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Studying Electron Dynamics using Attosecond Streaking

Abstract

In this thesis, a programwas implemented to study the electron dynamics of photoion-
ization. ese dynamics are probed by a streaking in rared field, that modulates the
electrons’ trajectories. Analytical quantum mechanical calculations or such systems
are impossiblewithout approximations or atomsmore complex than hydrogen. How-
ever, using classical mechanics and Monte Carlo methods to capture the statistical be-
haviour of quantummechanics, it was possible to extract the temporal dynamics of hy-
drogen and once ionized helium, and get good agreementwith recent articles published
by [Nagele et al. ] (Journal of Physics B:Atomic,Molecular andOptical Physics, ),
[Klünder et al. ] (Physical Re iewLetters, . ) and [Ivanov and Smirnova ]
(Physical Re iew Letters, . ).

e program was implemented on a Graphics Processing Unit, the computational
unit of a graphics card, which allows or massive parallelization of computations using
inexpensive computer hardware available to normal consumers.
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Populärvetenskaplig sammanfattning

Om man otojoniserar en atom, dvs. sliter loss en elektron genom att belysa atomen,
kommer elektronen att skjuta iväg rån atomen med en hastighet som beror på ljusets
energi (se figur nedan).Dock kommer atomkärnan att försöka få elektronen att återvän-
da, j r gravitationen. Om dessutom ett elektriskt fält, såsom in rarött laserljus verkar på
elektronen under jonisationen och e eråt, kommer elektronen rörelse ytterligare för-
ändras.

..Z+

.

e−
.

(a)

. Z+

.. e−.
FZ+

.

FIR

.

(b)

I (a) jon er en atom a en inkommande lj puls
och elektronen skjuter i äg. I (b) på erk den lö-
sa elektronen a t å kra er. Den örsta kommer
från atomkärnan som örsöker drar i elektronen
med kra en FZ+ . Ett elektr kt ält som accelererar
elektronen ger uppho till den andra kra en, FIR.

Elektronerna detekteras sedan
och genom att mäta deras energi
kanman beräkna vilken styrka det
in raröda laserljuset hade vid joni-
sationstillfället (denna teknik kal-
las streaking). Det visar sig dock
att detta värde inte helt stäm-
mer överens med den styrka fältet
aktiskt hade vid jonisationstillfäl-
let. Snarare passar värdet med fäl-
tets styrka vid en tidpunkt strax
innan. Denna tidsskillnad beror
på två saker: ) genom att atom-
kärnan drar i elektronen fördröjs
jonisationen och ) genom att
det in raröda fältet är närvaran-
de under jonisationen påverkas
elektronens rörelse i förhållande
till atomkärnan på ett komplext
sätt. Dessa tidsaspekter på otojonisationen ärmycket intressanta att studera för grund-
läggande orskning i atom ysik.

Om det in raröda laserfältet är mycket starkt, kan det tvinga tillbaka elektronen till
atomkärnan, förutsatt att det är riktat åt rätt håll under tillräckligt lång tid. När elektro-
nen närmar sig kärnan, kan den förra spridasmot den senare, ”studsa”, och röra sig bort
med en högre hastighet än den med vilken den närmade sig. Något liknande inträ ar
när en komet närmar solen och slungas iväg när den passerat.

I mitt projekt har jag tittat närmare på dessa enomen med hjälp av klassiska (i mot-
sats till kvantmekaniska, som annars är vanligast i atom ysiken), statistiska beräkningar
av ett slag som kallasMonte Carlo-metoder (namnet kommer rån statistiska studier av
tärningskastande som ju inte är en obekant företeelse på kasinot i denna stad). Dessa
har utförts på ett grafikkort i en vanlig dator. Sådana grafikkort är speciellt lämpade för
sådana här statistiska beräkningar, där många oberoende försök måste göras för att ett
tillförlitligt resultat skall uppnås.
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Abbreviations and notation used

API Application programming inter ace

as Attosecond

CDF Cumulative distribution unction

CPU Central processing unit

CTMC Classical trajectory Monte Carlo

FWHM Full width at half maximum

GPGPU General-purpose computing on graphics processing units

GPU Graphics processing unit

IR In rared

ODE Ordinary di erential equation

PDF Probability distribution unction

QM uantum mechanics

RK Runge–KuttaODE solver of th orderwith embedded th order error estimator

SI Système international d’unités

SIMD Single-instruction multiple data

TDSE Time dependent Schrödinger equation

VMIS Velocity map imaging spectroscopy

XUV Extreme ultraviolet

(a|b) Scalar product of vectors a and b

ez Unit vector in the direction of z

IP e binding energy of the potential

τ is a time ound by analytical QM derivation

tS is a time ound by numerical QM calculations

tCTMC is a time ound by (numerical) CTMC calculations

Ω e requency of the ionizing XUV pulse

ωIR e requency of the streaking IR field
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Introduction

.

1

T of this thesis is to study the behaviour of photoionized
electrons and how that behaviour is a ected by changes in the surroundings. An

electron bound to an atom is governed by quantum mechanics and must be treated us-
ing methods rom this theory. For simple systems like hydrogen, exact solutions of the
wave unction can be ound. Likewise, it is simple to find solutions or ree particles
in an external field. However, when both an atomic potential and an external field is
present, quantum mechanics yield no easily ound analytic solution. It is possible to
acquire solutions numerically, but it can be difficult to separate which actors are re-
sponsible or the observable e ects, since the calculations are per ormed with one bulk
Hamiltonian. In classical mechanics it is easy to turn on and off di erent constituents,
and draw conclusions on their influence. On the other hand, classical mechanics are de-
terministic, whereas quantummechanics are probabilistic. It is possible tomake up or
this di erence (to some extent and or certain problems), by using statistical methods
calledMonteCarlomethods. In this special application, a variant known as theCl sical
TrajectoryMonte Carlomethod is used.

p[
a.u

.]

t0 [fs]

1.8

2

2.2

2.4

−2 −1 0 1 2

Figure 1.1: A typical streaking spectro-
gramwith the imprint of the infrared field
clearly ible.

e oundation or all di erent Monte
Carlo techniques is the independent mea-
surement that is repeated sufficiently many
times, until a conclusion can be reached.

is is known as the law of large numbers.
Since the measurements are independent,
they are very well suited or parallel com-
puting, which is the second major interest
of this thesis. Especially, how these calcula-
tions are efficiently implemented on graph-
ics processing units, the computational cores of graphics cards in computers.
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Figure 1.2: A typical momentum
d tribution of the electrona er scat-
tering.

With a working program it is then possible to
study the dynamics of the electrons; the main cal-
culations revolve around how themomenta of the
electrons change when subjected to an oscillating
in rared (IR) laser field. When the electrons hit a
detector and their kinetic energies are measured,
an imprint of the IR field is visible in the spec-
trogram, as well as an imprint le by the nuclei
the electrons were bound to. e ormer imprint
is clearly visible (see figure . ), whereas the latter
is so small, it has to be extracted using numerical
methods.

When the electrons travel close to the nucleus,
the imprint le is more emphasized; the electrons

☙ ❧
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scatter and leave with higher velocity than what they had when they were incident on
the nucleus. An example of this is shown in figure . .

