protocols that are used between the components.

thrust
— e

0.0 P i
_ ——o e wowrz |
: : Mixer :

et o0 " L )
—— ool o

Figure 1.3:The existing control: Setpoints are received from the RC receiver at the
SMCU. The setpoints and the estimated angles from AHRS is sent to the CMCU. A
the CMCU, the controllers’ outputs are calculated, saturated, mixed into ichaky

PWM outputs and sent to the motors.

The first problem introduces the following subproblems:
e Choice of smartphone platform.
e Communication between the smartphone and the LinkQuad.

e A user friendly interface on the smartphone which enables most of the
functionalities of the RC.

Since smartphones do not support the same radio links as the RC, anothed wie
communication needs to be found. The Gumstix board on the LinkBoard bassac
to a Wifi connection which could be used instead. This implies that the
communication is required to go through the Gumestixs instead of passing through
the existing radio link that the RC use. This can be solved by creating a serve
application on the Gumstix which uses the serial communication to forward inputs
and commands.

The second problem introduces oscillations from the slung load and will irthgair

12



1.4 Context and Purpose

DSmartphone

Figure 1.4:lllustration of the system.

flight capabilities. Therefore, control of the slung load must be introditeeeduce
the pendulum effect of the load. The quadrotor should then be able toyithoer
and land with a slung load and during the hover be able to reject disturdasee
Figure 1.4 for a sketch of the system in action.

The second task could not be completed fully, but the following subprobhemes
found and completed:

e Control of a slung load in the horizontal plane on an experimental rig.
e Investigation of the existing sensors to get an estimate of the altitude.
e Altitude control.

The control of the slung load could either lie on an external personal t@mer in
the server application on the Gumstix board. If the angles of the slung loald e
derived by computer vision algorithms, it would have to lie on an external atenp
However if local sensors could be used, it would be possible to have liteoscon
the Gumstix. Since a sensor solution from a present laboration rig is easiss to
and it is available, it will be the first choice.

To apply the solutions to the slung load control and communication device, altitude
control of the LinkQuad is required. This could be provided by the global
positioning system (GPS) but only outdoors.

Due to this and to that the GPS was not fully implemented at the time of the thesis, it
was disregarded but for future solutions it could be used to providdugbs

positioning. Measurements of the altitude could still be derived from ayress

sensor.

1.4 Context and Purpose

The objective of this report is to investigate the use of commercial devioeseas
interfaces on a quadrotor and to investigate solutions to the problem oflskohg

13



Chapter 1. Introduction

control.

The purpose of substituting the RC controller with a commercial smartphone is tha
they are more easy to grasp and might therefore be easier to use fdce than an
RC controller.

The purpose of slung load control is to reduce the oscillations of the sladigliod
its effect on the quadrotor’s flight performance, thus enabling it to lesmebvier
loads.

ELLIIT is a collaboration between multiple universities within common fields, i.e.
realtime systems and artificial intelligence, and the development of the LinkQuad
guadrotor is one of its projects. This Master’s thesis is a part of the HLLII
collaboration.

1.5 Delimitations

The thesis considers only two types of smartphones, those with Androia OS o
Apple iOS. It was not relevant to do an evaluation of all smartphone tpera
systems, since it was more important that the smartphone fulfilled the requisemen
of the thesis and that the development could start early.

The load is considered to be attached or disattached and that no release or
attachment mechanism exists. This implies that no effects of releasing orirdgtach
the load will be controlled.

1.6 Method

The thesis started with an investigation of what possibilities and challenges it
contained. This was done by using a "Divide and Conquer” approaeherhe
thesis was split into smaller subproblems and then a workflow was created fro
these subproblems, see Figure 1.5.

When the thesis had been broken down into workable challenges, tHegleeat
started. The thesis was done in a more dynamic way by focusing on the rasstpr
and doable problem, instead of having different phases designatieel. for
development or testing. The planning was therefore done by using a baptom
traversal of the workflow so that all dependencies would be met bafoesv task
was initiated.

It was also decided that the two authors should focus on their own amgeftise
even if that was occasionally disregarded and both cooperated to smgblam.
Even though different areas of focus existed, both students workexeman
understanding in each other’s areas. Testing was done together srdakpuad
requires both a pilot and an operator of LinkGS.

The tests were designed in different ways depending on what samctiénality
was to be tested. If it was a pure software function that required notewiw the
process, the functionality could be tested on the real platforms with the motors
turned off. However, if the function required flying or some other liverist&on
with the LinkQuad, it was always simulated first using models or scripts in
MATLAB and then tested on the real quadrotor.

14
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Opposition 7h{ Finished '
Pop. Scientific
article Presentation
\

Master Thesis
report

Clients developed | . LQ developed and
tested

and tested
Network and | Server
Computer client Smartphone client Serial development and Cc;?l:;::nand
‘ communication testing g
i | . . i
& |
| Keyboard l srf]:‘:;;: :rf‘ = Altitude cantrol
L !
[ |

Pressure filtering

IS

Figure 1.5Workflow chart.

Documentation have been made continously to ensure that no knowleddmstvas
during the development and that the information was as precise as possible.

Distribution of work

Mikael Rudner Niklas Hansson Common

Keyboard Controller PlayStation & gamepad Serial Communicatior
Network Protocol Control Server

Android Client Gantry Crane Computer Client
Testing Simulations Low-pass Filter

Table 1.1:The distribution of work between the two Master’s Thesis students.

In the beginning it was planned that Niklas Hansson would focus on thteoton
problems of the LinkQuad while Mikael Rudner would focus on the programmin
problems. However, the dependencies of the subproblems implied that sesseé
focus was intermixed. The distribution of the work can be seen in Table 1.1.

15
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1.7 Related work

The interest in quadrotors has expanded over the latest few yeagstsisenple
design and control makes it an attractive solution for UAVs and, if ptgper
configured, as radio controlled toys.

The research within steering quadrotors with smartphone is not so exddnsi
there are two significant projects, where the first is the commercial ARedvaimch
is steered with either an iPhone or an Android smartphone. It can alsadelex
by creating a custom client for a computer and connecting a human intedaime
(HID) to the computer for inputs.

An second solution was investigated by Lichtenstern, Angermann ansl Btas
German Aerospace Center (DLR) where an Android smartphone is usedttol a
swarm of quadrotors to film outdoor events. [LAF11]

The area of slung loads is host to a wide array of research projedisttotarge and
small single-rotor helicopters. An example of such a project is the worksufaard,
Bendtsen and la Cour-Harbo, whom has investigated modelling of a sluthg loa
system on a small-scale helicopter. [BBICHO6] As for control of a slund twa
guadrotor, it was not so extensive. Two videos were found fronogegtrat the
Aerospace Controls Laboratory (ACL) at Massachusetts Institueafitdogy
(MIT) in which a quadrotor successfully rejected disturbances on @ $bad.
However, no official papers or web page could be found.

1.8 Outline of the report

The report is divided into the following chapters. Each chapter containsrdoer of
sections that are described below.

e Introduction: This chapter presents background information, problem
description, context of the problem, methodology and related work.

e System Overview:This chapter describes the system as a whole, platforms,
the main software of the server, network communication, serial
communication, logging and how tests and verification was executed.

e User Control of a Quadrotor: This chapter describes the solution of the user
control of the LinkQuad.

e Slung Load Control on a Quadrotor This chapter describes the gantry
experiment, sensors, the altitude control and the progress of the cohtinel
slung load.

e Conclusions:This chapter describes the conclusions of the thesis and
recommendations for future work.

e Appendices:Documents that describe how to use the applications that has
been developed and other aspects that help to set up the system.

16



2. System Overview

This chapter will discuss how the system as a whole is composed and how the
different components interact.

The chapter first presents an overview over the system and then @sitthe
platforms of the system and the related development tools. Third, the siesign

and its implementation will be introduced. Fourth, the network communication will
be described. The fifth section contains the implementation of the serial
communication between the different microcontroller units. After that, the lgggin
is presented and finally, the testing and verification of the system will beidedc

2.1 Overview

The system can be distributed on three platforms; an arbitrary computer with
support for wireless network and Bluetooth, a Android smartphone withaccess
(rooted), which is configured to support ad hoc networks, and theQuiakl itself.

The computer and the smartphone make up the client side of the system, where
either enables the user to steer the LinkQuad. The LinkQuad hosts afesrae
client on a Gumstix board and a client can connect to it via the ad hoc netWoek
user will need a PlayStatior®gamepad (PS3 gamepad) to fly with the application
on the computer, which is connected via Bluetooth and registered as a jaystick
the computer. An illustration of the system can be seen in Figure 2.1.

From here on, the clients will be referred to as Computer Client and An@igdt
and the server as Server.

DSmartphone

Figure 2.1:llustration of the system.
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Chapter 2. System Overview

2.2 Platforms

Each part of the system, e.g. clients for user control, has to reside otiapland
the development tools and design choices rely on these platforms’ hardesign.
In this section, the different platforms will be presented and the main fodlisev
on the smartphone since the hardware options are diverse but mighticgrod
restrictions, such as programming language and input possibilities.

Smartphone Client

The Master’s Thesis specification contained the assignment to developtalsome
application that could be used to steer the LinkQuad. Some questions existed f
the beginning such as if the target platform should be Android or Iphone.

The Choice between Android and Iphone The first challenge to complete was the
choice between Android smartphones and Iphone with iOS. Both had their
advantages and disadvantages. The initial study of Android and iO&@ns $n
Table 2.1.

Android | IPhone
Java +
Objective C -
Apple Store -
Development License -
Accustomedness

Open Source

Table 2.11nitial study of advantages and disadvantages of Android smartpleomks
Iphones. Plus sign (+) denotes a positive feature. Minus sign (-) deaategative
feature.

Android uses the Java programming language with the Android SDK and &bogev
an Android application no licenses are needed. Android itself is also @ugoes
which in the authors experience gives some assurance that it has spiree de
code quality. [Gool1]

To develop for the Iphone, it is required to have a development licertsa dMac
computer, where the development license costs 99% per year. Thampmogrg
language for Iphone iOS is Objective C, which is a modified version of CCarel

When an application has been developed, it has to be added to AppleStéppto
able distribution to more Iphones then the one it was developed on. Thisiisagq
since Apple does not tolerate unmonitored third party applications and esaalir
applications are reviewed by them. This related to public distribution and details
regarding any other options that might be available was not investigatpd1[4

Since Android smartphones were cheaper and that neither of the thekdatsthad
any experience with Objective C, it was quickly decided that Android was th
preferred choice.

After the development had started, it was noticed that the initial study missesl so
important parts, i.e. multitouch. A second study took place and is presented in
Table 2.2.
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2.2 Platforms

Android | IPhone
Java +

Open Source +

Accustomedness +
Multitouch -
Ad Hoc -
Reliability

Objective C
App Store -
Development License -
Different Platforms | -

+ |+ |+

Table 2.2:Secondary Study of pros and cons. Plus sign (+) denotes a positivedfeatu
Minus sign (-) denotes a negative feature.

Iphone has a more accurate multitouch than Android smartphones, whitdskas
accurate multitouch. This was noticed during the development of the joystitheo
Android application. A second problem for Android is the hardware dépey and
the open source customability. Manufacturers may develop different
implementations of the Android which may require porting of software. Since the
different manufactures are using their own hardware, it may result iratAadroid
smartphone does not fullfil the hardware requirements.

Iphone smartphones are on the other hand restricted and they havesathilae
hardware and are therefore more reliable. The Iphone, comparedAm¢hneid
smartphone, also supported ad hoc networks which is a crucial feataectke
Gumstix boards on the LinkQuad had no DHCP server configured in itemires
version. These problems limits the possibilities of which platforms can be used fo
an Android client.

Android was still considered to be the best choice, since the ad hoc kgtvaiiem
could be solved by changing the wpa_supplicant, the network softwang, cied
since lack of multitouch was not a major drawback.

The problem of different platform specifications still remains and this sysias
tested on a LG P500 Optimus One, from here on referencedthedsst phoner
the test platform

Multitouch or Singletouch When the development first started, it was planned to
use the inertial measurement unit (IMU) to set pitch and roll and to use alirtu
joystick to set thrust or altitude and yaw setpoints simultaneously.

The virtual joystick and a button to activate the capturing of IMU values \iiese
implemented using the multitouch ability of the test phone. The multitouch would
enable the simultaneous use of the IMU and the virtual joystick, but its peafoce
was poor.

The specific implementation of multitouch mixes up the finger inputs and
sometimes even loses track of a finger. This was unacceptable since licatepp
could then send wrong control values, resulting in a crash. Multitouchheasfore
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Chapter 2. System Overview

considered to be inadequate and a singletouch approach was used! iimgtlyang
that thrust and yaw could not be controlled in parallel with pitch and roll.

Ad Hoc Network One of the bigger challenges was that the Android smartphone
did not support connections to ad hoc network. An initial assumption wag tha
could be avoided by configuring the Gumstix board to act as an DHCPrdentae
network it created but its operative system did not have support foné.sblution

to the problem was found by using a rooted Android smartphone and it rebu
wpa_supplicant file. [bla10]

The guide contained a prebuild on the wpa_supplicant, which changesttherk
filter’'s behavior to show and accept ad hoc networks. An ad hoc nkfwshown in
the same place as other networks but has a prefix of an asterisk (*).

Threads After the initial study of smartphones, one of the arguments for using
Android was the Java programming language, which the students hasexgelr
with. However, the Android SDK had made some changes which led to a more
challenging development than was expected. The challenges and th&orsoare
listed below:

An Android application consists mainly of activities which are executed asséie u
interact with the screen. This is not suffice since the application will have itotana
a constant network connection and read continously from the IMUoltlstthereby
not be possible to have the application running when the smartphone is gleepin
the application is not in focus. This could be solved by extending the applicatio
with either a Java service or a Java thread to handle these tasks in thedoackdt
was decided to use the latter since it was considered to be easier to implement.

The challenge of closing the thread and exiting the application on lost foasis w
solved by killing the application as soon as the actitivy, which the thread bedbng
to, was paused or exited.

Together with a non-blocking read operation in the network connectioaultide
said that the Android Client is a single-threaded application with activities attich
to it.

Computer Client

The Computer Client application will reside on computer systems and since C++
was chosen as one of the programming languages for the thesis, segtbelow
problem of machine and operative system dependencies came foréxdrople, a
Windows machine does not support Posix threads (pthreads) peitdefd *nix
systems does not support Windows threads.

The thesis students had access to computers with Windows, Unix and OS X as
operative systems so it was decided that the applications should be ptotable
three operative systems. This could be achieved by using the Boost Catidi
that are portable to all of the operative systems in question. Boost sappor
everything from threads and math to network communication and file handling,
which makes it ideal to use in a multiplatform application. [BD11]
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2.3 Server

Server

Since the Server is supposed to be executed exclusively on the Andgsisad
Linux distribution, it was decided to use the standard C++ libraries.

Development Tools

The main issue was the decision of which language to implement Server and
Computer Client in. There was a probability in the beginning that the Computer
Client would be integrated into the LinkGS. Thereby, the same programming
language, C++, was chosen for Computer Client.

Since Server was to be put on the Gumstix board without any dependiedis} tbf
possible languages was longer. However, since the Gumstix board ases th
Angstrém operative system, which supports gcc, and the Computer Chesrtvibe
implemented in C++, the choice fell upon C++ for the Server as well.

Since the smartphone was based on Android, it was to be developed in Java

MATLAB was used together with Simulink to derive and simulate different @ntr
and filter algorithms.

2.3 Server

In this section the general implementation of the Server and design patterbg will
discussed. Detailed implementations of specific parts of the Server aresisidn
the following sections; Serial Communication (Section 2.5), Network
Communication (Section 2.4), Sensors (Section 4.2), Control (Sectionntl3) a
Logging (Section 2.6).

The Server consists of three major pamtsster, Connection and
SerialCommunicator. Master and its implementations contain a state machine
and a control loopConnection and its implementations handle the network
communicationSerialCommunicator consists of two parts, an interface of
functions forMaster to use for the serial communication with the Control MCU
(CMCU) and the second part is a thread which handles the serial comrianica

with Sensor MCU (SMCU). Several patterns were used to structure anerrapt

the Server, both to lower the code complexity and to make it easier to modify in the
future.

Master, Connection andSerialCommunicator are separated with either a
monitor or a mailbox to ensure mutual exclusion on shared data.

The heart of the Server is the abstract ciésster and its two implementations,
LoadedMaster andFreeMaster, that are two different state machines whose
behaviour depend on whether a load is attached or not. The state machine
functionality exists inMaster where the current state is periodically invoked and the
specific state’s behaviour is defined and executed in the implementing class.

The current state is kept ReferenceMonitor and state transitions can be made
from eitherMaster or Connection. This enables a transition to be triggered by
commands from the network communication and thereby the user. The state
machines and the control are discussed further in Section 4.3.

TheMaster classes’ communicate wittbnnection through two mediators,
MailBox andReferenceMonitor, which were created using the Mediator
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Chapter 2. System Overview

LoadedMaster TCPConnection
ol v
FreeMaster [> Master MailBox Connection UDPConnection
1 1
>
1
1 1
SensorMonitor ReferenceMonitor

1

SerialCommunicator

Figure 2.2:The class diagram of the Server. Thennection are implemented ac-
cording to the Template Method pattern. THez lBoz, ReferenceMonitor and
SensorMonitor are implemented according to the Mediator pattern.

pattern.[Gam96, p.273-p.28R%4ilbox can contain a message that should be sent to
the connected client ariéferenceMonitor holds the current state and the
setpoints of the control loop. The Mediator pattern implies thatithieer classes
need only to know that the message is only required to be ptihBox to be sent.

In the same way, it implies that thiaster classes are only required to use
ReferenceMonitor to get current setpoints. BoMailBox and

ReferenceMonitor act as mediators, limiting the interaction between the two
classes, thus making the two parties implementation independent of eachrather a
easier to modify. BotiMailBox andReferenceMonitor have mutual exclusive

entry to all functions to ensure thread safety.

