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Abstract 
 

 

 

This master thesis studies a two-echelon distribution system for perishable items with two non 

identical retailers. Each location is managed following a standard continuous (R, Q) ordering 

policy. The demand occurs solely at the retailers and follows independent Poisson processes. 

Customers are backordered when the retailer is out of stock. The items are considered as fixed 

lifetime perishables. Whenever an item perished, it is discarded from the stock. The model 

includes fix transportation time and the allocation policy at the central warehouse is a First-

Come-First-Serve one. 

 

 

This kind of system is very complicated and therefore hard to study. In this master thesis, we 

focus on a simulation study of 48 different problems with both a FIFO and a LIFO issuing 

policy at the retailers. The goal of this study is therefore to optimize the values of R in (R, Q) 

ordering policies considering that the items are perishables. To do so, we try to optimize the 

values of the reorder points at every location. We also try to find some general behaviour of 

the system and we compare the FIFO and the LIFO best found solution. 

 

 

More than 1000 hours of computer-time were used for this study. For every problem, we 

conducted an optimization process to find better values of the reorder points at every location. 

For the FIFO case, an average cost reduction of more than 20% was found. It exists a good 

opportunity in term of cost savings while taking into account the perishable characteristic of 

the items. Another finding of our study is that the LIFO case has good performance 

comparing to what expected. On average, the costs increase is only 7% while considering a 

LIFO issuing policy instead of a FIFO one. Moreover, the values of the reorder points for the 

FIFO best found solution are still the same than the LIFO best found solution in 70% of the 

problems studied. 
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Introduction 
 

 

Inventory control is nowadays recognized as a crucial activity to succeed in a lot of 

businesses. The two main reasons explaining this fact are the need of a high service level and 

the low cost requirement to give customers the highest satisfaction. These two forces act 

unfortunately in opposite ways. On one hand, the uncertainty in the demand requires to keep 

enough stock to avoid shortage. One the other hand, the cost incurred by the capital tied up in 

inventories must be cut down by lowering inventory levels. As we will see later, the optimum 

solution is not easy to find even in very simple cases (see Chapter 1). When the situation 

becomes more complicated, it often does not exist any theoretical result to find the optimum. 

 

In this thesis, we focused on multi-echelon (or multi-level) inventory systems, where several 

stocks are linked somehow. This assumption makes the problem difficult to study as every 

modification in the inventory policy at one location has implications at every other location. 

Nevertheless, the field of stochastic multi-echelon inventory theory has a wide range of 

practical applications, as the majority of the supply chain systems can be modelled as multi-

echelon systems. 

 

The majority of the work in the inventory control theory assumes that there is no limit of the 

product’s storage time i.e. that the products keep all their usability whenever they are sold. In 

practice, this is obviously not the case for some products like provisions, photographic films, 

medicine or blood. From a theoretical point of view, every item will become unusable after a 

certain amount of time. From a practical point of view, only the products with short shelf life 

or product which will become unsaleable soon will be considered as perishables. For example, 

perishables stand for almost one third of the sales of the supermarket industry according to 

Broekmeulen and Van Donselaar (2007). The major characteristic of a perishable inventory 

system is that once the product lifetime is reached, the product must be discarded from the 

stock. In the supermarket industry, around 15% of the perishables are lost due to spoilage 

according to Lystad and Ferguson (2006). It is therefore important to study the perishable case 

to understand how to handle with perishable items into practice. 
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The goal of this master thesis is to study multi-echelon inventory systems for perishable 

items. We will describe the system chosen more into detail in the Chapter 4. It is important to 

notice that this kind of inventory system is very complicated to study. We therefore decided to 

focus on simulation to get some understanding about general behaviours of the system. Our 

main goal is to find good inventory policy for a range of problems and to evaluate if 

significant savings can be achieved by considering the items as perishable worth the work, 

both theoretical and practical, that has to be done to handle with this characteristic. Moreover, 

we will look for some trends and general behaviour of multi-echelon systems when 

considering the items as perishable. To understand better these systems, a starting point is to 

develop some approximate or some exact models to deal with perishable items in a multi-

echelon environment. 

 

This paper is written as followed. The introduction above describes briefly the subject of 

stochastic inventory theory and defines the goals of the study. Chapter 1 gives some 

background about inventory theory while Chapter 2 presents some important models related 

to our study both in the non perishable and in the perishable case. Chapter 3 includes the 

literature review carried out. Chapter 4 first presents the assumptions and constraints of the 

study and then describes the model chosen. Chapter 5 is dedicated to the methodology 

followed during this master thesis and Chapter 6 presents our results. Finally, the conclusion 

summarizes our main findings and gives suggestions for future researches. 
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1. Background: Inventory Control Theory 
 

 

This section deals with some basics about inventory control from an academic point of view. 

The main goal of this section is to give the reader an insight about what kind of problems are 

already well studied and the methodology that is used to deal with this problem. In this 

section, we will use Axsäter (2006) as the main reference. 

 

The first question that we have to answer is about the advantages and disadvantages to hold 

an inventory. Why holding stock? 

As Axsäter (2006) points out, the two main reasons are uncertainties and economies of scale. 

The uncertainties are of different kind. The most important one is the demand uncertainty. In 

most of the real cases, the demand is not constant over the time and it is impossible to forecast 

it perfectly. Then there are also uncertainties about the order lead time and the estimation of 

the cost parameters. It can also be valuable to hold stock when economies of scale are 

possible by ordering a larger amount of items at one time. 

Holding a larger stock is often the solution used by the firms to deal with the real supply chain 

problems. This is obviously not an appropriate solution, there are indeed a lot of reasons not 

to hold inventory. 

Consequently, we have to find the balance between the advantages and drawbacks resulting 

from holding stock, to try to find the optimal stock policy. 

 

There are a lot of parameters that have to be taken into account when dealing with an 

inventory problem. In this entire chapter, we will only consider single-item inventory systems. 

This assumption is not very restrictive, as it is often possible to control the different items 

independently, that is to say, to decompose your inventory into several single-item inventory 

systems. 

In the next section, we will present one of the simplest cases of inventory problems, the 

single-item single-echelon inventory system. 
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1.1 Single echelon inventory systems 

 

A single echelon inventory system is a supply chain system with only one location (one 

stock). Even if this model seems to be very restrictive, it is the most used in practice. The 

reason for that is the decentralization of the majority of the supply chain systems between 

different companies. We will see in the Section 1.2 that this decomposition of the supply 

chain into several single echelon inventory systems is far from optimal, however, the 

theoretical optimality is counterbalance by the difficulty to share information and the 

difficulty to trust the other companies enough. There is also a problem of cost repartition 

between the different actors. 

 

 

There are series of questions arising when constructing an inventory model: 

 

What type of reviewing policy do we want to implement? (Continuous vs. periodic review) 

Nowadays, with the expansion of the information technology, it is possible to review an 

inventory system continuously (review time = 0). However the periodic review is still the 

most used in practice (review time > 0). 

 

What type of ordering policy do we want to implement? (R, Q), (s, S), other? 

The ordering policy deals with the batch size ordered and the moment to place an order. In 

most of the cases with single-echelon systems, the (s, S) policy is proved to be optimal. 

Nevertheless, even in simple cases, the optimal ordering policy can be much more 

complicated. On the other hand, these complicated policies will not be implemented into 

practice as it will become too difficult to manage the stock. There are indeed two main 

ordering policies used. 

(s, S) policy: In this inventory system, we will order up to S as soon as the inventory position 

(stock on hand + outstanding orders – backorders) declines to or below s. The order will 

arrive L time unit after ordered. 

(R, Q) policy: This policy is quite similar to the (s, S) one, but in this case, the batch size 

ordered is constant equal to Q. We will order a batch of Q units as soon as the inventory 

position declines to or below R. Sometimes, in a periodic review case, it is necessary to order 

a multiple of Q batches to get the inventory position larger than R. 
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It is important to notice that in the continuous review and continuous demand case, an (s, S) 

policy is equivalent to a (R, Q) one, with s = R and S = R + Q. 

 

What type of issuing policy will we used? (FIFO, LIFO) 

The issuing policy plays a major role when items are perishables. The freshness of the product 

becomes a major matter for the customers who will try to buy the fresher product. The most 

common issuing policy is the First In First Out (FIFO) policy. For this policy, the first item 

arriving in the inventory will be sold first. However, the Last In First Out policy (LIFO) can 

be more close to practice when customer can choose the products (as in a supermarket). 

 

We will now present an example of calculation which is also the most well know inventory 

control problem. This problem is called the classical economic order quantity formula. Even if 

this is one of the simplest problems, its practical use is enormous. It was first derived by 

Harris (1913). 

 

This problem is a single-echelon single-product problem with constant and continuous 

demand over the time (d: demand per time unit). The shortages are not allowed and the lead 

time is equal to zero. Moreover, the holding cost per unit and time unit is equal to h > 0 and 

the ordering cost is equal to A > 0 (per order). The ordering policy used is the (R, Q) type. 

First of all, since no shortage is allowed and as there is no need of safety stock (as the demand 

is deterministic), the optimal is found for R = 0. A batch of size Q is delivered exactly when 

the last unit in stock is consumed. Moreover, as the leadtime is equal to 0, this batch is 

ordered exactly when the last unit in stock in consumed. The inventory level will vary over 

the time as in the Figure 1: 

 

 Stock level 

Time 

Q 

Q / d 

 

 

 

 

 

 

 

Figure 1: inventory level function of the time for the economic order quantity problem 
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Consequently, the total cost formula can be formulated as: 

 
A

Q
dhQC ×+×=

2 

 

The optimum is found by derivation of this formula, as C is convex in Q. This gives: 

 

h
dAQ ××

=
2*  

 

and 
hdAC ×××= 2*

 

A lot of different assumptions can be made to refine this example. We will not enter into 

details here. The main drawback of this model is certainly to consider the demand 

deterministic and constant over the time. But this model is still very important because a well 

known technique in inventory control is to approximate the probabilistic case by the 

deterministic case with the same average demand to determine the batch size Q. Then, the 

probabilistic case is studied to determine the value of reorder point R. 

 

If the demand is still deterministic but non constant over the time, the problem is called the 

dynamic lot size problem. It exists exact and approximate methods to deal with this problem 

in the periodic review case. The Wagner-Within algorithm is an exact method based on 

dynamic programming while the Silver-Meal heuristic is an approximation much simpler to 

implement. In practice, it is much more common to use an approximation because these lot 

sizing technique are usually applied in a rolling horizon environment. In this case, if the time 

horizon is short, the Wagner-Within algorithm is also an approximation and it is more 

sensitive with respect to the time horizon than the approximation methods. 

 

We will now study the case where the demand follows a probability distribution (non 

deterministic demand). In the probabilistic case, our main concern is to evaluate the optimal 

reorder point (this is a common approximation to use the deterministic case to evaluate the 

batch size). To do so, we have to derive the probabilities of the inventory level for every value 

of j, P (IL=j). 
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If we consider a continuous review (R, Q) policy system, allowing backorders (b = backorder 

cost per unit and time unit) and using the same notation than for the classical economic order 

quantity problem (d is now the average demand per time unit), the cost structure is now: 
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We can choose to optimize both R and Q or only R (as we said before). 

