
Analytical Motion Blurred
Shadows

Johan Palmér

Thesis for a diploma in computer science, 30 ECTS credits,
Department of Computer Science, Faculty of Science, Lund University

Examensarbete för 30 hp,
Institutionen för datavetenskap, Naturvetenskapliga fakulteten, Lunds universitet

Analytical Motion Blurred Shadows
Abstract

A rendering framework supporting analytical visibility is extended with shadow
mapping. Shadow maps containing analytical visibility data are used, lead-
ing to cases where both the projections to the shadow map and the depth
tests can be time-dependent. For receivers that are static with respect to
the camera, the depth tests are solved analytically over time. For dynamic
receivers, point sampling is used. Problems arising from time-dependence,
limited precision and necessary simplifications are investigated, and potential
solutions are discussed.

Analytiska rörelseoskarpa skuggor
Sammanfattning

En rastrerare med stöd för analytisk rörelseoskärpa integreras med shadow
mapping. Shadow maps med analytisk synlighetsinformation används för det-
ta, vilket leder till situationer där både projiceringarna till shadow map:en
och djupjämförelserna kan vara tidsberoende. Djupjämförelserna utförs ana-
lytiskt över tiden för mottagare som är statiska i förhållande till kameran. För
dynamiska mottagare används point sampling istället. Problem som uppstår
på grund av tidsberoende, begränsad precision och nödvändiga förenklingar
undersöks, och potentiella lösningar diskuteras.

2

Contents

1 Introduction 5
1.1 Computer Graphics . 5

1.1.1 The Geometry Stage 5
1.1.2 Pixel Processing . 6

1.2 Motion Blur . 7
1.3 Shadows . 7
1.4 Shadow Quality . 9
1.5 Motion Blurred Shadows . 10

1.5.1 Previous Work . 10

2 Semi-Analytical Motion Blurred Shadows 12
2.1 Analytical Visibility . 12
2.2 Shading . 13
2.3 Shadows . 15

2.3.1 Static Receiver . 15
2.3.2 Dynamic Receiver . 16

3 Implementation 21
3.1 Rasterizer . 21
3.2 Shader . 22
3.3 Application . 23

4 Results 24
4.1 Image Quality . 24
4.2 Performance . 27

5 Conclusions and Future Work 29

3

Acknowledgements

I would like to thank my supervisor Tomas Akenine-Möller for helping me get
started with this thesis and providing much help and encouragement along
the way.

4

Chapter 1

Introduction

1.1 Computer Graphics
Computer graphics concerns the rendering of images on a computer. In three-
dimensional computer graphics, a renderer is typically given a description of
a scene, which it generates a two-dimensional image from. The scene can
consist of a virtual camera (which represents the viewpoint to render from),
geometrical objects, material data for these objects, light sources, etc.

For real-time applications, a rasterization-based renderer is most often
used, due to its efficiency compared to other techniques such as ray tracing.
Rasterization is the process of converting vector graphics to pixels. The
standard algorithm for this kind of renderer is the rendering pipeline [1].
This pipeline consists of a number of stages that work in parallel, each one
generating data that is given as input to the next stage. This means that the
slowest stage, the bottleneck, determines the rendering speed. Each stage
can also be parallelized.

In an application, the renderer is first provided with the scene descrip-
tion. Other processes, such as collision detection and user input, are usually
performed as well. After that, the renderer is executed. The pipeline is usu-
ally implemented in hardware. Figure 1.1 shows an example of a rendering
pipeline. The stages can vary depending on the implementation, but can be
coarsely divided into two conceptual steps: geometry and pixel processing.

1.1.1 The Geometry Stage

The geometry stage performs operations per-polygon and per-vertex. A
model first resides in model space, which means that the vertices are spec-
ified relative to the model. After the model transform has been applied to

5

the vertices, they are located in world space. From world space, the view
transform is applied to transform the geometry to eye space.

Then a projection transform transforms the vertices into clip space. Often
a perspective transform is used, which makes distant objects appear smaller.

These transforms are usually performed by executing a vertex shader
for each vertex. This vertex shader can also compute other parameters (to
be sent to the next stage in the pipeline), such as per-vertex lighting or
animation.

The final step is to map the coordinates from clip space to screen space.

1.1.2 Pixel Processing

The rasterizer is given primitives in screen coordinates as input. For each
primitive, the rasterizer determines which pixels on the screen the primitive
overlaps and computes the color of each one. The color for each pixel is
stored in the color buffer, which is a rectangular array of colors.

The rasterizer also has to resolve visibility; it must handle the case of
overlapping primitives in screen space. If any previous values in the color
buffer are directly overwritten for each primitive, the final value of a pixel
will be the color belonging to the last rasterized primitive overlapping that
pixel, regardless of which primitive is closest to the camera. To solve this, a Z-
buffer, or depth buffer is normally used. This buffer has the same dimensions
as the color buffer, and for each pixel stores the depth value of the primitive
currently closest to the camera. When a primitive is rasterized for a certain
pixel, a depth test is performed before the color is computed and written to
the color buffer. The depth test compares the depth value of the current
primitive with the value stored in the depth buffer at the same pixel. If the
depth of the current primitive is less 1 than the value in the depth buffer, the
current primitive is closer to the camera than the previously closest primitive
at that pixel. In that case, the color for the pixel is computed and written
to the color buffer, and the depth value for the primitive is written to the
depth buffer. If the depth value of the primitive is greater than or equal to
the value in the depth buffer, nothing is written to the color buffer or the
depth buffer. The depth buffer allows (opaque2) primitives to be rendered in
any order.

