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Chapter 1

Introduction

1.1 The subject of the Master Thesis

The Goal of the master thesis is to design a regulator to improve the control of
the cathode voltage power supply for the Traveling Wave Tube. The Traveling
Wave Tube (TWT) is used in the radar system to amplify the radar wave.
A radar system needs a high voltage power supply to be able to amplify these
waves to the right power.
The problem is that the quality of the radar system depends on the quality of
the wave emitted. The radar system analyzes the signal from the echo of the
emitted wave re�ected on the target. From this analysis, the radar system can
determine where the target is positioned and in which direction and speed the
target is moving. The target could be an aircraft or a missile.
Improving the stability of the cathode voltage of the TWT will improve the
performance of the radar system.

Time
Echo is receivedPulse is transmitted

Target

RANGE Transmitted Pulse

Figure 1.1: Usually, a target's range may be most easily determined by measur-
ing the time between transmission of a pulse and reception of its echo.
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The system will take place for example in a weapon locating system such as
ARTHUR described further.

The possibility to improve this system with the Department of Automatic
Control of Lund came up during the Swedish control meeting of 1998 that took
place in Lund. Karl Johan Åström got interested in this problem and after a
meeting with Ericsson Microwave Systems (EMW) in 1999, it was decided to
involve a Master Thesis student to study the problem.

For EMW, this Master thesis is a way to put some advanced control design
in the system and also a way to learn more about automatic control theories
and the Matlab/Simulink software.

The work has been executed in Lund and in Mölndal near Gothenburg.

1.2 About EricssonMicrowave Systems AB (EMW)

Specialist in Microwave Technology

Ericsson Microwave Systems is Ericsson's core company for microwave com-
munications and defense electronics, as well as the Research and Development
center for microwave technology. It brings together the main specialist skills
- high-frequency technology, signal processing and high-speed electronics - in
products and systems within the defense electronics and the telecom areas. The
company is divided into three business units; Microwave Radio, Base Stations,
Defense Electronics and a unit for Core Technologies. Ericsson Microwave Sys-
tems is a wholly owned subsidiary of Telefonaktiebolaget LM Ericsson (100%).
The head o�ce is located in Mölndal outside Gothenburg, Sweden.

Full Advantage of Technical Interaction

Ericsson Microwave Systems is the world's leading supplier of microwave radio
links for telecom networks and a leading supplier of advanced antenna systems
and radio base stations for most mobile telephony standards. The defense elec-
tronics products are intended to provide information superiority for airborne,
ground-based and naval sensor systems as well as customer-adapted tactical
communications systems. Microwave technology and sophisticated signal pro-
cessing are vital in defense electronics and more and more important in commu-
nications systems. Ericsson Microwave Systems takes full advantage of technical
interaction in the development of telecom and defense products.

Production

Production is primarily performed at two locations - Borås and Mölndal. The
main production of defense electronics is in Mölndal. The Borås factory, with
over 1,300 employees, has been designated as the most e�cient Ericsson plant
in comparison with all Ericsson plants worldwide. Both plants are characterized
by organizations with considerable �exibility and with goal-oriented groups in
each production chain. In these goal-oriented groups, work with quality and
improvement is performed continuously.
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Geographic Locations

In Sweden Ericsson Microwave Systems operates in Borås, Lysekil, Kista, Skövde
and Mölndal (head o�ce). Ericsson Microwave Systems AB has a subsidiary in
Norway, Ericsson Radar A.S (60%). Associated companies are Ericsson Saab
Avionics AB (49.9%) and Saab Ericsson Space AB (40%).

Facts and Figures

Ericsson Microwave Systems invoicing amounted to 7.3 billion SEK in 1999.
The number of employees was 4000 at the end of 1999. The average age is 37
years. 23% are female and 77% are male. Almost two thirds are engineers or
technicians, and the majority of these are graduates, with over 70 quali�ed to
PhD level. Ericsson Microwave Systems' accumulated expenses for research and
development, including certain customer order related costs, totaled 591 million
SEK in 1999.

1.3 Ericsson Radar AS - Radars Systems

Ericsson Radar develops and produces radar systems for defense programs all
over the world. Ericsson Radar is a member of the Ericsson Group, a world
supplier in telecommunications and electronic defense systems. In particular,
Ericsson Radar supplies sensors and command systems for both army and naval
use in artillery and air defense applications, as well as electronic warfare (EW)
systems. These compact radar systems can be �tted in small, lightweight vehi-
cles to produce highly mobile and rugged military equipment for operation in
extremely harsh environments. Ericsson Radar o�ers a wide variety of services
and works closely with the customer to ensure a fully integrated, functional and
cost-e�ective system solution.

ARTHUR Weapon Locating System mounted on a Hägglund BV-206 tracked
vehicle. ARTHUR is the world's �rst truly mobile stand-alone weapon

locating and artillery �re control radar.
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Weapon Locating and Fire Control Radar

The Artillery Hunting Radar ARTHUR is Ericsson Radar's main product. It is
the world's �rst truly mobile, stand-alone weapon locating and artillery �re con-
trol radar. The design is very �exible and the equipment may be �tted in a wide
variety of vehicles. The Norwegian and Swedish armies mount ARTHUR on a
Hägglund BV 206 tracked vehicle. For the Danish army ARTHUR is installed
in a 13' ISO corner framed container to be mounted on a 4x4 wheeled o�-road
truck. Both solutions provide high mobility and the ability to be transported by
a Hercules C-130 aircraft. ARTHUR is designed to be operated in severe envi-
ronments, and uses a high-precision phased array antenna with state-of-the-art
techniques to suppress clutter and bird echoes. ARTHUR automatically detects
shells from mortars, tube- and rocket artillery. The exact weapon position of
the artillery is determined from measured ballistic data which is also used to
estimate the impact area of both incoming and outgoing shells. Data from the
radar is automatically transmitted to a combat center through an integrated
command, control, communication and information system, where the informa-
tion is further evaluated and in hostile situations used to direct counter-battery
�re.

The container version of ARTHUR in position, covering a 90 degree sector in
search of rising projectiles for weapon location and impact point estimation

and falling projectiles for �re control.
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1.4 The Automatic Control Department in Lund

Institute of Technology

The department was formed in 1965. It has now about 40 people. There are
eight professors, one guest researcher, some twenty PhD students, secretaries
and a technical support sta�.

The goal of the department is to provide students with a solid theoretical
foundation combined with a good engineering ability. This is re�ected in the
research program which, broadly speaking, is divided into theory and applica-
tions.

Technology transfer takes many forms. One is to take results from research
and present them so that they are easy to use. Probably the best way to do this
is through personal exchange between industry and university. Students are a
very e�ective vehicle for the transfer.

The major research areas are:

� Tuning, adaptation, and robust control

� Computer aided control engineering

� Applications

Projects are typically done together with external partners. Current projects
include robotics, real-time systems, supervisory control, fuzzy control, and bio
technology.

The department participates also actively in international programs for stu-
dent exchange. This is facilitated by the fact that all advanced courses are given
in English when students who do not speak Swedish participate.
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Chapter 2

Description of the system and

its control requirement

2.1 Description of the process and the control

problem

The Traveling Wave Tube (TWT) gets a disturbance on its cathode voltage
every time that it emits a radar pulse. A current is drawn for every pulse. This
current is loading the cathode power supply and phase compensator system via
output impedances of the system, mainly two capacitors. The result of the
loading is a disturbance on the cathode voltage.
The Power Supply (PS) system is composed mainly by two plants called :

� the Cathode Voltage Power Supply

� the Phase Compensator

The control problem is to reject these disturbances as completely as possible in
order to keep the same voltage when the next pulse of current, hence the next
disturbance, is coming. The arrival of these pulses is supposed unknown and
random. The time between two pulses is assumed to be between 200 and 600
microseconds and the length of the current pulse is 10 microseconds and the
maximum average duty cycle is 2.5%.
To solve this control problem, we are able to measure :

� a fraction, via a sensor, of the sum of the output of the Cathode Power Sup-
ply voltage and the phase compensator voltage that is called the Cathode
Voltage (the main voltage that we have to care about).

� a fraction, via another sensor, of the phase compensator voltage.

The cathode voltage has to be controlled to a nominal value of around -24000
Volts and the phase compensator voltage has to be kept at around 200 Volts.
There are -12V to +12V limitations on the control signals. The phase compen-
sator voltage is also limited between 0 and 400 Volts.
It follows that the system is a MIMO system with two inputs and two outputs
with some non-linearities and some very speci�c performance requierements.
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2.2 Background

Ericsson Microwave Systems used a proportional integral controller for a slow
loop to compute the cathode power supply control signal. To help this regulator
reject fast disturbances, they have added a phase compensator in order to have
a better accuracy on the cathode voltage. The phase compensator has quite a
�special design� that I will not go into in details. But the idea is to add this
phase compensator voltage via a capacitor to the cathode voltage to compensate
for the residual slope that will occur.
The idea held by Ericsson Microwave is to control independently both signals,
phase compensator voltage and cathode voltage around a reference, 200V and
-24 000 kV in order to reject the disturbances.

