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Abstract

The problems of the standard model are reviewed and the motivations for in-
troducing supersymmetry are discussed. The basic theory behind supersymmetry
is described briefly, followed by an introduction of two realistic supersymmetric
models; the Minimal SuperSymmetric Model (MSSM) and its proposed extension,
the NMSSM. Some details of the NMSSM are stated and some constraints on pa-
rameters are described. I then explore the Higgs boson masses and couplings for
some interesting scenarios, including a few different ways of taking the limit where
NMSSM reduces to MSSM.
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7 Summary and conclusions 46

1 Introduction

The standard model, despite being very successful and in overall very good agreement with
experiments, has many obvious shortcomings. One of the leading contenders claiming to
solve some of these is supersymmetry. As the perhaps most important example, we have
the problem of the small Higgs mass in the standard model, called the hierarchy problem,
to be explained further later on. This problem is automatically solved in supersymmetric
theories, and there are many other problems which also goes away when we pass to a
supersymmetric theory. From a theoretical viewpoint, supersymmetry is attractive not
only because it solves some problems, but also since it can be said to be the most general
possible extension of our normal spacetime symmetries. In string theory, supersymmetry
is also a required ingredient to get a consistent theory containing fermions.

One of the purposes with this study, which is a Bachelor thesis at Lund university, is to
give a taste of how supersymmetry works and how some of the problems in the standard
model are solved. The other, more practical, purpose is to take a closer look at the Higgs
sector in one of the proposed supersymmetric extensions of the standard model, and look
at some of its qualitative features.

This paper is structured as follows: We start by very quickly reviewing the standard
model, followed by a discussion on its deficits. The next section is an attempt to motivate
the study of supersymmetry, which at first glance might seem slightly unrealistic but in
fact fixes many of the problems of the standard model in a fairly natural way. In the
next section, I try to introduce some basic concepts of supersymmetry at a hopefully
understandable level, adopting the superspace and superfield view of the theory. The
algebra and some of its simplest representations is presented, the concepts of superspace
and superfields are introduced and finally some very simple global supersymmetric actions
are written down. After this the simplest realistic model incorporating supersymmetry,
MSSM, is introduced, and some of its problems are discussed. The simplest possible
extension, NMSSM, which adds a singlet Higgs to the theory, is then proposed as a possible
solution to the problems of MSSM, and the Higgs sector of this theory is studied in slightly
more detail. Then the next section presents some numerical results investigating the Higgs
mass spectrum for different parameter choices and in the MSSM limit, and finally some
conclusions from these results are stated.

2 The Standard Model and supersymmetry

In this section I will first very briefly describe the standard model of particle physics,
followed by a discussion of its deficits and problems. Then I will argue that there is good
motivation to study supersymmetry and describe how supersymmetric extensions of the
standard model solves some (although not all) of its problems.

2.1 Review of the standard model

The standard model (SM) is a highly successful theory of particle physics, and is over
all consistent with all performed accelerator experiments (even though some precision
measurements seem to disagree, such as the anomalous magnetic moment of the muon).
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Name Mass Spin Charge Isospin Iz (L/R)
e− 0.511 MeV 1/2 -e −1

2
/ 0

ν 0 < m < 2 eV 1/2 0 1
2

u 1.7-3.3 MeV 1/2 2
3
e 1

2
/ 0

d 4.1-5.8 MeV 1/2 −1
3
e −1

2
/ 0

γ m < 1× 10−18 eV 0 q < 1× 10−35e 0
W± 80.40 GeV 1 ±1e 0
Z 91.19 GeV 1 0 0

g (gluon) 0 1 0 0

Table 1: Properties of the particles in the first generation as well as the gauge bosons.
Data taken from the Particle Data Group[1].

This section will be very brief, but there is of course a lot of reading material out there, so
for a more complete introduction see for example [2]. Concisely put, the standard model
is a relativistic quantum gauge field theory with gauge group SU(3) × SU(2) × U(1).
The SU(2)×U(1) symmetry is spontaneously broken, leaving only the explicit remaining
U(1) symmetry of electromagnetism, with the photon as the massless gauge boson. The
symmetry breaking gives masses to the gauge bosons W±, Z which mediates the weak
force. In order to break the symmetry, there needs to be a scalar field, called the Higgs
boson, that when it acquires a nonzero vacuum expectation value (VEV) breaks the
symmetry. It is through the couplings to this field that all particles acquire their mass.
The SU(3) symmetry is left unbroken, and is carried by 8 massless gauge bosons called
the gluons.

The remaining particles of the SM are all massive fermions, and seems to come “or-
ganized” in three identical, except for masses, generations. In every generation there are
two quarks that carry the SU(3) charge, commonly called colour, as well as two leptons
which doesn’t carry colour. See table 1 for a summary of the particles in the first gener-
ation, as well as the gauge bosons and some of their properties. A curious fact about the
standard model is that the weak force treats left and right handed fermions differently; it
only interacts with the left handed particles. Thus, we have to treat for example the left
handed electron eL and the right handed eR differently, and the same for the quarks. We
organize the particles so that the left handed particles sits in SU(2) doublets, whereas the
right handed are SU(2) singlets. For the first generation the particles are

L =

(
ν
eL

)
, Q =

(
uL
dL

)
, eR, uR, dR (1)

and analogously for the two other generations. The absence of a νR is due to the fact that
the neutrino in the standard formulation is treated as massless and since the right handed
neutrino doesn’t have any gauge couplings, there is no reason for including it. However,
since the neutrinos are not really massless, only very light, it is possible that a νR has to
be added.

In a gauge theory such as the standard model, gauge symmetry doesn’t allow us to
directly add mass terms to the Lagrangian. This is solved by the idea of spontaneous
symmetry breaking, where the vacuum becomes non-symmetric. In order to do this in
the standard model, we add the Higgs field, which is a SU(2) doublet of complex scalar
fields, and carries no colour. The parameters of the potential of this new field can then be
chosen such that, in unitary gauge the stable minimum is one where the lower component
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of the doublet acquires a nonzero vacuum expectation value (VEV). This vacuum is not
symmetric under the electroweak symmetry group SU(2)×U(1), but is symmetric under
a (different) U(1) symmetry. This is the U(1) of electromagnetism, and we say that the
electroweak symmetry has been spontaneously broken. Further, since the Z and the W±

(which really are the linear combinations of the original gauge bosons of the unbroken
electroweak symmetry that couples to the Higgs field) couple to the Higgs field and thus
to its nonzero VEV, this gives them an effective mass term. In the same way we can add
Yukawa couplings between the Higgs field and the massive fermions of the theory, giving
them effective mass terms. That part of the standard model Lagrangian is called the
Yukawa sector and is where most of the free parameters (the Yukawa coupling strengths,
giving the masses) enters. An introduction at a very readable level to more exactly how
the Higgs mechanism works can be found in [2], and for a slightly more technical review
also discussing supersymmetry and technicolor ideas, see [3].

2.2 Problems of the standard model

The standard model, while highly successful and in good agreement with the absolute ma-
jority of performed experiments (there are however some persistent measured deviations,
like the anomalous magnetic moment for the muon), still has some serious problems and
is theoretically very unsatisfactory. For one thing, it has a large number (at least 19) of
arbitrary parameters, including the particle masses, the three gauge couplings, the weak
mixing angles and the CP-violating Kobayashi-Maskawa phase. Since it appears that
neutrinos are not as previously believed massless, one must to the above ∼ 19 parameters
add three neutrino masses, three neutrino mixing angles and three different CP-violating
phases. And to describe how the neutrinos acquire mass in a realistic way, even more
parameters are necessary.

Another obvious deficit of the standard model is that it doesn’t describe the fourth
known force, gravity. What one would ultimately want is a theory that describes all the
known forces in a unified way.

Other things that are observed but not described by the standard model is the large
baryon asymmetry, i.e. why there is so much more matter than antimatter in the observed
universe. There is a mechanism in the SM to create such an asymmetry but it is nowhere
near strong enough to match what we observe. The large number of flavours in particle
physics, that there are so many types of quarks and leptons, why they seem to come in
generations and why the weak interaction mixes these generations the way it does is also
examples of things that have no good explanations in the standard model.

The standard model also has to be modified in order to be consistent with the standard
theories of cosmology. Especially, it cannot explain the observed cold dark matter, and
when one calculates the vacuum energy in the standard model it gives contributions that
are far too large to match the observed small, but nonzero, value of the cosmological
constant. Another problem is that the standard model needs to be modified in order to
be consistent with inflation.

Then there is the “hierarchy problem” concerning the smallness of gravity compared
to electromagnetism. Since gravity couples to mass, this problem is equivalent to asking
why the particle masses are so much smaller than the Planck mass scale (MP ∼ 1019

GeV), i.e. why the ratio of the electroweak scale (∼MW ) and the Planck scale is so tiny,
MW/MP ∼ 10−16. From reasons stated above, we know that the standard model is an
effective theory, at most valid up to the Planck scale. This means that when renormalizing
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the theory we must have a finite energy cutoff, that can at largest be the Planck mass.
This finite cutoff is really what causes the problem. The masses of the particles come
from the Higgs mechanism, so the question why the masses of the particles are small is
in turn equivalent to asking why the Higgs has such a small mass. If one calculates loop
corrections to the Higgs propagator, one finds that the corrections look like

δm2
H h O(α)Λ2,

so the correction to the mass squared are proportional to the square of the UV-cutoff Λ,
which by our previous reasoning is some large, finite energy, maybe of order MP or at
least of some large unification scale (called the GUT-scale, for Grand Unified Theory). So
in order to give the Higgs its required mass, which of course is much smaller than either of
these scales, these loop corrections has to be very precisely cancelled. This we can do by
giving the tree level diagram exactly the required value. Technically, this is not a problem
since there is no constraint on the value of the bare mass, but it introduces a very heavy
fine-tuning into the theory, where the bare mass has to have exactly the correct value,
and this is theoretically very unsatisfying.

A thing to note is that implicit in this line of reasoning is that you assume that there is
no need for new physics below some very large energy, i.e. the cutoff scale is large. This is
called the “big desert” assumption, and while many, holds this to be true, not all physicists
agree. An argument for this assumption is that in the standard model, the running of
the couplings is such that at a high energy scale, the grand unified scale (GUT-scale),
of about ∼ 1016 GeV, all the known coupling become roughly the same, which implies
that at least at this scale, our current physics should drastically change. Supersymmetry
actually improves this a bit, making the couplings meet more closely than in the standard
model. If one accepts the big-desert assumption, then the hierarchy problem is real, and
some mechanism is needed to keep the Higgs mass small. Supersymmetry is the most
popular proposal to solve this problem, but other theories exists, such as technicolor
[4, 5] (in which the Higgs is a composite particle) and extra dimensions (for example the
ADD model[6]). In the next section I will briefly explain how supersymmetry solves the
hierarchy problem.

A final problem worth mentioning briefly is the strong CP problem. This comes from
the observational fact that the strong interaction as described by QCD doesn’t seem to
violate CP symmetry, in contrast with the weak force. This is a problem since there are
natural terms in the QCD Lagrangian that violates CP conservation. To conform to the
experimental data, a large amount of fine-tuning is again required. The most well-known
proposition for solving this problem introduces new scalar particles, called axions, which
can make an appearance in the NMSSM, as discussed later.

2.3 Motivation for supersymmetry

So what is supersymmetry and why would we want it? What it is, is a symmetry relating
fermions to bosons, requiring that every particle has a supersymmetric partner with the
same quantum numbers only differing in spin by 1/2. Since none of the known particles
only differs in spin from another known particle, it might seem like a really bad idea to
introduce a symmetry that more than doubles (we need at least one extra Higgs doublet,
why is explained later) the number of particles needed. But despite this, there is still some
compelling reasons for studying supersymmetric theories. From a phenomenological point
of view, perhaps one of the stronger arguments is that supersymmetry (SUSY) offers a
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good candidate for dark matter, since it turns out that the lightest supersymmetric partner
(which is a mixture of the superpartners of the photon, Z-boson and neutral Higgs bosons,
called the neutralino) has to be stable, if we assume R-parity (which in turn is strongly
implied from limits on the proton lifetime).

A slightly more theoretical argument concerns the gauge coupling unification at some
high energy. In the usual standard model, the couplings run in such a way that they
almost, but not exactly, all reach the same value at a high energy. Introducing SUSY
gives exactly the contributions needed to make all the couplings meet.

Another attractive feature of supersymmetry is that it offers a way of constructing
a theory of quantum gravity. The “ordinary” supersymmetry which we will study in
this paper is a global symmetry, but if you gauge it, i.e. make it local, you necessarily
get a theory of gravity, called supergravity[7]. Since, as we will see, supersymmetry is an
extension of the ordinary spacetime symmetries rather than a new internal symmetry, it is
natural to see how curved spacetime and thus gravity follows from a local supersymmetry.

As mentioned above, one other good reason to investigate supersymmetry is that it
solves the hierarchy problem. Supersymmetry solves it since for every fermion that cou-
ples to the Higgs, it adds a scalar with the same quantum numbers. When calculating
the loop corrections, the fermion loops and the scalar loops will be of the opposite sign
and (if supersymmetry wasn’t broken) be of the same size and thus cancel. Even when
supersymmetry is broken, this removes the dependence on Λ2 and reduces it to a loga-
rithmic divergence[8], if supersymmetry is softly broken. It is worth pointing out that the
problem isn’t really the quadratic dependence but rather that we have good reasons to
believe that the standard model only is valid up to some finite energy scale. This means
that we cannot just send Λ to infinity and then remove the infinity in the Higgs mass by
our usual renormalization methods. Instead we can only send Λ to some GUT-scale, since
we expect the standard model to only be valid up to that scale. So if one believes that
the standard model breaks down well before reaching the GUT-scale, in principle there is
no problem. However we have no good theoretical or experimental reason to believe this
to be the case, so the hierarchy problem remains.

Supersymmetry also lowers the vacuum energy you get from your quantum field theory,
but nowhere near enough to explain the small cosmological constant. In fact, as is shown
later, exact supersymmetry requires the cosmological constant to be exactly zero. Yet
another reason is that string theory, which is one of the leading candidates for a “theory
of everything” demands at least some kind of supersymmetry in order to consistently
contain fermions.