 

 

1.2 Multi-echelon inventory systems 

 

An inventory system is considered to be multi-echelon (or multi-level) when several stocks 

are linked in a certain way. This is the case in most of the real supply chain systems, even if 

the single-echelon approximation is often used to simplify the problem. There are three 

different kind of multi-echelon inventory systems: 

 

The serial system: Each inventory is supplied by one other location (in maximum) and 

supplies in its turn one other location (in maximum). These systems are very useful in theory 

as they are quite simple to study, but they are not so common in the reality. 

 

The distribution system (divergent structure): Each inventory is supplied by one location (in 

maximum) and supplies in its turn a number of other locations (except from the more 

downstream inventories). A common example of a distribution system is the case where a 

central warehouse supplies several retailers. This example is called a two-echelon distribution 

system. 

 

The production system (convergent structure): Each inventory is supplied by several other 

locations (except from the most upstream inventories) and supplies in its turn one location (in 

maximum). This supply chain structure is very common when producing an item from several 

subparts assembled together. 

 

In practice, the supply chain structure is often a mix of production and distribution system, but 

it is much simpler even if not optimal to decompose the system into several distribution and 

production systems. Moreover, only simple (R, Q) and (s, S) policies will be implemented in 



practice to simply the inventory control. It exists centralized and decentralized models where 

either each location controls its own inventory or the inventories are controlled at one place. 

We will only consider centralized models here. 

 

We will concentrate on the two-echelon distribution system to understand the challenges 

associated with a multi-echelon inventory system (see Figure 2). There are several difficulties 

emerging when dealing with this problem. First of all, even if the demand occurs only at the 

retailers and that the demand structure is known, the demand at the central warehouse is often 

very complicated to describe. The only easy case is when the retailers order at every customer 

arrival ((S-1, S) policy) and that the demand follows a Poisson process. In this special case, 

the demand at the central warehouse will be a Poisson process with intensity equal to the sum 

of all the intensities at the retailers. 

 

 

 

 

 

 

 

 

 

 

. 

. 

. 

Central 
Warehouse 

Retailers 

Figure 2: A two-echelon distribution system 

 

A second difficulty concerns the supply lead time to the retailers. In the single-echelon 

system, we assume that the inventory is supplied by external suppliers who will never be out 

of stock. The lead time in this case is equal to the transportation time which can be considered 

constant in many cases. Now, the central warehouse can be out of stock, and the lead time 

from the central warehouse to a retailer is a random variable. 

 

The last point to take into account is that the retailers do not react as a final customer as they 

can hold a stock. In most of the cases, when we consider the problem as independent single-

echelon problem, the central warehouse stock level will be overestimated, as we will impose a 
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service level at the central warehouse much higher than optimal. This remark can be used as a 

rule of thumb when dealing with real problems. 

 

 

1.3 The Metric approach 

 

This approximation first developed by Sherbrooke (1968) is very useful in practice, and is 

also often used in research papers. The core idea of this method is to replace the random lead 

time to supply retailers by its mean. To well understand the method, let consider an example. 

 

We consider a two-echelon distribution system, with continuous review. We assume 

moreover that every location applies (S-1, S) policies and that the transportation time li for 

replenishments are constant. Let assume that the demand occurring at every retailers follows a 

Poisson process. As explained earlier, the demand at the central warehouse follows also a 

Poisson process with a rate . ∑= i iλλ0

 

The metric approach replaces the stochastic lead time by )( 0WElL ii += .Where W0 is the 

time delay due to stock-outs at the warehouse. We now need to calculate E(W0). To do so, we 

begin by calculating the average number of backorders at the central warehouse E(B0): 

)),0(max()( 000 SUEBE −=  

 

Where U0 is the number of outstanding orders at the warehouse and S0 is the inventory 

position at the warehouse. 

 

By using the Little’s formula, it follows that: 

 

0

0
0

)(
)(

λ
BE

WE =  

 

From now on, we can find approximations for the average inventory on hand and the average 

number of backorders at retailer i. 
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2. Some important models 
 

 

We will present in this section some important models related to our model. We will first 

describe the two-echelon non perishable model developed by Axsäter (1998) that we used as a 

starting point in our research of the perishable best policy (see Chapter 4). Then we will 

present some perishable models related to our study. The newsboy model is the first inventory 

model taking into account that the item can perish. Chiu (1995) considers a single-echelon 

systems dealing with continuous review (R, Q) policy and Olsson (2007b) deals with a serial 

two-echelon system. 

 

 

2.1 Axsäter’s model 

 

Axsäter (1998) considers a two-echelon distribution system with continuous review (R, Q) 

policies at every location with different reorder points and batch quantities. The retailers face 

different Poisson demand and the transportation times are constant. Moreover, stockouts at 

each location are backordered and delivered on a first-come-first-serve basis. A FIFO issuing 

policy is used at the retailers. 

 

The total costs considered consist of the expected holding cost and the backorder costs at the 

retailers. The goal is indeed to optimize the values of R considering Q as parameters. In that 

way, there is no need to consider ordering costs. 

 

In this paper, the holding and shortage costs are evaluated exactly in the case of two retailers. 

An approximation technique is used in the case of more than two retailers. When evaluating 

costs at a certain retailer, the others are aggregated into a single retailer. We will only 

consider the case of two retailers and mainly focus on the methodology. See Axsäter (1998) 

for a complete derivation of the model. 

 

The global framework used is based on the unit tracking methodology. This method focuses 

on the time spent by a unit at different stages in the system from the moment it is ordered by 

the warehouse until it is delivered to a customer. 
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To keep clarity, Axsäter first uses some common assumptions that could be relaxed if needed: 

 

- The batch size at the warehouse is at least as large as the largest retailer batch size 

- All batch sizes are integer multiples of the smallest one (assigned to the retailer 1) 

- The warehouse will deliver partial orders whenever the stock on hand is not sufficient 

to cover the whole batch 

 

Axsäter first observes that there is a finite Markov chain associated with the inventory 

positions at the warehouse and at the retailers. This Markov chain has the properties required 

to conclude that the steady state distribution is unique and uniform. 

 

Axsäter then distinguishes three different cases: 

 

- The warehouse order has occurred before the retailer order 

- The warehouse order is triggered by the retailer order 

- The warehouse order will occur after the retailer order 

 

The total cost is obtained by addition of the costs for these three cases. 

 

To determine the costs for the different cases, an analogy is made with the same system but 

using (S-1, S) inventory policies (system where the costs are known, see Section 1.2). In the 

system, all units can in principle be identified as following different one-for-one policies with 

the aid of some probabilities. It is then possible to conclude using the fact that items following 

identical policies will also face the same costs. 

 

 

2.2 The newsboy model 

 

This model is the first one dealing with a perishable item. The situation is quite simple. A 

single vendor can order a single product (e.g. a newspaper) which will be unusable at the end 

of the period (e.g. one day). It is impossible to reorder during the period and the demand 

during this period is a random variable. On one hand, the vendor wants to maximize its 

revenue selling as many items as possible. On the other hand, every unsold product incurs a 

cost as it has to be discarded. What is the amount of items to order to maximize the profit? 
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Let D be the random demand during the period. Assume that D has a density function f(x) and 

a distribution function F(x). 

 

If y units of the product are ordered at the beginning of the period, the remaining quantity at 

the end of the period (that will perish) is equal to max(0, y-D). Moreover, the unsatisfied 

demand during the period is equal to max(0, D-y). 

 

Assume that every perished item incurs an overage cost of c0 per unit. The underage cost 

(corresponding to the unsatisfied demand) is equal to cu per unit. 

 

Altogether, the total cost for a period is equal to: 

 ),0max(),0max()( yDcDyc yC u0 −+−=
 

dxxfyxcdxxfxyc  yC
y

u

y

0
0 )()()()()( ∫∫

∞

−+−=

Using the definition of f(x), we obtain: 

 

 

 

Setting the derivative equal to 0 gives: 

(
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This gives an optimal order quantity equal to: 

 
⎟⎟
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2.3 Chiu’s model 

 

Chiu (1995) develops a model which is an approximation of the (R,Q) policy minimizing the 

total average cost per time unit in a single-echelon system. A continuous review policy is used 

and the items are considered as perishable. The demand follows a Poisson distribution and the 

backorders are allowed. Moreover, the issuing policy is considered to be a FIFO one. The 

main interest of the model is to assume a fixed non-zero leadtime L for replenishment. Chiu 

finds approximation for the expected outdating per order cycle, shortage quantity per order 

cycle and expected inventory on hand. Chiu incorporates also a fixed order cost and a 



replenishment cost as the goal is to optimize both R and Q. To be able to compare Chiu’s 

model to both Olsson’s one and our model (where the goal is only to optimize R), we will set 

up these costs at 0. 

 

Let us give some definitions from Chiu and then summarize the main results from this model. 

 

λ = demand intensity 

m = Lifetime of perishable items: items are assumed to arrive fresh in inventory 

dL = Total demand during the leadtime L 

dm = Total demand during the lifetime m 

P = Shortage cost per unit 

W = Outdate cost per unit 

ER = Expected number of units outdating of the current order size Q 

ES = Expected amount of unsatisfied demand during a cycle 

 

 

Chiu assumes that L < m, which limits the outdating risk for the units in stock during the 

leadtime. The fundamental approximation in Chiu’s model is to consider that all the items on 

hand are still fresh when an order is placed. This assumption seems reasonable only if R is 

small and Q quite large. 

 

We will not express ER here as it is quite complicated, see Chiu (1995). Chiu approximates 

the expected positive inventory level as followed: 

 

2
QLrOH +−≈ λ

 

This approximation is reasonable if Q is large enough comparing to ER and ES. The expected 

shortage quantity per cycle is obtained as: 

 
L

rd
L

d

L e
d
LrdES

L

L
λλ −∞

+=∑ −≈
1 !

)()( 

 

This is an underestimation of the truth since some units may have perished. The expected 

cycle time is approximated as: 

λ
ERQET −

≈ 
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Finally Chiu express the total expected cost per time unit as: 

 

OHh
ET

ERWESPQREAC ⋅+
⋅+⋅

≈),( 

 

 

where h is the holding cost per unit and time unit. An algorithm to optimize R and Q under 

these approximations is then developed. We will not describe it here, see Chiu (1995). 

