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Abstract

This paper implements a variety of different calibration methods applied
to the stochastic volatility jump diffusion models and levy models and
examines their effects on the performance of standard ∆ and Monte Carlo
quadratic hedging of vanilla options on the S&P 500 index.

On the methodological side, we derive a sequential algorithm for si-
multaneous calibration and quadratic hedging of options. In order to per-
form the various hedging strategies, we have calibrated several stochastic
volatility models with/without jumps with the Ensemble Kalman filter.
The algorithm is very flexible and can be applied to any model for which
we can price options, and simulate paths from.

An empirical examination of the model calibration performance of a
stochastic volatility model is provided for options on the S&P 500 index
in which the unobservable time varying volatility is jointly estimated with
the time varying parameters of the model.

Afterwards, the research focused on testing the efficiency of simul-
taneous calibration and hedging. A simulation study first applied on
model calibration with additional latent state, named spot price process
dynamics. This is the foundation of implementation of the method of
simultaneous calibration and hedging. Then we make use of the method
of simultaneous calibration and hedging on S&P 500 option data with
another empirical study. To complete the test of the method, the Delta
hedging strategy and two Monte Carlo quadratic hedging strategies were
take into account. The hedging issue is of interests not only to academics,
but also to actual traders in the option market who often have to hedge
their positions in the underlying asset or options market.

For all of examples that we considered, the ensemble Kalman filter
worked successfully once a threshold ensemble size was reached.

i



Acknowledgment

My deepest gratitude goes first and foremost to my supervisor, Dr. Erik
Lindström, for his constant encouragement and guidance. He has walked
me through all the stages of the writing of this thesis. Without his im-
pressive kindness and patience, I could not have completed this thesis.
Without his consistent and illuminating instruction, this thesis could not
have reached its present form. His keen and vigorous academic observa-
tion enlightens me not only in this thesis but also in my future research.

Second, I would like to express my heartfelt gratitude to Dr. Magnus
Wiktorsson, who led me into the world of Statistics.

Last but not least, I would like to thank all the teachers who have
taught me and helped me enrich and broaden my knowledge.

ii



Contents

1 Introduction 1

2 Theoretical background 4
2.1 Overview of stock price models . . . . . . . . . . . . . . 4

2.1.1 The Black-Scholes model . . . . . . . . . . . . . . 4
2.1.2 The Heston model . . . . . . . . . . . . . . . . . 4
2.1.3 The Bates model . . . . . . . . . . . . . . . . . . 5
2.1.4 The NIG-CIR model . . . . . . . . . . . . . . . . 6

2.2 Theoretical option price calculation using Inverse Fourier
transformation . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Carr-Madan Formula . . . . . . . . . . . . . . . . 7
2.2.2 Computation of the Delta . . . . . . . . . . . . . 9

2.3 Dynamic hedging strategies . . . . . . . . . . . . . . . . 10
2.3.1 Hedging using the underlying and the risk-free asset 10
2.3.2 Adding another hedge instrument . . . . . . . . . 12

3 Monte Carlo Simulation 14
3.1 Simulation of the Heston Model . . . . . . . . . . . . . . 14
3.2 Simulation of the Bates model . . . . . . . . . . . . . . . 14
3.3 Simulation of the time-changed Lévy model . . . . . . . 15
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1 Introduction

The three purposes of a model in derivatives pricing are to calibrate,
to price and to hedge. Generally, a stochastic dynamical model which
includes several controlled parameters, is adopted to estimate the price
process of the underlying asset. The prices of commonly traded deriva-
tives are calculated using that model. And the parameters in the model
is then calibrated by fitting the predicted prices against available market
observed data. Once the model is calibrated so that it is agreement with
liquidly traded derivatives, it can be used to price less liquid products of
the same type or hedge the derivatives with the underlying asset or/and
with other instruments.

Numerous models for parametric option valuation have been proposed
in financial literature over several decades after Black & Scholes (Black
and Scholes, 1973) worked on option pricing under no arbitrage argu-
ments. These models have included jumps (Merton, 1976), stochastic
volatility and local volatility (Heston, 1993) and state dependent diffu-
sion terms (Dupire, 1994; Derman and Kani, 1994).

In general, all these models can be included into two broad groups:
complete market models and incomplete market models. Complete mar-
kets allow perfect replication and therefore hedging any conceivable pay-
off structure using a portfolio of traded assets, while such replication is
generally impossible in incomplete markets. On the other hand, incom-
plete market models have richer structure than complete models since
they contain more sources of uncertainty.

Research on hedging European style options in these two markets has
important practical applications. In particular, market makers set prices
so that their net profit from the trade, after deducting hedging costs,
has positive expectation. More accurate hedging allows these traders to
reduce their bid-ask spread, and thus increase their volume of trade.

In order to limit the hedging error, good parameter estimates which
can be estimated from model calibration technique are needed. The
risk in such a model calibration is that it can over-fit the data. The
most common calibration technique is some version of daily least squares
estimation, which provides good in sample predictions but non-robust
to outliers (Cont and Tankov, 2004). Lindström et al. (2008) suggest
the standard least squares methods should be replaced by a non-linear
(Kalman) filter method since the filter methods make optimal use of past
and current observations, whereas the standard WLS only uses data from
the current observation.

As an alternative to Least square method, the Kalman filter (Kalman
et al., 1960) is one of the most well known filter technologies and is an
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optimal, minimum mean square error estimator for linear systems. The
main reason for Kalman filter’s popularity is its optimality and simplic-
ity, as well as, its recursive construction. When the statistical proper-
ties of the modeling error and the uncertainty of the observations are
assumed to be normally distributed with zero mean and known covari-
ances, Kalman filter gives an unbiased minimum variance estimation for
linear stochastic dynamical systems. While system dynamics are instin-
sically nonlinear, the formalism of the Kalman filter has been extended
to nonlinear dynamical systems with the help of linearization around the
prior estimation of the state, which is known as Extended Kalman filter
(EKF for short), (see Anderson and Moore, 1979). In general, the EKF
performs a truncated first order Taylor expansion regarding the current
state, to which the linear filter equations are applied, so the traditional
Kalman filter can be applied. Unfortunately, the EKF has two impor-
tant potential drawbacks. First, it suffers divergence problem, due to
the deviation of the Jacobian matrices, the linear approximations to the
nonlinear functions can be complex causing implementation difficulties.
Second, these linearizations can lead to filter instability if the time step
intervals are not sufficiently small. To address these problems, Julie and
Uhlmann (Julier and Uhlmann, 1997) developed the Unscented Kalman
Filter (UKF) to estimate the state of a non-linear system using the un-
scented transform.The UKF claims a higher accuracy and robustness for
non-linear than the EKF in the time series modeling. Instead of lineariz-
ing the functions in the EKF, the UKF picks a minimal set of sample
points (called sigma points) and propagates this set through the actual
non-linear dynamics, These points are chosen such that their mean, co-
variance and possibly also higher order moments match the Gaussian
random variable. The mean and the covariance can be recalculated from
the propagated points, yielding more accurate results compared to the
ordinary function linearization. A substantial disadvantage of these fil-
ters is the prohibitively high cost to store and maintain the error co-
variance matrix for large-scale problems as well as they approximate all
distributions as Gaussian, making them less suitable when calibrating
non-Gaussian models.

For this reason, a scheme named the ensemble Kalman filter(EnKF)
was developed. It was proposed by Evensen (Evensen, 1994) and refined
by Burger (Burgers et al., 1998), has gained popularity among them.
In particular, EnKF estimation is widely used in weather forecasting,
where the models are of extremely high order and nonlinear, the initial
states are highly uncertain, and a large number of measurements are
available. However, to our knowledge, it has not been used in derivatives
pricing. There exist few textbook discussions of EnKF estimation. A
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brief overview of the technique is given in (Daley, 1993) and (Kalnay,
2002). In the weather prediction literature, there exist a large number of
papers that make use of the EnKF (Evensen, 1997, 2002).