Much e ort has been put into creating a program that can calculate these dynamics
reliably and yet quickly enough to be use ul. Nonetheless, or some of the scattering
calculations mentioned above, they could easily last more than hours or a single
ionization time.

In section , an overview of the computational part of project is given, while section
deals with the physical aspects. Lastly, the conclusions are ound in section .

☙ ❧
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GPGPU calculations and their suitability to MC methods

.

2

GPGPU —General-purpose computing on graphics proc sing units— is an evolving
area in computational science where the processing power of graphics cards, orig-

inally targeted at running the increasingly realistic and demanding computer games, is
leveraged or general-purpose calculations. e power of the graphics cards lies not in
the speed of every single microprocessor on the card, but the huge amount of proces-
sors working at the same time. Below ollows a brief description of how programming
and execution of code on the GPU works. In this project, a GPU manu actured by
N was used, along with the application programming interface (API) provided by
the company, CUDA. For a more in-depth description of how the GPUs work and in
the special case of N GPUs, see e.g. [NVIDIA ].

Each processor executes a thread, which is a processing unit that executes indepen-
dently of the other threads of the program (but they all share the same context —access
to the same memory blocks and so on). On the GPU a certain number of threads is
executed together, in what is called a warp. A larger group of threads is called a block.
All threads in a block is executed simultaneously (but each warp within the block is
independent rom the others), and they all have access to ast, on-die shared memory
(typically∼  kB in size). Lastly the blocks are organized in a grid, rom which a sched-
uler A scheduler is an

algorithm, that given a
batch of threads, chooses
when to execute them and,
in the case of a GPU, on
which processor

chooses the next block to execute. All threads have, at any time, access to a slower
global memory, of considerably larger size (∼  GB).

If, or instance, one would like to calculate the Euler norm of a vector of length N

||v|| =


⃓
⃓
⃓
⎷

N


i=

i

on a single processor, an implementation could be as ollows. roughout the text, the
code presented will be in
C/C++. Some parts are
taken directly rom the
program implemented in
this project.

float vec[N] = { ... }; //A vector of N elements
float sum = 0;
for(int i=0; i<N; i++)

sum += vec[i]*vec[i];
float norm = sqrt(sum);

If one, instead would like to implement the calculation in a parallel manner, one would
construct a kernel, i.e. a small unction, that calculates the square of a given number
and places the result in a designated destination:
void square(float* elements , float* squares){

int tId = getTid(); //Calculate the thread index
squares[tId] = elements[tId]*elements[tId];

}

☙ ❧
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is kernel is executed by theGPU or each and every element in the vector elements,
and every instance of the kernel runs on a separate processor. e thread index is the
same as the processor number, i.e. which processor the kernel is executed on. In this
way, the square ofm (wherem is the number of processors) elements is calculated, and
the results are placed at the corresponding positions in the vector squares.

e sum is then calculated using a parallel reductionParallel reduction is an
algorithm that is per ormed

recursively in a tree-like
manner, starting rom the
lowest level. For instance,

to calculate a sum of a
vector, the first step is to
construct a vector of half

the original size, with every
element containing the sum

of two elements in the
original vector. IfN = n

where n ∈ ℤ+, the
operation is done in n steps.

algorithm and the square root
is calculated on the CPU, since it is only per ormed once.

* * *

ere are some aspects one must consider, in order to use GPUs or calculations. ese
are discussed on the ollowing pages.

2.1 Orthogonality of the problem
e degree to which the problem can be broken down into smaller units that can be

computed independently of each other, determines how success ul the parallelization
of the computations can be. If the units are not ully independent, that is, they have to
communicate with each other to some degree, computational speed will be sacrificed,
yielding longer calculation times.

2.2 Divergence yields sequentialization
ere is an inherent limit in the parallelization available in a GPU. Separate threads are

indeed run separately, but the hardware canbemademore efficient if some assumptions
are made. If a group of threads run identically the same code (instructions), but with
di erent data some optimizations can be made ( or instance using Single-Instruction,
Multiple Data (SIMD) constructs). is is indeed the case or real-time graphics appli-
cations, but is not necessarily so or general-purpose calculations. What happens, is that
when branching (also called divergence) occurs, e.g. an if clause, the di erent branches
are executed in sequence, not in parallel. e threads that donot ollow a certain branch
are idle while that branch is executing, as in figure . .

In many cases this can be solved by making the assumption that the calculations
in all the branches together take less time than the sequentialization process does. For
instance, calculating the parametric potential

V(r) =
⎧⎪
⎨⎪⎩

− /|r |, |r | ≥ δ
δ
r − δ  − /δ, |r | < δ , V(r) ∈ 𝒞

could be done in the conventional ashion:
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..

Ti
m
e

.C .

Branching point,

e.g. an if clause

.
Br
an
ch

A
..

Br
an
ch

B

. T.
T

...
S

..

Id
le

...

Id
le

.

Figure 2.1: An example of branching code shown in th figure. A er some time of
execution, the path di ided into two, and in th example, the threads and take theA
andBbranch , r pecti ely. If each and e ery threadwere truly independent of the others,
in terms of hardware implementation, th e two branch would be executed in parallel.
Howe er, on aGPUall threads in a warpm t execute exactly the same instruction, albeit
with different data alu . erefore, branching constructs are split up shown on the
right, and one thread execut its branch while the other thread idle.

if(r>=delta)
V=1.0f/abs(r);

else
V=1/(2*delta3)*(r2-delta2)-1/delta;

or in a more GPU riendly way:
bool outside=(r>=delta);
V=(1.0f/abs(r))*outside +

(1/(2*delta3)*(r2-delta2)-1/delta)*(!outside);
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2.3 Random number generation
Generation of pseudo-random numbers is an art in itself, and is of utmost concern in
Monte Carlo calculations. If the random numbers are used as stochastic variables on
which the computations depend to capture a statistical behaviour, it is crucial that they
donot repeat, since getting the same series of numbersmore thanonce couldpotentially
mean per orming exactly the same computations more than once. is is even more
complicated in parallel programs, where a repeated series of random numbers would
make the parallelization pointless. To avoid this problem, this project takes the same
approach as [Alerstam et al. ],In act, the

implementation used is that
of CUDAMCML, the

program described in the
re erence.

i.e. every thread is assigned its own unique random
number ring, based on a multiplier and a starting seed. e ring will repeat itself, but
only a er a very long time (the period is> numbers). ismethod is calledmultiply-
with-carry and it was described by [Marsaglia and Zaman ].

* * *

ere are a lot of things that have not beenmentioned in this short overview, which has
to be done to success ully utilize the computational power of a GPU.

In appendix C, an overview of how the calculations were implemented in code is
given.

☙ ❧
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Streaking

.

3

T the attosecond ( as = − s) streak camera technique (first described
by [Itatani et al. ]) was initially tomeasure and characterize attosecond pulses,

in amanner analogue to that of classical streaking ([O’Brien ]). e idea is to probe
the systemdynamicswith a streaking field thatmodulates themeasurable quantities in a
predictable manner. It is then possible to extract in ormation of other processes a ect-
ing the measurements by comparing with the theoretically predicted result. However,
it was quickly realized that the system used to measure (usually an ionization) was be-
ing measured at the same time. e attosecond streaking technique is thus able to take
“pictures” of systems that evolve very rapidly.

