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1. ABSTRACT 

 

General rules for rational design as well as prediction of tertiary structure and functionality of 

a protein can be described by investigating the interactions and the role of particular amino 

acids in protein structure. Mutagenesis has been used commonly to generate stable variants, 

with an ultimate goal to unravel the rules of protein stability and folding. Besides, 

reconstitution of dissected proteins has been used as well as an approach to find variants of 

particular proteins with increased affinity which could lead ultimately to enhancement of 

stability. In this project a random library of a hapten specific scFv, Anti Fluoroscien 

IsoThioCyanate (scFv) dissected into the fragments 1-124 (Heavy chain) and 125-246 (Light 

chain) was interrogated in order to find variants with improved affinity to be tested in further 

studies for stability enhancement of the corresponding intact protein variants. The split GFP 

system, a genetically codified biosensor, was used as a method to detect in vivo reconstitution 

of scFv (Heavy chain 1-124 + Light chain 125-246).  

Firstly, reconstitution of a single chain antibody (scFv) fragment 1-124 (Heavy chain) and 

125-246 (Light chain) was detected. Secondly, a random library of the Light chain fragment 

125-246 cloned into the GFP system was screened to find variants with higher fluorescence 

intensity than WT Light chain. An increase in fluorescence is suggested to arise from 

increased affinity which in turn could be used to select for stabilized intact variants. However 

we failed to detect green fluorescence. This may be due to problems in the expression of one 

of the partners (heavy chain-CGFP) or steric constraints and hence we were not able to screen 

any high affinity mutants. Various suggestions for improving the expression of the protein or 

relieving steric constraints are discussed here. If these problems are solved, libraries will be 

screened for the possible stabilizing role of the found substitutions. This can be discussed in 

terms of establishment of favorable hydrophobic interactions, stabilization of secondary 

structure and indirectly destabilization of the unfolded structure. The insight into the 

interactions and roles played by specific amino acids can be used to understand protein design 

of other proteins. 
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2. INTRODUCTION  

 

Proteins are highly complex systems performing or supporting nearly all the mechanisms and 

reactions present in the life phenomena. The function of a protein is reliant on its tertiary 

structure, which is composed of particular folded structures in space in regular patterns. The 

folding is guided by the primary structure i.e., the sequence of amino acids, which is 

ultimately established by the DNA belonging to the particular cell through the genetic code, 

and various splicing events. 

The development of molecular biology techniques such as DNA recombinant technology 

have allowed us to study in more detail the properties of proteins through modification of the 

sequence of particular genes and further cloning and expression. 

In this project, the split GFP system, a biosensor is used as a method to detect in vivo 

reconstitution of dissected single chain antibody fragment (scFv) obtained from a synthetic 

library, n-CoDeR 
(Söderlind, 2000)

. The variable regions of heavy and light chains fused together 

via a linker constitute a scFv protein. A random library of Light chain 125-246, one of the 

dissected fragments of scFv will be interrogated in order to find high affinity variants that 

may serve as templates for producing more stable variants of intact protein. 

  

  2.1 Protein Interactions 
 

Understanding and solving the fundamentals of protein interactions is crucial for the future 

development of life sciences and biotechnology because proteins play many important roles 

in cell processes and biotechnological applications. It is a delicate balance of non-covalent 

inter- and intra-molecular interactions such as van der Waals, columbic, hydrophobic effect 

and hydrogen bonding that ultimately defines the biological and technological task of the 

proteins. Intra-molecular protein interactions are established between amino acids and govern 

important properties such as folding mechanisms as well as structure, and stability. Resolving 

the interactions taking place during these processes might help us to rationally design and 

modify of protein. It will also help us to predict the tertiary structure and functionality of a 

protein 
(Malakauskas, 1998)

. In addition, inter-molecular interactions are in operation in ligand 

binding. Intermolecular interactions modulate kinetic properties, lead to inactivation of 

proteins, drive substrate channeling, form new binding sites and regulate substrate specificity. 

Also, following the advances toward deciphering the entire proteome, it is essential to 

discover the importance of inter-molecular interactions for the functionality of thousands of 

sequences of proteins codified in the genomes and to know the roles that all these interactions 

play in diseases as cancer and Alzheimer and biological processes such as DNA replication, 
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transcription, translation etc. Getting insight in protein-protein interactions will allow us to 

understand the life phenomena and our ability to propose therapies to diseases due to 

misfunctional interactions of proteins 
(Berggård, 2007; Kerppola, 2008)

. 

2.2 Methods to Detect Protein Interactions 
 

In order to study and characterize the impact of interactions on the functionality of a protein, 

there is a need for a reliable way to identify protein-protein interactions. Several methods, for 

example, analytical ultracentrifugation, NMR and optical spectroscopy, isothermal titration 

calorimetry, surface plasmon resonance, affinity chromatography, immunoprecipitation, 

affinity blotting, cross linking, phage display, bimolecular complementation and yeast two-

hybrid system 
(Hebert, 2006; Lalonde, 2008; Song, 1989)

 are in use. Recently several fluorescence-based 

techniques such as Bimolecular Fluorescence complementation 
(Kerppola, 2008; Villalobos, 2007)

 have 

been introduced. 

2.3 Bimolecular Fluorescence Complementation 
 

Bimolecular fluorescent complementation (BiFC) is a fluorescent-based technique that allows 

detection of protein-protein interactions in living cells. It can be used to determine sub-

cellular localization of the interacting proteins, and if it changes over time, without requiring 

addition of external agents. BiFC is based upon reconstitution of split non-fluorescent GFP 

variants, to form a fluorescent fluorophore 
(Ghosh 2000; Hu 2002)

. The technique has become 

increasingly popular due to its simplicity, ease of use, and the capability to carry out 

experiments with regular epifluorescence or confocal laser scanning microscopes (CLSMs).  

Other complementation assays need exogenous fluorogenic or chromogenic agents, 

potentially perturbing the cells. This was first demonstrated for subtilisin 
(Johnsson, 1994)

, and was 

later accomplished for other proteins like β-Galactosidase 
(Rossi, 1997)

 and dihydropholate 

reductase 
(Pelletier, 1998)

. BiFC can also be used to derive kinetic information and further 

characterize the protein-protein interaction by visualizing multiple variants of a library at the 

same time. Moreover the method can be used to detect interactions between sub populations 

of each protein and multicolor analysis allows simultaneous visualization of multiple protein 

complexes formed with a shared component. Other visualization methods as FRET require 

high levels of protein expression and placing the two fluorophores within 100 Å. Some of the 

disadvantages of BiFC are that it does not allow real time detection of interactions in part 

because there is a delay between the interaction of the fused proteins and fluorescence due to 

low rate of fluorophore formation. Apart from that, BiFC is useful to probe interactions of 

many structurally different proteins inside many different types of cells. One of the most 
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popular BiFC methods that was used in this thesis was the split Green Fluorescence Protein 

(split GFP) 
(Magliery, 2005)

. 

2.4 Green Fluorescent protein 
 

GFP was first described by Shimomura 
(Shimomura, 1962)

 and later Chalfie cloned and used it as 

reporter of protein expression patterns 
(Chalfie, 1994)

. The GFP gene has all the information 

necessary for development of a mature and functional chromophore after posttranslational 

synthesis and thus no further processes by enzymes are needed. GFP is 238 amino acid 

residues in length. It is composed of 11 β-strands folded into a β-barrel with an α-helix 

running up through the axis of the barrel (Figure 1). The chromophore is located in the α-

helix and is formed by the residues Ser-Tyr-Gly 65-67 in the native protein. It is matured after 

a series of reactions involving O2 from air and ready to be excited and emit its inherent 

fluorescence. The wild type GFP has a major excitation peak at 395 nm, a minor peak at 475 

nm, and emission at 508 nm. The ability to fluoresce without any additional chemical or 

substrate has made GFP a perfect tracer of proteins 
(Tsien, 1997)

. 

 

 

Figure 1:  Topology of the green fluorescent protein (left) and tertiary structure of GFP using PDF file 1EMB 

(right). 

2.5 Split Green Fluorescent Protein System 
 

Split GFP system is part of the BiFC methods and was first described by the group of Lynn 

Reagan. Split GFP method is based on, at the genetic level, the dissection of GFP between 

residues 157 and 158 to generate two fragments. The affinity between GFP fragments seems 

to be too low for reconstitution and chromophore maturation under normal conditions which 

is observed upon co-expression of the fragments. However, these two fragments of GFP can 

be fused separately to two different proteins (or other molecules) or to fractions of one protein 

whose interaction promotes assembly and folding of GFP and thereby chromophore 
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development. Complex formation between the fusion partners raises the effective 

concentration of the GFP fragments for one another favoring their association and folding and 

the fluorescence emission is reached. Hence the method can be used to detect protein-protein 

interactions or protein fragment-fragment recomplementation 
(Ghosh, 2000, Magliery, 2005) 

(Figure 2). 

