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Studying Electron Dynamics using Attosecond Streaking

Abstract

In this thesis, a programwas implemented to study the electron dynamics of photoion-
ization. eseܭ dynamics are probed by a streaking in݅rared field, that modulates the
electrons’ trajectories. Analytical quantum mechanical calculations ݅or such systems
are impossiblewithout approximations ݅or atomsmore complex than hydrogen. How-
ever, using classical mechanics and Monte Carlo methods to capture the statistical be-
haviour of quantummechanics, it was possible to extract the temporal dynamics of hy-
drogen and once ionized helium, and get good agreementwith recent articles published
by [Nagele et al. ܱܹܰܰ] (Journal of Physics B:Atomic,Molecular andOptical Physics, ܳܳ),
[Klünder et al. ܱܹܰܰ] (Physical Re࡛iewLetters, ܹܰܵ.ܰܳ) and [Ivanov and Smirnova ܱܹܰܰ]
(Physical Re࡛iew Letters, ܹܰܶ.ܱܰ).

eܭ program was implemented on a Graphics Processing Unit, the computational
unit of a graphics card, which allows ݅or massive parallelization of computations using
inexpensive computer hardware available to normal consumers.

☙ iii ❧



Stefanos Carlström

Populärvetenskaplig sammanfattning

Om man ݅otojoniserar en atom, dvs. sliter loss en elektron genom att belysa atomen,
kommer elektronen att skjuta iväg ݅rån atomen med en hastighet som beror på ljusets
energi (se figur nedan).Dock kommer atomkärnan att försöka få elektronen att återvän-
da, j݅r gravitationen. Om dessutom ett elektriskt fält, såsom in݅rarött laserljus verkar på
elektronen under jonisationen och eݞeråt, kommer elektronen rörelse ytterligare för-
ändras.

..Z+

.

e−
.

(a)

. Z+

.. e−.
FZ+

.

FIR

.

(b)

I (a) jonࢯerࢭ en atom a࡛ en inkommande ljࢰpuls
och elektronen skjuter i࡛äg. I (b) på࡛erkࢭ den lö-
sa elektronen a࡛ t࡛å kraդer. Den Ջörsta kommer
från atomkärnan som Ջörsöker drar i elektronen
med kraդen FZ+ . Ett elektrࢯkt Ջält som accelererar
elektronen ger uppho࡛ till den andra kraդen, FIR.

Elektronerna detekteras sedan
och genom att mäta deras energi
kanman beräkna vilken styrka det
in݅raröda laserljuset hade vid joni-
sationstillfället (denna teknik kal-
las streaking). Det visar sig dock
att detta värde inte helt stäm-
mer överens med den styrka fältet
݅aktiskt hade vid jonisationstillfäl-
let. Snarare passar värdet med fäl-
tets styrka vid en tidpunkt strax
innan. Denna tidsskillnad beror
på två saker: ܰ) genom att atom-
kärnan drar i elektronen fördröjs
jonisationen och ܱ) genom att
det in݅raröda fältet är närvaran-
de under jonisationen påverkas
elektronens rörelse i förhållande
till atomkärnan på ett komplext
sätt. Dessa tidsaspekter på ݅otojonisationen ärmycket intressanta att studera för grund-
läggande ݅orskning i atom݅ysik.

Om det in݅raröda laserfältet är mycket starkt, kan det tvinga tillbaka elektronen till
atomkärnan, förutsatt att det är riktat åt rätt håll under tillräckligt lång tid. När elektro-
nen närmar sig kärnan, kan den förra spridasmot den senare, ”studsa”, och röra sig bort
med en högre hastighet än den med vilken den närmade sig. Något liknande inträܿar
när en komet närmar solen och slungas iväg när den passerat.

I mitt projekt har jag tittat närmare på dessa ݅enomen med hjälp av klassiska (i mot-
sats till kvantmekaniska, som annars är vanligast i atom݅ysiken), statistiska beräkningar
av ett slag som kallasMonte Carlo-metoder (namnet kommer ݅rån statistiska studier av
tärningskastande som ju inte är en obekant företeelse på kasinot i denna stad). Dessa
har utförts på ett grafikkort i en vanlig dator. Sådana grafikkort är speciellt lämpade för
sådana här statistiska beräkningar, där många oberoende försök måste göras för att ett
tillförlitligt resultat skall uppnås.

☙ iv ❧
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Abbreviations and notation used

API Application programming inter݅ace

as Attosecond

CDF Cumulative distribution ݅unction

CPU Central processing unit

CTMC Classical trajectory Monte Carlo

FWHM Full width at half maximum

GPGPU General-purpose computing on graphics processing units

GPU Graphics processing unit

IR In݅rared

ODE Ordinary diܿerential equation

PDF Probability distribution ݅unction

QM ݃uantum mechanics

RK؊؋ Runge–KuttaODE solver of ܴth orderwith embedded ܳth order error estimator

SI Système international d’unités

SIMD Single-instruction multiple data

TDSE Time dependent Schrödinger equation

VMIS Velocity map imaging spectroscopy

XUV Extreme ultraviolet

(a|b) Scalar product of vectors a and b

ez Unit vector in the direction of z

IP eܭ binding energy of the potential

τ is a time ݅ound by analytical QM derivation

tS is a time ݅ound by numerical QM calculations

tCTMC is a time ݅ound by (numerical) CTMC calculations

Ω eܭ ݅requency of the ionizing XUV pulse

ωIR eܭ ݅requency of the streaking IR field
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Introduction

.

1

Tौॉ ॔ॖ्॑ॅॖढ़ ्॒क़ॉॖॉॗक़ of this thesis is to study the behaviour of photoionized
electrons and how that behaviour is aܿected by changes in the surroundings. An

electron bound to an atom is governed by quantum mechanics and must be treated us-
ing methods ݅rom this theory. For simple systems like hydrogen, exact solutions of the
wave݅unction can be ݅ound. Likewise, it is simple to find solutions ݅or ݅ree particles
in an external field. However, when both an atomic potential and an external field is
present, quantum mechanics yield no easily ݅ound analytic solution. It is possible to
acquire solutions numerically, but it can be difficult to separate which ݅actors are re-
sponsible ݅or the observable eܿects, since the calculations are per݅ormed with one bulk
Hamiltonian. In classical mechanics it is easy to turn on and off diܿerent constituents,
and draw conclusions on their influence. On the other hand, classical mechanics are de-
terministic, whereas quantummechanics are probabilistic. It is possible tomake up ݅or
this diܿerence (to some extent and ݅or certain problems), by using statistical methods
calledMonteCarlomethods. In this special application, a variant known as theClࢭsical
TrajectoryMonte Carlomethod is used.

p[
a.u

.]

t0 [fs]

1.8

2

2.2

2.4

−2 −1 0 1 2

Figure 1.1: A typical streaking spectro-
gramwith the imprint of the infrared field
clearly .ibleࢯ࡛

eܭ ݅oundation ݅or all diܿerent Monte
Carlo techniques is the independent mea-
surement that is repeated sufficiently many
times, until a conclusion can be reached.
isܭ is known as the law of large numbers.
Since the measurements are independent,
they are very well suited ݅or parallel com-
puting, which is the second major interest
of this thesis. Especially, how these calcula-
tions are efficiently implemented on graph-
ics processing units, the computational cores of graphics cards in computers.
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Figure 1.2: A typical momentum
dࢯtribution of the electronaդer scat-
tering.

With a working program it is then possible to
study the dynamics of the electrons; the main cal-
culations revolve around how themomenta of the
electrons change when subjected to an oscillating
in݅rared (IR) laser field. When the electrons hit a
detector and their kinetic energies are measured,
an imprint of the IR field is visible in the spec-
trogram, as well as an imprint leݞ by the nuclei
the electrons were bound to. eܭ ݅ormer imprint
is clearly visible (see figure ܰ.ܰ), whereas the latter
is so small, it has to be extracted using numerical
methods.

When the electrons travel close to the nucleus,
the imprint leݞ is more emphasized; the electrons

☙ ܰ ❧
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scatter and leave with higher velocity than what they had when they were incident on
the nucleus. An example of this is shown in figure ܰ.ܱ.

Much eܿort has been put into creating a program that can calculate these dynamics
reliably and yet quickly enough to be use݅ul. Nonetheless, ݅or some of the scattering
calculations mentioned above, they could easily last more than ܷܳ hours ݅or a single
ionization time.

In section ܱ, an overview of the computational part of project is given, while section
ܲ deals with the physical aspects. Lastly, the conclusions are ݅ound in section ܳ.

☙ ܱ ❧
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GPGPU calculations and their suitability to MC methods

.

2

GPGPU —General-purpose computing on graphics procࢮsing units— is an evolving
area in computational science where the processing power of graphics cards, orig-

inally targeted at running the increasingly realistic and demanding computer games, is
leveraged ݅or general-purpose calculations. eܭ power of the graphics cards lies not in
the speed of every single microprocessor on the card, but the huge amount of proces-
sors working at the same time. Below ݅ollows a brief description of how programming
and execution of code on the GPU works. In this project, a GPU manu݅actured by
Nग़्ै्ॅ was used, along with the application programming interface (API) provided by
the company, CUDA. For a more in-depth description of how the GPUs work and in
the special case of Nग़्ै्ॅ GPUs, see e.g. [NVIDIA ܱܹܰܰ].