However compelling these argument may seem, there is as of now no direct experimen-
tal indication that the world is supersymmetric. Since we do not see all the supersym-
metric partners, it is obvious that they do not have the same mass, so if supersymmetry
indeed is a symmetry of nature, it must be broken. Then one can ask, in what way is it
broken and what is the breaking scale?

Supersymmetry has grown into a vast field, and the purpose of this section is merely
to give the reader a flavour of the exciting ideas involved. For more complete expositions,
there are numerous books and articles to consult, for example [9, 10, 11, 12].

3 Review of basic supersymmetry

In this section, I will briefly go through some of theory behind supersymmetry, stating
the simplest possible algebra, look at its particle representations, introduce the concept
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of superspace and superfields, and finally look at how to use these concepts in order to
write down a supersymmetric Lagrangian. Beware that this is a large and deep subject
that branches of into many different areas of theoretical physics, and this brief review will
only scratch the surface.

With that said, lets start by looking at how to characterize supersymmetry. In ordinary
particle physics, we have three different kinds of symmetries:

• Poincaré invariance, or spacetime symmetry, i.e. symmetry under boosts, rotations
and translations. This is generally described by the Poincaré algebra (which basi-
cally describes how “infinitesimal symmetry transformations”, i.e. the generators,
commute, like for example the relation [Ji, Jk] = εijkJk of rotation generators in
quantum mechanics).

• Internal symmetries, for example the SU(2) × U(1) for the electroweak theory, or
SU(3) for the strong force. These are local gauge symmetries, and their generators all
commute with the Poincaré generators, which explains the name internal symmetries
since they live in their own internal spaces without mixing with spacetime itself.

• The discrete symmetries C (charge conjugation), P (parity) and T (time reversal).
In the standard model only the combination of all of them, CPT, is a real symmetry,
and there is a theorem saying that this must be the case in any quantum field theory.

There is a famous theorem by Coleman and Mandula[13] that proves that under certain
reasonable conditions these are all the possible symmetries we can have. In particular,
it is not possible to extend the spacetime symmetry by adding new symmetry generators
with non-vanishing commutators with the Poincaré group generators. However, one of
the implicit assumptions of the theorem is that the algebra of the symmetry only involves
normal commutators, or put in another way, that all generators are bosonic. It turns
out that we can enlarge the symmetry by allowing the added generators to instead be
anticommuting, or fermionic. Supersymmetry is then defined by introducing anticommut-
ing symmetry generators which transforms in the (1

2
, 0) and (0, 1

2
) representation of the

Lorentz group, that is in the left and right handed Weyl spinor representation. Already
here we see that since these generators are not scalar, they transform non-trivially under
Lorentz transformations and are thus not the same as an additional internal symmetry.

In fact, in 1975, Haag Lopuszański and Sohnius [14] proved that supersymmetry is
the most general symmetry allowed when including anticommutating generators. One
might then think that further weakening of assumptions might lead to more interesting
symmetries, but so far no compelling example of such a symmetry has been found. Thus,
we can make a strong but not entirely unreasonable assertion that supersymmetry is the
only possible extension of the ordinary spacetime symmetries.

Notational conventions

I here introduce some notation we need for stating the algebra and supersymmetric theo-
ries in a nice and clean way. For a left handed Weyl spinor with two components we will
write ψα where α = 1, 2 is a left handed spinor index, and for a right handed spinor I write
ψ̄α̇, where the dot indicates a right handed spinor index. The conjugate of a left handed
spinor is a right handed, ψ̄α̇ = (ψα)†. We use the two dimensional fully antisymmetric
Levi-Civita symbols to lower and raise spinor indices, where ε12 = −1 and ε12 = 1. For
example

ψα = εαβψβ, ψα̇ = εα̇β̇ψ
β̇
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and so on. Another definition that is needed to state the algebra in this formalism is of
the matrices

σµ = (1, ~σ) = σ̄µ (2)

σ̄µ = (1,−~σ) = σµ (3)

where 1 denotes the 2 × 2 identity matrix, ~σ is the ordinary Pauli matrices and µ is a
Lorenz index taking values 0, 1, 2, 3. Note that the bar here is part of the name and doesn’t
imply any kind of conjugation. Also note that in these conventions, the unbarred σ carries
one undotted and one dotted index: σµ

αβ̇
, whereas the barred has dotted-undotted indices:

σ̄µα̇β.
We also need the Lorentz generators for left and right handed Weyl spinors, which are

basically the commutators of σµ and σ̄ν ,

(σµν)α
β =

1

4

(
σµαγ̇σ̄

νγ̇β − (µ↔ ν)
)

(4)

(σ̄µν)α̇ β̇ =
1

4

(
σ̄µα̇γσν

γβ̇
− (µ↔ ν)

)
(5)

Note here that σ12 = σ̄12 = −1
2
σ3 so that the rotation generator M12 = 1

2
σ3, as usual. As

a warning to the reader, in the literature there are many different conventions for how to
define various quantities, so these used here are in no way standard. In this study, we will
follow the conventions of [10].

3.1 The general supersymmetry algebra

So we enlarge the Poincaré algebra with either left or right handed spinor generators, QI
α

or Q̄I
α̇ where I = 1, . . . , N labels the different pairs of generators in case we add more than

one pair. The new generators should commute with the translation generators, which is
not directly obvious but can be shown using Jacobi relations, so

[QI
α, Pµ] = [Q̄I

α̇, Pµ] = 0. (6)

The fact that the added generators are spinors dictates how they transform under Lorentz
transformations and thus their commutation relations with the generators Mµν of the
Lorentz transformations are

[QI
α,Mµν ] = σβµναQ

I
β , (7)

[Q̄Iα̇,Mµν ] = σ̄α̇
µνβ̇

Q̄Iβ̇ . (8)

Since QI is in the (1
2
, 0) representation and Q̄I is in the (0, 1

2
), the anticommutator

{QI , Q̄I} must be in the (1
2
, 1

2
), i.e. a fourvector. The natural candidate is Pµ. Further, by

rotating the differentQI generators, and rescaling them, we can always let {QI , Q̄J} ∝ δIJ ,
so the anticommutation relation becomes

{QI
α, Q̄

J
β̇
} = 2δIJσµ

αβ̇
Pµ . (9)

Then, we can also take the anticommutator between QI
α and QJ

β . Generally, we have for
these

{QI
α, Q

J
β} = εαβZ

IJ ,

{Q̄I
α̇, Q̄

J
β̇
} = εα̇β̇(ZIJ)∗ . (10)
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The ZIJ are called the central charges, central because they commute with all the gener-
ators in the algebra. Because of the antisymmetric ε and the symmetry of the anticom-
mutator, we must have ZIJ = −ZJI , so we see that with only one extra generator, N = 1
they must vanish because of this antisymmetry. This is obviously the simplest case, and
is what we will study in slightly more detail in a later section. But first, one can note
some general properties from the general algebra.

3.2 General properties of supersymmetric theories

Using the SUSY algebra, it is relatively easy to deduce some basic and general properties of
supersymmetric theories. For one thing, since the usual Poincaré algebra is a subalgebra,
an irreducible representation (irrep) of the full supersymmetric algebra will also be a
representation of the Poincaré algebra, although not necessarily an irreducible one. As
we will see, an irrep of the SUSY algebra will correspond to several different irreps of the
Poincaé algebra, i.e. several particles. We call the irreducible representation of the SUSY
algebra a supermultiplet, exactly because it contains multiple particles. The different
particles in a supermultiplet are then related to each other through the action of QI and
Q̄J .

Further, since M12 = 1
2
σ3 ≡ S3, the spin (or helicity) operator in the x3 = z direction,

we have from the algebra above that [J3, Q
I
1] = 1

2
QI

1 and [S3, Q
I
2] = −1

2
QI

2, and the exact
same for Q̄I

1, Q̄
I
2. This means that QI

1 and Q̄I
1 raises the spin (helicity) in the z-direction

by half a unit, and that QI
2, Q̄

I
2 lowers it by half a unit. Combined with the reasoning

above, this means that the particles in an irrep of the supersymmetric algebra have spins
(helicities) differing by units of one half. This also means, by the spin-statistics theorem,
that the Q and Q̄ generators change bosons into fermions and fermions into bosons.

Another thing that is easy to prove using the algebra is that PµP
µ = P 2 = m2 is a

Casimir of the SUSY algebra. This means that it commutes with all the elements of the
algebra, and thus, by Schurs lemma, that is has to be a scalar quantity, i.e. a multiple
of the identity. This has the consequence that all the particles in a supermultiplet must
have the same mass.

In a supersymmetric theory the energy (represented by P0) must be positive definite.
This follows from the algebra since, if |Ω〉 is any state in the Hilbert room, which has a
positive norm by definition, we have

0 ≤ |QI
α|Ω〉|2 + |Q̄I

α̇|Ω〉|2 = 〈Ω|Q̄I
α̇Q

I
α +QI

αQ̄
I
α̇|Ω〉

= 〈Ω|{QI
α, Q̄

I
α̇}|Ω〉 = 2σµαα̇〈Ω|Pµ|Ω〉. (11)

Taking the trace of this, i.e. summing over α = α̇ = 1, 2 and using that all of the ~σ are
traceless, we have Tr σµ = 2δµ0, and we get

0 ≤ 4〈Ω|P0|Ω〉,

so the energy must be positive. This fact is very important when discussing the breaking
of supersymmetry. In fact, it is easy to show that supersymmetry is spontaneously broken
if and only if the vacuum energy is positive. A natural question is to wonder why the
vacuum energy should matter at all, why can’t we, as is usual when dealing with normal
field theories, just shift the zero point energy in order to make it exactly zero? This we
cannot do because the energy now is dictated by our symmetry, since the Hamiltonian
appears in the algebra.

10



Another property is that a supermultiplet always contains the same number of fermionic
and bosonic degrees of freedom. The degrees of freedom here means the number of differ-
ent physical states. For example, a real scalar field has one degree of freedom, a photon
has has two corresponding to its two helicities, and a spin 1/2 particle also has two cor-
responding to its different possible spins. To prove this, assign a fermion number NF to
each state in a supermultiplet, where NF = 1 for a fermionic state and 0 for a bosonic
state. Equivalently, this means that (−1)NF = ∓1 for a fermionic respectively bosonic
state. Then the statement that a given supermultiplet has the same number of fermionic
and bosonic states can be stated∑

states

(−1)NF = Tr(−1)NF = 0 , (12)

where the sum runs over all states in the supermultiplet (which is the same as taking the
trace over the representation). Since the supercharge Q turns bosons into fermions and
vice versa, we have (−1)NFQ = −Q(−1)NF , that is, they anticommute. This we can use,
by choosing some nonzero momentum pµ and computing

0 = Tr
(
(−1)NF Q̄β̇Qα − (−1)NF Q̄β̇Qα

)
= Tr

(
(−1)NF Q̄β̇Qα −Qα(−1)NF Q̄β̇

)
= Tr

(
(−1)NF {Qα, Q̄β̇}

)
= 2σµ

αβ̇
Tr
(
(−1)NFPµ

)
, (13)

which since pµ is nonzero implies the desired result. In the second equality, I use the
cyclicity of the trace, followed by using the anticommutation of Q and (−1)NF to get the
anticommutator we need to use the algebra.

3.3 The D=4, N=1 SUSY algebra

The simplest of all possible supersymmetries in four dimensions are when we only add
one new fermionic generator, this is known as D = 4, N = 1 supersymmetry. In this
case there can be no central charges because of the fact that they are antisymmetric
so Z11 = −Z11 = 0. The addition of multiple new generators and central charges do
introduce some new things, but to discuss realistic supersymmetric models as we shall do
here, it is enough to talk about N = 1. In fact, N = 1 is the only case that can be used
as a simple low-energy extension of the standard model. This is because when N > 1
there is no supermultiplet containing only left or righthanded fermions, which we need
since the weak force interacts differently with left and righthanded particles. Of course,
at high enough energy we could still have a theory with N = 2 or higher, but then this
symmetry has to be broken so that only a N = 1 supersymmetry remains closer to the
electroweak scale.

The algebra in glorious detail is

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ (14)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 (15)

[Qα, Pµ] = [Q̄α̇, Pµ] = 0 (16)

[Q̄α̇,Mµν ] = σ̄α̇
µνβ̇

Q̄β̇ (17)

[Qα,Mµν ] = σβµναQβ. (18)

11



and the rest of the commutators involving only Pµ and Mµν are as the usual Poincaré
algebra. It turns out that the N = 1 supersymmetry has one additional symmetry, known
as R symmetry. This is an internal symmetry, meaning that its commutators with the
Poincaré generators disappears, and corresponds to a conserved quantity called R-charge
which is +1 for the ordinary particles and -1 for their supersymmetric partners. That this
charge is conserved is in essence what keeps the lightest supersymmetric particle from
decaying. Worth mentioning is also that the R symmetry is Abelian and isomorphic to
U(1). If we call this U(1) generator R one finds that

[Qα, R] = Qα, [Q̄α̇, R] = −Q̄α̇.

3.4 Representations of the algebra

From the algebra above, the goal is to construct irreducible field representations of the
algebra. I start with finding single particle representations of the N = 1 SUSY, which
will tell us important facts about the number of fermionic and bosonic degrees of freedom
and such.

The normal way of finding irreducible representations of the Poincaré group is through
Wigners method of induced representations[15], also called the method of the little group.
This works by finding representations of a subgroup, and then boosting these to find the
full representations of the Poincaré group. In practice, one chooses a particular momentum
p that has either p2 = 0 or p2 = m2 depending on whether you want a massive or
massless representation. Then one finds the subgroup that leaves pµ unchanged, called
the corresponding little group, and finds a representation of the little group on the states
|pµ〉. This then induces a representation of the full Poincaré group. In fact, the fields that
come out of this procedure will automatically fulfill the field equations of their respective
representation. That is, a scalar field will fulfill the Klein-Gordon equation and a spin
1/2 field will fulfill the Dirac equation,

In the case of the Poincaré group, there are two Casimirs, the momentum squared
P 2 = m2 and W 2 where W is the Pauli-Ljubansḱı vector defined by

Wµ =
1

2
εµνρσP

νMρσ.