    

 

 

 

 

 

 

 

 

 

Figure 2: Application of the Split GFP system to detect reassembly of an antiparallel Leucine zipper by Regan 

group (adapted from Ghosh, et. al., 2000) 

 

The most important advantages of the split GFP system are that no special exogenous 

reagents have to be added to detect fluorescence. Also, GFP can express and mature in almost 

every cell type and subcellular structure. Furthermore, it can be used in bacteria, nuclear 

importation of the proteins is not required and most cells do not have significant fluorescent 

background at the excitation wavelength used. The method has been used to detect and trap 

transient protein-protein interactions, to identify unknown interactive protein partners and 

protein localization in subcellular structures. This has been proved in bacteria or multicellular 

organisms such as yeast and plants 
(Wilson, 2004, Magliery, 2005; Barnard, 2008; Magliery, 2008; Sarkar, 2008, Lindman, 

2009)
. The fluorescence acquisition is a slow process involving GFP maturation with rate-

limiting oxidation of the chromophore and generally is detected after two or three days. The 

reassembly multistep process is affected by properties of the fused proteins such as solubility 

and expression levels. However, since the reassembly process is irreversible it can be used to 

detect weak and transient interactions.  

The GFP variant used in this study has the six mutations F64L, S65C, Q80R, Y151L, I116T 

and K238N in comparison to wild type GFP. These mutations give the protein a single 

excitation peak at 475 nm and emission at 505 nm. The green bright fluorescence is arising 
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from the mature chromophore core comprising the residues C65-Y66-G67 (Topell, 1999; 

Abedi, 1998). 

 

2.6 In vivo protein stabilization based on fragment complementation 
and split-GFP system 
 
Protein stabilization can be achieved through in vivo screening based on the thermodynamic 

linkage between protein folding and fragment complementation. Several approaches have 

been used to stabilize proteins like formulation, screening methods employing a combination 

of phage display and increased protease resistance, directed evolution and rational design etc 

(Jorgensen L, 2009; Sola RJ, 2009; Walle CF, 2009; Wunderlich, 2005; Eijsink, 2005; Eijsink, 2004)
.The split GFP system is 

found suitable to derive protein variants with enhanced stability via the correlation between 

effects of mutations on the stability of the intact chain and the effects of the same mutations 

on the affinity between fragments of the chain 
(Lindman, 2010; Bergard T, 2001; Sanz R J, 1995; Xue WF, 2006; Carey 

J, 2007)
. This implies that proteins may be stabilized using a method based on protein 

reconstitution from fragments and screening of a fragment library for enhanced affinity.  

2.7 FITC8  
 

FITC8 is a single chain antibody fragment (scFv) which binds to hapten, Fluorescein 

isothiocyanate.  A single-chain antibody is a fusion protein of the variable regions of the 

heavy (VH) and light chains (VL) of immunoglobulins, connected with a short linker peptide 

of 10 to about 25 amino acids (Figure 4A). The linker is usually rich in glycine for flexibility, 

as well as serine or threonine for solubility, and can either connect the N-terminus of the VH 

with the C-terminus of the VL, or vice versa 
(Tsumoto K, 1994) 

(Figure 3).  FITC8 has the linker 

connecting N-terminus of the VH with the C-terminus of the VL. These proteins retain the 

specificity of the original immunoglobulin, despite removal of the constant regions and the 

introduction of the linker. 
(Bird, 1988) 

 

Figure 3: Possible conformations of a scFv molecule. Linker connects the N-terminus of the VH with the C-

terminus of the VL, or vice versa. 
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FITC8, a single chain antibody fragment serves as a model of high affinity binder recognizing 

a hapten. FITC8 was originally obtained from a synthetic library, n-CoDeR 
(Söderlind, 2000)

 that 

had been constructed by shuffling human complementarity-determining region (CDR) 

sequences of different origins into a single framework consisting of the human IGHV3-23 and 

IGLV1-47 genes. Based on this framework 14 clones including FITC8 have been shown to be 

highly stable, well expressed in Escherichia coli and displayed easily on phage. 
(Griffiths, A. D, 1994; 

Ewert S, 2003; Steinhauer C, 2002)
 FITC8, like hapten-binders in general, displays a cavity in its antigen-

binding site into which the antigen binds.  

 The solved structure of FITC8 is known (personal communication with Lena Danielsson) 

although it is not published. However, a scFv molecule is composed of two chains- a heavy 

chain and a light chain. The antigen binding site (paratope) is largely composed of residues in 

the complementarity determining region (CDR) loops, three each in the heavy and light 

chains. A beta sheet framework in the form of an immunoglobin fold brings the six CDRs 

together enabling them to interact jointly with the antigen (Figure 4B). CDRs determine the 

protein affinity and specificity for specific antigens 
(Pandaln, 1994)

. FITC8 is formed of relatively 

short fragment of 246 residues.  

 

       A.                             

 

 

 

 

 

      B. 

 

 

   

 

Figure 4 A:  scFv, a fusion protein derived from the whole antibody; B: Structure of a single-chain Fv 

fragment of antibodies. Variable fragments over a flexible and soluble peptide linker. 

 

2.8 Protein Reconstitution 
 

In order to examine the role of the amino acid sequence in protein structure and folding 

several methods have been developed. Protein reconstitution or protein reassembly is one 

such method. Protein reconstitution is the spontaneous reassembly of fragments of a dissected 
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protein into the native-like tertiary structure, even when the isolated fragments show little or 

no similarity to the native structure 
(Carey, 2007)

. The important idea behind protein reconstitution 

is that the chain connectivity is not necessary for correct folding in some cases. Thus it is an 

interesting way to probe the relationship between protein sequence on the one hand and 

structure or folding on the other. This can ultimately be used to understand factors behind 

reconstitution of proteins into their functional complexes. Some classical examples of 

reconstituted proteins are ribonuclease A, β-galactosidase, cytochrome C, protein G β1 and 

monellin 
(Richards, 1958; Ullman, 1967; Hantgan, 1977; kobayashi, 1995, Xue, 2004).
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3 MATERIALS AND METHODS 

3.1 Agarose gel electrophoresis 
 

DNA Samples were analyzed using agarose gel electrophoresis according to the standard 

procedure. 

1µL sample was mixed with 1µL 1X loading dye (10 mM Tris-HCl (pH 7.6), 

0.03% bromophenol blue, 0.03% xylene cyanol FF, 60% glycerol, 60 mM EDTA) and made 

upto 10 µL with sterile milliQ water. The prepared samples are loaded onto agarose gel. The 

gel was run for approximately 1 hour at 80V in TBE buffer (5X stock solution: 2 M Tris base, 

2 M Boric acid, 0.5 M EDTA (pH 8.0) solution).  0.9% agarose gel was used for plasmid 

DNA and 1.5% agarose gel was used for PCR DNA.Agarose mix consists of 3 parts of 

Metaphor, 2 parts of Seakem and 1 part of NuSieve and all the components are purchased 

from Lonza. Either 1kb plus or 100bp plus DNA Ladders purchased from Fermentas were 

used as standard molecular weight markers. 

3.2 SDS-PAGE 
 

Samples were analyzed using tricine gel electrophoresis as originally described by H. v. J. G. 

Schägger.  

 

Samples were mixed with 2x tricine sample buffer (450 mM Tris HCl pH 8.45, 12% glycerol, 

4% SDS, 0.0025% Coomassie blue, 0.0025% phenol red), incubated for 10 min at room 

temperature and then loaded on a 10-20% tricine gel (Invitrogen). The gel was run for 3 h at 

80 V in 1x running buffer (100 mM Tris, 100 mM Tricine, 0.1% SDS, pH 8.3), stained in 

staining solution (0.25% Coomassie Brilliant blue, 40% ethanol, 10% acetic acid) for at least 

4 h, destained in destaining solution (30% ethanol, 7% acetic acid) and finally scanned. 

BenchMark™ Low-range unstained and prestained protein standard were from Novagen. 

3.3 Media, stock solutions, bacterial strains and plasmids 
 

All stock solutions and media were sterilized for 20 min at 121°C prior to use. 

 

Chemicals used for preparation of growth media were purchased from BD: 

 Media: 

Luria broth medium (LB): 1% tryptone, 1% NaCl, 0.5% yeast extract 

LB agar: LB medium with 1.5% agar 
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 Stock solutions for auto-inducing medium: 

10 mM of Isopropyl β-D-1 galactopyranoside (IPTG). LB agar plates with a final 

concentration of 10 µM IPTG and a selective antibiotic resistance is used as auto-inducing 

medium. 

 

 Stock solutions for antibiotics: 

All antibiotics were prepared as 1000x stock solutions, filter sterilized and stored at -20°C. 