3 φ
Line Voltage

PI
-

+

TWT
i

Phase compensator
Generator

Cathode Power Supply
Generator

REG

PI Switch

PI Switch

1A

i

time

-24kV

V Cath 

200 V
around

V comp

of the current loop

of the current loop

10 µ s

Figure 2.1: A proportional Integrator (PI) controller takes care of the Cathode
Voltage and another controller takes care of the Phase Compensator Voltage.
Two others PI controllers are inside the two plants to control the current.

Ericsson Microwave Systems is quite satis�ed with the results obtained by
this design of regulator because the system works quite well. But they want to
improve the design in order to have more freedom on the radar system.

2.3 Power Electronics Description

See Figure 2.3 on page 14.
The power supply system of the cathode voltage for the TWT (Traveling Wave
Tube) is composed of a chain of blocks.
There are 14 di�erent blocks in the block diagram, numbered as follow :

1. Line Relay
The power to the plant is taken from a three phase line via relays.
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2. Six Pulse Recti�er
The function of this block is to rectify the three phase voltage to get a DC
voltage.

3. Filter
The function of the low pass �lters is to smooth the DC voltage attenuating
the high frequencies. The cut frequency of this LC-�lter is around 140 Hz
with L = 3 mH and C = 1100�F.

4. Switch Regulator
The switch regulator is commanded by the regulator ampli�er in order
to control the cathode voltage. The switch regulator operates in current
controller Buck con�guration. The duty cycle of the Buck switch regulator
is determined by a Pulse Width Modulator (PWM) and is depending on
the value of the control signal. The frequency of the switch regulator is
80kHz for the Cathode Power Supply system. This frequency will be a
limit in the design of the new regulator.

Tswitch

τ switch

Sawtooth

Time

Time

Switch Control pulse

Voltage

Voltage

Control signal

Figure 2.2: The Pulse Width Modulator transforms a DC voltage to a pulse
voltage, the duty cycle of which is proportional to the DC voltage. Tswitch is
equal to 12.5 �s.

5. Current Mode Sensor
This sensor enables the PWM to have information of the current. This
kind of control loop is internal in the switch regulator and is not to be
taken into account in my work.
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6. Chopper
The frequency of chopper is 40 kHz. This circuit makes it possible to
transform the switch regulator output voltage (DC) to high voltage by
the High Voltage Transformer.

7. High Voltage Transformer (HV Transformer)
It transforms the signal from -500 V +500 V to -12 kV +12 kV.

8. Recti�er and Filter
Voltage doublers, recti�ers and �lter result in a smooth DC voltage of -24
000 V, the cathode voltage for the TWT.

9. Output Capacitor
The disturbances of the current pulses coming from the TWT are loading
this capacitor and thus create a voltage disturbance that the regulator has
to reject.

10. Sensor of the Cathode Power Supply
This sensor is a voltage divider. It is necessary to measure a sample of
the cathode voltage.

11. Phase Compensator
The output voltage of the Phase compensator is limited between 0 and
400V. It should be controlled around 200 V in order to be able to re-
ject disturbances. Roughly, the fast disturbances will be rejected by this
system.

12. Sensor of the Phase Compensator
The sensor has almost no dynamics and is also a voltage divider. Through
this sensor we are able to measure the Phase Compensator voltage.

13. Regulator Ampli�er
The new designed regulator is a part of the existing regulator ampli�er.
The purpose of this work is not to redesign completely this ampli�er reg-
ulator, only the control part.

14. Traveling Wave Tube (TWT)
The TWT is a pulsed microwave ampli�er. In order to maintain a good
quality of the microwave signal, the tube requires a very stable and smooth
power, the cathode voltage.
A current is drawn in the TWT from the power supply during the mi-
crowave pulses. This output current creates the disturbances that the
regulator needs to be able to reject as fast as possible.

2.4 System requirement and control concept

To improve the performance of the radar system in general, the power supply
of the ampli�er system of the radar waves has to be as stable as possible. The
most critical system is the cathode voltage.
The main disturbances that we note in this cathode voltage is the one coming
from the variation of the output current due to the pulsing. In a �rst approx-
imation, we can consider this variation of the output current as pulses of 10

15



Cathode Voltage difference between two pulses

1 A

cath

T as small as possible (around 200 microseconds)

E∆

80V

τ 10µ s

-24 000V

Ecath

Current pulses

Figure 2.4: The control problem is to design a controller in order to particularly
reject this kind of disturbances with a very good accurancy before the next
pulse.

microseconds. But through the output impedance of the phase compensator
and the cathode power supply, these disturbances add a voltage on the Cathode
Power Supply voltage and on the Phase Compensator Voltage.
So the problem is to reject the perturbation as fast as possible in order to con-
trol the cathode voltage at -24 000 Volts with the best possible accuracy.

The automatic control study will be done in continuous-time.

It is most likely that the future implementation of the controller will be in
continuous-time because of the cost of the analog-digital converter at the fre-
quency required and the cost of development of a computer controlled system.

2.5 Performance - Robustness Speci�cation

I do not specify any details about the accuracy for instance because of con�-
dentiality. But the performance of the new regulator depends on the ability
to restore the cathode voltage Ecath after each pulse disturbance. For the case
of this work, an RMS average will be computed on 10 pulses after the steady
state has been reached. This average should be inferior to a limit that remains
con�dential, so that the implementation of the new controller can be considered
by EMW.
It is also required to be robust to slight variations of the plant because of the
uncertainties in the model and to variations of the controller because of the ap-
proximation that will be made during its implementation. A robustness analysis
should be performed with the appropriate tools needed for a multivariable or
MIMO (Multi Input Multi Output) system in order to conclude on the possi-
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Time to next pulse

∆ Ecath

Figure 2.5: The task is to try to decrease �Ecath to the next pulse to be able
to use as short time between pulses as possible.

bilities of implementation of this controller.

2.6 Design Process

Extracts from Control Design System Bernard Friedland pages 326-
327.
�At this point, it is appropriate to view the system design procedure that will
be developed in the next chapters. In order to determine the control and the
observer gains a mathematical model of the plant must be developed. And even
before that is done, an overall system concept must be developed in which it
is decided by what means the control is to be accomplished and what variables
are to be measured. At about this time it is also necessary to determine per-
formance speci�cations: characteristics of the desired system behavior and the
quality of components available that might be able to achieve the desired per-
formance.
The design steps, moreover, do not end with the speci�cation of the compen-
sator. In almost every case the process is nonlinear; there are usually limits
on the control signals; the process may be of higher order than that used in
the model. The only way that these issues can be solved is by a very thorough
simulation of all the e�ects that the system designer thinks might conceivably
in�uence the system behavior. If the results of a comprehensive simulation are
favorable, the system would �nally be fabricated and tested. If the steps leading
to this last step are done skillfully, and if fortune smiles, the system will work
as expected.�
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Performance Specification

Control Concept

Check robustness

Control gains

Observer

Math. model

Build and test

Simulate

OK?

1

2

3

4

5

7

8

6

(OR)

(OR)

Figure 2.6: The steps sequence in control system design shows that it is neces-
sary to have a mathematical model before searching the optimum control and
observer gains that meet the speci�cation.
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Chapter 3

Modeling of the complete

system

The modeling of the system will be conservative in order to be sure that the
results can correspond to the real process.
All the modeling has been made from the Bode diagrams obtained from the soft-
ware used by Ericsson Microwave Systems to study the behavior of the power
electronics components. Its name is Simplis and it is running in a Unix envi-
ronment.
From the Bode diagrams of the Cathode Voltage Power Supply and the Phase
Compensator, the models of the plant and the one used in the observers will be
deduced.
From a comparison of the results of Impedance Output frequency response, a
model of the output disturbances added on the Cathode Voltage will be per-
formed.
A model of the sensor will be computed directly from the schematics of the
system.
All these tasks will permit to construct the Simulink's block diagrams in order
to be able to simulate our system, to design a controller, and �nally to control
the system and try to �t the speci�cations.

3.1 Precisions about the numerical values of the

transfer function

All the numerical values given in this report are in the international measure-
ment system. But during the simulation, because of some numerical problems,
the scaling of time used was di�erent.
For instance, all the transfer functions were rescaled. The Laplace operator s
becomes s0.

