Modeling Land-Cover using bio-climate variables

CHAPTER 1
INTRODUCTION AND BACKGROUND

1.1 Introduction

Quantitative reconstruction of vegetation has bm@nof the primary goals in Quaternary
palaeoecology and palynology (Sugita S., 2006).eGdions of palynologists have observed that
fossil pollen from differently sized sites repretsevegetation at different spatial scales
(Berglund, 1973; Jacobson and Bradshaw, 1981).t&tlee growing need of past vegetation or
land-cover reconstruction, there have been marfigrdiit approaches and mechanisms by which
this could be effectively handled. Among these altlons are: Trajectories of land use change
in Europe: a model-based exploration of rural fesg{Verburg, P.H, Berkel, D.v., Eupen, M.v.,
& Heiligenberg, H.A.R.v., 2010), Modeling of landwer and agricultural change in Europe:
Combining the CLUE and CAPRI-Spat approaches.(BkitzVerburg P.H., Leip A, 2010).

The notable one, upon which this thesis takesrgs $tep, was proposed by M.-J. Gaillard et
al.,(2010) and Sugita S.,(2006). Regional Estimatag=getation Abundance from Large Sites
(REVEALS) was introduced by M.-J. et al., (2010) as a neathiod to discussing issues related
to pollen-based reconstruction of the past lancecovhe REVEALS model estimates the
percentage cover of species or taxa (group of spegenera, group of genera, or family). The
species and taxa correspond to the pollen typeésémabe identified using pollen-morphological
characteristics. REVEALS requires raw pollen cousite radius, pollen productivity estimates

(PPEs), and fall speed of pollen (FS) to estimatgetation cover in percentages, (M.-J. et al.,
(2010)). TheREVEALS model-based land-cover reconstruction has been migtnated to
provide better estimates of regional vegetatiolad-cover changes than the traditional use of
pollen percentages. For instance, the effectiveoeREVEALS has been empirically tested and
shown to be satisfactory in southern Sweden (Hellgtaal., 2008a, b).

In this thesis, we aim at using bio-climate vario model land-cover of the past. Plants grow
under different climatic conditions and on differenil types. The different plants that we have

at any point in time give us the different land-eotypes. Such land-cover types may include;
Open-land, Summer-green and Ever-green among offteesdata on the different plants were
measured by Plant Functional Types (PFTs). The BiEsus the group of plants that grow at
any point on the globe. These PFTs were proposad.fy Gaillard et al.,(2010). Among others,
we attempt to build a regression model to verify tblationship between these PFTs and the bio-
climate variables, the combinations of the PFTsl@netlimates that make up the land-cover
types. We will use the models to predict PFT valeegurope using the REVEALS data.

TheLPJ (Lund Potsdam Jena)GUESS(General Ecosystem Simulator) moddPJ-GUESS
Smith et al., 2001) is a dynamic, process-basedtatgn model optimized for application
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across a regional grid that simulates vegetatioradycs based on climate data input. It
represents landscape and stand-scale heteroganditypy resolving horizontal and vertical
vegetation structure at these scales, more addgaatounts for the biophysical properties that
influence regional climate variability.

Finally, we will compare our predicted PFTs usihg simplified regression models to those of
REVEALS and LPJ-GUESS.

1.2 OUTLINE

In Chapter one, we give a brief statement of tloblem that we attempt to deal with. The main
focus is on land-cover modeling using bio-climaéeiables. The approach is based on multiple
linear regressions. We again give a concise ddsuripf the data and the background to their
collection. Among the goals of this work is to ¥efow important bio-climate variables are in
determining the PFTSs.

Chapter two deals with models of the individual BFThis is where we construct multiple linear
regressions for the ten PFTs using the bio-climat@bles as covariates. We estimate the model
parameters using the Least Squares principleshemdassess the model assumptions using
graphical residual analysis.

The third chapter deals with composite models. Heeden PFTs will be grouped into three
land-cover types: Evergreen canopy, Summer-greeopgaand Open-land. As in chapter two,
we fit regression models for these three land serfgpes. Then again, we apply the Least
Squares Principles to estimate the model param@tkesplots of the residuals will be produced
to assess how the models fit the data.

In the final chapter, we apply the models to the/EELS and LPJ-GUESS datasets. Here we
make predictions with the models for the individB&Ts as well as using the composite models.
Again we compare our predicted PFTs using the siimplregression models and the

REVEALS data to the original PFTs from REVEALS drflJ-GUESS. Our conclusions will be
deduced from these comparisons at the end.
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1.3 Data description and Background

This thesis uses data from the methods propos&dl 3y Gaillard et al., (2010) in discussing
issues related to pollen-based reconstructioneop#st land-cover. We have data on bio-climate
variables from the project; LAND cover-CLIMate iraetions LANDCLIM) in NW Europe
during the Holocene. These bio-climate variablds 8ack tdl901-1950 TheLANDCLIM

results were expected to provide crucial data $essAnthropogenic Land Cover Change
(ALCC) estimates for a better understanding of the tamthce-atmosphere interactions (M.-J.
Gaillard et al., 2010). The Plant Functional Ty@deBETs) were also proposed by M.-J. Gaillard et
al., (2010).

1.4 The REVEALS and LPJ-GUESS

Regional Estimates of VEgetation Abundance frongeaBites REVEALS) was introduced by
M.-J. et al., (2010) as a new method to discussisiges related to pollen-based reconstruction of
the past land-cover. The REVEALS model estimategp#rcentage cover of species or taxa
(group of species, genera, group of genera, oryaniihe species and taxa correspond to the
pollen types that can be identified using pollerqphological characteristics. REVEALS

requires raw pollen counts, site radius, pollerdpotivity estimates (PPEs), and fall speed of
pollen (FS) to estimate vegetation cover in perages.

TheREVEALS model-based land-cover reconstruction has been mignabed to provide better
estimates of regional vegetation/land-cover chatiys the traditional use of pollen
percentages. For instance, the effectiveness of B has been empirically tested and shown
to be satisfactory in southern Sweden (Hell-maal.e2008a, b). Based on this, the REVEALS
would be used as a comparing standard for the gireds and estimations from our approach in
modeling land-cover of the past.