The network implementation for the Server were implemented using the beHaviora
design patterfemplate MethadThe Template Method pattern allows a superclass
Connection Set a template of execution and deferring some steps to subclasses to
implement.[Gam96] This enables future users to extend with their specific
implementations of network communication. For further details, see Section 2.4.

SerialCommunicator consists of two parts, an interface for sending data to the
CMCU and a thread which handles all communication with the CMCU. This is to
enable fast access for tHaster classes to send data and to reduce the
computational delay for the control loop by removing the responsibility cfivéany
data.

The thread oBerialCommunicator iS separated froMaster with
SensorMonitor. SensorMonitor is also implemented according to the Mediator
pattern and is protected by mutual exclusion. Its main purpose is to supply the
Master classes with the latest available sensor d&daialCommunicator IS
thread-safe since all shared data is protectel®irsorMonitor and the interface to
CMCU does not share any data with the threa8dnialCommunicator.
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2.4 Network Communication

2.4 Network Communication

The clients need a uniform way to communicate with Server as they are
implemented on different platforms. Their inputs need to be forwarded toaheS
and interpreted without consideration of which client the inputs originata.ffo
protocol was therefore developed for the communication between the dieththe
control loop in the Server, see Section 2.4 for a detailed description ofdhecpl.
Messages are packed according to this protocol and then sent to Garae
transmission control protocol (TCP) or user datagram protocol (Ld0R)ection.
The choice of underlying protocols is also motivated in this section.

As can be seen in Figure 2.3, the clients handle the communication with TCP/UDP
directly while Server separates the network responsibility from the cdowplwith
Connection to reduce the computational delay in the control lo@gnnection is a
network handler, which is in charge of the network communication of aurre
connection. It interprets all received messages into setpoints or into cafsraad

feed them to the control loop viaReferenceMonitor. All outgoing messages

from the control loop are put in a mailbox, whiChnnection pulls from and sends

to the other party. For details, see page 24.

Server

Control Loop

v 4

Client MB RM
E.....................................-.i E * *
Client i i | Connection

3
TCP /UDP 4-—'-} TCP /UDP

................................................................................

Figure 2.3: lllustration of active network communication between Computer
Client and the control loop in Server. MB stands f#ai1Boz and RM for
ReferenceMonitor.

Network Protocol

First, the design of the internal protocol is described and then the implemestatio
of the TCP and UDP versions will be introduced. A summary of the different
messages is given in Table 2.3.

When a message is to be sent, it is packed into a 160 bits large package withtthe fi
32 bits as the ID and the following 128 bits as the payload. In the beginning of th
thesis a version with 8 bits ID and 32 bits of payload was used, but this résulée
constraint on the payload. The constraint was that a direction messagealya

range of -127 to 128, which was sufficient for the current probletwas an
unnecessary restraint for future usage. The Gumstix board hasrstqpthe IEEE
802.11b/g standard for wireless networks, [Meill] implying a possibleecion
speed of 54 Mbit/s, this would result in that a 40 bit message sent over a TCP
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Chapter 2. System Overview

Message Type Message ID| Payload
Ping 0 Acknowledge

Direction Message| 1 Pitch, Roll, Yaw, Thrust Difference
Trim Message 2 Trim Value

Land/Lift Message| 3 Acknowledge

Terminate Message 4 Acknowledge

Close Message 5 Acknowledge

Table 2.3:Different network messages with their ID number and how the paylod is
interpreted.

connection (52 bytes head) will result in a 57 bytes package. [Dykbi] fackage
would be sent in 34-10% s in a ideal situation with direct line of sight and no
interference. Since the control loop has a sample time of 10 ms, this implies that
1184 different messages can be received during one period. Fb8@hat message
sent over a TCP connection (52 bytes head) would result in a 72 bytkagmand
the package would be sent itDZ- 10-° s. This would enable 937 different
messages to be received during one period of control. Since recenipgne
message in a loop of the control is sufficient, the limitation of using eight bits is
unnecessary and would perhaps constrain the accuracy for futeresens.

The data of the payload is representing different properties depeatiihg
message type. For a command message, type 0 and 2 through 5, the fitstd32 b
the payload is either 1 or O to determine whether it is a command or an
acknowledgment to a previous command message. For a direction message, th
payload consists of four integers representing setpoints for pitch, avll and
difference of thrust. The setpoints of pitch, roll and yaw are to be sahttmner
loops of attitude control and the setpoifitference of thrusts to interpreted either
as how much the thrust setpoint should change (manual flight) or how mech th
altitude setpoint should change (altitude control).

TCP and UDP

The main advantage of using TCP is that the system gains a reliability of
communication but also a disadvantage of slower communication. During the
testing it was noticed that the disadvantage was so small that it was not miitgwo
However, this reliability is not always a requirement. When a client is seraling
direction message, the Server requires only the latest input and it doemtter if
occasional messages are lost during the flight.

The main advantage of using UDP for realizing the network protocol ista fas

communication but at a loss of reliability since packages may be lost. During
testing, it was found that the loss of packages happens more often tiher fapart
the reciever and the transmitter where.

Both protocols are implemented in two versiong€ofinection, TCPConnection
andUDPConnection.

Network Handlers

Server uses a dedicated network handlennection, to separate the main
functionality from the network communication. The purpose of this is to rethee
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2.5 Serial Communication

computational delay of the main functionality, i.e. the control loop in Server and
increase the stability of the system. A second benefit of this is the abstrastin le
between the network implementation and the main implementation, which implies
understandability and usability.

An instance of the network handler is created when a client tries to cotmect
Server and there is a limit of one active instance to ensure that only oneaadien
steer the LinkQuad simultaneously. The network handler executes a simpJe loo
which reads from the connection if data is available and after that it writegto th
connection if there is a message to send available. The incoming messages are
interpreted into setpoints and commands, which are forwarded to the
ReferenceMonitor, which supplies the control loop with setpoints and its current
state and the outgoing messages are fetched fiearmBox.

Mailbox

A mailbox stores a single message that has been received or that shcelol b
can only store one message at a time but it prioritizes what messages thidttsho
stored by looking at the id of the message. The greater the id number, theg high
priority, e.g. if a Ping Message, id = 0, is stored in the mailbox, a Land/Lift
Message, id = 4, will overwrite it.

However, if the new message is of the same type as the stored messagey the ne
message will always overwrite the stored one. This is to ensure that thiedatass
used at all times.

Reference Monitor

The reference monitor stores the latest set points and the current stdtetha
control loop should use. An example of such setpoints are the desiredeatiittite
LinkQuad.

2.5 Serial Communication

The LinkQuad has an existing interface for serial communication to andtfiem
SMCU and the CMCU, which enables applications on the Gumstix boards tesacce
sensor data and send data to be used in the existing control loops. Tlecmter
supplies the user with both an existing protocol and functions to import gt tex
data to the protocol. This section will therefore only introduce the readeistdityh
level protocol and its uses but will omit how it was implemented on the serial bus

From an example given by the developers of the LinkBoard, a simple serial
communication layer was implemented, which is used to send data to the CMCU.
The same example was also used to implement a listener to the serial communication
and thereby separating the control loop from the serial communication with a
monitor. Both these parts exist #@rialCommunicator, see Figure 2.4,

SerialCommunicator is both a thread, which handles the incoming data from
SMCU, and a set of functions for sending data to CMCU. This enabletiteot
loop to send data direct to CMCU and to not waste execution time to read from
SMCU.

The low-pass filter is executed $erialCommunicator due to the need of a
different sample time than the control loop. The SMCU can send data at a nraximu
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Chapter 2. System Overview

frequency of 500 Hz and is currently sending at 250Hgd6ialCommunicator.
This is implied by the need of a high sample rate of the low-pass filter of the
pressure sensor, see Section 8&t.ialCommunicator puts the sensor values in
SensorMonitor, which is shared with the control loop.

SMCU | SerialComm m|  cmcu
L 4
SM
4

Control Loop

Figure 2.4: lllustration of serial communication between the control loop aad th
external microcontrollers. SM stands f®¢nsorMonitor and SerialComm stands
for SerialCommunicator.

Serial Protocol to Control Microcontroller Unit

The existing high level protocol supports arbitrary data to be sent to thelCM
packed in an array with eight floats. This can be used in the CMCU by awirfig
the PID loops in LINkGS to applseceivedParamsXvhereX stands for the index in
the float array, as a target or an input. The array is also logged aitatdedor
plotting during runtime in LinkGS.

In Table 2.4, the present use of the parameters is presented.

Data

Pitch.

Roll.

Yaw.

Yaw trim.

Set point for the altitude control.
Control signal.

Current state or PID output if manual tracking is live.
Altitude.

>
[eX
L]
X

N o oA W N P O

Table 2.4:Received parameters and their contents ordered after index. The param
ters are sent from the Server to the Control MCU through a serial cdiorec
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2.6 Logging

Serial Protocol to and from Sensor Microcontroller Unit

The SMCU can supply the other microcontroller units (MCUs) with data on the
serial bus. To gain access of this data a request must is sent of wisat salues
that are wanted and how often these values should be sent. The riscuestray
which contains the identification numbers of the sensor values that aredva@he
identification numbers can be found in [AB11].

The SMCU can send at a maximum frequency of 500 Hz and at present #me th
Server uses a frequency of 250 Hz to run filters on the data at a higineiney.
There is no need to push the SMCU after the request, the sending of dtgasta
once. The data is unpacked into a struct and there easily accessarlier tise.

Serial Listener

The serial listener handles the responsibility of the high frequency comatigric
from the SMCU, applying a low-pass filter to the noisy pressure signal and
supplying the sensor monitor with the latest data.

The low-pass filter is put here to decrease the computational delay ofritrelcand
to allow it to have a higher sample frequency than the control loop, for neieelsl
see Section 4.2.

SensorMonitor

TheSensorMonitor is implemented in the same way as the reference monitor but
holds sensor values instead of state and position changes. It has nxatuaive
entry to all functions to ensure thread safety.

2.6 Logging

All of the developed applications have support of logging. The AndrdiehCuses
adb logcatfor logging and debugging. The Computer Client and the Server use
custom logging procedureBrinter andFileLogger. The logging procedures can
be configured with the configuration file for the Computer Client and theeBerv

Printer

Printer prints the log messages to the screen. This enables the user to follow the
execution live on the screen.

FileLogger

FileLogger prints the log messages to a file, whose name is set in the configuration
file.

2.7 Testing and Verification
This section will give an introduction to how the different functions of thetem
were tested and their functionalities verified.

The foundation of the system is the network communication so it was to be derifie
first. The protocol of network communication and the applications that use the
protocol had been implemented in different languages so it was chosea & u
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]

Computer

Computer Client Keyboard )

P53 gamepad ]

MNetwork Communication

uoP
\ poe ) Android Client ]

]

LinkQuad

LinkQuad Server )

I

Serial Communication J

Sensor MCU J Control MCU ]

Figure 2.5: The different components of the system that was tested.

black-box technique calledlack-box random testin@ur03] The client sends a
message, the server unpacks the message, then repacks it againdmnit tsack to
the client. At the client, the received message could then be verified to barttee s
as the sent message.

It was important that every message type was tested with both normal vallies a
values that are outside of the limits of the payload and that messages wittetcorr
identification numbers are tested so it is proven that they are rejected without
problems. See Section 2.4 for more information about the payload. It camée
proven that the network communication can handle all of the different wjpes
values and messages. The test set is required to be executed for bb@Rtzad

the UDP protocols. The test set is presented in Table 2.5.

Since the development environment on the computer was equipped withgdebug
tools, it enabled the use of the white box technigaeerage analysidt implies that
the execution of the code is studied and how inputs affects its flow. Thegjmal
verify that all code statements executes in a proper way. It is calledageer
analysis since a complete coverage requires that all code statementseateltes

not, a code inspection must be done to design test cases which will maximize the
coverage. Together with a black box technidpaeindary value analysig good set

of tests could be created. The input for the tests was different messagesom

the network connection, see 2.4. The output was written to the logger and
studied.[Bur03, p.72, p.101]

As for the computer client’s functionality, the focus was put upon the human
interface devices (HIDs). The test set was first executed by usingthmard to
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Test numbern Input Expected output
Network-1 | Direction with invalid pitch value | Error
Network-2 | Direction with invalid roll value Error
Network-3 | Direction with invalid altitude value Error
Network-4 | Direction with invalid yaw value Error
Network-5 | Direction with normal payload Input
Network-6 | Lift Input
Network-7 | Terminate Input
Network-8 | Close Input
Network-9 | Trim Right Input
Network-10 | Trim Left Input
Network-11 | Ping Input
Network-12 | Incorrect Negative Message ID Error
Network-13 | Incorrect Positive Message ID Error

Table 2.5:The test set of the network communication - Input is messages sent from
the client computer, Expected output is the message that is sent badké&cerver.

create messages and then repeated for the PS3 gamepad. The tesbsetarn in
the Table 2.6.

Test number | Input Expected output

Computer-1 | Direction No output, No lift off yet
Computer-2 | Lift, Direction Lift off, Flight

Computer-3 | Lift, Direction, Land Lift off, Flight, Landing
Computer-4 | Terminate Termination message
Computer-5 | Close Closing message

Computer-6 | Lift, Direction, Terminate | Lift off, Flight, Emergency landing
Computer-7 | Lift, Direction, Close Lift off, Flight, Emergency landing
Computer-8 | Trim Right Trim

Computer-9 | Trim Left Trim

Computer-10| Lift, Direction, Trim Left | Lift off, Flight, Trim

Computer-11| Lift, Direction, Trim Right | Lift off, Flight, Trim

Computer-12| Ping Ping

Table 2.6:The test set of the computer client - Input is the action that the user intro-
duces. Expected output is the log of the client.

For the Computer Client, it was also important that the tests were done for the Un
Mac and Windows platforms to ensure portability.

The tests on the Android Client were done by using the same test technigliessa
set, Table 2.6, as the Computer Client.

In comparison with the personal computer environment it was more chaltetayin
monitor the execution of the server program since the Server is exeaqutbd o
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Angstrém distribution on the Gumstix board. Because of this the black box
techniquesquivalence classes partitioningas used. By letting each message being
an equivalence class and creating a single test for each equivalaasgthe test set
can be seen in the Table 2.7. [Bur03, p.67]

Test number Input Expected output

LQServer-1 | Direction | Server parameters

LQServer-2 | Lift Beginning to send values (hover)
LQServer-3 | Terminate | Emergency land, end sending values
LQServer-4 | Close Emergency land, close existing connections

LQServer-5 | Trim Right | Adding value to the yaw
LQServer-6 | Trim Left | Adding value to the yaw
LQServer-7 | Ping Ping in logger and ping back

Table 2.7:The test set of the LinkQuadServer - Input is the message sent from clie
Expected output is written to the server log.

After each component or group of components had been tested, aratidadest
was designed to ensure reliability when combining the different componinss.
was done by first executing all the the different tests again but on thiewkistem
and complementing by doing several field tests (Chapter 5).
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3. User Control of a Quadrotor

This chapter will discuss the investigation and implementation of the clients, which
allow the user to control the LinkQuad.

The user control problem originates from the need of controlling the LiradQ
without radio control (RC). Smartphones are not supplied with the sanmeliakl
capabilities as the RC so other channels of communication were requiredvdsis
solved by having a server on the Gumestix, which was connected to the Contro
MCU (CMCU) through a serial connection and to the clients through a wseles
connection.

A client on a computer was first developed to be able to debug the network
communication and the server with a keyboard. A second client on a Android
smartphone was developed to steer the LinkQuad. The Android Clienitsises
inertial measurement unit (IMU) and a virtual joystick to control the attitudktar
altitude of the LinkQuad. During the development of the Android Client, amothe
human interface device (HID) was integrated into the Computer Client, namely a
PlayStation &gamepad (PS3 gamepad).

This chapter will first present the investigation of the target smartphotiepta
and then the implementation, design and evaluation of the smartphone client.
Finally, the Computer Client will be presented.

3.1 Android Client

The Android Client is the main application for steering the LinkQuad. The
advantage of using the Android Client is that it provides an interface tinatigally
mapped to the process, by using the IMU of the smartphone to steer, aaplaogi
interface that is naturally mapped to cultural standards and the RC
controller.[Nor02, p.23]

A disadvantage is that the implementation of the virtual joystick, which set the
setpoint for the altitude or the thrust, does not give the same feeling obtastthe
PS3 gamepad or the RC controller. This is due to the lack of physical feledba

Another disadvantage is that Android smartphones usually have diffesetware
configurations, which may lead to bad performance, see Section 2.2.

The Android Client requires a rooted and properly configured Andsaidrtphone

to connect to an ad hoc network. It does not support multitouch even if the
functionality exists in the code. This is purely in case of a better implementation of
multitouch being developed for the Android smartphones, see Section 2.dre
information about how to use the Android Client, see Appendix B.1.

This section will first discuss what kind of users that might use this applicatiaol

what ramifications this will have for the design and implementation. Finally, the
design of the different interfaces will be discussed.
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Chapter 3. User Control of a Quadrotor

3.2 Users and Environment

Flying the LinkQuad is not an easy task for an novice pilot and it would lea ev
harder if the steering interface was poorly designed or implemented. iTaus,
important to know in which situations the interface will be used, which possible
users exists and what their needs are for the application are. The fajlowin
assumptions are made from the Department of Automatic Control at LTH.

The most likely user is a graduate student that uses the work of this thehis fir
hers thesis. He or she will probably have a strong knowledge base irdeetbe
systems, computers and control but will not have used a quadrotaebéfs also
possible that an experienced quadrotor pilot will try to use the Android Ghden
he or she acts as a test pilot. The least probable user is an ordinaoy petis
nearly no experience of using the LinkQuad. In the Table 3.1, the thrieeadit
types of users and theirs different sets of knowledge are displayedraiduate, the
experienced pilot and the ordinary person.