1The depth test can also often be set to a different comparison, such as greater-than.
2Semi-transparent primitives are outside the scope of this thesis. To render them

correctly with a z-buffer storing only one depth value per pixel, they need to be rendered
in back-to-front order, and after all opaque primitives.

6

Input-
Assembler

Stage
Rasterizer

Stage
Vertex-
Shader
Stage

Geometry-
Shader
Stage

Pixel-
Shader
Stage

Output-
Merger
Stage

Stream-
Output
Stage

Memory Resources (Buffer, Texture, Constant Buffer)

Figure 1.1: The rendering pipeline used in Direct3D 10 [4].

1.2 Motion Blur
Motion blur is a common effect in photography that appears when objects
in an image move relative to the camera. This is because the image does not
represent an instant of time, but the entire interval during which the shutter
of the camera is open. For example, if an object moves across the image, it
will be smeared along its path of movement.

Real-time computer graphics, meanwhile, has traditionally considered a
single instant of time for each frame rendered. This is obviously more efficient
(and less complicated) than taking into account the appearance of objects
over an interval of time. Motion blur can, however, increase the realism of
the rendered scene, including smoother animations. It can also be used for
artistic or illustrative reasons. Therefore, it has recently started to appear
more commonly in real-time computer graphics applications, such as games.

One straightforward way to create motion blur is to use accumulation.
The scene is rendered a number of times for different instances of time, and
an average result is computed from these. This will converge to correct
motion blur as the number of images increases. For a low number of samples,
strobing artifacts will appear, however. The problem of this approach is
that if the image is rendered n times, the rendering cost will be n times as
high. Therefore, more sophisticated techniques have been researched [10].
Most of the techniques that converge toward a correct solution are based on
point sampling, such as stochastic rasterization [2]. The drawbacks of these
techniques is the presence of noise. In contrast, this thesis concerns motion
blur based on analytically computed visibility of geometry [7].

1.3 Shadows
Shadow rendering is an important concept in computer graphics because it
adds realism and helps the viewer’s spatial perception of the scene. A point
is considered to be in shadow from a light source if it is occluded from the

7

light source by another object: computing the shadowing for a point on a
surface requires knowledge of possible geometry intersecting the ray between
the point and the light source. Therefore, shadows are often generated by
the entire scene, or a significant part of the scene. Shadow rendering is a
complex problem which has been researched extensively.

One popular technique to render shadows is shadow mapping, first in-
troduced by Williams in 1978 [11]. The concept is to view a point (to be
shadowed) from the perspective of the light source and perform a depth test
(comparing it with other geometry) to determine if it is visible from the light
source. The algorithm to achieve this consists of two steps:

1. The scene is rendered from the point of view of the light source. This
perspective will be referred to as the shadow camera. The depth values
are stored in a shadow map so they can be retrieved later.

2. The scene is rendered from the camera’s perspective. A linear transfor-
mation must first be constructed to transform points from the coordi-
nate system of the camera to the coordinate system of the shadow cam-
era. Each sample point that is rendered is transformed into the light
source space, and the depth test between the point and the shadow
map is performed, which will determine the visibility of the point from
the perspective of the light source. If the point is not visible from the
light source, it is in shadow.

Figure 1.2a illustrates how points viewed from the camera are transformed
to the space of the shadow map.

Shadow mapping is easy to implement, since only rasterization is needed
to compute the depth values. Any object that can be rasterized can be a
shadow caster, assuming depth values can be computed for each pixel. This
is in contrast to techniques such as shadow volumes [5], where the vertices
of each object need to be processed. Shadow mapping is also reasonably
fast, growing linearly with the number of lights and the size of the scene.
And since only the depth values are relevant, shader computations can be
disabled during the generation of the shadow map, which can make it faster
than the rendering of the scene. Shadow mapping does, however, have some
drawbacks.

Shadow maps are generated from the limited perspective of a camera,
which cannot properly represent every type of light source. Shadow map-
ping works best with spotlights, since they have a narrow range. The shadow
camera frustrum can be computed to cover the range of the light. Other
types of light sources cause problems, however. For point lights and direc-
tional lights, multiple cameras can be used to cover the entire range of the

8

(a) Points transformed to
shadow map space

(b) Texel coverage

Figure 1.2: Shadow mapping. (a) Shadow mapping for two camera rays.
The point on the circle will be lit and the point under the circle shadowed.
(b) The distances stored in a shadow map are shown. All points in the
transparent grey areas will be shadowed. Aliasing problems are visible: due
to the limited resolution of the shadow map, some points will incorrectly
be considered to be in shadow if their depths are compared directly to the
corresponding depths in the shadow map.

light. Directional lights can also be handled by placing the camera far away
enough to cover the entire scene, but this can degrade the shadow quality,
as described in the next section.

If there exists multiple light sources in the scene, shadow maps must also
be generated for each of these, and the shadow computations for each pixel
have to be performed individually with respect to each light source. This
thesis assumes the case of a single spotlight, but the techniques described
should be straightforward to implement for multiple light sources, as well as
point lights and directional lights.

