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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Introduction 

Quantitative reconstruction of vegetation has been one of the primary goals in Quaternary 
palaeoecology and palynology (Sugita S., 2006). Generations of palynologists have observed that 
fossil pollen from differently sized sites represents vegetation at different spatial scales 
(Berglund, 1973; Jacobson and Bradshaw, 1981). Due to the growing need of past vegetation or 
land-cover reconstruction, there have been many different approaches and mechanisms by which 
this could be effectively handled. Among these publications are: Trajectories of land use change 
in Europe: a model-based exploration of rural features (Verburg, P.H, Berkel,  D.v., Eupen, M.v., 
& Heiligenberg, H.A.R.v., 2010), Modeling of land cover and agricultural change in Europe: 
Combining the CLUE and CAPRI-Spat approaches.(Britz W., Verburg P.H., Leip A, 2010). 

The notable one, upon which this thesis takes its first step, was proposed by M.-J. Gaillard et 
al.,(2010) and Sugita S.,(2006). Regional Estimates of VEgetation Abundance from Large Sites 
(REVEALS ) was introduced by M.-J. et al., (2010) as a new method to discussing issues related 
to pollen-based reconstruction of the past land-cover. The REVEALS model estimates the 
percentage cover of species or taxa (group of species, genera, group of genera, or family). The 
species and taxa correspond to the pollen types that can be identified using pollen-morphological 
characteristics. REVEALS requires raw pollen counts, site radius, pollen productivity estimates 
(PPEs), and fall speed of pollen (FS) to estimate vegetation cover in percentages, (M.-J. et al., 
(2010)). The REVEALS model-based land-cover reconstruction has been demonstrated to 
provide better estimates of regional vegetation or land-cover changes than the traditional use of 
pollen percentages. For instance, the effectiveness of REVEALS has been empirically tested and 
shown to be satisfactory in southern Sweden (Hellman et al., 2008a, b). 

In this thesis, we aim at using bio-climate variables to model land-cover of the past. Plants grow 
under different climatic conditions and on different soil types. The different plants that we have 
at any point in time give us the different land-cover types. Such land-cover types may include; 
Open-land, Summer-green and Ever-green among others. The data on the different plants were 
measured by Plant Functional Types (PFTs). The PFTs give us the group of plants that grow at 
any point on the globe. These PFTs were proposed by M.-J. Gaillard et al.,(2010). Among others, 
we attempt to build a regression model to verify the relationship between these PFTs and the bio-
climate variables, the combinations of the PFTs and bio-climates that make up the land-cover 
types. We will use the models to predict PFT values for Europe using the REVEALS data. 

The LPJ (Lund Potsdam Jena) – GUESS (General Ecosystem Simulator) model (LPJ-GUESS, 
Smith et al., 2001) is a dynamic, process-based vegetation model optimized for application 
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across a regional grid that simulates vegetation dynamics based on climate data input. It 
represents landscape and stand-scale heterogeneity and, by resolving horizontal and vertical 
vegetation structure at these scales, more adequately accounts for the biophysical properties that 
influence regional climate variability. 

Finally, we will compare our predicted PFTs using the simplified regression models to those of 
REVEALS and LPJ-GUESS. 

 

1.2 OUTLINE 

In Chapter one, we give a brief statement of the problem that we attempt to deal with. The main 
focus is on land-cover modeling using bio-climate variables. The approach is based on multiple 
linear regressions. We again give a concise description of the data and the background to their 
collection. Among the goals of this work is to verify how important bio-climate variables are in 
determining the PFTs.  

Chapter two deals with models of the individual PFTs. This is where we construct multiple linear 
regressions for the ten PFTs using the bio-climate variables as covariates. We estimate the model 
parameters using the Least Squares principles and then assess the model assumptions using 
graphical residual analysis.  

The third chapter deals with composite models. Here the ten PFTs will be grouped into three 
land-cover types: Evergreen canopy, Summer-green canopy and Open-land. As in chapter two, 
we fit regression models for these three land surface types. Then again, we apply the Least 
Squares Principles to estimate the model parameters. The plots of the residuals will be produced 
to assess how the models fit the data.  

In the final chapter, we apply the models to the REVEALS and LPJ-GUESS datasets. Here we 
make predictions with the models for the individual PFTs as well as using the composite models. 
Again we compare our predicted PFTs using the simplified regression models and the 
REVEALS data to the original PFTs from REVEALS and LPJ-GUESS. Our conclusions will be 
deduced from these comparisons at the end.  
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1.3 Data description and Background 

This thesis uses data from the methods proposed by M.-J. Gaillard et al., (2010) in discussing 
issues related to pollen-based reconstruction of the past land-cover. We have data on bio-climate 
variables from the project; LAND cover-CLIMate interactions (LANDCLIM)  in NW Europe 
during the Holocene. These bio-climate variables date back to 1901-1950.  The LANDCLIM  
results were expected to provide crucial data to assess Anthropogenic Land Cover Change 
(ALCC ) estimates for a better understanding of the land surface-atmosphere interactions (M.-J. 
Gaillard et al., 2010). The Plant Functional Types (PFTs) were also proposed by M.-J. Gaillard et 
al., (2010).  

1.4 The REVEALS and LPJ-GUESS 

Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) was introduced by 
M.-J. et al., (2010) as a new method to discussing issues related to pollen-based reconstruction of 
the past land-cover. The REVEALS model estimates the percentage cover of species or taxa 
(group of species, genera, group of genera, or family). The species and taxa correspond to the 
pollen types that can be identified using pollen-morphological characteristics. REVEALS 
requires raw pollen counts, site radius, pollen productivity estimates (PPEs), and fall speed of 
pollen (FS) to estimate vegetation cover in percentages. 
 
The REVEALS model-based land-cover reconstruction has been demonstrated to provide better 
estimates of regional vegetation/land-cover changes than the traditional use of pollen 
percentages. For instance, the effectiveness of REVEALS has been empirically tested and shown 
to be satisfactory in southern Sweden (Hell-man et al., 2008a, b). Based on this, the REVEALS 
would be used as a comparing standard for the predictions and estimations from our approach in 
modeling land-cover of the past. 
 
The LPJ (Lund Potsdam Jena) – GUESS (General Ecosystem Simulator) model (LPJ-GUESS, 
Smith et al., 2001) is a dynamic, process-based vegetation model optimized for application 
across a regional grid that simulates vegetation dynamics based on climate data input. It 
represents landscape and stand-scale heterogeneity and, by resolving horizontal and vertical 
vegetation structure at these scales, more adequately accounts for the biophysical properties that 
influence regional climate variability. LPJ-GUESS has been interactively coupled to the Rossby 
Centre Regional Atmospheric model version 3 (RCA3), (Wramneby et al., 2009) and is being 
used to study the feedbacks of climate-driven vegetation changes on climate, via changes in 
albedo, roughness, hydrological cycling and surface energy fluxes. Preliminary results suggest 
that changes in treelines, phenology of conifer versus broadleaved trees, and LAI may modify 
the future climate development, particularly in areas close to treelines and in semi-arid areas of 
Europe (Wramneby et al., 2009). 
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1.5 The Bio-climate Variables 

The table below shows the bio-climate variables. The first column shows the Bio-climates which 
would be used as the covariates in the models that will be constructed later on. In the second 
column, we have the descriptions of the bio-climates. 