Type Name Important knowledge and skills | Probability
Graduate Embedded systems and control| High
Quadrotor Experienced PilotQuadrotors and RC Low
Ordinary Person None Low

Table 3.1:The possible users of the user control of the quadrotor, their possible
knowledge and the probability of that they will use it.

The graduate will use the Android Client in his own research and would twan
have an application that is easy to understand and use but most imporsyrg ea
modify. The quadrotor experienced pilot will use the Android Client to db tes
flights or to get a new flight experience. The ordinary person is piglzatiend of
the graduate or to the quadrotor experienced pilot who wants to try the LisdkQ
From this set of users, it can easily be seen that the most probableiliseve
some but not an extensive knowledge of flying quadrotors.

This implies that the steering and the graphical interface should be aslrzstura
possible so that a user with little knowledge of quadrotors can understaaictive
different controls are used for. It should also be in focus that theisteghould be
reminiscent of the steering interface of the RC. Since if one of the ussnsdea a
RC controller before, the introduction would be easier.

The application is not meant to be accessible for the public. Its main purptusbés
used for development and research. Therefore, the focus will alea leaking the
software easy to modify and maintain.
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3.3 Design of the Interface

Goals
Intention to act Evaluation of
interpretations
Sequence of actions Interpreting
the perception
th Exriput|on of Perceiving the state
e action sequence of the world

Figure 3.1:The action cycle starts by the user having a goal. The user will then
execute a set of actions needed to perfom the goal. Then the user wilinpenfo
evaluation that the actions that has been done indeed fulfill the goal.

A human action has two aspects, execution and evaluation. The execuytant as
involves the doing of something and the evaluation is the comparison of what
happened with what was expected to happen (the goal). The user gtaetsibg a
goal. The goal is then translated into an intention to do some action. The action is
translated into a set of internal commands, an action sequence, thatuseekepon
the world. After the execution aspect has been performed the evaluafienta
starts. It starts with the human that performed the action using his or heegppien
on the world. This perception must then be interpreted to his or hers ekpasta
Then compared (evaluated) against the intentions and the goal. Figures8ribés
the cycle of execution and evaluation of a users actions, the so calleistages.
[Nor02, p.45-p.51]

The seven stages can be a valuable design aid, becuase it providés ehieaklist
of questions to ask to ensure that the gulfs of evaluation and executibnidged.
The checklist and the answers can be seen in Table 3.2. [Nor02, 3R-p

The question were used to design the user interface by ensuring thaethean see
what action he or she needs to perfom to reach the their goal. This wiasedtiy
answering the seven questions for each interface. They were al$tousesure that
the user gets the necessary feedback to ensure the user that the attveasth
performed indeed did fulfilled the goal of the user.
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Chapter 3. User Control of a Quadrotor

Table 3.2:Using the seven stages to ask design questions. (page 1 of 2)

Questions

Menu Interface

Connections Settings Interface

Steering Interface

How easily can one determin
the function of the device?

Menu item names that were self e
plaining. For an example Conne

tion needed for the Steering activi
to connect to the Server.

yin this activity.

eThis question was solved by addingrhe item from the Menu, which is The item from the Menu, which i
xthe only road to travel to this activ-the only road to travel to this ag
city, has a clear and understandablgvity, have a good explaining name
tion Settings handles the informa-name that describes what the task ihat describes what the task is
this activity. The task contains many

normal controls that are quite d¢
scribing for this application giving
a good hint of what it is used for.

\*2)

in

Y%
1

How easily can one tell what ag
tions are possible?

-The names of the Menu items e
plain what can be done.

the field and in the toggle button it
quite simple to see the three actio

address, toggle the communicati

smartphone is connected to.

X-By having describing labels abovyeEvery button has text bound to

sthat describes its functionality, but
ngs not as easy to determine what t

that can be made. Write in the ip-green button or the joystick is used
pifior. No labels could be added dye
protocol and also checking the lo-to lack of space. This was solved by
cal address of the network that thalescribing it's functionality in the

manual.

it
it
he

How easily can one determin
the mapping from intention tg
physical movement?

solution of just touching the Men
item to travel through them.

to interact with them and the labe

item solves.

eThis is more an Android question.This is more an Android question.It is easy to understand what the
b By choosing understandable nameBy choosing understandable nameluttons do due to the labels b
as Menu items Android provides thethe Android provides the solutio

nagain the green button and joysti

How easily can one tell wha
state the system is in?

t The menu activity only has on
state, either the user is in the me

activity.

eThe are two states that are importa
nto know. First, if the smartphon

of the connection settings. The co
nection settings can be seen in t
ip-adress field and the toggle buttg
that is used to change the conne
tion settings.

nthis is easily verified because of th

2Android Client does.
n-
he
N
2C-

efeedback log that always print the
or the user already has clicked on & connected to the LinkQuad netvalues of the controls and what th
menu item and navigated to a newvork. Second, the different stat¢

ut
ck

U of just touching the field or button are the hardest to map. This is eas-
siest solved by testing against the
gives a good hint of what task theLinkGS.

e

ne
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Table 3.3:Using the seven stages to ask design questions. (page 2 of 2)

Questions

Menu Interface

Connections Settings Interface

Steering Interface

How easily can one perform th
action?

elf a user wants to change the co
nection settings he or she on
needs to touch the menu item Co

navigate to the Connection Settin

standable names provide quick a
easy navigation.

nWhen the user has navigated frg
ythe menu to the Connection Se
ntings, he or she needs to touch t

nection Settings and he or she wilip-address field and fill in the ip an

gshen choose which protocol he

ing the ok button is the only thing

this task. Consequently maximu

spect action are needed to perfo
the whole task.

he or she needs to do to perfornand an automatic altitude contrg

of four touch actions, two touch a¢-needs to perform five actions, min
tions, one write action and one in-mum one action, to be able to ste

nkrirst the right connection setting
’tneed to be set, this can be as my
has four different actions or zer
dactions if it is already configure
brcorrectly. Then in the menu nav

activity. Touch screen and undershe wants to use. This and checgkgate through the launch button to
nthg that the smartphone is con+the steering activity. Then the user
nected. Then confirming by touch-is free to steer the LinkQuad d

srectly by natural mapped contro

mThis gives that the user at maximu

rnthe LinkQuad.

How easily can one tell if the

system is in the desired state?

sides being a hub for navigatio
Therefore the menu only has of
state that can be seen by checki
if the menu is shown.

> The menu itself has no purpose b

nto know. First, if the smartphon
ngork. Second, the different state

of the connection settings. The co
nection settings can be seen in t

tion settings.

neés connected to the LinkQuad netvalues of the controls and what th

ip-adress field and the toggle button
that is used to change the connec-

eThe are two states that are importanthis is easily verified because of the

efeedback log that always print th

»Android Client does.
n_
he

| N

ch

S —wn

er

e
ne

How easily can one determin
mapping from system state to in-travels directly to that menu item

terpretation?

corresponding activity.

stings and test to connect.

eBy clicking on a menu item the userEasiest checked by saving some sethis is easily verified because of the
feedback log that always print the
values of the controls and what the

Android Client does.
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Chapter 3. User Control of a Quadrotor

Table 3.4:The evaluation performed by asking three students at the Lunds Univiarsisimple questions.

Question

The German exchange student

Swedish Master’s thesis student 1 Swedish Master’s thesis student 2

How easy can you see the fun
tionalities of the controls?

cit seems pretty intuitive. | think
could use it after a couple of se
onds.

Not really familiar with the UDP
c-and TCP option.

Very easy. Nice, large icons.

Is the joystick easy to use or doedn upwards downwards directio

it contain any faults?

the joystick feels a litle too digital
in comparison to an analog one.

if you compare to an analog one.

NnThe joystick control was a bit tricky Works nice. Hard to really know

how it works since you can’t actu
ally feel what you are doing.

After getting an fast introduction Using Connection Settings enter ti
to the application, how would correct IP-Adress then press Ok, @

you connect to the LinkQuad?

ter that press Launch.

h€Connection settings, enter IR
afnrumber and choose protocol al
after that press launch.

P-Enter connection settings and €
nder the IP address, then choose f{
proctocol and then press launch.

After that, how would you stee
the LinkQuad?

r By tilting the phone and using th
joystick.

eFirst press lift to take off and the
press toogle button and tilt to stee

Use the joystick to go up or down arroll angles by tilting the phong

nYou control the altitude and yay
2rwith the joystick and the pitch an

o<

turn. while pressing the accelerometer
button.
Would you say that the applica-Yes Yes Yes, | think so but haven't tried it

tion is user friendly?

that much.

n_
he
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3.3 Design of the Interface

The Seven Principles were used to break down complex tasks into more simegle o
and to design an interface where the user can execute tasks and adtidgivein
These principles were used to decide what actions that the user shaliteldie do
and how the actions should be mapped to the controls. [Nor02, p.188]

The Seven Principlegfor transforming difficult tasks into simple ones)

e Use both knowledge in the world and knowledge in the head.

Simplify the structure of tasks.

Make things visible: bridge the Gulfs of Execution and Evaluation.

Get the mappings right.

Exploit the poser of constraints, both natural and artificial.
e Design for error.
e When all else fails, standardize.

From the investigation of the users, it was found that it was important todave
naturally mapped application, whose functionalities are reminiscent of tidse o
RC controller. The design and positioning of the controls were therefkes tarth
by using natural mapping principles. [Nor02, p.23-p.27]

The questions and principles were complemented by an evaluation that was
performed by asking three students at Lund University, that had edtthe
application before, five simple questions about the design. The questidrikea
answers can be seen in Table 3.4. All of the three students were gratuddats
with knowledge in embedded systems and control but with no prior experigitic
guadrotors.

By using the seven design questions, the seven principles, natural mappin
principles and the evaluation the following design decisions were made.

Input Orientation  Set point

Green button + tilt  North-South  Pitch.

Green button + tilt  East-West Roll.

Joystick North-South  Add/subtract altitude.
Joystick East-West Yaw.

Trim Right - Yaw trim right.

Trim Left - Yaw trim left.

Land or Lift - Land/Lift.

Terminate - Terminate.

Table 3.5:Mapping of controls on the Android Client.

When designing the mappings of the controls (Table 3.5) it was important that it
would be an easy task to execute the controls as well to understand whebthe
This is the reason why the seven principles were used to choose how thexmap
should be done. Because of the criteria that the controls should bellyatuagped,
which in general is a very good idea to do anyway, the focus was onrilegithese
natural maps by the principle of design for errors. The reason offogwon the
designing for errors principle can be seen in the tilting task. If the useralitlave
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Chapter 3. User Control of a Quadrotor

to press down a button while using the IMU to steer the LinkQuad, it couldtriesu
disaster because of tilting that is not meant for the LinkQuad, such as failitigse
the application and then putting the smartphone into the pocket.

By using error design and natural mapping the different tasks could e as

simple as possible without losing any safety and in the same time fulfilling the seven
principles. The simplification of the tasks is that each task has one uniquengapp
short of theLand or Lift map. Since of space issues in the graphical interface led to
that they had to share the same button.

& [ §fl @ o8:33

Connection Settings
Launch

Exit

Figure 3.2:The menu interface - The menu view of the Android Client.

When the user uses the Android Client he or she always has a goaleamitu is
just the road to that goal. Therefore, it is important that the menu is eféetctivse.
This is the same problem as the seven principles, breaking a complex task into
simple ones.

To be able to connect to the LinkQuad some connection details are neattealssu

the ip-address and what network protocol is going to be used, usgraata

protocol (UDP) or transmission control protocol (TCP). It could glsvbe solved

by prompting when the Launch button is pressed, but that would be uss@ge
because usually that information is the same all the time. This was solved bygaddin
the menu item Connection Settings which stores the information so it can belreuse
when connecting. The two other menu items are the Launch which conneet to th
LinkQuad and start the steering and the last are quite self explanatay. Th
evaluation, Table 3.4, and the seven questions, Table 3.2, shows thatgée

menu small was a good choice because it is only the road to the action thaéthe us
wants to perform. The menu interface that was designed can be seenria &igu

Regarding the design of the menu interface the Connection Settings inte&sice
one task with two important settings that it needs to store: the ip-addresseand th
communication protocol. The easiest way to break down this task is to have one
field with an artificial constraint of only accepting valid ip-addresses t@sidne
other setting is what network protocol that should be used. This is solvadibg a
toggle button to toggle between the TCP and UDP options, having TCP asdtdefau
because it is the safest protocol.

This and by adding utility labels that describe the button and the ip-addrkks fie
makes it easy to understand what the task is and where to do it. Anotheefeatu
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3.3 Design of the Interface

il @ 16:45

Local-adress: 0.0.0.0

Using TCP protocol

Figure 3.3 The Connection Settings interface - This view takes care of the connection
settings.

that the Connection Settings interface should give the user feedback if the
smartphone is connected to the network and what local address it obtidisnadg
no local address is the same as the smartphone not being connected to the
LinkQuad. This so that the gulf of execution and evaluation are bridgeel. T
answers in Tables 3.2 and 3.4 shows that this was indeed the case. By #terin
data between sessions it is also ensured that this task is not alwaysargc&he
Connection Settings interface that was design can be seen in Figure 3.3.

Bl @ 13:09

Terminate Trim
Right

Land or Lift

Figure 3.4:The Steering interface - In this view all the action regarding the flight of
the LinkQuad is made.

While enabling the steering of the LinkQuad with the Android Client in a way that
is reminiscent of how the RC is used, several functions that the uselddb®able

to perform were created. The user should be able to change both theeadtitddhe
altitude of the LinkQuad. These functions would enable the Android Clierter s
the LinkQuad. Some more functions were added to enable termination of ther Ser
and automated lift and land functions.

By using the mapping of controls, see Table 3.5, a natural mapping is retrisugy
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Chapter 3. User Control of a Quadrotor

the IMU, buttons and a virtual joystick. The terminate button was decided tecbe r
with white text because of using a standard solution of mapping dangertoissa
gives a good impression of that pressing the terminate might not be a safe ac

The trim buttons were placed with the trim right button on the right side and the trim
left button on the left side. In order to use a natural mapping of the trimmingeof th
yaw. The green button that is used to activate the IMU readings of the pitthod
values was placed on the right side to be easily pressed by the thumb whiésthe r
of the hand holds the smartphone.

It was chosen to have the button in a green color because the color imusstic
lighting when the users should start walking. This indicates to the user &&gipg
the button is probably going to start something, like in this case the reading of the
pitch and roll values from the IMU. Since the green button is positioned taghg r
the joystick is put on the opposite side to allow use with the other thumb. The
evaluation, Table 3.4, shows, however, that the choice of using a joysicks
disadvantages. The seven questions can be used to solve these prebkeirable

3.2

All of the three students thought it was hard to get the feeling of the posifitireo
joystick when they used it. Since that a virtual joystick does not give aggipal
feedback of its state as an analog joystick does. This concern wasl $lyaitee
developer and it is stated that the Android Client is a good substitution forGhe R
controller but should not be used when controlling the thrust power.lJduause
controlling the thrust is an delicate operation and without feeling or maykdadpav
control it could result in disaster. Altitude control however does notlreesemuch
delicacy. So it is recommended to use the Android Client with the altitude control.

The land/lift button was placed at the bottom of the screen to decreasedb¢had
the user would accidentally press the wrong button. This was also a gelesra
when placing the buttons, to have lot of free space to decrease the nofmber
accidents. A text log was placed in the middle of the screen to give the uset dir
feedback of the internal state and the actions that are performed. Tthistdbe user
would be able to evaluate that what he or she did actually was what was idtende
The Connection Settings interface that was design can be seen in Figure 3.4

Implementation

This section describes and gives an insight of how the Android Client was
implemented and designed.

Because of how the flow of the code works in Android applications whictkwath
short lived activities it was hard to implement a continuous loop that listens to the
network while checking what the user does at the interface. This waséhstdved

by a steer activity creates a thread that takes care of the network comtimméanad
functions as the state machine while the steer activity takes care of the usiciate
This is also a general solution in the implementation to break loose the interface
from the functionality by using the default functionality of the Android actigtie

The network implementation for the Android Client was implemented using the
structural design patteffemplate MethodGam96, p.325-p.330] Theemplate
Methodpattern was used to create a abstract ddfaasection, which supplies the
network using classes with a common interface to a generic connection. This to
ensure that future users do not need to bother about the specific impéeimes of
the network communication. For further details, see Section 2.4.
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MenuActivity

SteerActivity ConnectionSettingsActivity

]

BackgroundThread State

i

TCPConnection Connection UDPConnection

Figure 3.5:The class diagram of the Android Client.

More information about the implementations will follow in the sections below. In
Figure 3.5 a simple class diagram shows the basic structure of the applidatéon.
activities act as the interface to the user while@hanection act as the network
link to the Server. Every calculation and operation that are executed due to
interaction with the interface is carried out in tBeeckgroundThread. The

following sections will describe where the patterns are used and some of the
structure and implementation of the application.

State The program has a static cle&®sate that holds the current properties of the
process, e.g. if the LinkQuad is airborne or which IP-address the slientld
connect to.

MenuActivity The menu view is nothing but that a table representation with three
normal buttons. Each button except one links to a new activity with a new view.

ConnectionSettingsActivity The field where the ip-adress is inserted is a simple
EditText field. The problem with a EditText field is that it accepts all types pfiis.
This has been taken care of by having a parser that checks if the thdatteis a
valid ip-address, if valid it will set the connection address in the State to Wea gi
address. The second feature of this is that it fetches the ip-addrehe fmonnection
to the wifi that the smartphone has, if no connection it will return * 0.0.0.0 " which
means no address was found, and thus no connection. This feature isenpdel

by using WifiManager that is a Android SDK class.

SteerActivity The steering view has five buttons. The Terminate and Land/Lift
button are normal buttons that directly links to an onTouch function that isucet

in the SteerActivity class. The green button is a little different since it is a
ImageButton and it implements a onTouchListener that it used to sense if tha butto
is pressed or not, that so the user can use the button together with tiltinghlsing
IMU of the smartphone. The left and right trim buttons work in the same way.

