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Studying Electron Dynamics using Attosecond Streaking

Abstract

In this thesis, a program was implemented to study the electron dynamics of photoion-
ization. These dynamics are probed by a streaking infrared field, that modulates the
electrons’ trajectories. Analytical quantum mechanical calculations for such systems
are impossible without approximations for atoms more complex than hydrogen. How-
ever, using classical mechanics and Monte Carlo methods to capture the statistical be-
haviour of quantum mechanics, it was possible to extract the temporal dynamics of hy-
drogen and once ionized helium, and get good agreement with recent articles published
by [Nagele et al. 2011] (Journal of Physics B: Atomic, Molecular and Optical Physics, 44),
(Klinder et al. R011] ( Physical Review Letters, 106.14) and [Ivanov and Smirnova 2011]
(Physical Review Letters, 107.21).

The program was implemented on a Graphics Processing Unit, the computational
unit of a graphics card, which allows for massive parallelization of computations using
inexpensive computer hardware available to normal consumers.
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Popularvetenskaplig sammanfattning

Om man fotojoniserar en atom, dvs. sliter loss en elektron genom att belysa atomen,
kommer elektronen att skjuta ivig fran atomen med en hastighet som beror pi ljusets
energi (se figur nedan). Dock kommer atomkirnan att forska fa elektronen att dtervin-
da, jfr gravitationen. Om dessutom ett elektriske filt, saisom infraréee laserljus verkar pa
elektronen under jonisationen och efterat, kommer elektronen rorelse ytterligare for-
indras.

Elektronerna detekteras sedan
och genom att mita deras energi
kan man berikna vilken styrka det

infraréda laserljuset hade vid joni- 7t \
sationstillfillet (denna teknik kal- ¢
las streaking). Det visar sig dock e &ng%

att detta virde inte helt stim-

mer dverens med den styrka filtet

faktiskt hade vid jonisationstillfal-

let. Snarare passar virdet med fil-

tets styrka vid en tidpunke strax (a) (b)

innan. Denna tidsskillnad beror

pa tva saker: 1) genom att atom- 1 (a) joniseras en atom av en inkommande ljuspuls
kirnan drar i elektronen férdréjs och elektronen skjuter ivdg. I (b) paverkas den lo-
jonisationen och 2) genom att 54 elektronen av rvd krafter. Den forsta kommer
det infraréda filtet ir nirvaran- frdn atomkdrnan som forsoker drar i elektronen
de under jonisationen péverkas med kraften ¥ ;+. Ett elektriskt filt som accelererar
elektronens rorelse i forhillande  elektronen ger upphov till den andra kraften, F pp.
till atomkirnan pi ett komplext

sitt. Dessa tidsaspekter pa fotojonisationen dr mycket intressanta att studera for grund-
liggande forskning i atomfysik.

Om det infrar6da laserfiltet 4r mycket starke, kan det tvinga tillbaka elektronen till
atomkirnan, forutsatt ate det 4r riktat at rice hall under tillricklige lang tid. Nir elektro-
nen nirmar sig kirnan, kan den forra spridas mot den senare, ”studsa”, och rora sig bort
med en hogre hastighet 4n den med vilken den nirmade sig. Nagot liknande intriffar
nir en komet nirmar solen och slungas ivig nir den passerat.

I mitt projekt har jag tittat ndrmare pa dessa fenomen med hjilp av klassiska (i mot-
sats till kvantmekaniska, som annars 4r vanligast i atomfysiken), statistiska berikningar
av ett slag som kallas Monte Carlo-metoder (namnet kommer fran statistiska studier av
tirningskastande som ju inte 4r en obekant féreteelse pa kasinot i denna stad). Dessa
har utférts pa ett grafikkort i en vanlig dator. Sadana grafikkort ir speciellt limpade for
sadana hir statistiska berdkningar, dir mianga oberoende forsok maste géras for att ett
tillforlitligt resultat skall uppnas.

@ v 2
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Abbreviations and notation used

API Application programming interface

as Attosecond

CDF Cumulative distribution function

CPU Central processing unit

CTMC C(lassical trajectory Monte Carlo

FWHM Full width at half maximum

GPGPU General-purpose computing on graphics processing units
GPU Graphics processing unit

IR Infrared

ODE Ordinary differential equation

PDF Probability distribution function

QM Quantum mechanics

RK45 Runge-Kutta ODE solver of 5™ order with embedded 4™ order error estimator
SI Systeme international d’unités

SIMD Single-instruction multiple data

TDSE Time dependent Schrédinger equation

VMIS Velocity map imaging spectroscopy

XUV Extreme ultraviolet

(a|lb) Scalar product of vectors aand b

e, Unit vector in the direction of z

Ip The binding energy of the potential

7 isa time found by analytical QM derivation

tg is a time found by numerical QM calculations

terme is a time found by (numerical) CTMC calculations
0 'The frequency of the ionizing XUV pulse

wir The frequency of the streaking IR field




Introduction

HE PRIMARY INTEREST of this thesis is to study the behaviour of photoionized
T electrons and how that behaviour is affected by changes in the surroundings. An
electron bound to an atom is governed by quantum mechanics and must be treated us-
ing methods from this theory. For simple systems like hydrogen, exact solutions of the
wavefunction can be found. Likewise, it is simple to find solutions for free particles
in an external field. However, when both an atomic potential and an external field is
present, quantum mechanics yield no easily found analytic solution. It is possible to
acquire solutions numerically, but it can be difficult to separate which factors are re-
sponsible for the observable effects, since the calculations are performed with one bulk
Hamiltonian. In classical mechanics it is easy to turn on and off different constituents,
and draw conclusions on their influence. On the other hand, classical mechanics are de-
terministic, whereas quantum mechanics are probabilistic. It is possible to make up for
this difference (to some extent and for certain problems), by using statistical methods
called Monte Carlo methods. In this special application, a variant known as the Classical
Trajectory Monte Carlo method is used.

The foundation for all different Monte 2.4 *
Carlo techniques is the independent mea- 22 M
surement that is repeated sufficiently many
times, until a conclusion can be reached.
This is known as the law of large numbers. ) ) o ) 5
Since the measurements are independent, 0 [£5)
they are very well suited for parallel com-

plau]

2

1.8

Figure 1.1: A nypical streaking spectro-
gram with the imprint of the infrared field

clearly visible.

puting, which is the second major interest
of this thesis. Especially, how these calcula-
tions are efficiently implemented on graph-
ics processing units, the computational cores of graphics cards in computers.

With a working program it is then possible to

3 . .
study the dynamics of the electrons; the main cal-

2 f \ culations revolve around how the momenta of the
|
|
|

electrons change when subjected to an oscillating
0 infrared (IR) laser field. When the electrons hit a
detector and their kinetic energies are measured,
an imprint of the IR field is visible in the spec-

pelau]

trogram, as well as an imprint left by the nuclei
the electrons were bound to. The former imprint
is clearly visible (see figure [L.1), whereas the latter
is so small, it has to be extracted using numerical
methods.