With
s0 = 10�5 � s

The consequence is that the time unit of the simulation becomes 10�s. This is
not very convenient but it is the only way we were able to perform simulation.
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3.2 Modeling of the plant

In this section, the presentation of an extended model and a reduced model will
be made.
The extended model tries to �t with the best possible accuracy the Bode diagram
that Ericsson's simulation software gives. This model will permit to simulate
the plant in Matlab / Simulink.
The plant is composed of two parts : the Cathode Power Supply and the Phase
compensator.
In this section, the model of Cathode Power Supply will be called model Cath
and the model of the Phase Compensator model Comp.

+

+

Ucath

Ucomp

Ycath

Ycomp

Cathode Voltage

Power Supply Tcath

Phase Compensator

Tcomp

Figure 3.1: The total plant is constructed by adding the output of the two plants
to get Ycath, the cathode voltage, and by keeping as output the Phase Compen-
sator Voltage Ycomp. Ucath and UComp are the control signal of respectively the
Cathode Voltage Power Supply and the Phase Compensator.
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3.2.1 Models of Cathode Power Supply

Data from the EMW computer simulation software

The data that we got from Ericsson goes from 0.1Hz to 1MHz.
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Figure 3.2: The line shows the Bode diagram of the Cathode Power Supply
given by EMW. Above 80 000 Hz, the data are reasonably not reliable.

The clock frequency of the Pulse Width Modulator of the Cathode Power
Supply is 80 kHz so the data are assumed to be reasonably reliable up to 80
kHz.

Complete Model

The data that we got from Ericsson permit to draw a good model up to 80 000
Hz. Beyond 80 000 Hz, the system becomes more and more nonlinear because
of the Pulse Width Modulator so it is not possible to do a linear model.
By assumption on the comportment of the plant, a 4th order Butterworth �lter
will be added at high frequency on our model. A Pulse Width Modulator above
its clock frequency works quite randomly and the delay is also increasing a lot.
Also, it does not make too much sense to model a part of the system that we
can not use to control the plant. But the problem is to be sure not to use this
frequency domain in the simulation to control the system.

TCath =
G0Cath(s

2 � 2as+ a2 + b2)(s + 2�f3)(s + 2�f6)(s + 2�f7)

(s2 + 2as+ a2 + b2)(s + 2�f1)(s + 2�f2)4(s + 2�f4)(s + 2�f5)
Bfilter
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With

G0Cath = �9:1887 � 1018

Bfilter =
!4

(s2+2�1!s+!2)(s2+2�2!s+!2)
! = 2� � 80000rad.s�1 �1 = 0:38 �2 = 0:92

a = 2� � 21600rad.s�1 b = 2� � 100320rad.s�1

f1 = 1Hz f2 = 15500Hz f3 = 840Hz

f4 = 440Hz f5 = 20000Hz f6 = 50000Hz f7 = 80000Hz
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Figure 3.3: The crosses show the Bode diagram of the model used to simulate
the Cathode Power Supply plant in the Matlab / Simulink simulation. There
is some uncertainty on this model above 70 kHz. The two curves can not be
superposed anymore.
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3.2.2 Models of Phase Compensator

Data from the Ericsson MW computer's simulation software

The data that we got from Ericsson goes from 0.1 Hz to 100 kHz. The simulation
software failed to compute for higher frequencies.
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Figure 3.4: The line shows the Bode diagram of the Phase Compensator given
by EMW. Above 100 000 Hz, there is no data.

The result is reliable up 100 kHz since the clock frequency of the Pulse Width
Modulator of the Phase Compensator is 100 kHz.

Complete Model

The data that we got from Ericsson permit to draw a good model up to 100 000
Hz. After 100 000 Hz, the system becomes more and more nonlinear because of
the Pulse Width Modulator so that it is not possible to do a linear model.
By assumption on the comportment of the plant, a 4th order Butterworth �lter
will be added at this frequency on our model for the same reason as for the
Cathode Power Supply.

TComp = G0Comp

(s + 2�f10)

(s + 2�f11)(s + 2�f12)(s + 2�f13)(s+ 2�f14)
Bfilter
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With

G0Comp
= 9:9176 � 1015

Bfilter =
!4

(s2+2�1!s+!2)(s2+2�2!s+!2)
! = 2� � 85000rad.s�1 �1 = 0:38 �2 = 0:92

f10 = 1:1 � 103Hz f11 = 2:1 � 103Hz f12 = 3:9 � 10�1Hz

f13 = 5 � 103Hz f14 = 1:2 � 105Hz
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Figure 3.5: The crosses show the Bode diagram of the model used to simulate
the Phase Compensator plant in the Matlab / Simulink simulation. There is
some uncertainty on this model above 1 kHz. The two curves of phase can not
be superposed anymore.
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3.2.3 Nonlinearities and uncertainties

Nonlinearities taken into account during the simulation

Each control signal has limitations before acting on the plant. The limitations
are -12V +12V.
On the output of the Phase Compensator, there is also a limitation of 0 V to
400 V.

Cathode Voltage 
Power Supply

Phase Compensator

+

+

Control signal

Cathode Power Supply

0 V 400 V

Cathode Voltage

Output

Output

Control signal

Phase Compensator

Phase Compensator

Voltage

-12V +12V

-12V +12V

Figure 3.6: The construction of the plant with the identi�ed nonlinearities :
the control signal limitations and the saturation on the output of the Phase
Compensator.

Nonlinearities that are not completly taken into account during the
simulation

Beyond 100 000 Hz, the Phase Compensator system becomes more and more
nonlinear because of the Pulse Width Modulator. The same thing happens after
80 000 Hz for the Cathode Power Supply. These uncertainties are known but
it is very di�cult to completely take care of them during the simulation. The
model of the plants includes a Butterworth �lter that permits to simulate the
fact that the gain and the phase go down quite quickly.
The models used do not take care of the nonlinarities created by the several
feedback loops that are inside the system. For instance, a current is sensed
in the system to also adjust the control voltage in the regulator. Only a linear
model of the two plants was given by EMW hence the nonlinearities inside these
two plants are a bit neglected.
To care of these nonlinearities, a huge and time consuming work could be done
to do a model of each �object� of the system. This job was not included in the
master thesis.
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3.3 Modeling of the disturbances

3.3.1 Theory

Here, we need to model the disturbances that we get on the outputs. With this
model, we will be able to simulate the disturbances that we get on the outputs
in Matlab/Simulink in order to be able to reject them.

ZoutCath

ZoutComp

I

I

10 µ s
1A

time

VdistCath

VdistComp

Cath P.S.

Compensator

Control

Signal

Control

Signal

Phase

Figure 3.7: The pulses of current adding a disturbance to the outputs of the
system.

3.3.2 Electronic Schematic

140 nF

C3

r

0.1 Ohm

C2

L

2mH

R

80 Ohm

C1

r

0.1 Ohm

µ1 F 20 µF

Phase CompensatorCathode PS

Output Impedance Output Impedance

Figure 3.8: On the schematic of output impedances, the Cathode P. S.
impedance is almost a capacitor, the Phase Compensator is much more compli-
cated.

The simpli�cation of the output impedance follows some simulations of out-
put impedances that have been done in Ericsson Microwave Systems with the
Simplis simulation software.
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From the electronic schematic below, we will be able to compute the transfer
function.

3.3.3 Computation of the transfer function of the output

impedance of the cathode power supply

Zoutcath (!) =
Ucath

I
= r +

1

jC3!
Electrical equation

Zoutcath (s) =
Ucath(s)

I(s)
=

rC3s+ 1

C3s
Transfer function

With �
C3 = 140 nF
r = 0:1 


Zoutcath (s) =
1:4 � 10�8s + 1

1:4 � 10�7s

Output impedance versus frequency

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

10
8

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−90

−89

−88

−87

−86

−85

−84

jZoutcath
j

in ohms

Phase

in degree

Frequency in Hz

Figure 3.9: The output impedance versus frequency graphic of the cathode
power supply shows that the current will be integrated to draw the disturbance.
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Disturbances in time domain

The current pulses of 10 �s and 1 A load the output impedances of the system
and are alternatively separated by 200 �s and 600 �s so that the duty cycle
average is 2.5 %.
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Figure 3.10: The amplitude of current pulses are considering to be of 1 A.

From a current pulses of 10 �s, the voltage disturbance gets the following shape
through the output impedance of phase compensator.
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Figure 3.11: The disturbance on the cathode power supply output is almost a
load (no control).

3.3.4 Computation of the transfer function of the output

impedance of the phase compensator

From the electrical equations below :

Zoutcomp
(!) =

Ucomp

I
=

Z1Z2

Z1 + Z2
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With

�
Z1 = r + 1

jC1!