1.4 Shadow Quality
Since shadow mapping is an image-based technique, aliasing often appear
on shadow receivers. This is caused by undersampling of the shadow map,
when each texel in the shadow map maps to multiple pixels in the frame
buffer. Typical cases when this happens is when the shadow map is far
away from the receiver or the resolution is too low, or both. This can be
alleviated by increasing the resolution of the shadow map, but this degrades
performance. One simple technique to reduce this aliasing is to take the four
nearest samples (instead of only one) from the shadow map. Then the depth
comparison is performed for each sample, giving four boolean results. These

9

are bilinearly interpolated to compute the amount of light for the pixel. This
can also be done for filter kernels of any size and is called percentage-closer
filtering [9]. There are many techniques for rendering more realistic soft
shadows, which is an important topic in computer graphics that is outside
the scope of this thesis.

Incorrect self-shadowing is another common problem with shadow map-
ping. This is caused by the fact that, most often, a point in camera space
will not map perfectly to the center of a texel in the shadow map. All points
that map to a certain shadow map texel will be compared to the distance
stored in that texel. For a surface that is visible to the shadow camera and
not perpendicular to it, there will be different areas where the distances to
the light source are, respectively, less than, equal to, and greater than the
distance stored in the corresponding texel. This is illustrated in figure 1.2b.

This can be compensated for in different ways. Commonly, a bias is sub-
tracted from the distance. This can however cause missing parts of shadows
near shadow casters. Another way is to identify each triangle with an ID and
store this in the shadow map. When performing the shadow map compari-
son, texels with the same ID as the current triangle can be ignored. This will
effectively eliminate the possibility that a triangle self-shadows itself. There
can still appear incorrect self-shadowing along edges of connected primitives.

1.5 Motion Blurred Shadows
If a motion blurred object casts a shadow, naturally the shadow should be
motion blurred correspondingly, in order to render a realistic image. This is
the topic of this thesis.

1.5.1 Previous Work

Lokovic and Veach [8] describe deep shadow maps, a technique for high-
quality shadows. Instead of storing a single depth per texel, the deep shadow
maps store a representation of the fractional visibility at a number of depths.
This visibility function takes into account both semi-transparent objects and
coverage of pixels.

The authors claim this also can support motion blur, if every shadow
image sample is associated with a random time. When the samples are
averaged together into visibility functions, this gives average spatial as well
as temporal visibility. However, it does not support moving shadow receivers.

Akenine-Möller et al. describe a technique for stochastic motion blur as
well as time-dependent textures that can be used as shadow maps [2]. A time-

10

dependent texture holds multiple time samples in each texel and supports
time-dependent reads and writes. The time samples are generated by using
random offsets in a grid, such that for n samples per pixel, a time sample ti
belongs to the set Ti = [i

n
, i+1

n
], for i ∈ {0, ..., n− 1}. When the shadow map

comparison is performed for the screen space sample ti ∈ Ti, the shadow map
sample ts ∈ Ti is used. Therefore, |ti − ts| < 1/n, and the result converges
towards the correct image as the number of samples increase. This supports
both static and dynamic receivers. Since it is based on sampling, there will
be noise.

11

Chapter 2

Semi-Analytical Motion Blurred
Shadows

2.1 Analytical Visibility
Motion blur rendering can be divided into two parts, visibility determination
and shader computations [10]. This thesis concerns solving visibility with
analytical computations. As will be shown, this can be extended with shader
computations to perform shadow mapping analytically in the temporal di-
mension.

Gribel et al. [7] describe a technique for motion blur that analytically
computes the visibility of triangles for each pixel, over an interval of time.

For this, time-continuous triangles (TCT ’s) [2] are used. For each TCT,
two sets of vertices are specified, one set for time=0 and one for time=1. The
vertices are linearly interpolated in time over the interval [0, 1]. This means
that a vertex i of a triangle at time t is defined as:

pi(t) = (1− t)qi + tri,

where qi is the vertex at t = 0 and ri is the vertex at t = 1.
For each triangle and each spatial sample point, it is shown that a visibility

function, v(t), can be constructed that equals 1 when the sample point is
inside the triangle and 0 when it is outside [7]. By solving v(t) > 0, the sub
interval of [0, 1] during which the point is inside the triangle can be retrieved.

During this interval, the depth will most often change. This is expressed
as the depth function. As shown, this function is a cubic rational polynomial.
In an implementation, it can however be approximated with a linear function,
as the error is rarely significant and it simplifies computations.

Intervals are used analogously to fragments in rendering without motion
blur. Each interval stores the following parameters:

12

• the time at the beginning of the interval

• the time at the end of the interval

• the depth function

• the color of the interval

For each pixel in the framebuffer, an interval list is stored. Each interval
that is rasterized for a pixel is inserted into the list for that pixel. Here,
clipping and sorting will be performed, followed by compression in order to
reduce the number of intervals. This will save memory and make subsequent
operations on the list faster.

After rendering all triangles, a resolve pass is performed to compute the
final color of all pixels. This is done independently for each pixel by sweeping
over all the stored intervals. By finding intervals that overlap in time, [0, 1]
can be divided into subspans so that for each subspan, one interval will
occlude all the others. A resolved interval can be created temporarily for
each such subspan by clipping the occluding interval to the subspan. If all
the resolved intervals are put into a list, the list will be a representation of
the original list, but with only visible intervals present. This is illustrated
in figure 2.1. The colors of the resolved intervals are integrated against the
shutter response function w(t) and added to the final color of the pixel. This
can be expressed as [7]:

n−1∑
k=0

(

tek∫
tsk

w(t)ck dt), (2.1)

where ck is the color of resolved interval k and tsk and tek are the start and
end times of interval k, respectively.