W 2 has eigenvalues m2s(s + 1) where s = 0, 1
2
, 1, . . . is the spin, for massive states and

Wµ = λPµ where λ is the helicity for massless states (which of course implies W 2 = 0 for
massless states). In supersymmetry P 2 = m2 is still a Casimir, but W 2 is not. Instead,
there is a second Casimir called C2 which in general has a slightly complicated form
combining both W ,P and Q, Q̄, which we won’t need.

3.4.1 Representation of massive states

Since its enough in the method of induced representations to get a representation for a
special value of pµ, it’s enough for our purposes to state the form of C in the rest frame
where pµ = (m, 0, 0, 0). There C2 takes the form

C2 = 2m4JiJ
i , (19)

Ji = Si −
1

4m
Q̄σ̄iQ , (20)

where S is the spin operator, σi are the Pauli matrices and i = 1, 2, 3 is a spatial index.
From the algebra we see that the commutator between Ji and Q or Q̄ is proportional to

12



~P and thus disappears since we are in the rest frame. Further we see that since both Si
and σ̄i fulfills the SU(2) algebra, so does Ji. Thus, the eigenvalue of J2 is j(j + 1) with j
equal to integer or half integer values.

Further, from the algebra of the supersymmetry generators Q, Q̄ in the rest frame we
see that

{Qα, Q̄β̇} = 2mσ0
αβ̇

= 2m

(
1 0
0 1

)
. (21)

This is the algebra of two decoupled fermionic oscillators, with Q1, Q2 taking the role of
annihilation operators and Q̄1, Q̄2 as the creation operators. Then, given any state with
definite eigenvalues |m, j〉, we can define the new state |Ω〉 such that

|Ω〉 = Q1Q2|m, j〉,
Q1|Ω〉 = Q2|Ω〉 = 0. (22)

Thus |Ω〉 plays the role of a “vacuum” of our representation. Note that |Ω〉 is degenerate,
since it carries spin: for spin j it is 2j + 1 degenerate since j3 as usual takes values
−j, . . . , j. Put another way, |Ω〉 is a 2j + 1 dimensional SU(2) multiplet. If we define
normalized operators, aα = 1√

2m
Qα and a†α = 1√

2m
Qα̇ (abusing notation slightly and for

the moment disregarding the different types of indices), then for a given |Ω〉 the full irrep
is

|Ω〉, a†1|Ω〉, a†2|Ω〉, a†1a
†
2|Ω〉 = −a†2a

†
1|Ω〉. (23)

This irrep has 4(2j + 1) number of different states. To find the spins of the respective
states, we use the commutators

[S3, a
†
2] =

1

2
a†2 , (24)

[S3, a
†
1] = −1

2
a†1. (25)

This means, that if we completely specify the vacuum, |Ω〉 = |m, j, j3〉 the spins of the
states listed above are j3, j3 − 1

2
, j3 + 1

2
, j3. So we get 2(2j + 1) states with the same spin

as |Ω〉 and 2(2j + 1) states that differs by 1
2
. This means that the number of bosonic and

fermionic states match, in accordance to what we proved above.
The simplest example is the j = 0 or fundamental massive irrep. This irrep has a total

of 4 states, with spins 0,−1
2
, 1

2
, 0 respectively. This correspond to one massive real scalar,

one massive Weyl spinor, and one real pseudoscalar. The pseudoscalar is there because
the parity transformation interchanges a†1 with a†2, which gives a†1a

†
2|Ω〉 an extra minus

sign under parity. This supermultiplet is known as the scalar or Wess-Zumino multiplet.

3.4.2 Massless states

Instead of going to the rest frame, we can now go to the frame in which Pµ = (E, 0, 0, E).
In this frame we find that C2 = 0, and thus when we, in the same way as above, choose
a vacuum state, it will not be degenerate. The anticommutation relations become

{Q1, Q̄1} = 4E

{Q2, Q̄2} = 0. (26)

From this we see that
〈Ω|Q2Q̄2|Ω〉 = 〈Ω| − Q̄2Q2|Ω〉 = 0 ,
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which means that we can set Q2 = Q̄2 = 0. So there really is just one pair of normalized
creation/annihilation operators,

a =
1

2
√
E
Q1, a† =

1

2
√
E
Q̄1, (27)

which obey
aa† + a†a = 1.

This algebra has the unique two dimensional representation with states |Ω〉, a†|Ω〉. As
noted above, the ground state |Ω〉 is now non-degenerate, and has helicity λ. The a†

operator will increase the helicity by 1/2, since it transforms in the (0, 1
2
) representation.

So we have one state with helicity λ and one with helicity λ + 1
2
. However, on its own

this representation cannot be part of a quantum field theory, since it isn’t self conjugate
under the CPT-transformation, which is required of any QFT. This is because CPT
changes the sign of the helicity, so if a representation with helicity s appears, so must
the representation with helicity −s. So, we have to pair two massless irreps together to
obtain four states with helicities −λ− 1

2
,−λ, λ, λ+ 1

2
.

If we for example set λ = 1
2
, then we will get two states with helicity ±1

2
and two states

with helicites ±1. These are the states which appear if you write down a supersymmetric
Yang-Mills theory, and the supermultiplet is therefore called the gauge multiplet. If we
instead take λ = 3

2
and add the CPT conjugate states, we get a supermultiplet with

states of helicity −2,−3
2
, 3

2
, 2. The states of helicities ±2 has the degrees of freedom of a

graviton, so this multiplet is called the supergravity multiplet, which appears in theories
of supergravity.

3.5 Superspace and superfields

Just as we in order to easily write down Lorentz invariant theories introduce the concept
of a four dimensional spacetime with coordinates xµ, we can make it easier to write down
theories that are explicitly supersymmetric by introducing the concept of superspace.
To make the connection to ordinary spacetime, we can see that spacetime coordinates
parametrise the space of right cosets of the Poincaré group modulo the Lorentz group.
That is, we exponentiate the Poincaré algebra into a Lie group and then identify all points
in the resulting space that are related by a homogeneous Lorentz transformation. In order
to do the same thing with the supersymmetry algebra, one way to proceed is to write it as
a Lie algebra (which it isn’t in our standard notation, because of the anticommutators).
If we introduce constant spinors θα, θ̄α̇ whose components are anticommuting Grassmann
numbers, which means that they fulfill

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0. (28)

Then, employing our sum conventions θQ = θαQα and θ̄Q̄ = θ̄α̇Q̄
α̇, and using the anti-

commutation of the Grassmann spinors, we can state the anticommutation relations of
the supersymmetry algebra in terms of ordinary commutators:

[θQ, θ̄Q̄] = 2θσmθ̄Pm , (29)

[θQ, θQ] = 0 , (30)

[θ̄Q̄, θ̄Q̄] = 0. (31)
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Now when we have a Lie algebra, albeit one which contains anticommutating numbers,
we can exponentiate to get a generic element of the corresponding group:

G(x, θ, θ̄, ω) = exp
{
i
[
−xµPµ + θQ+ θ̄Q̄

]}
· exp

(
− i

2
ωµνMµν

)
, (32)

where x is the four vector determining translations, ω is the parameters for ordinary
boosts and rotations and the constant anticommuting spinors θ, θ̄ are, loosely speaking,
parameters for translations in the “anticommuting” dimensions. The minus in front of xµ

is a convention. If we, just as in the case of the normal Poincaré group, identify all the
points which can be related by a Lorentz transformation, we get the space which is called
N = 1 rigid superspace. The term rigid comes from that the supersymmetry parameters
θ, θ̄ are treated as constant, i.e. same all over space, which means that the supersymmetry
we are discussing is a global symmetry. If we let the spinors depend on x we instead get
a theory of supergravity, which falls outside the scope of this thesis. So the points in this
superspace is in one-to-one correspondence with

exp
(
−xµPµ + θQ+ θ̄Q̄

)
.

It is clear from this expression that the rigid superspace is parameterized by (xµ, θα, θ̄α̇),
which has 4 + 4 parameters, the first 4 ordinary numbers and the next four Grassmann
numbers.

Just as there are many advantages for constructing Lorentz covariant field theories
using the language of spacetime, construction of explicitly supersymmetric Lagrangians
become much easier when put into the language of superspace and fields on it, the so
called superfields.

The idea is that we can expand the generic field in the Grassmann “coordinates” and
since they anticommute we get an expansion with a finite number of terms. For example,
the generic scalar field on superspace can be expanded as

Φ(x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄(x) + θθn(x) + θσµθ̄vµ(x)

+ (θθ)θ̄λ̄(x) + (θ̄θ̄)θψ(x) + (θθ)(θ̄θ̄)d(x) , (33)

where f,m, vµ, n, d are ordinary scalar fields and the fermionic components φ, χ̄, ψ, λ̄ are
Grassmann valued spinor fields which anticommute with each other and θ, θ̄. Different
redundant terms has been removed using spinor identities. At first glance it might seem
like terms on the form θθ should be zero from anticommutation relations, but the thing
to remember is that in the summation convention we are using, the indices are lowered
with the totally antisymmetric symbol εαβ so these kind of terms does not disappear.

To compute what happens when we apply an infinitesimal supersymmetry transforma-
tion on this field, we need a representation of the generators Q, Q̄ as differential operators
on superspace, the same way Pµ can be represented as i∂µ on spacetime. In order to
do this we must first define what we mean with taking the derivative with respect to
an anticommuting number. This is very logical, if we have a function f(ξ) where ξ is
an anticommuting number, the most general form of this function is f(ξ) = a + bξ and
the derivative with respect to ξ is naturally defined as ∂f

∂ξ
= b. In our two component

notation, we define

∂α =
∂

∂θα
, ∂̄α̇ =

∂

∂θ̄α̇
, (34)
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and from the general definition we have

∂αθ
β = δβα, ∂α̇θ̄β̇ = δα̇

β̇
.

Using the antisymmetric symbol to lower and raise indices, one can work out various
relations for derivatives, such as

∂α(θθ) = 2θα, ∂̄α̇(θ̄θ̄) = −2θ̄α̇,

∂α∂β = −εαβ, ∂̄α̇∂̄β̇ = −εα̇β̇,

and so on.
To work out the action of a supersymmetry transformation on the scalar field, we can

use the commutation relations to work out the action on a point in superspace and then
use that for a scalar field the action on the field is inverse to that on points. The action
of the ordinary Lorentz group on the superspace is as one would expect; xµ transforms as
a vector and θ, θ̄ transforms as Weyl spinors. A Lorentz transformation doesn’t mix the
coordinates. A four vector translation also works as expected since P and Q commutes,

exp(−τµPµ) exp(−xµPµ) exp(θQ+ θ̄Q̄) = exp((τµ + xµ)Pµ) exp(θQ+ θ̄Q̄) ,

but since [θQ, θQ] ∝ P a “supertranslation” from the left mixes the coordinates and
doesn’t only shift θ or θ̄ but also x. By using the commutation relations of the algebra
and the Baker-Campbell-Hausdorff formula for products of exponentials of operators, one
can find the left action on a point in superspace

G(y, ξ, ξ̄) ·G(x, θ, θ̄) = exp(−iyµPµ + i(ξQ+ ξ̄Q)) · exp(−ixµPµ + i(θQ+ θ̄Q))

= exp(−i(xµ + yµ)Pµ + i(θ + ξ)Q+ i(θ̄ + ξ̄)Q̄

+
i

2
([ξQ, θQ] + [ξ̄Q̄, θ̄Q̄]))

= G(xµ + yµ − iθσµθ̄ + iθσµξ̄, θ + ξ, θ̄ + ξ̄) , (35)

where ξ, ξ̄ are any constant Grassmann-valued Weyl spinors. By linearising this action
and using that the action on a scalar field is inverse to that on a spacetime point, one
can work out that a good representation in terms of differential operators on a scalar
superfield is

Qα : ∂α − iσµαβ̇ θ̄
β̇∂µ and Q̄α̇ : ∂̄α̇ − iσµα̇βθ

β∂µ. (36)

In precisely the same way we can work our way through finding the appropriate represen-
tation of action from the right, which is called the supercovariant derivatives. These do
in fact have the same geometrical meaning as the normal covariant derivatives defined in
general relativity, and since our superspace is rigid, one would naively think that it should
have vanishing curvature and thus Dα = ∂α. But in fact one can show that even rigid
superspace has a non vanishing torsion, which makes the covariant derivatives nontrivial.
The non vanishing torsion is a direct consequence of the existence of fermionic generators.
Anyway, in our notation, the supercovariant derivatives are given by

Dα = ∂α + iσµ
αβ̇
θ̄β̇∂µ and D̄α̇ = −∂̄α̇ − iσµαβ̇ θ̄

β̇∂µ. (37)

The minus signs in D̄α̇ comes from lowering the dotted index using the antisymmet-
ric symbol. Since the ordinary spacetime translations doesn’t mix the coordinates, the
covariant derivative with respect to the xµ is just the same as the partial derivative,

Dµ = ∂µ.
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3.5.1 The chiral superfield

From looking at the expansion for a scalar superfield, we see that if we take the lowest
order component f(x) to be a physical complex scalar field (which restricts what the rest
of the components must be), there are too many degrees of freedom for the unconstrained
superfield to constitute an irreducible representation of the Poincaré algebra. Thus we
need to constrain it in some way to cut down the number of degrees of freedom. There
are different such constraints, but a natural one is to require

D̄α̇Φ = 0. (38)

This defines a chiral superfield, which is important since it constitutes all the basic matter
content in our supersymmetric extensions of the standard model. We can of course also
require that

DαΦ = 0 (39)

which defines an antichiral superfield. The chiral field behaves very much like an analytic1

function. Loosely speaking, since θ̄ is the complex conjugate of θ, the requirement in
the definition of a chiral superfield can be seen as an analogue of the Cauchy-Riemann
equations, which can be written ∂f

∂z∗
=0. Another fact one can easily convince oneself of

is that the complex conjugate of a chiral superfield is antichiral. From this it follows that
if a chiral superfield is real valued, it is also antichiral. Thus both Dα and D̄α̇ makes
the field vanish, and their anticommutator also vanishes, which is proportional to ∂µ by
the super Poincaré algebra, so the field must be constant. This again is just as for a real
valued analytic function.

If we define new commuting, bosonic coordinates yµ as

yµ = xµ + iθσµθ̄ (40)

we can see that
D̄α̇y

µ = 0

and almost by definition
D̄α̇θ

β = 0.