50 mg/mL ampicillin (Amp) in sterile MilliQ water 

30 mg/mL chloramphenicol (Cam) in 95% ethanol 

35 mg/mL kanamycin (Kan) in sterile MilliQ water 

 

 E.coli strains 

E.coli ER2566 

E.coli BL21*pLysS(DE3) 

E.coli BL21 GOLD 

DH5 alpha 

 

Fresh cultures of each strain were made chemically competent. The E.coli cell culture was 

spread onto LB plates. Single colony was taken from the plate, amplified in 5ml culture. 1% 

of this culture is inoculated into 250 ml of LB medium. At an OD of 0.3 – 0.6, the cells are 

harvested at 6000 rpm for 5 minutes at 40°C. Harvested cells are re-suspended in 50 ml of 

100 mM MgCl2 and centrifuged at 4000 rpm for 5 minutes at 40°C. The pellet is re-

suspended in 100 ml of 100 mM CaCl2 and incubated on ice for 20 to 30 minutes followed by 

centrifugation at 4000 rpm for 5 minutes at 40°C. Under sterile conditions, the pellet is re-

suspended in 3-4 ml of 85 mM CaCl2/15% glycerol mixture and stored as 40 μL aliquots at -

80°C. The pLysS vector in E.coli BL21*pLysS carries the resistance gene for Cam. Hence 

preparation of competent cells was carried out at final concentrations of 30 μg/mL of Cam. 

No antibiotic resistance for E.coli ER2566 and E.coli BL21 GOLD. The preparation of the 

competent cells, E.coli ER2566 harboring a pET9a-CGFP construct was carried out at a final 

concentration of 100 µg/mL of kanamycin. 

 

 Plasmids: 

pQLinkN subcloned scFv fragments plasmids were synthesized by Genscript company. 

pET11a and pET9a plasmids were supplied by Regan L and Genscript respectively. Each 

plasmid was amplified in E.coli ER2566 and purified utilizing GeneJET™ Plasmid Miniprep 

Kit (Fermentas). 
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3.4 DNA and protein sequences of scFv 
 

Fluoroscien isothiocyanate, FITC8 is the scFv used in this part of project. The wild type 

nucleotide sequence of FITC8 is available from the reference, Helena Persson, J. Mol. Bio 

2006. The sequence is modified to contain E.coli preferred codons for a better expression in 

E.coli cells. 

 

3.5 Cloning of Dissected GFP-scFv Wild Type Fragments into pQLinkN 
plasmids  

3.5.1 Design of Split GFP fused with scFv fragments subcloned into pQLinkN 
plasmids 
 

The idea of the design is to split scFv into two chains and fuse the fragments to the two halves 

of GFP plasmid. 

scFv conformation N’-Heavy chain—(LINKER) 15 aminoacids—Light chain-C’ has been split to 

two chains 

a) Heavy chain-(Linker) 7 amino acids = Heavy chain 1-124 = HC 

b) (Linker) 8 amino acids-Light chain = Light chain 125-246 = LC 

Each chain is fused to split GFP plasmid (Figure 5). Heavy chain is fused to CGFP (GFP 158 

- 238) via the linker residues, GGGGSGG (HC-CGFP) and Light chain is linked to NGFP 

(GFP 1- 157) after the linker GGSGGGGS (NGFP-LC). The fusion constructs are subcloned 

into pQLinkN plasmids between BamHI and HindIII sites available in multiple cloning site 

flanked by two LINK sequences. 

 

Figure 5: Cartoon representing the design of dissected scFv fragments (HC and LC) fused to split GFP system 

 

pQLink plasmids are vectors for co expression of unrestricted number of proteins 
(C Scheich, 2007). 

The vectors contain two LINK sequences 
(Alexandrov A, 2004)

 that flank the expression cassette of 

promoter, multiple cloning site and a transcriptional terminator. LINK1 contains a PacI 

restriction site and LINK2 has a SwaI and a PacI site (Figure 6). The LINK sequences allow 

insertion of a PacI fragment of one plasmid at the SwaI site of another plasmid by Ligation 
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independent cloning (LIC). Thus a co expression plasmid is facilitated by LIC. The problem 

of imbalanced expression levels of two different plasmids transformed into a single bacterial 

cell can be avoided by using a co expression plasmid which can express multiple constructs in 

a single vector. Here we used pQLinkN plasmid which serves the purpose of accommodating 

and expressing the two constructs (HC-CGFP and NGFP-LC) in a single plasmid. 

 Figure 6 A) Construction of a co-expression plasmid from two pQLink plasmids with two different cDNA 

inserts labeled 1 and 2. The resulting plasmid can accept additional inserts, labeled 3 and 4. S = SwaI, P = PacI. 

B) The Link sequences and their digestion and annealing. The lines indicate overhangs generated by restriction 

digest and T4 DNA polymerase treatment. Two plasmids, identified by upper and lower case nucleotide codes, 

are digested and annealed, leading to a product with a LINK1 and a LINK2 sequence, slightly larger than the 

original LINK2 sequence (C Schiech, 2007). 
 

3.5.2 Construction of co expression plasmid, pQLinkN-NGFP-Light chain-
Linker-Heavy chain-CGFP plasmid: 
 

The plasmid pQLinkN-NGFP-LC is digested with SwaI (Fermentas) restriction enzyme for 

16 h at 25ºC. The plasmid pQLinkN-HC-CGFP is digested with PacI (Fermentas) for 16 h at 

37ºC. SwaI cut plasmid and PacI digested HC-CGFP fragment are purified by GFX PCR, 

DNA and gel band purification Kit (GE healthcare, Uppsala, Sweden) hereafter called “the 

GFX kit”. 5 µL of each digested product is treated individually with 2 µL of 1.25U LIC 

qualified T4 DNA polymerase, 2 µL of T4 DNA polymerase buffer, 1µL DTT, 2 µL of dCTP 

for PacI digested product and dGTP for SwaI digested product. The whole reaction mixture is 

made to 20 µL with sterile milliQ water and kept for incubation at 25ºC for 30 minutes. Later 

the tubes are kept at 65ºC for 20 minutes to inactivate the LIC qualified T4 DNA polymerase. 

PacI and SwaI treated tubes are mixed together and incubated at 16ºC for one hour. In the half 

way of incubation period, 4 µL of 25mM EDTA is added to the mixture. Later the mixture is 

heated to 75ºC and kept at 75ºC for one minute. The mixture is cooled to room temperature 

slowly by moving the tube to the bench. This step helps in annealing the PacI and SwaI 
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digested products. Hence the multi gene plasmid was constructed (Figure 7). After cooling to 

room temperature, the LIC mixture is used for transformation. 

 

Figure: 7 Construction of (NGFP-LC-link-HC- CGFP)- pQLinkN plasmid.  

Individually sub-cloned NGFP-LC (a) and HC-CGFP (b) were digested with SwaI and PacI restriction enzymes 

respectively. The digested products were mixed together and treated with ligation independent cloning qualified 

T4 DNase. LIC qualified T4 DNase treatment facilitates ligating the PacI digested fragment into the SwaI 

digested plasmid. Hence the co-expression plasmid (c). 

 

LIC product is transformed into calcium competent E.coli ER2566 cells and plated on 

LB/agar plates with 50 µg/mL ampicillin. Several colonies obtained on the plate were 

amplified and purified. Purified plasmids were sequenced to confirm the presence of the 

whole construct (NGFP-LC-Linker-HC-CGFP). Sequencing is done using the BigDye 

Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) with the 

primers: 5’-c aac att ctg gga cac aaa ttg g-3’and 5’-tgc tag ttg aac gct tcc atc ttc-3’.  

3.5.3 Preparation of Library of Light chain 125-246 Fragment and Cloning 
into Vector 
 

In personal communication with Jonas Persson, it was learnt that mutations in light chain are 

less likely to change the specificity of scFv towards its hapten. However, a change in affinity 

for the hapten might happen. Hence we wanted to focus on light chain library rather than 

heavy chain. 
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A LC random library (LC-lib) was designed and constructed by overlapping PCR. The 

original design includes splitting of light chain into six degenerate oligo nucleotides (Figure 

8) with desired restriction sites flanking the start and stop primers. The degenerate oligo 

nucleotides for library generation included the incorporation of random mutations at a 

theoretical mutation rate of 2 percent variants per base distributed in stabilizing and 

destabilizing mutations (Table 1). Overlapping PCR is carried out by mixing all the six 

degenerate primers in a single tube. The PCR was carried out using an Expand High Fidelity 

PCR system (Roche Diagnostics, Indianapolis, IN) in the cycle: 94ºC, 2 min; 10x (94ºC, 15 s; 

72ºC, 30 s; 72ºC, 45s); 72ºC, 7 min. The start and stop primers are maintained at 30 µM 

concentration. The other four primers are tested at four varied concentrations: 2 µM, 5 µM, 12 

µM and 30 µM. The PCR products were investigated by agarose gel electrophoresis and 

purified using GFX kit.  