TheLPJ (Lund Potsdam Jena)GUESS(General Ecosystem Simulator) moddPJ-GUESS
Smith et al., 2001) is a dynamic, process-basedtatgn model optimized for application
across a regional grid that simulates vegetatioradycs based on climate data input. It
represents landscape and stand-scale heteroganditpy resolving horizontal and vertical
vegetation structure at these scales, more addgaatounts for the biophysical properties that
influence regional climate variability. LPJ-GUES&sHeen interactively coupled to the Rossby
Centre Regional Atmospheric model versioliREA3), (Wramneby et al., 2009) and is being
used to study the feedbacks of climate-driven \&get changes on climate, via changes in
albedo, roughness, hydrological cycling and suraeergy fluxes. Preliminary results suggest
that changes in treelines, phenology of conifesugebroadleaved trees, and LAl may modify
the future climate development, particularly inaarelose to treelines and in semi-arid areas of
Europe (Wramneby et al., 2009).
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1.5 The Bio-climate Variables

The table below shows the bio-climate variables fittst column shows the Bio-climates which
would be used as the covariates in the modelsatiidte constructed later on. In the second
column, we have the descriptions of the bio-clirmate

Table 1: The Bio-climate Variables

All values are calculated for period 1901 - 1950

Bio-climate variable

Description

MAXgdd5

maximum annual amount of growing degres
days over 5 degrees

MINgdd5 minimum annual amount of growing degree
days over 5 degrees

MEANgdd5 mean annual amount of growing degree da
over 5 degrees

MAXmtmin maximum monthly mean temperature of
coldest months

MINmtmin minimum monthly mean temperature of
coldest months

MEANmMtmin mean monthly mean temperature of coldes]
months

MAXmtmax maximum monthly mean temperature of
warmest months

MINmtmax minimum monthly mean temperature of
warmest months

MEANMtmax mean monthly mean temperature of warme
months

MAXamean maximum annual mean temperature

MINamean minimum annual mean temperature

MEANamean mean annual mean temperature

MAXaprec maximum annual mean precipitation

MINaprec minimum annual mean precipitation foriper

MEANaprec mean annual mean precipitation

MAXsawcont_upper50

maximum annual soil water conté upper
soil layer (50 cm)

MINsawcont_upper50

minimum annual soil water conhtd upper
soil layer (50 cm)

MEANsawcont_upper50

mean annual soil water corgeapper soil
layer (50 cm)

MAXsawcont maximum annual soil water content af so
layer (200 cm)

MINsawcont minimum annual soil water content af so
layer (200 cm)

MEANsawcont mean annual soil water content of lsgiér

yS

st

(200 cm)
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1.6 REVEALS and Bio-climate locations

In figurel we have a map showing the points orgtbbe where data from REVEALS and
LANDCLIM for bio-climate variables were availabli the figure, ¢) shows that reveals data
were available() shows unavailability of reveals data andliqdicates bio-climates points.
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Figure 1: Reveals and Bio-climate availability gsirin the figure,d) shows that reveals data

were available;{) shows unavailability of reveals data andlibdicates bio-climates points.

1.7 Project Goals

In this documentation, we aim at using bio-climateables to model land-cover of the past. To

this end, we will attempt to:

a) Figure out how important bio-climate variables @arexplaining PFTs. This will be done

using regression analysis.
b) Produce PFT estimates over Europe based on thdifsthpegression model and the

REVEALS data.
¢) Predict and compare PFTs estimates from the modhbse from REVEALS and LPJ-

GUESS datasets.
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1.8 Statistical and Analytical Methods

Regression analysis is a statistical tool for theestigation of relationships between variables. It
is this technique that will be used in modeling B#€l's. The relationship between the PFTs and
the bio-climate variables have been modeled usinlgypte linear regressions.

1.8.1 Regression Analysis

In statistics, regression analysis includes maaolrigjues for modeling and analyzing several
variables, when the focus is on the relationshigvben a dependent variable and one or more
independent variables. More specifically, regrassinalysis helps one understand how the
typical value of the dependent variable changesweimy one of the independent variables is
varied, while the other independent variables atd fixed.

General linear model
In the more general multiple regression model alaeep independent variables:
Yi = 51Tiy + BoTio + - - - + BpTip + €y

wherex;; is thei™ observation on thjé‘f independent variable, and where the first indepetd

variable takes the value 1 for allso 51 is on the liney;is the dependent variable ands the
noise of thé™ observation.

The least squares parameter estimJes , are abbfaomep normal equations. The residuals
can be written as

PN

€ =Yi— STin — -+ — BpTip.

The normal equations are

n

P . n
ZZXinik'Bk - ZXijyis j=1,...,p.
i=1 k=1 i=1
In matrix notation, the normal equations are wnitbes
(X' X)3=X"Y,
Where thej element o is x;j, thei element of the column vectdfris y;, and thg element ot

is -‘31'. ThusX isnxp, Yisnx1, and‘.B igox1. The solution is given by

B=(X"X)"X"Y.
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Assumptions for regression analysis include:

- The sample is representative of the populatiorttferinference prediction.

- The error is a random variable with a mean of peraditional on the explanatory
variables.

« The independent variables are measured with no.erro

- The predictors are linearly independent.

« The errors are uncorrelated, that is, the variamme@riance matrix of the errors is
diagonal and each non-zero element is the variahttes error.

« The variance of the error is constant across obsens.

1.8.2 Model selection using AIC

Variable selection
Which variables should be in the model?

If we have a limited numbép) of independent variables we can perform all gmedinear
regressions using tf# — 1 combinations and choose the best. This procediickly gets
impossible wherp is large.

Stepwise methods

Add (Forward selection) or remove (Backward eliio) or both (Stepwise regression)
variables until we get a sufficiently good modeisinot guaranteed to find the best model. A
model that explains as much of the variabilitysapriactical is the best modabf as is possible).

The AIC
The Akaike Information Criterion (an informationterion-AlC ) has been used by many people

in statistical model selection. It is this methaxpt that we used in arriving at our final models.
Below is a brief description of the AIC as publidh®y Akaike H.(1974).

The Akaike information criterion is a measure of the relative goodness of fit dhtistical
model. It was developed Byirotsugu Akaike, under the name of "an information criterion”
(AIC), and was first published by Akaike in 197disl grounded in the concept of information
entropy, in effect offering a relative measurelad information lost when a given model is used
to describe reality. It can be said to describetithéeoff between bias and variance in model
construction, or loosely speaking between accuaacycomplexity of the model.

In the general case, the AIC is
AIC =2p - 2n(L)

wherep is the number of parameters in the statistical mM@aelL is the maximized value of the
likelihood function for the estimated model.
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An alternative explanation of the AIC is given as
Information per parameter:
AIC(p+ 1)=nIn(SSError) p)+ 2(p+1)— ninn

Tradeoff between small residual error and largelmemof parameter$SS(Error) pdecreases amu+ 1
increases witlp. The best model is the one with the smallest Aléhds to give too large models.

Given a set of candidate models for the data, tefeped model is the one with the minimum
AIC value, Akaike (1974).

The first step was to build a regression modetterPFTs. All the bio-climate variables were
included in the model as covariates. Then the AHS wsed to arrive at the final models.
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CHAPTER 2

MODELING THE PLANT FUNCTIONAL TYPES (PFTs)
2.1 The PFTs

In this section, we give a brief description of BIETs that would be modeled as a function of the
bio-climate variables. The table below shows th&<fn columns one to three, we have PFTs,
Defintion of the PFTs and Plant taxa or Pollen rhotpgical types respectively.