When the electrons travel close to the nucleus,
the imprint left is more emphasized; the electrons

Px[au]

Figure 1.2: A rypical momentum
distribution of the electron after scat-
tering.
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scatter and leave with higher velocity than what they had when they were incident on
the nucleus. An example of this is shown in figure [[.2.

Much effort has been put into creating a program that can calculate these dynamics
reliably and yet quickly enough to be useful. Nonetheless, for some of the scattering
calculations mentioned above, they could easily last more than 48 hours for a single
ionization time.

In section P}, an overview of the computational part of project is given, while section
deals with the physical aspects. Lastly, the conclusions are found in section .



GPGPU calculations and their suitability to MC methods

PGPU — General-purpose computing on graphics processing units — is an evolving

area in computational science where the processing power of graphics cards, orig-
inally targeted at running the increasingly realistic and demanding computer games, is
leveraged for general-purpose calculations. The power of the graphics cards lies not in
the speed of every single microprocessor on the card, but the huge amount of proces-
sors working at the same time. Below follows a brief description of how programming
and execution of code on the GPU works. In this project, a GPU manufactured by
NvIDI1A was used, along with the application programming interface (API) provided by
the company, CUDA. For a more in-depth description of how the GPUs work and in
the special case of Nvipia GPUs, see e.g. [NVIDIA R011].

Each processor executes a thread, which is a processing unit that executes indepen-
dently of the other threads of the program (but they all share the same context — access
to the same memory blocks and so on). On the GPU a certain number of threads is
executed together, in what is called a warp. A larger group of threads is called a block.
All threads in a block is executed simultaneously (but each warp within the block is
independent from the others), and they all have access to fast, on-die shared memory
(typically ~10 kB in size). Lastly the blocks are organized in a grid, from which a sched-
uler* chooses the next block to execute. All threads have, at any time, access to a slower
global memory, of considerably larger size (~1 GB).

If, for instance, one would like to calculate the Euler norm of a vector of length N

on a single processor, an implementation could be as follows.?

float vec[N] = { Y; //A vector of N elements
float sum = O;
for (int i=0; i<N; i++)

sum += vecl[il]l*xvec[i];
float norm = sqrt(sum);

If one, instead would like to implement the calculation in a parallel manner, one would
construct a kernel, i.e. a small function, that calculates the square of a given number
and places the result in a designated destination:

void square(float* elements, float* squares){
int tId = getTid(); //Calculate the thread indez
squares [tId] = elements[tId]*elements[tId];

1A scheduler is an
algorithm, that given a
batch of threads, chooses
when to execute them and,
in the case of a GPU, on
which processor

2Throughout the text, the
code presented will be in
C/C++. Some parts are
taken directly from the
program implemented in
this project.



3Pztralllel reduction is an

algorithm that is performed
recursively in a tree-like
manner, starting from the
lowest level. For instance,
to calculate a sum of a
vector, the first step is to
construct a vector of half
the original size, with every
element containing the sum
of two elements in the
original vector. If N = 2"
where z € Z*, the
operation is done in 7 steps.
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This kernel is executed by the GPU for each and every element in the vector elements,
and every instance of the kernel runs on a separate processor. The thread index is the
same as the processor number, z.e. which processor the kernel is executed on. In this
way, the square of 7 (where m is the number of processors) elements is calculated, and
the results are placed at the corresponding positions in the vector squares.

The sum is then calculated using a parallel reduction® algorithm and the square root
is calculated on the CPU, since it is only performed once.

There are some aspects one must consider, in order to use GPUs for calculations. These
are discussed on the following pages.

2.1 Orthogonality of the problem

The degree to which the problem can be broken down into smaller units that can be
computed independently of each other, determines how successful the parallelization
of the computations can be. If the units are not fully independent, that is, they have to
communicate with each other to some degree, computational speed will be sacrificed,
yielding longer calculation times.

2.2 Divergence yields sequentialization

There is an inherent limit in the parallelization available in a GPU. Separate threads are
indeed run separately, but the hardware can be made more efficient if some assumptions
are made. If a group of threads run identically the same code (instructions), but with
different data some optimizations can be made (for instance using Single-Instruction,
Multiple Data (SIMD) constructs). This is indeed the case for real-time graphics appli-
cations, but is not necessarily so for general-purpose calculations. What happens, is that
when branching (also called divergence) occurs, e.g. an #f clause, the different branches
are executed in sequence, not in parallel. The threads that do not follow a certain branch
are idle while that branch is executing, as in figure 2.1

In many cases this can be solved by making the assumption that the calculations
in all the branches together take less time than the sequentialization process does. For
instance, calculating the parametric potential

! TR
- i(ﬂ—az)—w, Il <4’

28

could be done in the conventional fashion:

« 4 o



Studying Electron Dynamics using Attosecond Streaking

TRUE PARALLELIZATION SEQUENTIALIZATION
CODE THREAD 1 2 1 2

Branching point,

eg an if clause

Branch A
Branch B

Idle

— -

Time

Figure 2.1: An example of branching code is shown in this figure. After some time of
execution, the path is divided into two, and in this example, the threads 1and 2 take the A
and B branches, respectively. If each and every thread were truly independent of the others,

in terms of hardware implementation, these two branches wonld be executed in parallel.

However, on a GPU all threads in a warp must execute exactly the same instruction, albeit
with different data values. Therefore, branching constructs are split up as shown on the
right, and one thread executes its branch while the other thread is idle.

if (r>=delta)
V=1.0f/abs(r);

else
V=1/(2*delta3)*(r2-delta2)-1/delta;

or in a more GPU friendly way:

bool outside=(r>=delta);
V=(1.0f/abs(r))*outside +
(1/(2*delta3d)*(r2-delta2)-1/delta)*(!outside);



4In fact, the
implementation used is that
of CUDAMCML, the
program described in the
reference.
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2.3 Random number generation

Generation of pseudo-random numbers is an art in itself, and is of utmost concern in
Monte Carlo calculations. If the random numbers are used as stochastic variables on
which the computations depend to capture a statistical behaviour, it is crucial that they
do notrepeat, since getting the same series of numbers more than once could potentially
mean performing exactly the same computations more than once. This is even more
complicated in parallel programs, where a repeated series of random numbers would
make the parallelization pointless. To avoid this problem, this project takes the same
approach as [Alerstam et al. 2009],* 7.. every thread is assigned its own unique random
number ring, based on a multiplier and a starting seed. The ring will repeat itself, but
only after a very long time (the period is > 2°° numbers). This method is called multiply-
with-carry and it was described by [ Marsaglia and Zaman [991].

There are a lot of things that have not been mentioned in this short overview, which has
to be done to successfully utilize the computational power of a GPU.

In appendix [J, an overview of how the calculations were implemented in code is
given.