The overlapping PCR product of the DNA library of LC-lib was first digested with SacI for16 

h at 37ºC. Later KpnI was added and digested for 16 h at 37ºC. pQLinkN-MNA-NGFP (from 

Genscript) was also digested in a similar way. Double digested product was treated with 

alkaline phosphatase. The digestions are followed by purification using GFX kit.  

Ligation is carried out at 1:2 molar ratio of vector to insert. 3 µL of ligation product is added 

to 40 µL of calcium competent ER2566 cells and left on ice for approximately 30 minutes. 

The mixture is heated at 42ºC for 45 seconds and kept on ice for 10 min before it is plated on 

LB/agar plate with 50 µg/mL ampicillin and cultured overnight at 37ºC. Several colonies 

were picked, amplified and plasmids were purified. The plasmids bearing the light chain 

library were cut with SwaI and a co expression plasmid pQLinkN- NGFP-LC-lib-link-HC-

CGFP is constructed by LIC, in a similar way to wild type. 

 

 

Figure 8: Cartoon representing the design of degenerate oligo nucleotides. Light chain is divided into six 

overlapping fragments, LC1 – LC6. Overlapping regions between adjacent fragments is marked with lines. PCR 

of the overlapping degenerate nucleotides generates the random mutant library of LC. 
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Table 1:  

The degenerate oligonucleotides designed for library generation. 

Primer LC1 : 5’GGAACAGT GAG CTC cag tct gtg  3’ 

 

Primer LC2: 

5’ GGAACAGT GAG CTC cag tct gtg  ctg act  cag cca ccg tca gcg tct  ggg 

acc ccg ggg cag cgc gtc acc atc tct  tgc act ggg agc agc tcc aac atc ggg gca ggt 

tat gat gta cac 3’ 

 

Primer LC3: 

 5’ atc ggg gca ggt tat gat gta cac tgg tat  cag cag ctc cca gga acg gcc  ccg aaa 

ctc ctc atc tat  ggc aac aac aat cgg ccg tca gg  3’ 

 

Primer LC4: 

 5’ ggc aac aac aat cgg ccg tca ggg gtc cct  gac cgt  ttc tct ggc tcc aag tct  ggc 

acc tca gcc tcc ctg gcc atc agt  ggg ctc cgg tcc gag gat  gag gct gat tat  

tac tgc gca gcc tgg gac gac agc3' 

 

Primer LC5: 

 5’  GCATATCCGGTACCCTATTA tag gac cgt  cag ct t  ggt  tcc tcc gcc gaa  tac 

gcg agt tcc act cag gct gtc gtc cca ggc tgc gca3’ 

 

Primer LC6:  

5’ GCATATCCGGTACCCTATTA tag ga  3’ 

 

 The underlined regions with blue colored residues of the fragment are 

considered to have 94% correct and 2% of each other base. 

Eg: Primer LC1 

5’ GGAACAGT GAG CTC cag tct gtg 3’ 

                Region considered being mutated     (2% per base) 

                                   cag tct gtg 

 

 

 

‘C’ means 

C= 94% 

G=  2% 

A=  2% 

T=  2% 

 

‘A’ means 

A= 94% 

C=  2% 

G=  2% 

T=  2% 
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Representa tion of muta t ion frequency i s  shown for  the  fi r s t  two bases  of the  sequence .  

Simi lar mutat ion rate  was  fol lowed for  a l l  the bases  in  the under l ined regions !!  

 Letters in light blue highlight and underlined were the variable regions considered for including 2% mutation. 

Letters in small case black color were the CDR regions. CDR regions were kept constant without any mutation. 

Letters in upper case black color were the extra nucleotides included for introducing flanking restriction sites 

which help for sub-cloning the library fragments into pQLinkN plasmid. Italics represent the overlapping 

regions between the adjacent primers. 

3.5.4 Detecting in vivo reassembly of GFP-scFv Wild Type fragments 
 

The multi gene plasmid coding for both the wild type (WT) fused genes NGFP-LC and HC-

CGFP was transformed by thermal shock adding 1 µL of each plasmid of the pair to 50 µL of 

calcium competent E. coli ER2566. 

The transformed mixture was spread onto plates LB plates containing 100 µg/mL ampicillin 

and 10 µM of IPTG. The plates were incubated for 16 h at 37ºC and then taken out and left at 

RT during fifteen days. The appearance and maturation of green fluorescence in the colonies 

over time was detected and followed placing the plates on a Dark Reader DR45M non-UV 

blue light transilluminator (Clare Chemical Research, Inc, Dolores, Co) with light emission 

between 420 and 500 nm. Avoiding any external light, pictures were taken using a digital 

CCD camera.  

 

3.5.5 Detecting in vivo reassembly of GFP-scFv Light chain lib fragments 
and screening of mutants 
 

The multi gene plasmids coding for the fused gene NGFP-LC-lib fragments and WT HC-

CGFP was transformed by thermal shock to 50 µL of chemical competent E. coli ER2566. 

The transformed mixture was spread onto several LB plates with 50 µg/mL of ampicillin, 10 

µM IPTG. The plates were incubated 16 h at 37ºC and then taken out and left at RT during 

five days. The appearance and maturation of green fluorescence in the colonies over time was 

detected and followed placing the plates on a Dark Reader to rank the colonies manually. 

3.5.6 Expression of scFv in other E.coli strains 
 

There could be a limitation for expression of protein in a particular strain. As no green 

colonies were observed in E.coli ER2566, we tried to express GFP fused scFv protein in two 

other strains. The two strains were BL21*PLysS and BL21 Gold. The wild type and library 

carrying multi gene pQLinkN plasmid was transformed into two strains and screened in a 

similar way to E.coli ER2566.  
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3.5.7 SDS-PAGE analysis of expression levels 
 

SDS-PAGE was used to evaluate whether the absence of green fluorescence is due to poor 

expression or poor reconstitution of fusion protein, due to steric constraints or other problems. 

 

The co expression plasmid containing NGFP-LC and HC-CGFP was transformed into E.coli 

ER2566 and BL21* PLysS. LB/ampicillin plates were used for plating E.coli ER2566 

transformed cells. LB/ampicillin/chloramphenicol plates were used for BL21* pLysS 

transformed culture. Colonies obtained were checked for the presence of NGFP-LC-linker-

HC-CGFP construct by BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, 

Foster City, CA). The five plasmids that were confirmed for the presence of construct were 

transformed into two different cell types selected. An overnight culture from each strain was 

grown in 5 ml LB in 15 ml falcon tubes for 16 h. 1 ml was inoculated into 100 ml of LB 

medium in a 500 ml culture flask and cultured in shaking incubator. At an OD of 0.6, the 

bacterial cells were induced by 0.4 mM IPTG during 4 h of incubation. Seven other culture 

flasks of LB medium were set up, five with un-induced transformed cells where no IPTG was 

added, one with un-induced empty cells (cells without the plasmid and no IPTG) and the 

other with induced empty cells (cells without plasmid induced with IPTG). 1 ml of the 

medium was collected in an eppendorf tube and cells were harvested at 13000 rpm for 1 min. 

The rest of the medium is collected in a centrifuge tube and harvested. Pellet is stored in 15 

ml falcon tube and stored at -4ºC. Cells harvested in 1.5 ml eppendorf tube were disrupted in 

100 µL of 8 M urea and diluted with 200 µL Tris buffer pH 8.0. 10 µL of the sample is mixed 

with 20 µL of 2X loading buffer. About 10 µL of sample was loaded onto the SDS-PAGE gel 

and run as described above (4.2) 

 

Band pattern obtained was compared among induced empty cells, induced transformed cells, 

un-induced empty cells and un-induced transformed cells of the two strains. SDS gel was 

examined for the presence of distinct bands of approximately 23 kDa and 30 kDa Mw in 

induced transformed cells. 
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3.5.8 Plating of transformed cells onto LB-Amp plates with varying 
concentrations of IPTG 
 

As SDS-PAGE gel gives a hint in problems with expression profile of GFP fused scFv 

fragments, the transformed bacterial cells were checked for its expression at different 

concentrations of IPTG (1.25, 2.5, 5, 10, 20, 40 and 80 µM). Three IPTG concentrations 

above and below the standard concentration (10 µM) were tested. 

3.6 Cloning and expression of Dissected GFP-scFv Wild Type 
Fragments into pET plasmids 

3.6.1 Constructing pET11a-NGFP-LC and pET9a-HC-CGFP plasmid 

 

A single chain antibody fragment expression and reconstitution was not successful with 

pQLinkN plasmid for a reason which is still unclear. So we tried to clone the scFv fragments 

into pET plasmids, an old and successful method employed before. 