Contrary to the EKF and UKF, the EnKF constitutes a class of
derivative free nonlinear filters. As a Monte-Carlo implementation of the
Kalman filter, it represents the distribution of the model state using a
collection of state vectors, called ”an ensemble”, and replaces the co-
variance matrix by the sample covariance computed from the ensemble.
Ensemble members are then forwarded in time by solving the state equa-
tions and analyzed by the Kalman filter scheme. Therefore, the EnKF
requires no linear approximation of models and no explicit storage of co-
variance matrix.Both the EnKF and the UKF have their advantages and
disadvantages. The good performance of the EnKF has been shown in
Hommels et al. (2005).

In the case of the UKF, the sample points are chosen deterministically.
In fact, the number of sample points required is of the same order as
the dimension of the system, i.e. 2d + 1, where d is the dimension of
states. On the other hand, the number of ensembles required in the
EnKF is heuristic. While one would expect that a large ensemble would
be needed to obtain useful estimates, the literature on EnKF suggests
that an ensemble of size 50 to 100 is often adequate for systems with
thousands of states. The accuracy of the state estimates as a function
of ensemble size is thus an important research question (Gillijns et al.,
2006).

The present paper has three main goals. First, we summarize the
steps of the EnKF estimation for model calibration in derivatives pric-
ing. Next, we apply the EnKF to a collection of two dynamic models to
obtain inside parameters of these models. In particular, we consider one
stochastic volatility jump diffusion model and one Lévy model. After do-
ing this, we apply Monte Carlo quadratic hedging to test its effectiveness.
Our goal is to determine the tradeoff between ensemble size and estima-
tion accuracy. Finally, using the results of these studies, we extend the
original EnKF to combine EnKF with Monte Carlo hedging strategies
for simultaneous calibration and quadratic hedging of options.

The paper is organized as follows. In Section 2, after a brief overview
of the four alternative pricing models of interest is given, the theory of
option price calculation using Inverse Fourier transformation is discussed
and the dynamic hedging strategies used in this paper, namely the Delta
hedging and the Monte Carlo quadratic hedging is described. Section 3
expounds steps of Monte Carlo simulation for different models. Section
4 presents the model calibration approaches to estimating the models
parameters on the option price data. Section 5 illustrates the method
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of simultaneous calibration and hedging technique. A conclusion is sum-
marize in section 6.

2 Theoretical background

2.1 Overview of stock price models

In this paper we consider a large group of the most applied option pricing
models in the contemporary literature, i.e.the Black & Scholes (Black and
Scholes, 1973) the Heston (Heston, 1993), Bates (Bates, 1996) as well as
the NIG-CIR model (Carr and Wun, 2003).

2.1.1 The Black-Scholes model

Some work on modeling stock prices were made before, but it was not
until Black and Scholes (1973) work on option pricing under no arbitrage
arguments the development was spurred. They used a stock model intro-
duced by Samuelson (1965) which defines the market under risk neutral
measure as:

dSt
St

= rdt+ σdWt,

where r is the short risk-free rate, σ is the volatility of asset value and
dWt is Wiener process.

The differential equation can be solved explicitly for St as,

St = S0exp

{
(r − σ2

2
)t+ σWt

}
.

2.1.2 The Heston model

By introducing a hidden, non-negative process expressed by a stochastic
differential equation, we are able to model the impact on asset prices
of stochastic volatility. Heston (1993) chose to model asset prices with
stochastic volatility as follows:

dSt
St

= rdt+
√
VtdW

S
t ,

where r is the short risk-free rate and the squared volatility is modeled
by a mean reverting CIR process:

dVt = κ(ξ − Vt)dt+ σ
√
VtdW

V
t . (2.1)
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where κ is the speed of mean reversion, ξ is the average of volatility, σ
is the volatility of volatility.

The diffusion terms dW S
t and dW V

t are defined as correlated Wiener
processes:

Cov(dW S
t , dW

V
t ) = ρdt.

Given the Heston model, the characteristic function of the logarithm
of the asset price process, st, follow as (see Schoutens et al., 2004) or (see
Heston, 1993):

φst(z) =
exp

{
κξt(κ−iρσz)

σ2 + iztr + izs0

}
(

coshγt
2

+ κ−iρσz
γ

sinhγt
2

) 2κξ

σ2

exp

{
− (z2 + iz)V0

γcothγt
2

+ κ− iρσz

}
.

(2.2)
where γ =

√
σ2(z2 + iz) + (κ− iρσz)2, and s0 and V0 are initial values

for the log-price process and the volatility process respectively.

2.1.3 The Bates model

The dynamics of the Bates model under the risk-neutral measure Q is
given by

dSt = rStdt+
√
VtStdW

(S)
t + StdJt,

dVt = κ(ξ − Vt)dt+ σV
√
VtdW

(V )
t ,

where W (S) and W (V ) are standard Brownian motions with correlation
ρ, κ is the mean reversion rate, ξ is the mean reversion level and with
V0 as the initial value of V . Further, J is a compound Poisson process
with intensity λ, having jumps ∆J such that log(1 + ∆J) ∈ N(µ, δ2) and
drift λ(exp(δ2/2+µ)−1). This choice of drift for J forces the discounted
stock price process to be a martingale under Q.

Since the jumps are independent of the diffusion part, the character-
istic function of the logarithmic asset price proceed under Bates model
can be written:

φst(z) = φDst(z)φJst(z),

where the diffusion part of characteristic function is equivalent to that of
the Heston model, see Equation (2.2), and the jump part of the charac-
teristic function is:

φJst(z) = exp
{
tλ(eδ

2z2/2+i(log(1+k)− 1
2
σ2)z − 1)

}
.

5



2.1.4 The NIG-CIR model

The NIG-CIR model was introduced by Carr and Wun (2003). It is
a Normal inverse Gaussian model that is stochastically time shifted by
an integrated Cox-Ingersoll-Ross stochastic volatility process. The stock
price process can be described

St = S0 exp(XIt), (2.3)

where Xt is a NIG Lévy process, having parameters δ, α, β and It =∫ t
0
Ysds, Yt has dynamics according to Equation (2.1) . Here the process

{Yt}t>0 is assumed to be independent of the process {Xt}t>0.
Given y0 the characteristic function of Yt can be found,

φCIR(u, t, y0) = E[exp(iuYt)|y0]

=
exp(κ2ηt/λ2)exp(2y0iu/(κ+ γcoth(γt/2)))

(cosh(γt/2) + κsinh(γt/2)/γ)2κη/λ2
,

where γ =
√
κ2 − 2λ2iu. The risk-neutral price process St, see Equation

(2.3), can be defined as,

St = S0
ert

E[exp(XYt)|y0]
exp(XYt). (2.4)

To make the derivation of the characteristic function for the log price
of a NIG-CIR process easier we first express the expected value of the
exponent of the NIG-CIR process:

E[exp(XYt)|y0] = E[E[exp(XYt)|Yt]|y0]

= E[φX(−i, Yt)|y0]

= E[exp(κNIG(1)Yt)|y0]

= φCIR(−iκNIG(1), t, y0)

where the characteristic exponent κNIG(u) is given by

κNIG(u) = ru− δ(
√
α2 − (β + u)2 −

√
α2 − β2).