Each processor executes a thread, which is a processing unit that executes indepen-
dently of the other threads of the program (but they all share the same context —access
to the same memory blocks and so on). On the GPU a certain number of threads is
executed together, in what is called a warp. A larger group of threads is called a block.
All threads in a block is executed simultaneously (but each warp within the block is
independent ݅rom the others), and they all have access to ݅ast, on-die shared memory
(typically∼ܹܰ kB in size). Lastly the blocks are organized in a grid, ݅rom which a sched-
ulerܰ ܰA scheduler is an

algorithm, that given a
batch of threads, chooses
when to execute them and,
in the case of a GPU, on
which processor

chooses the next block to execute. All threads have, at any time, access to a slower
global memory, of considerably larger size (∼ܰ GB).

If, ݅or instance, one would like to calculate the Euler norm of a vector of length N

||v||ܱ =

􏽭
⃓
⃓
⃓
⎷

N

􏾝
i=ܰ

࡛ܱ
i

on a single processor, an implementation could be as ݅ollows.ܱ roughoutܭܱ the text, the
code presented will be in
C/C++. Some parts are
taken directly ݅rom the
program implemented in
this project.

float vec[N] = { ... }; //A vector of N elements
float sum = 0;
for(int i=0; i<N; i++)

sum += vec[i]*vec[i];
float norm = sqrt(sum);

If one, instead would like to implement the calculation in a parallel manner, one would
construct a kernel, i.e. a small ݅unction, that calculates the square of a given number
and places the result in a designated destination:
void square(float* elements , float* squares){

int tId = getTid(); //Calculate the thread index
squares[tId] = elements[tId]*elements[tId];

}

☙ ܲ ❧
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isܭ kernel is executed by theGPU ݅or each and every element in the vector elements,
and every instance of the kernel runs on a separate processor. eܭ thread index is the
same as the processor number, i.e. which processor the kernel is executed on. In this
way, the square ofm (wherem is the number of processors) elements is calculated, and
the results are placed at the corresponding positions in the vector squares.

eܭ sum is then calculated using a parallel reductionܲܲParallel reduction is an
algorithm that is per݅ormed

recursively in a tree-like
manner, starting ݅rom the
lowest level. For instance,

to calculate a sum of a
vector, the first step is to
construct a vector of half

the original size, with every
element containing the sum

of two elements in the
original vector. IfN = ܱn

where n ∈ ℤ+, the
operation is done in n steps.

algorithm and the square root
is calculated on the CPU, since it is only per݅ormed once.

* * *

ereܭ are some aspects one must consider, in order to use GPUs ݅or calculations. eseܭ
are discussed on the ݅ollowing pages.

2.1 Orthogonality of the problem
eܭ degree to which the problem can be broken down into smaller units that can be
computed independently of each other, determines how success݅ul the parallelization
of the computations can be. If the units are not ݅ully independent, that is, they have to
communicate with each other to some degree, computational speed will be sacrificed,
yielding longer calculation times.

2.2 Divergence yields sequentialization
ereܭ is an inherent limit in the parallelization available in a GPU. Separate threads are
indeed run separately, but the hardware canbemademore efficient if some assumptions
are made. If a group of threads run identically the same code (instructions), but with
diܿerent data some optimizations can be made (݅or instance using Single-Instruction,
Multiple Data (SIMD) constructs). isܭ is indeed the case ݅or real-time graphics appli-
cations, but is not necessarily so ݅or general-purpose calculations. What happens, is that
when branching (also called divergence) occurs, e.g. an if clause, the diܿerent branches
are executed in sequence, not in parallel. eܭ threads that donot ݅ollow a certain branch
are idle while that branch is executing, as in figure ܱ.ܰ.

In many cases this can be solved by making the assumption that the calculations
in all the branches together take less time than the sequentialization process does. For
instance, calculating the parametric potential

V(r) =
⎧⎪
⎨⎪⎩

−ܰ/|r |, |r | ≥ δ
ܰ

ܱδܲ
􏿴r ܱ − δ ܱ􏿷 − ܰ/δ, |r | < δ , V(r) ∈ 𝒞 ܱ

could be done in the conventional ݅ashion:

☙ ܳ ❧
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e.g. an if clause
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Tॖख़ॉ ॔ॅॖॅॐॐॉॐ्फ़ॅक़्॒॓
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. ܰ.
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.. ܱ.

Id
le

.

Figure 2.1: An example of branching code ࢯ shown in thࢯ figure. Aդer some time of
execution, the path ࢯ di࡛ided into two, and in thࢯ example, the threads Զ and Է take theA
andBbranchࢮ, rࢮpecti࡛ely. If each and e࡛ery threadwere truly independent of the others,
in terms of hardware implementation, thࢮe two branchࢮ would be executed in parallel.
Howe࡛er, on aGPUall threads in a warpmࢰt execute exactly the same instruction, albeit
with different data ࡛aluࢮ. Գerefore, branching constructs are split up ࢭ shown on the
right, and one thread executࢮ its branch while the other thread ࢯ idle.

if(r>=delta)
V=1.0f/abs(r);

else
V=1/(2*delta3)*(r2-delta2)-1/delta;

or in a more GPU ݅riendly way:
bool outside=(r>=delta);
V=(1.0f/abs(r))*outside +

(1/(2*delta3)*(r2-delta2)-1/delta)*(!outside);

☙ ܴ ❧
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2.3 Random number generation
Generation of pseudo-random numbers is an art in itself, and is of utmost concern in
Monte Carlo calculations. If the random numbers are used as stochastic variables on
which the computations depend to capture a statistical behaviour, it is crucial that they
donot repeat, since getting the same series of numbersmore thanonce couldpotentially
mean per݅orming exactly the same computations more than once. isܭ is even more
complicated in parallel programs, where a repeated series of random numbers would
make the parallelization pointless. To avoid this problem, this project takes the same
approach as [Alerstam et al. ܱܹܹܸ],ܳܳIn ݅act, the

implementation used is that
of CUDAMCML, the

program described in the
re݅erence.

i.e. every thread is assigned its own unique random
number ring, based on a multiplier and a starting seed. eܭ ring will repeat itself, but
only aݞer a very long time (the period is> ܱܹܵ numbers). ismethodܭ is calledmultiply-
with-carry and it was described by [Marsaglia and Zaman ܸܸܰܰ].

* * *

ereܭ are a lot of things that have not beenmentioned in this short overview, which has
to be done to success݅ully utilize the computational power of a GPU.

In appendix C, an overview of how the calculations were implemented in code is
given.

☙ ܵ ❧



..

....

Streaking

.

3

Tौॉ ो॓ॅॐ ॓ॊ the attosecond (ܰ as = ܹܰ−ܷܰ s) streak camera technique (first described
by [Itatani et al. ܱܹܹܱ]) was initially tomeasure and characterize attosecond pulses,

in amanner analogue to that of classical streaking ([O’Brien ܸܰܲܵ]). eܭ idea is to probe
the systemdynamicswith a streaking field thatmodulates themeasurable quantities in a
predictable manner. It is then possible to extract in݅ormation of other processes aܿect-
ing the measurements by comparing with the theoretically predicted result. However,
it was quickly realized that the system used to measure (usually an ionization) was be-
ing measured at the same time. eܭ attosecond streaking technique is thus able to take
“pictures” of systems that evolve very rapidly.

In figures ܲ.ܰ and ܲ.ܱ, the system studied is described. A single atom is ionized by
a XUV pulse at a certain time tܹ. Aݞer having escaped the potential, according to Ein-
stein’s ݅ormula ݅or the photoelectric eܿect ([Einstein ܸܹܴܰ]), the electron has attained a
final kinetic energy ofWk = ħΩ − IP, whereΩ is the ݅requency of the XUV pulse and
IP the binding energy. However, if simultaneous to the ionization a wiggling IR field
is applied, the electron will be accelerated by theLorentz force, in a predictable manner.
isܭ IR field is used as the streaking field, since its eܿects on the electron are known.

..
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.
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.
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.

(a)
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.
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Figure 3.1: (a)Գe electron ࢯ initially bound to the atom and ࢯ dࢯtributed according to
its wa࡛efunction. AXUVphoton photoionizࢮ the atom, and the electron ࢯ ejected. (b)Գe
electron ࢯ now a free particle in the combined electric field of the IR pulse and the Coulomb
potential. Գe initial position xܹ ࢯ a stochࢭtic ࡛ariable with the same dࢯtribution ࢭ the
bound electron had, and its initial momentum ࢯ pܹ = √ܱ(Ω − IP + V(xܹ)) , where Ω ࢯ
the frequency of the XUVpulse. (c) Detection. If the electron hࢭ a finalmomentum inside
a cone of α, it ࢯ detected. Electrons with higher enerࢳ arri࡛e sooner at the detector.
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AIR(t)
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Figure 3.2: In thࢯ figure the
two pulsࢮ are shown: the IR
pulse and the XUV pulse. In
the calculations, ionization hap-
pens at time tܹ, when the XUV
pulse hits the atom. Գe electron
ࢯ then ejected into the combined
field of the nucleࢰ and the IR
pulse. AIR(t) ࢯ the ࡛ector poten-
tial of the IRpulse andarࢮࢯwith
a negati࡛e sign in eq. (Ը.Ի).