Streaking

HE GOAL OF the attosecond (1 as = 10~ s) streak camera technique (first described

by [Itatani et al. 2002]) was initially to measure and characterize attosecond pulses,
in a manner analogue to that of classical streaking ([O’Brien 193d]). The idea is to probe
the system dynamics with a streaking field that modulates the measurable quantities in a
predictable manner. It is then possible to extract information of other processes affect-
ing the measurements by comparing with the theoretically predicted result. However,
it was quickly realized that the system used to measure (usually an ionization) was be-
ing measured at the same time. The attosecond streaking technique is thus able to take
“pictures” of systems that evolve very rapidly.

In figures B.J and B.2, the system studied is described. A single atom is ionized by
a XUV pulse at a certain time ¢,. After having escaped the potential, according to Ein-
stein’s formula for the photoelectric effect ([ Einstein [903]]), the electron has attained a
final kinetic energy of W), = AQ — Ip, where Qis the frequency of the XUV pulse and
Ip the binding energy. However, if simultaneous to the ionization a wiggling IR field
is applied, the electron will be accelerated by the Lorentz force, in a predictable manner.
This IR field is used as the streaking field, since its effects on the electron are known.

ez
ex
ey /
XUV " P,

() (b) (c)

Figure 3.1: (1) The electron is initially bound to the atom and is distributed according to
its wavefunction. A XUV photon photoionizes the atom, and the electron is ejected. (b) The
electron is now a free particle in the combined electric field of the IR pulse and the Coulomb
potential. The initial position x, is a stochastic variable with the same distribution as the
bound electron bad, and its initial momentum isp & = V22— Ip + V(x,)) , where Qis
the frequency of the XUV pulse. (c) Detection. If the electron bas a final momentum inside
a cone of ., it s detected. Electrons with bigher energy arrive sooner at the detector.
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By, in a controlled fashion, ionizing at different times
with regard to the IR field, and measuring the final
velocity, a set of data is acquired (see figure B.3). On
this data one can then do computations to extract in-
teresting information. En

IR

t)
Z)
Z)

‘ ‘ fxuv

27 7wty 0 7w 27

WIRt

Figure 3.2: In this figure the
o : two pulses are shown: the IR
18 ] pulse and the XUV pulse. In

> o 0 1 2 the calculations, ionization hap-

1 [fs] pens at time ty, when the XUV

Figure 3.3: Measured momenta for 10 electrons ~ pulse bits the atom. The electron
with different ionization times t,. is then ejected into the combined

feld of the nucleus and the IR

Until recently, the escape process could be re- P ,Mke' Apy(t) is the fvecmf"p ote'n-
garded as instantaneous. However, [Wigner [955]] tialof: tb,ij_p z/z['fmndﬂma with
showed that there actually is an intrinsic time delay * negative sign in eq. (3.4).
on the order of attoseconds. Using the streak camera technique mentioned above, it is
possible to measure this Wigner delay, Ty, provided that one can account for the effects
of the measurement process.

In this project, one of the goals has been to evaluate to which extenta computational
method using classical physics (known as the Classical trajectory Monte Carlo (CTMC)
method) can be used to extract these time delays.

3.1 Equations of motion

To perform the streaking calculations, the effect of the streaking IR field must be
known. The aim is to extract the time delays involved as a time shift. An electron that
is ejected from an atom ionized in an external field, is subjected to the Lorentz force,
originating from both atomic potential and the external field:

F=g(E+vxB), (3.1)

where E is the combined electric field of the atom and the external field and B is the
corresponding magnetic field. 4 = —e is the charge of the electron and v is its instanta-
neous velocity. According to Newton’s second law, the force on a body is related to the
acceleration it experiences via F = ma. This gives the equations of motion

azi(E+va). (3.2)

(4

%
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This is a second-order differential equation which can be transformed into two coupled
first-order differential equations:

<.
Il

i A\
" (E+vXxB) (33)

X =v.

This system is readily solved numerically using stepwise integration, but some simplifi-
cations can be made; using aromic units (see appendix [A]), many important quantities
are set to unity, thereby simplifying equations and making it easier to avoid numerical
round-off errors.” Furthermore, the influence of the magnetic field B can be neglected:

%
BO = EO/CO : V = - (Eer + —C,U X EOCB) =~ —EOCE = _E, v << Co.
o

Only the external field is contributing, as on these time scales, the nucleus is stationary.
Thus equation (B.3) reduces to

(3.4)

If only the external field had been present, the solution of eq. (.4) would be simple:

Vf: Vo — f thext =V + [Aext]:: =V~ Aext ([0)’ (35)
fo
asE,, = —% and A_(0) = 0 (A(?) is the vector potential of the electric field

E..(2). In figure B.4, it is clearly illustrated how the final velocity of the electron only
depends on the initial velocity and the vector potential at the instant of ionization, as
eq. (B.3) predicts. With a Coulomb field present, the solution is approximately ([Nagele
et al. 2011])

VR vy = aB (f + 1) (3.6)

The factor a is close to unity and g is a time shift related to the Wigner delay, as well as
measurement induced delays. This equation is an approximate solution, which holds as
long as the Coulomb field can be seen as a perturbation, i.e. the electrons are never really

close to the core, which is true as long as the IR field is “weak” (y = 1/Wk/2Up > 1,
where 177}, is the kinetic energy of the electron and U, = E; [4wrg is the quiver energy
induced by the Ponderomotive force of the IR field. See [Mauritsson et al. 2008]).
Another approximation is that the electrons are ejected instantaneously into the con-
tinuum at time £, when the XUV pulse arrives (thus implying that the XUV pulse is a

5 Hereafter, all quantities
will be in atomic units,
unless explicitly stated
otherwise.
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L o,
=
= =
‘IQ vy —A0) T
£
< 3
& E
q =
2 g
Q
2.0 0 Ev
&

Figure 3.4: In this figure equation @ig illustrated. When an electron is ejected in an
IR field and the Coulomb potential is neglected, it will transfer momentum according to

F=g¢gEp = v()=g¢ ft : dt’ Epp(?). When the pulse has ended, no forces are acting

on the electron; it bas thus reached its final velocity. Shown in blue is the electric field of the
IR pulse, in green its associated vector potential, but with a negative sign, and in red the
attained velocity of the electron for some different ionization times. One thing that is easily
seen in this figure, is the fact that electrons released at time —t, and t, attain the same final
velocity vpas the vector potential in this case is symmetric.

Dirac 3 function; the finite temporal length of the pulse is accounted for via the spec-
trum of energies it contains and can transfer to the electrons).

Even though there are a lot of approximations leading to eq. (B.@), there is a huge
benefit in having a solution on this form; the measurements of these very small times
are reduced to a simple numerical fit of data. The key is the precise timing between the
XUV and the IR pulse, £, that has to be done. This is still difficult to do in a laser lab,
but it is possible to ionize from two different shells and extract a differential shift (see

e.g. [Schultze et al. 2010]).