In figures . and . , the system studied is described. A single atom is ionized by
a XUV pulse at a certain time t . A er having escaped the potential, according to Ein-
stein’s ormula or the photoelectric e ect ([Einstein ]), the electron has attained a
final kinetic energy ofWk = ħΩ − IP, whereΩ is the requency of the XUV pulse and
IP the binding energy. However, if simultaneous to the ionization a wiggling IR field
is applied, the electron will be accelerated by theLorentz force, in a predictable manner.

is IR field is used as the streaking field, since its e ects on the electron are known.

..

ex

.

ey

.

ez

..Z
+

.
e−
.

XUV
.

IR

.

(a)

. ⟹. Z+

.

e−
. x.

p
.

IR

.

(b)

. ⟹.. Z+

.

α

.

(c)

Figure 3.1: (a) e electron initially bound to the atom and d tributed according to
its wa efunction. AXUVphoton photoioniz the atom, and the electron ejected. (b) e
electron now a free particle in the combined electric field of the IR pulse and the Coulomb
potential. e initial position x a stoch tic ariable with the same d tribution the
bound electron had, and its initial momentum p = √ (Ω − IP + V(x )) , where Ω
the frequency of the XUVpulse. (c) Detection. If the electron h a finalmomentum inside
a cone of α, it detected. Electrons with higher ener arri e sooner at the detector.
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0

−2π −π ωIRt0 0 π 2π
ωIRt

EIR(t)
AIR(t)

EXUV(t)

Figure 3.2: In th figure the
two puls are shown: the IR
pulse and the XUV pulse. In
the calculations, ionization hap-
pens at time t , when the XUV
pulse hits the atom. e electron
then ejected into the combined

field of the nucle and the IR
pulse. AIR(t) the ector poten-
tial of the IRpulse andar with
a negati e sign in eq. ( . ).

By, in a controlled ashion, ionizing at di erent times
with regard to the IR field, and measuring the final
velocity, a set of data is acquired (see figure . ). On
this data one can then do computations to extract in-
teresting in ormation.

1.8

2

2.2

2.4

−2 −1 0 1 2

p[
a.u

.]

t0 [fs]

Figure 3.3: Me ured momenta for ⁴ electrons
with different ionization tim t .

Until recently, the escape process could be re-
garded as instantaneous. However, [Wigner ]
showed that there actually is an intrinsic time delay
on the order of attoseconds. Using the streak camera technique mentioned above, it is
possible tomeasure thisWigner delay,τW, provided that one can account or the e ects
of the measurement process.

In this project, one of the goals has been to evaluate towhich extent a computational
method using classical physics (known as the Cl sical trajectoryMonte Carlo (CTMC)
method) can be used to extract these time delays.

3.1 Equations of motion
To per orm the streaking calculations, the e ect of the streaking IR field must be
known. e aim is to extract the time delays involved as a time shi . An electron that
is ejected rom an atom ionized in an external field, is subjected to the Lorentz orce,
originating rom both atomic potential and the external field:

F = q (E + v × B) , ( . )

where E is the combined electric field of the atom and the external field and B is the
corresponding magnetic field. q = −e is the charge of the electron and v is its instanta-
neous velocity. According toNewton’s second law, the orce on a body is related to the
acceleration it experiences via F = ma. is gives the equations of motion

ẍ = a = q
me
(E + v × B) . ( . )

☙ ❧
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is is a second-order di erential equationwhich can be trans ormed into two coupled
first-order di erential equations:

⎧⎪
⎨⎪⎩

v̇ = q
me
(E + v × B)

ẋ = v.
( . )

is system is readily solved numerically using stepwise integration, but some simplifi-
cations can be made; using atomic units (see appendix A), many important quantities
are set to unity, thereby simpli ying equations and making it easier to avoid numerical
round-off errors. Herea er, all quantities

will be in atomic units,
unless explicitly stated
otherwise.

Furthermore, the influence of the magnetic field B can be neglected:

B = E /c ⟹ v̇ = − E eE + c e × E eB ≈ −E eE = −E, ≪ c .

Only the external field is contributing, as on these time scales, the nucleus is stationary.
us equation ( . ) reduces to

⎧⎪
⎨⎪⎩

v̇ = −E
ẋ = v.

( . )

If only the external field had been present, the solution of eq. ( . ) would be simple:

vf = v −
∞

t
dtEext = v + [Aext]

∞
t = v −Aext (t ) , ( . )

as Eext = − ∂Aext

∂t and Aext(∞) = (Aext(t) is the vector potential of the electric field
Eext(t)). In figure . , it is clearly illustrated how the final velocity of the electron only
depends on the initial velocity and the vector potential at the instant of ionization, as
eq. ( . ) predicts. With aCoulombfieldpresent, the solution is approximately ([Nagele
et al. ])

vf ≈ v − αAext (t + tS) . ( . )

e actor α is close to unity and tS is a time shi related to the Wigner delay, as well as
measurement induced delays. is equation is an approximate solution, which holds as
long as theCoulombfield can be seen as a perturbation, i.e. the electrons are never really
close to the core, which is true as long as the IR field is “weak” (γ̃ = Wk/ Up > ,
where Wk is the kinetic energy of the electron and Up = E / ωIR is the quiver energy
induced by the Ponderomotive orce of the IR field. See [Mauritsson et al. ]).
Another approximation is that the electrons are ejected instantaneously into the con-
tinuum at time t when the XUV pulse arrives (thus implying that the XUV pulse is a
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Figure 3.4: In th figure equation ( . ) ill trated. When an electron ejected in an
IR field and the Coulomb potential neglected, it will transfer momentum according to
F = qEIR ⟹ (t) = q∫t

t dt′ EIR(t′). When the pulse h ended, no forc are acting
on the electron; it h th reached its final elocity. Shown in blue the electric field of the
IR pulse, in green its sociated ector potential, but with a negati e sign, and in red the
attained elocity of the electron for some different ionization tim . One thing that e ily
seen in th figure, the fact that electrons rele ed at time−t and t attain the same final
elocity f the ector potential in th c e symmetric.

Dirac δ unction; the finite temporal length of the pulse is accounted or via the spec-
trum of energies it contains and can trans er to the electrons).

Even though there are a lot of approximations leading to eq. ( . ), there is a huge
benefit in having a solution on this orm; the measurements of these very small times
are reduced to a simple numerical fit of data. e key is the precise timing between the
XUV and the IR pulse, t , that has to be done. is is still difficult to do in a laser lab,
but it is possible to ionize rom two di erent shells and extract a di erential shi (see
e.g. [Schultze et al. ]).
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3.2 1D streaking
To find out what the influence of the Coulomb field is, equation ( . ) has to be solved
exactly. Since quantum mechanics is probabilistic, Monte Carlo methods turn out to
work rather well or this purpose; the initial values or position and momentum are
randomized rom the wave unction’s distribution, and subsequently, the problem is
treated ully classically. It is important that the initial conditions are sampled randomly
enough, On a computer, random

numbers are only
pseudo-random. It is
important that the method
used to generate them, does
not yield repetitions, i.e. a
sequence of numbers
appearing more than once.

so as tonot introducepatterns in thedata,whichmay lead to alse conclusions.
e manner in which this is done is described above in section . .