By, in a controlled ݅ashion, ionizing at diܿerent times
with regard to the IR field, and measuring the final
velocity, a set of data is acquired (see figure ܲ.ܲ). On
this data one can then do computations to extract in-
teresting in݅ormation.

1.8

2

2.2

2.4

−2 −1 0 1 2

p[
a.u

.]

t0 [fs]

Figure 3.3: Meࢭured momenta for ԶԿ⁴ electrons
with different ionization timࢮ tܹ.

Until recently, the escape process could be re-
garded as instantaneous. However, [Wigner ܸܴܴܰ]
showed that there actually is an intrinsic time delay
on the order of attoseconds. Using the streak camera technique mentioned above, it is
possible tomeasure thisWigner delay,τW, provided that one can account ݅or the eܿects
of the measurement process.

In this project, one of the goals has been to evaluate towhich extent a computational
method using classical physics (known as the Clࢭsical trajectoryMonte Carlo (CTMC)
method) can be used to extract these time delays.

3.1 Equations of motion
To per݅orm the streaking calculations, the eܿect of the streaking IR field must be
known. eܭ aim is to extract the time delays involved as a time shiݞ. An electron that
is ejected ݅rom an atom ionized in an external field, is subjected to the Lorentz ݅orce,
originating ݅rom both atomic potential and the external field:

F = q (E + v × B) , (ܲ.ܰ)

where E is the combined electric field of the atom and the external field and B is the
corresponding magnetic field. q = −e is the charge of the electron and v is its instanta-
neous velocity. According toNewton’s second law, the ݅orce on a body is related to the
acceleration it experiences via F = ma. isܭ gives the equations of motion

ẍ = a = q
me
(E + v × B) . (ܲ.ܱ)

☙ ܷ ❧



Studying Electron Dynamics using Attosecond Streaking

isܭ is a second-order diܿerential equationwhich can be trans݅ormed into two coupled
first-order diܿerential equations:

⎧⎪
⎨⎪⎩

v̇ = q
me
(E + v × B)

ẋ = v.
(ܲ.ܲ)

isܭ system is readily solved numerically using stepwise integration, but some simplifi-
cations can be made; using atomic units (see appendix A), many important quantities
are set to unity, thereby simpli݅ying equations and making it easier to avoid numerical
round-off errors.ܴ ܴHereaݞer, all quantities

will be in atomic units,
unless explicitly stated
otherwise.

Furthermore, the influence of the magnetic field B can be neglected:

Bܹ = Eܹ/cܹ ⟹ v̇ = − 􏿶EܹeE +
࡛
cܹ
e࡛ × EܹeB􏿹 ≈ −EܹeE = −E, ࡛≪ cܹ.

Only the external field is contributing, as on these time scales, the nucleus is stationary.
usܭ equation (ܲ.ܲ) reduces to

⎧⎪
⎨⎪⎩

v̇ = −E
ẋ = v.

(ܲ.ܳ)

If only the external field had been present, the solution of eq. (ܲ.ܳ) would be simple:

vf = vܹ −􏾙
∞

tܹ
dtEext = vܹ + [Aext]

∞
tܹ = vܹ −Aext (tܹ) , (ܲ.ܴ)

as Eext = − ∂Aext

∂t and Aext(∞) = ܹ (Aext(t) is the vector potential of the electric field
Eext(t)). In figure ܲ.ܳ, it is clearly illustrated how the final velocity of the electron only
depends on the initial velocity and the vector potential at the instant of ionization, as
eq. (ܲ.ܴ) predicts. With aCoulombfieldpresent, the solution is approximately ([Nagele
et al. ܱܹܰܰ])

vf ≈ vܹ − αAext (tܹ + tS) . (ܲ.ܵ)

eܭ ݅actor α is close to unity and tS is a time shiݞ related to the Wigner delay, as well as
measurement induced delays. isܭ equation is an approximate solution, which holds as
long as theCoulombfield can be seen as a perturbation, i.e. the electrons are never really
close to the core, which is true as long as the IR field is “weak” (γ̃ = 􏽮Wk/ܱUp > ܰ,
where Wk is the kinetic energy of the electron and Up = E ܱ

ܹ /ܳωIR is the quiver energy
induced by the Ponderomotive ݅orce of the IR field. See [Mauritsson et al. ܱܹܹܷ]).
Another approximation is that the electrons are ejected instantaneously into the con-
tinuum at time tܹ when the XUV pulse arrives (thus implying that the XUV pulse is a

☙ ܸ ❧
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Figure 3.4: In thࢯ figure equation (Ը.Ժ) ࢯ illࢰtrated. When an electron ࢯ ejected in an
IR field and the Coulomb potential ࢯ neglected, it will transfer momentum according to
F = qEIR ⟹ ࡛(t) = q∫t

tܹ
dt′ EIR(t′). When the pulse hࢭ ended, no forcࢮ are acting

on the electron; it hࢭ thࢰ reached its final ࡛elocity. Shown in blue ࢯ the electric field of the
IR pulse, in green its sociatedࢭ ࡛ector potential, but with a negati࡛e sign, and in red the
attained ࡛elocity of the electron for some different ionization timࢮ. One thing that ࢯ eࢭily
seen in thࢯ figure, ࢯ the fact that electrons releࢭed at time−tܹ and tܹ attain the same final
࡛elocity ࡛f ࢭ the ࡛ector potential in thࢯ cࢭe ࢯ symmetric.

Dirac δ ݅unction; the finite temporal length of the pulse is accounted ݅or via the spec-
trum of energies it contains and can trans݅er to the electrons).

Even though there are a lot of approximations leading to eq. (ܲ.ܵ), there is a huge
benefit in having a solution on this ݅orm; the measurements of these very small times
are reduced to a simple numerical fit of data. eܭ key is the precise timing between the
XUV and the IR pulse, tܹ, that has to be done. isܭ is still difficult to do in a laser lab,
but it is possible to ionize ݅rom two diܿerent shells and extract a diܿerential shiݞ (see
e.g. [Schultze et al. ܱܹܹܰ]).

☙ ܹܰ ❧



Studying Electron Dynamics using Attosecond Streaking

3.2 1D streaking
To find out what the influence of the Coulomb field is, equation (ܲ.ܳ) has to be solved
exactly. Since quantum mechanics is probabilistic, Monte Carlo methods turn out to
work rather well ݅or this purpose; the initial values ݅or position and momentum are
randomized ݅rom the wave݅unction’s distribution, and subsequently, the problem is
treated ݅ully classically. It is important that the initial conditions are sampled randomly
enough,ܵ ܵOn a computer, random

numbers are only
pseudo-random. It is
important that the method
used to generate them, does
not yield repetitions, i.e. a
sequence of numbers
appearing more than once.

so as tonot introducepatterns in thedata,whichmay lead to ݅alse conclusions.
eܭ manner in which this is done is described above in section ܱ.ܲ.

3.2.1 Procedure

eܭ general procedure that is ݅ollowed during one calculation is as ݅ollows:

ܰ. Sample initial parameters such as ionization times tܹ, initial positions xܹ and ini-
tial velocities vܹ of the electrons.

ܱ. Propagate the electrons using eq. (ܲ.ܳ) until they have attained their final mo-
menta, i.e. there are no more ݅orces acting on them ⟺ the IR pulse has ended
and the electrons are ݅ar away ݅rom the nucleus.

ܲ. Select those electrons that are considered as detected according to some criterion
(see below) and store their final momenta.

ܳ. Do a Least Squares fit of the spectrogramܶ ܶA typical result is seen in
figure ܲ.ܴ.

to eq. (ܲ.ܵ) to extract the tCTMC that
corresponds to tS.

ܴ. Save the data.

isܭ procedure is typically repeated ݅or a lot of diܿerent ionization times tܹ (on the order
ܹܰܶ).

Sampling According to the Copenhagen interpretation of quantum mechanics, the
absolute square of the wave݅unction is to be interpreted as the probability to find the
corresponding particle p at a certain point rp in space:

ℙ􏿴rp ∈ V􏿷 = 􏾙
V
dܲr′ |Ψ (r′)|ܱ.

In this work, it was chosen to use the absolute square of the wave݅unctions as the prob-
ability dࢯtribution functions (PDFs) ݅rom which the initial values are drawn ݅or the cal-
culations. A diܿerent approach taken by many, is to initially place the electron in ran-
domly chosen Kepler orbits around the nucleus (see e.g. [Abrines and Percival ܸܰܵܵ]).
Not doing it this way may and may not have had implications ݅or the variance of the
results; see appendix E ݅or a discussion on this.