« 10 2
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3.2 1D streaking
To find out what the influence of the Coulomb field is, equation (B.4) has to be solved

exactly. Since quantum mechanics is probabilistic, Monte Carlo methods turn out to
work rather well for this purpose; the initial values for position and momentum are
randomized from the wavefunction’s distribution, and subsequently, the problem is
treated fully classically. Itisimportant that the initial conditions are sampled randomly
enough,6 so as to notintroduce patternsin the data, which may lead to false conclusions.
The manner in which this is done is described above in section 2.3

3.2.1 Procedure

The general procedure that is followed during one calculation is as follows:

1. Sample initial parameters such as ionization times #y, initial positions x, and ini-
tial velocities v, of the electrons.

2. Propagate the electrons using eq. (B.4)) until they have attained their final mo-
menta, i.e. there are no more forces acting on them <= the IR pulse has ended
and the electrons are far away from the nucleus.

3. Select those electrons that are considered as detected according to some criterion
(see below) and store their final momenta.

4. Do a Least Squares fit of the spectrogram” to eq. (B-g) to extract the #cryc that
corresponds to f.

5. Save the data.

This procedure is typically repeated for alot of different ionization times #, (on the order
10).

Sampling According to the Copenhagen interpretation of quantum mechanics, the
absolute square of the wavefunction is to be interpreted as the probability to find the
corresponding particle p at a certain point 1, in space:

P(r, e 7)= fV & v )L

In this work, it was chosen to use the absolute square of the wavefunctions as the prob-
ability distribution functions (PDFs) from which the initial values are drawn for the cal-
culations. A different approach taken by many, is to initially place the electron in ran-
domly chosen Kepler orbits around the nucleus (see e.g. [ Abrines and Percival 1964]).
Not doing it this way may and may not have had implications for the variance of the
results; see appendix [{ for a discussion on this.

« 11 e

6On a computer, random
numbers are only
pseudo-random. It is
important that the method
used to generate them, does
not yield repetitions, .e. a
sequence of numbers
appearing more than once.

7A typical result is seen in

figure B3
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The wavefunction for an s state in a hydrogen-like system in the ground state is

¥(r) = Rio(NYo(% ¢) = 2Z°7 exp (~Z7) 4 /i .

The angular part, Y| 00 , is isotropic in this state, and the angles can therefore be sampled
uniformly. The radial part is sampled using the inverse transformation method ([De-
vroye 1984]):

If a stochastic variable X has a certain PDF f(x) and a cumulative distribution func-

tion (CDF) F(x) = f "y f(&'), then Y = F(X) is uniformly distributed on the inter-
val [0, 1]. Conversely:?f the stochastic variable Yis uniformly distributed on the interval
[0, 1], then X = F~(Y) has the PDF f(x).

In the case of the radial function R, , the inverse transformation method amounts
to finding the » for which U = fo Y Ry (7 )|2, with U picked uniformly from the
interval [0, 1].

U= f & 72IR, () = 42° f & 1 exp (<227) =
0 0
v =1—exp(=2Zr) (1 +2Z(Zr* + 7)) (3.7)

Equation (B.7) is a non-linear equation, which can be solved using Newton-Raphson’s
method ([Bonnans et al. 2003]), which also needs the derivative.
The initial velocity of the electron is decided from two factors:

1. The initial speed, given by Einstein’s formula for the photoelectric effect 177, =
Q- Ip, where Q1is the frequency of the XUV photon and 7 is the ionization po-
tential. To preserve momentum, the potential energy at the initial position, {(7),
has tobe added as well. Asthe XUV pulse is of Gauf3ian shape in the temporal do-
main, it has a Gaufiian shape in the frequency domain as well. The frequency Qis
therefore randomized from a Gauflian distribution via the Box-Muiiller
transform ([Box and Mdiller 1958]).

2. 'The initial direction is in the one-dimensional case randomized isotropically, as
in [Nagele et al. 2011]. In reality, when the electron is ionized from a s state, the
velocity distribution should be randomized according to a p distribution. This is
done in the two-dimensional case.

Finally, the time of ionization (¢, in eq. (B.G)) is randomized uniformly over an in-
terval around the extents of the IR pulse.
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Propagation After sampling the different distributions for all electrons, the electrons
are propagated according to eq. (B.4)) using an adaptive Runge—Kutta ODE solver of the
5% order with an embedded 4™ order error estimator (RK45, see [Palmer 2003]). This
solver adapts it step size if the estimated truncation error is larger than a set tolerance,
and can thus be used for differential equations that have singularities at points in space.
Nevertheless, itis nota stiff solver, which means that for trajectories close to the nucleus,
the step size will be so small that the required calculation time is very large.

Itisin this step of the procedure that the strengths and the weaknesses of paralleliza-
tion on a GPU are the most prevalent. All other steps are very deterministic.

Detection When the experiment is carried out in the lab, the electron energies are
measured using time-of-flight spectroscopy, in which the time from ionization until the
electrons hit the detector (usually a micro-channel plate, MCP) is registered. This time
is then translated into a kinetic energy. Only those electrons that are emitted inside one
of the two hemispheres are detected, and they are bent towards the detector using a
magnetic bottle.®

In the calculations, the electrons are considered to be detected simply if they have a
velocity vector inside a small cone some time after the IR pulse has ended. For instance,
if the detector is placed in the positive e, direction, and the detection cone angle is «,
the electron with velocity v is detected if

vz
e,) > |vlcosa &= ﬁ > cos .
v

(v

Instead of registering the kinetic energy, the length of the momentum = _|v] is stored.

Fitting Finally, to extract the time shift 7oy corresponding to #g in eq. (B.G), a non-
linear least squares fit (see e.g. [Seber and Wild 2003]) of the measured momenta to the
same equation is made.

Saving The data is saved to a binary file consisting of
o a header containing the calculation parameters

e the ionization times R

final momenta lengths R*

final positions R’

. 3
final velocities R

This file is easily loaded into any mathematical software for further processing and plot-
ting.

« 13 e
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3.2.2 Results

In figure B.5, a typical example of a streaking spectrogram can be seen. One can clearly
see that equation ([.4) is a good approximation, since the difference is virtually indis-
cernible. There is however a time shift between the solid white line that represents
equation (B.5)) and the calculated momentum distribution. This time shift is readily ex-
tractable using the method described above, and for this certain calculation it is approxi-
mately —6.6 as (numerical solution of the time dependent Schridinger equation (TDSE)
yields —6.9 as, [ Nagele et al. 2011]).

to [fs]

Figure 3.5: Streaking spectrogram for a bydrogen atom streaked by an IR field. This calcu-
lation was done using 2% (= 1.7- 10°) electrons. Shown also, as a solid white line, is equation
B3) The right dashed vertical line corresponds to ty=0 and the lefi dashed vertical line
to the time shift induced by the Coulomb potential. In this case a XUV pulse of 80 eV was
used with a duration of 200 as (see section |3.2.3 for a discussion on this subject).