3.2.1 Procedure

e general procedure that is ollowed during one calculation is as ollows:

. Sample initial parameters such as ionization times t , initial positions x and ini-
tial velocities v of the electrons.

. Propagate the electrons using eq. ( . ) until they have attained their final mo-
menta, i.e. there are no more orces acting on them ⟺ the IR pulse has ended
and the electrons are ar away rom the nucleus.

. Select those electrons that are considered as detected according to some criterion
(see below) and store their final momenta.

. Do a Least Squares fit of the spectrogram A typical result is seen in
figure . .

to eq. ( . ) to extract the tCTMC that
corresponds to tS.

. Save the data.

is procedure is typically repeated or a lot of di erent ionization times t (on the order
).

Sampling According to the Copenhagen interpretation of quantum mechanics, the
absolute square of the wave unction is to be interpreted as the probability to find the
corresponding particle p at a certain point rp in space:

ℙrp ∈ V = 
V
d r′ |Ψ (r′)| .

In this work, it was chosen to use the absolute square of the wave unctions as the prob-
ability d tribution functions (PDFs) rom which the initial values are drawn or the cal-
culations. A di erent approach taken by many, is to initially place the electron in ran-
domly chosen Kepler orbits around the nucleus (see e.g. [Abrines and Percival ]).
Not doing it this way may and may not have had implications or the variance of the
results; see appendix E or a discussion on this.
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e wave unction or an s state in a hydrogen-like system in the ground state is

Ψ (r) = R , (r)Y (θ, φ) = Z / exp (−Zr)
 π .

e angular part, Y , is isotropic in this state, and the angles can there ore be sampled
uni ormly. e radial part is sampled using the in erse transformation method ([De-
vroye ]):

If a stochastic variableX has a certain PDF f (x) and a cumulati e d tribution func-
tion (CDF) F(x) = ∫x

−∞
dx′ f (x′), then Y = F (X ) is uni ormly distributed on the inter-

val [ , ]. Conversely, if the stochastic variableY is uni ormly distributed on the interval
[ , ], thenX = F − (Y ) has the PDF f (x).

In the case of the radial unction R , the inverse trans ormation method amounts
to finding the r or whichU = ∫

r
dr′ r′ |R , (r′)| , withU picked uni ormly rom the

interval [ , ].

U = 
r
dr′ r′ |R , (r′)| = Z 

r
dr′ r′ exp (− Zr′) =

… = − exp (− Zr) ( + Z (Zr + r)) ( . )

Equation ( . ) is a non-linear equation, which can be solved usingNewton–Raphson’s
method ([Bonnans et al. ]), which also needs the derivative.

e initial velocity of the electron is decided rom two actors:

. e initial speed, given by Einstein’s ormula or the photoelectric e ect Wk =
Ω− IP, whereΩ is the requency of the XUVphoton and IP is the ionization po-
tential. To preservemomentum, the potential energy at the initial position,V(r),
has tobe added aswell. As theXUVpulse is ofGaußian shape in the temporal do-
main, it has aGaußian shape in the requency domain aswell. e requencyΩ is
there ore randomized rom a Gaußian distribution via the Box–Müller
trans orm ([Box and Müller ]).

. e initial direction is in the one-dimensional case randomized isotropically, as
in [Nagele et al. ]. In reality, when the electron is ionized rom a s state, the
velocity distribution should be randomized according to a p distribution. is is
done in the two-dimensional case.

Finally, the time of ionization (t in eq. ( . )) is randomized uni ormly over an in-
terval around the extents of the IR pulse.
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Propagation A er sampling the di erent distributions or all electrons, the electrons
arepropagated according to eq. ( . ) using an adaptiveRunge–KuttaODEsolver of the
th order with an embedded th order error estimator (RK , see [Palmer ]). is

solver adapts it step size if the estimated truncation error is larger than a set tolerance,
and can thus be used or di erential equations that have singularities at points in space.
Nevertheless, it is not a stiff solver, whichmeans that or trajectories close to the nucleus,
the step size will be so small that the required calculation time is very large.

It is in this step of the procedure that the strengths and theweaknesses of paralleliza-
tion on a GPU are the most prevalent. All other steps are very deterministic.

Detection When the experiment is carried out in the lab, the electron energies are
measured using time-of-flight spectroscopy, in which the time rom ionization until the
electrons hit the detector (usually a micro-channel plate, MCP) is registered. is time
is then translated into a kinetic energy. Only those electrons that are emitted inside one
of the two hemispheres are detected, and they are bent towards the detector using a
magnetic bottle. If one were to detect

isotropically, i.e. all
electrons emitted, that
would correspond to π
(compare with area of
sphere). In this case, only
π is detected (area of

hemisphere)

In the calculations, the electrons are considered to be detected simply if they have a
velocity vector inside a small cone some time a er the IR pulse has ended. For instance,
if the detector is placed in the positive ez direction, and the detection cone angle is α,
the electron with velocity v is detected if

(vez) ≥ |v| cosα ⟺ z
|v| ≥ cosα.

Instead of registering the kinetic energy, the length of themomentum≡ me|v| is stored.

Fitting Finally, to extract the time shi tCTMC corresponding to tS in eq. ( . ), a non-
linear least squares fit (see e.g. [Seber andWild ]) of themeasuredmomenta to the
same equation is made.

Saving e data is saved to a binary file consisting of

• a header containing the calculation parameters

• the ionization timesℝ

• final momenta lengthsℝ+

• final positionsℝ

• final velocitiesℝ

is file is easily loaded into anymathematical so ware or urther processing and plot-
ting.

☙ ❧



Stefanos Carlström

3.2.2 Results

In figure . , a typical example of a streaking spectrogram can be seen. One can clearly
see that equation ( . ) is a good approximation, since the di erence is virtually indis-
cernible. ere is however a time shi between the solid white line that represents
equation ( . ) and the calculated momentum distribution. is time shi is readily ex-
tractable using themethoddescribed above, and or this certain calculation it is approxi-
mately− . as (numerical solution of the time dependent Schrödinger equation (TDSE)
yields − . as, [Nagele et al. ]).

p[
a.u

.]

t0 [fs]

1.8

2

2.2

2.4

−2 −1 0 1 2

p[
a.u

.]

t0 [fs]

1.8

2

2.2

2.4

−2 −1 0 1 2

−6 −3 0
t0 [as]

Figure 3.5: Streaking spectrogramforahydrogenatomstreakedbyan IRfield. calcu-
lation w done ing ²⁴ (≈ . ⋅ ⁷) electrons. Shown also, a solid white line, equation
( . ). e right d hed ertical line corr ponds to tS= and the le d hed ertical line
to the time shi induced by the Coulomb potential. In th c e a XUV pulse of  eV w
ed with a duration of   (see section . . for a d c sion on th subject).

3.2.3 On pulse duration

e temporal width of a Fourier limited pulse is usually defined as the width of the
intensity profile. e spectral width is related to the temporal width as (in SI units)

ΔEFWHM = ħ ln
ΔtFWHM

.