☙ ܰܰ ❧



Stefanos Carlström

eܭ wave݅unction ݅or an s state in a hydrogen-like system in the ground state is

Ψ (r) = Rܰ,ܹ(r)Y ܹ
ܹ (θ, φ) = ܱZ ܲ/ܱ exp (−Zr)

􏽰
ܰ

ܳπ .

eܭ angular part, Y ܹ
ܹ , is isotropic in this state, and the angles can there݅ore be sampled

uni݅ormly. eܭ radial part is sampled using the in࡛erse transformation method ([De-
vroye ܸܷܰܵ]):

If a stochastic variableX has a certain PDF f (x) and a cumulati࡛e dࢯtribution func-
tion (CDF) F(x) = ∫x

−∞
dx′ f (x′), then Y = F (X ) is uni݅ormly distributed on the inter-

val [ܹ, ܰ]. Conversely, if the stochastic variableY is uni݅ormly distributed on the interval
[ܹ, ܰ], thenX = F −ܰ(Y ) has the PDF f (x).

In the case of the radial ݅unction Rܰ,ܹ the inverse trans݅ormation method amounts
to finding the r ݅or whichU = ∫

r
ܹ

dr′ r′ܱ|Rܰ,ܹ(r′)|ܱ, withU picked uni݅ormly ݅rom the
interval [ܹ, ܰ].

U = 􏾙
r

ܹ
dr′ r′ܱ|Rܰ,ܹ(r′)|ܱ = ܳZܲ􏾙

r

ܹ
dr′ r′ܱ exp (−ܱZr′) =

… = ܰ − exp (−ܱZr) (ܰ + ܱZ (Zr ܱ + r)) (ܲ.ܶ)

Equation (ܲ.ܶ) is a non-linear equation, which can be solved usingNewton–Raphson’s
method ([Bonnans et al. ܱܹܹܲ]), which also needs the derivative.

eܭ initial velocity of the electron is decided ݅rom two ݅actors:

ܰ. eܭ initial speed, given by Einstein’s ݅ormula ݅or the photoelectric eܿect Wk =
Ω− IP, whereΩ is the ݅requency of the XUVphoton and IP is the ionization po-
tential. To preservemomentum, the potential energy at the initial position,V(r),
has tobe added aswell. As theXUVpulse is ofGaußian shape in the temporal do-
main, it has aGaußian shape in the ݅requency domain aswell. eܭ ݅requencyΩ is
there݅ore randomized ݅rom a Gaußian distribution via the Box–Müller
trans݅orm ([Box and Müller ܸܴܷܰ]).

ܱ. eܭ initial direction is in the one-dimensional case randomized isotropically, as
in [Nagele et al. ܱܹܰܰ]. In reality, when the electron is ionized ݅rom a s state, the
velocity distribution should be randomized according to a p distribution. isܭ is
done in the two-dimensional case.

Finally, the time of ionization (tܹ in eq. (ܲ.ܵ)) is randomized uni݅ormly over an in-
terval around the extents of the IR pulse.

☙ ܱܰ ❧
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Propagation Aݞer sampling the diܿerent distributions ݅or all electrons, the electrons
arepropagated according to eq. (ܲ.ܳ) using an adaptiveRunge–KuttaODEsolver of the
ܴth order with an embedded ܳth order error estimator (RKܴܳ, see [Palmer ܱܹܹܲ]). isܭ
solver adapts it step size if the estimated truncation error is larger than a set tolerance,
and can thus be used ݅or diܿerential equations that have singularities at points in space.
Nevertheless, it is not a stiff solver, whichmeans that ݅or trajectories close to the nucleus,
the step size will be so small that the required calculation time is very large.

It is in this step of the procedure that the strengths and theweaknesses of paralleliza-
tion on a GPU are the most prevalent. All other steps are very deterministic.

Detection When the experiment is carried out in the lab, the electron energies are
measured using time-of-flight spectroscopy, in which the time ݅rom ionization until the
electrons hit the detector (usually a micro-channel plate, MCP) is registered. isܭ time
is then translated into a kinetic energy. Only those electrons that are emitted inside one
of the two hemispheres are detected, and they are bent towards the detector using a
magnetic bottle.ܷ ܷIf one were to detect

isotropically, i.e. all
electrons emitted, that
would correspond to ܳπ
(compare with area of
sphere). In this case, only
ܱπ is detected (area of
hemisphere)

In the calculations, the electrons are considered to be detected simply if they have a
velocity vector inside a small cone some time aݞer the IR pulse has ended. For instance,
if the detector is placed in the positive ez direction, and the detection cone angle is α,
the electron with velocity v is detected if

(v􏿖ez) ≥ |v| cosα ⟺ ࡛z
|v| ≥ cosα.

Instead of registering the kinetic energy, the length of themomentum≡ me|v| is stored.

Fitting Finally, to extract the time shiݞ tCTMC corresponding to tS in eq. (ܲ.ܵ), a non-
linear least squares fit (see e.g. [Seber andWild ܱܹܹܲ]) of themeasuredmomenta to the
same equation is made.

Saving eܭ data is saved to a binary file consisting of

• a header containing the calculation parameters

• the ionization timesℝ

• final momenta lengthsℝ+

• final positionsℝܲ

• final velocitiesℝܲ

isܭ file is easily loaded into anymathematical soݞware ݅or ݅urther processing and plot-
ting.

☙ ܰܲ ❧
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3.2.2 Results

In figure ܲ.ܴ, a typical example of a streaking spectrogram can be seen. One can clearly
see that equation (ܲ.ܵ) is a good approximation, since the diܿerence is virtually indis-
cernible. ereܭ is however a time shiݞ between the solid white line that represents
equation (ܲ.ܴ) and the calculated momentum distribution. isܭ time shiݞ is readily ex-
tractable using themethoddescribed above, and ݅or this certain calculation it is approxi-
mately−ܵ.ܵ as (numerical solution of the time dependent Schrödinger equation (TDSE)
yields −ܵ.ܸ as, [Nagele et al. ܱܹܰܰ]).
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t0 [fs]
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t0 [fs]

1.8

2

2.2

2.4

−2 −1 0 1 2

−6 −3 0
t0 [as]

Figure 3.5: Streaking spectrogramforahydrogenatomstreakedbyan IRfield. Գࢯcalcu-
lation wࢭdoneࢰing Է²⁴ (≈ Զ.Լ ⋅ ԶԿ⁷) electrons. Shown also, ࢭ a solid white line, ࢯ equation
(Ը.Ժ). Գe right dࢭhed ࡛ertical line corrࢮponds to tS=Կ and the leդ dࢭhed ࡛ertical line
to the time shiդ induced by the Coulomb potential. In thࢯ cࢭe a XUV pulse of ԽԿ eV wࢭ
edࢰ with a duration of ԷԿԿ ࢭ (see section Ը.Է.Ը for a dࢯcࢰsion on thࢯ subject).

3.2.3 On pulse duration

eܭ temporal width of a Fourier limited pulse is usually defined as the width of the
intensity profile. eܭ spectral width is related to the temporal width as (in SI units)

ΔEFWHM = ܳħ ln ܱ
ΔtFWHM

.

From this, it is seen that a spectral width of ܸ.ܰ eV is required to generate a XUV pulse
of ܱܹܹ as duration. However, this leads to a large distribution of the experimental data
points to which the fit is made, thus yielding a large statistical variance of the extracted
time shiݞs. It was there݅ore decided to use pulses of narrower spectral width in the cal-
culations to yield a more precise time shiݞ, although the approximation that the ion-
ization by the XUV pulse is instantaneous does not hold any longer; a spectral width

☙ ܰܳ ❧
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of only ܰ.ܴܵ eV (which was the width most oݞen used) cannot generate pulses shorter
than ܰ.ܰ fs, which is of the order of the streaking IR pulse.

3.2.4 Sweeping the XUV center frequency

By giving theXUVphotondiܿerent energies, the time shiݞ in eq. (ܲ.ܵ) changes, asmore
energetic electrons escape the potential more easily. In the limit of infinite energy the
ionization process is truly instantaneous. By measuring the time shiݞ in this ݅ashion,
the Wigner delay can be extracted, if all other eܿects can be accounted ݅or. A lot of
work (see e.g. [Klünder et al. ܱܹܰܰ] and [Dahlström ܱܹܰܰ]) has been invested in this
݅undamental quantity in atomic physics, since this delay is needed to veri݅y a lot of the-
ory. Recently, an analytical approximationwas derived by [Ivanov and Smirnova ܱܹܰܰ]
which seems to fit very well with the numerical solution to the TDSE ݅rom [Nagele et
al. ܱܹܰܰ] and [Klünder et al. ܱܹܰܰ]. However, it was derived only ݅or hydrogen, so a
rederivation ݅or hydrogen-like systems, with an attractive Coulomb potential Z/r was
made (see appendix R). eܭ approximation, as well as the numerical data are used as
rulers ݅or the quality of the classical results of this work. In figure ܲ.ܵ, the time shiݞs ݅or
H and He+ ݅or diܿerent XUV energies can be seen, as well as some re݅erences.