With a box filter, the resolved color is simply the sum of the intervals,
weighted by their durations in time.

2.2 Shading
The technique described here only computes the visibility. If time is not
taken into account in the shaders, only surfaces with a single, constant color
will be shaded correctly. Instead, the shading should be integrated over the
duration of the rasterized interval.

The color of a pixel can, with some simplifications, be expressed as [10]:

13

0.01.00.0 t0 t0

t

d d

1.0
t

Figure 2.1: Interval list for a pixel. At the beginning of the frame, a blue
surface overlaps the pixel, moving away from the camera. At time t0, a red
surface sweeps over the pixel at a closer distance, occluding the blue surface,
until the end of the frame. The left diagram shows the interval list when
both intervals have been inserted. Interval lists can be resolved to remove
overlapping parts of intervals, as seen in the right diagram. The final color
for this pixel will, with a simple box filter, be a weighted sum of blue and
red with proportions t0 and 1− t0 respectively.

i(x, y, t) = i(ω, t) =
∑
l

∫
Ω

h(ω)

∫
T

f(t)gl(ω, t)Ll(ω, t) dtdω. (2.2)

Ω is the total solid angle from the environment towards the pixel and T
is the exposure time. h(ω) is the the spatial and f(t) the temporal recon-
struction filters. gl(ω, t) is the geometry function which equals 1 when object
l is visible at time t and solid angle ω, and otherwise equals 0. Ll(ω, t) is the
incoming luminance, or shading function.

For each object l, the analytical visibility method described here approx-
imates the outer integral by sampling with a box filter. The interval [ts, te]
where gl = 1, for each sample, is also computed. Hence, the shading that
needs to be computed for each sample is:

s(ω, t) =

te∫
ts

f(t)Ll(ω, t) dt, (2.3)

which is the same as equation 2.1 (per object) except that the shading here
is time-dependent. With shadow computations, Ll(ω, t) = fs(ω, t)Lls(ω, t),
where fs(ω, t) is the fraction of shadow and Lls(ω, t) is the result of other
shading computations. A more general solution to time-dependent shading is
outside the scope of this thesis and it is instead assumed that Lls(ω, t) = cl,
which can be factored out of the integral.

A problem is that during rasterization for each polygon, only the interval
when the polygon overlaps each sample point can be computed. Occlusions

14

by geometry can only be determined if the occluding polygons are already
rasterized for the pixel, as their depths are stored in interval lists similarly
to standard z-buffering. This is sufficient when polygons are rendered in
back-to-front order, but no such assumption is made here. Therefore, time-
dependent shading for a pixel should ideally be deferred until all geometry
have been rasterized for that pixel. It will, however, not be very noticeable
in most cases.

2.3 Shadows
When objects move relative to a light source, the shadows cast on other
surfaces in the scene should be motion blurred. This is because points on
surfaces in the scene may be occluded by the light source for only a part of
the frame.

This means that to achieve correct motion blurred shadows with shadow
mapping, a time-dependent shadow map is needed. For the shadows to be an-
alytically motion blurred, the shadow map needs to store analytical visibility
data from the perspective of the light source.

2.3.1 Static Receiver

A static receiver is a sample interval with a constant depth function. This
most commonly appears with objects that are static with respect to the
camera, but also in other cases, such as surfaces moving sideways. Since the
depth function is constant, the interval can be represented by a single point,
which maps to one point in the shadow map. The shadowing for the interval
is the fraction of time the point is in shadow during this interval.

The temporal resolve method described in section 2.1 can also be used
to compute the shadowing for a point. For a texel in the shadow map, the
interval list holds the depth of possible occluders during [0, 1]. An interval
id with the duration and depth (with respect to the shadow camera) of the
sample interval can be inserted into the interval list. The point is in light
when it is visible (not occluded) from the light source, i.e. during the sub
intervals where the depth of id is less than all the other intervals.

If the colors of all original intervals are set to black and id is set to white,
the resolved interval list will have white intervals where the point is in light
and black where the point is in shadow. This is illustrated in figure 2.2. The
list can be resolved according to equation 2.1, and divided by the length of
the sample interval, to compute the fraction of light.

15

1.00.01.00.0
t t

d d

≥

Figure 2.2: The interval list for a texel in the shadow map (black intervals)
with the added interval representing the depth of a point in the scene (white).
To the left are the (uncompressed) intervals, to the right the resolved inter-
vals. The color, which here represents the fraction of light for the pixel, is
the sum of the resolved intervals, weighted by their respective durations in
time.

2.3.2 Dynamic Receiver

For a dynamic shadow receiver, the depth function varies with time. If the
end points of the interval map to the same point in the shadow map, the
shadowing can be computed with the same method as a static receiver. The
interval that is inserted into the list of the texel should then have depths at
the end points corresponding to the end points of the sample interval. If the
interval maps to different but very close points in the shadow map, the same
method could be used, as an approximation. These cases can appear when
the camera and shadow camera are closely aligned or the change in depth is
very small. The remaining part of this section assumes cases where this does
not apply.