PFT PFT Definition Plant taxa/Pollen-morphological
types
TBE1 Shade-tolerant ever- Picea

green trees

TBE2 Shade-tolerant ever- Abies
green trees

IBE Shade-intolerant Pinus
ever-green trees

TSE Tall shrub evergreen Juniperus
trees
IBS Shade-intolerant Alnus, Betula, Corylus, Fraxinus, Quercus

summer-green trees

TBS Shade-tolerant Carpinus, Fagus, Tilia, Ulmus
summer-green trees

TSD Tall shrub summer- Salix
green trees

LSE Low ever-green Calluna
shrub
GL Grassland-All herbs | Cyperaceae, Filipendula, Plantago lanceolata,

Plantago Montana, Plantago media, Poaceae,
Rumex p.p. mainly R.acetosa and R.
acetosella/Rumex acetosa-t

AL Agricultural land Cereals(Secale excluded)/ Cerealia-t, Secale
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Some images of the plants that belong to each categ of the PFTs

2.1.1 TBE1

The plant functional type (PFT) in this
category covers the plants calleBdCEA

ABIES. This plant is called by others as
Norway spruce. The picture to the left is one
example of the plants that belong to the PFT
calledTBEL1. The TBEL1 therefore comes from
shade tolerant, boreal, evergreen plaRtset
abies)

Norway spruce

2.1.2TBE2

The plant functional type (PFT) in this
category covers the plants calleBIES
ALBA. The picture to the left is one example
of the plants that belong to the PFT called
TBE2.

Fagus sylvatica
2.1.3IBE

PINUS SYLVESTRI S(Skots pine) with

common names such as Tall(Swedish),
Furu(Norwegian), Pino Silvestre(ltalian,
Spanish),Skovfyr(Danish), and Manty(Finnish)
among others, is the main plant in this category
of the PFTs. It is shade intolerant evergreen
coniferous tree that releases pollen in mid to
late spring (Farjon A, 2005); (Steven, H.M, &
Carlisle, A, 1959, facsimile reprint 1996)

Skots pine

10
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2.1.41BS

Fraxinus Ornus(Manna ashor South
European Flowering Ash is the main tree in
this group of our PFT classification which we
calledIBE. It is a species of Fraxinus native
to Southern Europe and southwestern Asia
(Rushforth, K., 1999)

Manna ash

2.1.5TBS

Shade tolerant, temperate, summergreen
plants .ExamplesAcer spp,Carpinus
betulus, Fagus sylvatica, Tilia cordata, Ulmus
glabra

Fagus sylvatica

2.1.6 TSE

Tall shrub, evergreerdniperus communis)

Juniperus communis

11
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2.1.7TSD

Tall shrub, summer-gree&dlix spp.)

salix spp leaves

2.1.8 LSE

Low shrubs, evergreeiinpetrum
nigrum, Calluna vulgaris). These are
ever-green plants.

Here we have grasses (herbs, C3
grasses).

Examples are Kentucky blue grass ,
Tall fescue grass an&yegrass

kentucky blue grass

2.1.10AL (Agricultural land)

The PFTs in this group come from
- agricultural land (AL). So they are mainly
= from food crops, for instance wheat grass.

Wheat grass

12
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2.2 Plant Functional Types (PFTs) Models

We assumed that there exists a linear relationsttyween the PFTs and the bio-climate
variables. Thus the model takes the form

Yi = ,331;’L','1+ "'+|"3p$ip+€i =X;~rﬂ+€i, 1= 1,...,71_,_

Thus, i= number of observations (n= 174) and p=®pmhdent variables ( 21 bio-climate
variables)

where” denotes the transpose, so th58 is the inner product between vectgrandp.

Thesen equations can be written in vector form as

y =XB+e,
where
U1 Xz T -0 Ty 3, €1
y = yz X = x:2 _ le .. a::g,, 8= ] e= 5-2
Y 1) \aw - am %

Y is a vectors of dependent variahleé is design matrix.
In matrix notation, the normal equations are wnithes
X™X)B =Xy

The solution is given as

B=(XX)'XTY

13
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2.2.1 Estimated model parameters

After fitting a linear regression to the PFTs usihg bio-climate variables as covariates, and
using Least Squares to estimate the model parasnéterresults are presented in the table
below. The figures in the brackets are the standawts of the resulting estimates in each cell.
The rows show the bio-climate variables and themaols show the PFTs. The cells containing
zeros means that those Bio-climate variables arenportant to the corresponding PFTs. In
other words, the zeros show that those covariages not present in the models.

14
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TBE1 TBE2 IBE IBS TBS
Intercept 0.62(0.19) -0.098(0.16) -0.13(0.16) -0.4(0.024) -0.087(0.13)
MAXgdd5 0.0004(0.00012) 0.00025(0.000097) 0 -0.00024(0.00013) -0.00017(0.00010)
MINgdd5 0.0008(0.00023) 0.00029(0.00016) -0.00013(0.000072) 0 -0.00032(0.00017)
MEANgdd5 -0.0016(0.00031) -0.00042(0.00022) 0 0.00035(0.00018) 0.00035(0.00010)
MAXmtmin 0 -0.026(0.010) 0 0.032(0.016) -0.025(0.011)
MINmtmin -0.019(0.011) -0.029(0.0081) 0.011(0.0065) 0 0
MEANmMtmin -0.046(0.027) 0.027(0.019) 0 0.086(0.019) -0.039(0.014)
MAXmtmax 0 -0.029(0.012) 0 0 0
MINmtmax -0.14(0.030) 0 0 0.066(0.038) -0.057(0.022)
MEANmMtmax 0.13(0.0032) 0 0.04(0.018) 0.073(0.038) 0
MAXamean 0 0 -0.12(0.043) 0 0.16(0.044)
MINamean 0 0 -0.084(0.037) 0 0.15(0.034)
MEANamean 0.16(0.041) 0.046(0.024) 0.16(0.060) -0.26(0.043) -0.17(0.054)
MAXaprec 0 0.00011(0.000070) -0.00025(0.000087) 0 0
MINaprec 0 0 -0.00049(0.00014) 0 0
MEANaprec 0 -0.00016(0.00011) 0.00068(0.00019) 0 -0.000059(0.000029)
MAXsawcont_upper50 -0.34(0.24) 0 0 1.1(0.34) 0
MINsawcont_upper50 0 -0.35(0.16) 0.80(0.29) -0.71(0.39) -1.0(0.27)
MEANsawcont_upper50 0 0 -1.1(0.27) -0.84(0.40) 2.3(0.39)
MAXsawcont 0 -0.66(0.22) 0.89(0.23) 0 0
MINsawcont 0 0 -0.47(0.28) 0.83(0.37) 1.2(0.30)
MEANsawcont 0.33(0.20) 1.1(0.25) 0 0 -2.3(0.41)
TSE TSD LSE GL AL
Intercept 0.023(0.031) 0.0077(0.026) 0.56(0.23) 1.5(0.35) 0.23(0.093)
MAXgdd5 0 -0.000028(0.000016) 0 0 0
MINgdd5 -0.000078(0.000038) 0 0 0.00074(0.00039) -0.00048(0.00013)
MEANgdd5 0.00012(0.000048) 0.000036(0.000021) 0 -0.00082(0.00038) 0.00063(0.00017)
MAXmtmin 0 0 0 0 0.018(0.0071)
MINmtmin 0 0 0.019(0.0079) 0 0
MEANmMtmin 0.0092(0.0020) 0 0 0 0
MAXmtmax 0.0064(0.0025) 0.0049(0.0026) 0 0 0
MINmtmax 0 0 0 0 0.091(0.017)
MEANmMtmax 0 -0.0063(0.0034) -0.028(0.019 0 -0.084(0.014)
MAXamean -0.024(0.0053) 0 0 0 -0.058(0.016)
MINamean 0 0 0 0 0
MEANamean 0 0 0.1(0.062) 0 0
MAXaprec 0.000027(0.0000072) 0.0000091(0.0000060) -0.00014(0.000060) 0.000068(0.000043) 0
MINaprec -0.000051(0.000016) -0.000021(0.000012) 0.00029(0.00013) 0 0
MEANaprec 0 0 0 0 0
MAXsawcont_upper50 0.15(0.11) 0.15(0.058) 0 -1.4(0.53) 0
MINsawcont_upper50 0 0 0 0 0
MEANsawcont_uppers( -0.27(0.12) -0.092(0.044) -1.5(0.49 3.8(0.82) 0
MAXsawcont -0.2(0.10) -0.086(0.053) 0 0 0.34(0.15)
MINsawcont 0 0.045(0.027) 0 0 0
MEANsawcont 0.33(0.11) 0 1.3(0.46) -3(0.72) -0.39(0.12)