From this, it is seen that a spectral width of . eV is required to generate a XUV pulse
of as duration. However, this leads to a large distribution of the experimental data
points to which the fit is made, thus yielding a large statistical variance of the extracted
time shi s. It was there ore decided to use pulses of narrower spectral width in the cal-
culations to yield a more precise time shi , although the approximation that the ion-
ization by the XUV pulse is instantaneous does not hold any longer; a spectral width
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of only . eV (which was the width most o en used) cannot generate pulses shorter
than . fs, which is of the order of the streaking IR pulse.

3.2.4 Sweeping the XUV center frequency

By giving theXUVphotondi erent energies, the time shi in eq. ( . ) changes, asmore
energetic electrons escape the potential more easily. In the limit of infinite energy the
ionization process is truly instantaneous. By measuring the time shi in this ashion,
the Wigner delay can be extracted, if all other e ects can be accounted or. A lot of
work (see e.g. [Klünder et al. ] and [Dahlström ]) has been invested in this
undamental quantity in atomic physics, since this delay is needed to veri y a lot of the-
ory. Recently, an analytical approximationwas derived by [Ivanov and Smirnova ]
which seems to fit very well with the numerical solution to the TDSE rom [Nagele et
al. ] and [Klünder et al. ]. However, it was derived only or hydrogen, so a
rederivation or hydrogen-like systems, with an attractive Coulomb potential Z/r was
made (see appendix R). e approximation, as well as the numerical data are used as
rulers or the quality of the classical results of this work. In figure . , the time shi s or
H and He+ or di erent XUV energies can be seen, as well as some re erences.
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3.2.5 Smooth potentials and their implications

e RK ODE solver is an explicit solver that does not deal well with singularities.
Since it is adaptive, it will take shorter integration steps when the estimated truncation
error is too large. is means that the amount of steps needed or trajectories close to
the nucleuswill be extremely large, which is equivalentwith very long calculation times.
To alleviate this, the Coulomb potential can be smoothed rom a true singularity into a
unction that is𝒞 continuous, i.e. two timesdi erentiable. A traditionalwayofdoing
this, is by approximating the Coulomb potential by V(r) = (r + ε)− / , < ε≪ .
However, using this potential seems to actually increase the calculation times, probably
because the problem becomes stiff over a larger volume of space. Instead the ollowing
approximation was chosen:

V(r) =
⎧⎪
⎨⎪⎩

− /|r |, |r | ≥ δ
δ
r − δ  − /δ, |r | < δ , V(r) ∈ 𝒞 . ( . )

−δ δ

V(
r)

r

Figure 3.7: e blue cur e
the smooth potential ( . ) and
the red cur e the original
Coulomb potential.

is potential retains the Coulomb potential be-
haviour outside the spherical volume of radius δ. A
plot of the potential is seen in figure . . To veri y
themeaning ulness of this potential, an estimationof
its impact on calculation errors and calculation speed
was made by making many XUV energy sweeps or
di erent values of δ. e calculation error or each δ
was taken to be


∑N

i t
(i )
CTMC − tS W (i )

k 

N ,

where the values or tS were the same as the numerical re erences in figure . . e result
can be seen in figure . . It seems that the error is not very much a ected by the choice
of δ, but there is an optimum region or δ in terms of execution time.

3.3 2D streaking (VMIS)
Velocity Map Imaging Spectroscopy (VMIS) is two-dimensional technique or studying
the dynamics of atomic and molecular systems (see [Eppink and Parker ]). e
mode of operation is as ollows: the sample is irradiated with laser pulses, whereupon
it is ionized and the electrons are ejected. e electrons propagate as an expanding
spherical shell, which is accelerated by an electric field generated by two electrodes. e
spherical shell is projected onto a fluorescent screen, which is imaged or urther analy-
sis. Via an inverse Abel trans orm (or using iterative techniques, see [Dasch ] and
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Figure 3.8: R ults from ing a smooth potential with arying δ. In the plot on the top,
it seen that the error defined abo e only ari within the same order of magnitude.
Howe er, the execution time ari dramatically.

[Vrakking ]), the spherical shell is reconstructed, and a slice of thickness Δy along
the xz-plane in the notation of figure . is extracted. From this slice it is possible to
deduce the energies of the electrons as well as their angular distribution.

p z
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Figure 3.9: Typical VMIS re-
sult. e two lob of the p d -
tribution are clearly ible. No
IR field w pr ent in the calcula-
tions.

While doing theoretical calculations, it is not
necessary to go through the steps of projecting the
electron cloud and then do the inverse Abel trans-
orm, since the electron cloud is already represented
in ℝ coordinates in-memory. e only thing that
has to be done is the slicing, and that step replaces
the detection step described in section . . above.
Instead of speci ying a cone angle α, a slicing thick-
ness Δy has to be provided instead.

Another di erence in the two-dimensional case
as opposed to the one-dimensional procedure, is
that (asmentioned above) the initial direction of the
electrons are sampled according to the p distribu-
tion (Y ) (if ionizing rom an s state) instead, so as
to yield results in agreement with reality.

Lastly, the VMIS images are captured or one
fixed delay between theXUV and the IR pulse, one fixed t , otherwise the image would
be smeared as the electron clouds would have travelled di erent distances.

A typical result rom a VMIS calculation per ormed on hydrogen can be seen in
figure . . What is shown is the momentum distribution of the electrons a er pho-
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toionization, which is, in e ect, a Fourier trans orm of the spatial distribution. Nor-
mally, one is interested in the energy though, which is related to the momentum as
Wk = p / m.

3.3.1 Rocking the electron cloud

With an IRfield present during ionization, the electron cloudwill “float” in it, as a buoy
does on the water sur ace. According to equation ( . ), the final acquired momentum
will be shi ed by the vector potential of the IR field at the ionization instant. How-
ever, in the time span between ionization and detection at a time at which the IR pulse
has since long ended, the electron cloud will be swept back and orth, being rocked as a
swing. If then the intensity of the streaking IR field is increased, i.e. γ̃→ , the approx-
imation ( . ) is no longer valid as the electron cloud is swept back to the core. Instead
other behaviour can be studied, such as electrons scattering rom the nucleus. is scat-
tering can be thought of as an analogue to the slingshot e ect as used by space vehicles
to escape our solar system — indeed, both the Coulomb orce and the gravitational
orce have a /r dependence.

0

−2π −3π/2 −π −π/2 0 π/2 π 3π/2 2π
ωIRt

EIR(t)
AIR(t)

Figure 3.10: An infinitely oscillating IR field along with its ector potential. E ery elec-
tron ejected at a time t such that EIR(t )= h a possibility of returning to the core and
scatter.

In figure . , an IR pulse of considerably longer duration than that in figure . is
depicted. An electron ejected at any time t = nπ, n ∈ ℤ (i.e. E(t) = ), has a ull half-
cycle to trans er momentum according to F = qE. is gives the electron a chance of
returning to the core. In contrast, ionization at other times will yield both acceleration
and deceleration since the electric field changes sign be ore the electron has reached the
core.

