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Abstract

Depth map cameras provide new ways of designing surveillance systems. In
this thesis we evaluate three di�erent cameras from two di�erent depth sen-
sor techniques, and propose a complete method for detecting thefts over a
counter in a retail environment. Our algorithm covers pre-processing with
noise reduction and background segmentation using the re�ected signals am-
plitude as a con�dence measurement. A plane is �tted both to the 3D points
of the top of the retail counter as well as to the 3D points on the side (cashier's
side) of the retail counter. The algorithm determines which foreground pixels
are on the wrong side of both these planes. By running this result through a
few methods to improve rigidity, we show that it is possible to detect thefts
with a very high detection rate and low false positive rate. Finally we present
the results from our testing of di�erent versions on a database of activities
with known ground-truth (theft/no theft).
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Chapter 1

Introduction

1.1 Background

Digital surveillance systems traditionally consists of ordinary 2D video cam-
eras and are thus limited to working with the information that can be ob-
tained from these. There are several alternatives to this technique, of which
the �eld of depth map cameras (commonly referred to as 3D cameras) is one
of the most obvious and interesting. These enable for an acquisition of the
distance to various objects in a scene, which could provide for more complex
image analysis algorithms or merely to simplify existing techniques.

There are three main types of depth map camera techniques; time of �ight
(TOF) cameras, structured light 3D scanning and stereo vision cameras, of
which the former two will be subject to investigation in this thesis.

The main focus of this thesis has been around the concept of Time-of-Flight
cameras, and speci�cally to develop an algorithm which handles their weak-
nesses well. The algorithm has then been slightly modi�ed in order to work
with a structured light camera as well.

1.2 Goals

With regards to the potential advantages of depth sensors, this master thesis
was devoted to the following goals:

• To list which types of depth sensors that are available in order to test
the sensors.

• To de�ne a use case for retail in more detail.

• To set up test environments which covers di�erent aspects e.g. mate-
rial, lighting and sensor mounting options.
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• To test depth sensors in test environment and to choose two to three
for prototypes.

• To develop an algorithm in order to detect shoplifting behavior.

• To build a prototype to test whether it is possible to detect shoplifting
behavior.

1.3 Case description

Thefts over the counter in a retail environment is a problem which may occur,
e.g. when a salesperson is distracted, inattentive or obscured. This should
mainly be a problem for shops selling small, expensive and exclusive items
such as jewelry, perfumes and consumer electronics. In order to address such
thefts, one can imagine a security system which detects prohibited behaviour
and either warns the personnel or gives the perpetrator feedback by for
example �ashing a red light or emitting a warning sound. Such behaviour
can for example be to reach for an item behind the counter. This kind of
system should preferably allow for the personnel to reach out from behind
the counter and act normally and should thus be able to distinguish them
from customers and potential thieves.

1.4 Environment description

The general lighting in the previously mentioned shops is often moderate
with spotlights angled towards (see Appendix A), and occasionally inside
the counters . For simplicity, the counters are regarded as rectangular with
either a white coated or a transparent glass �nish. The shape could in a
later stage be generalised to an angled or curved disc as required.

1.5 Related works

Real time operating depth map techniques is still a relatively new �eld.
The techniques are mostly limited to indoor environments and rather short
distances. With these limitations not much research has been done in ap-
plying such cameras for surveillance. However some work has been done. A
K Mishra et al. [19] suggests using multiple stereo cameras to create a 3D
scene from which a foreground can be extracted and objects identi�ed in a
robust way. It points at advantages such as removing hardships on detecting
multiple objects and changing occlusion.

High noise ratio is as of today a major setback for many depth sensors,
and especially Time-of-Flight cameras. It is therefore crucial to apply e�-
cient noise reduction. In this �eld a lot more work has been done. In [14]
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by J. Mure-Dubois et al. the di�erent noise sources in time of �ight cameras
are described and suggestions on how to reduce them are made. [8] suggests
�lters that takes the amplitude of the signal into consideration to smooth
the images.

This thesis is as far as we can see the �rst to challenge this speci�c problem
of automatically detecting theft behaviour in a speci�c environment.
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Chapter 2

Theory

2.1 Cameras

2.1.1 Time-of-Flight cameras

Time of �ight cameras are a type of depth sensors, built on the principle
of time of �ight for electromagnetic waves, i.e. a technique for measuring
distances using the time it takes for transmitted light to be re�ected back to
the camera.

One of the essential parts of the camera is the illumination device which
actively illuminates the scene. This is typically done with a sinusoidal inten-
sity modulated signal in the near infrared light spectrum called the reference
signal, r. The light is re�ected by objects in the scene and this re�ected
signal, s, is detected by the depth sensor after a time of �ight, τ . The sensor
consists of a matrix of distance measuring devices called smart pixels, con-
sisting of two light collectors each. The light collectors alternately detects
the re�ected light in accordance with the frequency of the reference signal
(see Figure 2.1), by charging an integrational capacitor each [11].

By computing the phase shift, φd, between the reference signal and the
re�ected signal, the camera can evaluate the distance

d =
c

2fmod

φd
2π

, (2.1)

where c is the speed of light and fmod the frequency with which the refer-
ence signal is modulated. Because of the periodicity of the cosine signal,
however, there exists a maximum distance where an object can be uniquely
determined. This is called the wrapping distance and is dependent on the
modulation frequency fmod as

dw =
c

2fmod
. (2.2)
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Figure 2.1: A schematic Figure of the pixel light collectors.

Note that this corresponds to the same expression as (2.1), with φd = 2π.
With a modulation frequency of for example 20MHz, this equates to roughly
7.5m.

The phase shift can now be determined from the correlation between the
reference signal and the re�ected optical signal [7]. This is done by sampling
several phase images at phase shifts of αn = 2πn

N

In =
1

t1 − t0

∫ t1

t0

r(t) · s(t+
αn

2πfmod
+ τ)dt , (2.3)

where r and s so far are considered arbitrarily shaped signals and T = t1−t0
is the integration time.

Since both the reference signal and the re�ected signal are modulated with
the same frequency, they can be rewritten using Fourier series as

r(t) =
∞∑

j=−∞
rje

ijωt, s(t) =
∞∑

k=−∞
ske

ikωt , (2.4)

which leads to the correlation formula

In =

∞∑
j=−∞

∞∑
k=−∞

rjske
ik(αn+ωτ) 1

t1 − t0

∫ t1

t0

eikωteijωtdt︸ ︷︷ ︸
=η

. (2.5)
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For j = −k, the integral equates to t1−t0, which leads to η = 1. For j 6= −k,
η has a maximum magnitude of 2

(t1−t0)(j+k)ω , which becomes negligible as

long as the integral times are much larger than the modulation time 2π
ω . This

leads to the �nal expression for the correlation

In ≈
∞∑

k=−∞
r−kske

ik(αn+ωτ) . (2.6)

In practice, most cameras use four samples at a time and a sinusoidal refer-
ence signal

s(t) = c′ +A′ cos(ωt) , (2.7)

which leads to the raw intensity images

In = c+ A
2 (e2πi

n
N eiφd + e−2π

n
N e−iφd)

= c+A cos(αn + φd)
, (2.8)

where c = r0c
′ and A = |r1|A′, [8]. Inserting n = 0 . . . 3 leads to

I0 = c+A cos(φd) ,
I1 = c−A sin(φd) ,
I2 = c−A cos(φd) ,
I3 = c+A sin(φd) .