Table 2:Estimated model parametersThe first column shows the covariates whiles tist o&the

columns show the PFTs. In each cell we have thenpeter estimate and its standard error (in parsigh& he
cells containing zero indicate that those covasiatere not significant in the model for that PFT.
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Figure 2: Plot of the estimated parametersThe plot shows the bio-climate variables on the
horizontal axis and the estimated model parameters on the vertical axis for the various PFT
models. From this plot, we see a similar relationship between the PFTs and the bio-climate
variablesfor all the models among the annual soil water content of the upper soil layers (50cm

and 200cm).

From table 2, we can write the models for eacthefltO PFTs as a function of the bio-climate
variables. For instance, the regression equatiosap TBE1 could be stated as

TBE1= 0.62 + 4.0x10Maxgdd5 + 8.0x18Mingdd5 — 1.6x10Meangdd5-1.9x18MINmtmin —
4.6x10°MEANMtmin — 1.4x10"MINmtmax + 1.3x100MEANmtmax + 1.6x10MEANamean —

3.4x10* MAXsawcont_upper50 + 3.3xTMEANsawcont.

The meaning of this relationship is that, a pet untirease in the bio-climate variable with a pgsit
coefficient will increase the plant functional type this case, TBE1 by the magnitude of the
corresponding coefficient while a negative coeffittiwill reduce it as such when the other variabhes
held fixed. The equation also shows that, onlyaktie twenty-one bio-climate variables were siigaifit

in the model for TBEL1.

It is important also to note that, the magnitudéhef coefficients of the covariates cannot be caoaga
due to different scales of measurement. In fackitg at the model as stated above for TBE1, waaan
say that the effect of MEANsawcont is higher thdaxgdd5 in the model even though the
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Modeling Land-Cover using bio-climate variables

coefficients suggest that. The reason is due feréifices in the measurement scale. However,
we can compare the same bio-climate in differerdef® For instance, we can say TBE1 has
stronger dependence MEANamean than TBE2 as shown by the coefficiert§ @nd0.046
respectively.

The rest of the models could be written in a sinmf@nner.

2.2.2 Residual Analysis

The residuals of a fitted model are the differermetsveen the responses observed at each
combination of values of the explanatory varialaed the corresponding prediction of the
response computed using the regression functiothdviaatically, the definition of the residual
for thei™ observation in the data set is written

-

€; = Yi — 51T — - - — BpTip-

Model validation is possibly the most importantpsite the model building sequence. Often the
validation of a model seems to consist of nothirgerthan quoting thB? statistic from the fit
(which measures the fraction of the total vari&piln the response that is accounted for by the
model). Unfortunately, a higR?value does not guarantee that the model fits tteewlall. Use

of a model that does not fit the data well canmot/jgle good answers to the underlying
engineering or scientific questions under invesioya

There are many statistical tools for model valigiatibut the primary tool for most process
modeling applications is graphical residual analyBifferent types of plots of the residuals from
a fitted model provide information on the adequatgifferent aspects of the model. Numerical
methods for model validation, such as Rfécoefficient of determination) statistic, are also
useful, but usually to a lesser degree than graphiethods. Graphical methods have an
advantage over numerical methods for model vabdabecause they readily illustrate a broad
range of complex aspects of the relationship batvtlee model and the data. Numerical methods
for model validation tend to be narrowly focusedagparticular aspect of the relationship
between the model and the data and often try tqoess that information into a single
descriptive number or test result.

In our models, we have assumed thatstlaee normally distributed with mean zero and a
constant variance. Thes= N(O | 02) and independent.

2

e.1 o vee 0 0
e= ( : > lo?=( : =~ : |andO= < ) Thusl= (n x n identity matrix)

€n 0
0 vee 02

17



Modeling Land-Cover using bio-climate variables

We assess how good our models fit the data by amgthe assumption of normality of the
residuals. We expect the residuals to be approripnabrmally distributed with mean zero and
a constant variance. This is satisfied if the pooftthe Q-Q plot (Quantiles —Quantiles plot) lie
in a straight line. The plot of the residuals skicalso show no patterns and scatter around zero
and the density plot should be bell-shaped.

We take the model fofBE1 as an example.

20

Rooldualo
02 00 02 04
1 T I I |

(Standardlzod roaldunlo

09

Standardizod rooldunle
20 2 4
| | |
\
Standardlzod rooldunle
20 2 4

Figure 3: The Residuals and Q-Q plots of TBE&.figure shows the three different plots of the
residuals and the Q-Q plot.

The residuals (top left of figure3), residuals mdtagainst fitted values show some structural
inadequacies and the presence of outliers. Alsoetkiduals plot shows that the variance may not
constant across all observations as assumed. Howkeescatter plot of the residuals shown in
figure 5 below show somewhat no pattern and thenality is also quite clear from the Q-Q

plot. We conclude that the model is somehow goondesithe assumptions about the residuals are
quite satisfied. The density plot as shown beloals® bell-shaped as we expect it to be.