This means that any function of y and θ (but not of θ̄) will fulfil the covariant constraint
and thus be a chiral field. We thus have the expansion, for a general chiral superfield

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y) (41)

where A and F are complex scalar fields and ψ is a left handed Weyl spinor. Here we see
a special feature of the N = 1 algebra: there is a supermultiplet only containing a left
handed fermion. It is this that makes us able to use N = 1 supersymmetry to directly
extend the standard model, as mentioned above.

The chiral superfield has 4 real bosonic degrees of freedom, and 4 real fermionic degrees
of freedom, twice as many as we found in our fundamental one particle representation.
This will be explained later, and the crucial thing is to look at how the component

1The word holomorphic is more frequently used when discussing supersymmetry. Strictly speaking,
analytic means that the function can be expanded as a convergent powerseries around every point, whereas
holomorphic is the weaker requirement that the function is complex differentiable in a neighbourhood
of every point. For complex functions a major result in complex analysis is that in fact holomorphicity
implies analyticity, which motivates why I can treat them as basically the same thing.
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fields transform under a infinitesimal supersymmetry transformation. By using the Fierz
identities to manipulate spinor sums and Taylor expanding the functions of y, again
using that the series will terminate, one can expand the field given above in the ordinary
coordinates x, θ, θ̄. The result is

Φ(x, θ, θ̄) = A(x) +
√

2θψ(x) + θθF (x) + iθσµθ̄∂µA(x)

+
i√
2
θθ∂µψ(x)σµθ̄ − 1

4
θθθ̄θ̄∂2A(x), (42)

where ∂2 = ηµν∂µ∂ν = �.
It is appropriate here to say something about the dimensionality of the different com-

ponents of the superfield. The dimensionality of the full chiral field will be the same as
that of the dimension of the lowest component, the scalar field A. From quantum field
theory we know that a scalar field has mass dimension 1. Further, from the supersym-
metry algebra we see that the supercharges have mass dimension 1/2, so therefore the
mass dimension of θ and θ̄ is −1/2 (just as the dimension of xµ is minus that of Pµ). We
thus see that the F field must have mass dimension 2, and the fermion field ψ must have
dimension 3/2, just like in ordinary quantum field theory.

Using the definitions of derivatives, we can find how the components transform under
a supersymmetry transformation, defined by the constant spinor ξ. We then find the
variations of the component fields:

δξA =
√

2ξψ,

δξψ =
√

2ξF + i
√

2σµξ̄∂µA, (43)

δξF = −i
√

2∂µψσ
µξ̄.

The most important thing to note here is that F transforms as a total derivative. Looking
forward, this will mean that F will have a trivial equation of motion, not involving any
derivatives, and be what is called an auxiliary field. We also see, as mentioned above,
that the supersymmetry transformation mixes the boson A and the fermion ψ, which of
course is the trademark sign of SUSY.

3.5.2 The vector superfield

Another way to restrain the general superfield is to impose a reality condition,

V (x, θ, θ̄) = V †(x, θ, θ̄). (44)

This defines a vector superfield. In components, this means that all the scalar fields must
be real, while the spinors must be related in the correct way, (using the same notation as
in equation (33))

φ† = χ̄,

vµ = v∗µ, (45)

ψ† = λ̄.

So in total we have 4 real scalar fields, 1 real vector and 2 complex Weyl spinors, for a
total of 4 + 4 + 2 · 4 = 16 real degrees of freedom. The presence of the real vector field
hints that we can use this to construct supersymmetric gauge theories, something that
turns out to be true.
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A thing to note is that if Φ is a chiral superfield, the real part of Φ, or equivalently
Φ + Φ†, will be a vector superfield. The vector component of this field will be a derivative
of a scalar field. This suggests that we can define a superfield analogue to the U(1) gauge
transformation of the vector potential of electrodynamics, i.e. if V is a vector superfield
we can make the transformation

V 7→ V + (Φ + Φ†), (46)

which will transform the vector component of V as

vµ 7→ vµ + i∂µ(Φ + Φ†),

which is just as the case of an ordinary U(1) transform of a vector potential. By working
out how the different components are affected by the gauge transform, one can find that
the combinations

λα = ψα −
i

2
(σµ)αβ̇∂µφ̄

β̇

D = d− 1

2
∂2f (47)

are gauge invariant under the transformation in eq. (46).2 Further, if one looks at how
the other component fields transforms, one can see that a gauge can be chosen such that
it eliminates most of them, which can simplify calculations a lot. In this gauge, known as
the Wess-Zumino gauge, the vector field becomes

V = θ̄σµθvµ + (θ̄θ̄)θλ+ (θθ)θ̄λ̄+ (θθ)(θ̄θ̄)D. (48)

From this we see that the actual, physical degrees of freedom, those that can not be
transformed away by a gauge transformation, are those of a real vector, one (complex)
Weyl spinor and one real scalar field. A thing to note is that the number of bosonic and
fermionic freedoms doesn’t match. This is because the choice of gauge breaks supersym-
metry. In fact, as we will see when constructing the abelian gauge theory Lagrangian, the
D field will turn out to be unphysical.

We could now check how the components of the vector field transforms under a super-
symmetry transformation, but we restrict ourselves to the case of the D field. By using
the representations of the supercharges as differential operators on superspace we find

δξD = ∂µ(ξσµλ̄(x) + λ(x)σµξ̄). (49)

Just as for the F field in the chiral superfield, we see that the D field changes by a total
derivative, a fact that is crucial to constructing a supersymmetric Lagrangian involving
vector fields. This is really the next step in this review, but first we introduce some
additional notation that is useful for writing down supersymmetric actions.

3.6 Superspace integrals

In order to later write down supersymmetric actions in terms of superfields, we introduce
the concept of integrals over superspace. These are not integrals in a proper sense, there

2 The naming of the D field coincides with the supercovariant derivative, but it will hopefully be clear
from the context, and the name is used in all the literature so there is no sense in adopting a different
name.

19



is not really any valid integration measure, but they are rather formal definitions, intro-
ducing convenient notational devices. The “usual” integral over Grassmann numbers is
called the Berezin integral [16], and it is used, besides in supersymmetry, when we want
to quantize fermions using the path integral method. When you define it, you want to
preserve some basic properties of ordinary integrals, i.e. that it should be insensitive to
shifting the integral variable by a constant, in the sense that∫

f(x+ η)d(x+ η) =

∫
f(x)dx,

where η is some constant, and it should be a linear operation. In order to keep these two
properties we see that practically the only natural way to define it is∫

dξ(a+ bξ) = b. (50)

If we compare this with taking the derivative, we see that they are the same:∫
dξ(a+ bξ) =

∂

∂ξ
(a+ bξ) = b. (51)

This definition of the integral is easily generalized to integration over our superspace
Grassmann spinors. If we use the notation

d2θ = −1

4
dθαdθβεαβ, d2θ̄ = −1

4
dθ̄α̇dθ̄β̇ε

α̇β̇ (52)

d4θ = d2θd2θ̄ (53)

we get that ∫
d2θ(θθ) = 1,

∫
d2θ̄(θ̄θ̄) = 1,

∫
d4θ(θ̄θ̄)(θθ) = 1. (54)

What the integrals here do, which is what makes them useful, is that they extract com-
ponents out of a function of θ and θ̄. For example, the integral of some function Φ(θ, θ̄)
over d2θ2 really only picks out the θ2 component of Φ.

3.7 Supersymmetric Lagrangians

So far we have developed quite a bit of theory about abstract things like the supersymme-
try algebra, superspace and superfields. In this section this formalism will be put to some
use and we will see how (relatively) easy these concepts make it to write down super-
symmetric Lagrangians. By a supersymmetric Lagrangian we mean one that changes by
a total derivative under supersymmetry transformations, so that the action is invariant.
Without the concepts of superfields, it’s very hard to guess the form of the general super-
symmetric action. We start by determining the simplest (sensible) Lagrangian involving
a single chiral superfield, and then we find the most general Lagrangian involving an arbi-
trary number of chiral fields. Then we treat the supersymmetric extension of an abelian
gauge theory, i.e. the supersymmetric version of QED. From here, one can continue to
treat nonabelian gauge theories and talk about how renormalization works in supersym-
metric theories and so on, but since this review was supposed to be brief, I will stop after
that and in the next section instead introduce the simplest version of a supersymmetric
extension of the standard model.
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3.7.1 Lagrangians for chiral superfields

We first want a Lagrangian involving one chiral field Φ that is real, supersymmetric,
Poincaré invariant and of dimension 4 (so that the action is dimensionless). In fact the
dimensionality and reality pretty much determine what the action must look like. The
dimension of the superfield is that of its lowest (in powers of θ) component, so as said
above the chiral field will have mass dimension 1. We also know that the θ2 term, F ,
has dimension 2, and remembering that the F component transforms as a total derivative
under supersymmetry transformations (thus leaving the action invariant) we see that FF ∗

will be a real, globally supersymmetric action with the right mass dimension. Using the
above defined integral over superspace, we can write this action as∫

d4xd4θΦΦ† . (55)

This action is real, invariant under supersymmetry transformations, is Poincaré invariant
and has the correct dimension. By rewriting this in component form one can see that it
does indeed contain the kinetic terms for the component fields A and ψ:

1

2
∂µA∂

µA∗ − 1

4
(A∂2A∗ + A∗∂2A) + FF ∗ − i

2
(ξσµ∂µξ̄ + ξ̄σ̄µ∂µξ) (56)

using some of the Fierz identities to simplify spinor expressions. We see here that the F
field has no derivatives in the action, and therefore its equations of motion are trivial,

F = F ∗ = 0.

So we see that on shell, when the equations of motion hold, F is uniquely zero. F is what
is called an auxiliary field.

In order to add interactions to this theory, we note that the F field transforms as a
total derivative under supersymmetry transformations. This is in fact exactly what makes
the action above supersymmetric, but we see that another possibility is to take an action
that just takes out the F component and make it real by adding the complex conjugate:∫

d4x

{∫
d2θm2Φ(x, θ) +

∫
d2θ̄m2Φ(x, θ)†

}
, (57)

where the m2 is there to give us the correct dimension. This also has all the desired prop-
erties we want. And since the covariant derivative obeys the product rule of derivation,
any analytic (or, as discussed above, holomorphic, for the word more often used in the
literature) function of a chiral field will again be a chiral field. This means that more
generally the action ∫

d4x

{∫
d2θW (Φ) +

∫
d2θ̄W (Φ)†

}
(58)

where W is any analytic function of Φ (but not of Φ†), will be an acceptable supersym-
metric action. This term adds mass and interaction terms to the Lagrangian, and W is
called the superpotential. From dimensional grounds, we can see that W can be at most
cubic in the superfield. This follows since we know that in order to get a renormalizable
potential, all couplings must have non-negative dimension. The θ2 component of W (Φ)
have mass dimension of one more than W itself, so if W is cubic in Φ this component will
have dimension 4 requiring the coupling to be dimensionless. Thus, W can be at most
cubic.
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The general supersymmetric theory only involving one chiral field is called the Wess-
Zumino model. Its action is∫

d4xd4θΦΦ† −
∫

d4x

{∫
d2θ

(
1

2
mΦ2 +

1

3
gΦ3

)
+ h.c.

}
(59)

and it describes a massive complex scalar field and a massive fermion, with some interac-
tion terms. Still, the F field has no derivatives acting on it in the action, so its equations
of motions will be trivial (although not as simple as in the free field case). By using the
solution of F :s equations of motions, we can eliminate F from the action. We note that
the bosonic part of the Lagrangian is

LB = ∂µA
∗∂µA+ F ∗F − (mAF + gA2F + h.c), (60)

so the equations of motion for F and F ∗ are

0 =
∂LB
∂F

= F ∗ −mA− gA2, (61)

0 =
∂LB
∂F ∗

= F −mA∗ − g(A∗)2. (62)

(63)

Using these, we can write the bosonic part of the action as

LB = ∂µA
∗∂µA+ FF ∗ − (mAF + gA2F + h.c)

= ∂µA
∗∂µA+ (mA− gA2)(mA∗ − g(A∗)2)

−
(
(mA(mA∗ + g(A∗)2) + gA2(mA∗ + g(A∗)2)) + h.c.

)
= ∂µA

∗∂µA− (mA− gA2)(mA∗ − g(A∗)2) = ∂µA∂
µA− |F |2. (64)

So we see that the potential of the bosonic part of our Lagrangian, called VF is given
simply by VF (A,A∗) = |F |2. This also holds when we have a general superpotential,
W (Φ). Then the scalar potential is given by the absolute square of the F -component, i.e.

VF (A,A∗) = |F |2 =
dW

dΦ

∣∣∣∣
Φ=A

. (65)

In this way, for a general supersymmetric potential, we can get part of our scalar poten-
tial. However, as will be described towards the end of next section, when we add gauge
interactions these also contribute to the scalar potential in a rather similar way.

3.7.2 Supersymmetric, abelian gauge theory

When we looked at the vector superfield, we defined the Wess-Zumino gauge in which
the vector field only had 3 components. However, this gauge is not preserved by super-
symmetry transformations, which is disappointing since it means that the vector field V
necessarily has a lot of components. We can however define another vector field that only
contains the three components, which will then be used write down our field strength
term in our gauge theory Lagrangian. We begin with defining the chiral and antichiral
fields

Wα = −1

4
D̄2DαV, W̄α̇ = −1

4
D2Dα̇V (66)
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where all the D’s are covariant derivatives and V is a vectorfield. Wα will obviously be
chiral since

D̄β̇Wα = −1

4
D̄β̇D̄

2DαV = 0,

using that since D̄α̇ anticommutes and only has two components, D̄3 = 0. In the same
way, W̄α̇ is an antichiral field. One can show that Wα and W̄α̇ both are invariant under
the abelian gauge transformation (46), so there is no loss of generality in computing their
components in the aforementioned Wess-Zumino gauge. Using this gauge and writing Wα

as a function of the ‘chiral’ coordinate yµ = xµ + iθσµθ̄ introduced above, one finds that

Wα(y, θ) = −iλα(y) + θαD(y)− i

2
σµσ̄νθαfµν(y) + (θθ)σµ

αβ̇
∂µλ̄

β̇(y) (67)

where fµν = ∂µvν − ∂νvµ, D is a real valued scalar field and λ is a left handed spinor.
fµν is, as can be suspected from its appearance, the ordinary field strength of our abelian
gauge theory. The λ spinor has 4 real degrees of freedom, the D field has 1 real degree of
freedom, and since the vµ has 4 degrees of freedom, where 1 can be eliminated by a gauge
transform, fµν which is gauge invariant must have 3 degrees of freedom, for a total of
4 + 1 + 3 = 8 real degrees of freedom. This multiplet is called the field strength multiplet
and is an off-shell irreducible representation of the super-Poincaré algebra.