(2.9)

These four expressions �nally yield the formulas to compute the phase shifts

φd = arg

(
3∑

n=0

Ine
−(πn/2)

)
= arctan 2(I3−1, I2−0) + π , (2.10)

amplitudes

A =
1

2

∣∣∣∣∣
3∑

n=0

Ine
−(πn/2)

∣∣∣∣∣ , (2.11)

and the incident light intensities

c =
1

4

3∑
n=0

In. (2.12)

2.1.2 Structured-light 3D scanner

The most simple kind of structured light sensor sends out a single laser beam,
which is re�ected in the scene, back to the camera sensor. If it is re�ected
from an object far away from the camera, the re�ected beam will travel a
longer distance compared to if it had been re�ected on an object close by.
It will thus hit a slightly di�erent spot on the sensor, which is illustrated in
Figure 2.2.
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Figure 2.2: Schematic image of the principle of structured light 3D scanning.

The laser and the sensor are calibrated so that it is known what place on
the sensor the beam hits when re�ected from an object at a known distance.
The displacement from this position on the sensor can, together with tri-
angulation, is used to calculate the distance from the camera to the object.
As this method only scans one point in the scene, the laser has to sweep in
two dimensions. It is more e�cient to scan using a line instead of a single
dot, in this case the scanner only has to be sweep in one direction in order
to capture the entire scene. In real time application both those methods
are too time consuming, so a three dimensional scanning method has to be
used. There are three ways to do this: multi-stripe patterns, a grid, or using
multiple dots. These are called bi-dimensional patterns, and their patterns
are created by splitting the laser. One method to do this is with a hologram.
In the case of a dot pattern each dot re�ects light back to the sensor. To
identify the dots on the sensor is a correspondence problem. This can be
solved using a pattern which gives a unique signature for each pixel. Using
this signature it is possible to identify where on the sensor each pixel was
detected. The Microsoft Kinect device which is used in this thesis combines
three di�erent patterns each with its maximum accuracy within a speci�c
range, making for precise measurements over a longer range possible.
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Figure 2.3: Image depicting a stripe pattern and the corresponding detection
and triangulation for one of these stripes.

The structured light method has a problem with so called "dead areas".
These are patches in the image where no depth data can be obtained due to
the light pattern being obstructed by an object in the captured scene. This
can be seen in Figure 2.4.

Figure 2.4: Shadowing problem due to an obstructing object in the captured
scene.

2.2 TOF noise sources

The images from time of �ight cameras are corrupted by substantial noise.
This noise arises from di�erent sources which can be divided into two dif-
ferent categories, systematic and non-systematic errors. The noise from the
systematic sources can be eliminated using camera calibration and the non-
systematic by �ltering.
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2.2.1 Systematic errors

According to [13], there are �ve types of known systematic errors in time of
�ight cameras. The �rst is depth distortion. This error arises when modeling
the emitted infrared signal. The theoretical model used can not in practice
be generated perfectly and will thus contaminate the depth values with an
o�set in each pixel dependent on the measured depth value.

Integration-time related errors is an error that can be observed when chang-
ing the integration time of the camera. Dependent on what integration time
is used, the depth values of the entire scene is changed. The source of this
error is as of march 2011 still an object of investigation, [13]

Another type of systematic error is the built-in pixel-related error, an er-
ror which gives a unique constant o�set in each pixel. This corruption
arises mainly from two hardware properties in the camera, di�erences in
the CMOS-gate materials and capacitor charge time delay during the signal
correlation process.

Amplitude-related errors are related to the hardship of obtaining a good
amplitude value for each pixel in the image. The error appears when a pixel
either has a too low amplitude value or the amplitude is over saturated.
There are three main reasons why this happens. Pixels in the outskirt of
the image or far away receives less illumination due to non-uniform LED
illumination. This results in a weaker re�ected signal, giving pixels in those
areas a lower amplitude. If the object instead is too near the camera, the
pixel is instead over-saturated resulting in invalid pixel values. The ampli-
tude value can be tweaked by changing the integration time. This is a trade
o� between long integration time, giving far away pixels good amplitude,
but also making the near pixels over-saturated and a shorter one, making
near pixels measurable but pixels far away get a low amplitude. The third
source of amplitude-related errors is re�ections. When a non-specular area is
illuminated it retains energy and thereby changes the phase of the re�ected
light, resulting in an incorrect value.

The last kind of systematic error are heat related errors. This error derives
from the fact that the semiconductor material is a�ected by temperature
changes, causing the depth values to drift until the temperature is stabilised.

2.2.2 Non-systematic errors

Aside from the systematic errors there are also non-systematic noise sources.
There are four major sources they arise from.
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Amplitude related errors can occur for other reasons than the previously
mentioned systematic ones. If, for example, a close object causes another
object far away to be less illuminated by occluding some of the modulated
light, the signal to noise ratio can be very low, which can cause inaccurate
readings. There are various ways to reduce this type of error. It can either
be removed by �ltering the low amplitude pixels or by applying more sophis-
ticated �lters taking more parameters into account such as the importance
of the accuracy in that pixel.

Multiple light reception is an error that mainly arises from surface edges
and concave areas. When surfaces are present in the scene, the low resolu-
tion of the camera can cause one single pixel to be illuminated from both
the close and far end part of the edge [13]. In scenes where concave surfaces
are present, the light re�ections may cause a single pixel sensor to capture
multiple light re�ections due to the way a concave area re�ect lights, this is
illustrated in Figure 2.5.

Figure 2.5: Illustration of multiple re�ections caused by concave surface.
Image taken from [13].

Light scattering is an error which originates in when objects in a scene
appear to be close together in the images, but have di�erent depth values.
It is the e�ect of multiple light re�ections between the lens and the sensor.
When the illuminating light is re�ected back from a close object, the signal
has a high amplitude relative to the amplitude from objects further away, as
the amplitude decrease is dependent on the distance as A ∝ 1/d2, [14]. This
makes the signals re�ected in the lens from the close object strong enough
to compete with the directly re�ected signals from the objects further away.
This is illustrated in Figure 2.6 below.
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Figure 2.6: Illustration of light scattering. Image taken from [13].