 

 

2.4 Olsson’s model 

 

This model is of great interest because it is, as far as we have found, the only model dealing 

with a multi-echelon system for perishable items with leadtimes assuming a continuous 

review policy. Olsson (2007b) studies a two-echelon serial system with a Poisson demand at 

the retailer. The issuing policy is FIFO at both locations and the unsatisfied demand is 

backordered. As the ordering costs are neglected, the ordering policy is assumed to be a (S-1, 

S) one. In opposition to what we have seen in the section 1.2, this does not imply that the 

demand structure at the upstream location keeps the Poisson structure. In this case, perished 

items must be superposed to the external Poisson demand to constitute the total demand at the 

upstream location. Let us give some definitions: 

 

λ1 = customer arrival intensity at the location 1 (the retailer), 

L1 = transportation time for an item to arrive at location 1 from location 2, 

L2 = transportation time for an item to arrive at location 2 (which is also the leadtime as the 

external suppliers are assumes to be never out of stock), 

T = fixed lifetime (the product are assumed to arrive at the location 2 with a remaining shelf 

life of T-L2), 

π1 = outdating rate at the location 1, 

π2 = outdating rate at the location 2, 

 

Whenever an item has perished, a new one is ordered. Moreover, an item is directly discarded 

from the stock at the location 2 if its remaining shelf life decreases to L1 since it will never 

reach the customer. 
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To keep clarity, we will not give all the results but we will explain the methodology used. For 

a complete derivation of the problem, see Olsson (2007b). 

 

The first step is to use the result from Olsson and Tydesjö (2004) to evaluate the rate of 

outdating π for a single location with a Poisson demand and a fix non-zero leadtime using an 

(S-1, S) order policy. 

)!1(

1

−
⋅=

−
−

S
TeK

S
Tλπ 

 

where: 
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0

1
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−
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⎝
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−
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S dt
S
etK

λ

 

 

 

The main problem when considering the two-echelon model is that the outdating rates are 

linked. Moreover, the demand at the upstream location is not Poisson anymore. Olsson uses 

several approximations in his study. First the demand at location 2 is considered to follow a 

Poisson process with intensity λ2 = λ1 + π1. From this point, the outdating rate at the location 2 

and the steady state probability of positive inventory level can be derived. 

 

For the location 1, the problem is more complicated. First the items which arrive do not have 

the same remaining shelf life. The remaining shelf life at the location 1 is indeed stochastic. 

Moreover, the leadtime for the location 1 is stochastic too as the location 2 can be out of stock 

when an order is placed. Let assume that the leadtime from location 1 to location 2 is equal to 

L1 + Δ. The first assumption made is that the items disappear from the location 2 according to 

a Poisson process with intensity λ2 + π2. It is now possible to derive the expected density 

function of Δ. Then it is possible to derive an approximation of the time an arbitrary item 

spends at location 2 noted W. The next step is to calculate the average residual life time when 

an item arrives at the location 1 Y . To do so, it is important to notice that WLTY −−= 2  

when Δ = 0 and Y when Δ > 0. From this point, it is possible to calculate the 

average rate of outdating at location 1 in analogy with the location 2. 

Δ+−= 2LT
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Given the two outdating rate, a nonlinear system of two equation has to be solved. Olsson 

choose to use a numerical procedure for solving π1 and π2. To finish, the stationary inventory 

level at both location are derived using a variation of the Metric approximation. 
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3. Literature review 
 

 

The perishable characteristic of a product can affect a lot the inventory control of this product. 

However, the problem of considering items as perishables is a lot more complicated. From a 

theoretical point of view, the system has to keep track of the age of all the items until they are 

sold or have perished. This is certainly the reason why the literature dealing with perishable 

item is relatively scarce comparing to the one dealing with non-perishable items. Excellent 

literature reviews on perishable inventory systems are done by Nahmias (1982), Raafat (1991) 

and Goyal and Giri (2001). In this section, we will summarize these papers and add the 

literature that came out after 2001.We will first focus on the literature dealing with single-

echelon systems with perishable items. Then we will consider the multi-echelon perishable 

models that can be found and we will finish referring to some related subjects when dealing 

with perishable items. 

 

 

3.1 Single echelon systems 

 

The main way to classify this literature is to consider if the models deal with periodic or 

continuous review policies. 

 

The first papers that came out were extensions of the newsboy model. Van Zyl (1964) 

assumes a two-period product lifetime. Fries (1975) and Nahmias (1975) consider the multi-

period lifetime case. The models become much more complex due to the size of the state 

space. As Nahmias (1982) points out, the three-period system is already not suitable for 

computations. The optimal replenishment policy depends indeed on a (m-1)-dimensional 

vector, which describes the age distribution of the inventory in the system. To deal with this 

complexity, several heuristics have been suggested for the determination of a simple ordering 

policy (see e.g. Nahmias (1976), Nandakumar and Morton (1993), Cooper (2001)). Under 

some restrictive assumptions (no leadtime, no lot-sizing and a stationary demand), these 

heuristic are proven to be close to optimal. 
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The continuous review policy received less attention. It appears that the leadtime structure is 

what can complicate the most in these models. When considering exponentially distributed 

leadtimes (or zero leadtimes), the system has a Markov property that helps a lot in the study. 

When dealing with deterministic leadtimes, the Markov property is destroyed and this 

complicates the analysis. 

 

Let us focus on the deterministic leadtimes case. Schmidt and Nahmias (1985) consider an (S-

1, S) policy with deterministic leadtime. They assume that the unsatisfied demand is lost and 

derive an exact result for the costs and the best inventory policy. Then Chiu (1995) consider 

the same model allowing backorders and dealing wit an (R, Q) policy. Approximations for 

holding, backorder and perished cost are derived (see section 2.3). Olsson and Tydesjö (2004) 

consider a model similar to Schmidt and Nahmias (1985) but assume a full backlogging 

instead of lost sale. 

 

 

3.2 Multi-echelon systems 

 

As for the single-echelon review, we will distinguish the periodic and the continuous review 

policies. 

 

A few papers dealing with periodic review were found. The first paper dealing with multi-

echelon system for perishable items is Yen (1975). For the two-echelon case, he shows that 

the total expected outdating of stock for an order-up-to-S policy is a convex function under 

certain circumstances. Another interesting paper is Prastacos (1978). The same model is 

considered but in this paper, the emphasis is put on the allocation policy at the warehouse. 

More recently, Kanchanasuntorn and Techanitisawad (2006) propose a simulation study of a 

two-echelon distribution system with fixed lifetime and lost sales. It is shown that simple 

modifications to an existing model to incorporate fixed lifetime perishability and retailers’ 

lost sales policy improve significantly the total cost for the system. Lystad and Ferguson 

(2006) consider a two-echelon supply chain. Both serial and distribution systems are 

considered. Lifetimes and leadtimes are deterministic and the unsatisfied demand is 

backordered. A single-stage heuristic is developed and used to determine the stocking level 

for two-echelon supply chains. Some other models were developed this last decade but most 

of them use very restrictive assumptions. 
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Papers dealing with continuous review policies and deterministic leadtimes are very scarce. 

There exist several papers using very restrictive assumptions that are not relevant for this 

literature study. Abdel-Malek and Ziegler (1988) consider a two-echelon serial system and 

find the optimal reorder sizes with deterministic leadtimes and demand. Olsson (2007b) 

studies a two-echelon serial system (see section 2.4). Both locations use (S-1, S) policies. The 

transportation time and the products’ lifetime are fixed and the unsatisfied demand at the 

retailer is backordered. The demand follows a Poisson process. An approximation technique 

based on a variation of the Metric model is used to determine the best values of S at both 

locations. 

 

 

3.3 Related subjects 

 

There are some interesting subjects related to the field of perishable items that we would like 

to present here. 

 

First of all, the issuing policy at the retailers becomes a major matter when dealing with 

perishable items. The customer is indeed very committed by receiving the freshest item. A 

FIFO policy is commonly used when the supplier controls the issuing policy as the LIFO 

policy is known to increase the perishing rate and often lowers the service level. On the other 

hand, customers prefer picking the freshest item first (LIFO policy) when the expiration dates 

are known and when it does not involve some extra cost. This is for instance the case in the 

supermarkets where customers can choose the product they will buy. Prastacos (1979) is 

dedicated to the LIFO case. Optimal and approximate solutions are found for a single-echelon 

perishable inventory system. Comparisons are also made with the FIFO case. Another 

interesting paper is Keilson and Seidmann (1990). Even if some assumptions can be seen as 

restrictive to allow a Markov study, it provides a wide range of numerical examples and 

allows a good understanding of the difference between the FIFO and the LIFO cases. 

 

Another interesting field tries to find a replenishment policy that fits better with the perishable 

inventory particularities. The feeling in the papers mentioned below is that taking into account 

the age of the inventory into the ordering policy increase the performances of the system. 

Taking a simple example: If the demand intensity is 1 customer per day, do 10 units that will 
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perish in one day have the same utility (in term of inventory level) than 10 units that will 

perish in 10 days? 

 

Tekin, Gürler and Berk (2001) compare the traditional (R, Q) ordering policy to a 

replenishment policy which bases replenishment decision on both the inventory level and the 

remaining lifetimes of items in stock. Through a numerical study, the age-based policy is 

shown to be superior to the stock level one mainly for slow moving perishable items with 

high service levels. In a working paper, Broekmeulen and Van Donselaar (2007) propose 

another kind of replenishment policy taking into account the age of the inventory in the 

system. Carrying out a numerical study, they arrive to the same results as Tekin, Gürler and 

Berk (2001) and they find a cost reduction of 60% for short lifetime products with low 

demand and high service level, when issuing policy is LIFO. 

 

There is a last field related to the perishable inventory control that we want to present here. 

This field tries to find some ways to reduce the amount of waste. As Donselaar et al. (2006) 

points out, there are mainly three different ways to reach this goal. The first one is to reduce 

the leadtime to increase the remaining shelf life of the products when arriving at the retailers. 

For very low shelf life products, a multi-echelon inventory structure is often not relevant and 

direct deliveries from the producer have to be set up. The two other ways to reduce the waste 

of a perishable item are to limit the assortment to increase the demand rate or the use 

substitution. See Kök and Fisher (2007) to an in-depth study of the substitution procedure and 

the assortment optimization. 
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4. Presentation of the model 
 

 

In this section, the assumptions of our model will be discussed. Then a detailed presentation 

of the model is presented, before describing the set of problems studied. 

 

 

4.1 Assumptions 

 

As presented in the introduction, our project consists of a simulation study. Doing so, it is 

possible to study very complex systems, very closed to what exists in reality. On the other 

hand, it is important to stay close to what is theoretically known to be able to analyze the 

results and draw conclusions. Moreover, this study must be helpful as a starting point to a 

theoretical study of multi-echelon perishable inventory systems. We took care of finding the 

balance between a model too complicated and a model too far away from the reality. 

 

From a practical point of view, our main interest was the inventory control of perishable items 

in the supermarkets for several reasons. First the supermarket industry is one of the biggest 

and the inventory problems that this business faces are very interesting. Moreover, the 

common framework of the supermarkets’ supply chain can be well modelled as a multi-

echelon distribution system (A central purchasing agency holds an inventory and distributes 

its products to several stores.). Finally, the perishables stand for one third of the global sales 

in the supermarkets (see Van Donselaar, Van Woensel, Broekmeulen and Fransoo (2006) to a 

comprehensive study of perishable inventory systems in supermarkets). 