 

DNA fragments LC and HC-CGFP were amplified separately through PCR from vector 

pQLinkN-NGFP-LC plasmid and pQLinkN-HC-CGFP (GenScript USA Inc.). Primers used 

for amplification of both scFv fragments (Table 2) were particularly designed in order to have 

specific restriction sites flanking the gene segment for subsequent cloning into vectors 

pET11a-link-GFP, carrying the residues 1 to 157 (GFPN) of dissected GFP gene 
(Ghosh, 2000)

  

and pET9a plasmids respectively (Figure 9). The possible spatial conformation of reassembly 

interaction tested was GFPN-LC + HC-CGFP  

Table 2: Primers used to amplify the scFv fragments and cloning into pET plasmids 

Construct Primers Restriction site 

NGFP_LC-125-246 start 5’-GCAGAACAATCTCGAGCCAGTCTGTGCTGACTCAGC-3’ XhoI 

NGFP_LC-125-246 stop 5’-GGTAATATGGATCCTTATAGGACCGTCAGCTTGGTTC-3’ BamHI 

CGFP-(HC-1-125) start 5’-GCAGAACAATCATATGGAGGTGCAGCTGTTGGAG-3’ NdeI 

CGFP-(HC-1-125) stop 5’-GGTAATATGGATCCTTAGTTGTACAGTTCATCCATGCC-3’ BamHI 

Underlined bases are the annealing sequence; italics are the restriction sites and red is the sequence 

lost after enzyme digestion.  

The PCR was carried out using an Expand High Fidelity PCR system (Roche Diagnostics, 

Indianapolis, IN) in the cycle: 94ºC, 2 min; 25x (94ºC, 15 s; 58ºC for NGFP-LC/62
0
C for HC-
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CGFP, 30 s; 72ºC, 45s); 72ºC, 7 min. The PCR products were investigated in agarose gel 

electrophoresis and purified using the GFX kit. 

The plasmid pET11a-link-NGFP was first digested with XhoI (Fermentas) restriction enzyme 

for 16 hours. Later BamHI (Fermentas) was added and the plasmid was digested overnight at 

37ºC. Plasmid pET9a- Calmodulin-CGFP was digested first with NdeI (Fermentas). After 16 

h BamHI (Fermentas) was added and the double digestion occurred overnight at 37ºC 
(Lindman, 

2009)
. Doubly digested plasmids were treated with alkaline phosphatase for half an hour and 

then inactivated at 75ºC for 5 min. The amplified and purified PCR products NGFP-LC and 

HC-CGFP were digested in the same conditions according with the restriction sites flanking 

the gene sequence. No alkaline phosphatase treatment for PCR products. Each digestion is 

followed by GFX kit. Doubly digested vectors and scFv fragments were purified by gel 

electrophoresis and GFX kit. The double digestion was repeated once more in order to 

increase the fraction of digested plasmids available for ligation.  

 

Figure 9: Plasmid maps used for cloning scFv fragments into split GFP system 

The doubly digested scFv PCR fragments were ligated into the appropriate vector using T4 

DNA ligase (Fermentas) during 16 h at 16ºC. The ligations were carried out at 1:1, 1:2 and 

1:3 molar ratio of vector to insert. 3 µL of each ligation product was mixed with 40 µL of E. 

coli ER2566 calcium competent cells and kept in ice bath at least 30 min, incubated at 42ºC 

during 45 s and incubated again 10 min in ice before approximately 40 µL of solution was 

plated on LB/agar. The pET11a-NGFP-Light chain ligation products were plated in medium 

containing 50 µg/mL of ampicillin; while pET9a-Heavy chain-CGFP was added to medium 

containing 100 µg/mL of kanamycin. Several colonies from the plates grown overnight at 

37ºC were picked and amplified during at least 8 h at 37ºC in 1.5-2 mL of LB medium 

containing appropriate antibiotic. The bacteria were amplified in a 15 mL Falcon tubes laid 

down for maximal surface exposed to air during agitation at 130 rpm in an incubator. 

Amplified plasmids were recovered and purified using illustra plasmidPrep Mini Spin Kit 

(GE Healthcare Life Sciences, Uppsala, Sweden). To confirm whether the plasmids contain 

the correct gene, DNA was sequenced  with the primers included in Table 2 were used for 
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sequences harbored in the pET11a plasmid and for the pET9a plasmid together with BigDye 

Terminator v1.1 Cycle Sequencing Kit. 

3.6.2 Detecting in vivo reassembly of GFP-scFv Wild Type fragments 
 

To make competent cells harboring pET9a-HC-CGFP plasmid, the plasmids coding for 

the wild type (WT) fused genes HC 1-124-CGFP previously constructed was co-transformed 

by thermal shock adding 1 µL of each plasmid of the pair to 40 µL of calcium competent E. 

coli ER2566 (4.3).  

pET11a-NGFP-LC ligation product was transformed to E.coli ER2566 competent cells 

harboring pET9a-HC-CGFP. The transformed mixture was added to LB plates containing 50 

µg/mL of ampicillin, 100 µg/mL of kanamycin and 10 µM of IPTG. The plates were 

incubated five days at RT or 16 h at 37ºC and then taken out and left at RT during five days. 

The appearance and maturation of green fluorescence in the colonies over time was detected 

and followed as above (4.5.4). The construct GFP-Calbindin D9K was used as positive 

fluorescent reassembly. 

3.6.3 Detecting in vivo reassembly of GFP-scFv Light chain lib fragments 
and screening of mutants 
 

The plasmids coding for the fused gene NGFP-LC-lib was transformed by thermal shock to 

50 µL of chemical competent E. coli ER2566 containing pET9a-HC-CGFP plasmid. The 

transformed mixture was spread onto several LB plates with 50 µg/mL of ampicillin, 100 

µg/mL of kanamycin, 10 µM of IPTG. The plates were incubated 16 h at 37ºC and then taken 

out and left at RT during five days. The appearance and maturation of green fluorescence in 

the colonies over time was detected and followed placing the plates on the Dark Reader for 

manual ranking. 

 

3.6.4 SDS-PAGE Analysis 
 

As transformation of both the pET plasmids gave no green colonies, again a test of expression 

was done using SDS-PAGE analysis. Expression and lysis of cells was done similarly as 

described before for co- expressing pQLinkN plasmid. A comparison was done between 

induced and un-induced empty and transformed E.coli ER2566 cells. Transformed cells tested 

include the cells having plasmids, pET11a-NGFP-LC, pET11a-NGFP-peptide lib, pET9a-

HC-CGFP and pET-9a-CaM-CGFP. 
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3.6.5 Inducing expression of co-transformed E.coli ER2566 at different 
temperatures 
 

While doing SDS-PAGE analysis, a simultaneous trial was setup for inducing expression of 

co-transformed E.coli ER2566 cells at different temperatures. Transformation and plating was 

done as described before for pQLink plasmids. Plates were incubated for 16 h at 37ºC. Few of 

these plates were left for incubation at 37ºC, few at room temperature and rest at 4ºC. 

Incubation of plates was done for 10 days and monitored daily for green fluorescent colonies.  
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4. RESULTS 

4.1 DNA and Protein sequences of scFv 
 

The wild type DNA sequence of FITC8, a single chain antibody was derived from the 

reference H.Persson, 2007 and the Pubmed id ABL14156. The nucleotide sequence was 

modified to E.coli preferred codons. 

 

WT FITC8 

EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYWMSWVRQAPGKGLEWVSGISGNGGYTYFADSVKDRFTI 

SRDNSKNTLYLQMNSLRAEDTAVYYCAGGDGSGWSFWGQGTLVTVSSGGGGSGGGGSGGGGSQSVLTQPP 

SASGTPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNNNRPSGVPDRFSGSKSGTSASLAIS 

GLRSEDEADYYCAAWDDSLSGTRVFGGGTKLTVL 

 

E.coli compatible FITC8 nucleotide sequence 
 

gag gtg cag ctg ttg gag tct ggg gga ggc ttg gta cag cct ggg ggg tcc ctg cgc ctc tcc tgt gca gcc tct gga ttc acc ttt agt aac tat tgg atg 

agc tgg gtc cgc cag gct cca ggg aag gga ctg gag tgg gtc tca ggg att agt ggt aac ggt ggt tac aca tac ttc gca gac tcc gtg aag gac cgg 

ttc acc atc tcc cgt gac aat tcc aag aac acg ctg tat ctg caa atg aac agc ctg cgc gcc gag gac acg gct gtg tat tac tgt gcg gga ggt gat ggc 

agt ggc tgg tcc ttc tgg ggc caa ggt aca ctg gtc acc gtg agc agc ggt gga ggc ggt tca ggt gga ggt ggc tcc ggc ggt ggc gga tcg cag tct 

gtg ctg act cag cca ccg tca gcg tct ggg acc ccg ggg cag cgc gtc acc atc tct tgc act ggg agc agc tcc aac atc ggg gca ggt tat gat gta 

cac tgg tat cag cag ctc cca gga acg gcc ccg aaa ctc ctc atc tat ggt aac aac aat cgg ccg tca ggg gtc cct gac cgt ttc tct ggc tcc aag tct 

ggc acc tca gcc tcc ctg gcc atc agt ggg ctc cgg tcc gag gat gag gct gat tat tac tgc gcg gcc tgg gac gac agc ctg agt gga act cgc gta ttc 

ggc gga gga acc aag ctg acg gtc cta 

 Letters in red: Heavy chain; Letters in Green: Linker sequence; Letters in Blue: Light chain, Letters in yellow 

highlight represents the E.coli compatible codons which were modified for the original codons available in the WT 

sequence. 