Table 1: The Bio-climate Variables 

All values are calculated for period 1901 - 1950  
Bio-climate variable Description 
MAXgdd5  maximum annual amount of growing degree 

days over 5 degrees  
MINgdd5  minimum annual amount of growing degree 

days over 5 degrees  
MEANgdd5  mean annual amount of growing degree days 

over 5 degrees  
MAXmtmin  maximum monthly mean temperature of 

coldest months  
MINmtmin  minimum monthly mean temperature of 

coldest months  
MEANmtmin  mean monthly mean temperature of coldest 

months  
MAXmtmax  maximum monthly mean temperature of 

warmest months  
MINmtmax  minimum monthly mean temperature of 

warmest months  
MEANmtmax  mean monthly mean temperature of warmest 

months 
MAXamean  maximum annual mean temperature  
MINamean  minimum annual mean temperature  
MEANamean mean annual mean temperature  
MAXaprec  maximum annual mean precipitation 
MINaprec  minimum annual mean precipitation for period 
MEANaprec  mean annual mean precipitation  
MAXsawcont_upper50  maximum annual soil water content of upper 

soil layer (50 cm)  
MINsawcont_upper50  minimum annual soil water content of upper 

soil layer (50 cm)  
MEANsawcont_upper50  mean annual soil water content of upper soil 

layer (50 cm)  
MAXsawcont  maximum annual soil water content of soil 

layer (200 cm)  
MINsawcont  minimum annual soil water content of soil 

layer (200 cm)  
MEANsawcont  mean annual soil water content of soil layer 

(200 cm)  
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1.6 REVEALS and Bio-climate locations 

In figure1 we have a map showing the points on the globe where data from REVEALS and 
LANDCLIM for bio-climate variables were available. In the figure, (o) shows that reveals data 
were available,(o) shows unavailability of reveals data and (٠) indicates bio-climates points. 

 

Figure 1: Reveals and Bio-climate availability points. In the figure, (o) shows that reveals data 
were available,(o) shows unavailability of reveals data and (٠) indicates bio-climates points.  

1.7 Project Goals 

In this documentation, we aim at using bio-climate variables to model land-cover of the past. To 
this end, we will attempt to: 

a) Figure out how important bio-climate variables are in explaining PFTs. This will be done 
using regression analysis. 

b) Produce PFT estimates over Europe based on the simplified regression model and the 
REVEALS data. 

c) Predict and compare PFTs estimates from the model to those from REVEALS and LPJ-
GUESS datasets. 
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1.8 Statistical and Analytical Methods 

Regression analysis is a statistical tool for the investigation of relationships between variables. It 
is this technique that will be used in modeling the PFTs. The relationship between the PFTs and 
the bio-climate variables have been modeled using multiple linear regressions.  

1.8.1 Regression Analysis 

In statistics, regression analysis includes many techniques for modeling and analyzing several 
variables, when the focus is on the relationship between a dependent variable and one or more 
independent variables. More specifically, regression analysis helps one understand how the 
typical value of the dependent variable changes when any one of the independent variables is 
varied, while the other independent variables are held fixed. 

General linear model 

In the more general multiple regression model, there are p independent variables: 

  

where xij is the ith observation on the jth independent variable, and where the first independent 
variable takes the value 1 for all i (so  is on the line). yi is the dependent variable and ɛi is the 
noise of the ith observation. 

The least squares parameter estimates , are obtained from p normal equations. The residuals 
can be written as 

 

The normal equations are 

 

In matrix notation, the normal equations are written as 

 

Where the ij element of X is xij, the i element of the column vector Y is yi, and the j element of 

is . Thus X is n×p, Y is n×1, and is p×1. The solution is given by 
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Assumptions for regression analysis include: 

• The sample is representative of the population for the inference prediction. 
• The error is a random variable with a mean of zero conditional on the explanatory 

variables. 
• The independent variables are measured with no error.  
• The predictors are linearly independent. 
• The errors are uncorrelated, that is, the variance-covariance matrix of the errors is 

diagonal and each non-zero element is the variance of the error. 
• The variance of the error is constant across observations. 

 

1.8.2 Model selection using AIC 

Variable selection 
Which variables should be in the model? 
 
If we have a limited number (p) of independent variables we can perform all possible linear 
regressions using the 2p − 1 combinations and choose the best. This procedure quickly gets 
impossible when p is large. 

Stepwise methods 
Add (Forward selection) or remove (Backward elimination) or both (Stepwise regression) 
variables until we get a sufficiently good model. It is not guaranteed to find the best model. A 
model that explains as much of the variability as is practical is the best model (not as is possible). 
 
The AIC 
The Akaike Information Criterion (an information criterion-AIC ) has been used by many people 
in statistical model selection. It is this methodology that we used in arriving at our final models. 
Below is a brief description of the AIC as published by Akaike H.(1974). 

The Akaike information criterion is a measure of the relative goodness of fit of a statistical 
model. It was developed by Hirotsugu Akaike, under the name of "an information criterion" 
(AIC), and was first published by Akaike in 1974. It is grounded in the concept of information 
entropy, in effect offering a relative measure of the information lost when a given model is used 
to describe reality. It can be said to describe the tradeoff between bias and variance in model 
construction, or loosely speaking between accuracy and complexity of the model. 

In the general case, the AIC is 

  AIC = 2p - 2ln(L)  

where p is the number of parameters in the statistical model, and L is the maximized value of the 
likelihood function for the estimated model. 
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An alternative explanation of the AIC is given as  

Information per parameter:  

AIC(p + 1) = n ln(SS(Error) p) + 2(p + 1) −−−−    n ln n 
 
Tradeoff between small residual error and large number of parameters (SS(Error) p decreases and p + 1 
increases with p. The best model is the one with the smallest AIC. Tends to give too large models. 
Given a set of candidate models for the data, the preferred model is the one with the minimum 
AIC value, Akaike (1974). 

The first step was to build a regression model for the PFTs. All the bio-climate variables were 
included in the model as covariates. Then the AIC was used to arrive at the final models. 
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CHAPTER 2 

MODELING THE PLANT FUNCTIONAL TYPES (PFTs) 

2.1 The PFTs 

In this section, we give a brief description of the PFTs that would be modeled as a function of the 
bio-climate variables. The table below shows the PFTs. In columns one to three, we have PFTs, 
Defintion of the PFTs and Plant taxa or Pollen morphological types respectively.  