The pixel corruption from light scattering can be reduces by �rst choos-
ing an optimal integration time that reduces the saturation problem. This
integration time can be chosen using a mix of the amplitude and intensity
values, where the sum of these are compared to a maximum allowed thresh-
old [12].

The last type of noise that appear with time of �ight cameras is the mo-
tion blur. This artifact derives from motion during the integration time,
causing the edges of a moving object to receive corrupted values. The rea-
son for this is that the camera will take four images, each for a duration
of the integration time. This will make moving objects appear in di�erent
places in each raw image.

2.3 Create plane

One simple and robust way to create a plane ax+ by+ cz+d = 0 from three
interest points p1, p2 and p3 with coordinates (p1,x, p1,y, p1,z), (p2,x, p2,y, p2,z)
and (p3,x, p3,y, p3,z) respectively, �rstly by computing the two non-parallel
vectors

v1 = (x1, y1, z1) = (p1,x − p2,x, p1,y − p2,y, p1,z − p2,z) , (2.13)

v2 = (x1, y1, z1) = (p3,x − p2,x, p3,y − p2,y, p3,z − p2,z) . (2.14)

As both these vectors lie in the plane, we can �nd the normal vector n using
the cross product v1×v2. As the plane parameters a, b, c are the components
of the normal vector we get

a = y1z2 − z1y2 , (2.15)

b = z1x2 − x1z2 , (2.16)
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c = x1y2 − y1x2 . (2.17)

Finally we can rewrite the scalar equation of the plane

a(x− px) + b(y − py) + c(z − pz) = 0 (2.18)

where p(x, y, z) is one of the reference points p1, p2 or p3 as

ax+ by + cz + d = 0 (2.19)

by setting the parameter d to

d = −(apx + bpy + cpz) (2.20)

The next step is to determine if the keypoints are on the correct side of the
plane. This can be done by evaluating the distance from the point to the
plane. This distance is easily calculated as the projection of a vector w from
a point (x, y, z) in the plane to the keypoint (x0, y0, z0), onto the normal
vector n.

D = |n·w|
|v|

= |a(x−x0)+b(y−y0)+c(z−z0)|√
a2+b2+c2

= |ax+by+cz−ax0−by0−cz0|√
a2+b2+c2

= |−d−ax0−by0−cz0|√
a2+b2+c2

= |d+ax0+by0+cz0|√
a2+b2+c2

.

(2.21)

By dropping the absolute value of the nominator, D becomes the signed
distance to the plane. The sign of D then represents on what side of the
plane the point (x0, y0, z0) is located.

2.4 Edge detection

A crucial part of the plane �tting is to detect suitable 3D-points from which
to base the model estimation. An appropriate and convenient way of obtain-
ing these points is to choose edge points on the counter.

2.4.1 Sobel �ltering

One of the most common ways to detect edges in images is to use the Sobel
operator in one or two directions. This is essentially a discrete di�erentiation
operator, which result is an estimation of the gradient in each pixel of the
image. Normally this is done using the gray scale image, but with the data
obtained from the TOF camera, the depth map is more suitable.

Formally, the Sobel operator consists of two 3 × 3 kernels which are con-
volved with the image in order to obtain the approximate derivates in the
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x and y directions. As we are only interested in depth changes across the
counter in the y direction (from the outside to the inside), the depth images
are only convolved with the kernel

Sy =

 −1 −2 −1
0 0 0
1 2 1

 , (2.22)

leading to the image
Gy = Sy ∗D . (2.23)

Figure 2.7: Resulting image Gy after convolving the background with Sy.

2.5 RANSAC

RANSAC (the RANdom SAmple Consensus), is a model parameter estima-
tion algorithm which, unlike many other techniques was developed speci�-
cally for use in imaging and graphics implementations. The largest bene�t
of RANSAC is its ability to estimate a model to a set of observations with
a large number of outliers, i.e. erroneous data points.

RANSAC is an iterative, deterministic algorithm and thus only produces
a reasonable result with a certain probability based on the number of itera-
tions. The algorithm can be divided into the following base steps:

• Randomly select the minimum number of data points from the obser-
vations needed to estimate the model parameters.

• Construct a model from the selected data points.

• Determine how many of the observations �t the model with a prede-
termined tolerance, ε.
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• If this number exceeds a threshold, compare the total error of these
inliers to the previously best error.

• If this error is smaller than the previously smallest error, save the model
parameters and inliers as the best set, along with their corresponding
total error.

• Repeat from step one.

This is repeated N times, where N is chosen high enough to achieve at least
one model without outliers with a reasonable probability, p. Let w denote
the probability of randomly selecting an inlier from all of the observations
and thus that 1−wm is the probability to select at least one outlier from m
selected points. The probability to observe an outlier after N iterations is
therefore

1− p = (1− wm)N . (2.24)

Assuming w = 0.2 and p = 0.99, this leads to a minimum of 573 iterations.

2.6 Background models

Working only with the foreground provides many advantages over working
with the entire image, such as less pixels to process and easier object seg-
mentation.

2.6.1 Threshold model

The basic concept behind a threshold background model is to generate a
foreground mask by computing the di�erence between the current pixels
and a reference background model and to make the classifying decision by
comparing this di�erence to a pre-de�ned threshold value.

The �rst step is to create a background model. To do this, a background
image is generated from the mean of a series of initialization frames. From
a depth map of size m× n

D =


d1,1 d1,2 · · · d1,n

d2,1
. . . . . .

...
...

. . . . . .
...

dm,1 dm,2 · · · dm,n

 , (2.25)

a background model B is generated

B =


b1,1 b1,2 · · · b1,n

b2,1
. . . . . .

...
...

. . . . . .
...

bm,1 bm,2 · · · bm,n

 . (2.26)
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Here each element is calculated as

by,x =

∑tn
t=t0

d
(t)
y,x

n
, (2.27)

where n is the number of frames from which the initial background model is
created.

During run time, the depth value of each pixel d(t)y,x at a time t > tn is
compared to the background

∆d(t)y,x = |d(t)y,x − b(t)y,x| . (2.28)

If this value is lower then a set threshold value ε, the pixel p is considered
background. If it instead is larger than the threshold value, it is classi�ed as
foreground. If a pixel is considered to be part of the background we update
the background value as

by,x = by,x · (1− α) + d(t)y,x · α . (2.29)

Where α is a small weight. This ensures that the background will adapt to
small changes, increasing the accuracy of the model.

A pixel which is classi�ed as part of the foreground is also weighted into the
new background according to the same principle, but with a much smaller
weight. This is to gradually include objects which have been static for a long
time span.