4.2 Cloning and expression of GFP-fused scFv fragments sub-cloned 
into pQLinkN plasmid 

4.2.1 Construction of co-expression plasmid, pQLinkN-NGFP-LC-linker-HC-
CGFP 
 

In order to detect interactions between the two wt fragments of scFv (LC and HC) with the 

GFP split system, a co-expression plasmid was constructed by ligation independent cloning 

(LIC) of two different pQLinkN plasmids carrying either wt NGFP-LC or wt HC-CGFP. 

Different concentrations of EDTA (25 mM – 100 mM), different incubation times (10 min, 1 

h) and temperatures (room temperature and 16ºC) were evaluated. We found successful LIC if 

100 mM EDTA was added half way in the incubation time of mixture of cut plasmids at 16ºC 

for 1 h. The LIC product was transformed into E.coli ER2566. There were some colonies on 

LB/agar plates without antibiotics which might be due to the re-ligation of SwaI plasmid. For 

an unknown reason, LIC qualified T4 DNA polymerase was not working if the digested 

products were treated with alkaline phosphatase. There lies no specific marker for the co-
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expression pQLinkN plasmid apart from an antibiotic resistant marker, ampicillin, which was 

also present in individual pQLinkN plasmids carrying a single fragment of scFv. Individual 

colonies were picked from the LB/agar plates with ampicillin, cultured ON in 2 mL LB + 

ampicillin and plasmids prepared. Sequencing confirmed the complete construct NGFP-LC-

linker-HC-CGFP (using primers referred in 4.5.2) to be in-frame with GFP gene fragment and 

with the adequate linker region (Figure 10 and 11). 

 

 

 

Figure 10: Chromatogram of co-expressing pQLinkN plasmid. A and B represents NGFP-LC-Linker-HC-

CGFP sequence obtained with forward and reverse primer (4.5.2) respectively. 
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Figure 11: Sequence supposed to be amplified to confirm the in-frame presence of LC (blue letters) and HC 

(green letters). Text in yellow highlight represent the sequence identified from chromatogram (Figure 10) 

obtained individually either from forward or reverse primer. Text between the yellow highlight represents the 

overlapping sequence amplified by both the forward and reverse primers. Thus prove the presence of both the 

genes in- frame in pQLink plasmid. Linker residues shown in red letters, NGFP in black letters and CGFP in 

grey letters. 

 

4.2.2 Preparation of Library of Light chain 125-246 fragment 
 

To generate high affinity variants of scFv, a mutation library of light chain was constructed 

using degenerate oligo-nucleotides having 94% of correct base and 6% of any other three 

bases. Overlapping PCR of degenerate nucleotides was setup in different tubes with four 

concentrations of LC2-LC5 degenerate oligo- nucleotides. The size of PCR band obtained 

was tested by agarose gel electrophoresis. Complete light chain corresponds to a band size of 

approximately 390 bp. A band of right size was achieved at all the four different 

concentrations of intermediate primers used. However a difference in the intensity of band 

size was observed. Lowest intensity was noticed at 30 µM concentration, whereas 2 – 12 µM 

gave reasonable yield (Figure 12). Band was cut from 2, 5 and 12 µM lanes for further 

experiment. 

 

 

 

Figure 12: Agarose gel pic showing bands 

obtained by overlapping PCR of degenerate oligo 

nucleotides. Band pattern achieved for four 

different concentrations (2 µM, 5 µM, 12 µM and 

30 µM) of LC2-LC6 and blank is labeled. 

Complete light chain corresponds to a band size of 

391bp. 
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4.2.3 Detecting in vivo reassembly of scFv wild type fragments sub-cloned 
into pQLinkN plasmid 
 

The NGFP-LC-link-HC-CGFP-pQLinkN plasmid was plated on LB/ampicilin/IPTG plate and 

incubated at 37ºC for 16 h. Later the plates were incubated at room temperature and screened 

during fifteen days for presence of green fluorescent colonies on a daily basis. No green 

colored colonies were obtained. 

4.2.4 Detecting in vivo reassembly of scFv Light chain library fragments 
sub-cloned into pQLinkN plasmid and screening of mutants 
 

As the wild type plasmid did not show any green colonies, we evaluated whether higher 

affinity variants would yield successful reconstitution using a mutant library of light chain. 

The NGFP-LC lib-link-HC-CGFP-pQLinkN plasmid was screened in the same manner as 

wild type plasmid. No green colonies were observed (Figure 13). 

 

 

 

 

 

 

 

 

Figure13: Induced expression of split GFP fused protein fragments. The photograph includes a positive 

control, CD9K fragments fused to split GFP showing the green fluorescent colonies and scFv fragments fused 

to split GFP which have no green colonies. 

4.2.5 Expression of scFv in other E.coli strains 
 
Other strains of E.coli, BL21*PLysS and BL21 Gold were used to determine if the ER2566 

strain had any limitations for expression of scFv protein. The two strains were transformed 

with (NGFP-LC/NGFP-LC-lib)-link-HC-CGFP-pQLinkN plasmids and screened similar to 

E.coli ER2566. No green colonies were identified. 

4.2.6 SDS-PAGE analysis 
 
As no green fluorescence was observed with scFv wild type or light chain library, a question 

was raised whether it is because of low expression of fusion proteins or it is because of steric 

problems in reconstitution. Hence we set up a SDS-PAGE to compare the protein band 

pattern of induced and un-induced empty and NGFP-LC-link-HC-CGFP-pQLinkN 

transformed cells of three different strains. 
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We found no difference in the band pattern of induced and un-induced empty and transformed 

cells. We could not find a band specific for NGFP-LC (30kDa) and HC-CGFP (23kDa). This 

conveyed us that there could be a problem with the expression of protein which might be 

hidden in the promoter sequence. We tried to activate the promoter by using different 

concentrations of IPTG.  

 

Figure 14: SDS-PAGE test to check expression pattern of induced and un-induced E.coli ER2566 and 

BL21*PLysS cells. Lanes 1: Induced E.coli ER2566 empty cells; Lanes 2-6: Transformed and un-induced 

E.coli ER2566; Lanes 7-11: Transformed and induced E.coli transformed cells; Lanes 12: Induced empty 

BL21* PLysS cells; Lanes 13-17:  Transformed and un-induced BL21*PLysS; Lanes 18-22: Transformed and 

induced BL21*PLysS. 

4.2.7 Plating of transformed cells onto LB-Amp plates with varying 
concentrations of IPTG 
 

SDS-PAGE analysis conveyed that problems could be with the expression of protein.  

LB/agar/ampicillin plates with varying concentrations of IPTG (1.25 - 80 µM) were evaluated 

for activation of the promoter. However no green colonies were observed. 

4.3 Cloning and expression of Dissected GFP-scFv Wild Type 
Fragments into pET plasmids 

4.3.1 Constructing pET11a sub-cloned Light chain125-246 and pET9a sub-
cloned Heavy chain 1-125-CGFP plasmid 
 

To clone the scFv fragments into pET plasmids, the HC-CGFP and NGFP-LC constructs 

were extracted from pQLink plasmids by using PCR. Agarose gel analysis confirmed the 

amplified bands of right size (Figure 14). The extracted fragments were ligated into respective 

pET plasmids followed by transformation, plasmid preparation and DNA sequencing. This 

confirmed the presence of right construct. 
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Figure 15: Agarose gel analysis confirming the right size of extracted fragments, HC-CGFP: Heavy chain 

fused to CGFP; LC: Light chain 

4.3.2 Detecting in vivo reassembly of wild type GFP fused scFv fragments 
 

The E.coli ER2566 cell co-transformed with wild type scFv sub-cloned pET plasmids was 

plated on LB/agar/ampicillin/kanamycin/IPTG plate and incubated at 37ºC for 16 h. Later the 

plates were incubated at room temperature and screened during fifteen days for presence of 

green fluorescent colonies on a daily basis. No green colored colonies were obtained. 