The characteristic function for the log stock price, φst(u, t, y0), is now
easily derived by using the result above and writing out the whole ex-
pression for E[exp(iu log(St))|S0, y0] according to the definition of St in
Equation (2.4):

φst(u, t, y0) = exp(iu(rt+ log(S0))
φCIR(−iκNIG(iu), t, y0)

φCIR(−iκNIG(1), t, y0)iu
.
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2.2 Theoretical option price calculation using In-
verse Fourier transformation

2.2.1 Carr-Madan Formula

Since the probability density of a Lévy processes is typically not known
in closed form, there are no explicit formula for option prices in stochastic
volatility with jumps models based on the Lévy processes. However, the
characteristic function can be derived for some models which leads to the
development of Fourier-based option pricing method. The Fourier trans-
form based method have been frequently used in financial applications.
For those who are interested in this method, Carr and Madan (1999) is
a good reference to start with. A long list of references to articles using
Fourier transform based methods can be found in e.g. Carr and Wun
(2003).

Suppose t and T are current time and time of maturity, ST and K are
stock price at maturity date and strike price respectively. Set s = lnST
and k = lnK, then the payoff of the European call option can be written
as

(S −K)+ = (es − ek)+ .
= f(k).

Let CT (k, t) denote the price of the European call option, then:

CT (k, t) = e−r(T−t)EQ[f(k)|Ft]

=

∫ ∞
k

e−r(T−t)(es − ek)qT (s)ds,

where qT is the risk neutral density of s = lnST .
To calculate the price of the call option under a certain price process

we use Fourier Transforms suggested by Carr and Madan (1999). For
this approach the characteristic function of the log-prices has to be given
analytically which is the case for all of the most common model.

However, as the Fourier transform work for square-integrable func-
tions only, we make the following modification, see Carr and Madan
(1999) for details:

cT (k) = eαkCT , α > 0. (2.5)

The Fourier transform of cT is defined as:

ψCT (υ) =

∫ ∞
−∞

eiυkcT (k)dk.

By inserting Equation (2.5) we get that:
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ψCT (υ) = e−r(T−t)
∫ ∞
−∞

eiυk
∫ ∞
k

eαk(es − ek)qT (s)dsdk

= e−r(T−t)
∫ ∞
−∞

qT (s)

∫ s

−∞
eiυk(eαk+s − e(α+1)k)dkds

= e−r(T−t)
∫ ∞
−∞

qT (s)

(
e(α+1+iυ)s

α + iυ
− e(α+1+iυ)s

α + iυ + 1

)
ds

=
e−r(T−t)φs(υ − (α + 1)i)

α2 + α− υ2 + i(2α + 1)υ
,

where φs is the Fourier transform of qT under a given asset model, i.e.
φs = E

[
eiυ logST |Ft

]
.

Hence the price of a European call option is given by the Fourier
transform:

CT (k, t) =
e−αk

2π

∫ ∞
−∞

e−iυkψCT (υ)dυ.

To simplify the expression we make a variable substittion by denoting
z = iυ + α. Furthermore, we use the notation where XT = log(ST

St
). As

the characteristic function of XT is written:

φXT |Ft(υ, T ) = E
[
eiυXT |Ft

]
= φs(υ, T )e−iυ log(St),

the price of a European call option can thus be written as:

CT (k) =
e−αk

2π

∫ ∞
−∞

e−iυk
e−r(T−t)φs(υ − (α + 1)i, T )

α2 + α− υ2 + i(2α + 1)υ
dυ,

=
e−r(T−t)

2π

∫ α+i∞

α−i∞

e−kze(z+1) log(St)φX(−i(z + 1), T )(−i)

z(z + 1)
dz

=
e−r(T−t)

2πi

∫ α+i∞

α−i∞

e−kze(z+1) log(St)φXT |Ft(−i(z + 1), T )

z(z + 1)
dz

=
e−r(T−t)

2πi

∫ α+i∞

α−i∞

e−kze(z+1) log(St)

z(z + 1)
E
[
e(z+1)XT |Ft

]
dz

Define a function specific for a European call option with log strike
price k:

ΥC(z) =
e−kz

2πiz(z + 1)
.

The simplified expression of the call price yields,
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CT (k) = e−r(T−t)
∫ α+i∞

α−i∞
ΥC(z)e(z+1) log(St)φXT |Ft(−i(z + 1), T )dz

For this to work the real part of z has to be positive and satisfy the
condition EQ[S

1+Re(z)
T ] <∞, i.e. Re(z) ∈ A+

XT
= {x > 0 : EQ[S

1+Re(z)
T ] <

∞}. According to the rule to choose Re(z) in Lindström et al. (2008)
Lindström et al. (2008), we can use the golden-section search method to
find a proper value of Re(z),

Re(z)min = arg minRe(z)∈A+
XT

g(Re(z)),

where

g(z) =
e−zk+(z+1)st

z(z + 1)
MXT |Ft(Z + 1),

and

MXT |Ft(Z + 1) = φXT |Ft(−i(z + 1), T ).

The Gauss-Laguerre quadrature formula is used to approximate an
exponentially weighted integral from zero to infinity as

∫ ∞
0

e−xf(x)dx ≈
n∑
j=1

ω
(n)
j f(x

(n)
j ).

More details can be found in Lindström et al. (2008).

2.2.2 Computation of the Delta

Most of the characteristic functions φT (ω) that arise from stochastic
volatility models can be rewritten as

φT (ω) = eiωst × g(ω),

where g(ω) is a function, that contains the remaining part of the charac-
teristic function but not any st-terms. In this case, the derivative with
respect to the initial spot price St is simply given by

∂φT (ω)

∂St
=
∂φT (ω)

∂st

∂st
∂St

=
iω

St
φT (ω),
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Thus, the derivative of the Carr-Madan formula for the call price CT (k)
can be computed as

∂CT (k)

∂St
=
e−αk

2πSt

∫ ∞
−∞

e−iυk
(iυ + α + 1)e−r(T−t)φs(υ − (α + 1)i, T )

α2 + α− υ2 + i(2α + 1)υ
dυ,

= e−r(T−t)
∫
α+1+iR

ΥC(z)(z + 1)ez logStMX(z + 1)dz.

2.3 Dynamic hedging strategies

A basic problem in Mathematical Finance is how the issue of an option
can hedge the resulting exposure by trading in the underlying. Through-
out this section we will denote the market price of the hedged con-
tract H(t, St). The price may contain other variables too, however as
to simplify notation and increase readability, these variables have been
exempted in the expression. First, we will start by assuming that we can
use only the stock underlying the hedged option, and the risk-free asset
as instruments in our hedge portfolio. Then we will add a call option
as an additional instrument to the hedge portfolio. In this paper, the
discrete time dynamic hedging strategies are considered.

2.3.1 Hedging using the underlying and the risk-free asset

The hedge portfolio in this case is properly defined,

P h(t, St) = hSS(t) + hBB(t).

The superscript of P (t, St), h = (hS, hB), denote that P (t, St) is de-
termined by the vector of weights in each instrument. A hedge strategy
is to choose the weights (hS, hB) is such a way that the portfolio P h(t, St)
follows the derivative H(t, St) as close as possible during a certain time
interval.

Delta hedge A simple approach to hedge a financial contract H(t, St)
would be to set up a self-financing portfolio h such that:

∂P h(t, St)

∂S
=
∂H(t, St)

∂S
P h(t, St) = H(t, St).

Thus, the hedging weight, h = (hS, hB) is given by,

h∗S =
∂H(t, St)

∂S
h∗B = H(t, St)− h∗SSt.
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We may approximate the delta ∆ = h∗S by finite difference ratios,

∂H(t, St)

∂S
= lim∆S→0

H(t, St + ∆S)−H(t, St −∆S)

2∆S
,

or by differentiating the price expression with respect to St, in the call
option case, such that:

∂H(t, St)

∂S
= e−r(T−t)

∫
α+1+iR

ΥC(z)(z + 1)ez logStMX(z + 1)dz.