An important observation is the outliers. Outlieray have effect on the estimates from a given
dataset. However, we did not take into accountsagmyificant effects on our models. Their
inclusion or exclusion may not have much effectsithey are just a few as compared to the size
of the dataset. It would have been necessary todiby test using Cook’s Distance or other tests.

We therefore attribute the outliers to the dataBeis might have probably happened from faulty
measurements or wrong coding of the data whiclt@memon errors in practice.
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TBE1
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Figure 4: Density plot of TBEL.
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Figure5: Residuals plot of TBE1
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Figure 6: Residuals and Q-Q plot of GL model. la figure below we show the residuals and
the QQ plots of the GL model.
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Figure 7: Density plot of GL model.
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Figure 8: Residuals of GL modelShows no pattern and also scattered somewhat evenly
around zero

The residuals and density plots for the rest ofRR&s are shown in the APPENDIX A. Some of
them look quite good.
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Chapter 3

Composite Models

In Chapter two, the individual PFTs were modeled #e results presented in Table 2. It was
seen that bio-climate variables are indeed impofarPFTs.

In this Chapter, we attempt to model land-covengishe bio-climate variables. The ten PFTs
were grouped into three land-surface types whicltalidand-cover types by M.-J. Gaillard et
al.(2010).

The table below shows how the groupings were dioneolumns one to four, we have PFTSs,
Definition of the PFTs, Plant taxa or Pollen moralgical types and Land surface respectively.
The Ever-green tree canopy is made up of TBE1, TBER2 and TSE plant functional types. In
terms of plant taxa, the Ever-green tree canopyade ofPicea, Abies, Pinus andJuniperus
which are all Ever-green trees. Summer-green meepy is also made up of PFTs such as the
IBS, TBS and TSD. The third land surface which ge@®land comprises of the PFTs LSE, GL
(grass-land) and AL (agricultural land).
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h

Plant taxa/Pollen-
morphological types
PFT PFT Definition Land surface
Picea
TBE1 Shade-tolerant ever-
green trees
TBE2 Abies
Shade-tolerant ever- Ever-green Tree
green trees Canopy
IBE Pinus
Shade-intolerant
ever-green trees
TSE Tall shrub ever- Juniperus
green trees
IBS Alnus,Betula, Corylus, Fraxinus,
Quercus
Shade-intolerant
summer-green trees
Summer-green Treg
TBS Carpinus, Fagus,Tilia, Ulmus Canopy
Shade-tolerant
summer-green trees
TSD
Tall shrub summer- Salix
green trees
LSE Low ever-green Calluna
shrub
GL Cyperaceae, Filipendula, Plantago
lanceolata, Plantago Montana,
Grassland-All herbs |  pjantago media, Poaceae, Rumex
p.p. mainly R.acetosa and R. Open-Land
acetosella/Rumex acetosa-t
AL Agricultural land- Cereals (Secale excluded)/ Cerealia-
cereals t, Secale

Table 3.1 Grouping of PFTs into Land-Cover typesFirst column shows the PFTs, second
shows PFT definitions, third shows Plant taxa or pollen-morphological types and the forth

shows the Land-surface/land-cover.

23



Modeling Land-Cover using bio-climate variables

3.1 The Land covers

The PFTs were grouped into Evergreen Tree canapyn&r-green Tree canopy and Open land
as seen in Table 3.1. Using a similar approach akapter 2, a multiple linear regression model
was then fitted to these land-cover types usingtbelimate variables as covariates.

Specifically,

Three vectors of land surface were formed by comgithe PFTs as follows.
Ever-green = TBE1 + TBE2 + IBE + TSE

Summer-green = IBS + TBS +TSD

Open-Land = LSE + GL + AL

In matrix notation, the model could be written as

y = Xp +e,
Where
T ~
hn X1 I T1p 8, €1
T ! -~
Y2 X9 T21 T2p ) €2
y=|.1| X=|_|=]. S B= ] e=|.
Un xr Tni Tnp P En

Y is a vectors of the dependent variabdes X is design matrix.
In matrix notation, the normal equations are wnitbes
X™X)B =X"y

The solution is given as

B =(X"X)'Xy
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After fitting the model, the estimated parameteessinown in the table below.

Covariates EVERGREEN SUMMERGREEN OPENLAND
Intercept -1.1(0.032) -0.32(0.24) 2.2(0.39)
MAXgdd5 0.00044(0.00018) -0.00052(0.00019) 0

MINgdd5 0.0011(0.00040) -0.00049(0.00033) -0.00064(0.00043)
MEANgdd5 -0.0019(0.00056) 0.001(0.00039) 0.00079(0.00055)
MAXmtmin -0.043(0.020) 0 0

MINmtmin -0.051(0.0094) 0 0.0089(0.0059)
MEANmMtmin 0 0 0

MAXmtmax 0 0 0

MINmtmax -0.16(0.055) 0 0.14(0.056)
MEANMtmax 0.14(0.066) 0 -0.2(0.067)
MAXamean 0 0.24(0.068) 0

MINamean 0 0.17(0.057) 0
MEANamean 0.19(0.045) -0.4(0.12) 0

MAXaprec -0.00024(0.00016) 0 0

MINaprec -0.00039(0.00028) -0.00016(0.000081) 0

MEANaprec 0.00061(0.00037) 0 0
MAXsawcont_upper50 0 2.2(0.62) -0.87(0.41)
MINsawcont_upper50 0.81(0.55) -1.1(0.45) 1.6(0.62)
MEANsawcont_upper50 -2(0.83) 0 0
MAXsawcont 0 -1.1(0.71) 0
MINsawcont -0.99(0.60) 1.5(0.54) -1.2(0.66)
MEANsawcont 2.5(0.86) -0.94(0.49) 0

Table 3.2 Estimated model parametersColumnl shows covariates, columns 2, 3 and 4 show
the estimated model parameters for Ever-green, Surgneen and Open-land respectivehhe
values in parenthesis show the standard errorroégeonding estimate in each cell.
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3.2 The Regression Equations
From the table 3.2, we state the equations asaslfor the three land surface types.