2.6.2 Gaussian Mixture Model

A Mixture Model is a probabilistic model to represent a distribution consist-
ing of several sub-distributions. In a Gaussian Mixture Model (GMM), the
distribution is, as the name suggests, a superposition ofM gaussian distribu-
tions or components, each with unique mean µm, standard deviation σm and
mixture weights πm. The weights have the properties of being non-negative
and that they sum up to one.

For our pixel based background model, the decision R if a pixel at a time t
belongs to the background (BG) or foreground (FG) is [9], [10]

R =
p(BG|xt)
p(FG|xt)

=
p(xt|BG)p(BG)

p(xt|FG)p(FG)
. (2.30)

If we assume that nothing is known about the foreground objects, the priors
p(BG) and p(FG) are set to be equal and the distribution of foreground
objects is considered uniform p(xt|FG) = cFG. This leads to the threshold
based formula

p(xt|FG) > R · cFG = cthr , (2.31)
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with the threshold cthr.

This algorithm can be viewed as an on-line clustering algorithm, where fore-
ground objects will be represented by the components with the smallest
mixture weights π̂m. This means that by choosing the components with the
B largest weights, we can approximate the background to consist of pixels
belonging to these clusters [10]

p(x|XT , BG) ∼
B∑

m=1

π̂mN (x; µ̂m, σ
2
mI) , (2.32)

for a training set XT . If we keep the components sorted by their respective
weights π̂1 ≥ . . . ≥ π̂M , this corresponds to solving the equation

B = arg min
b

(
b∑

m=1

π̂m > (1− cf )

)
, (2.33)

where cf is the maximal proportion of the image, which is allowed to belong
to the foreground.

2.7 Noise reduction

The raw depth map obtained from a TOF camera is contaminated with a
considerable amount of noise. In [7], Frank et al. argues that the noise can
be modelled as an o�set normal distribution of the phase shift of the signal.
They later show that this is a good estimate and derive that the variance
of the depth distribution in a pixel is proportionate to the inverse of the
amplitude squared:

σ2d ∝
1

A2
. (2.34)

This would suggest that the amplitude is a good measure of the con�dence
of the collected depth data. Another advantage of using the amplitude for
con�dence measurements, is the fact that it is provided with little more e�ort
from the camera.

2.7.1 Weighted Gaussian �lter

A simple way of implementing the amplitude as a con�dence smoothing of
the depth map is to combine it with a spatial �lter, e.g. convolving with
a Gaussian kernel [8]. This provides a �lter which takes into account the
spatial relationship of pixels, weighted with their respective con�dence.
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The resulting smoothed depth value dh;(x,y) of a pixel (x, y) can thus be
calculated from the raw depth value d as

dh;(x,y) =

∑n−1
2

kx=−n−1
2

∑n−1
2

ky=−n−1
2

dx+kx,y+ky ·Ghkx,ky ·A
2
x+kx,y+ky∑n−1

2

kx=−n−1
2

∑n−1
2

ky=−n−1
2

Ghkx,ky ·A
2
x+kx,y+ky

, (2.35)

where Gh is the Gaussian kernel with bandwidth h and n is an odd mask
size of three or larger.

2.7.2 Con�dence modi�ed background model

One of the major �aws of the threshold background model is the artifacts
that occur because of light scattering (see 2.2). This corrupts the measure-
ments for large portions of the images, which manifests in large erroneous
foreground patches, see Figure 2.8.

Figure 2.8: Erronous foreground classi�cation due to light scattering. Red
areas are foreground.

Utilizing the fact from [8] that the amplitude is a good con�dence mea-
surement, we modify the background model to incorporate the standard
deviation of the depth map noise. This is done by multiplying the depth dif-
ference in equation 2.16 with the pixel's corresponding amplitude value. The
amplitudes in the images vary extensively, from very insecure values with an
amplitude of around 10, to very accurate measurements with an amplitude
of around 40000. To work around these large di�erences, the logarithm of
the amplitude is used instead of its raw value, resulting in the foreground

FG = {(x, y) ∈ Zm,n | ∆dx,y · (log10(A)− wA) > ε} , (2.36)

where m,n are the dimensions of the images, wA is a weight to balance the
amplitude and distance and ε is the set threshold.
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2.8 Morphology

Digital images, and speci�cally, binary images can be manipulated using
the morphological operations erosion and dilation in order to shrink or grow
objects in the image.

2.8.1 Binary erosion

Binary erosion is one of the two fundamental morphological operations. The
basic idea of it is to shrink objects by removing edge pixels, both on outer
and inner edges, such as holes in an object. Erosion of the binary set A ⊆ Z2

by its structuring element B ⊆ Z2 centered at the point (i, j) ∈ A is de�ned
by

A	B = {(i, j) ∈ Z2|B ⊂ A} . (2.37)

The erosion of A by B is the set of all points in Z2 for which B centered at
that point is fully contained within A.

Erosion of a circle can be seen in the Figure below.

Figure 2.9: Original (light blue), and resulting (blue) Figure after erosion
with a square structuring element.

2.8.2 Binary dilation

The other fundamental operation of morphology is dilation. It can be seen
as the complement of the erosion operation in the sense that it has somewhat
the opposite e�ect. Dilation can in fact also be de�ned using the erosion of
the complement of the image, Ac as

A⊕B = (Ac 	B)c . (2.38)
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There is an alternative de�nition of dilation, which for every symmetric
structuring element can be simpli�ed as

A⊕B =
⋃
b∈B

Ab . (2.39)

The dilation of A by B is the set of all points covered by B whilst the center
of B moves inside A.

The e�ect of dilation can be seen in Figure 2.10 below.

Figure 2.10: Original (light blue), and resulting (blue) �gure after dilation
with a square structuring element.

2.8.3 Opening and closing

By combining erosion and dilation, one can de�ne the two operations,opening
(ψB) and closing (φB) of A de�ned by

ψB(A) = (A	B)⊕B (2.40)

and
φB(A) = (A⊕B)	B , (2.41)

i.e. the erosion followed by dilation, or dilation followed by erosion respec-
tively.

Performing a closing on a binary image will close small gaps (see Figure
2.11 and �ll small holes in objects while retaining the shape and size of solid
objects without close neighbours.

In the same manner, an opening will separate objects with thin joints (see
Figure 4.10) and remove small enough objects. This can be used to remove
noise in the foreground mask.
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Figure 2.11: Objects before performing a closing (left) and after (right).
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Figure 2.12: Object before performing an opening (left) and after (right).

2.9 Object detection

For the detection and separation of objects in images, we developed a simple
recursive scheme. It is based around the assumption that neighbouring pix-
els in the same object should have approximately the same depth value. The
algorithm begins by scanning the image until a foreground pixel is detected
after which the recursive function starts.