In the begining of the thesis it was thought of using the yaw of the smartpbone
control the yaw of the LinkQuad. But because of the badly implemented I®U n
good values were received and it was agreed to use a virtual joystielaths

The virtual joystick was a little more complex to implement, it was implemented
using two ImageViews and one FrameView. One of the ImageViews were the
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Chapter 3. User Control of a Quadrotor

background and the second was the joystick knob. These two ImageWiesvs
merged into the FrameView that is used as the boundaries of the joystickiRy us
an onTouchListener the position of the knob ImageView can be captutedsal to
calculate the altitude and yaw value.

An effort to implement the functionality to be able to press the green button while
using the joystick was also made, it succeeded but it was noticed that tmeié\nd
multitouch was badly implemented. The current implementation are not using
multitouch for this reason.

The design problem with the joystick added with the implementation problem of not
being able to use the multitouch, disabling the use of the joystick and the IMU
simultaneously, made it near to impossible to fly the LinkQuad with thrust control
because the pilot needs to be able to use both at the same time. A normal case is
when the LinkQuad tilts, the previous vertical thrust is split into two effective
components, one vertical and one horizontal. This means that the verticstl ith
reduced and that the pilot needs to counteract this reduction as he is setpoits

for the attitude control. This counteraction is handled by the altitude control.

Steering

Figure 3.6:The state machine diagram of the Android Client.

By doing an action on the steering interface the user changes the cstanin the
state machine, Figure 3.6. If this basic functionality had not been implemenéed, th
code complexity of programming the behavior of the Android Client would be
massive. So instead of having this massive untraceable code a state nveahine
implemented in th8ackgroundThread. This to be able to change state depending
on what action the user had done and by the state machine itself. For anlexamp
the user wants the LinkQuad to lift from the ground and become airboenar, $he
presses the lift/land button and the state machine changes the current state into
lifting, sending the lift command to the Server and then later by itself changes to th
steering state. This to enable the steering of the LinkQuad. It is importarihthat
Android Client and the Server state machines are in sync because if treestfite
machines thinks that the LinkQuad is airborne but the other thinks it is on tuadr
serious problems will happen. This was counteracted by having the hatgis of

the Android Client structured in the same way as the Server and doing mticlg tes
But the Android Client does vary much from the Server because théhasanore
freedom of choosing the next state by his or her actions on the interface.
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3.4 Computer Client

Connection To communicate the commands and data that we create or fetch in
the steering activity a customized message protocol with TCP or UDP is usisd. T
protocol is described in Section 2.4.

Because the different low-level implementations of the UDP and TCP, tree cod
complexity would increase much if one would implement them both directly into
the code every time a network operation should be done. So by crealergate
Methodthe problem is abstracted away and Teenplate Methodcts as the

network connection to the rest of the application by providing its own sedd an
receive functions. Implementing thiemplate Methods the abstract class
Connection enables the implementation of the same functionality for both TCP and
UDP by creating two implementationB;PConnection andUDPConnection, Of

the abstract clas®onnection.

ThePhoneMessage is a class/struct that describes what a message should look like
and give functions to easily make a sendable package. It is used to makg tbe
handle messages and being able to make changes in message structuite withou
having a lot of dependencies to the rest of the code.

Field Tests

The design and the implementation were field tested by four different tesgirgh
test was to connect the Android Client to the Gantry Crane, Section 4. kteadit
with the IMU as well as with the joystick. The second test was to connect to the
Server aboard the LinkQuad and control the panning of the extermadrea The
Third test was done by studying the pulse-width modulation (PWM) output while
trying to steer the LinkQuad with the motors shut down. The last test was tiyeng
LinkQuad with altitude control.

It was noticed in these tests that steering with the IMU was much more easy than
steering with the joystick. The IMU gave a smooth control over the steeririgtwh
the joystick gave a more rough steering experience. It was also notidgti¢haitch
and roll inputs gave a proportional reaction in all of the tests. Also the jdystic
behaved in a similar fashion but it was easy to loose the grip of the joystickwhic
made it hard to use it without looking on it. When using the Android Client with
altitude control in the final test it was noticed that the Android Client behaved
equally with the Computer Client. More information about the result of the flight
can be found in Chapter 5.

For these reasons the Android Client should be used with altitude conttoicin
with thrust control.

3.4 Computer Client

The Computer Client is an alternative to the Android Client. It supplies thewitier
two options of inputs, a keyboard or a PS3 gamepad, but lacks grafdeckdack
on the screen. This is due to the need of keeping the pilot focused on @l
and to its main purpose, which was to be used as a tool in tests.

The advantage of using the Computer Client instead of the Android Client is the
higher accuracy of the PS3 gamepad and the fixed inputs of the keylbtmavever,
the disadvantage of using the keyboard is the loss of variable inputs. éilsdHe
HIDs need to have an extra computer to run the Computer Client on.
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Terminate

Figure 3.7: The state machine diagram of the Computer Client.

The Computer Client can connect to the Server with either a TCP connectm o
UDP connection via an ad hoc network. The user inputs are then intetpnébe
different commands or setpoints and are sent to the Server, which withesein
different parts of the control system.

Since the client was originally considered as testing tool, the design of thé clien
differs slightly from the rest of the application. The other applications,raiad

Client and Server, have a dedicated class for network communicatiomeliverk
communication for Computer Client became instead the main functionality,
WifiClient, Since its main purpose is to periodically read inputs from the user and
send them to the Server.

WifiClient fetches user inputs from the abstract cléBbkistener and its
implementation&eyStrokeListener andPS3Listener. This design pattern is
calledTemplate Methodwvhich allows a template to specify a skeleton of operation
and deferring some steps to subclasses. [Gam96]

The state machine from Android Client was also introduceRSBListener, see
Figure 3.7. It was put iRS3Listener to ensure the same behaviour as the Android
Client, but not to hinder the simple naturekafyStrokeListener.

The protocol-specific implementations of the network communicalioPGlient
andUDPClient, were also designed according to the Template Method pattern.
[Gam96]

A class diagram of the Computer Client can be seen in Figure 3.8.

Keyboard

The keyboard interface was developed to test the communication between Se
and Computer Client. Any type of keyboard which is connected to the computer
running Computer Client can be used as a HID. The values that are &teipnto
messages are static values which are binary. The keyboard must tkerelpbe
used to test communication and never to fly the LinkQuad itself.
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PS3Listener R
< <
UlListener WifiClient
1
KeyStrukéListener UDPCiient

Figure 3.8: The class diagram of the Computer Client.

PS3 gamepad

The PS3 gamepad uses the Bluetooth HID protocol and is thus registeaed as
joystick on computers, which support the HID protocol. Since it is regidtasea
joystick, one can use any simple gaming library to access the input from the

PS3 gamepad. In Computer Client, the choice fell upon Simple DirectMedia Laye
(SDL) since it could be used on several platforms and it was easy to.@pk11]

Computer Client uses SDL to collect the available inputs at an instant as evehts
stores their values and states. When all available events have been dobdicte
values and states are interpreted to produce a correct message whith is fhe
outgoing mailbox, see Section 2.4 for details on mailboxes. After that thegucee
is periodically repeated.

The controls of the PS3 gamepad are mapped to match the existing RC controller
with some adjustments for the nature of the sticks of the PS3 gamepad and the
accessibility of the software. The RC’s mapping can be found in Table Bifage

of the controller can be found in Figure 3.10, the PS3 gamepad’s mappirtzeca
found in Table 3.7 and an image of the gamepad can be found in Figure 3.9.

As can be seen in Figure 3.10, the left stick is not fixed in an upright posBioice
it is used almost as a throttle, it does not have any springs and has instebdsa
along the axis to keep the stick in the given position.

The PS3 gamepad does not have this behavior on its left stick and tleertbior

thrust is implemented as an adding/subtracting function on the left stick in the same
way as the Android Client. For an example, to increase thrust, the stick is moved
upwards and downwards to decrease the thrust. Other differerectdsedack of

control of the camera since it is out of scope of this thesis and the lack o mod
control. The missing mode control is due to that the interface to the existing
software does not allow access to this property.
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Chapter 3. User Control of a Quadrotor

Top right toggle switch (SW 6/7)

Stick/Switch Orientation  Set point

Left stick North-South  Thrust.

Left stick East-West Yaw.

Right stick North-South  Pitch.

Right stick East-West Roll.

Top left knob (CTRL 7) - Camera pan.
Top right slider (CTRL 5) - Camerat tilt.

- Mode operator.

Table 3.6:The mapping of controls on the RC controller.

Table 3.7:The mapping of controls on the PS3 gamepad.

Figure 3.9:A PS3 gamepad seen from the top.
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Stick/Switch Orientation  Set point

Left stick North-South  Add/subtract thrust.
Left stick East-West Yaw.

Right stick North-South  Pitch.

Right stick East-West Roll.

Cross - Land/Lift.

Circle - Emergency land.
Top left front button (L1) - Yaw trim left.

Top right front button (R1) - Yaw trim right.



3.4 Computer Client

Graupner IR

Figure 3.10:The original RC controller.
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4. Slung Load Control on a
Quadrotor

This chapter will discuss how the slung load control was investigated armhwh
different problems that were found and which problems were solved.

The slung load control problem originated from the intention of flying with &loa
attached to the quadrotor with a string. This would result in an oscillativeviimira
that would perhaps affect the quadrotor as the load would act as alpendrhe
LinkQuad has a lifting capability of 300 g according to the manufacturer UAS
Technologies Sweden AB and this was the target mass of the load to belleohtro
The quadrotor was to be able to carry this load and to cancel out its oseillativ
behaviour and disturbances in hover.

The existing control of the LinkQuad consisted of attitude control and an tqop
control of the thrust. To reduce the complexity of the slung load problem t@a tw
dimensional problem, it was decided to close the loop of the thrust as an altitude
control. The quadrotor would then be able to cancel out the oscillations lyngio

in the horizontal plane, which is a problem that could initially be investigated®n th
gantry crane, an existing lab rig consisting of crane with a slung load thahoze

in the horizontal plane. On this lab rig, a model of the load could also be qeatlo
and evaluated.

The subproblems of the slung load control were to develop an altitude tdotro
develop a model of the slung load, develop a slung load control on theygaatre
and integrate all these solutions into a final slung load control on the qoadro

The chapter will first present the gantry crane experiment and therpof a
model of a slung load. After that, the sensors that were investigated alwhtipass
filter of the pressure sensor that was developed to decrease noise iidduced.
Third, the altitude control will be presented and finally, a short motivationtty w
the full integration was not successful will end the chapter.

4.1 Gantry Crane Control

The gantry crane is an existing lab process, originally developed b@Rdrarsson
and Rolf Braun and used in courses at the Department of Automatic Cdnirual,
University. The lab process consists of a cart on a rail with a movableveinioh

has a slung load attached at the end, see Figure 4.1. This procespuaxirapte
the slung load problem on the quadcopter if altitude control is assumed and the
tilting of the load’s pivot point is disregarded. It was therefore considas a good
exercise to introduce position control of the cart with set points sent @omputer
Client and Android Client, while the slung load is kept perpendicular to the.floor

The original control on the rig makes the slung load follow a circular trajgctor
while it keeps the cart centered on the rail. The slung load could be mode&ed a
spherical pendulum in the original control with the following equations of motion
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4.1 Gantry Crane Control

Figure 4.1:The gantry crane process.

Py

Cart position Control
Pz Px ‘i directions
X1

Traverse

Load

Figure 4.2:Crane layout and coordinates. The cart position, i.e. the pivot pointeof th
crane load, can be moved in tlipy, py)-plane. Courtesy of Per-Ola Larsson.

210cosd + 1 {sing — uysing + uycosy = 0
. a1, : (4.1)
gsin6+106 — EI (2 sin 20 + u, cosB cosy + uycos@siny =0

whereuy(t) anduy(t) are accelerations in the corresponding rail directionséig
andy(t) are the angles of the load, see Figure 4.2. The new control could not use
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Chapter 4. Slung Load Control on a Quadrotor

this model, because of a singularity at the downright position. This singularity
visible when the equations are linearized and written as a linear time-invaridt (
system.

The downright position is chosen as linearization point, see (4.2), andghta
simple reformulation of Equation (4.1), the model can be expressed as (4.3)

Pxo
Pxo
Pyo
Pyo
o
6o
Yo
o
Uxo
Uyo

(4.2)

O O O O O O o o o oo

) -1
YO = sina
Problem

[LBO8] When (4.3) is linearized with respecttg anduy and the linearization
point, a singularity is introduced at the downright positiéns O.

(—ux(t) sing(t) + uycosy(t) — 21 B(t)P(t)cosA(t)) .  (4.3)

This problem implied that another approximation of the load had to be found and
the first attempt was to use two traversed simple pendulums. This provessstidc
so no further research was done. The model’s derivation follows below

The motion of a simple pendulum is described by

20 .
mlw = —mgsiné (4.4)
where@ is the anglemis the masd, is the length andg is the acceleration due to
gravity, see Figure 4.3. By assuming that the amplitude of oscillation is sufficien
small and thasin@ = 6 as an linearization, it can be simplified to (4.5) as a new
equation of motion.[BB0O5]

d26
S+ |99 ~0 (4.5)

This LTI system can be expressed on state space form, see (4.6).

<z> - (—0? ;) (g) (4.6)

The two simple pendulums had definitions of load angles that differed from the
spherical pendulum in the original model. However, the original angles derived
from two angular sensors’ values,and, see Figure 4.4. The simple pendulums
were defined so that they were aligned along each axis in Figure 4.4 arihpliess
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4.1 Gantry Crane Control

g
Figure 4.3:A simple pendulum.

pivot point

Figure 4.4:Definitions of anglesr and 8 measured by angle sensors. Courtesy of
Per-Ola Larsson.

that one simple pendulum could ugeas angled in Equation (4.5) and one could
usep.

The modified model can be described as a LTI system,

Px 0100 0 0 0 0 /p 0 0
P 0000 O O 0 Offnpnx 10

Py 0001 0 0 0 Offp 0 0

; 0000 O O 0 Offf¢ 0 1

ol e () @
a 0000 O 1 0 Offa 0 0] \y

a 0 00O0-90 0 O0ffa 0

B 0000 0 0o o0 1||2pB 0 0

B 0000 O 0-%90/\B 0 {
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Chapter 4. Slung Load Control on a Quadrotor

wherepy andpy describe the position of the cag, andpy are the velocities of the
cart,a andf are the angles from Figure 4Mis the length of the load arm angds
the acceleration due to gravity.

This model is mass independent, which is attractive for the later applicatioreon th
guadrotor since it can then be loaded with a variety of loads and the modé&l wo
not have to be altered.

When the new approximation had been derived, it was introduced to ttiegxis
Simulink-files of the process and the control loop was to be modified. Therexis
control consisted of a linear quadratic regulator (LQR) and since thieraysas
easily converted from using a spherical pendulum to using the new madeQQR
was kept with some modifications to the cost matrices to keep the load hanging
straight down. The final cost matrices can be found in (4.8).

00 0 0 0 0 0 0 q
0 10 0 0 0 0 0 0
0O 0 100 0 0 0 0 O
0O 0 0 100 0 0 0 O 10 0
“=10% 0 0o 0 1000 o0 0 QZZ(O 1o> (4.8)
O 0 0 0 0 1 0 O
O 0 0 0 0 0 100 0
o o 0 0 o0 o 0 ¥

The focus was instead shifted to making a reference generator thatbmould
controlled from Android Client or Computer Client. The main goal of the eziee
generator was to allow control of the position of the cart via the networtopod,
that had been developed in parallel. This way, the clients of the systemeand th
protocol could be tested on a real process to seek out missing partsaitsl te
performance. The reference generator borrowed the necessatijohality of
Server and it was adjusted to fit into a MATLAB S-function. A S-function isay
to implement the functionality of a Simulink block in C or C++ and by doing so,
introducing i.e. network communication. The S-function became a simple varkion
Server, which could interpret direction messages into set points of ttie car
position.

This was introduced into the modified Simulink files and run successfully with both
Android Client and Computer Client steering the rig.

4.2 Sensors

A solution to the problem of altitude control and control of the slung loadiregu
some sensors. The LinkQuad has a set of sensors, e.g. an accéberamoea
pressure sensor, that can be reached through a serial bus to Hue B
(SMCU). The control of the slung load requires another sensor asinédl was to
be solved by attaching an angle sensor to the LinkQuad and anchor thdashdrto
it.

This section will discuss first the angle sensor that was built originally fogtntry
crane experiment and which was ported to the LinkQuad. Second, tbsupee
sensor will be introduced and how its noisy behaviour was filtered.
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4.2 Sensors

1 T 8
Raw data
W, = 10
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Figure 4.5: Raw and low pass filtered data from the pressure senswertad into
meters, when the quadrotor sits on the ground with motors off. The naarations
in the atmospheric pressure can have a magnitude upto 1 m.

Angle Sensor

The two angle sensors that was to be attached to the LinkQuad bottom were two
Hall effect sensors. They measure each of the angles of the slung laadp, see
Figure 4.4 and were to be combined to derive the slung load’s position as it wa
done in the experiment of the gantry crane, see Section 4.1.

The design was an exact copy of the design of the head of the gantiy cra
developed by Rolf Braun. The sensors were attached to the baser&f a/ifich

was attached to the wire of the slung load. The base tilts and actuates eschasen
the fork swings along with the wire of the slung load.

Pressure Sensor

Pressure sensors are not normally used indoors to measure the altitalthsin
pressure changes continously. The lack of other distance sensdrsgsultrasonic
or infrared distance sensors, implies that the pressure sensor is tredtidntie
sensor on the existing platform which could be used for measuring the altitude

When the pressure sensor on the LinkQuad was used the first time, ibsawed
that the raw sensor data was very noisy. Even when the LinkQuad wasdetely

still the pressure sensor’s variance was about one meter, see Figui@i would

be very bad since that could lead to the LinkQuad oscillating with a magnitude of
one meter. To counter this, a low pass filter was designed to filter the noissvalu
and give a more accurate signal without introducing too much delay. A decon
aspect to consider was occasional spikes in the pressure that couddimm the
opening and closing of doors in the surroundings. If these spikesallereed to
enter to the control loop, the altitude could be misinterpreted by several meters

Pressure to altitude conversion A conversion from pressure to altitude was
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Chapter 4. Slung Load Control on a Quadrotor

required to use the pressure sensor to calculate the altitude of the LinkChead
conversion formula was provided by the developers of the LinkQuadande
seenin (4.9).