PFT PFT Definition Plant taxa/Pollen-morphological 

types 

TBE1 Shade-tolerant ever-
green trees 

Picea 

TBE2 Shade-tolerant ever-
green trees 

Abies 

IBE Shade-intolerant 
ever-green trees 

Pinus 

TSE Tall shrub evergreen 
trees 

Juniperus 

IBS Shade-intolerant 
summer-green trees 

Alnus, Betula, Corylus, Fraxinus, Quercus 

TBS Shade-tolerant 
summer-green trees 

Carpinus, Fagus, Tilia, Ulmus 

           TSD Tall shrub summer-
green trees 

                              Salix 

LSE Low ever-green 
shrub 

Calluna 

GL Grassland-All herbs Cyperaceae, Filipendula, Plantago lanceolata, 
Plantago Montana, Plantago media, Poaceae, 

Rumex p.p. mainly R.acetosa and R. 
acetosella/Rumex acetosa-t 

AL Agricultural land Cereals(Secale excluded)/ Cerealia-t, Secale 
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Some images of the plants that belong to each category of the PFTs 

2.1.1 TBE1 

 

                      Norway spruce 

 

 

The plant functional type (PFT) in this 
category covers the plants called PICEA 
ABIES. This plant is called by others as 
Norway spruce. The picture to the left is one 
example of the plants that belong to the PFT 
called TBE1. The TBE1 therefore comes from 
shade tolerant, boreal, evergreen  plants (Picea 
abies) 

 

2.1.2TBE2 

 

                Fagus sylvatica  

The plant functional type (PFT) in this 
category covers the plants called ABIES 
ALBA. The picture to the left is one example 
of the plants that belong to the PFT called 
TBE2.  

 

2.1.3 IBE 

 

                          Skots pine 

 

PINUS SYLVESTRIS(Skots pine) with 
common names such as Tall(Swedish), 
Furu(Norwegian), Pino Silvestre(Italian, 
Spanish),Skovfyr(Danish), and Manty(Finnish) 
among others, is the main plant in this category 
of the PFTs. It is shade intolerant evergreen 
coniferous tree that releases pollen in mid to 
late spring (Farjon A, 2005); (Steven, H.M, & 
Carlisle, A, 1959, facsimile reprint 1996) 
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2.1.4 IBS 

 

Fraxinus Ornus(Manna ash or South 
European Flowering Ash) is the main tree in 
this group of our PFT classification which we 
called IBE. It is a species of Fraxinus native 
to Southern Europe and southwestern Asia 
(Rushforth, K., 1999) 

                                 Manna ash 

 

2.1.5 TBS 

 

                  Fagus sylvatica 

 

 

Shade tolerant, temperate, summergreen 
plants .Examples : Acer spp, Carpinus 
betulus, Fagus sylvatica, Tilia cordata, Ulmus 
glabra 

 

 

 

 

                       

2.1.6 TSE 

 

Tall shrub, evergreen (Juniperus communis) 

 

                 Juniperus communis 
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2.1.7 TSD 

 

Tall shrub, summer-green (Salix spp.) 

 

                 salix spp leaves                           

 

2.1.8 LSE 

 

Low shrubs, evergreen (Empetrum 
nigrum, Calluna vulgaris). These are 
ever-green plants. 

 

                              empetrum nigrum 

 

2.1.9 GL 

 

                                    kentucky blue grass 

Here we have grasses (herbs, C3 
grasses). 

Examples are Kentucky blue grass , 
Tall fescue grass and  Ryegrass 

 

 

2.1.10AL (Agricultural land)  

 

                      Wheat grass        

The PFTs in this group come from 
agricultural land (AL). So they are mainly 
from food crops, for instance wheat grass. 
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2.2 Plant Functional Types (PFTs) Models 

We assumed that there exists a linear relationship between the PFTs and the bio-climate 
variables. Thus the model takes the form 

 

Thus, i= number of observations (n= 174) and p= independent variables ( 21 bio-climate 
variables) 

where T denotes the transpose, so that xi
T
β is the inner product between vectors xi and β. 

These n equations can be written in vector form as 

 

where 

 

y is a vectors of dependent variables, X is design matrix. 

In matrix notation, the normal equations are written as 

(XTX)�� = XTy 

The solution is given as  

 

�� = (XTX)-1XTy 
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2.2.1 Estimated model parameters 

After fitting a linear regression to the PFTs using the bio-climate variables as covariates, and 
using Least Squares to estimate the model parameters, the results are presented in the table 
below. The figures in the brackets are the standard errors of the resulting estimates in each cell. 
The rows show the bio-climate variables and the columns show the PFTs. The cells containing 
zeros means that those Bio-climate variables are not important to the corresponding PFTs. In 
other words, the zeros show that those covariates were not present in the models. 
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 TSE TSD LSE GL AL 

Intercept 0.023(0.031) 0.0077(0.026) 0.56(0.23) 1.5(0.35) 0.23(0.093) 

MAXgdd5  0 -0.000028(0.000016) 0 0 0 

MINgdd5 -0.000078(0.000038) 0 0 0.00074(0.00039) -0.00048(0.00013) 

MEANgdd5 0.00012(0.000048) 0.000036(0.000021) 0 -0.00082(0.00038) 0.00063(0.00017) 

MAXmtmin 0 0 0 0 0.018(0.0071) 

MINmtmin 0 0 0.019(0.0079) 0 0 

MEANmtmin 0.0092(0.0020) 0 0 0 0 

MAXmtmax 0.0064(0.0025) 0.0049(0.0026) 0 0 0 

MINmtmax 0 0 0 0 0.091(0.017) 

MEANmtmax 0 -0.0063(0.0034) -0.028(0.019 0 -0.084(0.014) 

MAXamean -0.024(0.0053) 0 0 0 -0.058(0.016) 

MINamean 0 0 0 0 0 

MEANamean 0 0 0.1(0.062) 0 0 

MAXaprec 0.000027(0.0000072) 0.0000091(0.0000060) -0.00014(0.000060) 0.000068(0.000043) 0 

MINaprec -0.000051(0.000016) -0.000021(0.000012) 0.00029(0.00013) 0 0 

MEANaprec 0 0 0 0 0 

MAXsawcont_upper50 0.15(0.11) 0.15(0.058) 0 -1.4(0.53) 0 

MINsawcont_upper50 0 0 0 0 0 

MEANsawcont_upper50 -0.27(0.12) -0.092(0.044) -1.5(0.49 3.8(0.82) 0 

MAXsawcont -0.2(0.10) -0.086(0.053) 0 0 0.34(0.15) 

MINsawcont 0 0.045(0.027) 0 0 0 

MEANsawcont 0.33(0.11) 0 1.3(0.46) -3(0.72) -0.39(0.12) 

Table 2: Estimated model parameters. The first column shows the covariates whiles the rest of the 
columns show the PFTs. In each cell we have the parameter estimate and its standard error (in parenthesis). The 
cells containing zero indicate that those covariates were not significant in the model for that PFT. 