4.3.3 Detecting in vivo reassembly of GFP-fused wt heavy chain and light 
chain library fragments and screening of mutants 
 

The E.coli ER2566 cells co-transformed with pET9a-HC-CGFP and pET11a-NGFP-LC-lib 

were plated on LB/Ampicillin/Kanamycin/IPTG plate and incubated at 37ºC for 16 h. Later 

the plates were incubated at room temperature and screened during fifteen days for presence 

of green fluorescent colonies on a daily basis. No green colored colonies were obtained. 

4.3.4 SDS-PAGE analysis 
 

The absence of green colonies might be due to either poor expression of scFv or poor 

reconstitution of split scFv fragments. To distinguish between these possibilities SDS-PAGE 

was used to evaluate expression. pET11a-NGFP-LC was expressed only in induced cells 

while no expression was observed with pET9a-HC-CGFP plasmid. pET11a-NGFP-peptide 

was expressed in both induced and un-induced cells. pET9a-CaM-CGFP was not expressed. 

None of the constructs seemed to be expressed in the cells harboring both the NGFP-LC and 

HC-CGFP constructs (Figure 16). 
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Figure 16: SDS-PAGE analysis of pET plasmid sub-cloned constructs transformed into E.coli ER2566 cells. 

Lanes 1-6 show induced colonies and Lanes 7-12 represent un-induced colonies. The order of constructs in the 

lanes is Empty cells (1, 7), pET11a-NGFP-LC (2, 8; Mw: 30.6kDa), pET9a-HC-CGFP (3, 9; Mw: 22.8kDa), 

pET11a-NGFP-Peptide (4, 10; Mw: 19.9kDa ), pET9a-CaM-CGFP (5, 11; Mw: 25kDa), pET11a-NGFP-LC  

and pET9a-HC-CGFP co-transformed into E.coli ER2566 (6, 12).  

4.3.5 Inducing expression of co-transformed E.coli ER2566 at different 
temperatures 
 

To check if temperature was a limitation for expression of protein, the co-transformed E.coli 

ER2566 cells with wild type and mutant library fragments were incubated at three different 

temperatures (37ºC, room temperature and at 4ºC) for 10 days. No green colonies were 

observed. 
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5. DISCUSSION 

 

The here presented work aims at finding high stability variants of scFv, a single chain 

antibody fragment. The project was based on the idea that the intensity of green fluorescent 

colonies formed by reconstitution of split GFP fused dissected protein fragments is correlated 

to the stability of intact protein variants. The interaction between the protein fragments 

promotes the assembly and folding of GFP and hence the chromophore development. This 

process is usually slow with split GFP alone. The idea evidently worked with a good number 

of proteins 
(Lindman, 2009, 2010). 

Hence we believed that more stable variants can be extracted using 

split GFP system. 

If the scFv is soluble and expressed in cytoplasm, this should result in reconstitution and 

activity of GFP. In this we failed to detect green fluorescence. Therefore we will propose a 

number of strategies for further development of the scFv reconstitution in the split-GFP 

system. 

5.1 DNA and protein sequence of scFv 
 

The major interest in selecting a scFv construct is because of its good number of applications. 

The recombinant antibodies, single chain fragments (scFv) have been used in both therapy 

(Chester, 1995)
 and diagnoses, and have shown advantages over conventional and monoclonal 

antibodies 
(Lorimer, 1996; Turner, 1997; Wintlow, 1991)

. Such molecules were proven to have rapid blood 

circulation, since patients treated with scFv presented good localization of the molecules only 

one hour after their injection 
(Georg, 1996)

. They also present good penetration in tissues, low 

immunogenicity in theory, low retention in the kidneys and other non-target organs, better 

penetration in target tumors, are easily constructed, have low commercial cost in large-scale 

production 
(Wintlow, 1991)

 and, moreover, it is possible to restructure them in order to improve 

their activity and production 
(Turner et al., 1997)

.  

 

As no scFv molecule of medical importance is conveniently available to work with, we 

thought to continue with a model scFv protein having a considerable stability to work with 

and here comes the FITC8. The properties studied with FITC8 can be extended to other scFv 

proteins of medical importance which could be of any help. The wild type FITC8 protein has 

been proved to be highly stabile and well expressed in E.coli 
(Griffiths, 1994; Ewert S, 2003; Steinhauer, 2002)

. 

In order to enhance the production of functional scFv, codon optimization compatible to 

E.coli was done 
(Tiwari A, 2010)

. 
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5.2 Cloning and expression of split GFP-fused scFv fragments sub-
cloned in pQLinkN plasmids 
 

To minimize problems during screening of libraries due to varying expression of library 

members after co-transformation of separate plasmids, our first approach was to use a plasmid 

which can carry two different genes in a single plasmid and is able to express both the 

constructs, the pQLinkN plasmid. The LINK sequences are the interesting regions in 

pQLinkN. Ligation independent cloning (LIC) of the two LINK sequences establishes the 

creation of co-expressing plasmid and no PCR is required. LIC makes use of 3’-5’ activity of 

T4 DNA polymerase. In principle this process is more efficient than T4 DNA ligase cloning 

as only desired product can form.  

 

When we tried LIC of two pQLinkN plasmids with individual dissected constructs, we found 

that only few colonies had the co-expressing construct. The other colonies show a re-ligated 

SwaI cut plasmid product. To prevent re-ligation of cut plasmids we tried alkaline 

phosphatase treatment. However, LIC qualified T4 DNA polymerase had problems in its 

activity when we used alkaline phosphatase, for unknown reason. Gel extraction prior to 

purification of cut plasmids increased the ratio of colonies having co-expressing construct. 

While doing ligation independent cloning it is better to try for different concentrations of 

EDTA, different temperatures for incubation of T4 DNA polymerase treated cut plasmids and 

also different concentrations of plasmid. Depending on the constructs used, improvements 

might be needed to the protocol. The possible role of EDTA could be stabilizing the non-

covalent interactions between the insert and vector till it gets repaired by bacterial host ligase 

enzyme. 

Protein expression in general is controlled by varying multitude of factors known to influence 

the process, such as aeration, IPTG concentration, temperature, medium, strain, DNA 

sequence etc. Here we examined some of the factors that might inhibit the formation of green 

fluorescent colonies. We started to look into the primary sequence of the scFv protein and 

GFP. Big dye termination sequencing confirms that the LIC product obtained is proper in 

terms of the sequence, in frame with the GFP counterparts and also with the promoter as per 

the map provided in the reference Scheich.C, 2007. There might be strain limitation for 

expression of few proteins. Hence a switch from E.coli ER2566 to BL21*PLysS and BL21 

DE3 Gold was done. BL21*PLysS strain has a highly efficient protein expression under the 

control of T7 promoter. It also contains a plasmid, pLysS, which carries the gene encoding T7 

lysozyme. T7 lysozyme lowers the background expression level of target genes under the 

control of the T7 promoter but does not interfere with the level of expression achieved 

following induction by IPTG. BL21 Gold has high transformation efficiency. In addition, the 
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gene that encodes endonuclease I (endA), which rapidly degrades plasmid DNA isolated by 

most miniprep procedures, is inactivated. However these strains were not of any help. Later 

we looked into the promoter involved and its properties. As per the reference, pQLink 

plasmid has a tac promoter, a hybrid promoter. However we could find only T5 promoter 

sequence. T5 promoter can also be induced with IPTG and it should be able to express the 

fusion proteins. Different concentrations of IPTG tried to induce the expression were also of 

not any help to produce any protein. There is likely not a problem with enough oxygen 

transfer as we used 500 ml culture flasks and shaking at 130 rpm which gives very high level 

expression of many proteins. 

5.3 Library generation of scFv Light chain fragment 
 

Random mutant library can be generated by several ways. In our project, a mutant library was 

generated using PCR of overlapping degenerate oligo nucleotides having a designed mutant 

rate. A 30 µM concentration of start and end primers with a combination of range of low 

concentrated intermediated primers (2 µM, 5 µM and 12 µM) taken in a single tube gave a 

full length mutant light chain. Error-prone PCR, an usual way used to generate mutant 

variants is actually very random. The number of mutants generated by this method is not 

assured always. At times a mutant generated might end up to a silent mutation or null 

mutation. However as the expression strategy hadn’t worked satisfactorily, we couldn’t screen 

any mutant colonies for its high affinity towards the counter partner.  

5.4 Cloning and expression of split GFP-fused scFv fragments sub-
cloned in pET plasmids 
 

As the co-expressing plasmids did not show any expression of the scFv constructs, we got 

back to work with pET plasmid system, a classical and well-expressing set of plasmids. 