When the end points of the interval map to two points in the shadow
map, a line is formed which can intersect multiple texels. For each instant of
time during the interval, the shadowing is determined by the time and the
current position according to the depth function. This means that for correct
shadowing, all texels the interval sweeps over in the shadow map contributes
to the result. An example of this is shown in figure 2.3.

The shadowing for a spatio-temporal interval defined by the function
p(t) ∈ R3, t ∈ [ts, te] can be expressed, in accordance with equation 2.3, as:

te∫
ts

f(t)s(dp(p(t)), ds(p(t), t)) dt, (2.4)

16

v

u

Figure 2.3: A sample interval transformed into shadow map space, sweeping
over several texels.

where f(t) is the filter and s(da, db) is the depth comparison (which re-
turns 0 or 1). dp(p) is the depth of p as seen from the light source and ds(p, t)
is the distance to the nearest occluder at time t intersecting the ray from p
to the light source, and p(t) is the point at time t. In comparison, for a static
receiver, p(t) would not be time-dependent. Furthermore, p(t) can map to
different texels for different sub intervals of [ts, te].

Backfacing Polygons

In 3D graphics, polygons are often considered to be one-sided. When ren-
dering, polygons which are facing away from the camera can be discarded
from rasterization. This can be determined by computing the dot product
between the polygon normal and the direction vector from the polygon to
the camera (the view direction). If the dot product is less than zero, the
polygon is backfacing.

This is also useful for shadow rendering. Surfaces that are facing away
from the light source must be in shadow, and no further processing is nec-
essary. When computing the dot product for this, the view direction is
substituted with the light direction, which is the direction vector from the
polygon to the light source.

However, when polygons move relative to the light source, they can turn
away from, or towards, the light source during a sample interval. Both
the normal and the light directions are interpolated in time. With a linear
interpolation of the vector elements, the time dependent dot product between
them can be written as:

f(t) = (n0(1− t) + n1t) · (d0(1− t) + d1t), (2.5)

where n0 and d0 are the normal and light direction at the start of the
interval, respectively, and n1 and d1 are the corresponding vectors at the end
of the interval. The polygon is then visible from the light source when

17

(a) (b) (c)

Figure 2.4: A surface turning away from the light source during a rendering
interval. In (a), it is completely lit, in (c) completely dark and in (b) in
between.

f(t) > 0, 0 ≤ t ≤ 1. (2.6)

This is a quadratic equation which can be solved analytically to find
0, 1 or 2 intervals during which the polygon is oriented towards the light
source. These intervals are in proportion to the interval being rasterized.
The remaining shadow calculations then only need to be performed for the
visible intervals, and the result from each one is weighted in proportion to
the interval’s length.

In figure 2.4, three successive frames from the implementation are shown.
The plane is initially facing the light source, but turns away from it during
the second frame. The transition from light to dark can be seen in figure
2.4b.

Point Sampling

The function in equation 2.4 can be approximated by point sampling. The
sample interval is divided in time into a number of sample points. For each
sample time ti, the position of the point is computed by interpolation, and
the corresponding texel in the shadow map is retrieved. The shadow map
comparison is then performed for the fixed time ti and the depth of the sample
point, by finding the nearest occluder at ti. This can also be extended to
spatial filtering, such as percentage-closer filtering, for each sample point.

Sampling of a dynamic receiver is illustrated in figure 2.5a. A sphere
moving away from the camera results in a decreasing depth function, which
is divided into five sample points.

The number of samples could be computed as proportional to the length of
the interval in shadow map space. This will take into account the movement
of the receiver. An interval that sweeps over a large number of texels will

18

(a)

0

1

0.25
0.50.75

0.250.50.751
1

0
0

(b)

Figure 2.5: Dynamic receivers. (a): A sphere moving away from the camera,
sampled five times. (b): A rotating surface viewed from a shallow angle.
The sample interval is divided into five sample points, marked with the cor-
responding times in the figure. The correct interpolation of the surface (and
the sample points) are drawn with dashed lines. The depths interpolated in
the shadow map are incorrect as well, though not as severely. (The resolution
of the shadow map is ignored in this example.)

overlap each individual texel for a very short time interval, and a point sample
for each is therefore a reasonable approximation. For shorter sweeps in the
shadow map, this will give worse results. Solutions to this is either to set
a minimum number of samples, or to treat each sample point as a static
receiver when there is a low number of samples.

A more analytical solution to this is outside the scope of this thesis. See
chapter 5 concerning dynamic receivers.

Problems can appear when non-linear depth functions are approximated
as linear functions. The end points of all intervals will have the correct
depths, but this is not the case for sample points generated by linear inter-
polation between the endpoints. This first affects the sampling of the sample
interval. The interpolated depth will not be the correct depth for the sample
time, and the position may also project to the wrong texel in the shadow
map because of this. When the depth test in the shadow map is performed,
both the depth of the sample point and the depth at the time in the interval
list of the texel will be incorrect. An example of this, with a rotating surface
resulting in a non-linear depth function, is shown in figure 2.5b.

To alleviate these problems, the depth function can be split into a number
of sub intervals by sampling the depth at different times during the interval.
This list of intervals will then be a closer approximation of the depth function
than just one interval, as illustrated in figure 2.6. However, this will require

19

1.00.01.00.0
t t

d d

Figure 2.6: Depth sampling. To the left the depth function is sampled only
at the endpoints of the interval. To the right, it is split into four linear
intervals, to minimize the error.

sampling of each sample interval, and if stored in the shadow map, more
space. This could also affect interval list operations, such as when shadow
map intervals are inserted. Additionally, in many cases the linear function is
very close to the actual depth function which would make extra depth sam-
pling unnecessary. This could perhaps be handled with adaptive sampling.
See section 5.