 TBE1 TBE2 IBE IBS TBS 

Intercept 0.62(0.19) -0.098(0.16) -0.13(0.16) -0.4(0.024) -0.087(0.13) 

MAXgdd5 0.0004(0.00012) 0.00025(0.000097) 0 -0.00024(0.00013) -0.00017(0.00010) 

MINgdd5 0.0008(0.00023) 0.00029(0.00016) -0.00013(0.000072) 0 -0.00032(0.00017) 

MEANgdd5 -0.0016(0.00031) -0.00042(0.00022) 0 0.00035(0.00018) 0.00035(0.00010) 

MAXmtmin 0 -0.026(0.010) 0 0.032(0.016) -0.025(0.011) 

MINmtmin -0.019(0.011) -0.029(0.0081) 0.011(0.0065) 0 0 

MEANmtmin -0.046(0.027) 0.027(0.019) 0 0.086(0.019) -0.039(0.014) 

MAXmtmax 0 -0.029(0.012) 0 0 0 

MINmtmax -0.14(0.030) 0 0 0.066(0.038) -0.057(0.022) 

MEANmtmax 0.13(0.0032) 0 0.04(0.018) 0.073(0.038) 0 

MAXamean 0 0 -0.12(0.043) 0 0.16(0.044) 

MINamean 0 0 -0.084(0.037) 0 0.15(0.034) 

MEANamean 0.16(0.041) 0.046(0.024) 0.16(0.060) -0.26(0.043) -0.17(0.054) 

MAXaprec 0 0.00011(0.000070) -0.00025(0.000087) 0 0 

MINaprec 0 0 -0.00049(0.00014) 0 0 

MEANaprec 0 -0.00016(0.00011) 0.00068(0.00019) 0 -0.000059(0.000029) 

MAXsawcont_upper50 -0.34(0.24) 0 0 1.1(0.34) 0 

MINsawcont_upper50 0 -0.35(0.16) 0.80(0.29) -0.71(0.39) -1.0(0.27) 

MEANsawcont_upper50 0 0 -1.1(0.27) -0.84(0.40) 2.3(0.39) 

MAXsawcont 0 -0.66(0.22) 0.89(0.23) 0 0 

MINsawcont 0 0 -0.47(0.28) 0.83(0.37) 1.2(0.30) 

MEANsawcont 0.33(0.20) 1.1(0.25) 0 0 -2.3(0.41) 
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Figure 2: Plot of the estimated parameters: The plot shows the bio-climate variables on the 
horizontal axis and the estimated model parameters on the vertical axis for the various PFT 
models. From this plot, we see a similar relationship between the PFTs and the bio-climate 
variables for all the models among the annual soil water content of the upper soil layers (50cm 
and 200cm). 

From table 2, we can write the models for each of the 10 PFTs as a function of the bio-climate 
variables. For instance, the regression equation for say TBE1 could be stated as  

TBE1= 0.62 + 4.0x10-4Maxgdd5 + 8.0x10-4Mingdd5 – 1.6x10-3Meangdd5-1.9x10-2MINmtmin – 
4.6x10-2MEANmtmin – 1.4x10-1MINmtmax + 1.3x10-1MEANmtmax + 1.6x10-1MEANamean – 
3.4x10-1 MAXsawcont_upper50 + 3.3x10-1MEANsawcont. 

The meaning of this relationship is that, a per unit increase in the bio-climate variable with a positive 
coefficient will increase the plant functional type, in this case, TBE1 by the magnitude of the 
corresponding coefficient while a negative coefficient will reduce it as such when the other variables are 
held fixed. The equation also shows that, only ten of the twenty-one bio-climate variables were significant 
in the model for TBE1.  

It is important also to note that, the magnitude of the coefficients of the covariates cannot be compared 
due to different scales of measurement. In fact, looking at the model as stated above for TBE1, we cannot 

say that the effect of MEANsawcont is higher than Maxgdd5 in the model even though the 
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coefficients suggest that. The reason is due to differences in the measurement scale. However, 
we can compare the same bio-climate in different models. For instance, we can say TBE1 has 
stronger dependence on MEANamean than TBE2 as shown by the coefficients 0.16 and 0.046 

respectively. 

 

The rest of the models could be written in a similar manner. 

 

2.2.2 Residual Analysis 

The residuals of a fitted model are the differences between the responses observed at each 
combination of values of the explanatory variables and the corresponding prediction of the 
response computed using the regression function. Mathematically, the definition of the residual 
for the ith observation in the data set is written  

   
 

Model validation is possibly the most important step in the model building sequence. Often the 
validation of a model seems to consist of nothing more than quoting the R2 statistic from the fit 
(which measures the fraction of the total variability in the response that is accounted for by the 
model). Unfortunately, a high R2value does not guarantee that the model fits the data well. Use 
of a model that does not fit the data well cannot provide good answers to the underlying 
engineering or scientific questions under investigation. 

There are many statistical tools for model validation, but the primary tool for most process 
modeling applications is graphical residual analysis. Different types of plots of the residuals from 
a fitted model provide information on the adequacy of different aspects of the model. Numerical 
methods for model validation, such as the R2 (coefficient of determination) statistic, are also 
useful, but usually to a lesser degree than graphical methods. Graphical methods have an 
advantage over numerical methods for model validation because they readily illustrate a broad 
range of complex aspects of the relationship between the model and the data. Numerical methods 
for model validation tend to be narrowly focused on a particular aspect of the relationship 
between the model and the data and often try to compress that information into a single 
descriptive number or test result. 

In our models, we have assumed that the εi are normally distributed with mean zero and a 

constant variance. Thus εi ≈ N(0, I��) and independent. 
 

ei = ���....	
�, Iσ�= 
σ�	 ⋯ 0⋮ ⋱ ⋮0 ⋯ σ�� and 0 = ��....��. Thus I= (n × n identity matrix) 
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We assess how good our models fit the data by checking the assumption of normality of the 
residuals. We expect the residuals to be approximately normally distributed with mean zero and 
a constant variance. This is satisfied if the points of the Q-Q plot (Quantiles –Quantiles plot) lie 
in a straight line. The plot of the residuals should also show no patterns and scatter around zero 
and the density plot should be bell-shaped. 

We take the model for TBE1 as an example. 

 

Figure 3: The Residuals and Q-Q plots of TBE1.The figure shows the three different plots of the 
residuals and the Q-Q plot.  

The residuals (top left of figure3), residuals plotted against fitted values show some structural 
inadequacies and the presence of outliers. Also the residuals plot shows that the variance may not 
constant across all observations as assumed. However, the scatter plot of the residuals shown in 
figure 5 below show somewhat no pattern and the normality is also quite clear from the Q-Q 
plot. We conclude that the model is somehow good since the assumptions about the residuals are 
quite satisfied. The density plot as shown below is also bell-shaped as we expect it to be.  

An important observation is the outliers. Outliers may have effect on the estimates from a given 
dataset. However, we did not take into account any significant effects on our models. Their 
inclusion or exclusion may not have much effect since they are just a few as compared to the size 
of the dataset. It would have been necessary to formally test using Cook’s Distance or other tests. 