☙ ܴܰ ❧
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3.2.5 Smooth potentials and their implications

eܭ RKܴܳ ODE solver is an explicit solver that does not deal well with singularities.
Since it is adaptive, it will take shorter integration steps when the estimated truncation
error is too large. isܭ means that the amount of steps needed ݅or trajectories close to
the nucleuswill be extremely large, which is equivalentwith very long calculation times.
To alleviate this, the Coulomb potential can be smoothed ݅rom a true singularity into a
݅unction that is𝒞 ܱ continuous, i.e. two timesdiܿerentiable. A traditionalwayofdoing
this, is by approximating the Coulomb potential by V(r) = (r ܱ + ε)−ܰ/ܱ , ܹ < ε≪ ܰ.
However, using this potential seems to actually increase the calculation times, probably
because the problem becomes stiff over a larger volume of space. Instead the ݅ollowing
approximation was chosen:

V(r) =
⎧⎪
⎨⎪⎩

−ܰ/|r |, |r | ≥ δ
ܰ

ܱδܲ
􏿴r ܱ − δ ܱ􏿷 − ܰ/δ, |r | < δ , V(r) ∈ 𝒞 ܱ. (ܲ.ܷ)

−δ δ

V(
r)

r

Figure 3.7: Գe blue cur࡛e ࢯ
the smooth potential (Ը.Խ) and
the red cur࡛e ࢯ the original
Coulomb potential.

isܭ potential retains the Coulomb potential be-
haviour outside the spherical volume of radius δ. A
plot of the potential is seen in figure ܲ.ܶ. To veri݅y
themeaning݅ulness of this potential, an estimationof
its impact on calculation errors and calculation speed
was made by making many XUV energy sweeps ݅or
diܿerent values of δ. eܭ calculation error ݅or each δ
was taken to be

􏽰
∑N

i 􏿗t
(i )
CTMC − tS 􏿴W (i )

k 􏿷􏿗
ܱ

N ,

where the values ݅or tS were the same as the numerical re݅erences in figure ܲ.ܵ. eܭ result
can be seen in figure ܲ.ܷ. It seems that the error is not very much aܿected by the choice
of δ, but there is an optimum region ݅or δ in terms of execution time.

3.3 2D streaking (VMIS)
Velocity Map Imaging Spectroscopy (VMIS) is two-dimensional technique ݅or studying
the dynamics of atomic and molecular systems (see [Eppink and Parker ܸܸܰܶ]). eܭ
mode of operation is as ݅ollows: the sample is irradiated with laser pulses, whereupon
it is ionized and the electrons are ejected. eܭ electrons propagate as an expanding
spherical shell, which is accelerated by an electric field generated by two electrodes. eܭ
spherical shell is projected onto a fluorescent screen, which is imaged ݅or ݅urther analy-
sis. Via an inverse Abel trans݅orm (or using iterative techniques, see [Dasch ܸܸܱܰ] and
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Figure 3.8: Rࢮults from ingࢰ a smooth potential with ࡛arying δ. In the plot on the top,
it ࢯ seen that the error ࢭ defined abo࡛e only ࡛ariࢮ within the same order of magnitude.
Howe࡛er, the execution time ࡛ariࢮ dramatically.

[Vrakking ܱܹܹܰ]), the spherical shell is reconstructed, and a slice of thickness Δy along
the xz-plane in the notation of figure ܲ.ܰ is extracted. From this slice it is possible to
deduce the energies of the electrons as well as their angular distribution.
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Figure 3.9: Typical VMIS re-
sult. Գe two lobࢮ of the p dࢯ-
tribution are clearly .ibleࢯ࡛ No
IR field wࢭ prࢮent in the calcula-
tions.

While doing theoretical calculations, it is not
necessary to go through the steps of projecting the
electron cloud and then do the inverse Abel trans-
݅orm, since the electron cloud is already represented
in ℝܲ coordinates in-memory. eܭ only thing that
has to be done is the slicing, and that step replaces
the detection step described in section ܲ.ܱ.ܰ above.
Instead of speci݅ying a cone angle α, a slicing thick-
ness Δy has to be provided instead.

Another diܿerence in the two-dimensional case
as opposed to the one-dimensional procedure, is
that (asmentioned above) the initial direction of the
electrons are sampled according to the p distribu-
tion (Y ܹ

ܰ ) (if ionizing ݅rom an s state) instead, so as
to yield results in agreement with reality.

Lastly, the VMIS images are captured ݅or one
fixed delay between theXUV and the IR pulse, one fixed tܹ, otherwise the image would
be smeared as the electron clouds would have travelled diܿerent distances.

A typical result ݅rom a VMIS calculation per݅ormed on hydrogen can be seen in
figure ܲ.ܸ. What is shown is the momentum distribution of the electrons aݞer pho-
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toionization, which is, in eܿect, a Fourier trans݅orm of the spatial distribution. Nor-
mally, one is interested in the energy though, which is related to the momentum as
Wk = pܱ/ܱm.

3.3.1 Rocking the electron cloud

With an IRfield present during ionization, the electron cloudwill “float” in it, as a buoy
does on the water sur݅ace. According to equation (ܲ.ܵ), the final acquired momentum
will be shiݞed by the vector potential of the IR field at the ionization instant. How-
ever, in the time span between ionization and detection at a time at which the IR pulse
has since long ended, the electron cloud will be swept back and ݅orth, being rocked as a
swing. If then the intensity of the streaking IR field is increased, i.e. γ̃→ ܰ, the approx-
imation (ܲ.ܵ) is no longer valid as the electron cloud is swept back to the core. Instead
other behaviour can be studied, such as electrons scattering ݅rom the nucleus. isܭ scat-
tering can be thought of as an analogue to the slingshot eܿect as used by space vehicles
to escape our solar system — indeed, both the Coulomb ݅orce and the gravitational
݅orce have a ܰ/r ܱ dependence.

0

−2π −3π/2 −π −π/2 0 π/2 π 3π/2 2π
ωIRt

EIR(t)
AIR(t)

Figure 3.10: An infinitely oscillating IR field along with its ࡛ector potential. E࡛ery elec-
tron ejected at a time tܹ such that EIR(tܹ)=Կ hࢭ a possibility of returning to the core and
scatter.

In figure ܲ.ܹܰ, an IR pulse of considerably longer duration than that in figure ܲ.ܱ is
depicted. An electron ejected at any time t = nπ, n ∈ ℤ (i.e. E(t) = ܹ), has a ݅ull half-
cycle to trans݅er momentum according to F = qE. isܭ gives the electron a chance of
returning to the core. In contrast, ionization at other times will yield both acceleration
and deceleration since the electric field changes sign be݅ore the electron has reached the
core.

When the pulses look like those in figure ܲ.ܱ instead, there are only two ionization
times where a return to the core is possible; ωIRtܹ ≈ −ܲπ/ܳ and ωIRtܹ ≈ ܹ. isܭ is in
excellent agreement with the series of VMIS figures ݅ound in appendix F.ܰ.ܰ.
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Trajectories To ݅urther rein݅orce this analysis, the individual trajectories of a single
electron initially placed approximately a Bohr radius away ݅rom the nucleus in the pos-
itive z direction, were studied ݅or diܿerent ionization times and some diܿerent condi-
tions. eܭ results can be seen in figures ܲ.ܰܰ–ܲ.ܴܰ.
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Figure 3.11: Electron trajectoriࢮ for different ionization timࢮ with γ̃=Զ. In thࢯ figure
the IR pulse hࢭ a longer duration (in thࢯ cࢭe ԷԿ fs, i.e. the pulse ࢯ not single-cycle) and it
can make the electrons oscillate in the field, pro࡛ided that there ࢯ no nucleࢰ prࢮent. Գe
streaking IR field ࢯ shownࢭ a dࢭhed black line.
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Figure 3.12: Since the electron ࢯ initially placed some dࢯtance away from the nucleࢰ in
the positi࡛e z direction and the pulse ࢯ single-cycle (γ̃=Զ), only one trajectory (with tܹ=Կ) ࢯ
able to scatter from the nucleࢰ. Գe electron trajectory scattering from the nucleࢰ men-
tioned abo࡛e with ωIRtܹ≈−Ըπ/Թ, mࢰt start some dࢯtance away from the nucleࢰ in the
negative z direction, since otherwࢯe that electron ࢯ initially accelerated away from the nu-
cleࢰ.
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Figure 3.13: Same ࢭ in figure Ը.ԶԷ, but thࢯ time without a nucleࢰ prࢮent for the elec-
trons to scatter from.
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Figure 3.14: Electron trajectoriࢮ for different ionization timࢮ with γ̃<Զ. It ࢯ now possi-
ble for more electron trajectoriࢮ to return to the core and scatter.
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Figure 3.15: SameࢭinfigureԸ.ԶԹ, but thࢯ timewithoutanucleࢰprࢮent for the electrons
to scatter from.
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3.3.2 Looking from a different angle

.....

x

.

z

Figure 3.16: Գe p dࢯtribu-
tion, which for a free electron cor-
rࢮponds to its ࡛elocity dࢯtribu-
tion. Գere ࢯ a cylindrical sym-
metry about the z axࢯ.