 

We will now describe the assumptions made in our model. 

 

System structure: As explained earlier, our inspiration comes from the supermarket industry. 

Moreover, the aim of this master thesis is to study some kind of multi-echelon inventory 

systems. Hence, we decided to focus on two-echelon distribution systems. Moreover, to keep 

simplicity, we restricted the study at two non-identical retailers. 
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Number of products: As explained in the Chapter 1, there is no need to consider different 

products if they are not linked somehow. Moreover, our aim is not to study the assortment 

optimization and substitution’s problems. Consequently, we focus on a single product study. 

 

Reviewing policy: With the rise of information technologies like RFID, it is nowadays 

possible to get information about sales, inventory level and deliveries in real-time. We thus 

decided to focus on a continuous review system. 

 

Ordering policy: In the supermarket industry, most of the products are ordered in batches. In 

addition, we would like to study a common ordering policy so we decided to focus on a (R, 

Q) policy at every location. In a lot of real cases, the batch size cannot be chosen to optimize 

the supply chain structure. The product’s packaging decides for us. Moreover, it would be too 

complicated to optimize both R and Q in a two-echelon distribution system. We set up some 

relevant values of Q and focus on the optimization of R at every location. With these 

assumptions, we discard the ordering cost from our study, as it does not affect the 

optimization of the reorder point. 

 

Issuing policy: This is for us a major matter when dealing with perishable items. We thus 

decided to study both the FIFO and the LIFO case. Moreover, we limit our study to a First-

Come-First-Serve policy at the central warehouse to keep simplicity. In addition, we assume 

that the warehouse will deliver partial orders whenever the stock on hand is not sufficient to 

cover the whole batch. 

 

Type of perishability: As we saw in the Chapter 3, most of the studies dealing with perishable 

items assume that the life time is exponentially distributed. Even if this is easier to study, this 

does not match the supermarkets example very well. The shelf life is represented by the 

expiration date written on the packages in most of the cases. We therefore study the fix 

lifetime case. Whenever an item’s remaining shelf life declines to zero, this item is discarded. 

 

Leadtime: Even if it is much easier to neglect the leadtime when studying some perishable 

inventory system, it is not relevant in practice. We assume fixed transportation time in our 

model. 
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Demand structure: We focus on a Poisson demand occurring at both retailers. We set up high 

intensity levels to match the supermarket industry cases. 

 

What happen when a shortage occurs: We decided to allow a full backlogging at the retailers. 

In practice, it is hard to decide if the customer postpones his purchase or if this one is lost 

when the product is out of stock. Some phenomenon of lateral transhipment can be initiated 

too. To keep simplicity, we use a backorder cost instead of a service level constraint. 

 

 

4.2 Our model 

 

 

 

 

 

 

 

 

 

 

 

 

Retailer 1

FCFS 
L=1 day 

L=1 day 

L=1 day 

Cont. review 
(R1, Q1=20)

Cont. review 
(R2, Q2=40)

Cont. review 
(R0, Q0=80) 

No stockout 

Poisson demand 

Poisson demand 
Central warehouse 

Retailer 2

Figure 3: Presentation of the model studied 

 

 

- h0 = h1 = h2 = 1 

- ordering costs do not enter into account 

- the shelf life is calculated from the product’s arrival at the central warehouse 

- The items are discarded from the central warehouse when the remaining shelf life 

declines to or below the transportation time to reach the retailers (1 day). 

 

 

 

 

 28



4.3 The set of problems 

 

We decided to study a wide range of problems with both FIFO and LIFO issuing policies at 

the retailers. 

 
List of the problems studied 

Pb number λ1 λ2 b1 = b2 T (shelf life) p0 = p1 = p2 
1 10 10 5 1,5 5 
2 10 10 5 1,5 30 
3 10 10 5 2,5 5 
4 10 10 5 2,5 30 
5 10 10 5 3,5 5 
6 10 10 5 3,5 30 
7 10 10 30 1,5 5 
8 10 10 30 1,5 30 
9 10 10 30 2,5 5 

10 10 10 30 2,5 30 
11 10 10 30 3,5 5 
12 10 10 30 3,5 30 
13 10 40 5 1,5 5 
14 10 40 5 1,5 30 
15 10 40 5 2,5 5 
16 10 40 5 2,5 30 
17 10 40 5 3,5 5 
18 10 40 5 3,5 30 
19 10 40 30 1,5 5 
20 10 40 30 1,5 30 
21 10 40 30 2,5 5 
22 10 40 30 2,5 30 
23 10 40 30 3,5 5 
24 10 40 30 3,5 30 
25 40 10 5 1,5 5 
26 40 10 5 1,5 30 
27 40 10 5 2,5 5 
28 40 10 5 2,5 30 
29 40 10 5 3,5 5 
30 40 10 5 3,5 30 
31 40 10 30 1,5 5 
32 40 10 30 1,5 30 
33 40 10 30 2,5 5 
34 40 10 30 2,5 30 
35 40 10 30 3,5 5 
36 40 10 30 3,5 30 
37 40 40 5 1,5 5 
38 40 40 5 1,5 30 
39 40 40 5 2,5 5 
40 40 40 5 2,5 30 
41 40 40 5 3,5 5 
42 40 40 5 3,5 30 
43 40 40 30 1,5 5 
44 40 40 30 1,5 30 
45 40 40 30 2,5 5 
46 40 40 30 2,5 30 
47 40 40 30 3,5 5 
48 40 40 30 3,5 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: List of the problems studied 
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5. Methodology 
 

 

In this section, we will focus on the methodology followed during this project. As it will be 

discussed later, we took a very great care of the methodology for at least two reasons. First of 

all, in this kind of project where simulation has a central role, the methodology used can 

affect the results. We will concentrate later on three different areas about the methodology 

which are the model validation, the process to get results from the model and the optimization 

process. If not taking enough care of these areas, the results from the simulation can be biased 

or worse completely wrong. Secondly, one of the aims of this project is to be a step stone for 

later studies in the field of multi-echelon perishable inventory control. From this point of 

view, all the assumptions have to be explained carefully. The next paragraph will explain the 

theoretical framework of this project. Then we will focus on the process of model validation. 

In a third part, we will explain how we validated the process to get information from the 

model and we will finish explaining how we carried out the optimization process. 

 

 

5.1 Theoretical framework 

 

First of all, it is important to mention that this project can be classified as an exploratory one. 

As we explain in the Chapter 3, the problem of perishable items in a multi-echelon system 

with continuous review is almost not studied. The project explores what happen in a situation 

which is not studied yet. As written in Andersson (2006) “If the research aims at seeking new 

insights and exploring what happens in situations not yet well understood, it is classified as 

exploratory. The purpose is to assess phenomena in a new light and generate ideas and 

hypotheses for future research.” An appropriate methodology has to be followed. As 

mentioned in Hillier and Lieberman (2005), the usual phases of an Operation Research project 

can be summarized as followed: 

 

- Define the problem of interest and gather relevant data 

- Formulate a mathematical model to represent the problem 

- Develop a computer-based procedure for deriving solutions to the problem from the 

model 
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- Test the model and refine it as needed 

- Prepare for ongoing application of the model as prescribed by management 

Implement 

 

We performed some slightly changes from this methodology to fit better to our project. The 

Figure 4 explains the methodology used and the interactions between theory and practice in 

this project. 

 

Problem 
Identification 

Problem 
Definition 

Literature 
Review 

Theoretical 
Basis 

Simulation Model 
Development 

Model 
Testing 

Experimentation Results 
Analysis 

Conclusion 

Empirical World Theory 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Interaction between the empirical and the theoretical world in the project 
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To conclude this section, we would like to highlight the main idea we used about the 

optimization process. As we will see later, the optimization process does not reach the optimal 

solution, we are moreover not sure that our research method gives a solution which is closed 

to optimum. It is indeed very hard and time-consuming to process a full optimization as three 

parameters have to be optimized. However, this is not a big handicap for this project. As 

mentioned in Hillier and Lieberman (2005), the Nobel Laureate Herbert Simon points out that 

the concept of satisficing is much more prevalent in management practices in operation 

research. The managers seek a solution that is good enough. To quote Eilon (1972), 

“optimizing is the science of the ultimate, satisficing is the art of the feasible”. We could not 

be sure to find the optimum but we found good solutions. 

 

 

5.2 Model validation 

 

The first question that this section will try to highlight is about the advantages and drawbacks 

when using simulation to study a problem. As mentioned in Olsson (2007a), the main 

advantage of the simulation is the possibility to capture more realistic system properties 

without any effort. Moreover, when dealing with very complex problems as in our project, the 

simulation is almost the only alternative. But there are some drawbacks when using 

simulation. First of all, the simulation can not predict the behaviour of a system. In that sense, 

it is always problematical to be sure that the results are relevant. This is the main argument in 

favour of the use of a careful methodology when testing the model and getting the results. 

Interpretations of simulation results have to be done very carefully as the conclusions are only 

based on a number of observations and not on general results. The second problem when 

using simulation is about the computation-time that is often very long and can be a serious 

restriction. 

 

The choice of the computer software has a lot of implications concerning the results of a 

project. We decided to build our simulation model using the discrete event simulation 

software Extend. This high level programming software allowed us to save a lot of 

computation time, moreover, we were able to use some models already develop. In particular, 

we used simulation models from Howard (2007). The problem we had to study is however not 

the same as in Howard’s work, but the design of the inventory system (two-echelon 

continuous review system) is similar. From this starting point, we modified the model to 
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allow items to have finite product’s lifetime. We then linked the model to the software 

Microsoft Excel to allow the program to collect automatically the results of the simulation and 

to be able to test different settings without any human intervention (see Appendix 1 for a 

presentation of our Extend model). 

 

We then performed a number of tests to validate our program. To do so, we tested our 

program by comparing our simulation results against results obtained from some publications. 

Our main problem was to find relevant results to test, as almost nothing is done in the multi-

echelon perishable inventory field. We decided to focus on two models. The first model that 

we used is a non perishable one to validate the structure of our program. We compare the 

simulated results from our model to the results present in Axsäter (1998). To do so, we set up 

the shelf life of items in our model at a very high level. Our model deals in this way with the 

non perishable case. We noticed that our simulation results were the same as Axsäter (1998). 

Our model gives good results for the total cost in the non perishable case. 

 

We then compared our simulated results with Olsson (2007b) (see Section 2.4) in order to 

validate our model. This model uses an (S-1, S) policy instead of an (R, Q) policy in our 

problem, but as both models are dealing with continuous review, it is possible to compare 

them. You can find the results in Table 2. 

 

Pb 1          
Olsson's Simulated Average Cost  3,92

Simulated Average Cost using our model  3,93

Pb 2          
Olsson's Simulated Average Cost  5,00

Simulated Average Cost using our model  5,00

Pb 7          
Olsson's Simulated Average Cost  7,08

Simulated Average Cost using our model  7,08

Pb 11          
Olsson's Simulated Average Cost  14,57

Simulated Average Cost using our model  14,65

Pb 15          
Olsson's Simulated Average Cost  8,90

Simulated Average Cost using our model  8,91

 

Table 2: Comparison of our model to Olsson’s paper 
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The results are also very good for all the problems tested. At that point, we were able to trust 

our model. 