Evergreen = -1.1 + 4.4x109 MAXgdd5 +1.1x10° MINgdd5- 1.9x10° MEANgdd5-4.3x10°
MAXmtmin —5.1x10? MINmtmin - 1.6x10" MINmtmax +1.4x10" MEANmtmax +1.9x10"
MEANamean -2.4x10* MAXaprec -3.9x10" MINaprec +6.1x10" MEANaprec +8.1x10"
MINsawcont_upper50 — 2.0 MEANsawcont_upper50 x9@®" MINsawcont + 2.5MEANsawcont

Summergreen = -3.2x10" - 5.2x10" MAXgdd5 — 4.%<10% MINgdd5 +1.0x10°> MEANgdd5 +
2.4x10" MAXamean +1.7x10" MINamean — 4.810" MEANamean 41.6x10* MINaprec + 2.2
MAXsawcont_upper50 — 1.1MINsawcont_upper50— 1.1MAXsont + 1.5MINsawcont - 9.4x10
MEANsawcont

Openland = 2.2 — 6.4x10 MINgdd5+7.9x10* MEANgdd5 + 89x10° MINmtmin +1.4x10"
MINmtmax — 2.0¢10* MEANmtmax — 8.7x10 MAXsawcont_upper50 —1.6 MINsawcont_upper50 —
1.2 MINsawcont

From the models above, we find that evergreen samthce depends on 14 of the 21 bio-climate
variables. These bio-climate variables include ahamount of growing degree days over 5
degrees , monthly mean temperature of coldest rspnthan temperature of warmest months,
annual mean temperature , annual mean precipitatidrannual soil water content of soil layer
(50 cm). This is what one should expect since tfesers are very important for the plants that
fall in this category.

Similarly, summer-green canopy depends on thederfaas well. As per the model, summer-
green depends on only 12 of our 21 bio-climatealdes.

Open-land on the other hand depends on just 8fdbeaovariates. An important bio-climate
variable to all the land surface types is the ahsoihwater content of soil layer (50 cm). This
affirms the fact that some plants mostly need wiaténe soil to grow while others do not
depending on the sign of the estimated parametiéredbio-climate variable in question.
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3.3 The Plot of Estimated model parameters.

In the following figures, we plot the parameterenfrthe models against the covariates to
compare the estimates from the models.

3
2.5
2
15
. / TBE1
R A A ——TBE2
——IBE
0 | . o
LY e e £ 3 s & o 90 A T
-0.5 =55 EE £ ——EVERGREEN
SCffEfrrsceiffet
1 2255532335555 5 200
5=°% H
-1.5 E § g
=
-2 % § vl
s
2.5

Figure 3.1 Plot of Estimated Parameters againschioates (Ever-green canopy)
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Figure 3.2 Plot of Estimated Parameters againschBioates (Summer-green canopy)
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Figure 3.3 Plot of Estimated Parameters againsthiates (Open-land).
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3.4 Residual Analysis

In the figure 3.5 below we present the residual3;[ot and the density of the residuals for the
three composite models.
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Figure 3.5:Column 1 shows the models, column 2 shows theuatsdcolumn 3 shows the density plot and
column 4 shows the Q-Q plots.
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3.4.1 Ever-green Canopy
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Fig. 3.6(a) Residuals (top left), Standardizeddeslis (top right), Q-Q plot (bottom left) and
Cook’s distance of the Evergreen model.
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Figure 3.6(b) Residuals plot of Ever-green model.
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3.4.2 Summer-green Canopy
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Fig. 3.7(a) Residuals (top left), Standardizeddesis (top right), Q-Q plot (bottom left) and
Cook’s distance (bottom right) of the Summer-greerel.
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Figure 3.7(b) Residuals on index scale of Summeemymodel.

31



Modeling Land-Cover using bio-climate variables

3.4.3 Open-land
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Fig. 3.8(a) Residuals (top left), Standardizeddeslis (top right), Q-Q plot (bottom left) and
Cook’s distance (bottom right) of the Ever-greerdeio

o
« _|
o
o SN
o
o
P o oo
PN o © o &
w ™~ | 5 o & o 0° oo
= © o o o o o
© o
o O.o %% o =] >
S F o 000 o°o oo © o oF
— P o o0 @ 9 - oo ° SR %,
o
p= o o8& o © %0 o® o o st
™ o X ° ©®° o 8o L
232 o @ @ o ° ° ooooo
S
%o o° oo %o o oo o o
g -1 o o %@ ©° % 2 o S o ©
- o ° 2 ° o oS
o
o
o o "
-~ ok
— o
< o
T T T T
(1] 50 100 150
Index

Figure 3.8(b) Residuals of Open-land model.
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3.5 Summary and Discussions
Most significant covariates

It is important to note that most of the bio-climatariables were present in some of the models.
So in conclusion, we say that the plant functidppés (PFTs) depend on the bio-climate
variables. Naturally, one should expect plant mgwell when they have their favorable
climatic conditions. These include, soil water @t temperature, precipitation among others.

Interactions of covariates

In fitting the models, we first introduced the irgtetion terms of the covariates. However, those
terms were seen to be insignificant.

Regression equations

Regression analysis is a statistical tool for thestigation of relationship between variables. It
is this technique that has been used throughadhisrthesis. In the end, the following regression
equations were arrived at for the three differantdl surfaces which we called land-cover.
Evergreen canopy depends on more bio-climate Magdban the other two.

Ever-green = -1.1 + 4.4x10 MAXgdd5 +1.1x10° MINgdd5- 1.9x10° MEANgdd5-4.3x10?
MAXmtmin —5.1x10? MINmtmin - 1.6x10" MINmtmax +1.4x10" MEANmtmax +1.9x10"
MEANamean -2.4x10* MAXaprec -3.9x10" MINaprec +6.1x10" MEANaprec +8.1x10"
MINsawcont_upper50 — 2.0 MEANsawcont_upper50 x9®" MINsawcont + 2.5MEANsawcont

Summer-green = -3.2x10" - 5.2x10" MAXgdd5 — 4.9<10% MINgdd5 +1.0x10°> MEANgdd5 +
2.4x10" MAXamean +1.7x10" MINamean — 4.810" MEANamean 41.6x10* MINaprec + 2.2
MAXsawcont_upper50 — 1.1MINsawcont_upper50— 1.1MAXsont + 1.5MINsawcont - 9.4x10
MEANsawcont

Open-land = 2.2 — 6.4x10 MINgdd5+7.9x10* MEANgdd5 + 89x10° MINmtmin +1.4x10"
MINmtmax — 2.0¢10* MEANmtmax — 8.7x10 MAXsawcont_upper50 —1.6 MINsawcont_upper50 —
1.2 MINsawcont

The nature of the relationship between the PFTsladio-climates were similar to those
between the Land-cover types and the bio-climat@abies. That is to say, the individual PFTs
models were somewhat consistent with the compaositgels.

The Residuals

The residuals plots as seen in the figures abageréf 3.6, 3.7 and 3.8) look quite good. The
index plot of the residuals shows no pattern aedsaattered around the zero line. This shows
that they somewhat random in nature.
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The residuals plotted against the fitted values ek somehow good. An important
observation is the outliers. We see outliers iritedi plots for the PFTs and the composite
models. However we did not take into account te#ect on the estimated model parameters.
This is clearly not a good idea though. The derdibys of the residuals do not deviate much
from normality. This is seen in the Q-Q plots aslweis however important to note the
skewness which is seen in the density plots mgstaéslly in the individual PFTs models.