As a final test of the VMIS calculations, the polar-
ization between the XUV pulse and the streaking IR
field was gradually changed:

EXUV(t) = EXUV(t)ez, EIR(t) = EIR(t)eEIR

with 􏿴ez􏿖eEIR
􏿷 = cosα, α = {ܹ∘, ܹܰ∘, ܱܹ∘,… }.

isܭ is something that is very difficult to do when
solving the TDSE numerically, since it adds another
dimension to the computations and the memory re-
quirements are drastically increased.

eܭ result can be seen in appendix F.ܰ.ܱ. As is ex-
pected, no scattering takes places when α = ܸܹ∘, as
the p distributed electron has no velocity distribution
in the ex direction (see figure ܲ.ܰܵ).

3.3.3 Quantum mechanics comparison

One could argue that the scattering seen above could be attributed to numerical insta-
bility. However, very similar scattering eܿects were ݅ound by [Mauritsson et al. ܱܹܹܷ]
when solving the TDSE numerically. eyܭ compared with experimental results, and
while they could not discern typical scattering patterns, some ݅eatures could not be ex-
plained without post-ionization electron-atom interaction.

A comparison was made ݅or the VMIS calculations with and without an atomic
potential present, and the diܿerence between the two was calculated. eܭ result can be
seen in figure ܲ.ܰܶ. eܭ same comparison, butmade using numerical calculations of the
TDSE is depicted in figure ܲ.ܷܰ. eܭ agreement is very good.
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Figure 3.17: On the leդ ࢯ the rࢮult from a calculation with a nucleࢰ prࢮent, with the
ionization time tܹ=Կ, i.e. one of the ionization timࢮwith electron trajectoriࢮ that can scat-
ter from the nucleࢰ. Գe IR field ࢯ so strong that a collࢯion ࢯ possible. On the right ࢯ
the rࢮult of a calculation with exactly the same conditions ࢭ the calculations on the leդ,
with the exception that there ࢯ no nucleࢰ. In the middle the difference between the two ࢯ
plotted. Գe ratio between the upper and lower lobe ࢯ larger than one order of magnitude.
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Figure 3.18: Գࢮe calculations corrࢮpond to those in figure Ը.ԶԼ, but they are performed
by sol࡛ing the TDSE instead. Գat ࢯ why there are such non-clࢭsical phenomenaࢭ inter-
ference prࢮent. In the right picture there are some artifacts ,ibleࢯ࡛ since the nucleࢰ had to
be artificially remo࡛ed aդer ionization. Data courtࢮy of J. Mauritsson.
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Conclusions/outlook

.
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Sक़ॖ्ॏ्॒ोॐढ़ ो॓॓ै ॖॉॗख़ॐक़ॗ were achievable using the CTMC method (see fig-
ures ܲ.ܵ and ܲ.ܰܶ–ܲ.ܷܰ), despite the sampling errors made (see appendix E). If one

could overcome some of the difficulties of programming on a graphics card (some of
the calculations lasted more than ܷܳ hours), the classical methods have a promising ݅u-
ture, since it is possible to per݅orm calculations that are difficult to do using quantum
mechanics (e.g. comparing what happens aݞer photoionization with and without po-
tential present, since the potential is necessary ݅or the wave݅unction of the ݅ree electron
to be correct). QM calculations also need a lot of memory (on the order of GB ݅or
one wave݅unction), whereas the corresponding classical calculations only need ܱܲ B of
storage per electron.ܸܸFor good statistics, on the

order of ܹܰ⁷ electrons are
needed ⟹ ∼ܱܹܲ MB

memory is required.

Further work has to be invested to be able to per݅orm the classical calculations ݅or
more general systems. At this point, theprogram implementedonlyworks ݅orhydrogen-
like systems, and is only tested ݅orH andHe+. A first stepwould be to try ionizing ݅rom
e.g. highly excited CO molecules (using an eܿective potential), to study the trajectories
takenby the electrons attracted by twonuclei. Something that alsowould be interesting
to try is the dynamics of double photoionization, i.e. the trajectories of two photoelec-
trons, but it is not entirely clear how one would treat both of them as classical particles
at the same time (thus neglecting eventual inter݅erence phenomena).

eܭ classical methods could also benefit ݅rom more storage space and processing
power; per݅orming the calculations on a conventional cluster, it would be possible to
use stiff ODE solvers which do not fit on the GPU, and that have highly divergent ex-
ecution paths. Furthermore, as the classical methods allow studies of single electron
trajectories, it would be possible to study these more closely and gain a better under-
standing of systems that are too complex to understand using normal QM methods.
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Atomic units

.

A

Aक़्॓॑े ख़्॒क़ॗ ॅॖॉ ख़ॗॉै to simpli݅y calculations in atomic physics via a coordi-
nate trans݅orm in which important quantities are set to unity. In the Hartree

atomic units system, the ݅ollowing identities hold:

me = e = ħ = ܳπεܹ = ܰ

All other quantities are derived ݅rom these, giving the ݅ollowing values in SI units ݅or
one unit in atomic units (table taken ݅rom [Häßler ܱܹܹܸ]):

݃uantity Value

Angular momentum ħ = ܰ.ܹܴܴܱܳܶܰܶܵ ⋅ ܹܰ−ܲܳ Js

Mass me = ܸ.ܹܸܷܰܲܲ ⋅ ܹܰ−ܲܰ kg

Charge e = ܰ.ܹܱܴܵܰܶܵܲ ⋅ ܹܰ−ܸܰ C

Length aܹ =
ܳπεܹħܱ

meeܱ
= ܴ.ܱܸܱܹܷܴܸܰܶܶ ⋅ ܹܰ−ܰܰ m

Velocity ࡛B =
eܱ

ܳπεܹħ
= ܱ.ܷܸܱܰܶܵܰܵܲܲ ⋅ ܹܰܵ m/s

Momentum me࡛B = ܰ.ܸܸܱܷܴܰܵܵ ⋅ ܹܰ−ܱܳ kg m/s

Time τܹ =
aܹ

࡛B
= ܱ.ܷܷܷܹܳܰܳܲ ⋅ ܹܰ−ܰܶ s

Frequency τ−ܹܰ = ܳ.ܷܰܲܳܰܲܶܲ ⋅ ܹܰܰܵ Hz

Energy Eh =
meeܳ

(ܳπεܹ)ܱħܱ = ܳ.ܴܸܲܶܳܳܰܶ ⋅ ܹܰ−ܷܰ J= ܱܶ.ܱܰܰ eV

Electric field ℰܹ =
e

ܳπεܹaܱ
ܹ
= ܴ.ܱܱܹܴܰܳܵܰ ⋅ ܹܰܰܰ V/m

Intensity
ܰ
ܱ
εܹcܹℰ ܱ

ܹ = ܲ.ܴܹܸܴܱܳܳ ⋅ ܹܰܰܵ W/cmܱ
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Code

.

C

I॒ क़ौ्ॗ ॅ॔॔ॉ॒ै्ड़, an overview of the code used in the calculations is given. In the
݅ollowing subsections, it is described how the diܿerent building blocks are imple-

mented.
When the program is started, a specified file in the JSON ݅ormat (see [Crock݅ord

ܱܹܹܱ]), containing the parameters ݅or the calculations, is loaded. All parameters speci-
fied in SI units are converted to atomic units, as per appendix A. enܭ the calculations
commence. eyܭ consist of propagating electrons of diܿerent positions and velocities
according to eq. (ܲ.ܱ). For all electrons ݅our quantities are stored: time of ionization,
final speed (length ofmomentum vector), final position and final velocity. eܭ individ-
ual trajectories of the electrons are in general discarded; a single trajectory could easily
occupy ܱܲ kB (two Cartesian vectors, one ݅or position and one ݅or velocity, consisting
of three components plus one padding,ܹܹܰܰTo make use of

optimized SIMD methods,
data ݅etches has to be in

sizes that are powers of two,
i.e. ܱn. ,ere݅oreܭ the three
Cartesian components are

padded with one,
meaningless, extra

component.

every component requires ܳ B of storage and
a trajectory may require up to a thousand steps), which means that ܱܲ GB of storage
would be needed to store the trajectories of a million electrons.

Also worth noting is that single-precision floating-point values (named floats in
C/C++) are used (hence ܳ B per component) instead of double-precision floating-point
values (doubles), because the GPU only has hardware support ݅or floats. eܭ exe-
cution times ݅or calculations with doubles are drastically increased (by more than one
order, [Göddeke et al. ܱܹܹܴ]).

C.1 Building blocks
C.1.1 Sampling

eܭ basis ݅or success݅ul sampling of probability density ݅unctions is a reliable random
number generator as mentioned in section ܱ.ܲ. Each executing thread is assigned its
own generator with a unique multiplier (see [Alerstam et al. ܱܹܹܸ] ݅or details on the
implementation).