 

 

5.3 Getting results from the simulation model 

 

The model can from now on give us good results but this always depends for a major extent 

of the way to use it. Three main parameters affect the results from that point of view, that is to 

say the number of runs per setting, the warm up period chosen and the amount of time 

simulated. We will now explain how we choose the values for these three parameters. 

 

To determine the number of runs per settings, we followed Law and Kelton (2000) and 

calculated the average from 10 replications for each setting. In fact, as explained later, the 

computation-time was a matter of this project. We thus only perform one run during the 

optimization process using the same random seed. 

 

In every physical model, some time is needed before reaching the steady state. This period is 

known as the warm up period of the system. To determine this warm up period that we have 

to delete from our results, we set the model at the most variable case (low demand, high 

reorder points). The warm up period is due to several causes, but in our case, one simple 

cause is that we set up all the inventory levels at R+Q at the beginning of the simulation. The 

system then needs time to reach its steady state. We thus plotted all the variables of the 

system to see what seemed to be the warm up period. You can find one example of this in the 

Figure 5. The vertical line represents 50 days simulated. 

 

 

 

 

 

 

 

 

 

Figure 5: Average inventory level at the retailer 1 as a function of time 
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Figure 5 represents one of the most extreme cases that we found. As we can see, 50 days can 

be considered as the warm up period. We decided to delete the first 50 days of all our 

simulation results. 

 

The last question we had to answer concerned the amount of time simulated. Of course, the 

longer is this value, the more precise are the results. But increasing it will affect the 

computation-time required. We thus need to find the balance between precision and 

computation-time. The relevant data to study this question is the standard deviation of our 

results. It is important to remember that the goal of our study is not to find the exact optimum 

for the problems chosen, we can therefore accept reasonable variations in the total cost from 

one run to another. We performed 10 runs simulation for several numbers of simulated days 

for a low demand and high reorder point problem (highest variations). The results are 

summarized in the Table 3. 

 

  Average Cost Std Dev Ratio 
100 days 108,52 4,61 0,42 
200 days 111,11 2,87 0,26 
500 days 110,77 2,27 0,21 

1000 days 110,29 1,40 0,13 
2000 days 110,60 0,99 0,09 
3000 days 110,45 0,51 0,05 
5000 days 110,77 0,44 0,04 

 

Table 3: Average Cost and Standard Deviation for different amount of time simulated 

 

The ratio value is the proportional to 10 value of the standard deviation. It is important to 

notice that the simulation time is on average 2 minutes for 3000 days simulated. In that case, 

the value of the standard deviation is sufficiently small so we choose to simulate 3000 days 

deleting the first 50 days as a warm up period. 

 

 

5.4 The optimization process 

 

The problem we are facing is quite complicated from a theoretical point of view. We have to 

optimize the total average cost function with respect to three parameters (the value of R at the 

central warehouse and at both retailers). This function not proved to be convex and there does 

not seem to exist any easy way to find optimum. One important thing to notice is that the cost 
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function is very flat close to the optimum. Combining this remark with the fact that finding 

the perfect optimum is not the main objective of this study helped us to design an 

optimization process that was quick enough to be implemented for a lot of problems. 

 

We will describe here the optimization process used for the FIFO case. The only result that 

can help us to start the optimization is the non perishable optimal case. As describe in the 

Section 2.1, the non perishable case with one central warehouse and two retailers is well 

studied. There exist exact and approximate results to optimize the three values of the reorder 

points. As our demand at the retailers is high, the exact algorithm is very time consuming. 

Thus we decided to use a normal demand distribution approximation at both retailers. The 

values of each R for this approximate optimum were used as a starting point (see Table 4). 

 

Pb number b1 = b2 λ1 λ2 R0* R1* R2* Cost 
                

1 … 6 5 10 10 -40 19 13 46,95 
7 … 12 30 10 10 -20 19 16 63,11 

13 … 18 5 10 40 -20 12 59 46,77 
19 … 24 30 10 40 0 14 60 63,53 
25 … 30 5 40 10 0 53 5 51,57 
31 … 36 30 40 10 0 66 13 68,55 
37 … 42 5 40 40 20 50 43 48,51 
43 … 48 30 40 40 40 51 48 67,76 

 

Table 4: Approximate optimum in the non perishable case 

 

From these values, we could not predict if taking into account that items can perish tends to 

increase or decrease the values of R at any location. On one hand, the fact that items can 

perish increase the cost and the tendency will be to decrease inventory levels to lower the 

number of perished items. On the other hand, as items can perish, we need more items in 

stocks to keep the same service levels. We decided to use a [-20, +20] window from the non 

perishable approximate optimum and to test every combinations of R with a step of 10 units. 

These first 125 combinations required on average up to 5 hours computation time performing 

only one run per combination. It was not possible to perform more runs regarding the 

computation time. We thus set up a fixed random seed number to the problems. In other 

words, we studied only one special case of the distribution demand function. Moreover we 

could not be sure that the “optimum” was in that window. We could increase the step between 

two tested values, but this could make us missing the optimum in the window. On the other 
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hand, the computation time did not allow us to test more values of R in this first optimization 

research. This first optimization gave us a new value of a best simulated result. From this 

value, we performed a second research using a [-10, +10] window and we tried every 

combination of R with a step of 5 units. 

 

In most of the cases studied, the optimization process seems to work well. We are not sure 

that we reached the theoretical optimum but we found better order policies. The process in a 

whole required around 10 hours computation time per problem. Our results have a precision 

of +/- 5 units. We finished performing 10 runs at the best simulated result found and we 

compared this result to the non perishable approximate optimum. 

 

For the LIFO case, we used the same methodology but we used the best found result from the 

FIFO equivalent problem as a starting point. 
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6. Presentation and analysis of the simulation results 
 

 

In this section, we analyze the results from our simulation study considering first the FIFO 

policy and then the LIFO one. 

 

 

6.1 FIFO case 

 

As we saw in the methodology Chapter 5, we performed an optimization process for 48 

different problems in the FIFO case. The results are summarized in the Table 5.  

 

 

Results FIFO 
            

  non perishable optimal Cost for this optimal perishable "optimal" Cost   
Pb nb R0 R1 R2 Cost Std dev R0 R1 R2 Cost Std dev % won
                        

1 -40 19 13 150,14 0,35 -40 15 -5 142,24 0,27 5,26% 
2 -40 19 13 481,73 2,20 -65 10 -10 218,80 2,18 54,58%
3 -40 19 13 92,59 0,42 -30 20 0 86,31 0,41 6,78% 
4 -40 19 13 256,11 2,17 -30 10 -5 138,25 1,67 99,84%
5 -40 19 13 61,66 0,60 -30 20 10 59,68 0,44 3,20% 
6 -40 19 13 135,55 1,94 -40 20 0 91,37 1,47 32,59%
7 -20 19 16 496,80 2,11 5 10 20 390,01 0,78 21,50%
8 -20 19 16 918,70 2,11 -30 15 -5 829,06 1,56 9,76% 
9 -20 19 16 272,67 2,25 -10 50 50 194,71 2,93 28,59%

10 -20 19 16 515,05 3,40 -35 25 0 457,71 2,29 11,13%
11 -20 19 16 141,28 2,62 -15 25 25 127,94 4,21 9,44% 
12 -20 19 16 270,90 3,73 -15 10 10 246,14 2,57 9,14% 
13 -20 12 59 178,10 1,60 -50 20 80 143,20 1,33 19,59%
14 -20 12 59 580,89 4,04 -45 0 45 241,62 2,09 58,40%
15 -20 12 59 75,83 0,76 -50 15 75 65,65 0,55 13,42%
16 -20 12 59 164,17 2,82 -15 0 45 95,46 1,63 41,85%
17 -20 12 59 51,68 0,29 -30 15 65 47,30 0,15 8,48% 
18 -20 12 59 63,95 0,51 -30 10 65 49,64 0,35 22,38%
19 0 14 60 545,64 3,73 25 40 75 367,86 1,24 32,58%
20 0 14 60 1243,87 9,50 5 0 30 904,16 3,66 27,31%
21 0 14 60 167,22 4,23 5 20 65 126,57 0,97 24,31%
22 0 14 60 372,88 7,18 5 15 45 290,49 4,89 22,10%
23 0 14 60 86,64 0,98 -10 15 70 75,99 0,36 12,29%
24 0 14 60 120,94 1,61 -10 10 65 95,46 0,99 21,06%
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  non perishable optimal Cost for this optimal perishable "optimal" Cost   
Pb nb R0 R1 R2 Cost Std dev R0 R1 R2 Cost Std dev % won
                        

25 0 53 5 202,95 2,29 -10 40 20 175,42 1,52 13,57%
26 0 53 5 714,34 8,30 -25 40 0 323,29 1,67 54,74%
27 0 53 5 97,70 0,68 -15 60 -5 83,45 0,71 14,59%
28 0 53 5 273,12 2,48 -15 50 -10 114,78 1,33 57,98%
29 0 53 5 62,44 0,45 -10 60 5 55,93 0,23 10,42%
30 0 53 5 106,26 1,56 -30 75 0 64,31 1,10 39,47%
31 0 66 13 620,77 3,27 10 85 40 377,01 6,04 39,27%
32 0 66 13 1259,99 4,10 -15 55 0 1020,64 32,02 19,00%
33 0 66 13 212,60 2,78 -10 90 15 196,86 2,19 7,40% 
34 0 66 13 463,62 2,13 -25 80 5 368,46 4,07 20,53%
35 0 66 13 104,12 1,78 -10 75 10 92,10 0,87 11,54%
36 0 66 13 178,03 3,37 -10 75 5 133,63 1,44 24,94%
37 20 50 43 135,24 0,58 5 50 35 113,45 1,24 16,11%
38 20 50 43 555,42 3,61 5 35 20 199,04 1,49 64,16%
39 20 50 43 53,78 0,47 10 60 50 53,43 0,50 0,64% 
40 20 50 43 62,01 0,69 30 45 40 58,86 0,76 5,07% 
41 20 50 43 52,38 0,40 20 50 43 52,38 0,40 0,00% 
42 20 50 43 52,38 0,40 20 50 43 52,38 0,40 0,00% 
43 40 51 48 313,85 2,46 45 60 40 289,23 1,67 7,84% 
44 40 51 48 803,93 6,63 40 45 30 639,25 7,62 20,48%
45 40 51 48 86,22 1,44 45 55 45 81,56 0,93 5,40% 
46 40 51 48 128,84 3,50 45 50 40 117,17 2,96 9,05% 
47 40 51 48 79,31 1,28 40 51 48 79,31 1,28 0,00% 
48 40 51 48 79,35 1,29 40 51 48 79,35 1,29 0,00% 

          average 21,62%
 

Table 5: FIFO results 

 

 

As we can see in the Table 5, some relevant amelioration can be done by taking into account 

that the items are perishable. Using our optimization process, our best found solution reduces 

the costs by more than 20% on average. That is non negligible and we can conclude that a 

better understanding of the multi-echelon perishable inventory systems is required. We will 

now analyse the results more in-depth to point out some trends of the system. 