All these notwithstanding, we will proceed to usese models in the next chapter where we do
the predictions for the PFTs for the entire Europe.
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Chapter 4

Predictions and Comparisons

In chapter two, we fitted models for the individé®#Ts. We extended our models by grouping
the PFTs into three, namely: Evergreen, Summermgaad Open-land, and fitted models for
them in Chapter three. The nature of the relatipnalas seen to be similar for the individual
PFTs and the composite models. As a next steprimodeling sequence, we predict the PTFs
based on our models and the REVEALS data.

Regression models predict a value of Ynglependent) variable given known values ofXhe
(independent) variables. Prediction within the enfvalues in the dataset used for model-
fitting is known informally as interpolation. Pretion outside this range of the data is known as
extrapolation. Performing extrapolation relies sgly on the regression assumptions. The
further the extrapolation goes outside the daanbre room there is for the model to fail due to
differences between the assumptions and the satatdeor the true values.

It is generally important that when performing exiolation, one should accompany the
estimated value of the dependent variable withediption interval that represents the
uncertainty. Such intervals tend to expand rapadlyhe values of the independent variable(s)
moved outside the range covered by the observed dat

In figure 4.1 we have a map showing the pointshengiobe where data from REVEALS and
LANDCLIM for bio-climate variables were availabli the figure, ¢) shows that REVEALS
data were available)) shows unavailability of reveals data andlidicates bio-climates
points.
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Figure 4.1: REVEALS and Bio-climate variables aahility points
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4.1 REVEALS

In constructing our regression models for the PMiEsyused the REVEALS dataset. The
REVEALS dataset has 178 points as we see in thedfig.1 above. For these locations, 4 did not
have data on bio-climate variables and so werdaetbfeom the dataset giving a total of 174 data
points for our model building. These locations hde&a on PFTs and bio-climate variables.

4.1.1 Plot of PFTs from REVEALS

In the figure below, we see the plot of the PFBsrfithe REVEALS dataset. These plots are
from the original measurements of PFTs from the EEMS model-based land-cover
reconstruction. The PFTs abundance increases fhoetd red as shown in figure 4.2.
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Figure 4.2 PFT plots from REVEALS

4.1.2 Composite plots from REVEALS

The figure 4.3 below shows the land-covers fromRE&/EALS data. As already stated in
chapter 3, the PFTs were grouped into three lané+dypes namely: Ever-green, Summer-
green and Open-land. These plots were made usengyitiinal PFTs from REVEALS.
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Figure 4.3 Land-covers from REVEALS Top left shows the composite plot of Ever-green
canopy, top right shows Summer-green canopy andrlsivows Open-land.

4.2 LPJ-GUESS

TheLPJ (Lund Potsdam Jena)GUESS(General Ecosystem Simulator) modePJ-GUESS
Smith et al., 2001) is a dynamic, process-basedtatign model optimized for application
across a regional grid that simulates vegetatioradycs based on climate data input. It
represents landscape and stand-scale heteroganditiy resolving horizontal and vertical
vegetation structure at these scales, more adégaatounts for the biophysical properties that
influence regional climate variability. LPJ-GUES&stbeen interactively coupled to the Rossby
Centre Regional Atmospheric model versioiREA3), (Wramneby et al., 2009) and is being
used to study the feedbacks of climate-driven \aget changes on climate, via changes in
albedo, roughness, hydrological cycling and surtatergy fluxes. Preliminary results suggest
that changes in treelines, phenology of conifeswgtbroadleaved trees, and LAl may modify
the future climate development, particularly inaaelose to treelines and in semi-arid areas of
Europe (Wramneby et al., 2009). TieJ-GUESS dataset contains the data on PFTs values as
well as bio-climate variables.
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4.2.1 Plots of PFTs from the LPJ-GUESS

In the figure 4.4, we show the PFTs plots fromltRd-GUESS dataset. The plots look similar to
those from the REVEALS dataset. It is importanstate that the plots were made using the raw
PFT values from the LPJ-GUESS dataset.
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Figure 4.4 Plots of PFTs from LPJ-GUESS.
4.2.2 Composite plots from LPJ-GUESS

The images in figure 4.5 show the composite plaisfthe LPJ-GUESS dataset. These plots
were made using the original values of PFTs inLfA&-GUESS dataset. The PFT abundance
increases from blue to red as shown in the legéfidwe 4.5.
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Figure 4.5Land-covers from LPJ-GUESS Top left shows the composite plot of Ever-green
canopy, top right shows Summer-green canopy anddha one shows Open-land.

4.3 Predicted PFTs and Land-covers

Regression models predict a value of Y\Welependent) variable given known values ofXhe
(independent) variables. Prediction within the eanfvalues in the dataset used for model-
fitting is known informally as interpolation. Inithsection we predict the PFTs using the
simplified regression models. First, we make prigalis for the individual PFTs and secondly,
for the composite models. It is worth noting thegde predictions are done within the dataset
used for the modeling: REVEALS Dataset.

4.3.1 Predicted Plant Functional Types (PFTSs)

The figure below shows the predicted PFTs usingitmplified regression models for the
individual PFTs and the REVEALS data. Using theaesgion models in Table 2 and the
REVEALS dataset, we made predictions for the irdlial PFTs. Here we used the PFTs as the
dependent variables and the bio-climate variatddadependent. The predictions are therefore
the conditional expectations of the PFTs givenhiioeclimate variables.
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Figure 4.6 Predicted PFTs using the REVEALS dataset
4.3.2 Estimated Land-covers

In this section, we attempt to estimate the landecsr Ever-green, Summer-green and Open-
land. To this end, we use the land-cover or contpaespgression models in Table 3.2 and the
REVEALS dataset. So we compute the expected lamdrs@onditional on the bio-climate
variables from the REVEALS dataset. Specificalifver-green|Bio-climates), , E(Summer-
green|Bio-climates), E(Open-land|Bio-climates) were computed.

Figure 4.7 shows the estimated land-covers basédeosimplified regression models in Section
3.1 and the REVEALS dataset.
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Figure 4.7 Estimated land-covers from REVEALS. Egexen (top-left), Summer-green (top-
right) and Open-land (down).

4.4 Comparisons

To validate our models, we now have to make contpparanalysis using our estimates based on
the Reveals dataset, the REVEALS and LPJ-GUESSw~vWmake the comparison using some
of the individual PFT models and the composite nwde

4.4.1 Criteria for Comparisons

In this section, we compare our PFT predictionagighe regression models and the original
PFT values from REVEALS. The idea employ here ifirtd the point-wise difference between
our predicted PFT values and the original PFT \&afuem REVEALS and normalized with the
standard errors of the predicted PFT. That isldbehtions where we have the REVEALS data,
we compute the quantity:

Estimated, s, — REVEALS, ¢,
SE(est)pst

where
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Estimated, = predicted PFT value using the model and the REMEdata.
REVEALS = original PFT value from the REVEALS.
SE(est) = Standard error of the estimated PFT.