Z2 = 1
jC2!

+ jL! +R

We get the following transfer function :

Zoutcomp
(s) =

Ucomp(s)

I(s)
=

rC3s + 1

C3s

With
8>>>><
>>>>:

C1 = 1 �F
r = 0:1 


L = 2 mH
C2 = 20 �F
R = 80 


Zoutcomp
(s) =

4 � 10�15s3 + 4:016 � 10�8s2 + 0:0016s+ 1

4 � 10�14s3 + 1:602 � 10�9s2 + 2:1 � 10�5s

Output impedance versus frequency
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Figure 3.12: The output impedance versus frequency graphic of the phase com-
pensator shows that the dynamics are more complex than for the cathode.
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Disturbances in time domain
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Figure 3.13: The disturbances on the Phase Compensator voltage are smaller
than on the Cathode Power Supply.

From current pulses of 10 �s, the voltage disturbance has the following shape
through the output impedance of phase compensator.

3.3.5 Resulting disturbances

Output impedance versus frequency

This is the output impedance versus frequency graphic of the resulting output
impedance of the entire plant.
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Figure 3.14: The output impedance versus frequency graphic of the parallel sum
of the two output impedances shows that the impedance is mainly a capacitor.
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Disturbances in time domain

This graphic shows the total disturbance that we �nally get in the cathode
voltage -the main output that we have to care about-.
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Figure 3.15: The resulting disturbance in time domain on Cathode Voltage is
mainly a load. There is so far no control of the plant.
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3.4 Model of the sensors

It is only possible to measure the voltages through the sensors described further.
The sensors transform the output voltages from around -24000 V and around
200 V to voltage between -12 V and +12 V so that they are usable by the control
electronic part.
The study of the behavior of the sensors in the frequency domains will permit
to see if they will be a problem in the future design of the controller or not.

3.4.1 Model of the Phase Compensator Voltage sensor

Schematics

The schematic of the sensor permits to see that only few dynamics will be
generated.

Phase
Compensator
Voltage

R1

R2 C

Compensator

Phase

Voltage

Sensor

Figure 3.16: The schematics of the sensor used in order to measure the Phase
Compensator Voltage is quite simple. It is almost a voltage divider.

Transfer functions

VCompsensor = R2

jR1R2C!+R2+R1

� VComp Electrical equation

, TSensorComp
(s) = R2

R1R2Cs+R2+R1

Transfer function

With
R1 = 300000 


R2 = 2150 


C = 680 pF

TSensorComp
(s) =

4902

s+ 6:889� 105
Transfer function
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Bode diagram

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−100

−80

−60

−40

−20

0

Gain

Phase

in degree

Frequency in Hz

Figure 3.17: The Bode diagram of the Phase Compensator Voltage sensor shows
that the ratio is around 0.007. The high frequency above 105 Hz will be atten-
uated.
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3.4.2 Model of the Cathode Voltage sensor

Schematics

Z2

Z3

Z4

Cathode

Voltage

Cathode

Sensor

Voltage

I1

I2

Z1R1

C1

C2

C3

R2

R3

C4

R4

Figure 3.18: The schematics of the sensor used in order to measure the Cathode
Voltage is much more complicated.

This schematic permits to see that the sensor is almost a voltage divider but
with a lot of dynamics. We can count 4 capacitors.

Transfer functions

8<
:

VCath = I1(Z1 + Z4)� I2Z4

0 = I1Z4 � I2(Z4 + Z2 + Z3)

)

8>>>><
>>>>:

I2 = I1
Z4

Z4+Z2+Z3

I1 = Z2+Z3+Z4

Z4Z1+Z2Z1+Z2Z4+Z3Z1+Z3Z4

� VCath

VCathsensor = Z3I2

) VCathsensor =
Z4Z3

Z4Z1 + Z2Z1 + Z2Z4 + Z3Z1 + Z3Z4

� VCath
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With 8>>>>>>>>>>><
>>>>>>>>>>>:

Z1 =
R1

jR1C1!+1

Z2 =
R2

jR2C2!+1

Z3 =
R3

jR3C3!+1

Z4 =
jC4R4!+1

jC4!

C1 = 100 pF
R1 = 100 M


C2 = 10 nF
R2 = 1 M


C3 = 500 nF
R3 = 20 K


C4 = 10 nF
R4 = 1:5 M


TSensorCath(s) =
0:000198s2+ 0:033s+ 1:32

s2 + 234s+ 6667
Transfer function

Bode diagram
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Figure 3.19: The Bode diagram of Cathode Voltage Sensor shows that the ratio
is 0.000198 for low frequency. The dynamic can be neglected.
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3.4.3 Remarks about the sensors

The sensors are inserted into the simulation schematic. But in the design of the
controller, the small dynamics inside the sensors are considered as unmodeled
dynamics, hence uncertainties. The models of the sensor are not used to com-
pute the observer and the feedback of the controller.
In conclusion, one sensor (Phase Compensator Voltage Sensor) is almost a volt-
age divider and it is also reasonable to compare the other one (Cathode Voltage
Sensor) to a voltage divider.

This implies that a gain will be added before the controller to compensate
for the attenuation due to these sensors.

3.5 The construction of the complete system

The disturbances from the current pulses are added to the Cathode Voltage
Power Supply output and the Phase Compensator output via the output impedances.
The Cathode Voltage, the sum of the Cathode Voltage Power Supply output,
the Phase Compensator output and their disturbances, and the Phase Compen-
sator Voltage, the sum of the Phase Compensator output and its disturbance,
are measured via two sensors condered as voltage dividers.

The regulator will apply the control signal on the system and sense the two
outputs in order to reject the disturbances.
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Chapter 4

Design of the regulator

4.1 Introduction to the state space representa-

tion

Physical notion of system state

Extracts from Control Design System, Bernard Friedland pages 16-
17.
� �The state of a dynamic system is a set of physical quantities, the speci�ca-

tion of which completely determines the evolution of the system.� is an abstract
de�nition of a state of a dynamic system.

Behavior of dynamic systems is represented by systems of ordinary di�eren-
tial equations. The di�erential equations are said to constitute a mathematical
model of the physical process.

In the state-space approach, all the di�erential equations in the mathemati-
cal model of a system are �rst-order equations: only the dynamic variables and
their �rst derivative (with respect to time) appear in the di�erential equations.
Since only one initial condition is needed to specify the solution of the �rst-order
equation, it follows that the number of �rst-order di�erential equations in the
mathematical model is equal to the order of the corresponding system.�

Electronic circuit example

R

V2V1

L

C

I

Figure 4.1: I and V2 are the states of this simple electrical circuit.
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�
V1 = Ri+ Ldi

dt
+ V2

i = C dV2
dt

The general rule of analysis of circuits is: �The states of an electrical circuit are
the current in the self and the capacitor voltages.�

�
x1 = i

x2 = V2

,

8<
:

_x1 =
�R
L
x2 �

1
L
x2 +

1
L
V1

_x2 =
1
C
x1

y = x2

Notion of State Representation

dny

dtn
+ a1

dn�1y

dtn�1
+ : : :+ any = bu

Order n di�erential equations :

8>>>>><
>>>>>:

x1 = y

x2 = _y

x3 = �y
...
xn = y(n�1) = dn�1y

dtn�1

8>>>>><
>>>>>:

_x1 = x2
_x2 = x3
...
_xn�1 = xn
_xn = �a1xn � a2xn�1 : : :� anx1 + bu

State representation! Matrix form

X2Rn =

0
BBB@

x1
x2
...
xn

1
CCCA _X =

0
BBB@

_x1
_x2
...
_xn

1
CCCA

_X =

0
BBBBBBB@

0 1 0 0 : : : 0

0 0 1 0 : : : 0

0 0 0 1 : : : 0
. . .

0 0 0 0 0 1

�an �an�1 : : : : : : : : : �a1

1
CCCCCCCA

0
BBBBBB@

x1
x2
...
...
xn

1
CCCCCCA

+

0
BBBBBB@

0
...
...
0

b

1
CCCCCCA
u

n � n n � 1

y = (1 0 : : : : : : 0)

0
BBBBBB@

x1
x2
...
...
xn

1
CCCCCCA

+ 0 � u
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,

�
_x = Ax +Bu State Equation
y = Cx+Du Output Equation

Generalization to Multi-Inputs Multi-Outputs

We are now considering a system at m inputs and p outputs and n states.