 

We first analysed the extreme cases in term of cost variation. We gathered the cases where the 

cost reduction from the non-perishable optimum is bigger than 30% (see Table 6). The best 

cost reduction occurs when the perishable cost is high and the backorder cost is low (p=30 

and b=5). In theses cases, the perishable characteristic of the items is a crucial parameter that 

has to be taken into account. The two other cases where the costs reduction is bigger than 

30% (problem 19 and problem 31) are with the shortest shelf life (T=1.5). 
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            non perishable perishable   
Pb nb λ1 λ2 b1 = b2 shelf life p Cost Std dev Cost Std dev % won
           

2 10 10 5 1,5 30 481,73 2,20 218,80 2,18 54,58% 
4 10 10 5 2,5 30 256,11 2,17 138,25 1,67 99,15% 
6 10 10 5 3,5 30 135,55 1,94 91,37 1,47 32,59% 

14 10 40 5 1,5 30 580,89 4,04 241,62 2,09 58,40% 
16 10 40 5 2,5 30 164,17 2,82 95,46 1,63 41,85% 
19 10 40 30 1,5 5 545,64 3,73 367,86 1,24 32,58% 
26 40 10 5 1,5 30 714,34 8,30 323,29 1,67 54,74% 
28 40 10 5 2,5 30 273,12 2,48 114,78 1,33 57,98% 
30 40 10 5 3,5 30 106,26 1,56 64,31 1,10 39,47% 
31 40 10 30 1,5 5 620,77 3,27 377,01 6,04 39,27% 
38 40 40 5 1,5 30 555,42 3,61 199,04 1,49 64,16% 

 

Table 6: Best cost reductions from the non perishable optimum 

 

 

There are nevertheless 17 problems where the costs reduction is less than 10% (see Table 7). 

Most of these problems face either very high or very low demand rates. When the demand 

rates are high (λ1=40 and λ2=40), the items do not perish. That is to say that we can almost 

consider the items as non perishable. The optimum in the non perishable case still holds for 

these problems. When the demand rate is low (λ1=10 and λ2=10), the items still perish a lot at 

the best found solution. In other words, the changes of the reorder point do not have enough 

leverage to lower strongly the costs. In this case, the non perishable optimum is reasonable. 
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            non perishable perishable   
Pb nb λ1 λ2 b1 = b2 shelf life p Cost Std dev Cost Std dev % won

1 10 10 5 1,5 5 150,14 0,35 142,24 0,27 5,26% 
3 10 10 5 2,5 5 92,59 0,42 86,31 0,41 6,78% 
5 10 10 5 3,5 5 61,66 0,60 59,68 0,44 3,20% 
8 10 10 30 1,5 30 918,70 2,11 829,06 1,56 9,76% 

11 10 10 30 3,5 5 141,28 2,62 127,94 4,21 9,44% 
12 10 10 30 3,5 30 270,90 3,73 246,14 2,57 9,14% 
17 10 40 5 3,5 5 51,68 0,29 47,30 0,15 8,48% 
33 40 10 30 2,5 5 212,60 2,78 196,86 2,19 7,40% 
39 40 40 5 2,5 5 53,78 0,47 53,43 0,50 0,64% 
40 40 40 5 2,5 30 62,01 0,69 58,86 0,76 5,07% 
41 40 40 5 3,5 5 52,38 0,40 52,38 0,40 0,00% 
42 40 40 5 3,5 30 52,38 0,40 52,38 0,40 0,00% 
43 40 40 30 1,5 5 313,85 2,46 289,23 1,67 7,84% 
45 40 40 30 2,5 5 86,22 1,44 81,56 0,93 5,40% 
46 40 40 30 2,5 30 128,84 3,50 117,17 2,96 9,05% 
47 40 40 30 3,5 5 79,31 1,28 79,31 1,28 0,00% 
48 40 40 30 3,5 30 79,35 1,29 79,35 1,29 0,00% 

 

Table 7: Problems with low cost reduction from the non perishable optimum 

 

 

We then focused on the shelf life parameter. To do so, we put together every combination of 

three problems where only the self life changes (Problems 1, 3, 5, problems 2, 4, 6, problems 

7, 9, 11…).  The first remark is that in every case, the cost decreases when the shelf life 

increases. This result is clearly what we expect.  In the extreme case, the cost is reduced by a 

factor of 10 while increasing the shelf life from 1.5 days to 3.5 days (see problems 20, 22 and 

24). Moreover, in most of the cases, the cost variation from the non perishable optimum to the 

best solution found decreases when the shelf life increases. On average, the percentages of 

cost reduction in function of the shelf life are respectively 29%, 23% and 13% for T = 1.5 

days, T = 2.5 days and T = 3.5 days. This nevertheless does not hold in all the cases. As we 

noticed before, when the demand rate is low (λ1=10 and λ2=10), the shortest value of the shelf 

life (T=1.5 days) gives bad results in term of cost reduction from the non perishable optimum 

as the changes of the reorder point do not have enough leverage to affect strongly the 

perishing rates. 

 

When focusing on the perishable cost parameter, the results are quite clear. The cost reduction 

is in average 13% when p = 5 and 30% when p = 30. Having a higher perishing cost means 

that we take more into account that items are perishables. 
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 With respect to the backorder cost parameter, we have to notice that it represents the service 

level in our model. In every case, the cost for the best found solution is higher for the same 

problem when increasing the backorder cost. It costs to reach a high service level. Moreover, 

the cost decrease is in average 27% when b = 30 and 16% when b = 5. It is harder to benefit 

from the opportunity to consider items as perishable when the service level is high. 

 

The average cost reduction is very big (44%) when b = 5 and p = 30. In our study, the ratio 

b/p affects a lot the possibility to reduce the average costs when considering the items as 

perishable. 

 

When considering the values of R0, R1 and R2 at the non perishable optimum and at our best 

found solution, it was hard to find some relevant trends. In fact, two phenomenon are acting in 

opposite ways. On one hand, have perishable items seems to impose a reduction of the 

inventory levels to decrease the waste. This is the most obvious way of thinking but this fact 

is counterbalance by another one. On the other hand, as items will perish, more items are 

required in stock to get the same service level. These feelings are confirmed by the 

simulation. When b = 5 and p = 30, the general trend is a decrease of the order levels at each 

location as we can see in the Table 8. 
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            non perishable optimal perishable "optimal"       
Pb nb λ1 λ2 b shelf life p R0 R1 R2 R0 R1 R2 Δ R0 Δ R1 Δ R2

2 10 10 5 1,5 30 -40 19 13 -65 10 -10 -25 -9 -23 
4 10 10 5 2,5 30 -40 19 13 -30 10 -5 10 -9 -18 
6 10 10 5 3,5 30 -40 19 13 -40 20 0 0 1 -13 
14 10 40 5 1,5 30 -20 12 59 -45 0 45 -25 -12 -14 
16 10 40 5 2,5 30 -20 12 59 -15 0 45 5 -12 -14 
18 10 40 5 3,5 30 -20 12 59 -30 10 65 -10 -2 6 
26 40 10 5 1,5 30 0 53 5 -25 40 0 -25 -13 -5 
28 40 10 5 2,5 30 0 53 5 -15 50 -10 -15 -3 -15 
30 40 10 5 3,5 30 0 53 5 -30 75 0 -30 22 -5 
38 40 40 5 1,5 30 20 50 43 5 35 20 -15 -15 -23 
40 40 40 5 2,5 30 20 50 43 30 45 40 10 -5 -3 
42 40 40 5 3,5 30 20 50 43 20 50 43 0 0 0 

           avg - 10 - 4,75 - 10,6
 

Table 8: Variation of the reorder points when b = 5 and p = 30 

 

 

On the other hand, when b = 30 and p = 5, the general trend is an increase of the order levels 

at each location as we can see in the Table 9. 

 

            non perishable optimal perishable "optimal"       
Pb nb λ1 λ2 b Shelf life p R0 R1 R2 R0 R1 R2 Δ R0 Δ R1 Δ R2
               

7 10 10 30 1,5 5 -20 19 16 5 10 20 25 -9 4 
9 10 10 30 2,5 5 -20 19 16 -10 50 50 10 31 34 

11 10 10 30 3,5 5 -20 19 16 ‐15  25  25  5 6 9 
19 10 40 30 1,5 5 0 14 60 25 40 75 25 26 15 
21 10 40 30 2,5 5 0 14 60 5 20 65 5 6 5 
23 10 40 30 3,5 5 0 14 60 -10 15 70 -10 1 10 
31 40 10 30 1,5 5 0 66 13 10 85 40 10 19 27 
33 40 10 30 2,5 5 0 66 13 -10 90 15 -10 24 2 
35 40 10 30 3,5 5 0 66 13 -10 75 10 -10 9 -3 
43 40 40 30 1,5 5 40 51 48 45 60 40 5 9 -8 
45 40 40 30 2,5 5 40 51 48 45 55 45 5 4 -3 
47 40 40 30 3,5 5 40 51 48 40 51 48 0 0 0 

           avg 5 10,5 7,667
 

Table 9: Variation of the reorder points when b = 30 and p = 5 
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6.2 LIFO case 

 

Studying the LIFO case, we decided to compare the FIFO best found solution to the LIFO 

one. It is also important to notice that we started from the FIFO best found solution to perform 

our optimization process. The results are summarized in the Table 10. 