101325~ 1000- p

Iti =
altitude 119

(4.9)

The pressure sensor provides the prespunekPa. Since the altitude over sea level
is sought after, the pressupds subtracted from the average pressure at sea level in
Pa. The conversion factoﬁ—, converts the pressure difference to altitude in
decimeter.

Low-pass Filter During the development of the low-pass filter, several different
types of filters were tested in MATLAB by using the pressure data frotrflights
with known altitudes and spikes from door openings. By testing the diffditr
types, it was shown that a complex filter did not produce any better reanliiging
an simple filter, e.g. a first or second order filter. Filters that were coresideere
the first and second order Butterworth filters. Filters of higher ordgr@&ebyshev
filters, were also considered in the beginning but since the simpler Buttérwor
filters were proven to be sufficient the focus remained on these.

Each filter type was evaluated with several cut-off frequencies onerigdiight
sequence from the ground to 2 m altitude and back to the ground. At the grikle
was generated from a door being slammed shut. The properties of threwtiffitter
outputs that were studied were how much delay the filter produced and holvitmu
dampened the noise.

The first order filter has almost no delay at all cut-off frequencied aatdamping of
the spike to less than 1.5 m but it lets noise with a magnitude of 0.3 m or more
through, see Figure 4.7, excepbMz where instead too much delay was
introduced, see Figure 4.7b.

The second order filter had a delay at lower cut-off frequencies tidm But it had
also an improved damping of the noise at this frequency, see Figure h8higher
cut-off frequencies had much less delay but also had less dampenirgraite,
see Figure 4.8f and Figure 4.8h. The cut-off frequency of 2 Hz waseahto be
implemented, since it dampened the noise to less ttiam@nd the spike of 2.5 m
to 1 m without introducing too much delay, see Figure 4.8d and Figure 4.8c.

If the first order Butterworth filter with cut-off frequency at 1 Hz is cormrmgzato the
chosen filter, it has a similar performance. It was not chosen since it impbes
noise at a lower cut-off frequency. Higher cut-off frequency implies faster
control is possible and this is discussed further on page 73 in Section 4.3.

The second order continous time Butterworth filter’'s transfer function imsthe

2
wC

£+ V2005 + w2

Gip(s) (4.10)

and it needs to be discretized into a digital filter so it can be implemented in Server
The Server receives the pressure data from the SMCU at a sample tinmeso$a

this is chosen as the sample titméor the discrete low pass filter. The discretization
can be done by zero-order-hold sampling to the pulse-transfer furtdtion

wg bi1z+ by

G = H = -—n—
© & +2{ aps+ of @ Ztazta

(4.11)
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by=1- (Z“"’wfs) W= /1 {2

b2:a2 <Zaby B) a:e—zﬂbh

ag=-2apB [ =cogwh)
ay=a?  y=sin(wh)

anday is given in radian per seconds (rad/s). The pulse-transfer funciiohe
written on backward shift form as

by + sz_l
l+ayz 14+ ayz2

bi1z+ by

= HzY)=z"
+a1Zz+ap

H(z) =

This gives the filter's equation

yi(kh) = H(z)u(kh)

—  yi(kh)z(1+ a1zt +az ) = u(kh)(by + bz %)

< yi(kh+1)+ayys (kh) +axys (kh— 1) = byu(kh) + bou(kh— 1)
< yi(kh+1) = —ayys (kh) — apys (kh— 1) + byu(kh) + bou(kh— 1)

whereys (kh) is the filtered signalu(kh) is the input sample of the signal to be
filtered andkhis the time instant = kh when the computer samples the values. This
is advantageous since the output can be calculated a sample in advaricerand

will be minimal computational delay when the output is to used.

1
With e = o = 2-6.2831853 rad/s and = —,
wWo = W d /2

yi (Kh+1) = 1.929y; (kh) — 0.9314y; (kh— 1) +0.0012341(kh) +0.00120%i(kh— 1)
(4.12)

the final filter can be seen (4.12)

The Bode plot of the filter can be seen in Figure 4.6.
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Bode Diagram
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Figure 4.6:Bode plot of the discrete second order Butterworth filter with cut-off fre-
guencyw, = 2 Hz. The dashed line marks the filter’'s the cut-off frequency and the
dotted line the open loop system'’s cut-off frequency.
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Figure 4.7:Low pass filtered pressure sensor with a first order Butterworth filter with
different cut-off frequencies. The left plots show how a spike from aidditered

and the right plots show a climb to 2 m altitude followed by a descent to the ground
again.
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Figure 4.8:Low pass filtered pressure sensor with a second order Butterworth filter
with different cut-off frequencies. The left plots show how a spike fromoa ido
filtered and the right plots show a climb to 2 m altitude followed by a descent to the
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4.3 Altitude Control

4.3 Altitude Control

The existing control consisted of attitude control and an open-loop daftitee
thrust of the rig. The thesis problem of controlling a slung load requirdi @0
control of the slung load’s angles and an altitude control for closing theddthe
thrust. A state machine was added to allow different modes of operatidnasuc
flying, lift off or ground where different settings are to be used.

This section will discuss the following subjects in given order:
e Model of the LinkQuad.
e Altitude Control.
e State Machine.

e Control of the Slung Load.

Model of the LinkQuad

A model of the LinkQuad was needed to simulate its behaviour in and evaluate
controllers without the risk of damaging the rig. It was to be as simple as p®ssib
and still accurate enough to give confidence in the controllers’ perficenda he
model was to be derived from existing work, since the authors lack énoug
knowledge in system identification and mechanics to be able to derive the model
from scratch.

Etter, Martin and Mangharam [EMM11] derived a simple model of a quadso
mechanics,

X cosy —sing O sin(6) ot
Y| =|sing cosp O sin(¢) ot (4.13)
z 0 0 1/ \cog6+¢)la—g

Rotation matrix

where#@ is the pitch angleg is the roll angley is the yaw anglemis the massg is

the acceleration due to gravity,Y andZ are the world coordinates afigy is the

thrust from all four propellers. These equations are complemented witjrétiens

to get velocities and position and the angles are assumed to be stabilized with PID
controllers.

This model has its disadvantages, since it does not account for inedtiakes
thrust as input. It was therefore altered to take the existing input raongetfre
radio controller]0..1000, and to convert that input into thrust inside the model.

The conversion between input and thrust was initially investigated in two
experiments where input was compared to the resulting acceleration. 3the fir
experiment was to let the quadrotor hover and the second experimetd was
maximize the input to find the maximum acceleration. Since the quadrotor hovers,
the acceleration from the propellers equals the acceleration from grtawisy,
anover= . The maximum acceleration was found to be closego®suming that
the relationship between input and acceleration is linear, see (4.14) ne@ote
were derived with the mase = 1.4kg and accelerations from the experiments, see
(4.15).

ma

c-U=Tit=ma— c:T (4.14)
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14.

Chover — Wog ~ 0.02326
14.2

Con = Wog ~0.0303

(4.15)

The relationship is nonlinear, but it was decided to be linearized arourttbties
position since it is the area it will operate in most of the time.

The initial investigations of the modified model showed that its behaviour looked
like a quadrotor’s but to confirm this, real input signals were fed to theairera

the altitude output was compared to the real process’ altitude. The corfstents

the experiment were found to imply a behaviour in the model which did not ici@nc
with the real behaviour. The conversion constamas therefore altered to

¢ = 0.0234. It gave a matching behaviour between the model and the real data an
by interpreting the error in later parts of simulation as an error from theldoub
integration, a behaviour in the model that imitates the real process was f&rad
Figure 4.9. The small dip below zero after two seconds in the real praigssie

is due to the pressure change from starting the propellers.

Altitude behaviour

Realprocess |
Model

Alftdeim

Sk 1 1 1 1 1 1 1 -

Time (5)
Figure 4.9:Comparison between the real process and the model witl0©234
Another model, which was developed in another thesis [Son11] as afjiaet 0
LinkQuad project, was also investigated to see if it was more accurate. Thisl mo

was also linearized around the hover equilibrium, but it considered maonaigs
than the other model.

The system was written on state-space form as

X(t) = Ax(t) + B (4.16)
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wherey; is the pulse-width modulation (PWM) input to motoand the states are

/>£.

- N- <

~~ —

~ o~ o~
— N N

—
—

(4.17)

~—~ —~ —~
—_ — — — — ~—

Sadd s

(t)

where®@ is the pitch angleg is the roll angle is the yaw anglemis the massg is
the acceleration due to gravity,Y andZ are the world coordinates afigy is the
thrust from all four propellers. These equations are completed with attegs to
get position and angles. All other variables are specified in Table 4.1.

The state matrix

oool2 00000 O O O O
000020000 0 O 0 O
ooooo0oo0o000-% -1 1 1
0000000000—&0&

A_|0OO0OO0O0O0O0O0O0OZT 0 —& O (4.18)
000O0OOOOO0O-B B -B B
0000 OOOOOA, O 0 O
000O0OOOOOO O A O ©
0000 OOOOO O 0 A, O
0000 OOOOO O 0 0 Ay

and the input matrix

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

B= ° ° 0 0 : (4.19)
-y y -y y

Bm2v/aTo 0 0 0
0 Bm2v/aTo 0 0
0 0 Bm2v/aTo 0
0 0 0 Bm2v/aTo

where
d  Anlpro
B=at Zag‘;,zpz (4.20)
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and
y — lpropBm. (4.21)
IZZ
Variable | Description Measured value Value from the model
g Acceleration induced by gravity 9.82 ms? 9.82 ms?
m Mass of the LinkQuad 1.4 kg 1.2 kg
lix Inertia around the body’s x-axis Not measured | 9.56-10"3 Nms’
lyy Inertia around the body’s y-axis Not measured | 9.85-10-3 Nm¢’
l,, Inertia around the body’s z-axis Not measured | 15.2-10°3 Nms’
Iprop Propeller inertia Not measured | 2.46-10° Nm¢&
Am First motor constant Not measured | —9.56 s1
Bm Second motor constant Not measured | 8.49-10" deg V!s !
a Thrust constant Not measured | 1.59-10" ' N&
d Drag constant Not measured | 2.93-10°° Nm&®

Table 4.1 Variables of the model in equatio¥.16)through(4.21)

This model differs from the one in equation (4.13), since it considersanafrthe
rig and the propellers, as well as properties in the motors. Also, the inpw is th
PWM input, which is the same unit as the inputs to the real motors.

However, when the model was simulated with the values given in the original
model, it behaved different from the real LinkQuad, e.g. the thrusttitgokiover

was much smaller. It would thereby be necessary to do some experimenta to do
proper system identification of the model’s variables. The system identificaas
considered to be time consuming and the first model was used to evaluate
controllers. Since it could only be said to be reliable during the first temskscmo
longer sessions were used.

Neither of these models handles the different aerodynamic effects thatcar on
the real process and this contributes to the difference between theaseasp and
the models. Examples of such effects are listed below:

¢ Blade flapping.
e Turbulence.
e Ground effect.

When the quadrotor is moving in the horizontal plane, the advancing bleadeotdr
has a higher velocity relative to the air than the retreating blade. Since the lift
depends on the velocity of the airflow over the blade, a difference batthegwo
blades is induced. This difference causes the blade to flap up and daereeery
revolution making the rotor plane tilt away from the direction of motion. This has
numerous effects on the dynamics of the quadrotor, i.e. stability in attitude.
[HHWTO7]

Turbulence increases or decreases the effect of the rotors sincgdhe lift
depends on the airflow velocity. This effect has been visible when flyidggars and
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4.3 Altitude Control

the air started to circulate within the room, the quadrotor could suddenly |asgror
height. This can also bee observed when wind affects the propell&Jpoh

Ground effect is a phenomena that occurs when a rotor aircraft is thdke
ground, i.e. an altitude of half the length of rotorblade or less. The rotmrsti@in
the rotor wake and creates a pillow of air. This pillow implies that the rotors can
rotate at a slower speed and still maintain the same thrust.[Joh80]

All of these properties affect the process in such a way that the modefsotde
accurate enough. The first model has therefore been used to getrpamhow the
controller should be tuned, but the final parameters of the controllerlieemefound
empirically.

Altitude Control

The gantry crane experiment was so successful that the solution efasgirly to be
reused. To remove the aspects of vertical motion, the altitude control became
subproblem to the slung load problem.

This section will discuss the following subjects:
e Coordinate systems.

Choice of sensors.

Design of the controller.

Discretization of the controller.

Tuning of the controller.

Coordinate Systems Two different coordinate systems will be used in this section
and will be introduced here.

The first coordinate system is called world coordingte¥, Z|, whereX is
horizontal, parallel to the equator and positive in a westbound diredfia.
horizontal, perpendicular to the equator and positive in a northbounctidineZ is
vertical and positive in a direction from the center of the Earth. It carsee to
define the absolute position of a quadrotor.

The second coordinate system is called body coordinZte¥s, Zg|, whereXg is
parallel to the axis of the front and back rotors and positive towardsomé rfotor.
Yg is parallel to the axis of the left and right rotors and positive towards tihediir.
Zg is parallel to the normal of the plane spanneddyandYg and positive in an
upwards direction.

Choice of Sensors The LinkQuad was supplied with an existing inactive solution
to an absolute positioning control, which altitude control is a part of. It was
supposed to use a global positioning system (GPS) unit in combination with a
pressure sensor to get an absolute position of the quadrotor, but thislagas
however untested and inactive on the thesis’ version of LinkBoard.

The first challenge of the altitude control was to find a good measuremég of
altitude and there were different ways to solve this problem, see TableRe2. T
choice fell upon using the low pass filtered pressure sensor for its sim@iwityts
ability to be used both indoors and outdoors.
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No. | Solution Motivation to decision
1 Pressure sensor, filtered with a lgwSimplest solution. Itis, however, re-
pass filter. lying on the environment. see sec-
tion 4.2.
2 Integration of accelerometers andrift and bias errors makes it unre-
gyroscopes. liable.

3 Sensor fusion of the pressure serMost accurate solution, howeve
sor, the accelerometers and gyroecomplex and time consuming to de-
scopes in a Kalman filter, which ac-velop.
counts for drift and bias.

4 GPS combined with the pressuréfhe GPS loses its connection in-
sensor. doors.

5 Camera positioning system from |aLimited area of operation.
related thesis.

Table 4.2:Suggestions for measuring the altitude of the quadrotor.

r — Gr Gp

v
<

-1

A

Figure 4.101llustration of how the controller closes the loop around the process.

Design of the Controller The second challenge was to find the simplest controller
that could achieve asymptotic stability. A way to do this was to find the closed loop
transfer function and study its poles and zeros. The process itselecan b
approximated as simple double integrator,

1
where the inputl is acceleration, the measured outpi the altitude andnis the
mass of the system. Closing the loop as in Figure 4.10 gives the closed Idtemsys

(4.23)

as a transfer function from the reference value to the output.

The initial investigation of possible controllers considered five types airalers;
P, PI, PID, PD and I. The controllers’ poles and zeros could now likextusing
the transfer function in (4.23) and the transfer function for each clatro

A P controller,G; = K, increases the system gain but does not asymptotically
stabilize the system. When the g#inis altered the poles’ to the origin is altered but
they remain on the imaginary axis, see Figure 4.11a. Since the P controlldy is on
stable and since it does not have any integral action, it will not suffice.

A Pl controller,G; = K(1+ S—%ﬁ), introduces two unstable complex poles or one
unstable real pole, depending on the valuek aihdT;, see Figure 4.11b. This
controller was therefore disregarded.
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4.3 Altitude Control

Al controller,G; = S—lTI also introduce two unstable complex poles, see
Figure 4.11c, and was thereby disregarded.

A PD controller,G, = K(1+ sTq), moves the poles into the asymptotically stable
area but it does not improve the performance. Their placement can ledaite
adjustingK andTy, but since the pressure sensor is noisy, an increase in the
derivative action would amplify the noise. Second, the controller doekavat any
integral action. All this factors implied that this controller was disregarded.

Finally, a PID controllerG, = K(1+ s—lTl +sTy), was investigated. It implies a closed
loop transfer function

_ Km TTys? + Tis+1

cl

K
Kim=— (4.24)

which implies a possibility to freely place the poles by altering the valués af
andTy, see Figure 4.11e. Therefore, this was the controller to be used.

However, for asymptotic stability, the poles must be situated in the left half plane
and for a transfer function with a third order denominator

S+ as+aps+ag
this holds only if all coefficients are positive and
aiay > ag

[H&g09, p 46]
For this system, these equations imply that

K > 0,
T > 0
Td > 07

")

for the system to be asymptotically stable.

V

(4.25)
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Figure 4.11Pole/zero maps of the closed loop system with the considered controllers.
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Figure 4.12:Parallel PID implementation with anti-windup feedback. The anti-
windup is active when saturation in the motors occurs agne: . It is otherwise
equal to zero and does not affect the control. Courtesy of Karl Jdkstrom and
Tore Hagglund.

A=

This PID controller was extended to handle limited derivative gain, integrator
windup and bumpless transfer from manual operation to automatic control.

The derivative action can result in a very large amplification of measuremogse
and must therefore limited. This was done by the following approximation of the
derivative part

sTd

STy —mm—
47 14 sTy/N

(4.26)

This approximation works well at low frequencies while at high frequenttie gain
is limited toN. Furthermore, it is not good to let the derivative act on the setpoint
signal.