We therefore attribute the outliers to the dataset. This might have probably happened from faulty 
measurements or wrong coding of the data which are common errors in practice.   
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Figure 4: Density plot of TBE1. 

 

Figure5: Residuals plot of TBE1 
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Figure 6: Residuals and Q-Q plot of GL model. In the figure below we show the residuals and 
the QQ plots of the GL model. 
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Figure 7: Density plot of GL model. 

 

 

 

Figure 8: Residuals of GL model. Shows no pattern and also scattered somewhat evenly 
around zero 

 

The residuals and density plots for the rest of the PFTs are shown in the APPENDIX A. Some of 
them look quite good.  

 

 



 Modeling Land-Cover using bio-climate variables 

 22  

 

Chapter 3 

Composite Models 

In Chapter two, the individual PFTs were modeled and the results presented in Table 2. It was 
seen that bio-climate variables are indeed important for PFTs.  

In this Chapter, we attempt to model land-cover using the bio-climate variables. The ten PFTs 
were grouped into three land-surface types which we call land-cover types by M.-J. Gaillard et 
al.(2010).  

The table below shows how the groupings were done. In columns one to four, we have PFTs, 
Definition of the PFTs, Plant taxa or Pollen morphological types and Land surface respectively. 
The Ever-green tree canopy is made up of TBE1, TBE2, IBE and TSE plant functional types. In 
terms of plant taxa, the Ever-green tree canopy is made of Picea, Abies, Pinus and Juniperus 
which are all Ever-green trees. Summer-green tree canopy is also made up of PFTs such as the 
IBS, TBS and TSD. The third land surface which is Open-land comprises of the PFTs LSE, GL 
(grass-land) and AL (agricultural land). 
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Table 3.1 Grouping of PFTs into Land-Cover types. First column shows the PFTs, second 
shows PFT definitions, third shows Plant taxa or pollen-morphological types and the forth 
shows the Land-surface/land-cover. 

 

PFT 

 

 

PFT Definition 

Plant taxa/Pollen-

morphological types 

 

Land surface 

 

TBE1 

 

 

Shade-tolerant ever-
green trees 

Picea  

 

 

 

Ever-green Tree 
Canopy 

TBE2 

 

 

Shade-tolerant ever-
green trees 

Abies 

IBE  

Shade-intolerant 
ever-green trees 

Pinus 

TSE Tall shrub ever-
green trees 

Juniperus 

IBS  

Shade-intolerant 
summer-green trees 

Alnus,Betula, Corylus, Fraxinus, 
Quercus 

 

 

Summer-green Tree 
Canopy TBS  

Shade-tolerant 
summer-green trees 

Carpinus, Fagus,Tilia, Ulmus 

TSD  

Tall shrub summer-
green trees 

 

Salix 

LSE Low ever-green 
shrub 

Calluna  

 

 

Open-Land 

GL  

Grassland-All herbs 

Cyperaceae, Filipendula, Plantago 
lanceolata, Plantago Montana, 

Plantago media, Poaceae, Rumex 
p.p. mainly R.acetosa and R. 
acetosella/Rumex acetosa-t 

AL Agricultural land-
cereals 

Cereals (Secale excluded)/ Cerealia-
t, Secale 
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3.1 The Land covers 

The PFTs were grouped into Evergreen Tree canopy, Summer-green Tree canopy and Open land 
as seen in Table 3.1. Using a similar approach as in chapter 2, a multiple linear regression model 
was then fitted to these land-cover types using the bio-climate variables as covariates. 

Specifically, 

Three vectors of land surface were formed by combining the PFTs as follows. 

Ever-green = TBE1 + TBE2 + IBE + TSE 

Summer-green = IBS + TBS +TSD  

Open-Land = LSE + GL + AL 

In matrix notation, the model could be written as  

 

Where 

 

y is a vectors of the dependent variables and X is design matrix. 

In matrix notation, the normal equations are written as 

(XTX)�� = XTy 

The solution is given as  

 

�� = (XTX)-1XTy 
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After fitting the model, the estimated parameters are shown in the table below. 

Covariates EVERGREEN SUMMERGREEN OPENLAND 

Intercept -1.1(0.032) -0.32(0.24) 2.2(0.39) 

MAXgdd5 0.00044(0.00018) -0.00052(0.00019) 0 

MINgdd5 0.0011(0.00040) -0.00049(0.00033) -0.00064(0.00043) 

MEANgdd5 -0.0019(0.00056) 0.001(0.00039) 0.00079(0.00055) 

MAXmtmin -0.043(0.020) 0 0 

MINmtmin -0.051(0.0094) 0 0.0089(0.0059) 

MEANmtmin 0 0 0 

MAXmtmax 0 0 0 

MINmtmax -0.16(0.055) 0 0.14(0.056) 

MEANmtmax 0.14(0.066) 0 -0.2(0.067) 

MAXamean 0 0.24(0.068) 0 

MINamean 0 0.17(0.057) 0 

MEANamean 0.19(0.045) -0.4(0.12) 0 

MAXaprec -0.00024(0.00016) 0 0 

MINaprec -0.00039(0.00028) -0.00016(0.000081) 0 

MEANaprec 0.00061(0.00037) 0 0 

MAXsawcont_upper50 0 2.2(0.62) -0.87(0.41) 

MINsawcont_upper50 0.81(0.55) -1.1(0.45) 1.6(0.62) 

MEANsawcont_upper50 -2(0.83) 0 0 

MAXsawcont 0 -1.1(0.71) 0 

MINsawcont -0.99(0.60) 1.5(0.54) -1.2(0.66) 

MEANsawcont 2.5(0.86) -0.94(0.49) 0 

Table 3.2 Estimated model parameters: Column1 shows covariates, columns 2, 3 and 4 show 
the estimated model parameters for Ever-green, Summer-green and Open-land respectively.  The 
values in parenthesis show the standard error of corresponding estimate in each cell. 
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3.2 The Regression Equations 

From the table 3.2, we state the equations as follows for the three land surface types. 