Quadratic hedging Quadratic hedging approaches have been studied
very intensively in recent decades. It is a popular technique that produces
hedges that minimize the quadratic hedging error in mean square sense.
One of the reasons that quadratic hedging is popular among scholars and
practitioners is that it can be formulated in a mathematically elegant way
and solved by relatively easy approaches.

An obvious drawback of quadratic hedging is that losses and gains are
treated in the same way. On the other hand, this might be an advantage,
in case you do not know whether you deal with a buyer or a seller.
Another advantage is that quadratic strategies related to different options
can simply be added up as is also the case for delta-hedging strategies.
In other words, quadratic hedging is a sort of linear hedging strategy.

In the Black-Scholes model (Black and Scholes, 1973), the market is
assumed to be complete so that a perfect hedge can be attained by delta
hedging. However, generally in an incomplete market, a perfect hedge
is not attainable. Foellmer and Sondermann (1986) formulate the risk-
minimization strategy, which is a breakthrough in quadratic hedging in
incomplete market, see also Föllmer and Schweizer (1989) and Schweizer
(1991). The strategy adopts a mean-self-financing strategy rather than
self-financing strategy to minimize the expected future costs.

Define Vt as the value of the hedge portfolio at a discrete time point t
after rebalancing. The value of the same portfolio at the next rebalance
point is denoted Vt+∆t. St is the value of the spot price at time point
t while Bt is the risk free asset. St+∆t is the spot value at time point
(t + ∆t), i.e. a time of ∆t has passed since time point t. The value of
portfolio at time t and ∆t have the expressions as follows:

Vt = hStSt + hBtBt,

Vt+∆t = hStSt+∆t + hBtBte
r∆t

= Vte
r∆t + hSt(St+∆t − er∆tSt).

By definition Vt = Ht, which leads to a definition of the quadratic
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hedging error, R, over a given time period ∆t as:

R = (Ht+∆t − Vt+∆t)
2 =

(
(Ht+∆t − er∆tHt)− hSt(St+∆t − er∆tSt)

)2
.

(2.6)
As mentioned above, we wish to minimize R with respect to hSt under

either physical measure P or risk neutral measure Q such that:

h∗S = arg min
hS

E[R|Ft]

= arg min
hS

E[
(
(Ht+∆t − er∆tHt)− hSt(St+∆t − er∆tSt)

)2 |Ft]

= arg min
hS

E[(∆H)2 − 2hs∆H∆S + h2
s(∆S)2|Ft].

where ∆H = Ht+∆t − er∆tHt and ∆S = St+∆t − er∆tSt. Expanding the
square of the expression and taking the expected value yields the convex
minimization with the straight forward solution:

h∗S =
E[∆H∆S|Ft]
E[(∆S)2|Ft]

. (2.7)

By consideration Equation 2.7 under risk neutral measure Q, we get
EQ[∆S|Ft] = 0 and EQ[∆H∆S|Ft] = Cov(∆H,∆S), thus the optimal
portfolio under risk neutral measure Q can be written as,

hQS =
CovQ(St+∆t, Ht+∆t|Ft)

VarQ(St+∆t|Ft)
.

The optimal portfolio is readily found if the expectation is approxi-
mated by a Monte Carlo sample, as the optimization problem is trans-
formed into a standard least squares regression. Sampling N particles
from πP(St+1|St) gives

hPS = arg min
hS

1

N

N∑
n=1

[(
(H

(n)
t+∆t − e

r∆tHt)− hSt(S
(n)
t+∆t − e

r∆tSt)
)2

|FP
t

]

=

1
N

∑N
n=1

(
(H

(n)
t+∆t − er∆tHt)(S

(n)
t+∆t − er∆tSt)

)
1
N

∑N
n=1

(
S

(n)
t+∆t − er∆tSt

)2 .

2.3.2 Adding another hedge instrument

Now, we augment the conditions for hedging a derivative by adding a call
option as an extra hedge instrument. Thus, we define our hedge portfolio
the following way:
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P h(t, St) = hSS(t) + hCC(t, S(t)) + hBB(t).

The instrumental call option is denoted C(t, S(t)). The augmentation
should lead to better hedge schemes than those we have presented before.
It is important that the time to maturity for the instrumental option is
longer than that of the hedged option. Similar to Equation (2.6) we
define the quadratic hedging error R, as a random variable standing at
time point t, looking forward a short time interval ∆t.

R = ((Ht+∆t − er∆tHt)− hSt(St+∆t − er∆tSt)− hCt(Ct+∆t − er∆tCt))2.

By expanding the square and taking the expected value of the expres-
sion we are left with a convex two-dimension minimization problem. The
asset weights hS and hC that correspond to the optimal hedge portfolio
physical measure P is:

hPS =
E[∆C2]E[∆S∆H]− E[∆S∆C]E[∆C∆H]

E[∆S2]E[∆C2]− E2[∆S∆C]
,

hPC =
E[∆S2]E[∆C∆H]− E[∆S∆C]E[∆S∆H]

E[∆S2]E[∆C2]− E2[∆S∆C]
,

where ∆H = Ht+∆t − er∆tHt, ∆S = St+∆t − er∆tSt and ∆C = Ct+∆t −
er∆tCt. Under risk neutral measure Q, the expected value of ∆H, ∆S
and ∆C are all zero, thus the optimal hedge portfolio are:

hQS =
Var(C)Cov(S,H)− Cov(S,C)Cov(C,H)

Var(S)Var(C)− Cov2(S,C)
,

hQC =
Var(S)Cov(C,H)− Cov(S,C)Cov(S,H)

Var(S)Var(C)− Cov2(S,C)
.

All means, variances and co-variances are conditioned on the filtration
Ft, and subscripted t+ ∆t.
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3 Monte Carlo Simulation

In the current section we describe in some detail how the particular pro-
cesses presented in model calibration and can be implemented in prac-
tice in a Monte Carlo simulation pricing framework. For this we discuss
the numerical implementation of the stochastic volatility jump diffusion
model and then introduce three building block processes which drive
them. This will be followed by an explanation of how one assembles a
time changed Lévy process.

3.1 Simulation of the Heston Model

For numerical purposes, it is preferred to simulate the change in the
logarithm of the asset price. We define Xt = lnSt and apply Itô’s lemma
under risk neutral measure to get

dXt = (r − 1

2
Vt)dt+

√
VtdW

Q
t . (3.1)

A discrete-time approximation of Equations 3.1 and 2.1 using the
Euler-Maruyama scheme is given by

Xt+∆t = Xt + (r − 1

2
Vt)∆t+

√
Vt
√

∆tZ1
t ,

Vt+∆t = Vt + κ(ξ − Vt)dt+ σ
√
Vt
√

∆tZ2
t . (3.2)

where Z1
t and Z1

t are two standard normal random variables with corre-
lation ρ. We use the Euler-Maruyama scheme in simulation through this
paper.

3.2 Simulation of the Bates model

The independence of the Poisson process, the jump size and the Brownian
motion driving the underlying strongly facilitates the discretisation of
the Bates model. As a advantage of the Heston model with jump, it is
possible to split up the computation of Xt into a geometric Brownian
motion part, a drift adjustment for the jump component and the value
of the compound Poisson process. Thus the simulation steps of Bates
model can be summarized as:

1. sample the number of jumps nJ from Poisson distribution with
intensity λ∆t,

2. sample the jumps size J from Normal distribution with mean µ and
variance δ2,
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3. calculate the drift part −λ(exp( δ
2

2
+ µ)− 1).

4. a discrete-time approximation of Xt using the Euler-Maruyama
scheme is given by

Xt+∆t = Xt + (r − 1

2
Vt + drift)∆t+

√
Vt
√

∆tZ1
t +

nJ∑
j=0

Jj.