The PID controller becomes then

U(s)=K (R(s) -Y(s)+ i(R(s) -Y(s) — 1+S;-I_;c;j/’\IY(s)> (4.27)

whereU (s), R(s) andY(s) are the Laplace transforms of the control sigma), the
setpoint signat¢(t) and the measurement sigyal).[WAAQ9, p.50]

The motors of the LinkQuad can easily be saturated since their PWM inputs are
limited to the range 6- 1000. If the controller saturates, the integral action may then
integrate up to a very large value. Its value may become so large that whemdhe
is later reduced, it may take a while until the integral action returns to a normal
value. This behaviour is called integrator windup and can be countenaitedo
called anti-windup. This can be done by modeling the motors as a saturation and
adding an extra feedback loop to the integrator. The feedback loopttakes
difference between the input to and the output from the saturation asrtiesand
feeds it through the gain/T;, see Figure 4.12. The erregis zero when the motor

is not saturated and when a saturation occurs the feedback loop trielsitees

back to zero again. The time constdpts called the tracking-time
constant.[WAA09, p.52]
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Chapter 4. Slung Load Control on a Quadrotor

The anti-windup functionality can be used to introduce bumpless transfar fr
manual operation to automatic control. The integral action will track the manual
input if the manual input is connected to the anti-windup according to Figd& 4
The errores will have a value only if the output from the PID differs from the
manual input, thus the feedback loop makes the integral action follow. Howiev
will not make the manual input track the PID loop. This can be done by agpafin
integrator to the manual input and connect an equal tracking loop to thgtatde
[AHO6]

The tracking of automatic input was disregarded in this application since fitehsw
from automatic to manual often occurs when the LinkQuad is about to crasho

be brought down manually. The standard routine for this action is to make a main
mode switch via the radio control (RC) on the LinkQuad from semi-automatic to
manual mode. The manual mode is set up in LinkGS to only contain tested settings
and take inputs from the RC controller while the semi-automatic mode allows other
inputs combined with the manual inputs. The controllers of the manual mode are
separated on the Control MCU (CMCU), whose source code is cloaddt i

therefore not possible to implement the tracking in this manual input. The tgackin
of the controller in the manual input was disregarded in the available seftxgar

well since the majority of manual takeovers are made with a main mode switch.

One issue that the current controller can not handle fast enough isstheflgertical
thrust when the quadrotor tilts. When the quadrotor tilts to move, the previously
vertical thrust becomes divided into two effective components, whezésovertical
and one is horizontal, see Figure 4.14. It is therefore necessary téeddfarward
part of the tilting action that can compensate for this loss of thrust.

If the LinkQuad is seen as a plane with a normgaihe tilt anglea can be found as
the angle between the normal vector and the gravity accelem@tgae Figure 4.15.
In the body coordinate system, the normal is defined-ag0 0 1] and

d = [0« 9y 9z]. and by using the geometric interpretation of the scalar praghgt

1 C
T z +
o |
el L —»@—» 1
- T, s
Vs
D —— PD
y —»

P
=X

J
o
| [

Figure 4.13Parallel PID implementation with bumpless transfer by manual tracking.
As for anti-windup, the goal for bumpless transfer is to make the integral aictick

so the same feedback loop can be used with some modification. Court€ayl of
Johan Astrém and Tore Hagglund.
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Figure 4.14The upward thrust of the quadrotor is split into two effective components,
one vertical and one horizontal.

—

Quadrotor

v
g

Figure 4.15:The tilt anglea between the quadrotor and the horizontal plane is the
same as the angle betwegmndg sinceri is perpendicular to the quadrotor.

see (4.28)¢ can be approximated according to (4.29).

A-g = [|Af|[|g[| cosa (4.28)

ﬁ'g 0z
- =g 29
T (4.29)

Instead of performing a time consuming lookup for the arccos function,ahev

cosa can be used advantageously as a feedforward of the tilting. If the dutput

the PID controller is scaled with/Tosa, it will be unaffected ifa = 0 and increase

if a increases. This implementation is also independent of advanced trigondmetry
definea from the existing pitch and roll angles.

69



Chapter 4. Slung Load Control on a Quadrotor

The key for using this approximation is to find the gravity acceleration vecidr a
this can be done if the origin of the coordinate system is placed at the amroelker.
The output vector from the accelerometer can then be used as an iapgiior ofg
in (4.29) and its performance can be seen in Figure 4.16.

(a) Roll angle (blue) and/icog a) (green) (b) Pitch angle (blue) and/Toga) (green)

Figure 4.16:Pitch and roll angles compared to the output from the approximation
of 1/coqa). The experiment consisted of three parts. First, the quadrotor was tilted
30 in both directions along each axigXand ¥5. Second, it was tilte@80° in between

the two axes to verify the behaviour in all directions. Finally, the quadrotos wa
shaken and tilted slightly in different directions to study how accelerationstatfe
the approximation ot/ coga).

The final controller can be seen in Figure 4.17. It is a parallel implementatian o
PID controller with anti-windup tracking, manual tracking and a feedfodwa
solution for the tilting. It is integrated into the existing control according to
Figure 4.18.

Discretization Since the PID controller was to be implemented on a computer, it
had to be discretized. Each part’s discretization will be presented andsdest
separately.

The proportional part is static so it requires no approximation.
P(kh) = K(r(kh) —y(kh)) (4.30)

wherekhis the time instant = khwhen the computer samples the values laigl
the sample time.

Manual input

a
—y—»| KTygs l
M
€=Ysp—Y u 1
> K —O f -

A cosa
o : == 1 ~( -

| =

Figure 4.17:The final controller: Parallel implementation of a PID controller with
anti-windup tracking, manual tracking and a feedforward solution for the tilting
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Figure 4.18:The modified control: The setpoints for the attitude control and the es-
timated angles from AHRS are still sent from the SCMU to the CMCU. The thrust
input from the RC receiver has been overridden by the altitude controlffoapFig-

ure 6.1. It receives its setpoint sp from the wireless network and the rsealses

from the SMCU. The PID output and the feedforward gain is calculated on tine-G
stix Board and forwarded to the old thrust controller at the CMCU. At the GMC
the controllers’ outputs are calculated, saturated, mixed into individual PaMiuts

and sent to the motors.

The integral action given by (4.31) is approximated with a forward appraton,
resulting in (4.32). However, the tracking for anti-windup and bumplesstea
needs to be included into the approximation, see (4.33). The integralggeehds
only on present values to calculate the future value. It can therefarpdsed after
the control signal has been put to the process thereby reducing theltzdiopal
delay.

() = $ / ‘e(s) ds (4.31)
| (kh=-h) = 1 (kh) + K?_he(kh) 4.32)
| (khh) = 1 (kh) + K?_he(kh) + _Ees(kh) (4.33)

The derivative action can not be discretized with a forward approximatiwe it
might become unstable then. Therefore, it is instead approximated by éatkw
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Chapter 4. Slung Load Control on a Quadrotor

approximation since the result is always mapped to be stable.

Tq
Tg+Nh

~ KTN
Tg+Nh

D(kh) = D(kh—h) (y(kh) —y(kh—h)) (4.34)

[WAA09]

The control signal becomeagkh) = P(kh) + 1 (kh) + D(kh) for the PID controller
and when the model for the motors’ saturation and the feedforward sighizh are
both static, are added the final control signal becomes (4.35).

u(kh) = ﬁsa(v(kh)) (4.35)

Tuning The major part of the tuning was done hye-based empirical tuningn
the model described in (4.13). The rules are:

e Increasing the proportional gain decreases stability.
e Error decays more rapidly if integration time is decreased.
e Decreasing integration time decreases stability.
e Increasing derivative time improves stability.
[AHO6]

The methods to study the performance and stability has been simulating step
responses and bumpless transfers in Simulink and plotting the Bode plots of the
closed and open loop systems and the transfer function for disturbdtmssver,
after two crashes with parameters designed for the simulated model, the entire
tuning was focused on Bode plots and by studying the real performdiice o
quadrotor.

Besides rule-based empirical tuning, there are five other aspects ideonkile
tuning; the cut-off frequency of the open loop system, the cut-off eaqy of the
low pass filter, the noisy signal’s effect on the derivative part, the satimpéeof the
controller and the sample time of the pressure sensor. All these propéidictstize
stability of the closed loop system and how fast responses that arelpossib

The pressure signal can be noisy, even after low-pass filtering, stethivative gain
must be chosen such that the noise is not amplified and corrupts the cigtral
This can be done by choosifig sufficiently small so the noise does not pass
through. However, this can collide with the condition from (4.26)Tq4 > 1/T;,
where a too smally might introduce instability.[Hag09] This also matches the
theory of rule-based empirical tuning.

The sample timé of the controller can be chosen using two rules of thumb. The
first rule of thumb

ha, &~ 0.05 to 014, (4.36)

whereax, is the crossover frequency (in radians per seconds) of the contiimoes
system, gives a Nyquist frequency is roughly 23 to 70 times higher than the
crossover frequency. This implies a good approximation of the continstisrs to
a discrete system. [WAAQ9, p. 45] The crossover frequency forlteed loop
system isuw ~ 7.45rads*, which implies 00067< h < 0.0188
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The second rule of thumb ensures that the sampling period is so shortelpdiebe
lead is not affected and does not affect the derivative action too riish.
formulated as (4.37) and the final parameters of the PID contrdjer,0.27 and

N = 8, implies 00068< h < 0.0203.

hN
N ~02t006 (4.37)
Tq

[Arz09]

Combining these two conditions, the sample tinmghould be within (00068 s and
0.0188 s so the actual sample time 0dDs is properly chosen in the middle of the
interval.

The cut-off frequency of the open loop system determines the speediwbcand
is dependent of the low-pass filter’s cut-off frequency. The secoder Butterworth
filter has a phase shift 6f90° at the cut-off frequency and it increases for higher
frequencies, see Figure 4.19. The choice of the open loop systentéf érgguency
should be done so that the filter's characteristics, the phase shift, doaffatt the
open loop system’s phase margin so that is unstable. To do this, the comtrofier
be tuned such that a sufficient phase margin for stability is achieved asgdtesnm
still has a fast response to inputs.

A theoretical PID controller has a maximum phase shift-6f* and since the
derivative gain is limited, the actual controller has a maximum phase shib6f,
see Figure 4.20. As the phase shift has to be positioned so that it creesitize
phase margin for stability, the positioning of the cut-off frequency of trendpop
system is limited by the low-pass filter's phase shift. The parameters wheebyhe
chosen to give a phase margiq = 15.1° and a gain margid\y, = 4.73. According
to rules of thumb[H&g09, p.54], the gain margin is valid but the phase margin is
small. However, this is a design choice since increasing the phase mardih wou
decrease the speed of the system.

The saturation limits were originally set to 0 and 1000 as these were the limits of the
PWM inputs to the motors. However, after a flight were the controller satijrite

was observed that it was impossible for the inner loops to maintain the attitude. Th
is due to the fact that the inner loops control pitch and roll by increasinththet

on one rotor and decreasing the trust on the opposite rotor on the saméhaxis

same behaviour would occur if the motors were saturated in the bottom, thusgmakin
the quadcopter drop and perhaps turn itself upside-down.

The saturation limits were therefore setig, = 200 anduypper= 900 to avoid
constraining the inner loops’ stabilization of the attitude.

The final parameters of the controller can be found in Table 4.3 and &ratoa of
the final altitude control can be found in Section 5.

State Machine

The system requires different behaviour in different situations, i.entbters should
be inactive on the ground. A state machine was introduced to handle thediffe
states of operation and the following states were identified: Ground, Liffily@g,
Landing, Emergency Landing, Stopping and Stop, see Figure 4.21 ketehsof
the transitions and the states.

The original plan was to have different behaviours if a load was attatchibe:
guadcopter or not so two different state machines were planned initiakysfeite
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Bode Diagram
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Figure 4.19:Bode plot of the discrete second order Butterworth filter with cut-off

frequencyw, = 2 Hz. The dashed line marks the filter’s the cut-off frequency and the
dotted line the open loop system’s cut-off frequency.

Parameter Value
K 20

Ti 5

T 10

Ty 0.27
N 10

h 0.01
Uiow 200
Uupper 900

Table 4.3:The final parameters of the controller.

machine for handling the load was, however, not implemented, see Cohé&rol o
Slung Load. Instead the state machine for unloaded behaviour has iffeesnd
implementations: One for manual flight with either Android Client or Computer
Client, one for doing takeovers from manual flights with the RC controllercared
with autonomous lift off and flying capabilities. All three versions rely on teeruo
control the quadcopter in the horizontal plane. Their desired behavévaristed in
Table 4.4

The two first versions were successfully implemented but the autonomoudeltitu
control’'s Landing state was not implemented. This was due to the lack of faitk in th
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Bode Diagram of the PID controller.
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Figure 4.20Bode plot of the PID controller with k=20, T; =10, Ty = 0.27and N=
10.

Flying

ifting [Er‘rhergem::«_.r Landing]

H Stopping Stopped

® )

Figure 4.21The state machine for the control.

pressure sensor’s accuracy when the ground was to be determusedif Ehe

guadrotor was to land from a flat surface where a reference valdledground had
been taken on lift off, it could not be guaranteed that the pressure grdlund is

the same at the time of landing. This is due to the continous natural variatiors of th
atmospheric pressure, see Figure 4.22.

The first intuitive solution would be to set the thrust to just less than reqtored
hover and slowly descend to the ground. This is sadly not possible duetnd)
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Table 4.4: Desired behaviour of each state in the different state machines.

State Manual flight with clients Altitude  control  without au- | Altitude control with autonomous

tonomous liftoff and landing liftoff and landing

Ground The quadrotor should be on the groundhe quadrotor should be able to flyThe quadrotor should be on the ground
with motors turned off. with the RC controller and the con-with motors turned off.

troller should track the thrust input
from the user.

Lifting This state was not required so the staf€his state was not required so the statéhe quadrotor should lift off to a set
machine goes straight to Flying. machine goes straight to Flying. Durpoint of two meters above the ground.

ing the mandatory loop through the lift-When it has stabilized around the set

ing, the behaviour is the same as fopoint, it should hand over the respons

ground. bility of setting the set point to the user
by going to Flying.

Flying The quadrotor should take the geThe quadrotor should take over the alThe quadrotor should take the set point
points sent from the clients and for-titude control and it should take theto the altitude control from the user via
ward them to the inner loops on theset point from either of the clients. |tAndroid Client or Computer Client and
LinkBoard. should also be able to fly manuallyshould be able to fly manually in the

in the horizontal plane with set pointshorizontal plane with set points from
from the client. the client.

Landing This state was not required so it waghis state was not required so it waghe quadrotor should land the quadro-

disabled to avoid crashes.

disabled to avoid crashes.

tor and go to Ground on a successful
landing.

Emergency Landing

This state was not needed so it was d
abled to avoid crashes.

iSFhis state was not required so it w
disabled to avoid crashes.

ag his state is the same as Landing ex-
cept it goes straight to Stopping after a
successful landing.

Stopping This state was not required so it waghis state was not required so it wag\ll motors should be turned off and alll
disabled to avoid crashes. disabled to avoid crashes. values zeroed out, thereby disabling the
quadrotor.
Stop This state was not required so it waghis state was not required so it wastopping has been successful and the

disabled to avoid crashes.

disabled to avoid crashes.

software is shut down.
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Figure 4.22Raw and low pass filtered data from the pressure sensor, converted into
meters, when the quadrotor sits on the ground with motors off. The natniations
in the atmospheric pressure can have a magnitude up to 1 m.

effect, turbulence and battery depletion causing the quadrotor to requinéable
thrust to hover continously.

Another solution that was discussed was to set the setpoint at 1 m abay®timel

and after the quadrotor had stabilized around the setpoint, it would do a slow
descent according to the first intuitive solution. This was an interestingicolinat

was implemented to some extent in Emergency Landing but was never tested due
bad weather conditions during the final week of the thesis.

The problem with the atmospheric pressure variations was not such arfasshe
Lifting state since it could be implemented to do an aggressive step respanse to
secure height, e.g. 2 m. The problem of this state was to determine when to &witch
flying and allow the user to affect the set point. It is not sufficient to jagttkat the
switch should be made when the quadrotor is close to the set point. If theotpprad
overshoots the set point and a scared user gains access to the gdigishe can

pull down the set point to ground level to "stop” the quadrotor resultingdraah.

A second condition has to be added and a good property to study would be th
velocity. If the quadrotor is close to the set point and has a low velocity, the
transition to Flying can be made. All that is needed then is the derivative of the
altitude and that has already been developed in the controller. Since ivetider
action of the PID controller calculates the derivative of the altitude, it camsbd in
the second condition. As the PID controller is on parallel form, it is easydessc
the derivative action and no modifications are required.

The control itself is the same throughout the states in the state machine and no
parameter changes are made anywhere. However, the PID contrakesdpport
bumpless parameter changes and it would be interesting to study if othergiara
would improve the performance at lift off and landing situations.
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For further details about the software design of the state machine, senSE8.

4.4 Control of the Slung Load

The original plan was that the altitude control was to be sufficiently good temak
the control of the slung load on the quadrotor very similar to the one dewkfope
the gantry crane. However, multiple factors, such as lead time for haecwvnal
underestimated complexity of subproblems, contributed to delaying this task so
much that it was not executed due to lack of time.
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5. Experiments and Results

This chapter presents the experimental results of the experiments thatameeel
out on the LinkQuad.

Unfortunately, due to a malfunction of the gantry crane, data is not availBinerig
could not be repaired during the course of the thesis.

The chapter begins with a presentation of the experiments which is followad by
review of the logged experiment.

5.1 Experiments

During the thesis, six experimental sessions were carried out on theaitgdgr
system. Each session is presented in Table 5.1, where a short summaenis gi
together with the locale and the atmospheric pressure of the day. The two
environments for flying were the green in front of the building, where the
department of Automatic Control resides, and the ball room of the studént at
LTH, see Figure A.5 and Figure A.6 in Appendix A.