Incorrect self-shadowing is an inherent problem of shadow mapping, and
there are a variety of techniques to handle it, as described in section 1.4.
With motion blurred shadows, these problems are present in addition to the
problems specific to motion blur.

As in other cases of incorrect self-shadowing, this can be compensated for
by introducing a bias. If the maximum error of the sample interval and the
intervals in the texel are known, these can be used as added biases. This will
compensate for the incorrect depth, but not if the wrong texel is retrieved.
However, there are disadvantages to this. Increased bias can as always cause
parts of shadows to disappear when the shadow caster is close to the receiver.
And the maximum error will need to be computed, either analytically or by
sampling. If it is used in the shadow map, it also needs to be stored, for all
intervals in each texel.

Another method to solve the problem of self shadowing in general is to
uniquely identify all polygons, as described in section 1.4. The ID’s are
written to the shadow map for each interval of each pixel. When the depth
test is performed, intervals with the same ID’s as the current polygon can be
discarded.

Polygon identification is not a complete solution, however. Incorrect self
shadowing could still appear along the edges of connected polygons, e.g.
along the diagonal of a square made up by two triangles. Geometric com-
putations could be performed to detect groups of polygons that cannot self-
shadow each other (such as polygons that lie in the same plane), and give
them the same ID. But there would still remain many instances of connected
polygons self-shadowing each other.

20

Chapter 3

Implementation

The implementation builds on the rendering framework described by Gribel
et al. [7], where the core is a software rasterizer supporting analytical mo-
tion blur. It can be roughly divided into three parts: application, renderer
and shaders. As usual in real-time graphics applications, the application is
responsible for configuring the renderer and creating the scene, as well as
handling user input and performing animations etc. One important task is
to set input data to the shaders, such as matrices. The pixel shaders emulate
normal programmable pixel shaders, and use the input data (global as well
as per-vertex) to compute the color for each pixel.

The application and shaders of a graphics application usually have to
cooperate to support shadow mapping; the application provides the input
and the shaders perform the shadow mapping computations per-pixel. To
enable motion blurred shadows, the rasterizer also had to be modified to
compute and provide analytical visibility data as input to the pixel shaders.

3.1 Rasterizer
The two substantial extensions that were necessary for the analytical raster-
izer to support shadow mapping was support for external depth targets, and
sending interval data to the pixel shader.

The external depth target is needed when the shadow map is generated.
The application creates a depth buffer and informs the rasterizer that it
should render depth values to it. Multiple threaded rasterizers are used,
each one saving the depth values in their own tile. The global color buffer
that is written to the screen only contains the resolved values. Therefore, an
external depth target that is written to by each rasterizer is needed. When
it is enabled (set by the application), the intervals that are written to each

21

tile are also written to the depth target.
When the shadow map is generated, only the depth values are of impor-

tance. Therefore, executing pixel shaders and writing colors can be disabled
in order to save some rendering cost.

Interval data is sent to the pixel shader in a structure. It contains the
interval endpoints and the start and end positions (in clip space) of the pixel
that is being rendered. The position of a pixel at a certain time is computed
by interpolating the vertex positions with perspective-correct time-dependent
barycentric coordinates.

3.2 Shader
The algorithm that computes the shadowing for analytically motion blurred
objects is implemented as a shader procedure. It accepts the following argu-
ments:

• the interval endpoints in time,

• the start and end positions of the interval,

• the shadow map,

• normals for time=0 and time=1 in the view space of the shadow cam-
era,

• a matrix to transform from the clip space of the camera to the clip
space of the shadow camera,

• and a matrix to transform from the clip space of the camera to the
view space of the shadow camera

The interval data is sent by the analytical rasterizer as input to the pixel
shader, as described in section 3.1. The other parameters must be provided
by the application.

Most importantly, these parameters are used to calculate the start and
end position of the interval in the clip space of the shadow camera. This is
needed for the shadow map lookup. The normals as well as direction vectors
from the point to the light source, for the endpoints of the interval, are also
obtained.

The sub intervals where the surface is facing the light source are com-
puted with the method described in section 2.3.2, using the normals and
light direction vectors.

22

The shadowing is computed individually for each sub interval facing the
light source. The start and endpoints of the sub interval (as seen from the
shadow camera) now constitute the endpoints of a line through the shadow
map. If the endpoints map to the same texel in the shadow map, the an-
alytical occlusion procedure for the texel, as described in section 2.3.1, is
used.

In the depth test function, the interval list for the texel is first copied
from the shadow map. If intervals with the same polygon ID as the current
rasterized interval exist in the list, these are removed. Then the interval
representing the depth of the point (colored white) is inserted and the color
of the interval list is resolved and divided by the length to compute the
fraction of light. It is assumed that all intervals in the shadow map are
colored black, otherwise the color could be set in this procedure.

If the line sweeps through many pixels, the receiver is dynamic. A number
of samples proportional to the length of the interval in shadow map space
is computed, and point sampling over the interval is performed. A limit for
a minimum number of samples is used, in order to achieve good quality for
slow-moving objects. The shadow map interval list for each sample point is
retrieved and intervals that overlap the sample point in time are found. If
any of these has a depth (at the time of the sample) that is less than the
sample point, the point is in shadow and otherwise not.