3.2.3 On pulse duration

The temporal width of a Fourier limited pulse is usually defined as the width of the
intensity profile. The spectral width is related to the temporal width as (in SI units)

4hIln2

AEpyum = .
Atpywam

From this, it is seen that a spectral width of 9.1€V is required to generate a XUV pulse
of 200 as duration. However, this leads to a large distribution of the experimental data
points to which the fit is made, thus yielding a large statistical variance of the extracted
time shifts. It was therefore decided to use pulses of narrower spectral width in the cal-
culations to yield a more precise time shift, although the approximation that the ion-
ization by the XUV pulse is instantaneous does not hold any longer; a spectral width
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of only 1.65 €V (which was the width most often used) cannot generate pulses shorter
than 1.1fs, which is of the order of the streaking IR pulse.

3.2.4 Sweeping the XUV center frequency

By giving the XUV photon different energies, the time shift in eq. (B.g) changes, as more
energetic electrons escape the potential more easily. In the limit of infinite energy the
ionization process is truly instantaneous. By measuring the time shift in this fashion,
the Wigner delay can be extracted, if all other effects can be accounted for. A lot of
work (see e.g. [Kliinder et al. 2011] and [Dahlstrom 2011]) has been invested in this
fundamental quantity in atomic physics, since this delay is needed to verify a lot of the-
ory. Recently, an analytical approximation was derived by [Ivanov and Smirnova 2011]
which seems to fit very well with the numerical solution to the TDSE from [Nagele et
al. 2011] and [Kliinder et al. 2011]. However, it was derived only for hydrogen, so a
rederivation for hydrogen-like systems, with an attractive Coulomb potential Z/r was
made (see appendix R]). The approximation, as well as the numerical data are used as
rulers for the quality of the classical results of this work. In figure 3.4, the time shifts for
H and He" for different XUV energies can be seen, as well as some references.
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Figure 3.6: Temporal shift toryc for different XUV ionizing energies, as well as some reference data (all reference data in red colour,
data calculated by J. Feist taken from [Nagele et al. 2011}, data calculated by R. Taieb taken from [Kliinder et al. 2011]). Shown also as
dashed lines is the analytical approximation by [lvanov and Smirnova 2011].
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3.2.5 Smooth potentials and their implications

The RK45 ODE solver is an explicit solver that does not deal well with singularities.
Since it is adaptive, it will take shorter integration steps when the estimated truncation
error is too large. This means that the amount of steps needed for trajectories close to
the nucleus will be extremely large, which is equivalent with very long calculation times.
To alleviate this, the Coulomb potential can be smoothed from a true singularity into a

function thatis "~ continuous, Z.e. two times differentiable. A traditional way of doing

this, is by approximating the Coulomb potential by V() = (»* + e)_l/z , 0<ex 1.
However, using this potential seems to actually increase the calculation times, probably
because the problem becomes stiff over a larger volume of space. Instead the following
approximation was chosen:

v Il 20
(r) = Lphwﬁqm Ir| < 8’

28

V() e & (3.8)

This potential retains the Coulomb potential be-
haviour outside the spherical volume of radius 4. A
plot of the potential is seen in figure B.7. To verify
the meaningfulness of this potential, an estimation of ‘
its impact on calculation errors and calculation speed A

was made by making many XUV energy sweeps for -9 d
different values of 4. The calculation error for each r

was taken to be Figure 3.7: The blue curve is

\/ZN| NS the smooth potential @ and

[((IZ%MC — I (WIZZ))| the red curve is the original

Coulomb potential.

J

N

where the values for 7y were the same as the numerical references in figure p.4. The result
can be seen in figure B.§. It seems that the error is not very much affected by the choice
of 4, but there is an optimum region for J in terms of execution time.

3.3 2D streaking (VMIS)

Velocity Map Imaging Spectroscopy (VMIS) is two-dimensional technique for studying
the dynamics of atomic and molecular systems (see [Eppink and Parker [997]). The
mode of operation is as follows: the sample is irradiated with laser pulses, whereupon
it is ionized and the electrons are ejected. The electrons propagate as an expanding
spherical shell, which is accelerated by an electric field generated by two electrodes. The
spherical shell is projected onto a fluorescent screen, which is imaged for further analy-
sis. Via an inverse Abel transform (or using iterative techniques, see [ Dasch [992]] and
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Figure 3.8: Results from using a smooth potential with varying d. In the plot on the rop,
it is seen that the error as defined above only varies within the same order of magnitude.
However, the execution time varies dramatically.

[Vrakking 2001]), the spherical shell is reconstructed, and a slice of thickness Ay along
the xz-plane in the notation of figure B.1 is extracted. From this slice it is possible to
deduce the energies of the electrons as well as their angular distribution.

While doing theoretical calculations, it is not
necessary to go through the steps of projecting the
electron cloud and then do the inverse Abel trans-

2

form, since the electron cloud is already represented

. 3 . . .
in R” coordinates in-memory. The only thing that

pofau]

has to be done is the slicing, and that step replaces
the detection step described in section B.2.] above. -1
Instead of specifying a cone angle «, a slicing thick-

ness Ay has to be provided instead. -2

. . . . -2 -1 0 1 2
Another difference in the two-dimensional case elau]

Figure 3.9: Typical VMIS re-
that (as mentioned above) the initial direction of the ”Iliu (;746 00 lﬁ)elflo f the p ;;_

electrons are sampled according to the p distribu-

as opposed to the one-dimensional procedure, is

tribution are clearly visible. No
IR field was present in the calcula-
tions.

tion (17) (if ionizing from an s state) instead, so as
to yield results in agreement with reality.

Lastly, the VMIS images are captured for one
fixed delay between the XUV and the IR pulse, one fixed £, otherwise the image would
be smeared as the electron clouds would have travelled different distances.

A typical result from a VMIS calculation performed on hydrogen can be seen in
figure B.9. What is shown is the momentum distribution of the electrons after pho-
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toionization, which is, in effect, a Fourier transform of the spatial distribution. Nor-
mally, one is interested in the energy though, which is related to the momentum as
W/e = pz/Zm

3.3.1 Rocking the electron cloud

With an IR field present during ionization, the electron cloud will “float” in it, as a buoy
does on the water surface. According to equation (B.g), the final acquired momentum
will be shifted by the vector potential of the IR field at the ionization instant. How-
ever, in the time span between ionization and detection at a time at which the IR pulse
has since long ended, the electron cloud will be swept back and forth, being rocked as a
swing. If then the intensity of the streaking IR field is increased, i.e. y — 1, the approx-
imation (B.4) is no longer valid as the electron cloud is swept back to the core. Instead
other behaviour can be studied, such as electrons scattering from the nucleus. This scat-
tering can be thought of as an analogue to the slingshot effect as used by space vehicles
to escape our solar system — indeed, both the Coulomb force and the gravitational
force have a 1/7* dependence.

Figure 3.10: An infinitely oscillating IR field along with its vector potential. Every elec-
tron ejected at a time ty such that Ep(ty)=0 bas a possibility of returning to the core and
scatter.