�
_x = Ax+Bu

y = Cx +Du

8<
:

x : state vector
u : input vector
y : output vector

8>><
>>:

A : state matrix
B : input matrix
C : output matrix
D : Input/Output coupling

Input-Output Relations :

State representation ! Transfer Functions

�
_x = Ax+Bu

y = Cx+Du

Matrix

H(s)

u1

u2

un yp

y2

y1
Transfer

u 2 Rm (m � p) y 2 Rp

Figure 4.2: The transfer Matrix draws the relationship between inputs and
outputs.

The computation of the transfer Matrix

H(s) = C(sI �A)�1B+D
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4.2 Compensator design by the separation prin-

ciple

Design of regulators for MIMO systems

Extracts from Control Design System, Bernard Friedland pages 222.
�It is possible to place the closed-loop poles anywhere we wish in the complex s
plane. This means that we can, in principle, completely specify the closed-loop
dynamic performance of the system. In principle , we can start with a sluggish
open-loop system and force it to behave with alacrity ; in principle, we can start
with a system that has very little open-loop damping and provide any amount
of damping desired. Unfortunately, however, what can be attained in principle
may not be attainable in practice. Speeding the response of a sluggish system
requires the use of large control signals which the actuator (or power supply)
may not be capable of delivering. The consequence is generally that the actuator
saturates at the largest signal that it can supply. In some instances the system
behavior may be acceptable in spite of the saturation. But in other cases the
e�ect of saturation is to make the closed-loop system unstable.�

We consider the following system:8<
:

_x = Ax+Bu State Equation
y = Cx+Du Output Equation
u = �Lx Control Law

If the dynamic system under consideration has more than one input, that
is, B has more than one column, then the gain matrix L in the control law has
more than one row.
If the dynamic system under consideration has more than one output, that is,
C has more than one row, then the gain matrix L in the control law has more
than one column.

The need for observers

Extracts from Control Design System, Bernard Friedland pages 259.
�[...], we studied methods for shaping the dynamic response of the closed-loop
system by selecting the feedback gains to �place� the resulting poles at desired
locations. In order to place the poles at arbitrary locations, it is generally
necessary to have all the state variables available for feedback. There are many
systems in which acceptable performance can be achieved by feeding back those
state variables that are accessible to measurement. But often it is not possible
to achieve acceptable performance using only those state variables that can be
measured.�
�If the system is observable, it is possible to estimate those state variables that
are not directly accessible to measurement using measurement data from those
state variables that are accessible.�

The separation principle

Extracts from Control Design System, Bernard Friedland pages 290-
291.
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�The separation principle is so disarmingly simple that it almost comes as a
surprise: it is hard to imagine that the observer designed for a known input
can serve to estimate the state of the process for the purpose of generating the
control input. But, it does work.�
�Underlying the separation principle is a critical assumption, namely that the
observer includes an exact dynamic model of the �plant� : the process under
control. This assumption is almost never valid in reality. In practical systems,
the precise dynamic model is rarely known. Even that which is known about the
real process dynamic model is often too complicated to include in the observer.
Thus the observer must in practice be con�gured to use only an appropriate
model of the plant. This encounter with the real world does not vitiate the sep-
aration principle, but it means that the e�ect of an inaccurate plant model must
be considered. If the design achieved through use of the separation principle is
robust, it will tolerate uncertainty of the plant dynamics. The robustness tests
(gain and phase margins, ...) can be used to assess robustness of control laws
designed by use of the separation principle.�
We consider the following system :

_x = Ax +Bu

With observations given by :
y = Cx

Where A, B, C are the model of the plant used for the observer.
If we design a �full-state feedback� control law by :

u = �Lx

And also suppose we have designed an observer :

_̂x = Ax̂+Bu+K(y �Cx̂)

where x̂ are the state estimate

If the states can not be measured the control law will be :

u = �Lx̂

The observer-controller design

The observer permits to estimate the states of the system so that it will be
possible for the states feedback to control the system and hence to reject the
disturbances, see �gure 4.3 on page 43.
The Matrix of reference permits to adjust the steady state of the system to the
wanted reference, see section 4.6 on page 56.
The gains in front of the observer permit to reconstitute the signals, Cathode
Voltage and Phase Compensator Voltage, that the observer-controller has to
take care of.
The model of the limitations of the control signal permits to design an anti-
windup, see section 4.8 on page 59.
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4.3 Models of the plant used for the observer

The model of the plant used for the observer is a reduced model which takes
care of the important features of the Bode diagram that Ericsson's simulation
software gives. This reduced model is set up in order to design the observer
controller in a simpli�ed form.
First, this is necessary to limit the complexity of the analog controller and to
limit the time of simulation inside a reliable range. Second, it also permits to
tune it easily and have a better understanding of its behavior.
The observer model is also composed of two parts : the Cathode Power Supply
and the Phase compensator.
In this section, the model of Cathode Power Supply will be called model CathObs
and the model of the Phase Compensator model CompObs.

4.3.1 First Reduced Model

To simplify the model, the slow poles are neglected. Instead of them, integrators
are used. The second idea is to neglect the small ripple on the gain and phase
curve (poles and zeros close for example).

Models of Cathode Power Supply
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Figure 4.4: The circled line shows that the �rst reduced model used for the
Cathode Power Supply is quite similar for all frequencies except at low frequency
with the integrator instead of the slow pole.
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TCathObs1 = G0CathObs1

(s2 � 2as+ a2 + b2)

s(s2 + 2as+ a2 + b2)(s + 2�f21)(s + 2�f20)4

With
G0CathObs1

= �2:7131 � 1030

a = 2� � 12000rad.s�1 b = 2� � 70400rad.s�1

f20 = 1:55 � 104Hz f21 = 3:2 � 104Hz

Models of Phase Compensator
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Figure 4.5: The circled line shows that the �rst reduced model used for the
Phase Compensator is a bit di�erent also at high frequencies.

TCompObs1 = G0CompObs1

s + 2�f40

s(s + 2�f41)(s + 2�f42)(s + 2�f43)

With
G0CompObs1

= 1:0175 � 1016

f40 = 1:1 � 103Hz f41 = 2:1 � 103Hz
f42 = 5 � 103Hz f43 = 1:2 � 105Hz
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4.3.2 Second Reduced Model

The second reduced model is constructed so that the model has a smaller order
while taking into account the main frequency behavior.
By comparing the control results of the two di�erent models, it will be possible
to conclude on the necessity to keep a controller of the highest order or not.

Models of Cathode Power Supply
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Figure 4.6: The circled line shows the second reduced model used for the Cath-
ode Power Supply which comports much more di�erences than the �rst mainly
above 50 000 Hz.

TCathObs2 = G0CathObs2

1

s(s + 2�f30)4

With
G0CathObs2

= �1:3494 � 1025

f30 = 1:55 � 104Hz
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Models of Phase Compensator
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Figure 4.7: The circled line shows the second reduced model used for the Phase
Compensator which also comports much more di�erences than the �rst mainly
above 20 000 Hz for the phase.

TCompObs2 = G0CompObs2

s + 2�f50

s(s + 2�f51)(s + 2�f52)

With

G0CompObs2
= 1:3495 � 1010

f50 = 1:1 � 103Hz f51 = 2:1 � 103Hz f52 = 5 � 103Hz
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4.3.3 Observability problem

In order to keep the system observable, it is necessary to construct the model
in an unordinary way.
If there are the same poles in Model Comp and in Model Cath, the model built
will not be observable.
In this case, the slow poles of the system are replaced by some integrators. The
model drawn in 1 is unobservable; the model drawn in 2 is observable.

1/s

1/s

1/s

1/s

Ycath

Ycomp

without integrator

without integrator

+

+

Ucath

Ucomp

Ucath

Ucomp

Ycath

YcompModel of CompObs

Model of CathObs

Model of CathObs

Model of CompObs

+

+

without integrator

without integrator

1

2

Figure 4.8: The construction 2 of the model used for the observer permits to
keep the model observable.
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4.3.4 State space representation

We are considering TCathObs and TCompObs ,previously computed and where

the integrator is removed from the transfer function because of ob-

servability problem introduced previously.

The following equations de�ne the relationship betweenACathObs ,BCathObs ,
CCathObs , ACompObs , BCompObs , CCompObs and TCathObs TCompObs :

TCathObs = CCathObs (sI �ACathObs )
�1BCathObs

TCompObs = CCompObs (sI �ACompObs )
�1BCompObs

With ACathObs , BCathObs , CCathObs the state space representation of the re-
duced model of the Cathode Power Supply and with ACompObs , BCompObs ,
CCompObs the state space representations of the reduced model of the Phase
Compensator introduced previously, we can construct the state space represen-
tation (A, B, C) of the model used for the observer :

_̂x = Ax̂+Bu

y = Cx

_̂x =

2
664
ACathObs 0 0 0

0 ACompObs 0 0

CCathObs CCompObs 0 0

0 CCompObs 0 0

3
775 x̂

+

2
664
BCathObs 0

0 BCompObs

0 0

0 0

3
775
�

uCath
uComp

�

y =

�
yCath
yComp

�
=

�
0 0 1 0

0 0 0 1

�
x̂

The two last states are introduced to take care of the observability problem.
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4.3.5 Integration of the Cathode Voltage sensor in the

model of the plant used for the observer

Why is there the need to integrate the sensor model in the model of
the plant used for the observer ?