3.3 Simulation of the time-changed Lévy model

3.3.1 NIG Lévy Process

To simulate a NIG process, we first describe how to simulate NIG(α, β,
δ) random numbers. NIG random numbers can be obtained by mixing
Inverse Gaussian (IG) random numbers and standard Normal numbers in
the following manner. An IG(a, b) random variable X has a characteristic
function given by:

E[exp(iuX)] = exp(−a(
√
−2ui + b2 − b)).

First simulate IG(1,δ,
√
α2 − β2) random numbers ik, for example us-

ing the Inverse Gaussian generator of Michael, Schucany and Haas (De-
vroye and Devroye, 1986). Then sample a sequence of standard Normal
random variables uk. NIG random numbers nk are then obtained via:

nk = δ2βik + δ
√
ikuk.

Finally the sample paths of a NIG(α, β, δ) process X = {Xt, t > 0}
in the time points tn = n∆t, n = 0, 1, 2, ... can be generated by using the
independent NIG(α, β, δ∆t) random numbers nk as follows:

X0 = 0, Xtk = Xtk−1
+ nk, k > 1.

3.3.2 CIR Stochastic Clock

The simulation of a CIR process y = {yt, t > 0} is straightforward.
Basically, we discretize the SDE:

dyt = κ(η − yt)dt+ λy
1/2
t dWt, y0 > 0,

where Wt is a standard Brownian motion. Using a first-order accurate
explicit differencing scheme in the time points tn = n∆t, n = 0, 1, 2, ...,
the sample path of the CIR process y = {yt, t > 0} is then given by
Equation 3.2.
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3.3.3 Path Generation for Time Changed Lévy Process

The explanation of the building block processes as stated above allow
us to assemble all the parts of the time-changed Lévy process simula-
tion puzzle. For this one can proceed through the following five steps
(Schoutens, 2003).

1. simulate the rate of time change process y = {yt, 0 6 t 6 T},

2. calculate the time change Y = {Yt =
∫ t

0
ysds, 0 6 t 6 T},

3. simulate the Lévy process X = {Xt, 0 6 t 6 YT},

4. calculate the time changed Lévy process XYt , 0 6 t 6 T ,

5. calculate the stock price process using Equation 2.4. The correcting
factor is calculated as:

ert

E[exp(XYt)|y0]
=

ert

φCIR(−iκX(−i), t, 1)
.
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4 Model calibration

A stable calibration of option pricing models is of paramount importance
for investment banks because the price of options are determined by
estimated models. This section will review standard calibration methods,
discuss and compare a few new technologies leading to better use of data.

4.1 Least squares methods

The dominating calibration method is the weighted least square method
(Cont and Tankov, 2004; Schoutens et al., 2004; Hull, 2009), i.e. taking
the parameter vector of the model that minimizes the weighted sum of
the squared difference between the observed mid-price and model price

LWLS
t (θ) =

t∑
s=1

Ns∑
i=1

λs,i
(
c?s(Ki, τi)− cModel

s (Ki, τi; θ)
)2
,

θ̂t = arg min
θ∈Θ

LWLS
t (θ).

It is statistically optimal to choose λs,i as the inverse of the variance
of the residuals, although economic argument may suggest other weights.
It is common to choose λs,i = 0 ∀s < t to increase the adaptiveness of the
calibration, and to choose λs,i as constant or proportional to the inverse
of squared bid-ask spread, thereby relating the size of the ask-bid spread
to the quality of the quoted prices

λs,i ∝
1

(cAsks (Ki, τi)− cBids (Ki, τi))
2 . (4.1)

Since this calibration is known to be numerically difficult to determine
the parameters minimizing the loss function and has problem of easily
over fitting data with a small set of observations, a couple of alternative
approaches have emerged over the last few years.

4.2 Non-linear filtering

In this paper, EnKF is used to compute the distribution of the latent
states given the observations according to the above mentioned analysis.
The updating of the distribution of the latent states is based on the
theory on linear projections in L2(best linear estimate), similar to what
is done in the EKF and IEKF (Lindström et al., 2008).

Consider a discrete-time nonlinear system with dynamics

xt = f(xt−1) + wt,
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and measurements

yt = h(xt, ut) + εk,

where xt, wt ∈ Rn, ut ∈ Rm, yt, and εt ∈ Rp. We assume that wt and vt
are stationary zero-mean white noise processes with covariance matrices
Qt and Rt, respectively. Furthermore, we assume that x0, wt and vt are
uncorrelated. The model can also depend on a known (control) input ut,
which represent the set of Ft measurable variables (e.g. St, Kt, τt, · · · ).

The algorithm of EnKF is summarized as following,

Ensemble Kalman filter

Initialisation: Let p(x0) ∼ N(m0, P0) and draw N samples x
(n)
0 .

Propagate: Propagate the latent state as

x
(n)
t|t−1 ∼ p(Xt|x(n)

t−1|t−1)

y
(n)
t|t−1 = h(x

(n)
t|t−1)

and compute

xt|t−1 =
1

N

∑
x

(n)
t|t−1, yt|t−1 =

1

N

∑
y

(n)
t|t−1

Ex = [x
(1)
t|t−1 − xt|t−1 · · · x(N)

t|t−1 − xt|t−1]

Ey = [y
(1)
t|t−1 − yt|t−1 · · · y

(N)
t|t−1 − yt|t−1]

Pxy =
1

N − 1
ExE

T
y , Pyy =

1

N − 1
EyE

T
y

where R is the covariance of ε.

Updating: The updated particle representation of the filter density is
given by

Kt = Pxy(Pyy +R)−1

x
(n)
t|t = x

(n)
t|t−1 +Kt(yt + ε(n) − y(n)

t|t−1)

where ε(n) d
= ε.

and repeat the propagation and updating steps until t = T .

The ensemble Kalman filter moves that particles, using linear trans-
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formations rather than resampling particles as is done in particle filters,
thus avoiding sample degeneration.

4.3 An empirical study of model calibration and
quadratic hedging

4.3.1 Data description

We have used daily data on S&P 500 index options, from November 5th,
2001 to May 5th, 2003. The original data set consisted of 38225 quotes
(date, strike, ask price, bid price, index level, time to maturity and risk
free interest rate) and there are 376 trading days for the S&P 500 index.
In order to reduce the problems with infrequent trading and other noises
in the market, we have applied several data selection criteria,

1. The options with a maturity of fewer than 6 days and longer than 1
year have been excluded from the investigation. The options with a
maturity less than one week have relatively small time premiums,
and contain very little information about the volatility. Options
with maturity longer than one year are not actively traded.

2. Options having zero or negative bid-ask spread and bid-ask spread
larger than 5 have been excluded. Also options with prices less
than $0.01 have been eliminated.

3. The least liquid option when call and put options having identical
strike and time to maturity is available, have been eliminated.

After this processing, there are 238 trading days, 27978 valid unique
quotes left. We transform all quoted put options into call options using
put-call parity. The statistics of the data set can be found in Table 1.
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Moneyness Days to Expiration
S/K < 60 60− 180 > 180 Subtotal

OTM

< 0.94
$5.11 $16.67 $40.34
(0.35) (0.50) (0.61)
{1712} {1656} {101} {3469}

0.94-0.97
$12.25 $26.47 $49.68
(0.46) (0.52) (0.62)
{2061} {2416} {575} {5052}

ATM

0.97-1.00
$23.71 $39.96 $62.89
(0.50) (0.53) (0.62)
{2005} {2356} {755} {5116}

1.00-1.03
$40.10 $56.17 $78.80
(0.50) (0.53) (0.62)
{1815} {2168} {676} {4659}

ITM

1.03-1.06
$59.47 $74.08 $90.30
(0.49) (0.52) (0.63)
{1725} {1992} {314} {4031}

> 1.06
$93.95 $99.49 $112.35
(0.42) (0.51) (0.59)
{3058} {2499} {94} {5651}

Subtotal {12376} {13087} {2515} {27978}

Table 1: Summary statistics for data set. The reported numbers are
respectively the average quoted bid-ask mid point price, the average
half of bid-ask spread, which shown in parentheses, and the total num-
ber of observations (in braces), for each moneyness-maturity category.
S denotes the spot S&P 500 index level and K is the strike price.
OTM, ATM, and ITM denote out-of-the-money, at-the-money, and in-
the-money,respectively.