If this quantity is less than -1.96, then our peceell PFT at this location is considered too small
compared to the original PFT value from the REVEAIE a value greater than 1.96 indicates
too big estimate from our model. A value within theerval [-1.96, 1.96], indicates good
estimate from the model.

Thus, our estimates compare well with REVEALS # ttondition below is satisfied.

Estimatedpft—REVEALSpft
SE(est)pft

-1.96< <1.96

4.4.2 Predicted PFTs and original PFTs from REVEALS

Applying the criteria in section 4.4.1, we compacen predicted PFTs and REVEALS PFTs
using the individual PFT models TBE1, TBE2 and GL.

In the figures shown below, the rell{ndicates that our estimate at that location aititer too
large or too small compared to the original PFlugah the REVEALS data whiles greep(
indicates good estimates.
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Figure 4.8 Comparing Reveals PFTs and Estimated BEihg TBE1. Green points)(show
locations where we have good comparisons and Rietsdo) show locations where we have
bad comparisons.
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epnije| epnije|

locations where we have good comparisons and Rietsgo) show locations where we have

Figure 4.9 Comparing Reveals PFTs and Estimated RBEihg TBE2. Green points
bad comparisons.

locations where we have good comparisons and Rietsgo) show locations where we have

Figure 4.10 Comparing Reveals PFTs and Estimatdd B&ing GL. Green point
bad comparisons.
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Figure 4.11 Comparing Reveals PFTs and Estimatdd B&ing AL. Green points) show
locations where we have good comparisons and Rietsgo) show locations where we have
bad comparisons.

From the figures (4.8, 4.9, 4.10 and 4.11), we fhmat predicted PFTs using TBE1 model
compares quite well with the original PFTs from REALS. The comparison gets better with
TBEZ2 where much more green points are seen frorfighee 4.9. We however find a very
strange results looking at the comparison with Gtaés-land) model where we see only one
location that gives good estimate of PFT. The @sempletely different looking at the
estimates from AL (Agricultural land).

The rest of the plots for this comparison are idelliin the Appendix. Most of them give good
PFT estimates as compared to the Reveals.PFTs

4.4.3 Predicted and REVEALS PFTs by Land-cover mods.

In section 4.4.2 we looked at how well our predid®=Ts compare with those from the
REVEALS using the individual PFT models. In thigtsen we want to do a similar comparative
analysis using our composite models or the Landcmodels: Ever-green, Summer-green and
Open-land. From the figures (4.12, 4.13 and 4 Ww#é)find that Ever-green model gives much
better PFT predictions compared to Summer-greerOgoah-land models.
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Figure 4.12 Comparing Reveals PFTs and Estimatdd B&ing Ever-green model. Green points
(0) show locations where we have good comparisongaadpoints ) show locations where

we have bad comparisons. No REVEALS data at blacktions (0).
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Figure 4.13 Comparing Reveals PFTs and Estimatdd Bsing Summer-green model. Green
points (0) show locations where we have good comparisongR&adpoints @) show locations

where we have bad comparisons. No REVEALS dat#aklbocations (0).
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Figure 4.14 Comparing Reveals PFTs and Estimatdd B§ing Open-land model. Green points
(0) show locations where we have good comparisongaadpoints ) show locations where
we have bad comparisons. No REVEALS data at blacktions (0).

4.4.4 Predicted PFTs and LPJ-GUESS PFTs

In section 4.4.3, we predicted PFTs using the sfragdlLand cover models and the REVEALS
dataset. It turned out that Ever-green model giexl PFTs predictions at most locations
compared to Summer-green and Open-land modessintgortant to state that, we made
interpolation in section 4.4.3, which is makinggiotions within the dataset used for model
fitting.

In this section however, we make extrapolation: imgredictions outside the dataset used for
model fitting. We used the REVEALS dataset tolig tnodels and now we want to apply the
models to the LPJ-GUESS dataset.

After making the predictions, we used the critasaexplained in section 4.4.1. Thus as follows:

Estimated, = predicted PFT value using the model and the LBESS data.
SE(est)r = Standard error of the predicted PFT.

GUESS« = original PFT in GUESS dataset.

Estimatedyre—GUESSpft <
SE(est)pft -

-1.96< 1.96
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For all the locations, we deem our estimates adl gompared to the original PFT if the above
condition is satisfied.

Estimatedpst—GUESSpft
SE(est)pft

very small or too big estimate compared to theioalgPFT at that location. That is 95%

confidence interval around the estimated PFTsl #h@locations on the map. In the figures

below, the green points show that our estimateg@od and the red points show otherwise.

Any value of outside the interval [-1.96, 1.96] means that itleee have
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Figure 4.15 Comparing GUESS PFTs and Estimated B&ihg Ever-green model. Green points
(0) show locations where we have good comparisongaadpoints ) show locations where
we have bad comparisons.
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Figure 4.16 Comparing GUESS PFTs and Estimated B&iig Summer-green model. Green
points (0) show locations where we have good comparisongR&adpoints @) show locations
where we have bad comparisons.
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Figure 4.17 Comparing GUESS PFTs and Estimated B&ifig Open-land model. Green points
(0) show locations where we have good comparisonaadpoints ) show locations where
we have bad comparisons.

From the figures (4.15, 4.16 and 4.17), it is entdbat Ever-green and Open land models make
better predictions than Summer-green model.

Similar plots were made using the individual PFTdels. Most of them do not give good
predictions using the LPJ-GUESS dataset. See Appé&nido the appropriate models to be used
for predicting PFTs are the Land-cover or compasitelels because they fit the data better than
the individual PFT models.
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CHAPTER 5
CONCLUSIONS

It has been seen that bio-climate variables areitapt to the growth of plants thereby helping
plants to produce pollens. Naturally, one shoulgeex plants to grow well when they have their
favorable climatic conditions. These include, sater content, temperature, precipitation
among others. Given a reliable and well-measuréal afebio-climate variables and plant
functional types, it is possible to use regressioalysis to obtain a linear relationship between
these plant functional types and the bio-climatéaides. Consequently, it is feasible to model
land-cover when we have bio-climate variables dadtgunctional types using multiple linear
regression.

The land-cover models, gave better predictions vapgiied to the LPJ-GUESS dataset. For
example, the Ever-green and open land models gawparatively good estimates of PFTs.

Regression analysis is a statistical tool for thestigation of relationship between variables. It
is this technique that was used in fitting the medé has proven to be effective in explaining
the relationship between the PFTs and the bio-¢émariables. However, other statistical
technique such as Logistic regression could haualBgbeen used.

Future Work
Using aSpatial Model to evaluate the spatial structure that is letheresiduals.

PFT model output from LPJ-GUESS is 0.5 degree anii PFT from REVEALS at the modern
time window (the last 100 years) and at the spatale of 1 degree grid.
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