Evergreen = -1.1 + 4.4×10-4 MAXgdd5 +1.1×10-3 MINgdd5- 1.9×10-3 MEANgdd5- 4.3×10-2 
MAXmtmin – 5.1×10-2 MINmtmin - 1.6×10-1 MINmtmax + 1.4×10-1 MEANmtmax + 1.9×10-1 
MEANamean – 2.4×10-4 MAXaprec – 3.9×10-4 MINaprec + 6.1×10-4 MEANaprec + 8.1×10-1 
MINsawcont_upper50 – 2.0 MEANsawcont_upper50 – 9.9×10-1 MINsawcont + 2.5MEANsawcont 

Summergreen  = -3.2×10-1  - 5.2×10-4 MAXgdd5 – 4.9×10-4 MINgdd5 + 1.0×10-3 MEANgdd5 + 

2.4×10-1 MAXamean  + 1.7×10-1 MINamean – 4.0×10-1 MEANamean - 1.6×10-4 MINaprec + 2.2 
MAXsawcont_upper50 – 1.1MINsawcont_upper50– 1.1MAXsawcont  + 1.5MINsawcont  - 9.4×10-1 
MEANsawcont 

Openland = 2.2 – 6.4×10-4 MINgdd5+7.9×10-4 MEANgdd5 + 8.9×10-3 MINmtmin  + 1.4×10-1 
MINmtmax – 2.0×10-1 MEANmtmax – 8.7×10-1 MAXsawcont_upper50 –1.6 MINsawcont_upper50 – 
1.2 MINsawcont  

 

From the models above, we find that evergreen land surface depends on 14 of the 21 bio-climate 
variables. These bio-climate variables include annual amount of growing degree days over 5 
degrees , monthly mean temperature of coldest months, mean temperature of warmest months, 
annual mean temperature , annual mean precipitation and annual soil water content of soil layer 
(50 cm). This is what one should expect since these factors are very important for the plants that 
fall in this category.  

Similarly, summer-green canopy depends on these factors as well. As per the model, summer-
green depends on only 12 of our 21 bio-climate variables. 

Open-land on the other hand depends on just 8 out of the covariates. An important bio-climate 
variable to all the land surface types is the annual soil water content of soil layer (50 cm). This 
affirms the fact that some plants mostly need water in the soil to grow while others do not 
depending on the sign of the estimated parameter of the bio-climate variable in question. 
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3.3 The Plot of Estimated model parameters. 

In the following figures, we plot the parameters from the models against the covariates to 
compare the estimates from the models.  

 

Figure 3.1 Plot of Estimated Parameters against Bio-climates (Ever-green canopy) 

 

 

Figure 3.2 Plot of Estimated Parameters against Bio-climates (Summer-green canopy) 
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Figure 3.3 Plot of Estimated Parameters against Bio-climates (Open-land).  

 

 

Figure 3.4 Plot of Estimated Parameters against Bio-climates. The vertical axis shows the 
estimated model parameters of Ever-green (blue), summer-green (red) and open-land (green). 
On the horizontal axis we see the bio-climate variables. 
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3.4 Residual Analysis 

In the figure 3.5 below we present the residuals, QQ-plot and the density of the residuals for the 
three composite models.  

mod

el 

RESIDUALS DENSITY PLOT QUANTILES PLOT 

EVE

RGR

EEN 

SU
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N 
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NLA

ND 

  

Figure 3.5: Column 1 shows the models, column 2 shows the residuals, column 3 shows the density plot and 

column 4 shows the Q-Q plots. 
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3.4.1 Ever-green Canopy 

 

Fig. 3.6(a) Residuals (top left), Standardized residuals (top right), Q-Q plot (bottom left) and 
Cook’s distance of the Evergreen model. 

 

Figure 3.6(b) Residuals plot of Ever-green model. 
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3.4.2 Summer-green Canopy 

 

Fig. 3.7(a) Residuals (top left), Standardized residuals (top right), Q-Q plot (bottom left) and 
Cook’s distance (bottom right) of the Summer-green model. 

 

 

Figure 3.7(b) Residuals on index scale of Summer-green model. 
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3.4.3 Open-land 

 

Fig. 3.8(a) Residuals (top left), Standardized residuals (top right), Q-Q plot (bottom left) and 
Cook’s distance (bottom right) of the Ever-green model. 

 

 

Figure 3.8(b) Residuals of Open-land model. 
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3.5 Summary and Discussions 

Most significant covariates 

It is important to note that most of the bio-climate variables were present in some of the models. 
So in conclusion, we say that the plant functional types (PFTs) depend on the bio-climate 
variables. Naturally, one should expect plant to grow well when they have their favorable 
climatic conditions. These include, soil water content, temperature, precipitation among others.  

Interactions of covariates 

In fitting the models, we first introduced the interaction terms of the covariates. However, those 
terms were seen to be insignificant. 

Regression equations 

Regression analysis is a statistical tool for the investigation of relationship between variables. It 
is this technique that has been used throughout in this thesis. In the end, the following regression 
equations were arrived at for the three different land surfaces which we called land-cover. 
Evergreen canopy depends on more bio-climate variables than the other two.  

Ever-green = -1.1 + 4.4×10-4 MAXgdd5 +1.1×10-3 MINgdd5- 1.9×10-3 MEANgdd5- 4.3×10-2 
MAXmtmin – 5.1×10-2 MINmtmin - 1.6×10-1 MINmtmax + 1.4×10-1 MEANmtmax + 1.9×10-1 
MEANamean – 2.4×10-4 MAXaprec – 3.9×10-4 MINaprec + 6.1×10-4 MEANaprec + 8.1×10-1 
MINsawcont_upper50 – 2.0 MEANsawcont_upper50 – 9.9×10-1 MINsawcont + 2.5MEANsawcont 

Summer-green  = -3.2×10-1  - 5.2×10-4 MAXgdd5 – 4.9×10-4 MINgdd5 + 1.0×10-3 MEANgdd5 + 

2.4×10-1 MAXamean  + 1.7×10-1 MINamean – 4.0×10-1 MEANamean - 1.6×10-4 MINaprec + 2.2 
MAXsawcont_upper50 – 1.1MINsawcont_upper50– 1.1MAXsawcont  + 1.5MINsawcont  - 9.4×10-1 
MEANsawcont 

Open-land = 2.2 – 6.4×10-4 MINgdd5+7.9×10-4 MEANgdd5 + 8.9×10-3 MINmtmin  + 1.4×10-1 
MINmtmax – 2.0×10-1 MEANmtmax – 8.7×10-1 MAXsawcont_upper50 –1.6 MINsawcont_upper50 – 
1.2 MINsawcont  

The nature of the relationship between the PFTs and the bio-climates were similar to those 
between the Land-cover types and the bio-climate variables. That is to say, the individual PFTs 
models were somewhat consistent with the composite models. 

The Residuals 

The residuals plots as seen in the figures above (figure 3.6, 3.7 and 3.8) look quite good. The 
index plot of the residuals shows no pattern and are scattered around the zero line. This shows 
that they somewhat random in nature.  



 Modeling Land-Cover using bio-climate variables 

 34  

 

The residuals plotted against the fitted values also look somehow good. An important 
observation is the outliers. We see outliers in all the plots for the PFTs and the composite 
models. However we did not take into account their effect on the estimated model parameters. 
This is clearly not a good idea though. The density plots of the residuals do not deviate much 
from normality. This is seen in the Q-Q plots as well. It is however important to note the 
skewness which is seen in the density plots most especially in the individual PFTs models.  

All these notwithstanding, we will proceed to use these models in the next chapter where we do 
the predictions for the PFTs for the entire Europe. 
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Chapter 4 

Predictions and Comparisons 

In chapter two, we fitted models for the individual PFTs. We extended our models by grouping 
the PFTs into three, namely: Evergreen, Summer-green and Open-land, and fitted models for 
them in Chapter three. The nature of the relationship was seen to be similar for the individual 
PFTs and the composite models. As a next step in our modeling sequence, we predict the PTFs 
based on our models and the REVEALS data.  