4.3.2 Implementation

Lindström et al. (2008) suggested that parameters and the latent volatil-
ity can be estimated recursively by applying a sequential filter to

c?t (Ki, τi) = cModel(Ki, τi; θ̃t, Vt) + εt,

θ̃t = θ̃t−1 + ηθt ,

Vt ∼ πP(Vt|Vt−1; θ̃t−1),

(4.2)

where the first equation is interpreted as the measurement equation Yi,t =
c?t (Ki, τi) and the latter two equations Xt = [θt Vt]

T are interpreted as
latent processes. We assume that ηθ,Vt , and εt are stationary zero-mean
white noise processes with covariance matrices Qt and Rt, respectively.
The measurement noise covariance has a standard deviation of one fourth
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of the spread, cf. R = cov(ε) = (cAsk − cBid)2/16.The motivation behind
this choice is that we expect at least 95% of the true option prices to
be within the Ask-Bid spreads. The process noise covariance matrix Q
was determined as Qc = 5 · 10−3 and QJ = 10−4 with relation to the
continuous component and jump component respectively.

This is a dynamic Bayesian method, addressing the problem of time
varying parameters as well. The latent state vector Vt is organized with a
transformed version of the parameter vector θ̃t = α(θt), where the trans-
formed parameter vector is modeled as a random walk. Neglecting to
transform the parameters may cause the algorithm to break down (Lind-
ström et al., 2008). Standard, bijective transformations have been used,
e.g. taking the logarithm of variables with support on the positive real
line and applying the inverse hyperbolic tangent (arctanh) to variables
with support on [−1, 1].

There is no need to specify the initial distribution of the latent states
when apply the filter algorithm to data. Although we have initialized
the filter using the asymptotics given by the WLS estimator, i.e. taking
x0 = θWLS

1 and P0 = Cov(θWLS
1 ). This is a reasonable prior and ensures

that the filter has good starting values.
The latent volatility and underlying dynamics mentioned above for

different models are presented under the risk-neutral measure. Thus the
parameters involved are Q-parameters. In order to hedge the contract in
the real world, the P-parameters, which are under the physical measure,
are needed. There is a relationship between P and Q parameters through
risk premiums λV ,

κQ = κP + λV , ξQ =
κPξP

κP + λV
.

We first calibrate risk-neutral measure so that the Q-parameters are ob-
tained. Then we test different volatility risk premie to match historical
return. After doing this, there is no significant estimation was obtained.
One possible reason is that the risk premia has tiny influence on predic-
tion since we use the daily calibrated parameters to predict the next day
index level and volatility dynamics. Thus for computational convenience,
we assume the parameters of the model under P and Q dynamics are the
same through this paper (Lindström et. al, 2008).

The models used in Monte Carlo hedging are not required to be the
same as in calibration. However, we assume that the models are identical
for calibration and hedging. In the hedging part, the transaction costs
are not considered since not only do they tend to vary over time but they
also depend on the size of the transaction.

Applying a non-linear Kalman filter (Lindström et al., 2008) uses an
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iterated Extended Kalman filter) to the model generates and estimates
an estimate of the latent parameters and states conditional on the obser-
vations

p(Xt|Yi,s ∀ s 6 t, ∀i).

A limitation when using an iterated Extended Kalman filter is that
all distributions are treated as if they are Gaussian, something that may
be inaccurate for jump processes. This limitation can be circumvented
by Monte Carlo simulation of the latent processes. The advantage of
using simulation is that we can generate an arbitrary number of paths,
making the approximation error arbitrarily small.

The updating of the latent processes can without loss of performance
use a Kalman filter type method as the dimension of the observation
vector (i.e. the number of options quoted) usually exceed the dimension
of the latent states. This makes the linearization of the measurement
equation uncontroversial.

4.3.3 Results

In this section, the estimated parameters of the Bates model and the
NIGCIR model from different calibration technique are first compared
to test over-fitting. Then, the relationship between estimation efficiency
and number of ensembles is illustrated by applying two hedging strate-
gies on the estimations.

The calibrated parameters
The Bates model and NIGCIR model have been estimated on market
data from options on the SP 500 index. 80% of the data from the above
data set are chosen randomly and used for estimation and the remainder
20% are for validation. The parameter estimates of the Bates model using
different calibration techniques, namely WLS, UKF and EnKF(with 400
ensembles), are presented in Figure 1, whereas the estimations of the
NIGCIR model are shown in Figure 2.
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Figure 1: Bates on market data. WLS estimates (circles), UKF param-
eters (thin line), and EnKF estimates with 400 ensembles (thick line).

For the Bates model, the estimations from UKF and EnKF give simi-
lar patterns for all parameters, whereas the WLS estimates varies a great
deal, except for the latent state process, the volatility Vt. There are some
extreme estimates from WLS for the jump parameters, the jump inten-
sity λ, the expected size µ and the standard deviation δ of the jumps.
This shows that the parameters which measure jumps, is hard to track.
But these slightly difference in jump parameters do not affect the model
predicability. This is also seen in Table 2.
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Figure 2: NIGCIR on market data. WLS estimates (circles), UKF pa-
rameters (thin line), and EnKF estimates with 400 ensembles (thick line).

For the NIGCIR model, the UKF estimates and EnKF estimates
are closely to each other, except for the the scale parameter δ of the
jumps. The WLS can’t achieve stable and convergence parameter for the
NIGCIR model for this data set as extreme values appear in the figure of
parameter α, which controls the tail heaviness of the NIG distribution.

The accuracy of the model parameters directly affects the theoretical
price forecast and the hedging strategy. In order to examine the models
forecast performance, we have calculated the Root Mean Square Error
(RMSE) for both in-sample and out-of-sample forecasts as following,

RMSE(x) =

√√√√ 1

N

N∑
t=1

(x̂t − xt)2 =

√√√√ 1

N

N∑
t=1

e2
t ,

where xt is the mid-point of the bid and ask prices at time t, x̂t is the
predict price with the model calibrated parameters, i.e. x̂t = x̂t|t.

The performance of models has also been examined by the proportion
of options price inside the bid-ask spread(IS):

IS(x) =
1

N

N∑
t=1

1[bid,ask](x̂t).
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All of the model performance results of the RMSE and the IS from
various methods are presented in table 2. As can be seen from the table,
all methods perform well both on the in-sample data and the out-of-
sample data. Both EnKF and UKF work well on this dataset. The WLS
performs best on the Bates model, but for the more complex model,
the NIGCIR model, the measurements shows the over-fitting of WLS.
The measurement of EnKF with different numbers of ensembles do not
change significantly while the ensemble size goes up. Thus 400 ensembles
is sufficient enough for calibration for this data set.