Bilinear filtering was implemented and can be optionally enabled. Instead
of one depth test (analytical occlusion computation or point sampling), four
depth tests are made for the neighboring texels and the results are bilinearly
interpolated.

3.3 Application
The application creates the objects in the scene for motion blur in the usual
way. An ID is generated for each polygon that is created. It also creates a
shadow map and renders two passes: one to generate the shadow map, and
one to render the scene. In the first pass, the shadow map is set as the depth
render target for the renderer. In the second, it is instead set in the render
states of the objects so the pixel shader can access it.

Similar to normal shadow mapping, the application creates matrices for
the shaders. Two normal matrices are computed and input to the shader, for
time = 0 and time = 1, respectively.

Before rendering each frame, animation is performed by setting the ma-
trices for time = 0 and time = 1, respectively, for the objects.

23

Chapter 4

Results

4.1 Image Quality
The motion blurred shadows on static receivers in the generated images ap-
pear to have a high quality, whereas the shadows on dynamic receivers contain
artifacts in some cases, for example when the angle between the surface and
the direction to the light source is small.

Figure 4.1, 4.2 and 4.3 show a very simple scene, consisting of a cube
and a plane. In the first figure, the plane is static and in the second and
third, dynamic. Analytical and stochastic rasterization is compared, and the
absence of noise in the shadows with analytical motion blur is noticeable for
both static and dynamic receivers. The number of samples used for dynamic
receivers when rendering these images were computed as max(2|pe − ps|, 5),
where ps, pe ∈ R2 are the start and end points of the interval in shadow
map space. Percentage-closer filtering was used for both the analytical and
stochastic shadows in both figures. When the plane is rotating in this scene,
some inconsistencies in the shadow can appear near the rotational axis, be-
cause there is a transition between static and dynamic receiver. This is shown
in figure 4.3a, and can be alleviated by increasing the number of samples.
For this simple scene, incorrect self-shadowing was efficiently eliminated by
using polygon ID’s.

The implementation does not use spatial antialiasing, which, on the con-
trary, is included in stochastic rasterization. A jagged edge resulting from
this is visible in figure 4.1b. For the dynamic receiver in figure 4.3, the area
of the shadow corresponding to this edge contains artifacts as well. In this
case, increasing the number of samples does not improve the result, as shown
in figure 4.3e. Analyzing this more closely has been left for future work.

Figure 4.4 and 4.5 show a highly tessellated scene, consisting of nearly

24

(a) Analytical (b) Analytical

(c) 4 samples (d) 16 samples (e) 256 samples

Figure 4.1: A motion blurred cube casts a shadow on a plane. Figure (a) and
(b) show an analytically computed shadow with 8 intervals. The remaining
images show the scene rendered with stochastic motion blur as reference.

(a) Analytical (b) Analytical

(c) 4 samples (d) 16 samples (e) 256 samples

Figure 4.2: The same scene as in figure 4.1, but with a rotating plane.

25

(a) Dynamic (b) Dynamic (c) 256 samples (d) Dynamic (e) 256 samples

Figure 4.3: The same scene as in figure 4.2, but with less movement of the
plane and a differently positioned cube. (b) and (c) show a zoom-in of the
area of the shadow close to the rotational axis of the plane. (c) and (d)
show a zoom-in of an area with different artifacts that are not caused by
undersampling. The images in (a), (b) and (d) are computed dynamically
per rasterized interval, as described in section 4.1. (c) and (e) show reference
images generated by using 256 samples per interval.

(a) Percentage-closer filtering

(b) No filtering (c) Percentage-closer filter-
ing

Figure 4.4: A highly detailed scene rendered with shadows. (b) and (c)
show a zoom-in of a static receiver, illustrating the improved quality when
percentage-closer filtering is used.

26

(a) (b)

Figure 4.5: Different views from the scene in figure 4.4, at a slightly different
stage in the animation.

30000 triangles. Since the polygons are very small, most of the rasterized
intervals for the moving objects have short enough durations to be handled
as static receivers. The high triangle density also causes a large number
of cases of incorrect self-shadowing that cannot be handled by identifying
polygons with ID’s. Therefore, a higher bias value was used for this scene.
Figure 4.4 also shows a comparison between percentage-closer filtering and
no filtering for a static receiver.

The quality of the rendered images could be improved further by adjust-
ing shadow mapping parameters such as the perspective of the light source
and the resolution of the shadow map. This can increase the detail and re-
duce aliasing of the shadows, and is as relevant for static as motion blurred
shadows.

4.2 Performance
The implementation was tested on a system with a 2.4 Ghz Intel Core 2 Duo
CPU. Rendering was performed at a resolution of 1280× 1024 pixels, using
a single thread for the rasterizer.

The rendering time for the image in figure 4.1 was about 2.5 seconds, of
which the shadow computations took about one second. For the image in 4.2,
it was about 18 seconds, with 16 seconds to compute the shadows. When the
number of samples for dynamic receivers was lowered to max(|pe − ps|, 5),
the shadow computation time decreased to about eight seconds. Since the
number of samples are proportional to the length of the interval in shadow
map space, the computation time is dependent on the angles of the camera
and the shadow camera, as well as the angle and motion of the dynamic

27

receiver.
The scene with the chess board also varies significantly in terms of ren-

dering time, depending on many different factors. Times up to 40 seconds for
a frame have been observed, when the camera is close to the highly detailed
chess pieces.