Position eܭ initial position is decided by three coordinates: the radius r and the two
angles θ ∈ [ܹ, π) and φ ∈ [ܹ, ܱπ). eܭ two angles are sampled isotropically, while the
radius is sampled ݅rom the radial ݅unction of the s state, such that∫

∞

ܹ
dr′ r′ܱ|Rܰ,ܹ(r′)|ܱ =

ܰ. eܭ inverse trans݅ormationmethod is used, i.e. a stochastic variableU is sampled uni-
݅ormly on the interval, and then equation (ܲ.ܶ) is solved ݅or rwithNewton–Raphson’s
method:
inline void NewtonFind(float (*f)(float, float&),

float& x, float y,
float& maxError ,
float maxI=30){

float error=INFINITY , derivative=0.0f;
int i=0;

☙ ܹܲ ❧



Studying Electron Dynamics using Attosecond Streaking

while(abs(error)>maxError && i<maxI){
error=f(x,derivative)-y; //Calculate distance

//between current point (f(x)) and wanted
//value (y). The value of f'(x) is
//retrieved , since derivative is passed
//as a reference , not by value.

x=x-error/derivative; //Refine guess
i++;

}
maxError = error;

}

float sRadialFunction(float r, float& derivative){
int Z = deviceStreakingParams.Z;
float exp2Zr = exp(-2*Z*r);
float r2 = r*r;
derivative = 4*Z*Z*Z*r2*exp2Zr;
return 1-(2*Z*(Z*r2+r)+1)*exp2Zr;

}

float sampleRadius(SimData& data , int tid){
float r=1.0f; //Initial guess (=a_0)
//Maximum absolute error accepted
float error = 1e-10f;

NewtonFind(&sRadialFunction , //Pointer to function
r,
rand_MWC_co(data.rng, tid), //Sampled U
error);

return r;
}

Newton–Raphson’s method is an iterative method ݅or finding a root of an equation.
One first has to make an initial guess of the root, and a new root is then taken as

x(ܰ) = x(ܹ) − f (x(ܹ))
f ′(x(ܹ)) .

isܭ procedure is repeated until the error is sufficiently small.
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Figure C.1: An illࢰtration of the binary search algorithm. Գe initial guࢮs ࢯ placed
in the middle of the domain. Գe algorithm then tࢮts if the sought ࡛alue ࢯ in the leդ or
right subdomain. Գe next guࢮs ࢯ then chosen ࢭ the middle of that subdomain and the
procedure ࢯ repeated.

Velocity Newtons–Raphson’s method has quadratic convergence, as long as the
derivative f ′(x) ≠ ܹ, it is Lipschitz continuous around the root and the initial guess
is sufficiently close to the root (see [Bonnans et al. ܱܹܹܲ]). It can not, there݅ore, be used
when sampling the p distribution

Y ܹ
ܰ (θ, φ) = 􏽰

ܲ
ܳπ cos θ,

as the derivative of its CDF

F(θ) = 􏾙
ܱπ

ܹ
dφ􏾙

θ

ܹ
dθ′ |Y ܹ

ܰ (θ′, φ)|ܱ sin θ′

= ܱπ ܲ
ܳπ 􏿰−

cosܲ θ′
ܲ 􏿳

θ

ܹ

= ܰ
ܱ
(ܰ − cosܲ θ)

has a root in the interval (ܹ, π). isܭ is instead sampled using a simple binary search
algorithm, where the root is ݅ound by first guessing that θ = π/ܱ and then stepping in
the direction thatminimizes the error |F(θ)−U |, while simultaneously halving the step
length, until the error is small enough. See figure C.ܰ ݅or an illustration.
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inline void SearchFind(float (*f)(float, float&),
float& x, float y,
float& maxError ,
float maxI=40){

float derivative=0.0f;
float step=0.5*x;
x=step;
float error=f(x,derivative)-y;
int i=0;
while(abs(error)>maxError && i<maxI){

step *= 0.5;
x -= step*(error >0?1:-1);
error = f(x,derivative)-y;
i++;

}
maxError = error;

}

float SphericalHarmonic1_0(float theta ,
float& derivative){

float cosTheta = cos(theta);
//Cannot use Newton -Raphson anyway
derivative = 0.0f;
return 0.5f*(1-cosTheta*cosTheta*cosTheta);

}

float sampleTheta(SimData& data , int tid){
float theta=PI;
float error = 1e-10f;
theta=PI;
SearchFind(&SphericalHarmonic1_0 ,

theta , rand_MWC_co(data.rng, tid),
error);

return theta;
}

☙ ܲܲ ❧



Stefanos Carlström

SamplingY ܹ
ܰ as above yields the initial direction of the velocity, but an initial speed,

i.e. length of the velocity vector, is needed as well. isܭ is sampled ݅rom the spectral
distribution (which is Gaußian) of the XUV pulse, using the Box–Müller trans݅orm:

If Uܰ and Uܱ are independent, stochastic variables uni݅ormly distributed on (ܹ, ܰ],
then

Zܰ = σ􏽮−ܱ lnUܰ cos(ܱπUܱ) + 𝔼 Zܱ = σ􏽮−ܱ lnUܰ sin(ܱπUܱ) + 𝔼

are independent, stochastic variables normally distributed around 𝔼 with a standard
deviation of σ.

Only one value is needed to sample the energy:
float sampleE(SimData& data , int tid){

//Box-Müller normal distribution
float E=sqrt(-2*log(rand_MWC_oc(data.rng, tid)))*

cos(2*PI*rand_MWC_co(data.rng, tid));

E *= deviceStreakingParams.XUV.stdDevE;
E += deviceStreakingParams.XUV.centerE;

return E;
}

C.1.2 Propagation

eܭ propagation is done by a RKܴܳ ODE solver, in an implementation adapted and
generalized ݅rom [Palmer eܭ.[ܹܹܱܲ codemakes heavy use of optimization techniques
such as thosementioned in section ܱ and templatingܰܰܰܰA programming language

construct used to offload
the processor by deciding

parts of the execution path
at compile time.

to run as efficiently as possible on
a GPU.

C.1.3 Detection

edetectionܭ process works like this: amask vector of booleans,ܱܱܰܰAn integral value type,
that can only take two

values: ܹ, corresponding to
false and ܰ,

corresponding to true.

as long as the number
of electrons used in the calculations, is allocated. A kernel that is executed ݅or each and
every electron, stores in the detection vector a true if the electron has a momentum
vector inside a cone (ܰD) or if the electron is spatially located inside a slice of thicknessΔy
(ܱD), false otherwise. eܭ number of elements with the value true is then counted,
and new, shorter, vectors are allocated, to store the ionization times, finalmomenta and
final positions of the detected electrons.
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C.1.4 Least Squares fitting

eܭ idea of Leࢭt Squarࢮ fitting is to minimize the squared residuals between some
measurement data and a model by finding the optimum parameters ݅or that model.
isܭ can also be viewed as minimizing the distance between the measurement vector
and its projection on the subspace spanned by the parameters. eܭ solution to such
a system is 􏾦𝛃 = (X⊤X)−ܰX⊤y, where (X⊤X)−ܰ is called the pseudo-inverse of X, the
measurement positions and y is the measurement values at those positions. However,
if themodel is non-linear, i.e. not on the ݅orm y = X𝛃, a non-linear least squares fit has
to made where the model is linearized around some 𝛃 and a step Δ𝛃 is taken until the
gradient

∇S = ∇
N

􏾝
i
􏿴 yi − y (xi,𝛃)􏿷

ܱ
= ∇

N

􏾝
i

Δyܱi

is zero. eܭ step is ݅ound by Δ𝛃 = (J⊤J)−ܰJ⊤Δy, where J = 􏿴Jij􏿷 is the Jacobian of the
model y.

In the case of the streaking spectrograms, the parameter vector 𝛃 = {tCTMC α} (the
time shiݞ and the amplitude modulation), and the model is equation (ܲ.ܵ). At each
step, the Jacobian is calculated:

J(k+ܰ) =
⎛
⎜
⎜
⎝

∂p 􏿴t, t(k)CTMC, α(k)􏿷
∂t(k)CTMC

∂p 􏿴t, t(k)CTMC, α(k)􏿷
∂α(k)

⎞
⎟
⎟
⎠
,

where t is a vector containing the ionization times. eܭ elements of J(k+ܰ) are calculated
on the GPU, and then J(k+ܰ)⊤J(k+ܰ) and J⊤Δp are calculated using parallel reduction as
described in section ܱ. Lastly, the parameter step is calculated by solving

J(k+ܰ)⊤J(k+ܰ)Δ𝛃(k+ܰ) = J(k+ܰ)⊤Δp(k)

using LU decomposition.
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.

E

H ॉॖॉ ॊ॓ॐॐ॓ज़ॗ ॅ ॗख़॑॑ॅॖढ़ of errorsmade in the calculations. eyܭ are all related
to how the initial positions and momenta of the electrons are sampled.