When we look at the Bode diagram of the Cathode Voltage sensor presented
previously in section 3.4.2 on page 34, it is not expected to limit the perfor-
mance. But let's have a look at the step response.
Such a dynamic can not be neglected, therefore it should be included in the
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Figure 4.9: The step response shows that the Cathode Voltage sensor need 200
ms to reach its stationnary value.

model to be able to estimate the Cathode Voltage in order to be able to control
it. In this way, the sensor is a limitation of the performance.

For comparison, the step response of the Phase Compensator Voltage sensor
reaches its stationnary value after 10 �s.
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Figure 4.10: The step response shows that the Phase Compensator sensor needs
10 �s to reach its stationnary value.
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State space representation including the sensor model

From TSensorCath computed in section 3.4.2 on page 34, its state space repre-
sentation (ASensorCath , BSensorCath , CSensorCath , DSensorCath ) is derived :

TSensorCath = CSensorCath (sI �ASensorCath )
�1BSensorCath +DSensorCath

Hence, the state space representation of the model used for the observer includ-
ing the Cathode Voltage sensor model is derived :

_̂x = Ax̂ +Bu

y = Cx

_̂x =

2
66664

ACathObs 0 0 0 0

0 ACompObs 0 0 0

CCathObs CCompObs 0 0 0

0 CCompObs 0 0 0

0 0 BSensorCath 0 ASensorCath

3
77775 x̂

+

2
66664

BCathObs 0

0 BCompObs

0 0

0 0

0 0

3
77775
�

uCath
uComp

�

y =

�
ySensorCath
yComp

�
=

�
0 0 DSensorCath 0 CSensorCath

0 0 0 1 0

�
x̂

Remarks in this case about the state feedback

The computation of the state feedback will be performed with the following
control law :

if x̂ =

�
x̂1
x̂Sensor

�
u = �L

�
x̂1

�

x̂Sensor corresponds to the states of the Cathode Voltage sensor.
Since we are interested in controlling not the Cathode Voltage sensor output
but the Cathode Voltage (which is estimated), we do not need this state in the
state feedback but just in the observer.
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4.4 The linear, quadratic optimal controller

Extracts from Control Design System, Bernard Friedland pages 337-
338.
�The �rst reason for seeking an optimal controller is that in a multiple-input
or multiple-output system, the pole-placement technique does not completely
specify the controller or compensator parameters (gain). Consider, for exam-
ple, a kth-order plant with m inputs and the entire state vector accessible for
feedback. A non dynamic controller has km parameters to be determined, but
only k possible closed-loop pole locations. Thus we have to set m times as many
parameters as there are poles; there are in�nitely many ways by which the same
closed-loop poles can be attained. Which way is best? What algorithm can be
used to determine the feedback gains?
The absence of a de�nitive algorithm for determining a unique control law is a
detriment to the system designer who does not know how to handle this �em-

barrassment of riches�.
By choosing a control law to optimize performance, this embarrassment is
avoided.
A more cogent reason for seeking an optimum controller is that the designer
may not really know the desirable closed-loop locations.�

Formulation of the optimum problem

8>>>><
>>>>:

_x = Ax+Bu Vector-matrix di�erential equation
where x are the process states

u = �Lx Linear control law
where L is a suitable gain matrix

Here, however, instead of seeking a gain matrix to achieve speci�ed closed-loop
pole locations, we now seek a gain to minimize a speci�ed performance criterion
V (or cost function). The chosen cost function is the following:

V =

Z �

t


21y
2
Cath + 
22y

2
Comp + 
23u

2
Cath + 
24u

2
Comp dt

With 8>>>><
>>>>:

yCath Cathode Voltage Output
yComp Phase Compensator Voltage Output

uCath Cathode Power Supply Control Signal
uComp Phase Compensator Voltage Control Signal

And the weight 
n will indicate the penalty on each signal (control signal,
output) that we have.

Now, a translation in ordinary cost function to be used in the MATLAB
command lqr has to be done.
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8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

V =
R �
t

21y

2
Cath + 
22y

2
Comp + 
23u

2
Cath + 
24u

2
Comp dt

V =
R �
t
xTQx+ uTRu+ 2xTNu dt

Where

Q = CTQ0C with Q0 =

�

1 0

0 
2

�
;

R =

�

1 0

0 
2

�
;

and N, the cross term matrix, is a zero matrix

The lqr MATLAB command computes the optimum gain by solving the follow-
ing equation :

8>>>>><
>>>>>:

The Riccati equation with Ŝ the optimal solution when _̂
S = 0

�
_̂
S = ŜA+ATŜ� ŜBR�1BTŜ+Q

For the control law to be optimal, we must have:
L̂ = R�1BTŜ

How to set the Q, R Matrix?

First, it is necessary to rescale the signal so that we weigh signals of comparable
size.
It is then possible to put more or less penalty on one signal so that the corre-
sponding optimal gain matrix will be found for the corresponding cost function.
In our case we would like to put more penalty on the Cathode Voltage Output
than on the Phase Compensator Ouput.
The following weights can be done, for example, where the denominators are
the rescaling terms :
8>>>><
>>>>:


1 =
1 000
24 0002

The reference of the Cathode Voltage is 24 000 V.


2 =
1

2002
The reference of the Phase Compensator Voltage is 200V.


3 =
1
122


4 = 1
122

The saturation of both control signals are -12V +12V.

With those weights, a L matrix will be computed by the lqr command which
solves this optimum problem.
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4.5 The optimal observer, the Kalman Filter

The Kalman �lter permits to place the poles of the observer such that the errors
on the states estimates will be white noise, see �gure 4.3 on page 43.

What is an Optimal Observer?

The Kalman �lter is an optimal observer in the way that the poles are placed
optimally deriving from a cost function.

�
_x = Ax+Bu+ v

y = Cx +w

where u is known input and v and w are white noise. The solution is the
following observer where K̂ is optimally chosen :

_̂x = Ax̂+Bu+ K̂(y �Cx̂)

The chosen cost function is the following :

V =

Z �

t

x0

2
6664


11 0 : : : 0

0 
12 : : : 0
...

...
. . . 0

0 0 0 
1n

3
7775x+ 
21y

2
Comp + 
22y

2
Cath dt

With 8>><
>>:

yCath Cathode Voltage Output
yComp Phase Compensator Voltage Output

x States that we have to estimate

The weights 
n will indicate the penalty on each signal (states, output) that we
have.
Now, a translation in ordinary cost function to be used in the MATLAB com-
mand lqe has to be done. It would have been also possible to use the MATLAB
command kalman.8>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

V =
R �
t
x0

2
6664


11 0 : : : 0

0 
12 : : : 0
...

...
. . . 0

0 0 0 
1n

3
7775x+ 
21y

2
Comp + 
22y

2
Cath dt

V =
R �
t
x0Qx+ y0Ry + 2x0Ny dt

Where

Q =

2
6664


11 0 : : : 0

0 
12 : : : 0
...

...
. . . 0

0 0 0 
1n

3
7775

R =

�

21 0

0 
22

�
;

and N, the cross term matrix, is a zero matrix
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The lqe MATLAB command computes the optimal gain by solving the following
equation :

8>>>>><
>>>>>:

The Riccati equation with P̂ the optimal solution when _̂
P = 0

�
_̂
P = AP̂+ P̂A0 � P̂C0R�1CP̂+Q

For the control law to be optimal, we must have:
K̂ = P̂C0R�1

How to set the Q, R matrix?

First, it should be necessary to rescale the signal so that we weight signals of
comparable size.
And after it is possible to put more penalty on a signal so that the corresponding
optimal gain matrix will be found for this cost function. In our case we would
like to put more penalty on the Cathode Voltage Output than on the Phase
Compensator Ouput.
The following weights can be done, for example, where the denominators are
the rescaling terms :
8>>>><
>>>>:


21 =
10000
240002

The reference of the Cathode Voltage is 24 000 V.