In figure B.10}, an IR pulse of considerably longer duration than that in figure B.7 is
depicted. An electron ejected at any time = nw, n € Z (i.e. E(t) = 0), has a full half-
cycle to transfer momentum according to F = gE. This gives the electron a chance of
returning to the core. In contrast, ionization at other times will yield both acceleration
and deceleration since the electric field changes sign before the electron has reached the
core.

When the pulses look like those in figure B.2) instead, there are only two ionization
times where a return to the core is possible; wir#, = —3#/4 and wrz, =~ 0. This is in
excellent agreement with the series of VMIS figures found in appendix [F.I.
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Trajectories To further reinforce this analysis, the individual trajectories of a single
electron initially placed approximately a Bohr radius away from the nucleus in the pos-
itive z direction, were studied for different ionization times and some different condi-

tions. The results can be seen in figures B.11-B.13.
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Figure 3.11: Electron trajectories for different ionization times with y=1 In this figure
the IR pulse has a longer duration (in this case 20fs, i.e. the pulse is not single-cycle) and it
can make the electrons oscillate in the field, provided that there is no nucleus present. The
streaking IR field is shown as a dashed black line.
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Figure 3.12: Since the electron is initially placed some distance away from the nucleus in
the positive z direction and the pulse is single-cycle (y=1), only one trajectory (with ty=0)is
able ro scatter from the nuclens. The electron trajectory scattering from the nucleus men-
tioned above with wpty~—3n/4, must start some distance away from the nucleus in the
negative z direction, since otherwise that electron is initially accelerated away from the nu-

cleus.
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Figure 3.13: Same as in figure but this time without a nucleus present for the elec-
trons to scatter from.
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Figure 3.14: Electron trajectories for different ionization times with y<1. It is now possi-
ble for more electron trajectories to return to the core and scatter.
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Figure 3.15: Same as in figure[3.13, but this time without a nucleus present for the electrons
to scatter from.
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3.3.2 Looking from a different angle

As a final test of the VMIS calculations, the polar-
ization between the XUV pulse and the streaking IR
field was gradually changed:

Exuv(#) = Exuv(te,,  Er(s) = EIR(f)eEIR

with (ez

eEIR) =cosa, a ={0°,10°,20°, ... }.

This is something that is very difficult to do when
solving the TDSE numerically, since it adds another
dimension to the computations and the memory re-
quirements are drastically increased.

The result can be seen in appendix [F.1.7. Asis ex-
pected, no scattering takes places when a = 90°, as
the p distributed electron has no velocity distribution

in the e, direction (see figure B.14).

3.3.3 Quantum mechanics comparison

Figure 3.16: The p distribu-
tion, which for afree electron cor-
responds to its velocity distribu-
tion. There is a cylindrical sym-
metry about the z axis.

One could argue that the scattering seen above could be attributed to numerical insta-
bility. However, very similar scattering effects were found by [Mauritsson et al. 200§]
when solving the TDSE numerically. They compared with experimental results, and
while they could not discern typical scattering patterns, some features could not be ex-

plained without post-ionization electron-atom interaction.

A comparison was made for the VMIS calculations with and without an atomic
potential present, and the difference between the two was calculated. The result can be
seen in figure B.I7. The same comparison, but made using numerical calculations of the
TDSE is depicted in figure B.1§. The agreement is very good.
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Figure 3.17: On the left is the result from a calculation with a nucleus present, with the
ionization time ty=0, i.c. one of the ionization times with electron trajectories that can scat-
ter from the nuclens. The IR field is so strong that a collision is possible. On the right is
the result of a calculation with exactly the same conditions as the calculations on the left,
with the exception that there is no nucleus. In the middle the difference between the two is
plotted. The ratio between the upper and lower lobe is larger than one order of magnitude.
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Figure 3.18: These calculations correspond to those in figure but they are performed
by solving the TDSE instead. That is why there are such non-classical phenomena as inter-
ference present. In the right picture there are some artifacts visible, since the nucleus had to
be artificially removed after ionization. Data courtesy of J. Mauritsson.
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Conclusions/outlook

TRIKINGLY GOOD RESULTS were achievable using the CTMC method (see fig-
s ures .4 and B.I7-B.1§), despite the sampling errors made (see appendix [H). If one
could overcome some of the difficulties of programming on a graphics card (some of
the calculations lasted more than 48 hours), the classical methods have a promising fu-
ture, since it is possible to perform calculations that are difficult to do using quantum
mechanics (e.g. comparing what happens after photoionization with and without po-
tential present, since the potential is necessary for the wavefunction of the free electron
to be correct). QM calculations also need a lot of memory (on the order of GB for
one wavefunction), whereas the corresponding classical calculations only need 32 B of
?For good statistics, on the  storage per electron.”
order of 107 electrons are Further work has to be invested to be able to perform the classical calculations for
needed => ~320 MB
memory is required.  I10T€ general systems. At this point, the program implemented only works for hydrogen-
like systems, and is only tested for Hand He™. A firststep would be to try ionizing from
e.g. highly excited CO molecules (using an effective potential), to study the trajectories
taken by the electrons attracted by two nuclei. Something that also would be interesting
to try is the dynamics of double photoionization, i.e. the trajectories of two photoelec-
trons, but it is not entirely clear how one would treat both of them as classical particles
at the same time (thus neglecting eventual interference phenomena).

The classical methods could also benefit from more storage space and processing
power; performing the calculations on a conventional cluster, it would be possible to
use stiff ODE solvers which do not fit on the GPU, and that have highly divergent ex-
ecution paths. Furthermore, as the classical methods allow studies of single electron
trajectories, it would be possible to study these more closely and gain a better under-
standing of systems that are too complex to understand using normal QM methods.
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Atomic units

ATOMIC UNITS ARE USED to simplify calculations in atomic physics via a coordi-
nate transform in which important quantities are set to unity. In the Hartree

atomic units system, the following identities hold:

m.=e=h=4mwe, =1

All other quantities are derived from these, giving the following values in SI units for
one unit in atomic units (table taken from [HaBler 2009]):

Quantity

Value

Angular momentum
Mass

Charge

Length

Velocity
Momentum

Time

Frequency

Energy

Electric field

Intensity

4

U

)

-« 29 e

1.054571726 - 10>* Js
9.109383 - 10" kg
160217653 -107” C
5.2917720859 - 10 ' m
21876912633 - 10° m/s

1.99285166 - 10** kg m/s

2.41888430 - 107" s

413413738 - 10'° Hz

435974417 -10 % ] = 27.211eV
5.14220651 - 10" V/m

3.5094452 - 10" W/cm?



Code

10To make use of
optimized SIMD methods,
data fetches has to be in
sizes that are powers of two,
i.e. 2" Therefore, the three
Cartesian components are
padded with one,
meaningless, extra
component.

N THIS APPENDIX, an overview of the code used in the calculations is given. In the
following subsections, it is described how the different building blocks are imple-
mented.