Before the experiments begun, the LinkQuad exterior had the appeaaric
Figure A.1 in Appendix A. After a crash in Experiment 2, the exterior and the
chassis of the LinkQuad was broken in half and the repaired quadentdreeseen
in Figure A.2 and Figure A.3 in Appendix A.

Experiment 3 was the only experiment that was logged and will be reviewibe in
next section.

5.2 Review

During Experiment 3, the following properties were studied: bumplessféiens
between manual and automatic altitude control, the low-pass filter, positive and
negative step responses, the feedforward action and how well theschiere
integrated into the system. These aspects will now be analyzed in the gdem or

Bumpless Transfers

The first occurence of bumpless transfer from manual to automatic tereso
under ideal conditions, see Figure 5.1a. The quadrotor had no velogityin
direction and was hovering at an altitude of 1.5 m. The result was a bumpless
transfer.

During the second bumpless transfer from manual to automatic control, the
guadrotor had a velocity along tleaxis, see Figure 5.1b. The result was a small
bump in altitude after the transfer, but it is rejected within ten seconds ard nev
reaches a magnitude larger than 0.8 m.

Low-pass Filter

The low-pass filter was studied during a manual take-off and flight aredtit h
already converged on the ground before the logging started. Thesfitlgiput was
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Chapter 5. Experiments and Results

compared to the raw data in Figure 5.2a and it suppresses the noise to a aeagnitu
of 0.2 m or less without any phase delay.

The filter was then compared to the simulated ideal version of the same filter and
both real and simulation data are consistent, see Figure 5.2b

Step Responses

The two positive step responses had settling time of two seconds, whickdede
the expectations of response time, see Figure 5.3a and Figure 5.3bwEseseme
stationary error but this is believed to originate from varying turbulendesarce
the slow integral action was not fast enough to suppress this, it rem&ntudstep
responses have a small overshoot and do not oscillate too much andiboth th
properties are advantageous as the quadrotor flies indoors.

The control signals in Figure 5.4a and 5.4b were hard to interpret sin¢lertis to
hover varied over time, which is considered to be induced by turbulermeevér,
the control signal is not very aggressive in any changes as its fgeris0 - 1000
and it is kept within 475 and 540 at both steps.

The feedforward action might have been aiding the PID control in both step
responses and it might be the reason to why the PID output was neveyechtn
any great extent. Its effect was visible throughout the step respofsgure 5.4a
and becomes visible at the step change in Figure 5.4b. As the feedfaetad
was designed to aid with fast increases of the thrust at tilting and notwttieds, a
worse response time should occur at the negative step response.

The step change of -1 m can be seen in Figure 5.5a and the altitude had settled

ID | Summary Locale Average Pressur

1 | Altitude control was achieved with aThe green. Unknown.
bumpless transfer from a manual flight
at an altitude of 5 m. It was filmed byt
not logged.

2 | Altitude control was achieved with aThe green. Unknown.
bumpless transfer from a manual flight
at an altitude of 2 m and a step change
to 5 m was successful. However, the
log was lost during a crash.

3 | Altitude control was achieved twice The ball room| 100.9275 kPa
with bumpless transfers from a map-
ual flight at altitudes of 1.5 m and PR
m. Two step changes of 0.8 m and 1.5
m upwards and one step change of 1
m downwards were successful. Bath
clients were used to set the setpoint
for the altitude control and send com-
mands to the state machine.

D

Table 5.1:The experiments that have been carried out on the integrated system
throughout the thesis. The two locales for flying were the green in fronedfukid-

ing, where the department of Automatic Control resides, and the bathrobthe
student union at LTH
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5.2 Review

within 8 seconds with a stationary error with a mean of 0.1 m. The proporti@mal p
of the controller can be seen in the edge at the step change at time 92.6 s in
Figure 5.5b. The initial slow response and the overshoot was probabliodhe
integral action. This behaviour is desirable if the pressure sensor weardtito any
pressure spikes, e.g. from the slamming of doors.

In Figure 5.5b, two saturations and aggressive behaviour caused fgettiforward
action can be observed. This will be further discussed in the next section

Feedforward Action

In retrospect, corrupt values from the approximatior%% were observed that
had not affected the flight in any visible way to the observers, see Figéasand
Figure 5.7a. However, it saturated the control signal to both its maximum and
minimum values during a short period of time and if this period of time would be
larger it could have severe effects on the process, see Figure 5.6b.

This bad behaviour originated from an unknown acceleration alongglais, see
Figure 5.7b, which could be a bad value from the sensor since the qoabaal no
sudden gain of altitude following the peak of acceleration.

Clients

Both clients were successfully integrated and supplied the user with the same
behaviour for similar tasks.

The Android Client was used to produce the bumpless transfer in Figuaebdl
the positive step response in Figure 5.4a.

The Computer Client was used to produce the bumpless transfer in Figbratel
positive step response in Figure 5.4b and the negative step respongeari 3:5b.
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Chapter 5. Experiments and Results

(a) The transfer from manual to automatic occurs at the dashed linealtitade of 1.5 m. The
quadrotor was in an almost perfect hover with no velocity in any direction.

(b) The transfer from manual to automatic occurs at the dashed line altiaude of 2 m. The
quadrotor had a velocity directed upwards at the transfer, but theot@aincelled out its effect
within ten seconds and the bump did not exceed 0.8 m.

Figure 5.1:The altitude at the bumpless transfers.
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Altitude, raw and filtered

5.2 Review

Altitude(m)

T
Raw data
Filter with =2 Hz

40 45

50

(a) The actual second order Butterworth low-pass filtering with cutrefidencyw, = 2 Hz
compared to the raw output. The raw output is grey and the low-passdikereal is blue.

Low-pass filering

Altitude(m)

Actual filter
—— MATLAB implementation

Time (s)

50

(b) The actual second order Butterworth low-pass filtering with cutreffdencyw, = 2 Hz
compared to an ideal implementation of the same filter in MATLAB. The adowapass

filtering is blue and the MATLAB filtering is red.

Figure 5.2:A study of the low-pass filter during a manual take-off and flight indoors
The altitude is defined from the pressure at sea level (1 atm = 101.325kEajue
to a high pressure on the day of the experiment, the altitude for the grouwrairze
31.5 m above sea level, instead of the actual 80 m. The dip below 31.5 ndaioa
time 20 s is due to an increase in pressure from the motors.
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Step change, ca 0.8 m

Raw altitude
355 Filtered altitude i
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(a) The response in altitude to a step change of circa 0.8 m. The stegecisaoughly set since it
is induced by a user of the Android Client.The data for the data in the time &i@&®w85 s - 81.25
s is corrupt due to the built-in logger’s tendency to backtrack and oiterparts of the log. The
same occured for the control input for this sequence. The setpoied jgtre raw altitude is grey
and the filtered altitude is blue.

Step change, ca 1.5 m
T T

Raw altitude
Filtered altitude
Setpoint from client

3551 —

3451 a

Altitude(m)
®

335

L I I I I I I I I

32

100 1005 101 1015 102 1025 103 1035 104 1045 105
Time (s)

(b) The response in altitude to a step change of circa 1.5 m. The stegectsaroughly set since
it is induced by a user of the Computer Client. The setpoint is red, the randaltisigrey and the
filtered altitude is blue.

Figure 5.3:Two upwards step responses. The filtering of the altitude is done in retro-
spect with MATLAB.
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Control signals
660 T T T T T T
Control signal with feed forward
640 Raw PID output -
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(a) The control signal to the step change of 0.8 min Figure 5.3a. Teet ef the feedforward gain
is visible throughout the experiment since the quadrotor was oscillating widnyasmall angle.
The data for the control with feedforward gain (blue) in the time interva888 - 83.60 s is corrupt
due to the built-in logger’s tendency to backtrack and overwrite parts dbthé& he same occured
for the raw PID output (red) in the time interval 80.85 s - 81.25 s.
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(b) The control signal to the step change of 1.5 m in Figure 5.3b. Therqtor was level and
maintaining its altitude without any feedforward action until the step changered. When the
quadrotor started to accelerate upwards, it also started oscillate with sigdsaand the feed-
forward part compensates but does not dominate. The effectroflaeamic disturbances, such
as turbulence, can also be seen on the control signal here. Theegtthuiust to hover and climb
varies over time, e.g. the thrust to hover at time 101.1 s is the same asubietthclimb at 102.6 s.

Figure 5.4:The control signals to the step responses in Figure 5.3.
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Chapter 5. Experiments and Results

(a) The response in altitude to a step change of circa -1 m. The slow indetien shows clearly
as it approaches the new setpoint. A small overshoot can be obdmrvedrejected within three
seconds. The step change is roughly set since it is induced by a uber @dmputer Client. The
setpoint is red, the raw altitude is grey and the filtered altitude is blue.

00— —

(b) The control signal to the step change of -1 m. The quadrotor wa$ 4 maintaining its
altitude with only a minor feedforward action until the step change occikée:n the quadrotor
overshot the set point and came close a table, the pilot started to tilt theotprath move it
away from the table. The feedforward action behaves properly in theititeeval 96.5 s - 96.85
s, but after 96.85 s it saturates the control signal in both limits due to sowrkmalue from the
accelerometer. See Figure 5.6a for details on this subject.

Figure 5.5:A downwards step change and the corresponding control signal. [Fhe fi
tering of the altitude is done in retrospect with MATLAB.
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‘The approximation of 1/cos(a)
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(b) The unsaturated control signal. The saturation limits are 0 and 1@D&rarhere removed
to show how the bad behaviour of the approximation dominates the coigmall s

Figure 5.6:Corrupt values from the approximation @g% was observed in retro-
spect. It saturated the control signal to both its maximum and minimum vdlues
originates from an unknown acceleration along the akis, which could be a bad
value from the sensor since the quadrotor has no sudden gain of altitudevifadjo
the peak of acceleration. The corrupt value affected the control saurahg a short
period of time and could thereby never cause a great impact on thegsog he plots

continue in Figure 5.7.
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Altitude, raw and filtered
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(a) The raw and filtered altitude.
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(b) The acceleration along tizg axis.

Figure 5.7:Plots continued from Figure 5.6.
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6. Conclusions

The conclusions of the thesis are presented here along with suggestmmssible
future work.

6.1 Gantry Crane

The gantry crane experiment was successful and a simple model ofggleathwas
derived and tested.

The slung load was originally thought of as a spherical pendulum buirtbdél
could not be used since it introduced a singularity in the downright posifioa.
model was approximated instead by using the fact that the two angle sehsoges
crane were parallel to one axis of motion of the cart each. The slung tndd c
therefore be approximated as two traversed simple pendulums that werddefin
along these axes. The final model, as a LTI system

b 0100 0 0 0 0 /p 0 0

B 0000 0 0 0 Offp, 10

By 0001 0 0 0 Offp 0 0

B, 0000 0 0 0 Offp 0 11,4
a|"|oo0oo 010 ofg oo <uy> (6.1)
i 0000-70 0 0f|g 70

B 0000 O 0 0 1f|2pB 0 0

A 000000—%03 OIE

wherepy and py describe the position of the cap, and py are the velocities of the
cart,a andf are the angles of the angle sensbiis,the length of the load arm and
g is the acceleration due to gravity.

This model is mass independent, which is attractive for the later applicatioreon th
guadrotor since it can then be loaded with a variety of loads and the modé&l wo
not have to be altered.

A problem that can occur when using this model on the quadrotor is that the
attachment point of the load will tilt when the quadrotor tilts. This still needs to be
solved by introducing the quadrotor’s equations of dynamics in the modgl, se
Section 4.3.

6.2 Pressure Sensor

The low-pass filter is a second order Butterworth filter with a cut-off fezapy at 2
Hz. This filter dampens the noise and random spikes while it does not icgdda
much phase delay so that the pressure sensor can be used reliablp@st amthe
PID controller.
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Chapter 6. Conclusions

6.3 Angle sensor

The fork and attachment point were finalized during the last week of tisésthad
there was no time to test its functionality on the quadrotor.

6.4 Altitude Control

The altitude control consists of a PID controller with a feedforward gaimhe tilt
angle. It acts upon a low-pass filtered signal from a pressure sasgor
measurement of the altitude and receives its setpoints from the ComputerdClient
the Android Client via a wireless network connection.

The controller is a parallel implementation of a PID controller with limited
derivative gain, anti-windup, bumpless transfer from manual to automadiaa
feedforward gain for the tilt angle, see Figure 6.1 for the continousorerghis

was discretized with a sample time of 0.01 s and parameter values

K =20, Tj =10, Ty = 0.27 andN = 10. The anti-windup and bumpless transfer is
implemented by having the integral action track either the saturation or the manual
input by a feedback loop with gaif = 10.

The feedforward action’s purpose is to aid the PID controller with a fast
counteraction of the loss of thrust when the quadrotor tilts and dividesrigs pu
vertical thrust into one vertical and one horizontal effective compbfidris is done
by applying a gain of Lcosa, wherea is the tilt angle, to the control signal of the
PID controller. This results in a gain of 1 when the angle is 0 and an incemse
as the angle grows. However, large gains during short time intervalsobsezved
during an experiment and were found to originate from unknown a@atearspikes
along theZg axis. These acceleration spikes could not be traced in the measurements
of the altitude and are assumed to be measurement errors in the accelerSmeger
this is not a required part of the system and this behaviour could cauastait
these unknown accelerations occur over a longer period of time, it shotitse

used until the hardware can be guaranteed to be flawless or that the tinvalinter
these spikes is observed to be constrained to a short period of time. Amaéiter
solution would be to introduce a low-pass filter to dampen the undesired spikes
this might impair the performance of the feedforward action.

The controller exists in a state machine to allow different modes of operatioh, s
as lifting, landing and flying, but only the flying mode was properly testedtdue
poor weather conditions hindered further test sessions.

The entire solution of the modified control is shown in Figure 6.2.

6.5 Android Client

The Android Client is the client application for the Android smartphone. The
Android Client uses its inertial measurement unit (IMU) to set setpoints to the
attitude control of the LinkQuad and it uses a custom implemented virtual joystick
to set setpoints for the LinkQuad altitude and yaw angle. The interfaceedrayior
was designed to mimic the radio control (RC) controller. This was done byg asin
natural mapping of the controls so that if the user had used the RC conbeltae
then the controls would be familiar. The mapping of the controls was also hatura
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6.5 Android Client
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Figure 6.1:The final controller as a continous system: Parallel implementation of a
PID controller with anti-windup tracking, manual tracking and a feedfor@vaplu-
tion for the tilting.
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Figure 6.2:The modified control: The setpoints for the attitude control and the es-
timated angles from AHRS are still sent from the SCMU to the CMCU. The thrust
input from the RC receiver has been overridden by the altitude controlffoapFig-

ure 6.1. It receives its setpoint sp from the wireless network and the rsealses

from the SMCU. The PID output and the feedforward gain is calculated on tine-G
stix Board and forwarded to the old thrust controller at the CMCU. At the GMC
the controllers’ outputs are calculated, saturated, mixed into individual PdMiuts

and sent to the motors.

mapped towards the process in the sense of if the user tilted the smartpheaeifo
then the LinkQuad would also tilt forward. The Android Client mainly uses fifig |
and the virtual joystick to steer the LinkQuad.

During the evaluation of the Android Client, it came forth that the virtual joystick
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was hard to use. This can be best understood if it is compared to an gmatgk.
An analog joystick provides the user with a physical feedback of the posifithe
joystick which gives a feeling of the steering. The virtual joystick howéser
implemented in a touch screen that can not provide this physical feedback.
Therefore the user instead wants to look on the control to make sure theviigs
the right value. This makes it hard to steer the LinkQuad at the same time.

The joystick could not be used simultaneously as the IMU was used, wtiahead
in that the pilot could not counteract the loss of vertical thrust when Isb®sets
the setpoints of the attitude for the LinkQuad. This is due to the lack of a well
implemented multitouch on the Android smartphone.

These two reasons, that the virtual joystick was hard to use and that muitit@asc
not available, resulted in that the Android Client should not be used with ahanu
thrust control. The Android Client should instead be used with altitude dontro
which implies that the quadrotor does not require the simultaneous inputgHeom
IMU and the joystick.

The mappings of the controls are listed in Table 6.1.

Input Orientation  Set point

Green button + tilt  North-South  Pitch.

Green button + tilt  East-West Roll.

Joystick North-South  Add/subtract altitude.
Joystick East-West Yaw.

Trim Right - Yaw trim right.

Trim Left - Yaw trim left.

Land or Lift - Land/Lift.

Terminate - Terminate.

Table 6.1:Mapping of controls on the Android Client

6.6 Computer Client

The initial purpose of the Computer Client was for debugging and testingt, Fir
was used to verify the functionality of the network communication, but duriag th
development of the Android Client a new feature was added. This feaag¢he
human interface device (HID) PlayStatio®g8amepad (PS3 gamepad) that could
be used instead of the keyboard, which was used during the testing cdttherk
communication. The PS3 gamepad can supply the software with multiple
simultaneous inputs with a higher resolution than a smartphone, thus enabling the
pilot to accurately control several aspects of the quadrotor at the same3gTause
of this the Computer Client was successfully used to do the first test flight with
manual thrust control indoors. The Computer Client however lacksgepro
graphical interface since the Computer Client was originally designed tedzkfar
debugging and testing. Which leaves much to improve for the user handiness

The mapping of the controls are listed in Table 6.2.
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6.7 Server

Stick/Switch Orientation  Setpoint

Left stick North-South  Add/subtract thrust.
Left stick East-West Yaw.

Right stick North-South  Pitch.

Right stick East-West Roll.

Cross - Land/Lift.

Circle - Emergency land.
Top left front button (L1) - Yaw trim left.

Top right front button (R1) - Yaw trim right.

Table 6.2:The mapping of controls on the PS3 gamepad.

6.7 Server

The Server where designed to allow communication to the LinkQuad through a
wireless connection, to enabling steering of the LinkQuad. This was done b
creating a network protocol that the clients use to communicate with the S€heer.
Server then controls the LinkQuad by sending data through a seria¢ctiom to

the Control MCU (CMCU). The serial connection together with some cordigan
of the inner control loops enables the Server to send control signals adtitioiele
and thrust control of the LinkQuad.