Regression models predict a value of the Y (dependent) variable given known values of the X 
(independent) variables. Prediction within the range of values in the dataset used for model-
fitting is known informally as interpolation. Prediction outside this range of the data is known as 
extrapolation. Performing extrapolation relies strongly on the regression assumptions. The 
further the extrapolation goes outside the data, the more room there is for the model to fail due to 
differences between the assumptions and the sample data or the true values. 

It is generally important that when performing extrapolation, one should accompany the 
estimated value of the dependent variable with a prediction interval that represents the 
uncertainty. Such intervals tend to expand rapidly as the values of the independent variable(s) 
moved outside the range covered by the observed data. 

In figure 4.1 we have a map showing the points on the globe where data from REVEALS and 
LANDCLIM for bio-climate variables were available. In the figure, (o) shows that REVEALS 
data were available, (o) shows unavailability of reveals data and (٠) indicates bio-climates 
points. 

 

 

Figure 4.1: REVEALS and Bio-climate variables availability points 
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4.1 REVEALS 
In constructing our regression models for the PFTs, we used the REVEALS dataset. The 
REVEALS dataset has 178 points as we see in the figure 4.1 above. For these locations, 4 did not 
have data on bio-climate variables and so were deleted from the dataset giving a total of 174 data 
points for our model building. These locations have data on PFTs and bio-climate variables.  
 
4.1.1 Plot of PFTs from REVEALS 
In the figure below, we see the plot of the PFTs from the REVEALS dataset. These plots are 
from the original measurements of PFTs from the REVEALS model-based land-cover 
reconstruction. The PFTs abundance increases from blue to red as shown in figure 4.2. 
 
 

 
 
Figure 4.2 PFT plots from REVEALS 
 
 
4.1.2 Composite plots from REVEALS 
The figure 4.3 below shows the land-covers from the REVEALS data. As already stated in 
chapter 3, the PFTs were grouped into three land-cover types namely: Ever-green, Summer-
green and Open-land. These plots were made using the original PFTs from REVEALS. 
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Figure 4.3 Land-covers from REVEALS. Top left shows the composite plot of Ever-green 
canopy, top right shows Summer-green canopy and lower shows Open-land. 
 
4.2 LPJ-GUESS 
 
The LPJ (Lund Potsdam Jena) – GUESS (General Ecosystem Simulator) model (LPJ-GUESS, 
Smith et al., 2001) is a dynamic, process-based vegetation model optimized for application 
across a regional grid that simulates vegetation dynamics based on climate data input. It 
represents landscape and stand-scale heterogeneity and, by resolving horizontal and vertical 
vegetation structure at these scales, more adequately accounts for the biophysical properties that 
influence regional climate variability. LPJ-GUESS has been interactively coupled to the Rossby 
Centre Regional Atmospheric model version 3 (RCA3), (Wramneby et al., 2009) and is being 
used to study the feedbacks of climate-driven vegetation changes on climate, via changes in 
albedo, roughness, hydrological cycling and surface energy fluxes. Preliminary results suggest 
that changes in treelines, phenology of conifer versus broadleaved trees, and LAI may modify 
the future climate development, particularly in areas close to treelines and in semi-arid areas of 
Europe (Wramneby et al., 2009). The LPJ-GUESS dataset contains the data on PFTs values as 
well as bio-climate variables.  
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4.2.1 Plots of PFTs from the LPJ-GUESS 

In the figure 4.4, we show the PFTs plots from the LPJ-GUESS dataset. The plots look similar to 
those from the REVEALS dataset. It is important to state that the plots were made using the raw 
PFT values from the LPJ-GUESS dataset. 

 

Figure 4.4 Plots of PFTs from LPJ-GUESS. 

4.2.2 Composite plots from LPJ-GUESS 

The images in figure 4.5 show the composite plots from the LPJ-GUESS dataset. These plots 
were made using the original values of PFTs in the LPJ-GUESS dataset. The PFT abundance 
increases from blue to red as shown in the legend of figure 4.5. 
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Figure 4.5 Land-covers from LPJ-GUESS. Top left shows the composite plot of Ever-green 
canopy, top right shows Summer-green canopy and the down one shows Open-land. 
 
 
4.3 Predicted PFTs and Land-covers 

Regression models predict a value of the Y (dependent) variable given known values of the X 
(independent) variables. Prediction within the range of values in the dataset used for model-
fitting is known informally as interpolation. In this section we predict the PFTs using the 
simplified regression models. First, we make predictions for the individual PFTs and secondly, 
for the composite models. It is worth noting that these predictions are done within the dataset 
used for the modeling: REVEALS Dataset.  

4.3.1 Predicted Plant Functional Types (PFTs) 

The figure below shows the predicted PFTs using the simplified regression models for the 
individual PFTs and the REVEALS data. Using the regression models in Table 2 and the 
REVEALS dataset, we made predictions for the individual PFTs. Here we used the PFTs as the 
dependent variables and the bio-climate variables as independent. The predictions are therefore 
the conditional expectations of the PFTs given the bio-climate variables. 
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Figure 4.6 Predicted PFTs using the REVEALS dataset. 

4.3.2 Estimated Land-covers 

In this section, we attempt to estimate the land-covers: Ever-green, Summer-green and Open-
land. To this end, we use the land-cover or composite regression models in Table 3.2 and the 
REVEALS dataset. So we compute the expected land-covers conditional on the bio-climate 
variables from the REVEALS dataset. Specifically, E(Ever-green|Bio-climates), , E(Summer-
green|Bio-climates), E(Open-land|Bio-climates) were computed.  

Figure 4.7 shows the estimated land-covers based on the simplified regression models in Section 
3.1 and the REVEALS dataset.  
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Figure 4.7 Estimated land-covers from REVEALS. Ever-green (top-left), Summer-green (top-
right) and Open-land (down). 

4.4 Comparisons 

To validate our models, we now have to make comparative analysis using our estimates based on 
the Reveals dataset, the REVEALS and LPJ-GUESS. We will make the comparison using some 
of the individual PFT models and the composite models. 

4.4.1 Criteria for Comparisons 

In this section, we compare our PFT predictions using the regression models and the original 
PFT values from REVEALS. The idea employ here is to find the point-wise difference between 
our predicted PFT values and the original PFT values from REVEALS and normalized with the 
standard errors of the predicted PFT. That is at all locations where we have the REVEALS data, 
we compute the quantity: 

������������  !�"�#$%���%�&���'���  

where 
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 Estimatedpft = predicted PFT value using the model and the REVEALS data. 

REVEALSpft = original PFT value from the REVEALS. 

SE(est)pft  = Standard error of the estimated PFT.  

If this quantity is less than -1.96, then our predicted PFT at this location is considered too small 
compared to the original PFT value from the REVEALS and a value greater than 1.96 indicates 
too big estimate from our model. A value within the interval [-1.96, 1.96], indicates good 
estimate from the model.  