The recursive method marks the current pixel as visited, calculates the dis-
tances to its neighbours and compares them to a de�ned threshold

∆d = d(x, y)− d(xn, yn) < εthresh, (xn, yn) ∈ N4 , (2.42)

where N4 is the 4-neighbourhood of the pixel (x, y). If (xn, yn) is close
enough, the function runs recursively for that pixel.

If the resulting number of classi�ed pixels are too few, the resulting object is
noted as being noise. Otherwise the number of detected objects is increased.
After this, the scanning procedure continues until no more foreground can
be detected.
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Chapter 3

Implementation

3.1 Algorithm - intersection with planes

In this section the proposed algorithm will be presented in full with all the
necessary pre-processing of the video stream.

3.1.1 Background

The �rst step is to implement a reliable background model. This is done in
the manner described in section 2.6.1.

3.1.2 Plane �tting

The second step of the algorithm is to detect the counter edges and to cal-
culate the plane equations. By convolving with a y-direction Sobel �lter
(section 2.7.1), the top and bottom edges are detected. After systematically
trying to �t a plane to the proposed edge points using RANSAC, a best
choice model is chosen. Using the normal to this plane and two inliers on
the inner counter edge, a second plane can be �tted to the inside.

3.1.3 Foreground segmentation

The method we used is the con�dence modi�ed threshold model presented
in sections 2.3.1 and 2.4.2. While the GMM model should be a suitable
option, we found that the threshold model provided more stable results with
less noise. This model was implemented with di�erent thresholds for various
areas of the image. Wherever the background is close to a relevant object, the
threshold is set to be signi�cantly lower. This is because a person stretching
over the counter can vanish from the foreground if pressing closely to it.
Similarly, because of the higher amount of noise in areas far from the camera,
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the foreground model will be severely a�ected by this if the threshold is set
too low for those parts, see �gures 3.1 through 3.3.

Figure 3.1: Background model subtracted from an image in a video sequence.
It is clear how the area above the counter needs a lower threshold to be
discerned from the background.

Figure 3.2: Foreground segmentation where a high threshold was used for
the entire image. Parts of the objects close to the counter are merged with
the background.
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Figure 3.3: Foreground segmentation where a low threshold was used for the
entire image. Areas over the counter are accurately segmented whereas the
noise around it is unmistakably higher.

3.1.4 Noise reduction

In order to further reduce the noise in the images both for the background
model and the video stream, the weighted Gaussian �lter in 2.4.1 is imple-
mented. After this, the binary foreground image is re�ned using a morpho-
logical opening with a small square structuring element (see section 2.5).

3.1.5 Object detection

The last part before the theft detection is object detection. This is done
using the recursive classi�er presented in section 2.9. The classi�er saves
data about the classi�ed object such as its bounding box, center of mass,
mass (number of pixels) and class. This is then used later in the algorithm
when suspicious behaviour is detected.

3.1.6 Thief detection

In order to detect thefts we chose to check pixels for a single main criteria,
namely being on the wrong side of both planes �tted to the counter. If a
pixel is considered to be a possible theft, the algorithm checks to see if the
object corresponding to that pixel has its center of mass on the inside or
outside of the counter. If it is located on the inside of the counter the object
is considered to be the cashier and is thus not a thief. Otherwise the pixel is
still considered suspicious. This is done for all foreground pixels after which
an image is created with possible thefts marked as 1 possible thefts and 0
for pixels marked as harmless.

This binary image is then processed with an opening with a rectangular
structuring element. This is done in order to reduce the amount of remain-
ing noise around the edges of objects which could trigger a false alarm.
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If there still exist pixels which are marked as a theft, the algorithm will try
to separate the objects in the image. This is done because certain situations
could falsely trigger the alarm. These situations can be when the cashier
shakes hand with or hands items to the customer. This would merge the
cashier object with the customer object. By using a morphological opening
with a wide structuring element with a size of about the same magnitude as
the width of an arm, possible merged objects are separated by "cutting o�"
arms or otherwise thin parts of objects. The size and shape of this structur-
ing element was individually decided empirically for all three cameras due
to di�erent resolution and �eld of view. The only thing left to do is to count
the objects left in the image with the same class as the suspected pixel. If
this number is greater than one, the theft alarm is disregarded. If, however,
this number equates to one, the object is considered to be a thief, and the
alarm is triggered. This can be seen in Figure 4.18.

3.2 Test environment

When designing a test environment, it is important to make sure that it is as
general as possible for it to be a suitable model for more than one store. This
enables for a more rigorous algorithm which can adapt to many situations
in di�erent (but similar) retail environments.

With this in mind we chose to work with two di�erent types of surfaces,
one with hardened glass and one with a white coat. After studying several
jewelry and perfume shops, we could conclude that both these are frequently
used in this type of environment, with the hardened glass counter being the
most common one.

The lighting is modeled using moderate in-door light with the addition of
three spotlights positioned in the ceiling straight above the counter. The
camera is positioned in the ceiling above and slightly behind the counter.
The setup can be seen in Figure 3.4 below.
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Figure 3.4: Test environment with the camera above with spotlights �tted
to the ceiling above the counter.

The positioning of the camera is of great importance. Firstly, it is vital
to get a good picture of as much of the relevant area as possible. Secondly,
it can have implications on the design of the algorithm where the cameras
is positioned. Thirdly, the problem with the wrapping distance of a TOF
cameras can be troublesome if the camera is poorly positioned, i.e. if it is
positioned so that some parts of the captured images are further away than
the wrapping distance (see section 2.1.1).

3.2.1 Glass counter problem

The biggest issue with the algorithm is how it works with glass counters.
As the tempered glass lets through all but a fraction of the near infrared
light from the TOF camera, the counter is near impossible to detect with
that technique. This means that the vital part of the algorithm with edge
detection and plane �tting will not work. In our testing, we have made the
infringement of the environment that the glass counter rests upon an edge
of sort. This means that the edge detector will be able to detect this small
border which in turn will enable the rest of the algorithm.