When the pulses look like those in figure . instead, there are only two ionization
times where a return to the core is possible; ωIRt ≈ − π/ and ωIRt ≈ . is is in
excellent agreement with the series of VMIS figures ound in appendix F. . .
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Trajectories To urther rein orce this analysis, the individual trajectories of a single
electron initially placed approximately a Bohr radius away rom the nucleus in the pos-
itive z direction, were studied or di erent ionization times and some di erent condi-
tions. e results can be seen in figures . – . .

−200
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200

−2 0 2 4 6 8 10

r[
a.u

.]

t [fs]

Figure 3.11: Electron trajectori for different ionization tim with γ̃= . In th figure
the IR pulse h a longer duration (in th c e  fs, i.e. the pulse not single-cycle) and it
can make the electrons oscillate in the field, pro ided that there no nucle pr ent. e
streaking IR field shown a d hed black line.
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Figure 3.12: Since the electron initially placed some d tance away from the nucle in
the positi e z direction and the pulse single-cycle (γ̃= ), only one trajectory (with t = )
able to scatter from the nucle . e electron trajectory scattering from the nucle men-
tioned abo e with ωIRt ≈− π/ , m t start some d tance away from the nucle in the
negative z direction, since otherw e that electron initially accelerated away from the nu-
cle .
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Figure 3.13: Same in figure . , but th time without a nucle pr ent for the elec-
trons to scatter from.
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Figure 3.14: Electron trajectori for different ionization tim with γ̃< . It now possi-
ble for more electron trajectori to return to the core and scatter.
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Figure 3.15: Same infigure . , but th timewithoutanucle pr ent for the electrons
to scatter from.
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3.3.2 Looking from a different angle

.....

x

.

z

Figure 3.16: e p d tribu-
tion, which for a free electron cor-
r ponds to its elocity d tribu-
tion. ere a cylindrical sym-
metry about the z ax .

As a final test of the VMIS calculations, the polar-
ization between the XUV pulse and the streaking IR
field was gradually changed:

EXUV(t) = EXUV(t)ez, EIR(t) = EIR(t)eEIR

with ezeEIR
 = cosα, α = { ∘, ∘, ∘,… }.

is is something that is very difficult to do when
solving the TDSE numerically, since it adds another
dimension to the computations and the memory re-
quirements are drastically increased.

e result can be seen in appendix F. . . As is ex-
pected, no scattering takes places when α = ∘, as
the p distributed electron has no velocity distribution
in the ex direction (see figure . ).

3.3.3 Quantum mechanics comparison

One could argue that the scattering seen above could be attributed to numerical insta-
bility. However, very similar scattering e ects were ound by [Mauritsson et al. ]
when solving the TDSE numerically. ey compared with experimental results, and
while they could not discern typical scattering patterns, some eatures could not be ex-
plained without post-ionization electron-atom interaction.

A comparison was made or the VMIS calculations with and without an atomic
potential present, and the di erence between the two was calculated. e result can be
seen in figure . . e same comparison, butmade using numerical calculations of the
TDSE is depicted in figure . . e agreement is very good.
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Figure 3.17: On the le the r ult from a calculation with a nucle pr ent, with the
ionization time t = , i.e. one of the ionization tim with electron trajectori that can scat-
ter from the nucle . e IR field so strong that a coll ion possible. On the right
the r ult of a calculation with exactly the same conditions the calculations on the le ,
with the exception that there no nucle . In the middle the difference between the two
plotted. e ratio between the upper and lower lobe larger than one order of magnitude.
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ference pr ent. In the right picture there are some artifacts ible, since the nucle had to
be artificially remo ed a er ionization. Data court y of J. Mauritsson.
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Conclusions/outlook

.

4

S were achievable using the CTMC method (see fig-
ures . and . – . ), despite the sampling errors made (see appendix E). If one

could overcome some of the difficulties of programming on a graphics card (some of
the calculations lasted more than hours), the classical methods have a promising u-
ture, since it is possible to per orm calculations that are difficult to do using quantum
mechanics (e.g. comparing what happens a er photoionization with and without po-
tential present, since the potential is necessary or the wave unction of the ree electron
to be correct). QM calculations also need a lot of memory (on the order of GB or
one wave unction), whereas the corresponding classical calculations only need  B of
storage per electron.For good statistics, on the

order of ⁷ electrons are
needed ⟹ ∼  MB

memory is required.

Further work has to be invested to be able to per orm the classical calculations or
more general systems. At this point, theprogram implementedonlyworks orhydrogen-
like systems, and is only tested orH andHe+. A first stepwould be to try ionizing rom
e.g. highly excited CO molecules (using an e ective potential), to study the trajectories
takenby the electrons attracted by twonuclei. Something that alsowould be interesting
to try is the dynamics of double photoionization, i.e. the trajectories of two photoelec-
trons, but it is not entirely clear how one would treat both of them as classical particles
at the same time (thus neglecting eventual inter erence phenomena).

e classical methods could also benefit rom more storage space and processing
power; per orming the calculations on a conventional cluster, it would be possible to
use stiff ODE solvers which do not fit on the GPU, and that have highly divergent ex-
ecution paths. Furthermore, as the classical methods allow studies of single electron
trajectories, it would be possible to study these more closely and gain a better under-
standing of systems that are too complex to understand using normal QM methods.
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Atomic units

.

A

A to simpli y calculations in atomic physics via a coordi-
nate trans orm in which important quantities are set to unity. In the Hartree

atomic units system, the ollowing identities hold:

me = e = ħ = πε =

All other quantities are derived rom these, giving the ollowing values in SI units or
one unit in atomic units (table taken rom [Häßler ]):

uantity Value

Angular momentum ħ = . ⋅ − Js

Mass me = . ⋅ − kg

Charge e = . ⋅ − C

Length a = πε ħ
mee

= . ⋅ − m

Velocity B =
e
πε ħ = . ⋅ m/s

Momentum me B = . ⋅ − kg m/s

Time τ = a
B
= . ⋅ − s

Frequency τ− = . ⋅ Hz

Energy Eh =
mee

( πε ) ħ
= . ⋅ − J= . eV

Electric field ℰ = e
πε a = . ⋅ V/m

Intensity ε c ℰ = . ⋅ W/cm
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Code

.

C

I , an overview of the code used in the calculations is given. In the
ollowing subsections, it is described how the di erent building blocks are imple-

mented.
When the program is started, a specified file in the JSON ormat (see [Crock ord
]), containing the parameters or the calculations, is loaded. All parameters speci-

fied in SI units are converted to atomic units, as per appendix A. en the calculations
commence. ey consist of propagating electrons of di erent positions and velocities
according to eq. ( . ). For all electrons our quantities are stored: time of ionization,
final speed (length ofmomentum vector), final position and final velocity. e individ-
ual trajectories of the electrons are in general discarded; a single trajectory could easily
occupy  kB (two Cartesian vectors, one or position and one or velocity, consisting
of three components plus one padding,To make use of

optimized SIMD methods,
data etches has to be in

sizes that are powers of two,
i.e. n. ere ore, the three
Cartesian components are

padded with one,
meaningless, extra

component.

every component requires  B of storage and
a trajectory may require up to a thousand steps), which means that  GB of storage
would be needed to store the trajectories of a million electrons.