Thus, our estimates compare well with REVEALS if the condition below is satisfied.  

-1.96 ≤ 
()�*+,�-./0123(4(567/017(&-)�'/01  ≤ 1.96 

4.4.2 Predicted PFTs and original PFTs from REVEALS. 

Applying the criteria in section 4.4.1, we compared our predicted PFTs and REVEALS PFTs 
using the individual PFT models TBE1, TBE2 and GL.  

In the figures shown below, the red(o) indicates that our estimate at that location was either too 
large or too small compared to the original PFT value in the REVEALS data whiles green(o) 
indicates good estimates.   

 

 

Figure 4.8 Comparing Reveals PFTs and Estimated PFTs using TBE1. Green points (o) show 
locations where we have good comparisons and Red points (o) show locations where we have 
bad comparisons.  
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Figure 4.9 Comparing Reveals PFTs and Estimated PFTs using TBE2. Green points (o) show 
locations where we have good comparisons and Red points (o) show locations where we have 
bad comparisons.  

  

 

Figure 4.10 Comparing Reveals PFTs and Estimated PFTs using GL. Green points (o) show 
locations where we have good comparisons and Red points (o) show locations where we have 
bad comparisons.  
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Figure 4.11 Comparing Reveals PFTs and Estimated PFTs using AL. Green points (o) show 
locations where we have good comparisons and Red points (o) show locations where we have 
bad comparisons.  

From the figures (4.8, 4.9, 4.10 and 4.11), we find that predicted PFTs using TBE1 model 
compares quite well with the original PFTs from REVEALS. The comparison gets better with 
TBE2 where much more green points are seen from the figure 4.9. We however find a very 
strange results looking at the comparison with GL (Grass-land) model where we see only one 
location that gives good estimate of PFT. The case is completely different looking at the 
estimates from AL (Agricultural land).  

The rest of the plots for this comparison are included in the Appendix. Most of them give good 
PFT estimates as compared to the Reveals PFTs. 

 

4.4.3 Predicted and REVEALS PFTs by Land-cover models.  

In section 4.4.2 we looked at how well our predicted PFTs compare with those from the 
REVEALS using the individual PFT models. In this section we want to do a similar comparative 
analysis using our composite models or the Land-cover models: Ever-green, Summer-green and 
Open-land. From the figures (4.12, 4.13 and 4.14), we find that Ever-green model gives much 
better PFT predictions compared to Summer-green and Open-land models.  
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Figure 4.12 Comparing Reveals PFTs and Estimated PFTs using Ever-green model. Green points 
(o) show locations where we have good comparisons and Red points (o) show locations where 
we have bad comparisons. No REVEALS data at black locations (o). 

 

 

 

Figure 4.13 Comparing Reveals PFTs and Estimated PFTs using Summer-green model. Green 
points (o) show locations where we have good comparisons and Red points (o) show locations 
where we have bad comparisons. No REVEALS data at black locations (o). 

 



 Modeling Land-Cover using bio-climate variables 

 46  

 

 

Figure 4.14 Comparing Reveals PFTs and Estimated PFTs using Open-land model. Green points 
(o) show locations where we have good comparisons and Red points (o) show locations where 
we have bad comparisons. No REVEALS data at black locations (o).  

4.4.4 Predicted PFTs and LPJ-GUESS PFTs 

In section 4.4.3, we predicted PFTs using the simplified Land cover models and the REVEALS 
dataset. It turned out that Ever-green model gives good PFTs predictions at most locations 
compared to Summer-green and Open-land models. It is important to state that, we made 
interpolation in section 4.4.3, which is making predictions within the dataset used for model 
fitting.  

In this section however, we make extrapolation: making predictions outside the dataset used for 
model fitting. We used the REVEALS dataset to fit the models and now we want to apply the 
models to the LPJ-GUESS dataset.  

After making the predictions, we used the criteria as explained in section 4.4.1. Thus as follows: 

Estimatedpft = predicted PFT value using the model and the LPJ-GUESS data. 

SE(est)pft  = Standard error of the predicted PFT.  

GUESSpft = original PFT in GUESS dataset. 

 

-1.96 ≤ 
()�*+,�-./01289(77/017(&-)�'/01  ≤ 1.96 
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For all the locations, we deem our estimates as good compared to the original PFT if the above 
condition is satisfied.  

Any value of   
()�*+,�-./01289(77/017(&-)�'/01  outside the interval [-1.96, 1.96] means that we either have 

very small or too big estimate compared to the original PFT at that location. That is 95% 
confidence interval around the estimated PFTs at all the locations on the map. In the figures 
below, the green points show that our estimates are good and the red points show otherwise.  

 

Figure 4.15 Comparing GUESS PFTs and Estimated PFTs using Ever-green model. Green points 
(o) show locations where we have good comparisons and Red points (o) show locations where 
we have bad comparisons. 

 

Figure 4.16 Comparing GUESS PFTs and Estimated PFTs using Summer-green model. Green 
points (o) show locations where we have good comparisons and Red points (o) show locations 
where we have bad comparisons.   
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Figure 4.17 Comparing GUESS PFTs and Estimated PFTs using Open-land model. Green points 
(o) show locations where we have good comparisons and Red points (o) show locations where 
we have bad comparisons.  

From the figures (4.15, 4.16 and 4.17), it is evident that Ever-green and Open land models make 
better predictions than Summer-green model.  

Similar plots were made using the individual PFT models. Most of them do not give good 
predictions using the LPJ-GUESS dataset. See Appendix B. So the appropriate models to be used 
for predicting PFTs are the Land-cover or composite models because they fit the data better than 
the individual PFT models. 
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CHAPTER 5 

CONCLUSIONS 

It has been seen that bio-climate variables are important to the growth of plants thereby helping 
plants to produce pollens. Naturally, one should expect plants to grow well when they have their 
favorable climatic conditions. These include, soil water content, temperature, precipitation 
among others. Given a reliable and well-measured data of bio-climate variables and plant 
functional types, it is possible to use regression analysis to obtain a linear relationship between 
these plant functional types and the bio-climate variables. Consequently, it is feasible to model 
land-cover when we have bio-climate variables and plant functional types using multiple linear 
regression. 

The land-cover models, gave better predictions when applied to the LPJ-GUESS dataset. For 
example, the Ever-green and open land models gave comparatively good estimates of PFTs.  

Regression analysis is a statistical tool for the investigation of relationship between variables. It 
is this technique that was used in fitting the models. It has proven to be effective in explaining 
the relationship between the PFTs and the bio-climate variables. However, other statistical 
technique such as Logistic regression could have equally been used. 

Future Work 

Using a Spatial Model to evaluate the spatial structure that is left in the residuals.  

PFT model output from LPJ-GUESS is 0.5 degree grid and PFT from REVEALS at the modern 
time window (the last 100 years) and at the spatial scale of 1 degree grid. 
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