Filter Set
Bates NIG-CIR

IS (%) RMSE IS (%) RMSE

WLS
Est. 89.66 0.2703 86.18 0.3257
Val. 86.81 0.3048 84.66 0.3497

UKF
Est. 87.09 0.3153 84.12 0.3525
Val. 85.84 0.3356 82.84 0.3682

EnKF Est. 87.95 0.3080 86.46 0.3269
(50 ensembles) Val. 86.18 0.3236 84.77 0.3448

EnKF Est. 88.09 0.3163 86.66 0.3250
(100 ensembles) Val. 86.08 0.3322 84.72 0.3431

EnKF Est. 88.57 0.2946 86.89 0.3236
(400 ensembles) Val. 86.38 0.3191 84.97 0.3417

Table 2: Summary statistics for the calibration results of the Bates model
and the NIGCIR model using different estimation methods. The reported
numbers are the global fit proportional option prices inside the bid-ask
spread(IS%) and error measurements for the in-sample (estimation set)
and out-of-sample (validation set) of S&P 500 data set. Bold face indi-
cates the best method for that measure.

Dynamic Hedging Strategy
The key point in a hedging strategy or any trading strategy with risk-
neutral purpose is to obtain the weight of the hedging portfolio, and
the weights differ from the ways how they measure the risk. We follow
the hedging strategy as described in Section 2.3, namely Delta hedge
and Monte Carlo quadratic hedging using underlying and risk-free asset
under the risk neutral measure Q. The trading step behind these two
hedging strategies is one who buy/sell a group of options today, want to
sell/buy them on the next observation day. The purpose of doing this is
to find whether a relationship exists between the hedging efficiency and
ensemble size.
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Par. Set Bates NIG-CIR

∆-hedge
A $6.47(4.63) $7.01(5.54)
B $6.48(4.63) $7.02(5.55)
C $6.47(4.62) $7.02(5.55)

100 simulations
A $6.24(4.83) $6.24(4.90)
B $6.21(4.98) $6.19(4.90)
C $6.02(4.69) $6.03(4.76)

400 simulations
A $5.79(4.62) $6.06(4.76)
B $5.62(4.57) $6.01(4.71)
C $5.57(4.03) $5.95(4.74)

1000 simulations
A $5.58(4.13) $6.01(4.79)
B $5.49(4.10) $5.94(4.76)
C $5.33(4.11) $5.92(4.72)

Table 3: The hedging results for the Bates model and the NIG-CIR model
of two different hedging strategies: ∆ hedge and quadratic minimization.
Parameter Set A indicate the EnKF estimates with 50 ensembles, while
B and C is for EnKF estimates with 100 and 400 ensembles, respectively.
The reported numbers are the values of average absolute hedging error
over the whole period and the standard deviation(in braces).

The hedging results for Delta hedging and Monte Carlo quadratic
hedging(with different number of simulations) are shown in Table 3. On
one hand, one may expect the level of hedging error would decrease with
the increase of the number of simulations. The measurements in the
above table represent the same expectation since the errors for the same
parameter set decline as the number of simulations goes up. However to
find the ensemble size with which we could get the smallest hedging error
during hedging, is not our purpose in this paper. On the other hand, the
influence on hedging results with the changing of ensemble size doesn’t
show up. Note that the Monte Carlo quadratic hedging performs better
than the standard ∆-hedging even with 100 Monte Carlo simulations for
each parameter set.
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5 Simultaneous calibration and hedging

We will modify the model in Section 6 by augmenting the latent pro-
cesses with the underlying asset St and simultaneously including it in
the measurement equation. The reason for doing so is that samples from
the underlying asset is required when doing the hedging.

Introducing the augmented latent processes Xt = [St, Vt, θt] suggests
that model 4.2 can be rewritten as[

S?t
c?t (Ki, τi)

]
=

[
Xt(1)

cModel(Ki, τi;Xt)

]
+

[
εSt
εct

]
Xt ∼ πP(Xt|Xt−1),

where the first two equations are the measurement equations Y ?
t =

[S?t c
?
t (Ki, τi)]

T and the last equation is the augmented latent processes.
The variance (derived from the ask-bid spread) of the measurement noise
for underlying asset is typically much smaller than the variance of any
of the options, ensuring that the filter estimate of the underlying asset is
within the ask-bid spread for the asset.

5.1 Algorithm

Noting that the filter computedXt|t−1 = [St|t−1, Vt|t−1, θt|t−1]T and Yt|t−1 =
[Xt|t−1(1); cModel(Ki, τi;Xt|t−1)] as part of the propagation step makes
quadratic hedging inexpensive to compute. The regression uses ζi =
cModel(Ki, τi;Xt|t−1) and Ξ = [Bt|t−1, St|t−1], all of them already com-
puted. Most importantly, the expensive computation of option values is
already done!

We summarize the algorithm, integrating the filter and hedge regres-
sion below.
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Simulanteous calibration and hedging

Initialisation: Let p(x0) ∼ N(m0, P0) and draw N samples x
(n)
0 .

Propagate: Propagate the latent state as

x
(n)
t|t−1 ∼ πP(Xt|x(n)

t−1|t−1)

y
(n)
t|t−1 = cModel(x

(n)
t|t−1)

and compute

xt|t−1 =
1

N

∑
x

(n)
t|t−1, yt|t−1 =

1

N

∑
y

(n)
t|t−1,

Ex = [x
(1)
t|t−1 − xt|t−1 · · · x(N)

t|t−1 − xt|t−1],

Ey = [y
(1)
t|t−1 − yt|t−1 · · · y

(N)
t|t−1 − yt|t−1],

Pxy =
1

N − 1
ExE

T
y , Pyy =

1

N − 1
EyE

T
y , Pxx =

1

N − 1
ExE

T
x

where R is the covariance of ε.

Updating: The mean and covariance of the filter density is given by

Kt = Pxy(Pyy +R)−1

x
(n)
t|t = x

(n)
t|t−1 +Kt(yt + ε(n) − y(n)

t|t−1)

where ε(n) d
= ε.

Hedging: The Monte Carlo local optimal hedging weight is given by

θQt =
Pxy
Pxx

and repeat the propagation and updating steps until t = T .

5.2 A simulation study on model calibration with
additional latent state spot price process

In this section, a model calibration technique using EnKF is presented
to test whether there is some effectiveness on parameter estimation with
additional latent state, which is known as spot price dynamic process.

The main purpose of using simulation is that with simulation one
get a lot of observations very quickly, whereas observing the market only
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corresponds to one path of the time series. The drawback is that we have
to make the assumption that the stock market follows a certain model.

Data have been simulated from the Bates models, cf. subsection 2.
The initial parameters were chosen according to Lindström et al.(2008)
to mimic S&P 500 index as closely as possible, see table 4. The asset
trajectories are simulated with discrete time steps. The pseudo algorithm
of simulation for different models can be found in Section 2.

S0 V0 κ ξ σv ρ λ µJ δJ
1000 0.0576 2.03 0.04 0.38 -0.7 0.59 -0.05 0.07

Table 4: Parameters for the Bates models used in the simulation study.

The total length of the data set is 200 trading days. 100 European
call options over a range of 20 strikes with moneyness between 0.65 and
1.35 and 5 maturities was generated each trading day. Our options data
has bid-ask spread of approximately $1, so we have added noise to the
option prices and spot prices to mimic the mid price uncertainty present
in the real world option prices. The noise is Gaussian with a standard
deviation of one fourth of the spread, cf. R = cov(ε) = 1/16.

30



50 100 150 200

850

900

950

1000
S

t

50 100 150 200

0.02

0.04

0.06

0.08

V
t

50 100 150 200

1

2

3

4

κ

50 100 150 200

0.04

0.06

0.08

0.1

0.12

0.14

ξ

50 100 150 200
0.2

0.25

0.3

0.35

0.4

0.45

σ
v

50 100 150 200

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4
ρ

50 100 150 200

0.5

1

1.5

λ

50 100 150 200

−0.4

−0.2

0

0.2

0.4

0.6

µ

50 100 150 200

0.1

0.2

0.3

0.4

δ

Figure 3: Bates on simulated data. True parameters (thin lines), WLS
estimates (circles) and EnKF estimates (thick lines). ξ and ρ are changing
over time.