When the program is started, a specified file in the JSON format (see [Crockford
2002]), containing the parameters for the calculations, is loaded. All parameters speci-
fied in SI units are converted to atomic units, as per appendix [A. Then the calculations
commence. They consist of propagating electrons of different positions and velocities
according to eq. (B.7). For all electrons four quantities are stored: time of ionization,
final speed (length of momentum vector), final position and final velocity. The individ-
ual trajectories of the electrons are in general discarded; a single trajectory could easily
occupy 32 kB (two Cartesian vectors, one for position and one for velocity, consisting
of three components plus one padding,10 every component requires 4 B of storage and
a trajectory may require up to a thousand steps), which means that 32 GB of storage
would be needed to store the trajectories of a million electrons.

Also worth noting is that single-precision floating-point values (named floats in
C/C++)are used (hence 4 B per component) instead of double-precision floating-point
values (doubles), because the GPU only has hardware support for floats. The exe-
cution times for calculations with doubles are drastically increased (by more than one
order, [Goddeke et al. 2003]]).

C.1 Building blocks
C.1.1 Sampling

The basis for successful sampling of probability density functions is a reliable random
number generator as mentioned in section £.3. Each executing thread is assigned its
own generator with a unique multiplier (see [Alerstam et al. 2009] for details on the
implementation).

Position 'The initial position is decided by three coordinates: the radius 7and the two
angles 3 € [0, #) and ¢ € [0, 27). The two angles are sampled isotropically, while the
radius is sampled from the radial function of the s state, such that fo T IR (7 )|2 =
1. The inverse transformation method is used, Z.e. a stochastic variable Uis sampled uni-
formly on the interval, and then equation (B.7) is solved for » with Newton—-Raphson’s
method:

inline void NewtonFind(float (*f)(float, float&),
float& x, float vy,
float& maxError,
float maxI=30){
float error=INFINITY, derivative=0.0f;
int i=0;
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while (abs (error)>maxError && i<maxI){
error=f(x,derivative)-y; //Calculate distance
//between current point (f(z)) and wanted
//value (y). The walue of f'(z) ts
//retrieved, since derivative is passed
//as a reference, mnot by wvalue.
x=x-error/derivative; //Refine guess
i++;
}

maxError = error;

float sRadialFunction(float r, float& derivative)d
int Z = deviceStreakingParams.Z;
float exp2Zr = exp(-2*Zx*r);
float r2 = rx*r;
derivative = 4*ZxZ*xZ*r2xexp2Zr;
return 1-(2*Z*x(Z*r2+r)+1)*exp2Zr;

float sampleRadius(SimData& data, int tid){
float r=1.0f; //Initial guess (=a_0)
//Mazimum absolute error accepted
float error = 1e-10f;

NewtonFind (&¥sRadialFunction, //Pointer to function
r,
rand_MWC_co(data.rng, tid), //Sampled U
error) ;

return r;

¥

Newton—Raphson’s method is an iterative method for finding a root of an equation.
One first has to make an initial guess of the root, and a new root is then taken as

(0)
X
W = 0 _ L&)

£

This procedure is repeated until the error is sufficiently small.
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o FUU) AR -

N N~ O

Figure C.1: _4n illustration of the binary search algorithm. The initial guess is placed
in the middle of the domain. The algorithm then tests if the sought value is in the left or
right subdomain. The next guess is then chosen as the middle of that subdomain and the
procedure is repeated.

Velocity Newtons—Raphson’s method has quadratic convergence, as long as the
derivative f'(x) # 0, itis Lipschitz continuous around the root and the initial guess
is sufficiently close to the root (see [Bonnans et al. 2003]). It can not, therefore, be used
when sampling the p distribution

3
Y (s, ¢) = 1/; cos 9,

27 3
A9) = fo do fo 4 1Y, o) sin 9’

, 9
3 cos®> &
= 27— |-
47 3 N

1
=3 (1-cos®9)

as the derivative of its CDF

has a root in the interval (0, 7). This is instead sampled using a simple binary search
algorithm, where the root is found by first guessing that = #/2 and then stepping in
the direction that minimizes the error |F{($) — U], while simultaneously halving the step
length, until the error is small enough. See figure [C] for an illustration.
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inline void SearchFind(float (xf)(float, float&),

float& x, float vy,
float& maxError,
float maxI=40){

float derivative=0.0f;

float step=0.5%*x;

Xx=step;

float error=f(x,derivative)-y;

int i=0;

while (abs (error)>maxError && i<maxI)A{

step *= 0.5;

x -= step*(error>071:-1);
error = f(x,derivative)-y;
i++;

}

maxError = error;

float SphericalHarmonicl_O(float theta,
float& derivative){
float cosTheta = cos(theta);
//Cannot use Newton-Raphson anyway
derivative = 0.0f;
return 0.5f*(1-cosTheta*cosTheta*cosTheta);

float sampleTheta(SimData& data, int tid){

float theta=PI;

float error = 1e-10f;

theta=PI;

SearchFind (&SphericalHarmonicl_ O,
theta, rand MWC_co(data.rng, tid),
error) ;

return theta;
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A programming language
construct used to offload
the processor by deciding

parts of the execution path
at compile time.

len integral value type,
that can only take two
values: 0, corresponding to
falseandl,
corresponding to true.

Stefanos Carlstrom

Sampling Ylo as above yields the initial direction of the velocity, but an initial speed,
i.e. length of the velocity vector, is needed as well. This is sampled from the spectral
distribution (which is Gaufiian) of the XUV pulse, using the Box—Miiller transform:

If U; and U, are independent, stochastic variables uniformly distributed on (0, 1],
then

Zy = c\-2In U cos(2nU,) + E Z, =o\-2In U, sinQ#wU,) + E

are independent, stochastic variables normally distributed around [E with a standard
deviation of ¢
Only one value is needed to sample the energy:

float sampleE(SimData& data, int tid){
//Box-Miller mormal distribution
float E=sqrt(-2*log(rand MWC_oc(data.rng, tid)))=*
cos (2%PI*xrand_MWC_co(data.rng, tid));

E *= deviceStreakingParams.XUV.stdDevE;
E += deviceStreakingParams.XUV.centerE;

return E;

C.1.2 Propagation

The propagation is done by a RK45 ODE solver, in an implementation adapted and
generalized from [Palmer 2003]. The code makes heavy use of optimization techniques
such as those mentioned in section P]and templating” to run as efficiently as possible on
a GPU.

C.1.3 Detection

The detection process works like this: a mask vector of booleans,”* as long as the number
of electrons used in the calculations, is allocated. A kernel that is executed for each and
every electron, stores in the detection vector a true if the electron has a momentum
vector inside a cone (1D) or if the electron is spatially located inside a slice of thickness Ay
(2D), false otherwise. The number of elements with the value true is then counted,
and new, shorter, vectors are allocated, to store the ionization times, final momenta and
final positions of the detected electrons.
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C.1.4 Least Squares fitting

The idea of Least Squares fitting is to minimize the squared residuals between some
measurement data and a model by finding the optimum parameters for that model.
This can also be viewed as minimizing the distance between the measurement vector
and its projection on the subspace spanned by the parameters. The solution to such
a system is B = (XTX)_IXTy, where (X" X) " is called the pseudo-inverse of X, the
measurement positions and y is the measurement values at those positions. However,
if the model is non-linear, i.e. noton the formy = X, a non-linear least squares fit has
to made where the model is linearized around some 8 and a step AP is taken until the

gradient
N 5 N
VS:VE(yi—y(xi,ﬁ)) :VEA i

is zero. The step is found by A = (]T])_IJTAy, where ] = ( ]y) is the Jacobian of the
model y.