The Server consists of the following parts:
e Serial communication.
e Network communication.
e Control loop in a state machine.

The serial and network communication was placed in a thread each amdtséepa
from the control loop to reduce the computational delay of the control [Boe.
low-pass filter was also put in the thread of serial communication to be filtéged a
higher sample frequency than the control loop.

6.8 Future Work

There are many parts that can be improved or added to this project.

Network Communication

In the present version, a single connection exists between the clientatetbver.
The stability of the communication could be improved by extending to two
connections. One connection should then be a transmission control@rtad)
connection for command messages, e.g. terminate, and one connectitthtshau
user datagram protocol (UDP) connection for direction messageswalgjghe
system would benefit from the speed of UDP and the stability of TCP.

Sensors

The accuracy of the estimation of altitude can be improved significantly if senso
fusion with a complementary filter or a Kalman filter can be used where theupeess
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sensor’s value is used together with the accelerometer. This could récuetect
from the natural variations in atmospheric pressure and increase thedimgof
spikes from doors and other disturbances. For example, a Kalman filtea witidel
of the process, which takes the pressure and accelerations as imuldshe used.
The pressure should then be used as the major input and the acceleshoetdrbe
used determine whether to disregard spikes in the pressure signal or not.

Altitude Control

The different modes of the state machine needs to be tested further to thetkate
it can be relied upon to work both indoors and outdoors.

The altitude control consisting of a PID controller could also be extended to a
adaptive solution since the characteristics of the process varies wittakiaators,
e.g. wind, turbulence and atmospheric pressure.

The computing power of a Gumstix computer-on-module board is more thaglenou
to run the current software so it could be interesting to introduce a full Kafittar

and investigate if more accurate values and estimates of the position and attitude o
the quadrotor can be achieved than the original estimation.

Control of a Slung Load on a Quadrotor

This problem was not finished within the time of the thesis work, but the remaining
steps are clearly defined as follows:

¢ Integrate the derived model of a slung load with the dynamics of a quadrotor
e \erify that the angle sensors with the fork solution can be used on aafoadr

e Introduce control of the slung load using movement in the horizontal plane a
an actuator with either linear quadratic regulator (LQR) control or two PID
controllers.

e Implement a modified version of the state machine to account for the slung
load at lift off and landing.

A solution for the ideal case with control for absolute positioning can be isee
Figure 6.3.

Android

Introducing a better implementation of the yaw and altitude steering would irgcreas
the application’s usability. There exists functionality to interpret the yaw of the
smartphone, but it is very inaccurate in its original state. Some smartphanesh
magnetometer or a gyroscope and these could be fused with the accelertonaete
more accurate measurement of yaw of the smartphone.

The implementation of multitouch is also an area that could be reinvestigated if
newer versions of Android introduce a proper multitouch functionality, tvigc
accurate and stable.
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6.8 Future Work

B Controlle
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Figure 6.3:This is a suggestion of how the slung load control could be solved in the
ideal case with absolute positioning system (APS). The cascaded soliugiosodute
positioning is patched with the slung load controllers’ output to be added to the
setpoints of the X and Y control. This allows the slung load controller to positen th
guadrotor to reduce the angles of the loadand 3.
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A. Photos

Figure A.1:The LinkQuad in its original state with a PS3 gamepad.

Figure A.2: Top view of the repaired LinkQuad after a crash from 5 m above the
ground.
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Figure A.3:Side view of the repaired LinkQuad after a crash from 5 m above the
ground.

Figure A.4:The final version of the fork sensor for measuring the angle of the load.
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Figure A.5:The green in front of the building of the department of Automatic Control
atLTH.

Figure A.6:The ball room of the student union at LTH.
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B.1 Android Client

The Android Client was created for the purpose to be able to control theluiad
by manual steering with the tilt functionality of an smartphone. This was
implemented by using java with Android SDK with the target version 2.2 of
Android.

Connecting the Android Client to a network

Connections to the Server can be made in several ways. One is that mecttre
Server and the Android Client to an existing network and use that network to
communicate to each others. A little more difficult way is that if we want to connect
to the Server directly through a ad hoc network network. An android sihmamtp

today (version 2.2 of android) can not connect to ad hoc network mktwodefault.

To accomplish this we need to have a rooted android smartphone and ¢hange
smartphone behavior. We solved this by using a rebuild on wpa_suppiizente
configure to accept ad hoc network connections by the guide partly mgbéatg].

Using the Android Client

In our implementation we are always using the Android smartphone in larglscap
mode. The first thing we will see when we start the application is a menu comgainin
the links connection, steering and exit as can be seen in Figure B.1.

O T &l @ o08:33

Connection Settings
Launch

Exit

Figure B.1:Menu Activity

In the connection activity, Figure B.2, we will be able to change the ip-addve
the device to connect to and also see our own address. This addressés ifiyou
not are connected to any network. We will not direct connect to the devien
pressing OK, it will connect when we want to start steering the LinkQuad.

When we have set the address we can go to the link steering in the menu.ilThis w
bring up a view containing 5 buttons, a text field and a joystick as can bdrseen
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il @ 16:45

Local-adress: 0.0.0.0

Using TCP protocol

Figure B.2:Connection Activity

Figure B.3. In the status field messages such as if we successfully tedbtethe
device will be printed to give us a good feedback over what is happémithg

system. The button Terminate should only be used when we want to do a eerge
shutdown of the engines. The Land/Lift button should be used to make the
LinkQuad to land or lift from the ground. The joystick is used to change ltitade
and turn the LinkQuad. To drive the LinkQuad you need to press dowgrden
button and hold it pressed. Then the smartphone will register the pitch hiodl tiee
smartphone and translate it to forward velocity and left strafe velocity.

Ml @ 13:00

Terminate Trim
Right

Land or Lift

Figure B.3:Steering Activity

As last note of using the Android Client is that if you somehow exit the steering
view of the application the Android Client sends a close message to the LinkQua
so be sure that the LinkQuad has landed safely before closing the dioplica
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B.2 Configuration File

This manual will give you a complete introduction to the configuration file. The
settings are listed below with an explanatory text, typical values and a deddusdt.

If a setting is missing in the file, the default value will be used. Some settings are
listed with a default valuenandatoryand these settings are required for the
application to start. If they are missing, the application will terminate and print a
read error from the configuration file.

General settings

welcome-message
Welcome message that is printed on start up of the system.
Altering this property is a good way to find out whether you are using thequro
configuration file.
Values: Arbitrary.
Default: Mandatory.

protocol

Type of protocol that should be used for connecting to the other part.
Values: tcp or udp
Default: Mandatory.

port

Port of the network communication, <ip-address>:<port>.
Values: 49152-65535
Default: 50000

Client-specific settings

ip

IP-addresss to the Server.
Values: The IP-address of the Server in IPv4 format.
Default: 192.168.0.1

send-frequency
This is the frequency of how often the Computer Client will read the condecte
human interface device (HID) and send the input to the Server. [Unit: Hz]
Values: 10 - 50
Default: 20

yaw-trim
You often need to do minor adjustments to the setpoint of the yaw control to get
the yaw rotation at an equilibrium. It is called trimming and this property is
the initial trim on start up.
Values: Rig dependent. It can be both positive and negative.
Default: 0

listen2PS3

Choice of HID can be either a PlayStatio®8amepad (PS3 gamepad) or a keyboard.
If this property is set to true, Computer Client will use a PS3 gamepad.

If this property is set to false, it will use a keyboard.
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Values: true or false
Default: Mandatory.

PS3-sensitivity
The sensitivity of the axises on the PS3 gamepad can be adjusted to tise user’
preference. A higher value results in more dampening and a lower vauksre
in a more sensitive control.
Values: 300-600
Default: 328

PS3-deadzone
Axes on a PS3 gamepad have a range 82768 to 32767, which implies that even
a sneeze can give a reading. Therefore, a deadzone is needetbie re lot of
glitching.

Values: 800-1500

Default: 1000

Server-specific settings

serial-CMCU

Path to the serial port to the Control MCU (CMCU).
Values: /dev/ttySX, where X is either O, 1 or 2.
Default: /dev/ttyS2

serial-SMCU

Path to the serial port to the Sensor MCU (SMCU).
Values: /dev/ttySX, where X is either 0, 1 or 2.
Default: /dev/ttyS2

load_attached
You should enable this if a slung load is attached to the LinkQuad and if it
should be controlled.

Values: true or false

Default: Mandatory.

There is two types of loggers, FileLogger and Printer, for two diffevesets.

The names state the functionality well as FileLogger logs to a file and

Printer prints to the screen. To use Printer as a logger, you type "pr{casg-sensitive)
as a name of the log. All other strings are interpreted as the name of the file
Filelogger will write to.

main-and-network-log
The initiation part of the program shares a logger with the network commumicatio
This is due to they share the same thread as well.

Values: Arbitrary.

Default: printer

control-loop-log

This is the log of the control loop.
Values: Arbitrary.
Default: cll
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serial-com-log

This is the log of the serial communication.
Values: Arbitrary.
Default: scl

B.3 Ad Hoc Network Configuration on a Gumstix Board

The configuration of the ad hoc network may occasionally be lost so thisahanu
will help you to reconfigure the setup into a working state again. (Perh@pgigt
want to change the name of the network and this guide will show that as well.)

First things first, writeiwconfig to display the current configuration of the wireless
devices. It should look something like this:

root@overo:"# iwconfig
1o no wireless extensions.

wlanO IEEE 802.11b/g ESSID:"LU-LinkQuad_0_1"
Mode:Ad-Hoc Frequency:2.412 GHz Cell: 02:2F:AF:A1:3E:9F
Bit Rate:11 Mb/s  Tx-Power=13 dBm
Retry short limit:8  RTS thr=2347 B  Fragment thr=2346 B
Encryption key:off
Power Management:off
Link Quality=0/100 Signal level=-94 dBm Noise level=-94 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:80 Invalid misc:18625  Missed beacon:0

Some details may vary, i.BSSID andCell, which are independent details
depending on your current settings. Tt 1 is the card’s MAC address and it will
be needed later so please note it down for future reference. If itrdmdsok
anything like that, do not worry! That is why you are reading this. Howeaf{/gou
see any wlan listings, please note down the MAC addresses for them ak well.
might be one of those you want to use.

The settings for the wireless network interfaces are specified in

the file /etc/network/interfaces and the naming of this interfaces are made on
start up from the fil¢/etc/udev/rules.d/70-persistent-net.rules. Most
problems originate from differences in naming between these files and aihost
settings are set in them as well, so the manual will focus on these files.

Existing network interfaces without ad hoc configuration

The Gumstix have two network interfaces, usually numbered wlan0 and ydarifl
you have some other interface, i.e. wlan3, it is probably one of thesé veas auto
defined in70-persistent-net.rules. The interface is auto defined when its
MAC address is not found in the file. This can happen if you edit this fileeamer a
non existing MAC address as wlan0O or wlanl. You can solve this in two simple
steps.

70-persistent-net.rules looks like this:

root@overo:/etc/udev/rules.d# cat 70-persistent-net.rules

105



Appendix B. Manuals

This file was automatically generated by the /lib/udev/write_net_rules
program, run by the persistent-net-generator.rules rules file.

You can modify it, as long as you keep each rule on a single
line, and change only the value of the NAME= key.

# net device ()

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?7x", (auto rowbreak)
ATTR{address}=="00:19:88:32:86:FE", (auto rowbreak)
ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="wlan*", NAME="wlanO"

# net device ()

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="7x", (auto rowbreak)
ATTR{address}=="00:19:88:31:fa:88", (auto rowbreak)
ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="wlan*", NAME="wlanl"

# net device ()

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?7x", (auto rowbreak)
ATTR{address}=="00:15:¢c9:28:d40:18", (auto rowbreak)
ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="ethx*", NAME="ethO"

# net device ()

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?x", (auto rowbreak)
ATTR{address}=="00:19:88:20:fa:b6", (auto rowbreak)
ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="wlanx", NAME="wlan2"

In this example file, the wlanO interface is missinginconfig output and it lists
instead wlanl and wlan2, which are neither any ad hoc networks. Asstinanthe
/etc/network/interfaces-file is properly configured for an ad hoc network, we
will only need to replace the MAC address of wlan0 with the MAC addresdaiv
and do a proper reboot. (Do not forget to remove the entry of wlan2.)

root@overo:/etc/udev/rules.d# cat 70-persistent-net.rules

# This file was automatically generated by the /lib/udev/write_net_rules
# program, run by the persistent-net-generator.rules rules file.

#

# You can modify it, as long as you keep each rule on a single

# line, and change only the value of the NAME= key.

# net device ()

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?7x", (auto rowbreak)
ATTR{address}=="00:19:88:3e:86:d8", (auto rowbreak)
ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="wlan*", NAME="wlanO"

# net device ()

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?7x", (auto rowbreak)
ATTR{address}=="00:19:88:20:fa:b6", (auto rowbreak)
ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="wlan*", NAME="wlanl"

# net device ()

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="7x", (auto rowbreak)
ATTR{address}=="00:15:¢c9:28:d0:18", (auto rowbreak)
ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="ethx*", NAME="ethO"
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If your chosen interface is not configured into an ad hoc network Yedsp
continue to the next section before you reboot. Verify that the interfaees
configured correctly withwconfig after the reboot is done.

Configuration of an ad hoc network

The setup of an ad hoc network is pretty straight forward once youdntten the
naming of the interfaces working. All the settings are set in
/etc/network/interfaces and it is here you can change the name of the network
as well. In this example wlan0 will be configured to an ad hoc network andeto us
wlanl, just switch wlan0 with wlan1.

First, let us take a look on the file.

root@overo:~# cat /etc/network/interfaces
# /etc/network/interfaces -- configuration file for ifup(8), ifdown(8)

# The loopback interface
#

auto lo

iface lo inet loopback

#

# Wireless interfaces

#

#### WORKING AD HOC ##t#t######HHH#HH#

auto wlanO

iface wlanO inet static
wireless-mode ad-hoc
wireless-essid YourOwnAdhocNetwork
address 192.168.0.1
netmask 255.255.255.0

HEH

#

# Wired interfaces

#

auto ethO

iface ethO inet static
address 192.168.1.202
netmask 255.255.255.0
network 192.168.1.0
gateway 192.168.1.201

The file may contain a lot of garbage as well but what we want to focus the is
wireless interfaces. An entry always start witlito <interfacename> and after
that follows it settings. If your interface has any existing settings, youearove
them now and replace with the following settings:

auto wlanO

iface wlanO inet static
wireless-mode ad-hoc
wireless-essid YourOwnAdhocNetwork
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address 192.168.0.1
netmask 255.255.255.0

The line starting withiface wlanO is mandatory and we just enter it "as is”. The
next line is where we set the wireless mode to ad hoc, instead of the mode itvher
is monitored by a DHCP. Then we comeittreless-essid, which is the ESSID

of the network. When your laptop or smartphone lists the available netwbvii,
display this as the name of the network. Heelress is the IP-address of this
interface and the one you will connect to via SSH or using Computer Client or
Android Client. Finallynetmask is set to 255.255.255.0 to allow an address pool of
255 addresses and this should be entered on the unit you use to ceitheoD.

(Note: Remember to set a static IP, e.g. 192.168.0.5, on the connecting unit.)

When the configuration is done, do a proper reboot.

The Infamous Proper Reboot

A proper reboot is done by doing eithehalt followed by a power reset or a
shutdown with the correct flags for rebooting, see below.

When doing a halt you will lose your SSH connection and can therefdreeso
when you should power down. A good praxis is to wait at least 30 saconét the
system store the settings properly.

root@overo:~# halt
Broadcast message from root (pts/0) (Mon Apr 11 12:19:36 2011):

The system is going down for system halt NOW!
root@overo:~# Connection to 192.168.0.1 closed by remote host.
Connection to 192.168.0.1 closed.

A reboot by usingshutdown is done by the following command line
root@overo:~# shutdown -r now <Message to all other processes>

where-r is the flag for rebootyow is the time for the reboot to occur and these are
followed by an optional message to other processes running.

When doing a reboot witehutdown, you will also lose the SSH connection but you
will not need to power down the LinkBoard. Just reconnect with the S8t ection
when possible. This is how it looks in action.

root@overo:"# shutdown -r now Reboot incoming
Broadcast message from root (pts/0) (Mon Apr 11 12:41:37 2011):

Reboot incoming

The system is going down for reboot NOW!

root@overo:~# Connection to 192.168.0.1 closed by remote host.
Connection to 192.168.0.1 closed.

According to the Gumstix user community, the reboot of Gumstix might hang itself
due to an issue with an audio driver. If you experience this, you might switch
snd-soc-gumstix to snd-pxa2xx-ac97. Note: This is an untested pnecadd you

do it on your own risk. We take no responsibility for any effects or dantage
hardware, performance or software by this procedure.
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B.4 BOM - Bill of Materials

These section contains the bill of materials (BOMs) of the applications that hav
been developed during the Master Thesis. The BOMs describes howftgue the
environment to continue development on the applications. Makefiles fordshuix
Mac OS development exists for all the applications.

Android Client

Windows or Unix.

Android smartphone with Android version 2.2 or newer and with a inertial
measurement unit.

Mini USB between the smartphone and the developer computer.

Android SDK.

Development platform with Android SDK capabilities (Netbeans or Eclipse).

Computer Client

Windows, Unix or Mac OS X.

Boost C++ libs and include files version 1.44, only for Windows.
Posix C++ libs and include files, only for Mac OS X and Unix.
HIDs as PS3 gamepad and keyboard.

Wifi supporting connections to ad hoc network.

Development platform (gcc, g++, Eclipse, Visual Studio...).

Server

Fully equipped LinkQuad.

Gumstix with Unix installation (Gumstix per default uses Angstrém).
Posix C++ libs and include files.

HID such an computer to ssh to the gumstix.

Gumstix development board.

Development platform (gcc, g++, Eclipse, Visual Studio...).
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