Earlier pET11a-NGFP and pMRBAD-CGFP plasmids were used. This combination of 

plasmids have imbalance in the levels of expression in particular pMRBAD-CGFP has low 

expression. As mentioned before it is important to balance the expression of co-transformed 

plasmids. Therefore we tried pET9a plasmid which has high expression levels comparable to 

pET11a-link- NGFP vector. Extraction of LC and HC-CGFP construct from the pQLinkN 

plasmids was successful and cloning into pET plasmids was confirmed to be in-frame by the 

sequencing analysis. Transformed E.coli cells with calmodulin-CGFP and also HC-CGFP 

constructs had problems when kanamycin of 100 µg/ml concentration was used. A range of 

concentrations was tried to optimize the kanamycin concentration for the constructs used. 

Kanamycin of concentration 35ug/ml was found to be good as evaluated by increased number 

of the total number of colonies harboring the HC-CGFP-pET9a plasmid. As the co-



32 

 

transformed pET 11a and pET9a plasmids have different antibiotic markers, colonies were 

confirmed to have both the plasmids.  However we couldn’t find any green colonies on 

inducing with IPTG. The SDS-PAGE analysis of the individually expressed NGFP-LC-

pET11a and pET9a-HC-CGFP compared with the positive constructs show the problem could 

be with CGFP fused protein constructs. Strangely the positive control CGFP construct, CaM-

CGFP did not show a band when treated in a similar way to all other plasmids. The HC-

CGFP construct is either not expressing at all or it is getting lost or degraded. Also the un-

induced transformed cells with positive NGFP-CaM peptide construct show a basal 

expression of the fusion protein. This could be because of the T7 promoter, a leaky promoter. 

T7 RNA polymerase is IPTG controlled and will be leaky. Media might have minute amounts 

of lactose. So the target gene is transcribed and translated already in the upgrowth. Usage of 

BL21 (DE3) pLysS or E product can switch off T7 RNA polymerase. Also addition of 1% 

glucose in medium controls the basal expression via catabolite repression 
(Robert Novy)

. Another 

thing to be noticed from SDS-PAGE gel was there is no expression of light chain in the cells 

that were co-transformed with both pET11a-NGFP-LC and pET9a-HC-CGFP plasmids. 

There could be some interference while the bacteria express both the constructs. 

5.5 Expression of scFv protein 
 
In general there are many evidences that put forward the problems involved in the expression 

of scFv proteins. One of the main problems associated with most scFvs is that they are not 

able to fold under the reducing conditions of the cell cytosol and nucleus, where most of the 

interesting targets are located. This is thought to be due to the limited stability of scFv’s after 

the two conserved disulfide bonds are reduced, as occurs in the cell cytosol 
(Biocca S, 1995)

. 

Indeed, in vitro, most of the scFv’s cannot be renatured under reducing conditions 
(Ramm K, 1999; 

Martineau P, 1999)
. To be an efficient intrabody a scFv must thus present a high in vitro stability 

(Worn A, 2000)
. Recent studies using either statistical analyses of scFv sequences 

(Visintin M, 2004)
 or 

an experimental approach 
(Ayf der Maur A, 2004)

 have shown that less than 1% of the scFv’s are 

stable enough to be high quality intrabodies and that only about 10% have a "moderate 

chance" to be functional in vivo. In addition, even if a scFv protein is indeed stable enough in 

its reduced form to be expressed and active in vivo, other parameters such as protease 

susceptibility 
(Parsell DA, 1989)

 or folding kinetics 
(Martineau P, 1999)

 may also influence the final in 

vivo fate of the protein and are critical for intrabody expression and activity 
(Auf der Maur A, 2002)

. 

FITC8 protein has two disulfide bridges which usually play an important role in protein 

structure and activity 
(Darby, 1995)

 and are required in some folding pathways 
(Schultz S, 1987) 

and for 

the stability of certain folded polypeptides
 (Vanhove, 1997; Stewart, 1998)

. 

In E. coli, disulfide bonds occur almost in proteins secreted in the periplasm or the cell 

envelope (e.g. PhoA, OmpA) 
(Missiakkas, 1997; Raina, 1997; Rietsch, 1998)

. The disulfide oxidoreductases 
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and isomerases (Dsb chaperones) located in periplasm are involved in these processes. 

Therefore, when produced in the cytoplasm of E. coli wild-type cells, the scFv’s were found 

reduced and unfolded. Oxidized and functional scFv can be produced efficiently in the 

cytoplasm E. coli trxB and gor strain FA 113 cells. This strain has a suppressor mutation in a 

gene coding for peroxiredoxin which makes the enzyme to act as disulfide reductase. Also the 

growth rates and biomass yields of the strain are close to those obtained by E. coli wild-type 

strains 
(Jurado P, 2002)

. In this part of my project, we failed to express the scFv protein and it 

probably needs more experiments to really explain the problem.  
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6 FUTURE WORK 

 

Here we propose a number of factors to evaluate for achieving successful reconstitution of 

FITC8 - scFv in the split GFP system. 

 

1. Use different E.coli strain, which might help in a better expression of the scFv 

fragment.  Most of the protocols for expression of a scFv protein used in several labs 

include E.coli K-12, E.coli XL-1 Blue, E.coli TG-1, E.coli MRE600, E.coli JM83, E. 

coli trxB and gor strain FA 113 cells 
(Philibert P, 2007, Su-Jun,1994; Freund C, 1993; Nieba L, 1997, Jurado P, 

2002)
. 

2. Use rich medium like SOC, YT etc which might improve the bacterial growth and 

expression of protein. Few protocols also had M9 medium, I*A medium to culture 

bacteria expressing a scFv protein 
(Nieba L, 1997, Su-Jun, 1994, Philibert P, 2007)

. 

3. Check the expression of bacteria in liquid culture at lower temperatures. 

4. Check expression in bacteria having the pET plasmid constructs on LB plates with 

varied concentrations (1-100 µM) of IPTG. 

5. Also the expression of bacteria in liquid culture can be tested at various IPTG 

concentrations. 

6. It could also be that the expression of CGFP constructs is very low to detect on SDS-

PAGE. Western blot analysis with an antibody specific to CGFP can resolve the 

issue. 

7. The failure to observe the reconstitution may be due to steric hindrance. This might 

be resolved by optimizing linker length and composition. Vary the linkers in NGFP-

LC and HC-CGFP using quick change PCR. 

8. Steric hindrance may also be relieved by changing the orientation of the fragments in 

the split-GFP system. Try also NGFP-HC and LC-CGFP. 
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7 CONCLUSIONS 

 

 Construction of co-expressing multi gene pQLinkN plasmid is successful. The genes 

included, NGFP-LC and HC-CGFP of scFv were in-frame. 

 

 Construction of a mutant library by overlapping PCR of degenerate oligo nucleotides 

having a certain mutation rate assures better variability of the library fragments 

developed. It is a simple and easy technique. 

 

 

 Extraction of light chain and heavy chain fused CGFP fragments from pQLinkN 

plasmids is successful. 

 

 Cloning of the LC IN pET11a and HC-CGFP in pET9a was successful and in-frame. 

 

 SDS-PAGE analysis shows excellent expression of NGFP-LC from pET11a plasmid. 

 

 SDS-PAGE analysis hints a basal expression activity of pET11a plasmid. 

 

 The absence of green colonies may be due to problems with expression of protein or 

to steric hindrance which might prohibit successful reconstituion. 
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List of abbreviations 

 
Amp    Ampicillin 

AP    Alkaline phosphatase 
BiFC    Bimolecular Fluorescent Complementation 

BL21*    E.coli BL21*pLysS(DE3) 

bp    base pairs 

Cam    Chloramphenicol 
CLSM    Confocal Laser Scanning Microscopy 

dH2O    Sterile double distilled water 

dH2O    Distilled water 
DNA    Deoxyribonucleic acid 

dNTP    Deoxyribonucleotidetriphosphate 

E.coli    Escherichia coli 

EDTA    Ethylenediaminetetraacetic acid 
FITC    Fluorescein isothiocyanate 

FRET    Fluorescence resonance energy transfer 

GFP    Green fluorescent protein 
HC    Heavy chain 

HC-CGFP   Heavy chain fused to C’-Green fluorescent protein fragment 

Ig    Immunoglobulin G 
IPTG    Isopropyl β-D-1 thiogalactopyranoside 

Kan    Kanamycin 

LB    Luria broth 

LC    Light chain 
LC-lib    Random mutant library of light chain 

LIC    Ligation independent cloning 

MW    Molecular weight 
NGFP-LC   Light chain fused to N’-Green fluorescent protein fragment 

OD    Optical density 

PCR    Polymerase chain reaction 
RT    Room temperature 

scFv    Single chain antibody fragment 

SDS    Sodium dodecyl sulfate 

SDS-PAGE   Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SOC    Super optimal broth with catabolite repression 

TBE    Tris/Borate/EDTA  

Tris    tris(hydroxymethyl)aminomethane 
Wt    Wild type 

YT    Yeast extract-Tryptone 
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