Performance was not the focus of this thesis, and further investigations
into testing and analyzing rendering times and optimizations and has there-
fore been left for future work.

28

Chapter 5

Conclusions and Future Work

It has been shown that analytically motion blurred shadows are possible to
implement and are an important component in rendering high-quality scenes
with motion blur. Much work remains to be done however, including op-
timizations, reducing errors and improving quality with techniques such as
antialiasing and soft shadows. Furthermore, shadow mapping is a technique
with parameters that must be finely adjusted in order to achieve good quality
and avoid artifacts. This could be investigated more thoroughly for scenes
with motion blurred shadows; there can be errors inherent to shadow map-
ping, errors due to inaccuracies of analytical visibility (such as compression or
the approximation of the depth function), and errors due to the combination
of both.

Shading

Combining shadow mapping with other time-dependent shading functions
(such as lighting or texturing) for motion blur is important for rendering high-
quality scenes. To solve this correctly, the shadowing and the supplementary
shading function should be integrated together, as suggested by equation 2.3.
In this case, the shadowing could, for example, be computed as an interval
list which could be multiplied with time-dependent results of other shading
functions.

Analytical Dynamic Receivers

Instead of point sampling for dynamic receivers, an analytical technique could
be used in order to compute more accurate shadows. A traversal algorithm
should be applied to the interval in the shadow map to determine exactly
which texels it intersects and the durations of these intersections. This should

29

v

u

Figure 5.1: The sample interval in shadow map space, sweeping over a four-
texel filter region. This could be computed analytically.

work in the same way as texturing a motion blurred surface. For each texel,
the one-texel analytical occlusion procedure could be applied with the corre-
sponding sub interval. Filtering this is more complicated, since the propor-
tions used for the filtering are time-dependent. See figure 5.1.

Adaptive Depth Sampling

To minimize errors due to incorrect depth interpolation, adaptive depth sam-
pling could be used. The depth function would be split into multiple intervals
for a better approximation as described in section 2.3.2 but only where there
is a significant difference between the real depth function and the linear ap-
proximation. As shown in figure 2.6, parts of the interval could be adequately
approximated by a linear function, and other parts not. The sub intervals
would be processed recursively. This would have the benefit of multisampled
depth, but without decreasing performance much.

A problem with this approach is that the intervals would have variable
size, which would make storage in a depth buffer complicated. Instead, these
multisampled intervals could be split into different intervals when inserted
into interval lists.

One solution could be to use multisampled depth functions as input to
pixel shaders (since this is probably more efficient than executing the pixel
shader multiple times for the sub intervals), but store split intervals in buffers.

Variance and Exponential Shadow Maps

Motion blurred shadows suffer from aliasing in the same way as standard
shadows maps. As shown, PCF is possible to implement, but a major draw-
back is that the filtering cannot take place until after the depth tests are
performed. Variance [6] and Exponential [3] shadow maps are techniques
that address this problem, efficiently enabling the use of pre-filtering such as
mipmapping [12]. This could be very beneficial to motion blurred shadows
as well.

30

Transparency

Transparent objects can cast transparent shadows, and these should be mo-
tion blurred as well. This obviously makes computations more complicated
and has therefore been omitted from this thesis.

31

Bibliography

[1] Tomas Akenine-Möller and Eric Haines. Real-Time Rendering, 2nd edi-
tion. A. K. Peters, Ltd., 2002.

[2] Tomas Akenine-Möller, Jacob Munkberg, and Jon Hasselgren. Stochas-
tic Rasterization using Time-Continuous Triangles. In Graphics Hard-
ware, pages 7–16, 2007.

[3] Thomas Annen, Tom Mertens, Hans-Peter Seidel, Eddy Flerackers, and
Jan Kautz. Exponential Shadow Maps. In Graphics Interface, pages
155–161, 2008.

[4] David Blythe. The Direct3D 10 System. In ACM SIGGRAPH 2006
Papers, pages 724–734, 2006.

[5] Franklin C. Crow. Shadow Algorithms for Computer Graphics. In Pro-
ceedings of the 4th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH, pages 242–248, 1977.

[6] William Donnelly and Andrew Lauritzen. Variance Shadow Maps. In
Symposium on Interactive 3D Graphics and Games, pages 161–165,
2006.

[7] Carl Johan Gribel, Michael Doggett, and Tomas Akenine-Möller.
Analytical Motion Blur Rasterization with Compression. In High-
Performance Graphics, pages 163–172, 2010.

[8] Tom Lokovic and Eric Veach. Deep Shadow Maps. In Proceedings of the
27th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH, pages 385–392, 2000.

[9] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering
Antialiased Shadows with Depth Maps. SIGGRAPH Computer Graph-
ics, 21:283–291, August 1987.

32

[10] Kelvin Sung, Andrew Pearce, and Changyaw Wang. Spatial-Temporal
Antialiasing. IEEE Transactions on Visualization and Computer Graph-
ics, 8(2):144–153, 2002.

[11] Lance Williams. Casting Curved Shadows on Curved Surfaces. SIG-
GRAPH Computer Graphics, 12:270–274, August 1978.

[12] Lance Williams. Pyramidal Parametrics. SIGGRAPH Computer Graph-
ics, 17:1–11, July 1983.

33