 

 

 

Results LIFO 

  
FIFO best 
solution Cost for this result 

LIFO best 
solution Cost for this result   

Pb nb R0 R1 R2 Cost Std dev R0 R1 R2 Cost Std dev % var 
1 -40 15 -5 142,24 0,27 -40 15 -5 141,95 0,35 -0,20% 
2 -65 10 -10 218,80 2,18 -65 10 -10 218,73 2,37 -0,04% 
3 -30 20 0 86,31 0,41 -30 20 0 86,08 0,22 -0,26% 
4 -30 10 -5 138,25 1,67 -30 10 -5 137,65 1,63 -0,44% 
5 -30 20 10 59,68 0,44 -30 20 10 59,49 0,33 -0,32% 
6 -40 20 0 91,37 1,47 -40 20 0 91,29 1,84 -0,09% 
7 5 10 20 390,01 0,78 5 10 20 390,37 1,30 0,09% 
8 -30 15 -5 829,06 1,56 -30 15 -5 828,78 1,90 -0,03% 
9 -10 50 50 194,71 2,93 -10 50 50 194,49 1,64 -0,11% 

10 -35 25 0 457,71 2,29 -35 25 0 456,62 1,48 -0,24% 
11 -15 25 25 127,94 4,21 -15 25 25 114,55 1,38 -11,69% 
12 -15 10 10 246,14 2,57 -15 10 10 244,75 3,03 -0,57% 
13 -50 20 80 143,20 1,33 -50 20 80 142,51 0,61 -0,48% 
14 -45 0 45 241,62 2,09 -45 0 45 240,14 2,23 -0,62% 
15 -50 15 75 65,65 0,55 -50 15 75 67,18 0,58 2,28% 
16 -15 0 45 95,46 1,63 -15 0 45 98,71 1,33 3,29% 
17 -30 15 65 47,30 0,15 -30 15 65 55,00 0,62 14,00% 
18 -30 10 65 49,64 0,35 -30 10 55 63,08 0,69 21,31% 
19 25 40 75 367,86 1,24 25 40 75 367,47 0,95 -0,11% 
20 5 0 30 904,16 3,66 5 0 30 903,23 5,02 -0,10% 
21 5 20 65 126,57 0,97 5 20 65 144,88 1,46 12,64% 
22 5 15 45 290,49 4,89 5 15 45 313,41 3,42 7,31% 
23 -10 15 70 75,99 0,36 20 15 45 94,70 0,89 19,76% 
24 -10 10 65 95,46 0,99 0 10 45 163,30 2,16 41,54% 
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FIFO best 
solution Cost for this result

LIFO best 
solution Cost for this result   

Pb nb R0 R1 R2 Cost Std dev R0 R1 R2 Cost Std dev % var 
25 -10 40 20 175,42 1,52 -10 40 20 174,66 1,25 -0,43% 
26 -25 40 0 323,29 1,67 -50 55 -15 251,04 1,50 -28,78% 
27 -15 60 -5 83,45 0,71 -15 60 -5 83,40 0,49 -0,06% 
28 -15 50 -10 114,78 1,33 -15 50 -10 115,13 1,13 0,30% 
29 -10 60 5 55,93 0,23 -10 60 5 61,96 0,25 9,73% 
30 -30 75 0 64,31 1,10 -20 60 -5 75,41 0,68 14,72% 
31 10 85 40 377,01 6,04 10 95 40 369,41 1,54 -2,06% 
32 -15 55 0 1020,64 32,02 -25 25 0 848,93 1,06 -20,23% 
33 -10 90 15 196,86 2,19 5 65 35 177,54 1,74 -10,89% 
34 -25 80 5 368,46 4,07 -20 70 -5 379,10 3,95 2,81% 
35 -10 75 10 92,10 0,87 -10 70 20 114,72 5,31 19,72% 
36 -10 75 5 133,63 1,44 -5 60 5 190,71 3,48 29,93% 
37 5 50 35 113,45 1,24 5 50 35 113,31 0,90 -0,12% 
38 5 35 20 199,04 1,49 5 35 20 198,77 3,29 -0,13% 
39 10 60 50 53,43 0,50 20 50 35 61,60 0,81 13,26% 
40 30 45 40 58,86 0,76 30 40 30 82,18 1,47 28,37% 
41 20 50 43 52,38 0,40 20 50 43 58,28 0,51 10,13% 
42 20 50 43 52,38 0,40 30 40 35 62,23 0,71 15,83% 
43 45 60 40 289,23 1,67 45 60 40 289,73 1,27 0,17% 
44 40 45 30 639,25 7,62 40 45 30 639,29 5,72 0,01% 
45 45 55 45 81,56 0,93 45 55 45 111,38 1,74 26,78% 
46 45 50 40 117,17 2,96 45 50 40 222,74 5,55 47,39% 
47 40 51 48 79,31 1,28 55 45 40 92,22 1,47 14,00% 
48 30 40 51 79,35 1,29 55 40 35 124,10123 1,37 36,06% 

          average 6,53% 
 

Table 10: LIFO results 

 

 

The first thing to notice is that the LIFO policy does not perform so badly comparing to the 

FIFO one. On average, the cost increase is less than 7%. We did not expect the LIFO policy to 

perform so well. In fact, the LIFO policy allows sometime a decrease of the retailer’s 

inventory level while the number of backorder and the average waiting time for the 

backordered customers decrease. On the other hand, the number of perished items increases. 

In other words, the LIFO policy implies of course an increase of the perished rates, but on the 

other hand, the utility of the items in inventory increases as the average remaining shelf life of 

the items increases. This result is somehow linked to the observations done in the papers that 

study the inclusion of the age of the inventory into the ordering policy (see Section 3.3). 

Considering a LIFO issuing policy increases the average remaining shelf life of the items in 

stock and it is sometime valuable. We will prove this trend studying more in-depth the results. 
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From the 48 problems studied, the cost variation from the FIFO policy to the LIFO one is less 

than 1% for 26 problems (see Table 11). 

 

 

            FIFO LIFO   
Pb nb λ1 λ2 b1 = b2 shelf life p Cost Std dev Cost Std dev % var 

1 10 10 5 1,5 5 142,24 0,27 141,95 0,35 -0,20% 
2 10 10 5 1,5 30 218,80 2,18 218,73 2,37 -0,04% 
3 10 10 5 2,5 5 86,31 0,41 86,08 0,22 -0,26% 
4 10 10 5 2,5 30 138,25 1,67 137,65 1,63 -0,44% 
5 10 10 5 3,5 5 59,68 0,44 59,49 0,33 -0,32% 
6 10 10 5 3,5 30 91,37 1,47 91,29 1,84 -0,09% 
7 10 10 30 1,5 5 390,01 0,78 390,37 1,30 0,09% 
8 10 10 30 1,5 30 829,06 1,56 828,78 1,90 -0,03% 
9 10 10 30 2,5 5 194,71 2,93 194,49 1,64 -0,11% 
10 10 10 30 2,5 30 457,71 2,29 456,62 1,48 -0,24% 
12 10 10 30 3,5 30 246,14 2,57 244,75 3,03 -0,57% 
13 10 40 5 1,5 5 143,20 1,33 142,51 0,61 -0,48% 
14 10 40 5 1,5 30 241,62 2,09 240,14 2,23 -0,62% 
15 10 40 5 2,5 5 65,65 0,55 67,18 0,58 2,28% 
16 10 40 5 2,5 30 95,46 1,63 98,71 1,33 3,29% 
19 10 40 30 1,5 5 367,86 1,24 367,47 0,95 -0,11% 
20 10 40 30 1,5 30 904,16 3,66 903,23 5,02 -0,10% 
25 40 10 5 1,5 5 175,42 1,52 174,66 1,25 -0,43% 
27 40 10 5 2,5 5 83,45 0,71 83,40 0,49 -0,06% 
28 40 10 5 2,5 30 114,78 1,33 115,13 1,13 0,30% 
31 40 10 30 1,5 5 377,01 6,04 369,41 1,54 -2,06% 
34 40 10 30 2,5 30 368,46 4,07 379,10 3,95 2,81% 
37 40 40 5 1,5 5 113,45 1,24 113,31 0,90 -0,12% 
38 40 40 5 1,5 30 199,04 1,49 198,77 3,29 -0,13% 
43 40 40 30 1,5 5 289,23 1,67 289,73 1,27 0,17% 
44 40 40 30 1,5 30 639,25 7,62 639,29 5,72 0,01% 

 

Table 11: Problems where the LIFO and the FIFO issuing policy have equivalent performances 

 

 

The LIFO policy performs better than the FIFO one in 4 cases where the cost reduction is 

more than 10% as we can see in the Table 12. We did not manage to explain this fact and we 

consider these problems as particular cases. We believe that these counter-intuitive cases 

result from the fact that we do not manage to find the true optimum for these problems. 
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            FIFO LIFO   
Pb nb λ1 λ2 b1 = b2 shelf life p Cost Std dev Cost Std dev % var 

11 10 10 30 3,5 5 127,94 4,21 114,55 1,38 -11,69% 
26 40 10 5 1,5 30 323,29 1,67 251,04 1,50 -28,78% 
32 40 10 30 1,5 30 1020,64 32,02 848,93 1,06 -20,23% 
33 40 10 30 2,5 5 196,86 2,19 177,54 1,74 -10,89% 

 

Table 12: Problems where the LIFO policy performs better than the FIFO one 

 

 

The LIFO policy works badly comparing to the FIFO one for 16 problems (see Table 13). As 

we can notice, these cases correspond generally to a high value of the shelf life. Our intuition 

is that the FIFO policy works better for medium values of the shelf life. When the shelf life is 

big, no items perish in both the FIFO and the LIFO case. When the shelf life is too short, the 

change in the issuing policy at the retailers does not affect the results a lot as either a big 

proportion of customers are backordered or a lot of items perish. 

 

            FIFO LIFO   

Pb nb λ1 λ2 b1 = b2 
shelf 
life p Cost Std dev Cost Std dev % var 

17 10 40 5 3,5 5 47,30 0,15 55,00 0,62 14,00% 
18 10 40 5 3,5 30 49,64 0,35 63,08 0,69 21,31% 
21 10 40 30 2,5 5 126,57 0,97 144,88 1,46 12,64% 
23 10 40 30 3,5 5 75,99 0,36 94,70 0,89 19,76% 
24 10 40 30 3,5 30 95,46 0,99 163,30 2,16 41,54% 
30 40 10 5 3,5 30 64,31 1,10 75,41 0,68 14,72% 
35 40 10 30 3,5 5 92,10 0,87 114,72 5,31 19,72% 
36 40 10 30 3,5 30 133,63 1,44 190,71 3,48 29,93% 
39 40 40 5 2,5 5 53,43 0,50 61,60 0,81 13,26% 
40 40 40 5 2,5 30 58,86 0,76 82,18 1,47 28,37% 
41 40 40 5 3,5 5 52,38 0,40 58,28 0,51 10,13% 
42 40 40 5 3,5 30 52,38 0,40 62,23 0,71 15,83% 
45 40 40 30 2,5 5 81,56 0,93 111,38 1,74 26,78% 
46 40 40 30 2,5 30 117,17 2,96 222,74 5,55 47,39% 
47 40 40 30 3,5 5 79,31 1,28 92,22 1,47 14,00% 
48 40 40 30 3,5 30 79,35 1,29 124,101 1,37 36,06% 

 

Table 13: Problems where the FIFO policy performs better than the LIFO one 

 

 

When considering the shelf life, we can notice that the variation in average costs for the LIFO 

issuing policy comparing to the FIFO one increase while the shelf life becomes bigger. The 

average costs variation is equal to respectively -3%, 8% and 15% for a shelf life equal to 1.5 
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days, 2.5 days and 3.5 days. This confirms our intuition; when the shelf life is too short, the 

change in the issuing policy at the retailers does not affect a lot the results. Putting together 

every combination of three problems where only the self life changes (Problems 1, 3, 5, 

problems 2, 4, 6, problems 7, 9, 11…), we can notice a costs reduction when the shelf life 

increases as in the FIFO case. 