Also worth noting is that single-precision floating-point values (named floats in
C/C++) are used (hence  B per component) instead of double-precision floating-point
values (doubles), because the GPU only has hardware support or floats. e exe-
cution times or calculations with doubles are drastically increased (by more than one
order, [Göddeke et al. ]).

C.1 Building blocks
C.1.1 Sampling

e basis or success ul sampling of probability density unctions is a reliable random
number generator as mentioned in section . . Each executing thread is assigned its
own generator with a unique multiplier (see [Alerstam et al. ] or details on the
implementation).

Position e initial position is decided by three coordinates: the radius r and the two
angles θ ∈ [ , π) and φ ∈ [ , π). e two angles are sampled isotropically, while the
radius is sampled rom the radial unction of the s state, such that∫

∞
dr′ r′ |R , (r′)| =

. e inverse trans ormationmethod is used, i.e. a stochastic variableU is sampled uni-
ormly on the interval, and then equation ( . ) is solved or rwithNewton–Raphson’s
method:
inline void NewtonFind(float (*f)(float, float&),

float& x, float y,
float& maxError ,
float maxI=30){

float error=INFINITY , derivative=0.0f;
int i=0;
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while(abs(error)>maxError && i<maxI){
error=f(x,derivative)-y; //Calculate distance

//between current point (f(x)) and wanted
//value (y). The value of f'(x) is
//retrieved , since derivative is passed
//as a reference , not by value.

x=x-error/derivative; //Refine guess
i++;

}
maxError = error;

}

float sRadialFunction(float r, float& derivative){
int Z = deviceStreakingParams.Z;
float exp2Zr = exp(-2*Z*r);
float r2 = r*r;
derivative = 4*Z*Z*Z*r2*exp2Zr;
return 1-(2*Z*(Z*r2+r)+1)*exp2Zr;

}

float sampleRadius(SimData& data , int tid){
float r=1.0f; //Initial guess (=a_0)
//Maximum absolute error accepted
float error = 1e-10f;

NewtonFind(&sRadialFunction , //Pointer to function
r,
rand_MWC_co(data.rng, tid), //Sampled U
error);

return r;
}

Newton–Raphson’s method is an iterative method or finding a root of an equation.
One first has to make an initial guess of the root, and a new root is then taken as

x( ) = x( ) − f (x( ))
f ′(x( )) .

is procedure is repeated until the error is sufficiently small.
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............ π/.
θ

. π.
i

....... F− (U )

Figure C.1: An ill tration of the binary search algorithm. e initial gu s placed
in the middle of the domain. e algorithm then t ts if the sought alue in the le or
right subdomain. e next gu s then chosen the middle of that subdomain and the
procedure repeated.

Velocity Newtons–Raphson’s method has quadratic convergence, as long as the
derivative f ′(x) ≠ , it is Lipschitz continuous around the root and the initial guess
is sufficiently close to the root (see [Bonnans et al. ]). It can not, there ore, be used
when sampling the p distribution

Y (θ, φ) =
 π cos θ,

as the derivative of its CDF

F(θ) = 
π
dφ

θ
dθ′ |Y (θ′, φ)| sin θ′

= π π −
cos θ′


θ

= ( − cos θ)

has a root in the interval ( , π). is is instead sampled using a simple binary search
algorithm, where the root is ound by first guessing that θ = π/ and then stepping in
the direction thatminimizes the error |F(θ)−U |, while simultaneously halving the step
length, until the error is small enough. See figure C. or an illustration.
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inline void SearchFind(float (*f)(float, float&),
float& x, float y,
float& maxError ,
float maxI=40){

float derivative=0.0f;
float step=0.5*x;
x=step;
float error=f(x,derivative)-y;
int i=0;
while(abs(error)>maxError && i<maxI){

step *= 0.5;
x -= step*(error >0?1:-1);
error = f(x,derivative)-y;
i++;

}
maxError = error;

}

float SphericalHarmonic1_0(float theta ,
float& derivative){

float cosTheta = cos(theta);
//Cannot use Newton -Raphson anyway
derivative = 0.0f;
return 0.5f*(1-cosTheta*cosTheta*cosTheta);

}

float sampleTheta(SimData& data , int tid){
float theta=PI;
float error = 1e-10f;
theta=PI;
SearchFind(&SphericalHarmonic1_0 ,

theta , rand_MWC_co(data.rng, tid),
error);

return theta;
}
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SamplingY as above yields the initial direction of the velocity, but an initial speed,
i.e. length of the velocity vector, is needed as well. is is sampled rom the spectral
distribution (which is Gaußian) of the XUV pulse, using the Box–Müller trans orm:

If U and U are independent, stochastic variables uni ormly distributed on ( , ],
then

Z = σ− lnU cos( πU ) + 𝔼 Z = σ− lnU sin( πU ) + 𝔼

are independent, stochastic variables normally distributed around 𝔼 with a standard
deviation of σ.

Only one value is needed to sample the energy:
float sampleE(SimData& data , int tid){

//Box-Müller normal distribution
float E=sqrt(-2*log(rand_MWC_oc(data.rng, tid)))*

cos(2*PI*rand_MWC_co(data.rng, tid));

E *= deviceStreakingParams.XUV.stdDevE;
E += deviceStreakingParams.XUV.centerE;

return E;
}

C.1.2 Propagation

e propagation is done by a RK ODE solver, in an implementation adapted and
generalized rom [Palmer ]. e codemakes heavy use of optimization techniques
such as thosementioned in section and templatingA programming language

construct used to offload
the processor by deciding

parts of the execution path
at compile time.

to run as efficiently as possible on
a GPU.

C.1.3 Detection

e detection process works like this: amask vector of booleans,An integral value type,
that can only take two

values: , corresponding to
false and ,

corresponding to true.

as long as the number
of electrons used in the calculations, is allocated. A kernel that is executed or each and
every electron, stores in the detection vector a true if the electron has a momentum
vector inside a cone ( D) or if the electron is spatially located inside a slice of thicknessΔy
( D), false otherwise. e number of elements with the value true is then counted,
and new, shorter, vectors are allocated, to store the ionization times, finalmomenta and
final positions of the detected electrons.
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C.1.4 Least Squares fitting

e idea of Le t Squar fitting is to minimize the squared residuals between some
measurement data and a model by finding the optimum parameters or that model.

is can also be viewed as minimizing the distance between the measurement vector
and its projection on the subspace spanned by the parameters. e solution to such
a system is 𝛃 = (X⊤X)− X⊤y, where (X⊤X)− is called the pseudo-inverse of X, the
measurement positions and y is the measurement values at those positions. However,
if themodel is non-linear, i.e. not on the orm y = X𝛃, a non-linear least squares fit has
to made where the model is linearized around some 𝛃 and a step Δ𝛃 is taken until the
gradient

∇S = ∇
N


i
 yi − y (xi,𝛃) = ∇

N


i

Δyi

is zero. e step is ound by Δ𝛃 = (J⊤J)− J⊤Δy, where J = Jij is the Jacobian of the
model y.