In the case of the streaking spectrograms, the parameter vector 8 = {fcryc o} (the
time shift and the amplitude modulation), and the model is equation (.g). At each
step, the Jacobian is calculated:

(k) k (k) i
T = Ip (t’ torer & )) Ip (t’ e & ))

® ® ’
aZ’CTMC dt

. .. e . k+1
where tis a vector containing the ionization times. The elements of ]( ) are calculated

on the GPU, and then ](kH)T](kH) and ]TAp are calculated using parallel reduction as
described in section P|. Lastly, the parameter step is calculated by solving

J(kH)TJ(kH)Aﬁ(kH) — J(/e+1)TAp(/e)

using LU decomposition.
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Errors

H ERE FOLLOWS A SUMMARY of errors made in the calculations. They are all related
to how the initial positions and momenta of the electrons are sampled.

e Radial functions for heavier elements than hydrogen still sampled with Z = 1
as the program was first implemented for hydrogen. When testing with He*
this was forgotten, and as the results seemed plausible (compare with figure .4),
it was not discovered until fairly late in the project. When testing with correct
wavefunction, the calculation times increased immensely, and as the error did
not seem to have large impact, it was decided to leave it as is.

Z
Z

on

Figure E.1: The radial wavefunctions for bydrogen-like systems with a nucleus of Z=1
and 2. Asis natural, the electrons are bound more tightly to a larger nucleus; this also canses
trouble for the calculations, since the electron trajectories more often start in a stiff region
= longer calculation times.

e Initial velocity is sampled isotropically (as in [Nagele et al. 2011]), instead of ac-
cording to a p distribution. However, this is only done in the one-dimensional
case. Sampling according to a p distribution seems to yield larger variance in

fcrMmc-

e Initial energy sampled from a pulse of too small spectral width, which cannot
really be said to be as short as needed for the approximation that ionization is
instantaneous upon the arrival of the XUV photon. Sampling from the correct
pulse spectrum yielded too large variance in zopyc.

It is likely that by sampling from Kepler orbits as is traditionally done in CTMC calcu-
lations, these errors could have been avoided.
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F.1.1 Electron scattering
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Figure F.1: VIS images of the electron momentum distribution when ionizing in a
strong IR field (y < 1)for different ionization times t,.
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Figure F.2: Continuation of the series from the previous figure.
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F.1.2 Polarization dependence
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Figure F.3: VIS images of the electron momentum distribution for different IR field
polarizations.
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Rederivation of time shift approximation

N THIS APPENDIX, A REDERIVATION of the analytical approximation of the mea-
I surement induced time delay, as derived by [Ivanov and Smirnova 2011], is done,
but for a Coulomb potential of V(r) = Z/r. The derivation is very brief, with little
more explanation than necessary, since it is only provided for completeness. The equa-
tion numbering follows that of the original article.
The traditional streak camera formula

ve(t) = vy — A(%) (R.1)
is only an approximation. A more accurate expression is
ve(t) = vo = A(r) + Av(z),

with the additional velocity shift

av(e) = [ drEling 0] - Elss ) (R2)

In the eikonal-Volkov approximation, a single characteristic trajectory is obtained:

()~ 1o+ volt—1) + f d7 [A(¢) - A(t)] . (R3)
S 4

=rpp(7) W
=Ar(51))

7y is denoted 7y = 1/av,. ais found by matching the free particle wave function of the
eikonal approximation with the exact outgoing Coulomb wave:

(T Z V4
o exp [ifuor+ L f d —] = exp [ifuor+ i—In (1)] (R.4)
Vo ) 7o 7 Yo 7o
Z
= exp [ifuor + i; In(2v,y7) — i23],

0
0= arg[I(€ +1-iZ[v,)]

Z Z
= iZn (1) = 12 In(2vyr) — 20
K0 7o o

= L= 2vyrexp(—2v,d/Z)
o

= a(v,y) = 2 exp(—2v,9/2). (R.S5)

(The exact outgoing Coulomb wave was found by backpropagating the plane wave-
front at the detector (positioned at +o0). The phase difference near the atom between
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this wave and a plane wave without the scattering potential present was found to be
—24. This may not be seen as a rigorous derivation, but nonetheless this definition of
7o proved to yield good results.)

With an electric field of £z = E cos(wg#) and accompanying magnetic vector
potential of AR (£) = —(Ey/wr) sin(wr 2), the trajectory in (K.3) becomes

E
nr(f) = 7y + oot — 1) + _20 [sin(wr ;)@ (£ = £;) + cos(wir?) — cos(wr?)] . (R.6)
WIr

With a weak IR field (A2, ;) < 7pp(f) = vp = EyJo <K vy), (R) becomes

2 e ZAn(t, 1)
Au(t) = —= d
) % j; ‘ [75 + vo(2 - ti)]3 (R.7)
8t 1) = 2 [sin(rm£)orn £ — £) + cos(anm) — cos(en)
iR
_ E, ToWIR . ToWIR
= Av(r) = —Z¥ [cos(a}mz‘i)]‘;( o ) - sm(a)mti)f;( o )] (R.8)

with
. (%) = c(x) cos(x) + 5 (x) sin(x), f, (%) = 5(x) cos(x) — ¢ (x) sin(x)
® cosx *©  sina R.9
c(x)=fdx’ e 5(x)=fdx’ . (R2)

xl

x=rop <1 =

To%IR ~In Yo | +7””0¢<)1R
ji - yEuler

WIR70 2 o,

f N@R| 7 ¥R In Yo |
s e - 2 e Wi 7 yEuler
0 0 IR0

Substituting (R.§) into the expression for the final energy of the electron yields

(R.10)

‘vf: 7)0 - A(tl)

Zawng Z
1+ - f?] - E(ti)q?fc’ (R.11)

0 0

which can be rewritten as

Vp= Vg aAd (l‘l- + Al‘&R)) (R.12)
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with

A z‘(LR) —

IR 3

YRI5 T 2 o
) 47)0 &)I
1 ﬂ’()é v a)IR Z
= - n —_
Wi Trer T 02 T ow av;
0 3 IR 0
o T RZ {7 —|In|{— = YEul
2 ”wo WR Euler
Vi C()I
~—, <1
2 av,
2
av w C(]IR Z
~—|ln|—|- | R.13
[ WIR Yruter T 5 avt | vy + wr Zw/2 ( )
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