3.3 Data sets

Every set of test environment constellation is recorded in a series of scenarios
with and without a theft. In order to vary the data as much as possible,
the scenarios are divided into two main categories: with and without the
presence of a cashier. These are then divided into more branches of di�erent
possible events, which are recorded a number of times in order to minimise
the possibility for circumstantial errors and misses.
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3.3.1 Without cashier

The only recorded event without the presence of a cashier is the case of a
lone thief reaching for something below the counter:

Theft

A. Lone thief reaching over the counter, recorded 5 times.

3.3.2 With cashier

In the case of a cashier, two types of scenarios are tested: with or without a
theft. These can then be divided into a few sub cases:

Theft

B. The cashier is busy talking to a customer, recorded 3 times.

C. The cashier is occupied with something else, e.g. unpacking an item,
recorded 2 times.

No theft

D. The customer shakes hand with the cashier, recorded 2 times.

E. The customer puts something on the counter, recorded 2 times.

F. The customer points and makes vivid gestures towards something be-
hind the counter, recorded 2 times.

G. The cashier is working alone without the presence of a customer, recorded
2 times.

3.4 Cameras

3.4.1 TOF cameras

The two TOF cameras tested in this thesis are the PMD CamCube 3.0 and
the Soft Kinetic DS311. Their respective technical speci�cations can be seen
in the table below, directly retrieved from the o�cial data sheets [3] and [4].

PMD CamCube Soft Kinetic DS311
Depth resolution 200× 200 pxl 160× 120 pxl
Secondary picture type Intensity (gray level) RGB
Secondary resolution 200× 200 pxl 640× 480 pxl
Field of View 40◦ × 40◦ 57.3◦ × 42◦

Illumination wavelength 870 nm 850 nm
Frames per second 40 - 60 fps 25-60 fps
Range 0.3 - 7 m 1 - 4 m
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(a) PMD Camcube 3.0, [3]. (b) Smart Kinetic DS311, [4].

Figure 3.5: TOF cameras used in this thesis.

3.4.2 Structured light camera

The Microsoft Kinect is the structured light method camera used in this
thesis. Its resolution of 640 × 480 pixels is much higher than that of the
ToF cameras, but it has a shadowing problem (Figure 2.4). The Kinect also
provides an RGB image at a resolution of 1600 × 1200 pixels. It works in
up to 60 FPS and operates on the range 0.8 to 3.5 meters. The precision of
the depth map at 2 meters is 1 cm. The depth map precision is provided in
11-bits, i.e. ranges from 0 to 2047.

Figure 3.6: Microsoft Kinect used in this thesis.
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Chapter 4

Results

The results will in this section be presented for each step in our proposed
algorithm. In cases where the results can be compared to old results or with
a reference image of raw data, these will be presented as well but discussed
in the next chapter.

4.1 Edge detection

Sobel �ltered background models of the white coated and glass counter (Fig-
ure 4.1), and the resulting edges from our edge detection (Figure 4.2).

Figure 4.1: Sobel �ltered background images used to detect the edge of the
counter. White coated counter to the left and glass counter to the right.
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Figure 4.2: Detection of counter edge on the white counter (left) and glass
counter (right).

The edge detection works similarly for the structured light camera, with the
exception of the glass counter which introduces a lot of blank areas where
the camera cannot obtain a depth value, see Figure 4.3
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Figure 4.3: Detection of counter edge with the structured light camera on a
glass counter. Black pixels are areas without any available depth data.

The RANSAC method ensures that the correct points (inliers) are used
in the plane �tting part of our algorithm even though a large amount of
outliers are present, see Figure 4.4

Figure 4.4: Edge detection with a lot of outliers due to a cluttered environ-
ment. Left image shows the detected edges and the right image shows that
the plane is �tted correctly despite the large number of outliers.

Figure 4.5 below, shows one of the video clips from the structured light
sequence where the algorithm fails to detect the top edge of the counter.
This leads to an erronous plane as can be seen by the green classi�cation of
the cashier.
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Figure 4.5: Failure to �t correct plane to the glass counter.

4.2 Foreground segmentation and noise reduction

Here, the resulting foreground segmentation will be presented along with the
results from the noise reducing methods.

In Figure 4.6 below, the foreground detection using a simple distance sub-
traction method with a single threshold without any other noise reduction
can be seen.

Figure 4.6: Simple foreground segmentation of the raw image data on the
white coated counter (left) and glass counter (right).

The resulting �ltered images after using the weighted spatial �lter presented
in section 2.7.1, compared to the un�ltered images can be seen in Figure 4.7
through 4.8.
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Figure 4.7: Noisy image without (left) and with (right) weighted spatial
�lter.

Figure 4.8: Zoomed window of the above image with un�ltered image (left)
and �ltered image (right).

Below (Figure 4.9) is a comparison of the background model without the
con�dence weight modi�cation with the modi�ed version of the method.

The result of the morphological opening on the foreground can be seen in
Figure 4.10.
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Figure 4.9: Foreground segmentation without (left) and with (right) con�-
dence weighting.

Figure 4.10: Foreground segmentation without (left) and with (right) mor-
phological opening.

Finally, some sample results when running the modi�ed threshold model on
the �ltered images can be seen in Figure 4.11 below.
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Figure 4.11: Foreground segmentation of a single (left) and multiple objects
(right).

4.3 Object detection

Below follows some examples of separately classi�ed objects.

Figure 4.12: Object detection of a single object (left) and multiple objects
(right).
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4.4 Theft detection

4.4.1 Correctly detected thefts

TOF cameras

Here follows some samples of correctly classi�ed thefts. Purple areas in the
images represent pixels classi�ed as thievery behaviour and green pixels are
areas which would have been classi�ed as thievery had they not belonged to
the cashier.

Figure 4.13: Theft detection of a lone thief (left) and thief with (an unques-
tionably ignorant) cashier (right) with a white coated counter.

Figure 4.14: Theft detection of a lone thief (left) and thief with cashier
(right) with a glass counter.
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4.4.2 Missed thefts

During one test clip did the fully implemented algorithm fail to detect a
theft. This can be seen in Figure 4.15 where the cashier blocks the view of
part of the thief's arm.

Figure 4.15: Algorithm fails to detect a theft because of a blocking cashier.

4.4.3 False alarms

False alarms with TOF cameras are sometimes triggered by noise occurring
around the edges of hands and arms. This can somewhat be reduced (see
3.1.2). Below, an example of an avoided false alarm (Figure 4.16) and a false
alarm which could not be removed (4.17).

Figure 4.16: Left image shows a false alarm due to noise along the edges of
the customer's hand. The right image shows the same scenario where the
falsely classi�ed pixels have been removed with a morphological opening.
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Figure 4.17: Left image shows a false alarm due to noise along the edges
of the customer's hand. The right image shows the same scenario where
the algorithm has tried to remove the falsely classi�ed pixels but failed due
to the heavy amount of noise and the object's proximity to the forbidden
volume.

4.4.4 Object splitting

The results of the large morphological opening on theft mask when a possible
theft is detected can be seen in Figure 4.18 below.

Figure 4.18: Splitting of objects with a large opening on the binary thief
mask. To the left, a false alarm is avoided because of this and to the right a
theft is correctly reported. Videos recorded with the Microsoft Kinect.
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4.4.5 Detection results

Here follows the results of the full algorithm. As a comparison, the results
for the algorithm without selected parts of the pre-processing, and entirely
without noise reduction (raw data) is presented. For more detailed account-
ing of each recorded scenario, see Appendix B.