So, since Wα is chiral, so is WαWα which in addition will be Poincaré invariant. The
chirality means that the θ2 component will transform as a total derivative, and thus we
can use its real part as a valid supersymmetric Lagrangian,∫

dθ2WαWα +

∫
dθ̄2W̄ α̇W̄α̇. (68)

If you work this out in components, you find that this is

(λσµ∂µλ̄− λ̄σ̄µ∂µλ)− 1

2
fµνfµν +D2. (69)

Just as for the F component in the chiral Lagrangian, there are no derivatives acting on
the D field. Thus it is another auxiliary field, with an equation of motion that is simply
D = 0. This Lagrangian then describes the free propagation of one gauge boson (through
the fµνf

µν term) and its supersymmetric partner λ, called the gaugino.
Only having a free gauge boson and gaugino isn’t very realistic or interesting, so the

natural next step is to ask how we can add charged matter fields to the theory. For
simplicity, start with a single chiral field Φ taking values in a one dimensional represen-
tation of the U(1) gauge group of our theory. That is, under a (global) gauge transform,
exp(iφ) ∈ U(1), Φ transforms as

Φ 7→ eieφΦ, (70)

e being the charge of Φ. Then clearly the term Φ†Φ is gauge invariant (since Φ† 7→ e−ieφΦ†

under the same gauge transform). However, if we want to make the symmetry local and
thus let φ → φ(x) be a function on spacetime, it is no longer guaranteed that eieφ(x)Φ
still is a chiral superfield (since the covariant derivative in the definition of a chiral field
involves ∂µ). So, we are in the uncomfortable situation that our local gauge transform
violates supersymmetry. In order to escape this predicament, we can let φ(x) be, instead
of a real valued function on spacetime, a full chiral field. Then eieφΦ will still be a chiral
field, and instead the Φ†Φ term will transform like

Φ†Φ 7→ eie(φ−φ̄)Φ†Φ. (71)
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Now looking back at equation 46, we see that (φ − φ̄) can be absorbed into a gauge
transform of our vectorfield V . This suggests that a suitable, gauge invariant coupling
between Φ and V is of the form Φ†eieV Φ, which indeed gives us back the correct coupling
between a charged scalar field and a U(1) gauge field. So the Lagrangian looks like∫

d4θΦ†eieV Φ +

{∫
d2θ

1

4
WαW

α + h.c.

}
. (72)

We note here that this scalar chiral field has no mass, since gauge invariance forbids
terms such as m2ΦΦ. If we want massive chiral fields, we can instead take two different
chiral fields Φ+ and Φ− with opposite charge, which allows us to add a gauge invariant
mass term m2Φ+Φ− to the superpotential. So the full Lagrangian of what basically is the
supersymmetric extension of scalar quantum electrodynamics looks like∫

d4θ(Φ†+e
ieV Φ+ + Φ†−e

ieV Φ−) +

{∫
d2θ

1

4
WαW

α +m2Φ+Φ− + h.c.

}
. (73)

If we look at the scalar potential of this Lagrangian, we find that in addition to the VF
term, that is the same as in the Wess-Zumino model, we also find a new term, coming
much in the same way from the new auxiliary D component. This addition to the potential
now looks like

VD =
1

2g2
D2 (74)

where D of course is rewritten using its equation of motion in terms of the other scalar
fields in the theory. The full scalar potential thus is the sum V = VF + VD, something
that will be used later when we look at the potential for the Higgs fields. This is indeed
a general theme, the scalar potential of any supersymmetric theory is the sum of the
squares of the auxiliary fields.

The simple abelian case can without too much trouble be generalized to the nonabelian
case of Yang-Mills theory, but in order to keep this review brief, this won’t be done here.
The interested reader is invited to consult the vast literature, for example those reviews
mentioned in the beginning of this section, for this and much more interesting theory
about supersymmetry.

3.8 Concluding remarks

Supersymmetry is a vast field with many remarkable results, and this brief review has
but scratched at the very surface. The approach followed here, using superspace and
superfields, can be extended into a full fledged approach to quantum field theory, with
Feynman rules and so on. By doing this, people have been able to prove many remarkable
non-renormalisation theorems[17, 18]. Most important is the fact that supersymmetric
theories have no quadratic divergences. This basically comes from the pairing of bosons
with fermions, and since fermion masses only can be logarithmically divergent in a renor-
malizable theory and supersymmetry requires the boson mass to be equal to the fermion
mass there can be no quadratic divergences. In fact, there is no renormalization of any
of the parameters in the superpotential (i.e. masses and Yukawa couplings) apart from a
global rescaling of the superfields. Gauge couplings are renormalized, however. If you go
to theories with more supercharges, N > 1, even more divergences will disappear, and for
N = 4 there will be no divergences at all. But as stated in section 3.2, N > 1 cannot be
directly used to extend the standard model, which is what I next turn to.
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4 Realistic supersymmetric models

In this section I will introduce the simplest way to extend the standard model into a
supersymmetric theory, the minimal supersymmetric standard model (MSSM). Then an
extension to this theory is presented, the next-to MSSM (NMSSM), mostly in order
to solve a problem concerning the value of a dimensionfull parameter in the MSSM.
Since nature obviously isn’t supersymmetric at low energies, we also need to study how
supersymmetry is broken. This is a large subject which I won’t cover in any detail, only
introduce the concept of how we can introduce so called softly breaking terms into the
Lagrangian of our models, as discussed in the next section.

4.1 Softly breaking terms

The most popular ideas about how supersymmetry breaking works, is that it is sponta-
neously broken, in a manner similar to how the gauge symmetries are broken. In fact,
supersymmetry is broken as soon as the vacuum gets a nonzero energy, as mentioned in
section 3.2 . This fact means that the breaking of supersymmetry and the breaking of
gauge symmetries are closely connected subjects. There are different additional terms
you can introduce into your Lagrangian, such that you can give the fields in these terms a
non-vanishing VEV, and thus give the vacuum a nonzero energy, breaking supersymmetry.
For more details, see [20].

When constructing realistic models, we don’t really need to care about the details
of exactly how this happens. Instead, we can introduce terms into our Lagrangian that
explicitly breaks supersymmetry, but at the same time preserves renormalizability and
are such that at high energy, above the supersymmetry breaking scale, they become
irrelevant. Such terms are called softly breaking terms, and are essentially things like
scalar mass terms, gaugino masses or cubic scalar terms with dimensionfull couplings.
For our purposes, analysing the Higgs sector at leading order, we only care about the
scalar mass terms. So when we have the supersymmetric Lagrangian, we can then add
all such allowed terms, and view them as an effective description of how supersymmetry
is broken.

4.2 The MSSM

Just as it sounds, the MSSM is the model you get when you try to minimally extend
the standard model to incorporate supersymmetry. Since none of the particles in the
standard model have the same quantum numbers (excluding mass), one cannot let any
of the known particles be each others superpartners. So instead we let every particle be
a part of a corresponding superfield, and then put the superfields in the same SU(2)L
doublets as in the SM. The same of course applies to the gauge fields, which now become
part of gauge superfields.

The supersymmetric partners are sometimes called sparticles to distinguish them from
the normal particles, and are given names by adding either an ‘s’ at the beginning or
putting ‘-ino’ at the end. The superpartner to the electron is called selectron, the partners
of the quarks are called sqarks, the W-boson has the Wino and we also have the photino,
the gluino and so on. In formulae, these superpartners are usually denoted by putting a
tilde on top of the symbol for the regular particle, so that for example the selectron is
denoted ẽ and the photino γ̃.
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As mentioned briefly above, we also have new particles called neutralinos, which are
mixtures of the neutral superpartners of the Higgs bosons (which naturally are called the
higgsinos) and the neutral gauginos. In the MSSM there are four different neutralinos,
and the lightest one is usually assumed to be the lightest supersymmetric particle. In
the same way, the charged higgsinos and winos (W̃±) mix to form mass eigenstates with
charge ±1, called the charginos, of which there are two.

In a supersymmetric theory, only a Higgs with hypercharge Y = 1/2 can have the
necessary Yukawa coupling to give masses to the up-type quarks with charge +2/3, and
only a Higgs with hypercharge −1/2 can have the necessary couplings to give mass to
the down-type quarks. This is because the superpotential is holomorphic, so the Higgs
doublet giving mass to the up-type quarks cannot also give mass to the down-type quarks
since we are not allowed to use the complex conjugate. Thus we at least need two different
Higgs SU(2)L-doublets in order to give mass to all the massive particles. We will call the
Y = 1/2 doublet Hu, and the Y = −1/2 doublet Hd. Then the upper component of the
Y = 1/2 will have isospin T3 = +1/2 and therefore have electric charge +e. The lower
component will be electrically neutral, and in the same way the upper component of the
Y = −1/2 doublet will be neutral while the lower will have a negative electric charge. So
the superdoublets look like

Ĥu =

(
Ĥ+
u

Ĥ0
u

)
, Ĥd =

(
Ĥ0
d

Ĥ−d

)
(75)

and the Higgs fields which gives masses to the fermions will be the corresponding scalar
fields. We can then note that the Higgs superdoublet Ĥd has the same quantum numbers
as left handed leptons (and sleptons). Therefore we can use it to give mass to the leptons
as well as the down-type quarks, so we don’t need another Higgs doublet for this purpose.
There is another way to motivate the need of two different Higgs doublets which is based
on anomaly cancellations, but this isn’t logically needed.

The minimal superpotential involving these superfields which in a reasonable way
extends the standard model is

WMSSM =
∑
i,j

yiju ûiĤu · Q̂j − yijd d̂iĤd · Q̂j − yije êiĤd · L̂j + µĤu · Ĥd (76)

where the “hatted” letters denote the superfield doublets or singlets corresponding to the
normal SU(2)L doublets/singlets in the standard model, and i, j are generation indices,
i = 1, 2, 3. That is, for the first generation, Q̂1 = (û, d̂)T , L̂1 = (êL, ν̂e)

T , ê1 = êR, û1 = û
and so on. The Higgs doublets are as described above, and the yij are the Yukawa
couplings among generations. The products of SU(2)L doublets are given by

A ·B = εabA
aBb

where εab is the fully antisymmetric symbol in two dimensions with ε12 = 1 and a, b are
SU(2)L indices. In this superpotential the µ parameter has dimension mass and is what
gives mass to the Higgs fields, and it is this simple fact which motivates the introduction
of the next-to minimal supersymmetric standard model (NMSSM).

From this superpotential and the ordinary gauge couplings of the standard model, we
can calculate the scalar potential, by calculating the F and D terms as described above.
Doing this, and looking only at the Higgs sector of the potential, we find

VF = µ2(|Hu|2 + |Hd|2) (77)
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and

VD =
1

8
g2
(
|Hu|2 − |Hd|2

)2
+

1

2
g2

2|H†u ·Hd|2. (78)

As described above, we can then add the soft supersymmetry breaking terms;

Vsoft = m2
Hu
|Hu|2 +m2

Hd
|Hd|2 + (m2

3Hu ·Hd + h.c.) (79)

where the dimensionfull parameters m2
Hu
,m2

Hd
and m2

3 clearly have to be of the order of
the weak or supersymmetric breaking scale. The total scalar potential is then the sum
of these three terms. By letting at least one of m2

Hu
and m2

Hd
be negative, Hu and Hd

acquires non-zero VEVs, breaking the symmetry.
From requiring vacuum stability we get some relations between m2

Hu
,m2

Hd
,m2

3, the
VEVs and µ; as described in more detail in the next section for the NMSSM. Using
these, one can calculate and then diagonalize the mass matrices that describe the physical
mass eigenstates in terms of the parameters of the model. The formulae are only stated
here without much explanation, mostly for some completeness and comparison with the
NMSSM. Hopefully, how the calculations are done will become clear after reading the
next section as well as section 5, where the calculations leading to the mass matrices and
mass eigenstates are explained in more detail.

In the MSSM, it turns out that we get one physical charged Higgs state, H±, with a
mass

m2
H± =

(
2m2

3

vuvd
+

1

4
g2

2

)
v2

2
(80)

where 〈H0
u〉 = vu/

√
2 and 〈Hd〉 = vd/

√
2, i.e. the VEVs, and v2 = v2

u + v2
d, which cor-

responds to the VEV of the Higgs in the standard model. We also get one neutral,
pseudoscalar (CP-odd) Higgs, called A, with a mass

m2
A =

2m2
3

sin 2β
, (81)

where the useful angle β is defined from tan β = vu
vd

. Finally, we also get two neutral

scalar (CP-even) Higgses, H1 and H2 (where H1 is lighter than H2), that have the masses

m2
H1,H2

=
1

2

[
m2
A +M2

Z ∓
√

(m2
A +M2

Z)2 − 4M2
Zm

2
A cos2 2β

]
. (82)

If we remember the relation M2
W = 1

4
(v2/2)g2

2
3, and express sin 2β in terms of vu and vd,

we see that
m2
H± = m2

A +M2
W . (83)

We can also conclude that
m2
H1

+m2
H2

= m2
A +M2

Z , (84)

and the more striking inequality

mH1 < min(mA,MZ), (85)

meaning that no matter how we choose our parameters, mH1 < MZ . This is a tree level
prediction, and loop corrections can lift the mass of H1 above the so far established limits,
but this is still an important prediction of MSSM.

3The extra factor 1/2 coming from the factors of
√

2 in my definition of vu and vd.
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As we are excluding larger and larger values of mH1 , this is really a problem, called
the little hierarchy problem. Just as the general hierarchy problem, this concerns the
separation of mass scales, because in order to generate the large loop corrections needed
to increase mH1 , the other sparticle masses needs to become very large, again creating
a new unexplained mass scale in the theory. The maximal bound one can get without
adding new dynamics to the theory is something like mH1 . 135 GeV. Thus results that
exclude a Higgs mass lighter than that will exclude the whole of MSSM.