In the case of the streaking spectrograms, the parameter vector 𝛃 = {tCTMC α} (the
time shi and the amplitude modulation), and the model is equation ( . ). At each
step, the Jacobian is calculated:

J(k+ ) =
⎛
⎜
⎜
⎝

∂p t, t(k)CTMC, α(k)
∂t(k)CTMC

∂p t, t(k)CTMC, α(k)
∂α(k)

⎞
⎟
⎟
⎠
,

where t is a vector containing the ionization times. e elements of J(k+ ) are calculated
on the GPU, and then J(k+ )⊤J(k+ ) and J⊤Δp are calculated using parallel reduction as
described in section . Lastly, the parameter step is calculated by solving

J(k+ )⊤J(k+ )Δ𝛃(k+ ) = J(k+ )⊤Δp(k)

using LU decomposition.
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.

E

H of errorsmade in the calculations. ey are all related
to how the initial positions and momenta of the electrons are sampled.

• Radial unctions or heavier elements than hydrogen still sampled with Z =
as the program was first implemented or hydrogen. When testing with He+
this was orgotten, and as the results seemed plausible (compare with figure . ),
it was not discovered until airly late in the project. When testing with correct
wave unction, the calculation times increased immensely, and as the error did
not seem to have large impact, it was decided to leave it as is.

0 1 2 3 4 5
r/a0

Z = 1
Z = 2

Figure E.1: e radial wa efunctions for hydrogen-like systems with a nucle of Z=
and . As natural, the electrons are boundmore tightly to a larger nucle ; th also ca
trouble for the calculations, since the electron trajectori more o en start in a stiff region
⟹ longer calculation tim .

• Initial velocity is sampled isotropically (as in [Nagele et al. ]), instead of ac-
cording to a p distribution. However, this is only done in the one-dimensional
case. Sampling according to a p distribution seems to yield larger variance in
tCTMC.

• Initial energy sampled rom a pulse of too small spectral width, which cannot
really be said to be as short as needed or the approximation that ionization is
instantaneous upon the arrival of the XUV photon. Sampling rom the correct
pulse spectrum yielded too large variance in tCTMC.

It is likely that by sampling rom Kepler orbits as is traditionally done in CTMC calcu-
lations, these errors could have been avoided.
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Figures

.

F

F.1 VMIS
F.1.1 Electron scattering
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Figure F.1: VMIS imag of the electron momentum d tribution when ionizing in a
strong IR field (γ̃ < ) for different ionization tim t .
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Figure F.2: Continuation of the seri from the pre io figure.
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F.1.2 Polarization dependence

α = 0∘α = 0∘

.....− .− .....

−
.

−
.− .

px [a.u.] .
p z
[a
.u
.]

α = 10∘α = 10∘

α = 20∘α = 20∘ α = 30∘α = 30∘

α = 40∘α = 40∘ α = 50∘α = 50∘

α = 60∘α = 60∘ α = 70∘α = 70∘

α = 80∘α = 80∘ α = 90∘α = 90∘

Figure F.3: VMIS imag of the electron momentum d tribution for different IR field
polarizations.
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Rederivation of time shift approximation

.

R

I , of the analytical approximation of the mea-
surement induced time delay, as derived by [Ivanov and Smirnova ], is done,

but or a Coulomb potential of V(r) = Z/r. e derivation is very brief, with little
more explanation than necessary, since it is only provided or completeness. e equa-
tion numbering ollows that of the original article.

e traditional streak camera ormula

vf (ti) ≈ v −A(ti) (R. )

is only an approximation. A more accurate expression is

vf (ti) = v −A(ti) + Δv(ti),

with the additional velocity shi

Δv (ti) = 
∞

ti
dt {FC[rIR(t)] − FC[rFF(t)]}. (R. )

In the eikonal-Volkov approximation, a single characteristic trajectory is obtained:

rIR(t) ≈ r + v (t − ti)⎫⎪⎪⎪⎬⎪⎪⎪⎭

≡rFF(t)

+ 
t

ti
dt′ [A(t′) −A(ti)]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

≡Δr(t,ti)

. (R. )

r is denoted r = /a . a is ound by matching the ree particle wave unction of the
eikonal approximation with the exact outgoing Coulomb wave:

ψv ∝ exp i r + i


r

r
dr′ Zr′  = exp i r + i Z ln 

r
r  (R. )

≡ exp i r + i Z ln( r) − i δ ,

δ = arg [Γ(ℓ + − iZ/ )]

⟺ i Z ln 
r
r  = i Z ln( r) − i δ

⟺ r
r = r exp(− δ/Z)

⟺ a( ) = exp(− δ/Z). (R. )
( e exact outgoing Coulomb wave was ound by backpropagating the plane wave-
ront at the detector (positioned at +∞). e phase di erence near the atom between
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this wave and a plane wave without the scattering potential present was ound to be
− δ. is may not be seen as a rigorous derivation, but nonetheless this definition of
r proved to yield good results.)

With an electric field of EIR = E cos(ωIRt) and accompanying magnetic vector
potential ofAIR(t) = −(E /ωIR) sin(ωIRt), the trajectory in (R. ) becomes

rIR(t) ≈ r + (t − ti) +
E
ωIR

[sin(ωIRti)ωIR(t − ti) + cos(ωIRt) − cos(ωIRti)] . (R. )

With a weak IR field (Δr(t, ti) ≪ rFF(t) ⟹ F ≡ E /ωIR ≪ ), (R. ) becomes

Δ (ti) = 
∞

ti
dt ZΔr(t, ti)
[r + (t − ti)]

Δr(t, ti) =
E
ωIR

[sin(ωIRti)ωIR(t − ti) + cos(ωIRt) − cos(ωIRti)]

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(R. )

⟹ Δ (ti) = −Z
E
cos(ωIRti) fc 

r ωIR  − sin(ωIRti) fs 
r ωIR  (R. )

with

fc(x) = c (x) cos(x) + s (x) sin(x), fs(x) = s (x) cos(x) − c (x) sin(x)

c (x) = 
∞

x
dx′ cos x

′

x′ , s (x) = 
∞

x
dx′ sin x

′

x′ .

⎫⎪⎪
⎬⎪⎪⎭

(R. )

x = r ωIR ≪ ⟹

fc 
r ωIR  ≈ ln ωIRr 

− γEuler +
π r ωIR

fs 
r ωIR  ≈

π − r ωIR ln ωIRr 
− γEuler

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(R. )

Substituting (R. ) into the expression or the final energy of the electron yields

f = −A(ti)  +
ZωIR fs − E(ti)

Z fc, (R. )

which can be rewritten as

f = − αA ti + Δt(LR)
IR  (R. )

☙ ❧
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with

Δt(LR)
IR = − Z fc

+ ωIR
Z fs

≈ − Z
ln 

a
ωIR

 − γEuler +
π ωIR

a 
+ ωIR

Z

π − ωIR

a ln 
a
ωIR

 − γEuler

= − ln 
a
ωIR

 − γEuler +
π ωIR

a 
Z

+ ωIRZ 
π − ωIR

a ln 
a
ωIR

 − γEuler⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

≈
π, ωIR

a ≪

≈ − ln 
a
ωIR

 − γEuler +
π ωIR

a 
Z

+ ωIRZπ/
. (R. )

☙ ❧
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