 

We then performed the same kind of analysis than for the FIFO case (classifying the problems 

in function of the perished cost parameter, the backorder cost parameter…). We did not find 

any interesting results doing so. 

 

The interesting classification was found considering the ratio average demand / shelf life. The 

average demand is calculated by addition of the two average demand intensities. This ratio is 

more relevant than the shelf life alone as it take also into account the demand intensity. In 

other words, this ratio represents better the perishable property of an items comparing to the 

single shelf life value. For the values of the ratio less or equal too 14, the average cost 

variation from the FIFO policy to the LIFO one is equal to -1%. In this case, the items do not 

perish a lot for both issuing policies. For values of the ratio included in the interval 14 – 32, 

the average cost variation from the FIFO policy to the LIFO one is equal to 16%. In this 

interval, the LIFO policy performs better. For the values of the ratio equal or superior to 32, 

the average cost variation from the FIFO policy to the LIFO one is equal to -4%. Using this 

classification, we can conclude that the FIFO policy performs better than the LIFO one for 

medium life time products. In the extreme cases, there is not a big difference in performances 

between the FIFO and the LIFO policy. 

 

Another important point concerns the values of the reorder points at the best found solutions 

for both issuing policies. We start by considering the values of R0. The reorder point at the 

central warehouse is still the same from the FIFO case to the LIFO one for 36 problems. 

Moreover, when the reorder point changes, it almost always increases. As more products 

perish at the retailers, more products are reorder and the reorder point at the central warehouse 

has to increase to keep the same average inventory level (see Table 14). 
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            FIFO LIFO   
Pb nb λ1 λ2 b shelf life p R0 R0 ΔR0 

                  
1 10 10 5 1,5 5 -40 -40 0 
2 10 10 5 1,5 30 -65 -65 0 
3 10 10 5 2,5 5 -30 -30 0 
4 10 10 5 2,5 30 -30 -30 0 
5 10 10 5 3,5 5 -30 -30 0 
6 10 10 5 3,5 30 -40 -40 0 
7 10 10 30 1,5 5 5 5 0 
8 10 10 30 1,5 30 -30 -30 0 
9 10 10 30 2,5 5 -10 -10 0 
10 10 10 30 2,5 30 -35 -35 0 
11 10 10 30 3,5 5 -15 -15 0 
12 10 10 30 3,5 30 -15 -15 0 
13 10 40 5 1,5 5 -50 -50 0 
14 10 40 5 1,5 30 -45 -45 0 
15 10 40 5 2,5 5 -50 -50 0 
16 10 40 5 2,5 30 -15 -15 0 
17 10 40 5 3,5 5 -30 -30 0 
18 10 40 5 3,5 30 -30 -30 0 
19 10 40 30 1,5 5 25 25 0 
20 10 40 30 1,5 30 5 5 0 
21 10 40 30 2,5 5 5 5 0 
22 10 40 30 2,5 30 5 5 0 
23 10 40 30 3,5 5 -10 20 30 
24 10 40 30 3,5 30 -10 0 10 
25 40 10 5 1,5 5 -10 -10 0 
26 40 10 5 1,5 30 -25 -50 -25 
27 40 10 5 2,5 5 -15 -15 0 
28 40 10 5 2,5 30 -15 -15 0 
29 40 10 5 3,5 5 -10 -10 0 
30 40 10 5 3,5 30 -30 -20 10 
31 40 10 30 1,5 5 10 10 0 
32 40 10 30 1,5 30 -15 -25 -10 
33 40 10 30 2,5 5 -10 5 15 
34 40 10 30 2,5 30 -25 -20 5 
35 40 10 30 3,5 5 -10 -10 0 
36 40 10 30 3,5 30 -10 -5 5 
37 40 40 5 1,5 5 5 5 0 
38 40 40 5 1,5 30 5 5 0 
39 40 40 5 2,5 5 10 20 10 
40 40 40 5 2,5 30 30 30 0 
41 40 40 5 3,5 5 20 20 0 
42 40 40 5 3,5 30 20 30 10 
43 40 40 30 1,5 5 45 45 0 
44 40 40 30 1,5 30 40 40 0 
45 40 40 30 2,5 5 45 45 0 
46 40 40 30 2,5 30 45 45 0 
47 40 40 30 3,5 5 40 55 15 
48 40 40 30 3,5 30 30 55 25 

       average 2,08 
 

Table 14: Variation of the reorder point at the central warehouse from the FIFO to the LIFO policy 
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When considering the values of the reorder points at the retailers, they remain the same for 36 

problems for both retailers (see Table 15). But these 36 problems are not necessarily the same. 

All together, the FIFO best found policy and the LIFO best found one keep the same values of 

R for 33 problems. This is a major finding of our study. In almost 70% of the problems 

studied, the best found policy is the same for the FIFO and the LIFO case. Moreover, when 

the reorder points change, they almost always decrease to reduce the number of item 

perishing. Moreover, a lower inventory level is needed to reach the same service level as the 

average remaining shelf life in inventory increases. 
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            FIFO LIFO     
Pb nb λ1 λ2 b shelf life p R1 R2 R1 R2 ΔR1 ΔR2 

1 10 10 5 1,5 5 15 -5 15 -5 0 0 
2 10 10 5 1,5 30 10 -10 10 -10 0 0 
3 10 10 5 2,5 5 20 0 20 0 0 0 
4 10 10 5 2,5 30 10 -5 10 -5 0 0 
5 10 10 5 3,5 5 20 10 20 10 0 0 
6 10 10 5 3,5 30 20 0 20 0 0 0 
7 10 10 30 1,5 5 10 20 10 20 0 0 
8 10 10 30 1,5 30 15 -5 15 -5 0 0 
9 10 10 30 2,5 5 50 50 50 50 0 0 
10 10 10 30 2,5 30 25 0 25 0 0 0 
11 10 10 30 3,5 5 25 25 25 25 0 0 
12 10 10 30 3,5 30 10 10 10 10 0 0 
13 10 40 5 1,5 5 20 80 20 80 0 0 
14 10 40 5 1,5 30 0 45 0 45 0 0 
15 10 40 5 2,5 5 15 75 15 75 0 0 
16 10 40 5 2,5 30 0 45 0 45 0 0 
17 10 40 5 3,5 5 15 65 15 65 0 0 
18 10 40 5 3,5 30 10 65 10 55 0 -10 
19 10 40 30 1,5 5 40 75 40 75 0 0 
20 10 40 30 1,5 30 0 30 0 30 0 0 
21 10 40 30 2,5 5 20 65 20 65 0 0 
22 10 40 30 2,5 30 15 45 15 45 0 0 
23 10 40 30 3,5 5 15 70 15 45 0 -25 
24 10 40 30 3,5 30 10 65 10 45 0 -20 
25 40 10 5 1,5 5 40 20 40 20 0 0 
26 40 10 5 1,5 30 40 0 55 -15 15 -15 
27 40 10 5 2,5 5 60 -5 60 -5 0 0 
28 40 10 5 2,5 30 50 -10 50 -10 0 0 
29 40 10 5 3,5 5 60 5 60 5 0 0 
30 40 10 5 3,5 30 75 0 60 -5 -15 -5 
31 40 10 30 1,5 5 85 40 95 40 10 0 
32 40 10 30 1,5 30 55 0 25 0 -30 0 
33 40 10 30 2,5 5 90 15 65 35 -25 20 
34 40 10 30 2,5 30 80 5 70 -5 -10 -10 
35 40 10 30 3,5 5 75 10 70 20 -5 10 
36 40 10 30 3,5 30 75 5 60 5 -15 0 
37 40 40 5 1,5 5 50 35 50 35 0 0 
38 40 40 5 1,5 30 35 20 35 20 0 0 
39 40 40 5 2,5 5 60 50 50 35 -10 -15 
40 40 40 5 2,5 30 45 40 40 30 -5 -10 
41 40 40 5 3,5 5 50 43 50 43 0 0 
42 40 40 5 3,5 30 50 43 40 35 -10 -8 
43 40 40 30 1,5 5 60 40 60 40 0 0 
44 40 40 30 1,5 30 45 30 45 30 0 0 
45 40 40 30 2,5 5 55 45 55 45 0 0 
46 40 40 30 2,5 30 50 40 50 40 0 0 
47 40 40 30 3,5 5 51 48 45 40 -6 -8 
48 40 40 30 3,5 30 40 51 40 35 0 -16 

         avg -2,21 -2,33 
 

 

Table 16: Variation of the reorder point at the retailers from the FIFO to the LIFO policy 
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Conclusions 
 

The objective of this master thesis was to investigate the possibility to decrease the supply 

chain costs in a multi-echelon system environment, optimizing the values of the reorder points 

taking into account that items can perish. To do so, a simulation study was performed for a 

two-echelon distribution perishable inventory system considering two non identical retailers. 

48 problems where studied with both FIFO and LIFO issuing policies at the retailers. 

 

This study shows first that the overall supply chain costs increase a lot while reducing the 

lifetime of the items in both the FIFO and the LIFO cases. This increase rises up to a factor of 

10 in a particular example. 

 

When considering the FIFO case, we compared the non perishable optimum to our best found 

solution. The average cost saving is bigger than 20% for the 48 problems studied. This cost 

reduction rises up to 99% in a particular case. The cost reduction is in average bigger when 

the product’s shelf life is short with an average value of 29% when the item’s shelf life is set 

up at 1.5 days. 

 

One other important finding of this study is that the parameter which affects the most the 

result is the ratio backorder cost / perished cost. When the backorder cost is set up at 5 and the 

perished cost at 30, the average cost saving is about 44%. The value of this ratio also affects 

the behaviour of the change in the reorder point values. When the ratio backorder cost / 

perished cost is low, the best found solutions in the FIFO case have lower reorder points than 

the non perishable optimum at each location. When this ratio is high, the best found solutions 

have higher reorder points. 

 

When considering the LIFO case, we compare the FIFO best found solution to the LIFO one. 

The LIFO issuing policy under perform the FIFO one by only 7% on average. The good 

performances of the FIFO policy are mainly found for medium values of the shelf life. 

 

One other interesting finding is that the LIFO best found solution is the same (in term of 

reorder points’ values) of the FIFO for 70% of the problems. When the reorder points are 
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modified, the tendency is an increase of the reorder point at the central warehouse and a 

decrease at both retailers. 

 

From these results, the following conclusions seem valid. First of all, the multi-echelon 

perishable inventory systems should be studied more in-depth as substantial costs savings can 

be reached by optimizing the system taking into account that items are perishables. The first 

solution to do so is to increase the shelf life of the products reaching the central warehouse. 

This is the main way to save cost but it is not always possible. From a theoretical point of 

view, some models have to be developed to deal with multi-echelon perishable inventory 

systems. The FIFO case has to be studied first as the system tends to behave the same way 

when setting up LIFO issuing policies in most of the cases. 
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Appendix 1: Extend Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Overview of the Extend model: Two-echelon distribution inventory system with two non identical retailers 
Extend blocks copyright © 1987 – 2007 Imagine That Inc. All rights reserved. 

 