As mentioned above, the µ and m2
3 parameters are dimensionfull. The m2

3 parameter
isn’t a problem since it enters as one of the softly breaking terms, but µ enters through
the ordinary Lagrangian, so the only natural values for it before SUSY breaking occurs,
is either 0 or the Planck mass MP . However, to be phenomenologically viable we must
have a µ that is of similar size to the electroweak scale. Otherwise there would have to be
miraculous cancellations between µ2 and the soft supersymmetry breaking terms which
I have not yet introduced. It is in order to solve this problem we motivate the study of
the NMSSM, where by adding a singlet Higgs field and coupling it to the Higgs doublets,
the µ parameter is generated through supersymmetry breaking. This breaking gives the
singlet and the two Higgs doublets VEVs, and thus the singlet-doublet-doublet coupling
gives us an effective µ. This explains why µ should be roughly the same scale as the
electroweak breaking scale.

For a more complete discussion of MSSM, and some discussion about how it may be
discovered, see for example [21].

4.2.1 R-parity

The superpotential described above is as stated the minimal one reproducing the results
of the standard model. However, it is not the most general renormalizable superpotential
we can write down; we could also include terms such as

λijkL̂i · L̂j êk + ωijkQ̂i ·Qj d̂k + κijkL̂i · Q̂j d̂k + νiL̂iĤu

where again i, j, k are generation indices. However, all these terms enable decays or
production processes that violates the observed lepton and baryon number conservation,
unless of course the couplings for some reason are very suppressed, which would be most
unnatural. We could try and impose baryon and lepton number conservation directly,
but this would be a step back compared to in the standard model, where this happens
“automatically” since in the SM there are no allowed renormalizable terms that violate
either baryon or lepton number conservation. Moreover, there are known non-perturbative
effects that violates baryon and lepton number conservation[22], so they are probably not
exact symmetries of nature. Of course, the simple observation that the universe we see
today consists of only matter as opposed to equal parts matter and antimatter shows that
such processes must be allowed.

In order to get rid of such terms, one imposes a new symmetry, called R-parity or
equivalently, but slightly different, matter parity, that doesn’t allow lepton or baryon
number conservation. In addition, it has other nice consequences, discussed shortly below.
Matter parity assigns to each particle in the theory a number

PM = (−1)3(B−L) (86)

where B is the baryon number (quarks have B = 1
3
) and L is the lepton number. Gauge

bosons carry neither number and so are assigned PM = 1. It is easy to check that both
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the leptons and the quarks doublets have PM = −1 and the Higgs, carrying none of the
numbers has PM = 1 just as the gauge bosons. Matter parity is then to be a conserved
quantum number, and the condition to be imposed is that we only allow terms with a
combined (i.e. the terms matter parity multiplied together) parity of +1. This forbids all
the terms listed above.

An equivalent way of stating the symmetry that often is more useful is in terms of
R-parity, defined instead for every particle as

PR = (−1)3(B−L)+2s (87)

where s is the spin of the particle. As opposed to the matter parity, all particles in the
same supermultiplet do not have the same R-parity, since they differ by (in N = 1 SUSY)
half a unit in spin. It is simple to check that this means that all the normal particles has
PR = +1, while the sparticles (i.e. superpartners) have PR = −1. Now the equivalent
requirement is instead that all interaction terms should preserve PR.

In the literature, one often encounters symmetries called “R-symmetries”, which are
things like additional U(1) symmetries you add to your model. These are not the same as
R-parity, which is a discrete Z2 symmetry. Symmetries are called R symmetries when they
do not commute with supersymmetry. We can easily see that this is the case with R-parity,
since it depends on the spin and the supercharges change the spin by 1/2 unit. However,
since R-parity is equivalent with matter parity, which does commute with supersymmetry,
there really is nothing truly “R” about R-parity.

If R-parity is conserved, as we impose it to be in MSSM and NMSSM, this has a
number of important consequences. It means that there can be no interactions with an
odd number of sparticles, and that there can be no mixing between ordinary particles
and sparticles. In particular, this means that supersymmetric particles has to be pair
produced when we perform accelerator experiments with normal particles. It also means
that the lightest supersymmetric particle (LSP) has to be stable, since there is no allowed
decay process to only normal particles. This is how supersymmetry provides a possible
explanation for the cold dark matter in the universe. So the imposing of R-parity seems to
be well motivated from a phenomenological viewpoint. From a theoretical viewpoint, there
are numerous proposed extensions[23] of MSSM where R-parity appears as a remnant of
a continuous R-symmetry broken at some high energy scale.

4.3 The NMSSM

As stated above, the NMSSM [24, 25] is a proposed extension of the MSSM, which in a
natural way solves the µ-problem. In order to get rid of the dimensionfull µ parameter, we
add a new Higgs SU(2)L singlet Ŝ to the theory. Of course, in principle nothing forbids
a µ term just because we add a new singlet, but we take it to have the “natural” value 0.
The new superpotential looks like

WNMSSM = WMSSM + λŜĤu · Ĥd +
1

3
κŜ3, (88)

where λ, κ are new, dimensionless parameters of the model. From this superpotential
and the usual gauge couplings, the F and D part of the potential can be computed as
described in section 3.7. The result looks very much like in MSSM, but with some extra
terms;

VF = |λS|2(|Hu|2 + |Hd|2) + |λHu ·Hd + κS2|2 (89)
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VD =
1

8
g2(|Hu|2 − |Hd|2)2 +

1

2
g2

2|H†u ·Hd|2 (90)

Since supersymmetry has to be broken, and we don’t know nor care about the details of
the breaking mechanism, we also have to add to the potential all possible terms which
breaks supersymmetry in the acceptable, soft way explained in section 4.1. This soft
potential looks like

Vsoft = m2
Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

S|S|2 +

(
λAλSHu ·Hd +

1

3
κAκS

3 + h.c.

)
. (91)

Nothing is preventing us from adding the m2
3Hu · Hd term present in the MSSM case,

but this would add an additional parameter with mass dimension, in conflict with the
philosophy behind NMSSM, so we consider only the case m2

3 = 0. The entire Higgs
potential is then given by the sum of these,

VHiggs = VF + VD + Vsoft. (92)

Then, as in the breaking of electroweak symmetry, we assume that m2
S <

1
9
κ2A2

κ so that

S = 0 is an unstable state. If we define 〈S〉 = vs/
√

2 we see that when we expand the
singlet field around its VEV we get a term µ = λvs/

√
2 with mass dimension4. Since this

term comes from supersymmetry breaking, it’s natural for it to have a value of magnitude
|µ| . MSUSY, where MSUSY is the scale where supersymmetry is broken. This is the way
in which NMSSM solves the µ-problem of MSSM.

Further, we also assume that at least one of the other Higgs mass parameters m2
Hu

and m2
Hd

are negative, so that Hu, Hd also get nonzero VEVs, as required to break the
electroweak symmetry. We then have the gauge freedom to choose 〈H+

u 〉 = 〈H−d 〉 = 0, so
that the vacuum is uncharged. In this treatment, I will discuss the vacuum obtained by
further assuming all the remaining VEVs to be real, and described by

〈Hu〉 =
1√
2

(
0
vu

)
, Hd =

1√
2

(
vd
0

)
, 〈S〉 =

1√
2
vs. (93)

We then require this vacuum to be a stable local minimum of the potential, giving us
three different relations of the type

∂V

∂S

∣∣∣∣
vacuum

= 0

relating the squared masses of the Higgs fields to the VEVs and the other parameters in
the theory. The derivatives w.r.t. fields with zero VEVs are trivially zero. If solved for
the masses, these three relations are

m2
u ≡ m2

Hu
+ |µ|2 =

1

8
g2(v2

d − v2
u) + λ

vsvd
2vu

(√
2Aλ + vsκ

)
− 1

2
λ2(v2

d + v2
s) (94)

m2
d ≡ m2

Hd
+ |µ|2 =

1

8
g2(v2

u − v2
d) + λ

vsvu
2vd

(√
2Aλ + vsκ

)
− 1

2
λ2(v2

u + v2
s) (95)

m2
S = −1

2
v2λ2 − v2

sκ
2 +

1√
2
Aλλ

vuvd
vs

+ vuvdκλ−
1√
2
Aκvsκ. (96)

4Note that this definition of µ is a convention, which differs by a factor 1√
2

from the most common
one.
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These new masses (mu,md) are defined since when we give the singlet a VEV, effectively
there will be an additional massterm of |µ|2 for the doublet fields, so we calculate the con-
ditions for these effective masses. As above we define v =

√
v2
u + v2

d. These requirements
fixes the mass parameters. In order to further reduce the number of parameters, we can,
as is usual, fix

v2 h (
√

2 · 174 GeV)2 h (246 GeV)2,

where the factor of
√

2 comes from my definition of vu and vd. This just sets the scale of
the symmetry breaking to be the electroweak one. As said above when discussing MSSM,
v corresponds to the Higgs VEV in the standard model, and the numerical value of 174
GeV comes from the standard model relation

M2
W =

1

4
v2g2

2.

Just as in the MSSM above, it is useful to define an angle β from

tan β =
vu
vd
.

We now see that a full specification of the Higgs sector in the NMSSM requires six
parameters:λ, κ,Aλ, Aκ, tan β and vs. Conventions can be chosen such that λ, tan β and
vs are positive, and this is what I will do. For my purposes I also keep κ > 0, since
switching this sign doesn’t change any of my results. In my numerical studies I will
replace Aλ by the physical mass of the charged Higgs, mH± , which of course must be
positive, and we will see that the requirement of positive masses squared restrics Aκ to
the negative range.

The “MSSM limit” can be approached smoothly by keeping the ratio k = κ/λ fix and
letting λ → 0, while keeping µ = vsλ/

√
2 constant. Since the only couplings between

the Higgs doublets and the new Higgs singlet are dependent on λ and κ, the singlet field
decouples in this limit and one recovers the Higgs sector of MSSM. How this works will
be explained in more detail in section 6.2.

Another thing worth mentioning about the NMSSM, is that it can be used to solve the
little hierarchy problem of the MSSM. This is because if we let λ (or vs) become larger,
the mass of the lightest Higgs gets larger, so by having a large λ we can get a large Higgs
mass. This approach is sometimes called λ-SUSY[26]. In this approach we however give
up the requirement of perturbativity up to the GUT-scale.

5 Details of NMSSM

In this section I will go through some technical details about the Higgs sector of the
NMSSM. First the mass matrices are described in some detail, and then the couplings
of the Higgs to the W/Z and the quarks are briefly described, introducing the concept
of reduced couplings in order to easily compare it with the standard model Higgs and
the MSSM. Finally some theoretical and experimental limits on the parameter space are
discussed. Some other articles discussing the Higgs sector of the NMSSM are [27, 28].

5.1 The mass matrices

Since mixing only can occur between states with the same quantum numbers, we get three
different mass matrices, one for the charged Higgs states, one for the scalar or CP-even
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neutral states, and one for the pseudoscalar or CP-odd states. Since they are obtained by
taking derivatives of the potential, they are all real and symmetric. This is at tree level,
taking higher order corrections into account this is no longer the case. The realness also
means that, at tree level, there is no CP violation.

5.1.1 Neutral scalar states

In the natural basis {Hu,R, Hd,R, SR} where the subscript R denotes the real part of the
corresponding scalar field, we get the mass-squared matrix as follows

M2
s,11 =

1

4
g2v2

u +
λvsvd
2vu

(
√

2Aλ + vsκ) (97)

M2
s,22 =

1

4
g2v2

d +
λvsvu
2vd

(
√

2Aλ + vsκ) (98)

M2
s,33 = vsκ

(
1√
2
Aκ + 2vsκ

)
+

1√
2
λAλ

vdvu
vs

(99)

M2
s,12 = vdvu(λ

2 − 1

4
g2)− 1

2
vsλ(
√

2Aλ + vsκ) (100)

M2
s,13 = λ

(
vs(vuλ− vdκ)− 1√

2
Aλvd

)
(101)

M2
s,23 = λ

(
vs(vdλ− vuκ)− 1√

2
Aλvu

)
(102)

where I’ve used the stability conditions to eliminate the mass parameters from the poten-
tial in favour of the vacuum expectation values and couplings. This matrix doesn’t really
lend itself to much further algebraic simplification, so it is evaluated in the form given
here and numerical methods are used to find it’s eigenvalues, which corresponds to the
physical masses of the CP-even Higgs states, which are denoted H1, H2, H3, ordered from
the lowest mass to the highest.

5.1.2 CP-odd neutral states

In the natural basis {H0
u,I , H

0
d,I , SI} we get the following mass matrix for the pseudo-scalar

states:

M2
p,11 =

1

2

vd
vu
vsλ(
√

2Aλ + vsκ) (103)

M2
p,22 =

1

2
λvs

vu
vd

(
√

2Aλ + vsκ) (104)

M2
p,33 = − 3√

2
Aκvsκ+

vdvu
vs

λ

(
1√
2
Aλ + 2vsκ

)
(105)

M2
p,12 =

1

2
λvs(
√

2Aλ + vsκ) (106)

M2
p,13 =

1

2
vdλ(
√

2Aλ − 2vsκ) (107)

M2
p,23 =

1

2
vuλ(
√

2Aλ − 2vsκ) (108)

If the first two basis-elements are rotated with the angle β, a massless Goldstone mode
decouples, and the new mass matrix (dropping the massless mode) in the basis (P1, P2)
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becomes

M2
p′,11 =

v2

2vuvd
vsλ(
√

2Aλ + vsκ) ≡M2
A (109)

M2
p′,22 =

vuvd
vs

(
1√
2
Aλ + 2vsκ

)
− 3√

2
Aκvsκ (110)

M2
p′,12 = vλ(Aλ − 2κvs) (111)

where we introduce the mass parameter M2
A. Note that this is not a physical mass, only

a parameter which can be taken as one of the parameters instead of Aλ. It can be useful,
because in the MSSM-limit, MA becomes the physical mass of the pseudoscalar Higgs.
The matrix that diagonalises this is of course a 2× 2 orthogonal matrix, and can thus be
parametrized by an angle θA. The new basis in which the mass matrix is diagonal is then(

A1

A2

)
=

(
cos θA sin θA
− sin θA cos θA

)(
P1

P2

)
. (112)

5.1.3 Charged states

In the natural basis {H+
u,R, H

−
d,R}, the mass matrix for the charged states looks like

M2
c,11 =

1

4
v2
d(g

2
2 − 2λ2) +

vdvsλ

2vu

(√
2Aλ + κvs

)
(113)

M2
c,12 =

1

4
vdvu(g

2
2 − 2λ2) +

1

2
λvs(
√

2Aλ + vsκ) (114)

M2
c,22 =

1

4
v2
u(g

2
2/2− 2λ2) +

vsvuλ

2vd
(
√

2Aλ + vsκ). (115)

By a rotation through the mixing angle β, this gives a mass matrix in a new basis
{H±, G±} with the only nonzero element

M2
c′,11 =

v2

2vuvd
vsλ(
√

2Aλ + vsκ) +
1

4
g2

2v
2 − 1

2
λ2v2

= M2
A +M2

W −
1

2
λ2v2 (116)

To get the second equality, we use the definition of M2
A in addition to the previously noted

relation (g2v/2)2 = M2
W . The state G± is a massless Goldstone mode. The charged Higgs

state is denoted by H±.