22 =
1

2002
The reference of the Phase Compensator Voltage is 200V.


1n = 1
x1n

2 Where x1n2 is the average of the square value of the state

But to set those matrices is not as easy as for the optimal state feed back. To
tune a Kalman �lter, many iteration steps are necessary.
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4.6 The computation of the matrix of reference

(Lr)

The idea is to compute the matrix Lr so that the static errors between the
references (set points) and the outputs are equal to zero, see �gure 4.3 on page 43
The total system becomes the following:

8>>>><
>>>>:

u = �Lx̂+ Lryr
_x = Ax+Bu = Ax+B(�Lx̂+BLryr)
_̂x = (A �KC �BL)x̂+KCx+BLryr

y = (C 0)

�
x

x̂

�

The state space representation is the following :

d

dt

�
x

x̂

�
=

�
A �BL

KC A�KC �BL

��
x

x̂

�
+

�
B

B

�
Lryr

We get the transfer matrix as follows :

y = �C(sI� �A)�1
�
B

B

�
Lryr

with
�A =

�
A �BL

KC A�KC �BL

�
and �C = (C 0)

To have unitary stationary gain ( y

yr
= 1), we must have with s = 0 :

Id = ��C(sI � �A)�1
�
B

B

�
Lr with Id =

�
1 0

0 1

�
for the two outputs

If we assume that �A is inversible, therefore :

Lr =

�
�C�A�1

�
B

B

���1
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4.7 The addition of Integral action

See �gure 4.11 on page 58.
In a �rst approach, since the system is quite complex and non-linear, it was
decided not to use any integral action.
Since the outputs are not so stable, there was a drift on one of them (the Phase
Compensator voltage) so the need of an integrator was expressed.
A drift on the Phase Compensator voltage means that this output could hit the
saturations later and hence lose a part of the performance.

First, it was only added an integral action for the Phase Compensator volt-
age but it gave a drift on the other one. So a second integral action was set
up �nally on the second outputs to be sure to reject all drifts. Since the two
new states of the integral action are known, it is not neccessary to estimate them.

The resulting equations are the following:
A, B, C are the matrices used as models to compute the estimated states in
the observer and K is the observer matrix.������

_̂x = (A �KC)x̂+Bu+ Ly

_zCath = yCath � yrCath
_zComp = yComp � yrComp

y =

�
yCath
yComp

�
= (C 0 0)

0
@ x̂

zCath
zComp

1
A

To compute the new controller matrix of the state feed back, it is neccessary to
add the representation of the new state in the feedback. The matrix Q of the
LQR algorithm becomes the following in order to take into account the weight
of integral action we want to have in the controller.

Qold is the matrix neccessary to the LQR algorithm without any integral
action. Qint2 is the new Q matrix.

Qint2 =

0
@ Qold 0 0

0 �1 0

0 0 �2

1
A
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4.8 Antiwindup

Extract from Computer ControlledSystems, Theory and Design, Karl
J. Åström and Bjorn Wittenmark, page 331.
�The system [with a limitation on the control signal] can be described linearly
when [the control signal] does not saturate. The nonlinearity is thus impor-
tant when large changes are made. There may be di�culties with the control
system during startup and shutdown, as well as during large changes, if the
nonlinearities are not considered. A typical example is integrator windup.�

Antiwindup for the estimated states

A �rst antiwindup system is designed so that the control signals used by the
observer to compute the states are saturated by a model of the saturation that
really exists in the system.
Hence the observer takes the good information to compute the state of the
control signal.
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Figure 4.12: In the design 1 , there is no antiwindup. The design 2 permits
to take into account the nonlinearity of the system and hence to design an
antiwindup on the controller.
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Antiwindup on the integral action states

See �gure 4.13 on page 61.

Extract from Åström, K. J. and Hägglund Tore (1995) : �PID
Controllers: Theory, Design and Tuning�
�The combination of a saturating actuator and a controller with integral action
gives rise to a phenomena called integrator windup. If the control error is so
large that the integrator saturates the feedback path will be broken because the
actuator will remain saturated even if the process output changes. The inte-
grator, being an instable system, may then integrate up to a very large value.
When the error changes sign the integral may be so large that it takes consid-
erable time until the integral assumes a normal value again.�

�The so called back-calculation or tracking method works as follows : When
the output saturates, the integral is recomputed so that its new value gives an
output at the saturation limit. It is advantageous not to reset the integrator
instantaneously but dynamically with a time constant Tt.

[...] The system has an extra feedback path that is generated by measuring
the actual actuator output and forming an error signal (es) as the di�erence
between the output of the controller and the actuator output. Signal es is fed
to the input of the integrator through gain 1=Tt. The signal is zero when there
is no saturation. Thus , it will not have any e�ect on the normal operation when
the actuator does not saturate. When the actuator saturates, the signal es is
di�erent from zero. The normal feedback path around the process is broken
because the process input remains constant. There is, however, a feedback path
around the integrator. Because of this, the integrator output is driven towards
a value such that the integrator input becomes zero.�
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Chapter 5

Control results in Simulation

Since the tune of controller based on the �rst reduced model of the plant is
very long and di�cult due to the number of variables, no real results have been
found. Only results found with the second reduced model will be presented.

5.1 Simulation parameters in Matlab/Simulink

The method of integration used is a variable-step method. Its name is ode23t
(modi�ed sti� / trapezoidal method). The maximal step size during the simu-
lation is 0.1�s. The initial step size, relative tolerance and absolute tolerance
are automatically �xed by the method. Even if we lose accuracy during the
simulation with this integral routine, the simulation is still reliable and it is the
only way to keep the simulation working and to keep the time of the simulation
in a reasonable range (some minutes).

5.2 How to judge the performances ?

The criterion Cr is de�ned by the following formula :

Cr =

q
e21 + e22 + � � �+ e29 + e210

The en, the errors, are computed as following:

e1

e9
e10

Ecath

-24000V
average of the Cathode Voltage

at the beginning of the pulses

Figure 5.1: The computation of the criterion is performed from the error of the
Cathode Voltage at each pulse. The error is computed from the average of the
Cathode Voltage at the beginning of the 10 pulses.
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For the criterion the pulses are coming alternatively every 200�s and 600�s, for
example, so that to have a duty cycle of 2.5%.

5.3 Controller 1 : Optimal observer and linear

quadratic regulator without modi�cation of

the Cathode Voltage sensor

In this section, no modi�cation of the sensor is performed. The same sensor is
kept. So an estimation of the Cathode Voltage is done. The state space repre-
sentation used is presented in section 4.3.5 on page 50.
The weights of the optimal observer and controller are the following :
For the optimal controller, the 
n are :


1 =
500 000
24 0002


2 = 0:07
3002


3 =
0:03
122


4 =
0:3
122

For the optimal observer, the 
1n are :


101 = 10 000 000 
102 = 100 000 
103 = 1 000 
104 = 100


105 = 10 000 000 
106 = 100 000 
107 = 10 000 000 
108 = 100 000


109 = 1 
110 = 10

And the 
2n are :

21 =

1
1 000


22 =
1
10

The reference of the Phase Compensator is 300 V and the reference of the
Cathode Voltage is -24000 V.

5.3.1 General view of the results of the controller 1

Cathode Voltage
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Figure 5.2: The Cathode Voltage converges to its reference quite quickly. On
the zoom, the disturbances are well rejected.
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Phase Compensator Voltage
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Figure 5.3: The Phase Compensator needs some time reach its value because
of the time necessary to the Cathode Voltage to reach its nominal value and
also because of the limitation at its output. There is a static error on the
Compensator voltage but it is not important for the speci�cation. On the zoom,
we can see how the Phase Compensator helps very well the Cathode Power
Supply reject the disturbances.
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Figure 5.4: The location of the poles is quite typical for the optimal observer
and controller.
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5.3.2 Detailed results of the controller 1

Ouput error

0.038 0.0382 0.0384 0.0386 0.0388 0.039 0.0392 0.0394 0.0396 0.0398 0.04

Error on the Cathode Voltage

in Volts

Time in seconds

Figure 5.5: No precision about the scale is done because of con�dentiality. The
values of the Cathode Voltage are very close to each other when the pulses are
coming. But there is some �ringing�.
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Figure 5.6: The Phase Compensator control signal saturates a bit to compensate
for the disturbances.
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Observer error
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Figure 5.7: The estimation error of the Phase Compensator is bigger than the
Cathode Voltage because during the weight of optimal problem, we put much
more penalty on this signal.

RMS criterion

The RMS criterion is around 50% less than the limit �xed by EMW with pulses
at alternatively 200�s and 600�s. The results are quite good.
When the pulses are coming closer, the performances are degraded.

Drift

If we take a close look at the Phase Compensator voltage, we can see a drift.
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Figure 5.8: A drift appears on the Phase Compensator Voltage.