The Bates model has seven parameters and two latent states which
are grouped together in the augmented latent state vector, x = (St, Vt, κ,
ξ, σ, ρ, λ, µ, δ). The EnKF and WLS estimated parameters are shown in
Figure 3 in addition to the true parameter values. It can be seen that the
EnKF estimates are closer to the true parameter values than the WLS
estimates. Obviously the filter methods outperform the WLS in terms of
parameter estimation.

5.3 An empirical study on simultaneous calibration
and hedging

The Bates model and NIGCIR model have been estimated on same mar-
ket data from options on the S&P 500 index as in last chapter. In order to
get the hedging weights for all the options at the same time, the method
is applied on the whole data set. The parameter estimates and the cali-
brated latent states of the Bates model with different ensemble size, are
presented in Figure 4, whereas the estimations of the NIGCIR model are
shown in Figure 5.
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Figure 4: Bates on market data. 50 ensembles (circles), 100 ensembles
(dot), 400 ensembles (thick line), and 1000 ensembles (thin line).

Substantially, both figures indicate that this filter technique tracks the
spot price process very well. It can be seen from Figure 4 and Figure 5
that parameter estimations show the similar patterns compare to Figure
1 and Figure 2, respectively. It can also be concluded from the figures
that the estimations are going to be stable as increasing the number of
ensembles for both models. The estimations from EnKF with 400 and
1000 ensembles display similar trajectories for all parameters and latent
processes exclusive the affect of randomness for the Bates model. The
same situation can be seen from Figure 5 for the NIGCIR model for the
volatility parameters. There is a difference for the jump parameters as
the spot process plunged. Thus, the NIGCIR model is not the proper
model to estimate the spot process for this data set. By using the daily
calibration method, different ensemble size may give different but almost
equally well-fitted parameters for different model respectively(Table 5).

For the jump parameters, the trajectories change with different num-
ber of ensembles. The behavior of jump parameters is way hard to ex-
plain.
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Figure 5: NIGCIR on market data. 50 ensembles (circles), 100 ensembles
(dot), 400 ensembles (thick line), and 1000 ensembles (thin line).

The proportional option prices inside spread(IS) and RMSE of the
predict prices of global fit are presented in Table 5. We see that adding
the underlying asset dynamic to the model causes a minor decline in
the level of the proportion of options price inside the bid-ask spread(IS)
compared to the measurements in Table 2. The difference of values of
IS is caused by the randomness, thus the change of level of IS does not
appear to be obvious as the number of ensembles increased.

For the Monte Carlo quadratic hedging strategy, we implement two
strategies. Strategy 1 is about to hedge the contract with its underlying
asset and risk free asset whereas Strategy 2 is to hedge the contract with
its underlying asset and other contracts, which have been explained in
Section 2.3. The hedging results are shown in Table 6 for both models
with different ensemble size.

The statistics of the hedging error in the above table represent that
Strategy 2 performs much better than Strategy 1. Since the value of
hedging error from Strategy 2 is almost or even smaller than half of
the value of error from Strategy 1. The hedging results show that the
value of hedging error decreases with the increasing of the ensemble size.
Compare with the result of Strategy 1, it can be obviously seen that
Bates model performs better than the NIGCIR model. Since the value
of hedging error of Bates model are all less than that of NIGCIR model
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with different ensemble size. This is evidence that Bates model is a better
model to estimate the spot process for this data set.

It is worth noting that the hedging results we get is for free, i.e. with
no additional consumptions except model calibration, since the expensive
computation of option values has been already done in the prediction step
during model calibration. And it is necessary to mention that errors from
both these two Monte Carlo hedging strategy are less than that from the
Delta hedge.

Bates NIG-CIR
IS (%) RMSE IS (%) RMSE

50 ensembles 77.97 0.3205 78.54 0.3010
100 ensembles 80.71 0.2694 76.81 0.3196
400 ensembles 80.03 0.2752 76.80 0.3188

1000 ensembles 79.57 0.2887 76.85 0.3185

Table 5: Summary statistics for the calibration results of the Bates model
and the NIGCIR model using EnKF with different ensemble size. The
reported numbers are the global fit proportional option prices inside the
bid-ask spread(IS%) and error measurements for both predicted options
and spot price of S&P 500 data set.

Bates NIGCIR
Strategy 1 Strategy 2 Strategy 1 Strategy 2

50 ensembles $5.94(4.53) $3.41(3.50) $6.32(4.74) $3.14(2.91)
100 ensembles $5.85(4.46) $2.75(3.22) $6.29(4.63) $2.79(3.29)
400 ensembles $5.63(4.21) $2.40(2.65) $6.02(4.61) $2.37(2.52)

1000 ensembles $5.55(4.10) $2.12(2.30) $5.96(4.60) $2.29(2.31)

Table 6: The hedging results for the Bates model and the NIGCIR model
of two different hedging strategies. Strategy 1 indicate the strategy de-
scribed in section 2.3.1, named Monte Carlo quadratic hedging with un-
derlying asset and risk-free asset while Strategy 2 is known as Monte
Carlo quadratic hedging with additional instrument(section 2.3.2). The
reported numbers are the values of average absolute hedging error over
the whole period and the standard deviation(in braces).
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6 Conclusion

This thesis evaluated the Ensemble Kalman filter technique on model
calibration with simulated and market option data by applying two com-
monly used models with stochastic volatilities and with/without jumps
in both underlying asset and volatility dynamics: the Bates model and
the NIG-CIR model. The Fourier transform based technique was applied
to obtain closed form expressions for the prices of European options.

An empirical study of model calibration was performed on S&P 500
option data. The daily model parameters were calibrated by using the
Ensemble Kalman Filter. The estimations have been compared to the
standard Weighted Least Square estimates as well as to the Unscented
Kalman filter estimates. The overall impression of model calibration is
that filter methods provide more stable and more robust estimation than
WLS. The UKF and EnKF present the similar results whereas the WLS
estimates are not stable, especially for the NIG-CIR model. We find WLS
is prone to over-fitting the data and discover the variation of ensemble
size does not influence the calibration results. To further study the re-
lationship between ensemble size and calibration accuracy, two hedging
strategy known as the Delta hedge and the Monte Carlo Quadratic hedg-
ing, were used to test the ability of forecast of models with parameters
which are estimated with different number of ensembles. The statistics
of values of hedging error also illustrate the affects on predictability of
models and that the efficiency of model calibration doesn’t appear with
variation of ensembles size. However, the level of hedging error goes down
with the increasing number of simulations in the Monte Carlo hedging.
The number of simulations has the same meaning as ensemble size in the
method of simultaneous calibration and hedging. It is not our popurse
to outcrop the best ensemble size but enlighten an tendency insight.

Afterwards, the research focused on analyzing the efficiency of simul-
taneous calibration and hedging. A simulation study first applied on
model calibration with additional latent state, named spot price process
dynamics. This is the foundation of implementation of the method of si-
multaneous calibration and hedging. The results show that EnKF works
successfully on this. Then we make use of the method of simultaneous
calibration and hedging on S&P 500 option data. After using two hedg-
ing strategies with four groups of parameters, estimated with different
ensemble size, the data showed the two Monte Carlo hedging strategies
perform better than the Delta hedge.

Since the Black-Scholes model, the Merton model and the Heston
model are sub-models of the Bates model, it is easy to apply the methods
on these models.
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It should be emphasized that these conclusions have been reached
only on the basis of calibrating and hedging S&P 500 index options,
especially this data set. However, we believe that a similar behavior can
be expected for other datasets.
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