• Radial ݅unctions ݅or heavier elements than hydrogen still sampled with Z = ܰ
as the program was first implemented ݅or hydrogen. When testing with He+
this was ݅orgotten, and as the results seemed plausible (compare with figure ܲ.ܵ),
it was not discovered until ݅airly late in the project. When testing with correct
wave݅unction, the calculation times increased immensely, and as the error did
not seem to have large impact, it was decided to leave it as is.

0 1 2 3 4 5
r/a0

Z = 1
Z = 2

Figure E.1: Գe radial wa࡛efunctions for hydrogen-like systems with a nucleࢰ of Z=Զ
and Է. As ࢯ natural, the electrons are boundmore tightly to a larger nucleࢰ; thࢯ also caࢮࢰ
trouble for the calculations, since the electron trajectoriࢮ more oդen start in a stiff region
⟹ longer calculation timࢮ.

• Initial velocity is sampled isotropically (as in [Nagele et al. ܱܹܰܰ]), instead of ac-
cording to a p distribution. However, this is only done in the one-dimensional
case. Sampling according to a p distribution seems to yield larger variance in
tCTMC.

• Initial energy sampled ݅rom a pulse of too small spectral width, which cannot
really be said to be as short as needed ݅or the approximation that ionization is
instantaneous upon the arrival of the XUV photon. Sampling ݅rom the correct
pulse spectrum yielded too large variance in tCTMC.

It is likely that by sampling ݅rom Kepler orbits as is traditionally done in CTMC calcu-
lations, these errors could have been avoided.
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F.1 VMIS
F.1.1 Electron scattering
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Figure F.1: VMIS imagࢮ of the electron momentum dࢯtribution when ionizing in a
strong IR field (γ̃ < ܰ) for different ionization timࢮ tܹ.
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Figure F.2: Continuation of the seriࢮ from the pre࡛ioࢰ figure.
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F.1.2 Polarization dependence
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Figure F.3: VMIS imagࢮ of the electron momentum dࢯtribution for different IR field
polarizations.
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Rederivation of time shift approximation

.

R

I॒ क़ौ्ॗ ॅ॔॔ॉ॒ै्ड़, ॅ ॖॉैॉॖ्ग़ॅक़्॒॓ of the analytical approximation of the mea-
surement induced time delay, as derived by [Ivanov and Smirnova ܱܹܰܰ], is done,

but ݅or a Coulomb potential of V(r) = Z/r. eܭ derivation is very brief, with little
more explanation than necessary, since it is only provided ݅or completeness. eܭ equa-
tion numbering ݅ollows that of the original article.

eܭ traditional streak camera ݅ormula

vf (ti) ≈ vܹ −A(ti) (R.ܰ)

is only an approximation. A more accurate expression is

vf (ti) = vܹ −A(ti) + Δv(ti),

with the additional velocity shiݞ

Δv (ti) = 􏾙
∞

ti
dt {FC[rIR(t)] − FC[rFF(t)]}. (R.ܱ)

In the eikonal-Volkov approximation, a single characteristic trajectory is obtained:

rIR(t) ≈ rܹ + vܹ(t − ti)⎫⎪⎪⎪⎬⎪⎪⎪⎭

≡rFF(t)

+ 􏾙
t

ti
dt′ [A(t′) −A(ti)]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

≡Δr(t,ti)

. (R.ܲ)

rܹ is denoted rܹ = ܰ/a࡛ܹ. a is ݅ound by matching the ݅ree particle wave ݅unction of the
eikonal approximation with the exact outgoing Coulomb wave:

ψvܹ
∝ exp 􏿰i࡛ܹr +

i
࡛ܹ
􏾙

r

rܹ
dr′ Zr′ 􏿳 = exp 􏿰i࡛ܹr + i Z࡛ܹ

ln 􏿶
r
rܹ 􏿹􏿳

(R.ܳ)

≡ exp 􏿰i࡛ܹr + i Z࡛ܹ
ln(ܱ࡛ܹr) − iܱδ􏿳 ,

δ = arg [Γ(ℓ + ܰ − iZ/࡛ܹ)]

⟺ i Z࡛ܹ
ln 􏿶

r
rܹ 􏿹

= i Z࡛ܹ
ln(ܱ࡛ܹr) − iܱδ

⟺ r
rܹ
= ܱ࡛ܹr exp(−ܱ࡛ܹδ/Z)

⟺ a(࡛ܹ) = ܱ exp(−ܱ࡛ܹδ/Z). (R.ܴ)
eܭ) exact outgoing Coulomb wave was ݅ound by backpropagating the plane wave-
݅ront at the detector (positioned at +∞). eܭ phase diܿerence near the atom between
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this wave and a plane wave without the scattering potential present was ݅ound to be
−ܱδ. isܭ may not be seen as a rigorous derivation, but nonetheless this definition of
rܹ proved to yield good results.)

With an electric field of EIR = Eܹ cos(ωIRt) and accompanying magnetic vector
potential ofAIR(t) = −(Eܹ/ωIR) sin(ωIRt), the trajectory in (R.ܲ) becomes

rIR(t) ≈ rܹ + ࡛ܹ(t − ti) +
Eܹ

ωܱ
IR
[sin(ωIRti)ωIR(t − ti) + cos(ωIRt) − cos(ωIRti)] . (R.ܵ)

With a weak IR field (Δr(t, ti) ≪ rFF(t) ⟹ ࡛F ≡ Eܹ/ωIR ≪ ࡛ܹ), (R.ܷ) becomes

Δ࡛(ti) =
ܱ
࡛ܲ

ܹ
􏾙

∞

ti
dt ZΔr(t, ti)
[rܹ + ࡛ܹ(t − ti)]ܲ

Δr(t, ti) =
Eܹ

ωܱ
IR
[sin(ωIRti)ωIR(t − ti) + cos(ωIRt) − cos(ωIRti)]

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(R.ܶ)

⟹ Δ࡛(ti) = −Z
Eܹ

࡛ܲ
ܹ
􏿰cos(ωIRti) fc 􏿶

rܹωIR

࡛ܹ
􏿹 − sin(ωIRti) fs 􏿶

rܹωIR

࡛ܹ
􏿹􏿳 (R.ܷ)

with

fc(x) = c (x) cos(x) + s (x) sin(x), fs(x) = s (x) cos(x) − c (x) sin(x)

c (x) = 􏾙
∞

x
dx′ cos x

′

x′ , s (x) = 􏾙
∞

x
dx′ sin x

′

x′ .

⎫⎪⎪
⎬⎪⎪⎭

(R.ܸ)

x = rܹωIR ≪ ܰ ⟹

fc 􏿶
rܹωIR

࡛ܹ
􏿹 ≈ ln 􏿶

࡛ܹ

ωIRrܹ 􏿹
− γEuler +

π
ܱ
rܹωIR

࡛ܹ

fs 􏿶
rܹωIR

࡛ܹ
􏿹 ≈

π
ܱ
− rܹωIR

࡛ܹ
􏿰ln 􏿶

࡛ܹ

ωIRrܹ 􏿹
− γEuler􏿳

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(R.ܹܰ)

Substituting (R.ܷ) into the expression ݅or the final energy of the electron yields

࡛f = ࡛ܹ −A(ti) 􏿰ܰ +
ZωIR

࡛ܲ
ܹ
fs􏿳 − E(ti)

Z
࡛ܲ

ܹ
fc, (R.ܰܰ)

which can be rewritten as

࡛f = ࡛ܹ − αA 􏿴ti + Δt(LR)
IR 􏿷 (R.ܱܰ)
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with

Δt(LR)
IR = − Z

࡛ܲ
ܹ
fc

ܰ

ܰ + ωIR
Z
࡛ܲ

ܹ
fs

≈ − Z
࡛ܲ

ܹ
􏿰ln 􏿶

a࡛ܱ
ܹ

ωIR
􏿹 − γEuler +

π
ܱ
ωIR

a࡛ܱ
ܹ
􏿳

ܰ

ܰ + ωIR
Z
࡛ܲ

ܹ
􏿼
π
ܱ
− ωIR

a࡛ܱ
ܹ
􏿰ln 􏿶

a࡛ܱ
ܹ

ωIR
􏿹 − γEuler􏿳􏿿

= − 􏿰ln 􏿶
a࡛ܱ

ܹ

ωIR
􏿹 − γEuler +

π
ܱ
ωIR

a࡛ܱ
ܹ
􏿳

Z

࡛ܲ
ܹ + ωIRZ 􏿼

π
ܱ
− ωIR

a࡛ܱ
ܹ
􏿰ln 􏿶

a࡛ܱ
ܹ

ωIR
􏿹 − γEuler􏿳􏿿⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

≈
π
ܱ
, ωIR

a࡛ܱ
ܹ
≪ ܰ

≈ − 􏿰ln 􏿶
a࡛ܱ

ܹ

ωIR
􏿹 − γEuler +

π
ܱ
ωIR

a࡛ܱ
ܹ
􏿳

Z
࡛ܲ

ܹ + ωIRZπ/ܱ
. (R.ܰܲ)
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