It is worth noting that the structured light camera does not deliver ampli-
tude values, as this is a strictly TOF related attribute. Therefore, amplitude
based steps are not included in the test results for the Kinect.

PMD CamCube 3.0

Full algorithm

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 0/8 18/18
Glass counter 10/10 2/8 16/18

Algorithm on raw data

Counter type Theft detection rate False alarm rate Total correct

White coated counter 9/10 2/8 15/18
Glass counter 8/10 2/8 14/18

Algorithm without opening on foreground

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 1/8 17/18
Glass counter 9/10 2/8 15/18

Algorithm without opening on binary thief image

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 1/8 17/18
Glass counter 10/10 2/8 16/18

Algorithm without modi�ed background model

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 1/8 17/18
Glass counter 9/10 3/8 14/18

Algorithm without amplitude weighted spatial �lter

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 1/8 17/18
Glass counter 10/10 2/8 16/18
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Algorithm without object splitting

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 0/8 18/18
Glass counter 10/10 2/8 16/18

Soft Kinetic DS311

Full algorithm

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 0/8 18/18
Glass counter 10/10 1/8 17/18

Algorithm on raw data

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 2/8 16/18
Glass counter 10/10 1/8 17/18

Algorithm without opening on foreground

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 0/8 18/18
Glass counter 10/10 1/8 17/18

Algorithm without opening on binary thief image

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 1/8 17/18
Glass counter 10/10 1/8 17/18

Algorithm without modi�ed background model

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 2/8 16/18
Glass counter 10/10 1/8 17/18

Algorithm without amplitude weighted spatial �lter

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 0/8 18/18
Glass counter 10/10 1/8 17/18
Algorithm without object splitting

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 0/8 18/18
Glass counter 10/10 1/8 17/18
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Microsoft Kinect

Full algorithm

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 0/8 18/18
Glass counter 10/10 0/8 18/18

Algorithm on raw data

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 4/8 14/18
Glass counter 10/10 6/8 12/18

Algorithm without opening on foreground

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 0/8 18/18
Glass counter 10/10 0/8 18/18

Algorithm without opening on binary thief image

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 3/8 15/18
Glass counter 10/10 2/8 16/18

Algorithm without object splitting

Counter type Theft detection rate False alarm rate Total correct

White coated counter 10/10 1/8 17/18
Glass counter 10/10 2/8 16/18
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Chapter 5

Discussion and conclusion

After testing the algorithm with the di�erent cameras, it is time to discuss its
strengths and weaknesses. This will be done for each category presented in
the result section separately. After this, the �nal results and the di�erences
in the di�erent cameras will be discussed.

5.1 Edge detection

Detecting the edges, and especially the inner edge of the counter is a vital
part of the setup of the algorithm. The proposed method to use a Sobel
�lter and scan from the top and bottom of this resulting image, Gy, for high
values seems to work well. An early plan was to make a least squares �tting
of a plane to all of these edge points, but this idea was soon discarded be-
cause of the large amount of outliers present in some scenes. These outliers
would severely corrupt the resulting top plane as least squares is unsuitable
for models where deviant observations cannot be regarded as a value from
the tail of a normal distribution.

Instead of the least squares method, the �nal edge detection algorithm uses
the RANSAC method described in 2.8. This method was chosen despite it
only providing a good model with a certain probability. This is because its
rigidity to a large amount of outliers when iterated enough times is a very
important aspect when the environment is not precisely known for every
unique shop. The rigidity was tested by trying the algorithm on di�erent
odd environment setups where the cluttered �oor around the counter pro-
vided us with a large amount of outliers. As seen in Figure 4.8, the algorithm
proved to work even in these demanding situations.

A possible cause for alert is the amount of dead areas around the counter
edges on the glass counter when using a structured light camera. This could
possibly make the edge detection improbable enough for the RANSAC to
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work properly. This has not been a problem while testing the camera, but
could possibly be an issue with a more complex environment.

5.2 Foreground segmentation and noise reduction

The foreground segmentation has been a crucial point during the course of
this project. A good and solid model works as a good foundation for the
rest of the algorithm. If the method detects too much foreground, the risk
for false alarms is signi�cantly higher, and a too harsh model risks missing
vital foreground. This can in turn lead to missed thefts.

The amplitude modi�ed model used in the end proved to perform well in
both ordinary and di�cult situations. The presence of a foreground object
perturbs the depth measurements for its surroundings due to light scattering,
as discussed earlier in section 2.2. This means that the unmodi�ed threshold
model detects a foreground object in these perturbations, whereas the modi-
�ed model does not (see section 2.4.2). This is clearly visualised in Figure 4.4.

The methods inclusion of di�erent thresholds for di�erent parts of the im-
ages works (as seen in Figure 3.1 through 3.3), very well. As balancing the
threshold parameters is a �ne line between minimising noise and keeping
the objects discernible from the background, it can be very di�cult to set a
value that will work perfectly in both these aspects. Because of this some
objects, such as arms, are sometimes merged into the counter. This has not
proven to be a signi�cant problem yet, as the rather large number of frames
during which a theft occurs, means that the risk of missing a theft in every
frame is very small.

The e�ects of the morphological opening on the foreground image is also
clear, as is the smoothing of the amplitude weighted spatial �lter. Even
though some noise in the segmentation is not so bad, every attempt to min-
imise it should be an improvement. When inspecting the result tables in
4.4.3, some of these noise reductions do not seem to alter the resulting ac-
curacy of the algorithm on the recorded videos. This however is a modi�ed
truth. When trying the di�erent versions of the algorithm live, the noise re-
ducing methods seem to stabilise the algorithm and reducing its tendencies
to trigger false alarms, whilst not reducing the theft detection rate. In addi-
tion, these sub algorithms complement each other in the sense that removing
two or more, signi�cantly lowers the hit rate of the method.
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5.3 Object detection

The object detection part of the algorithm works well despite its simplicity.
Because of its elementary nature, it does not track objects between frames,
and does have problems with it merging di�erent objects. This does however
not seem to pose a real trouble for the accuracy of the algorithm. Object
tracking would make it considerably easier to update the background and
merge static objects into the background, but this has not caused any prob-
lems in the test scenarios, nor in any live testing we have done. Object
tracking could also make more intelligent separation of objects possible and
enable for more stable disregarding of any suspect behaviour caused by the
cashier.

All these factors could provide for a more rigid algorithm which could adapt
to further more di�cult situations that the authors have not thought of or
tested, but as the accuracy of the algorithm is very good as it is, this seems
excessive.