5.2 Reduced couplings

If we want to express how the physical Higgs particles, i.e. the mass eigenstates, couple
to fermions and gauge bosons, what one needs to do is to express the original weak
eigenstates Hu, Hd, S in terms of the mass eigenstates H±, A1, A2, H1, H2, H3. This is of
course done by looking at the matrices that rotates the weak eigenstates into the mass
eigenstates, i.e. the mixing matrices as defined above.

We are primarily interested in how the V -boson couples to the different Higgses, where
V can be either W± or Z, and the couplings to quarks, since in the generic Higgs decay

H → ff̄ , there is a factor
m2

f

m2
W

meaning that the heaviest fermion allowed dominates, i.e.

either the top or bottom quark.
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The way to find these couplings is to write down the relevant terms in the Lagrangian,
which is originally in terms of the weak eigenstates, and then re-express it in terms of the
mass eigenstates Hi, H

± and Aj. The details can be found in [28].
In order to simplify the notation and keep it from getting unneedingly cluttered, we

define so-called reduced couplings, where we take the full coupling and divide out the
associated SM coupling,

GV V Hi
≡ gV V Hi

gSMV V H
, GZAiHj

=
gZAiHj

GSM
ZHH

=
gZAiHj

g/2
,

where g =
√
g2

1 + g2
2, g1 and g2 being the gauge couplings of the electroweak force. Here,

V can stand for either W or Z, the reduced coupling will be the same in either case. The
reduced coupling we will look the most at is the HiV V coupling, since this measueres how
standard model like the scalar Higgses are. If we let Si = (Hu,R, Hd,R, SR) be the scalar
weak eigenstates, and Hi =

∑
j SijSj, (i.e. Sij is the mixing matrix), then this reduced

coupling is defined as[27]
GHiV V = sin βSi1 + cos βSi2. (117)

The HiH
±W∓ coupling is similarly given by

GHiH±W∓ = cos βSi1 − sin βSi2. (118)

Since these reduced couplings comes directly from orthogonal mixing matrices, we may
conclude that they should fulfil certain sum rules. This is because of the sum rules that
elements of orthogonal matrices fulfil: the sum of the squares of one row (or column) is
equal to one. For the reduced couplings, this means∑

i

G2
ZZHi

= 1,
∑
i

G2
HiH±W∓

= 1. (119)

In the same way, the reduced couplings of the Higgses to the top and bottom quarks also
comes directly from an orthogonal matrix, but in this case a dependence on tan β also
enters, since this describes how large the difference is between the two VEVs of the Higgs
doublets. In this case the sum rules are∑

i

G2
Hitt

=
1

sin2 β
,
∑
i

G2
Hibb

=
1

cos2 β
. (120)

We also have the sumrules from the columns, for example

G2
HiV V

+G2
HiH±W∓

+ S2
i3 = 1, i = 1, 2, 3 (121)

where Si3 is the singlet component of Hi. If Si3 ≈ 0, then Hi will be purely doublet and
the corresponding sum rule G2

HiV V
+ G2

HiH±W∓
= 1 is recovered. Conversely, if Si3 ≈ 1

then both the other couplings will be suppressed, which means that detection of Hi will
be difficult. These sum rules are quite trivial in nature, but can be a useful check on
the numerical methods used. They are also important phenomenologically, since they in
effect is a good measure how standard model like the different Hi, Ai are. For example,
in this last sum rule, if the first term is large it means that Hi is SM like, if the second
term is large it means there’s a large coupling between the doublets making Hi MSSM
like, and the last term corresponds to how singlet-like Hi is.

Of course, since the standard model only has one (scalar) Higgs particle, only the
H1 couplings (assuming that the lightest Higgs also will be the standard model like)
have a direct correspondence in the standard model. Nevertheless we can define reduced
couplings by scaling away the gauge couplings and masses.
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5.3 Constraints on the parameters

In this section I will explain some theoretical and experimental limits on the parameter
space, and motivate the choices of parameters later used when studying some numerical
results. I will discuss for which intervals it is sensible to choose values for the parameters,
which I choose as λ,mH± , κ, tan β and Aκ. Some limits can be found from theoretical
considerations and requirements, while others come from experiments at accelerators or
astrophysics.

As said above, I use the value v =
√

2 · 174 = 246 GeV for the electroweak scale, and
choose the ‘standard’ value µ = λvs/

√
2 = 200 GeV, which allows me to see vs as a fixed

value when λ is chosen. There is a restriction from LEP [29] on the minimal size in µ,
requiring that |µ| > 100 GeV, coming from lower limits on Higgsino masses, but this is
really for MSSM. Nevertheless, a too small value of |µ| doesn’t work.

Since my analysis is at tree level, we will not discuss parameters entering at loop level,
where the Higgs masses get corrections depending on for example the top and the stop
masses. There is probably many cases where even at tree level limits from measurements
could be used to rule out large parts of the parameter space, but doing this in detail
is regretfully beyond the limited scope of this study. Also, for such exclusions to be
meaningful, at least the first loop level corrections should be included.

A general way to restrict the parameter space is to require that they fulfil some grand
unified scenario where all couplings of the same type gets the same value at the GUT
scale. This is called universal boundary conditions, and will not be required here.

5.3.1 λ and κ

We can see that with κ = 0, the Lagrangian, (88), has an additional U(1) symmetry,
called Peccei-Quinn symmetry[30] (henceforth called PQ-symmetry). This symmetry was
proposed as a solution to the strong CP problem, i.e. the problem of explaining why
QCD doesn’t seem to violate CP symmetry like the electroweak interactions do. If this
symmetry is exact, i.e. κ = 0, it will be spontaneously broken by the nonzero VEV of the
singlet scalar, which will give rise to a massless Goldstone boson, called the Peccei-Quinn
axion. This axion will show up as the extra pseudoscalar Higgs field (compared to in the
MSSM). However, this case can in principle be ruled out since it would since there are lower
bounds on allowed axionmasses[1] which only can be avoided if 10−16 < λ < 10−7[28].
Such a small value of λ would mean that vs would have to grow very large, making the
model unattractive as a solution to the µ-problem.

So from this we conclude that we need a nonzero value of κ, breaking the PQ symmetry.
The size of the κ coupling will regulate how badly this symmetry is broken, and with a
small value, only slightly breaking PQ symmetry, we will get a nonzero mass for the
lightest pseudoscalar.

If one uses the requirement that λ, κ and the Yukawa couplings should stay small
(eg. < 1) so that perturbation theory can be used up to the GUT scale, and uses the
renormalization group flow, one can get the approximate limit at the electroweak scale[28]

√
λ2 + κ2 . 0.7 (122)

Also, from choosing a large number of different values of λ and κ at the GUT scale and
using the renormalization group equations to run them down to the electroweak scale,
one can see that the flow favours a small κ value.
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Figure 1: The masses as a function of Aκ, where tan β = 7,mH± = 250 GeV, κ = 0.3 and
λ = 0.3.

We also note that if λ gets too small, this forces vs to become big, which means that
the model no longer works well as a solution to the µ-problem. Even if we allow vs to take
a value of a few TeV, say 2 TeV, which is well over but still “close” to the electroweak
scale in some sense, this places a limit on λ & 0.1, so we get a rather stringent condition
on λ.

If universal boundary conditions at the GUT scale are imposed (which gives us the so
called constrained NMSSM[31]), we also get that the ratio λ/κ has to be close to 3. This
is however not something that will be exclusively used since I don’t in general impose
universal boundary conditions.

5.3.2 tan β and Aκ

The range of Aκ is rather tightly constrained from the condition of vacuum stability. In
figure 1, the only allowed range of Aκ is where all the masses are positive, i.e. −600 .
Aκ . −30 GeV. In many cases the limits are a lot stricter than this. From such plots you
can also see that for some choices of the other parameters there are no acceptable value of
Aκ at all; in some cases the lightest pseudoscalar and the lightest scalar never both get a
positive mass at the same time. For the coming plots where the Aκ dependence matters,
the value of Aκ is chosen roughly in the middle of its allowed range, for a typical value of
the running parameter. The typical values are −100 and −250 GeV.

As for tan β, an analysis of the running couplings shows that a low value of tan β is
favoured. However, experiments rule out a too small value, so a not so small value is
required [27].

The theoretical upper bound is tan β . mt/mb ∼ 50, and I will briefly study what
happens when you take a large value, tan β = 30 in the model. See also [32] for a study
of what happens when you saturate this upper bound. We also have a lower bound
tan β & 1.2 from requiring λt, the top quark Yukawa coupling, to remain small up to the
GUT-scale.
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5.3.3 mH± and the other Higgs masses

For the Higgs masses experiments have placed general lower limits. For the neutral
Higgses, LEP has published negative search results[29] in some different decay channels,
and depending on the precise branching ratios the limits looks a little bit different, but
generally the lower bound from LEP is around mHi

> 80−90 GeV, for the MSSM. In the
NMSSM these limits can be avoided, but they still give some kind of general guidelines.
In the numerical studies, a lower value of mH± = 90 GeV, and a higher value of 250 GeV
will be used, when we don’t let mH± vary.

From different experiments at the Tevatron and LEP, rather strict limits can be placed
on a SM-like Higgs[1], for example the Tevatron has excluded the range 158 GeV < mh <
173 GeV, and from LEP we have exclusions of a mass lower than 114 GeV, but since the
couplings to fermions and gauge bosons of the MSSM or NMSSM Higgs bosons can be
suppressed compared to the SM Higgs, these limits can be avoided.

6 Results

In this section I will present numerical results that explores some of the features of
NMSSMs parameter space. First, masses and couplings are treated as a function of
the charged Higgs mass. From this we see some possibly interesting features of the model.
Then it is studied how the masses and reduced couplings (and thus the mixing) behave
in some different kinds of MSSM limits.

Since my calculation is only at tree level, it is not sensible to compare directly with
experimental limits. Even so, the general features are maybe even better understood
at tree level, since it is easier to compare directly with the formulae without too much
cluttering of the expressions. For my numerical results, I’ve written code in Java, using
the basic linear algebra library Jama to diagonalize and find eigenvalues of matrices.

6.1 Varying the charged Higgs mass

In order to see how the NMSSM mass spectra behaves, it can be instructive to plot the
masses as a function of the charged Higgs mass. From these plots, and the requirement
of vacuum stability (i.e. m2

H1
> 0, the lightest scalar mass positive) we can find limits on

allowed values for mH± for fixed values of the other parameters.
As an aside, just in order to confirm the theory and my numeric calculation, we can

check that the sum rules for the reduced couplings actually holds in practise, which it
turns out they do. A thing to note when looking at plots of reduced couplings and cos θA
is that what I really plot is the absolute value of the couplings. This is for two reasons,
first of all that all we really care about is the strength of the different couplings, the sign
can of course matter (mostly when you go to higher orders) but not for our purposes here.
The other reason is that the numerical method used switched signs discontinuously, so
without taking the absolute value the graphs looks very discontinuous and strange. This
can probably be fixed rather easily, but since the sign doesn’t matter for our purpose no
effort was expended on this.

6.1.1 The NMSSM with a small κ

In figure 2 we can see that for the following choices of parameters, λ = 0.3, κ = 0.1,
tan β = 2, Aκ = −100 GeV, mH± has to be between 360 and 550 GeV. This case is
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Figure 2: The Higgs masses, some different scalar couplings and cos θA as functions of
mH± , for κ = 0.1, λ = 0.3, Aκ = −100 and tan β = 2. In (b,c,d), the physical range of
the parameter space is inside the two black lines. Si3 is the singlet component of the Hi

state.
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representative for a small κ-value, which corresponds to a slightly broken PQ-symmetry.
This is favoured by the renormalisation group flow. From the figure we also see that
the mass of the lightest pseudoscalar almost doesn’t change as soon as mH± gets above
∼ 250 GeV. This is the singlet dominated pseudoscalar whose mass mainly comes from
the 1

3
κS3 term in the Lagrangian. The heavier states that grows more or less linearly are

the fields with little mixing with the singlet, (as seen from that S33 and cos θA both are
small) and behave the same way as in the MSSM. For these parameters, the next lightest
scalar state, mH2 also doesn’t depend very strongly on mH± , and grows much slower than
in MSSM.

So we see that even though the spectra of high mass states stay roughly the same,
the three light Higgs states means that a NMSSM with parameters close to these will
be easily distinguished from MSSM, even if we only find the lighter Higgses. Of course,
this only works if the reduced couplings, GHiV V and GA1HiZ doesn’t become too small to
prevent detection, which happens in a small part of the relevant parameter space.

In figure 2.b the couplings of the scalar fields to the W/Z bosons as well as cos θA
are plotted as a function of the charged Higgs mass. Since the reduced couplings can be
thought of as a measure of the mixing between weak eigenstates, this plot shows that the
mixing depends on the charged Higgs mass in a slightly complicated way. The lightest
Higgs is as one might guess the most standard model like, and it is the mixing with H2

which raises m2
H1

above zero. For a specific value, mH± = 466 GeV, the coupling GH2V V =
0, so if this specific scenario is true, the next-lightest Higgs would be totally singlet-like
(as we see in figure 2.d). In this case, the H2 Higgs would be totally undetectable through
the channels used to look for the standard model Higgs. We also see that in the physical
range at least, the pseudoscalar mixing only varies a little. The HiH

±W∓ couplings,
which measure how doublet or MSSM-like the scalars are, vary very little in the physical
range, but we do see that H1H

±W∓ pass through zero when mH± = 449 GeV. We also
see that the heavy H3 is doublet-dominated.

From the figure we can also see that mA1 and mA2 seems to switch behaviour with
respect to the charged Higgs mass around mH± ∼ 150 GeV. This switch is also apparent
in how cos θA behaves. After this however, the pseudoscalar mixing stays more or less
constant, and doesn’t vary rapidly in the physical region as the scalar mixing does. In
the same way we see the switch in behaviour between mH2 and mH3 reflected in how all
of the corresponding couplings switch, although this is outside the physical region.

6.1.2 Larger κ

If we let the value of κ get larger, the PQ symmetry is more badly broken and the lighter
pseudoscalar gets a larger mass. This is not favoured by the renormalization group flow,
but we have no a priori reason to exclude it. In figure 3 we have plotted the mass spectrum
and couplings as functions of mH± for κ = 0.5. In this case, the lightest Higgs is the most
standard model like by far, and H2, H3 again switch behaviour, around mH± ' 520 GeV.

We also see that this large κ loosens the constraints on mH± from vacuum stability.
The value of Aκ = −500 GeV used in the figure has been chosen approximately in the
middle of its allowed range for these parameters.

In this case, compared to the previous case with κ small, we see that apart from
the lightest Higgs, the rest of the masses are significantly larger. However, they are not
extremely heavy and are still very much within the range of detection, but the spectrum
of light Higgses present in the previous case is absent. This would make it harder in this
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Figure 3: The Higgs masses, some of the scalar couplings and cos θA, as functions of mH± ,
for κ = 0.5, λ = 0.3, Aκ = −500 and tan β = 2. In (b,c,d) the physical range is again
between the black lines.
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Figure 4: The Higgs masses and reduced couplings of the scalar states to the Z and W
bosons, as functions of mH± , for a higher value of vs, equivalent to µ = 1000 GeV, instead
of the normally adopted value of µ = 200 GeV. The rest of the parameters are the same
as in figure 2. In (b), the physical range is inside the vertical black lines.

case to distinguish between the MSSM and the NMSSM if only the two lightest Higgses
can be detected, compared to the case with smaller κ.

Just as in the previous case, the pseudoscalar mixing, i.e. cos θA, stays rather constant
except at the place where the two pseudoscalar fields switch identity. In this case this
switching behaviour is more distinct, something we see both in how the masses and how
cos θA behaves.

6.1.3 A larger vs or µ-value

If we vary the expectation value of the singlet field, vs, or equivalently the value of the
effective µ = vsλ parameter, this doesn’t change the qualitative behaviour of the mass
spectrum very much, but it changes the quantitative behaviour. All but the lightest Higgs
gets heavier, including the charged Higgs, since the region of vacuum stability gets pushed
upwards, see figure 4. We also see that the constraint from vacuum stability is relaxed
(see for comparison figure 2), and that the charged Higgs mass, as well as the masses of
H3 and A2 are now forced to be larger than ∼ 1.5 TeV. Since the lightest of the Higgses
remains light, it means that a higher vs must make the H1 more SM-like, which means
that the H2 becomes more singlet-like. That H1 becomes doublet-like means that its
coupling to W and Z should become large, and this is indeed also the case, as we can see
in the right panel of figure 4.

If we make the same plots for a large value of κ, the effect on the mass spectrum will
be bigger and the heavy states will thus be even heavier, since it gets amplified by the
large κ value. In this case the heavy singlet dominated fields will decouple and the lower
mass states will behave like in the MSSM, so in this case the distinction between NMSSM
and MSSM will be hard to find.
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Figure 5: The Higgs masses as a function of mH± for tan β = 35. In (a),we have κ =
0.1, λ = 0.1, while in (b) κ = 0.5, λ = 0.5. In both cases Aκ = −100 GeV.

6.1.4 Large tan β values

What happens if you increase the value of tan β, making one of the doublet VEVs much
larger than the other? In figure 5, this is shown as a function of the charged Higgs mass
for two different choices of the singlet couplings. From the figure we see that there seems
to be rather distinct points where the identity of two different Higgses seem to switch.
For example, the H1 and the H2 seem to switch behaviour with respect to the charged
Higgs mass at around mH± = 120 GeV. This kind of behaviour really comes from the
way the mixing matrices depends on mH± (or equivalently Aλ) and from how we label
the different states. A large tan β value means that the mixing with the Hu doublet will
be much more important in terms of mass than the mixing with the Hd doublet. From
this we can understand why a larger tan β value makes the identities of the Higgses more
sharply defined.

What is perhaps more interesting to note is that we have three masses here that are
almost independent of the charged Higgs mass, even though exactly what we call the state
varies with mH± . This is also coupled to the fact that the couplings in this plot is rather
small, κ = λ = 0.1. If we instead make them larger, we instead get the behaviour seen
in figure 5, where the “switching” behaviour is not at all as sharp. Increasing the singlet
couplings also pushes the lowest physically allowed value for mH± upwards (i.e. the value
where mH1 > 0), and seems to give the lightest scalar Higgs a very small mass.

6.2 The MSSM limit

A few things can be noted analytically when we take the limit λ, κ → 0 while keeping
κ/λ = k fixed. For example, we can see that the parameter m2

s in the Lagrangian will
approach a fixed value as soon as λ and κ get small. This is seen by looking at the
expression for m2

s we got from the requirement of vacuum stability, equation (96). Since
we keep µ = 1√

2
vsλ fixed, we have that

m2
s = −1

2
v2λ2 − v2

sκ
2 +

1√
2
Aλλ

vuvd
vs

+ vuvdκλ−
1√
2
Aκvsκ
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= −1

2
v2λ2 − 2µ2k2 +

1

2
Aλλ

2vuvd
µ

+ vuvdkλ
2 − Aκkµ

→ kµ(Aκ − kµ) as λ→ 0,

also using the relation between κ and λ. If we instead keep κ fixed and let λ→ 0, we see
that instead

m2
s = −1

2
v2λ2 − v2

sκ
2 +

1

2
Aλλ

2vuvd
µ

+ vuvdκλ− Aκκ
µ

λ
→ ∞, as λ→ 0.
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Figure 6: How the masses vary when λ goes to zero while keeping κ fixed. In this plot,
tan β = 2,mH± = 250 GeV, κ = 0.1 and Aκ = −100 GeV.

This behaviour is shown in figure 6, and it means that just as we can see from looking
at the Lagrangian (88), as λ goes to zero the singlet field decouples and the masses of the
singlet dominated states blow up.

Another way of taking an interesting limit is to let κ → 0 keeping λ constant, as
can be seen in figure 7. Here we see that in this limit (which really isn’t a proper MSSM
limit since λ stays large and thus the singlet doesn’t fully decouple), the A1 state becomes
massless, which again is because we restore the PQ symmetry turning A1 into the massless
PQ-axion. However, it is seen that for all cases with fixed λ there is no way of keeping
H1 at a positive mass squared as κ goes to zero. For smaller values of λ, m2

H1
becomes

negative for smaller values of κ, but any given value of λ ultimately restricts the lowest
possible value of κ. So from looking at this in addition to the above discussed λ → 0
limit we see that in order to decouple the singlet and reduce the theory to MSSM, one
is in effect forced to take the simultaneous limit κ, λ → 0 (or in addition take the limit
Aκ → 0 as studied later).

In figure 8, we see that when approaching the MSSM limit in the sensible way, none of
the masses becomes large, which is understandable since we above showed that m2

s tends
towards a finite value. However, also in this case the singlet decouples and does not mix
with the other fields, which we see by looking at the reduced couplings and cos θA, seeing
that the lightest Higgs state becomes completely standard model like, and also cos θA goes
to 1, so that both mixing matrices become block diagonal and there is no mixing between
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Figure 7: The masses as a function of κ, where tan β = 7,mH± = 250 GeV, Aκ = −100
GeV and λ = 0.3.

the doublet and the singlet. That the lightest scalar becomes standard model like in this
limit means that for small κ and λ of roughly the same size (k ∼ 1) means that it could
be detected as easily as in the standard model.

We also see that cos θA goes to 1 much slower than the reduced scalar couplings. This
is not a general feature but depends on the value of k. However, I’ve not found any
cases with k > 1 where the pseudoscalar mixing disappears slower than the scalar mixing.
This means that small values of λ and κ suppresses mixing between scalar singlet and
doublet states much more than between the pseudoscalar states. Moreover, as λ becomes
small the mixing between the scalar Higgs fields stop depending on λ and stays more or
less constant. This is of course very reasonable since λ determines the coupling strength
between the singlet and the doublets.

However, as we can see in figure 9, the reduced couplings (and thus the mixing)
doesn’t always vary slowly when we take the limit. This behaviour seems to occur only
when k . 0.5, in the figure we have k = 0.2 as a representative case. In these scenarios,
the couplings continue to vary very rapidly (considering the logarithmic scale) even when
λ is very small, and the mixing only disappears when λ becomes really small. Differently
from before, the lightest Higgs isn’t the most standard-model like in this scenario. This
role is instead filled by H2. We also note that the masses of H1 and H2 gets very similar
in the MSSM limit.

Since cos θA approaches 0, we see that the lightest pseudoscalar state also decouples
in the MSSM limit (that cos θA = 0 of course means that the off-diagonal element of the
pseudoscalar mixing matrix sin θA = 1).

We however see that the masses of the two lightest Higgses are very small for these
parameter choices, so this particular case is not realistic. For such small values of k the
requirement that m2

H1
> 0 seems to rule out most of the parameter space, i.e. for many

choices of other parameters, m2
H1

< 0. I’ve not found any case where the same thing
happens for the pseudoscalar mixing, but no methodical search of such a scenario was
carried out.

As we can see from the formula for m2
S in the MSSM limit, if we let the ratio k = κ/λ

get larger, then the masses of the singlet states should increase. And this is exactly
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Figure 8: The masses, HiV V -couplings and cos θA as the MSSM limit is approached,
using k = 1, tan β = 2,mH± = 250 GeV and Aκ = −100.
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Figure 9: How the masses, cos θA and HiV V couplings vary when approaching the MSSM
limit, using k = 0.2, tan β = 2,mH± = 250 GeV and Aκ = −100 GeV.

what happens as we can see in figure 10, where a larger k value is seen to push the
heaviest scalar, the singlet dominated one, far up in mass, whereas the mass of the heavy
pseudoscalar is also increased but not at all as much.

Another possible way of approaching the MSSM limit is to also send the Aκ parameter
to zero, which effectively further suppress the S3 term in the Lagrangian and thus restores
the PQ-symmetry. And as we can see in figure 11, in this case the lightest pseudoscalar
Higgs become massless in the limit, restoring the massless PQ axion. In this limit, we
also see that the pseudoscalar mixing disappears (cos θA → 1) and that the lightest scalar
Higgs again is fully standard model like.

One could also imagine letting vs go to zero smoothly, but in order to keep µ in an
acceptable range this would mean that λ would have to become larger than allowed by
the requirement of perturbation theory being valid up to the GUT-scale, i.e. λ . 0.7 as
stated before. A small value of µ is excluded from bounds on the chargino masses[1] from
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Figure 10: How the masses vary when approaching the MSSM limit for two different
values of k. The rest of the parameters have the same value as those in figure 8.

direct searches. As said towards the end of section 4.3, we can give up the perturbative
requirement and consider λ � 1 as in the λ-SUSY model [26], in which case this limit
could be viable.

7 Summary and conclusions

In this study, we have briefly reviewed the motivation behind studying supersymmetry,
followed by a short introduction to the very basics of supersymmetry in the superspace
and superfields formulation. Then the MSSM was described, and its simplest extension,
the NMSSM was introduced as a solution to the µ-problem. Some technical details of
the Higgs sector of NMSSM was stated, including the mass matrices and definition of the
reduced couplings. This was followed by some numerical studies of different choices of
parameters, including a look at approaching the MSSM limit in some different ways.

We find that in the by renormalization group flow favoured choice of κ, tan β and
λ, the mass spectra with three different relatively light Higgs bosons should make the
theory easy to distinguish from the MSSM even when not all the Higgses are detected.
But in other perfectly allowed cases, the distinction might not be directly obvious. We
also see that for this case some of the couplings to SM-particles pass through 0, so that
it is possible that for example the H2 state can be hidden and not interact in a standard
model like way at all.

For a larger κ value, i.e. a more strongly broken PQ-symmetry, we see that the cou-
plings behave in a qualitatively different way. In this case the switching behaviour takes
place inside the physically sensible area, but the couplings of the H1 state doesn’t show
any complicated dependence on mH± . Over the whole range, H1 is the essentially fully
standard model like.

If we want to study the limits where the singlet decouple, from looking at what happens
when only one of κ or λ are sent to zero, we conclude that sensible limits exists only when
both of them are decreased simultaneously. When we approach this MSSM limit, keeping
the ratio κ/λ constant, the mixing with the singlet field disappears. Mostly this decoupling
happens rather quickly, but in some cases, when κ/λ . 0.5, the mixing of the scalar states
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Figure 11: How the masses, couplings and cos θA vary when λ goes to zero while keeping
k = κ/λ fixed, in addition to also sending Aκ to zero. In this plot, k = 1, tan β =
2,mH± = 250 GeV. Aκ begins on a value of −250 GeV, and is sent to zero in the same
manner as λ and κ (i.e. we keep the ratio κ/Aκ constant).

depends strongly on the nonzero λ. We also see that in this case, the lightest Higgs is
no longer necessarily the most standard model like, that role being taken by H2. But for
λ > 0, both H1 and H3 are slightly standard model like, so if this is the case (i.e. we have
a small λ and a ratio as described), we could detect three relatively light Higgs bosons
with different masses. However, these cases seem to depend very much on the ratio κ/λ
having a specific value, and also seem to give the lightest states too low masses for it to
be realistic, but since I have not scanned all of parameter space and in addition I am only
doing tree level calculations, this kind of scenario cannot be altogether ruled out.

So we see from all this that the NMSSM model offers many interesting possibilities
not seen in the MSSM.
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