5.4 Theft detection

Theft detection using the intersection with two planes seem to work very
well. The method is stable and seems to only fail under questionably realis-
tic circumstances where the customer waves frantically over the counter, is
very close to the prohibited areas, or is obscured by a present cashier. The
separation of objects described in section 3.1.2 may seem crude but almost
entirely removes the risk of false alarms when the cashier object is merged
with a customer object by for example shaking its hand or handing it money.

Its most obvious �aws are its dependence on the speci�c retail environment
and that the edge detection works, as well as its inability to �nd glass sur-
faces. The �rst two problems have been minimized by making the algorithm
more robust to changes and deviant environment setups, but the latter prob-
lem is something we have not been able to remedy. We instead imagine a
work around of the issue, where calibration lists are �tted to the edges of
the counter during the camera setup. These lists can be removed once the
background model has been created, after which the algorithm will work as
intended.

5.4.1 TOF cameras

Due to the low signal-to-noise ratio, the pre-processing parts of the algo-
rithm compose a vital part of the �nished method. Some of them, such as
the amplitude modi�ed background model, and the morphological operations
on the foreground mask, directly improves the result on our test sequences
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whereas some don't. It is crucial to point out that even though these do not
directly a�ect the result of the tests, the empiric testing on live situations
have shown a much more stable and reliable behaviour when processed with
for example the amplitude weighted �lter.

The results for the unprocessed video sequences show a great di�erence be-
tween the DS311 and the CamCube. This is because the SmartKinetic device
has a built-in temporal �lter which reduces nose, whereas the PMD camera
gives us the raw data.

5.4.2 Structured light camera

The largest camera speci�c issue with the structured light camera, is its
tendency for missing depth data in quite large areas of the image. This is
something that could lead to detection failure once presented to a non arti-
�cial environment where obstructing items could hide larger portions of the
disk.

Another problem with these dead areas, is how to incorporate them into
the background model. The issue arises when an area which has previously
been dead suddenly is not. This can happen for a couple of reasons and be
handled in a few di�erent ways, �rstly if a foreground object is introduced
between this area and the camera. In this situation, it would be good to cor-
rectly classify it as a foreground object. This however can mean trouble in
the second scenario, when moving a background object that has obstructed
the view of the structured light pattern. This can cause overly large faulty
foreground objects if handled in the same way.

The amount of noise present in the videos captured with the Microsoft Kinect
seems very low compared to the TOF cameras used. This is probably be-
cause the product contains noise reducing algorithms developed by Microsoft.
However, as the software is protected, we have not found any information
about the pre-processing done in the device

5.5 Future work

The algorithm as such can be improved somewhat by di�erent means. For
example, the ability to track objects could prove useful and might stabilise
the algorithm. The ability to adapt to di�erent complex environments, for
example with oddly shaped counters with curved sides or more than one
level is another aspect that has been left untouched due to the scope of this
thesis. Generally speaking, our algorithm contains quite a few hard coded
parameter values, such as integration time, thresholds, etc. For a more ro-
bust implementation, some work could be done to automatically scale these
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values to adapt to di�erent environments.

The problem with missing data from the structured light camera is an issue
which could be handled using spatial statistic algorithms. These should with
relatively high probability reconstruct the dead areas using the information
obtained from surrounding pixels.

What seems like the most pressing issue however are the cameras themselves.
The low resolution combined with a very narrow �eld of view limits the ap-
plication of today's TOF cameras to either working with small counters or
by using multiple cameras. If working with several cameras, a new problem
arises where the modulated light from neighbouring cameras interfere with
the depth acquisition.

5.6 Summary

We have in this thesis designed an algorithm for detecting thefts over a
counter in retail environment. The proposed method handles all parts from
image processing with noise reduction, to image analysis with object detec-
tion and theft detection. The resulting algorithm could be used in an em-
bedded system camera and work as an alerting system which warns present
personnel of the potential theft.

Evaluation of the cameras in terms of deciding which technique is best suited
for this purpose is di�cult. Partly because TOF and structured light cam-
eras have unique pros and cons, but also because of the di�erent states the
cameras are delivered in. We can, however, conclude that the algorithm
(with the addition of the TOF noise reduction), is robust enough to handle
both techniques very well. This means that future developing of the method
does not have to be limited to only one of these technologies, but can be
�tted to which one seems the most promising in the future.
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Appendix A

Retail Environment Pictures
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Appendix B

Detailed test results

Here the complete test results are presented for all cameras and for each
scenario described in section 3.3.

B.1 PMD CamCube

B.1.1 Full algorithm

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 2/2
G - 0/2
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B.1.2 Algorithm on raw data

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 1/2 -
D - 0/2
E - 0/2
F - 2/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 2/3 -
C 1/2 -
D - 0/2
E - 0/2
F - 2/2
G - 0/2

B.1.3 Algorithm without opening on foreground

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 1/2 -
D - 0/2
E - 0/2
F - 2/2
G - 0/2
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B.1.4 Algorithm without opening on thief mask

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 1/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 2/2
G - 0/2

B.1.5 Algorithm without modi�ed background model

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 1/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 4/5 -
B 3/3 -
C 2/2 -
D - 1/2
E - 1/2
F - 2/2
G - 0/2
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B.1.6 Algorithm without amplitude weighted �lter

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 2/2
G - 0/2

B.1.7 Algorithm without object splitting

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 2/2
G - 0/2
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B.2 Soft Kinetic DS311

B.2.1 Full algorithm

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 1/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

B.2.2 Algorithm on raw data

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 2/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 1/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2
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B.2.3 Algorithm without opening on foreground

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 1/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

B.2.4 Algorithm without opening on thief mask

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 1/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 1/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2
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B.2.5 Algorithm without modi�ed background model

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 2/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 1/2 -
D - 2/2
E - 2/2
F - 2/2
G - 0/2

B.2.6 Algorithm without amplitude weighted �lter

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 1/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2
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B.2.7 Algorithm without object splitting

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 1/2 -
D - 0/2
E - 0/2
F - 2/2
G - 0/2

B.3 Microsoft Kinect

B.3.1 Full algorithm

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 0/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2
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B.3.2 Algorithm on raw data

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 2/2
F - 2/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 2/2
E - 2/2
F - 2/2
G - 2/2

B.3.3 Algorithm without opening on foreground

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 0/2
G - 0/2
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B.3.4 Algorithm without opening on thief mask

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 1/2
F - 2/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 0/2
F - 2/2
G - 0/2

B.3.5 Algorithm without object splitting

White coated counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 0/2
E - 1/2
F - 0/2
G - 0/2

Glass counter
Scenario Theft detected False alarm

A 5/5 -
B 3/3 -
C 2/2 -
D - 1/2
E - 1/2
F - 0/2
G - 0/2
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