5.3.3 Conclusion on Controller 1

The speci�cations are met with pulses alternatively at 200�s and 600�s. But
there is a drift on the phase Compensator Voltage.
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5.4 Controller 2 : Optimal observer and linear

quadratic regulator with modi�cation of the

Cathode Voltage sensor

In this section, a modi�cation of the sensor is performed. We assume that there
is an ideal sensor which gives a perfect fraction of the Cathode Voltage. So
there is no estimation of the Cathode Voltage. The state space representation
used is presented in section 4.3.4 on page 49.
The weights of the optimal observer and controller are the following :
For the optimal controller, the 
n are :


1 = 500 000
24 0002


2 = 0:07
3002


3 =
1
122


4 = 1
122

For the optimal observer, the 
1n are :


11 = 10 000 000 
12 = 100 000 
13 = 1 000 
14 = 100


15 = 10 000 000 
16 = 100 000 
17 = 10 000 
18 = 10 000

And the 
2n are :

21 =

1
1 000


22 =
1
10

The reference of the Phase Compensator is 300 V and the reference of the
Cathode Voltage is -24 kV.

5.4.1 General view of the results of the controller 2

Cathode Voltage
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Figure 5.9: The Cathode Voltage converges to its reference quite quickly. On
the zoom, the disturbances are also well rejected.
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Phase Compensator Voltage
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Figure 5.10: The Phase Compensator needs some time to reach its value because
of the time necessary to the Cathode Voltage to reach its nominal value and
also because of the limitation at its output. There is a static error on the
Compensator voltage but it is not important for the speci�cation. On the zoom,
we can also see how the Phase Compensator helps very well the Cathode Power
Supply to reject the disturbances even better than for the controller 1.
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Figure 5.11: The location of the poles is quite typical for the optimal observer
and controller.
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5.4.2 Detailed results of the controller 2

Ouput error
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Error on the Cathode Voltage
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Figure 5.12: The values of the Cathode Voltage are even closer to each other
when the pulses are coming. Comparing to the controller 1, there is much less
�ringing�.
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Figure 5.13: Both control signals saturate a bit to compensate the disturbance.
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Observer error
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Figure 5.14: The di�erence between the two estimations is even bigger than for
the controller 1.

RMS criterion

The RMS criterion is around 55% less than the limit �xed by EMW with pulses
at alternatively every 180�s and 620�s. The results are therefore very good.
When the pulses are coming closer, the performances are also degraded.

Drift

If we take a close look at the Phase Compensator voltage, we can see a drift.
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Figure 5.15: A drift appears clearly on the picture.

5.4.3 Conclusion on the controller 2

The controller 2 includes 8 states. The speci�cations are met with pulses alter-
natively at 180�s and 620�s. The results are slightly better. But there is a drift
on the phase Compensator Voltage. To try to solve the drift problem, we will
introduce integral action in the controller.
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5.5 Controller 3 : Addition of integral action

In this section, a modi�cation of the plant is performed. We assume that there
is an ideal sensor which gives a perfect fraction of the Cathode Voltage. So
there is no estimation of the Cathode Voltage. The state space representation
used is presented in section 4.3.4 on page 49 with the addition of the integral
action on each output presented in section 4.7 on page 57.
The weights of the optimal observer and controller are the following :
For the linear, quadratic optimal regulator, the 
n and the �n are :


1 = 2 500 000
240002


2 = 10
2002


3 = 1
122


4 = 1
122

;

�1 = 0:000 001 �2 = 0:000 1

For the optimal observer, the 
1n are :


11 = 10 000 000 
12 = 100 000 
13 = 1 000 
14 = 100


15 = 10 000 000 
16 = 100 000 
17 = 10 000 
18 = 10 000

And the 
2n are :

21 =

1
1 000


22 =
1
10

The reference of the Phase Compensator is 300 V and the reference of the
Cathode Voltage is -24000 V.

5.5.1 General view of the results of the controller 3
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Figure 5.16: The Cathode Voltage converges to its reference also quite quickly.
On the zoom, the disturbances are not rejected so quickly compared to the
previous controllers.
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Phase Compensator Voltage
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Figure 5.17: The Phase Compensator is much more stable but we can observe
an overshot on the zoom when the disturbances are coming. This is the integral
action e�ect that slows a bit the controller in general.
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Figure 5.18: The location of the poles is also quite typical for the optimal
observer and controller.
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5.5.2 Detailed results of the controller 3

Ouput error
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Error on the Cathode Voltage

in Volts

Time in seconds

Figure 5.19: There is not any real �ringing�. But the disturbances do not have
the time to be rejected by the system. The second pulse comes a bit too early.
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Figure 5.20: Both control signals saturate quite a lot to compensate the distur-
bance and for the drift.
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Observer error
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Figure 5.21: The estimation of the Phase Compensator Voltage is quite bad
probably because of the saturation of the control signal.

RMS criterion

With pulses coming alternatively every 200�s and 600�s, the criterion is 260%
times bigger than the limit �xed by EMW.

5.5.3 Conclusion on the controller 3

The controller 3 includes 10 states.
There is not anymore a problem of drift on the Phase Compensator Voltage but
the speci�cations are not met.
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5.6 Conclusion on all the results

The controller succeeds to reject the disturbances as speci�ed and quite quickly
in the case of an ideal sensor of the Cathode Voltage (Controller 2). But there
remains the drift problem. Hence, if the duty cycle was continuously 2.5%, it
would not be possible to implement the regulator. But since the duty cycle is
an entire part of the speci�cations, it does not seem realistic to implement this
controller because the Phase Compensator voltage will hit the limitation and all
the performance will be lost. However, the controller 2 seems the best controller
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because it includes only 8 states :
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

_̂x = (A�KC)x̂+Busat +Ky

u = �Lx̂+ Lrr

With usat : the control signal after the model of the saturations
in the antiwindup mechanism

A�KC =

2
66666666664

�3:8956 e � 05 �7:1135 e� 06 �2:8866 e � 07 �4:3925 e� 09

8:0000 e � 05 0 0 0

0 1:6000 e� 04 0 0

0 0 1:6000 e � 04 0

0 0 0 0

0 0 0 0

0 0 0 �8:2360 e� 10

0 0 0 0

0 0 �6:6712 e� 02 �1:7820 e � 05

0 0 �4:1634 e� 01 7:4310 e � 04

0 0 1:0489 e+ 01 5:7299 e � 05

0 0 3:5896 e+ 02 �8:6653 e � 01

�4:4611 e� 06 �5:1815 e � 08 �6:5342 e� 02 �1:7954 e � 02

8:0000 e� 05 0 1:0614 e� 01 �2:2982 e � 01

5:2713 e� 08 4:5541 e � 10 �3:1632 e� 02 �1:0672 e � 08

5:2713 e� 08 4:5541 e � 10 �1:0672 e� 06 �3:1626 e � 03

3
77777777775

B =

2
66666666664

8:0000 e� 05 0

0 0

0 0

0 0

0 2:5600 e� 03

0 0

0 0

0 0

3
77777777775

K =

2
66666666664

6:6712e� 02 1:7820e� 05

4:1634 e � 01 �7:4310 e� 04

�1:0489 e + 01 �5:7299 e� 05

�3:5896 e + 02 8:6653 e� 01

6:5342 e � 02 1:7954 e� 02

�1:0614 e � 01 2:2982 e� 01

3:1632 e � 02 1:0672 e� 08

1:0672 e � 06 3:1626 e� 03

3
77777777775
LT =

2
66666666664

0:0074072 �0:013614

0:003727 �0:0078443

0:00035456 �0:00092716

1:5036e� 05 �5:7281 e � 05

�0:00042543 0:0025355

�1:1004e� 06 1:5149 e � 05

�0:044374 0:35076

0:010499 0:0013283

3
77777777775

Lr =

�
�0:044374 0:010499

0:35076 0:0013283

�
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y1 is directly the Cathode Voltage in this case without any voltage divider or
sensor. Since during the simulation we do the computation in a di�erent time
domain we need to come back to the good one.

1
t0
= 10�5 1

t
) t0 = 105t

dx
dt0

= dx
105dt

= Ax+Bu

y = Cx+Du

) dx
dt

= 10�5(Ax+Bu)

y = Cx+Du

This computation is done to get the matrix listed above.
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Chapter 6

Robustness analysis of a

Multivariable (MIMO)

system

Since the system is Multi-Inputs Multi-Outputs (MIMO), it is di�cult to have
a classical approach (Gain Margin, Phase Margin) of the robustness problem.
It is also di�cult to say if the robust control approach is su�cient and to show
a unique diagram which we have to look at.
That is why a more pragmatic approach typically by varying some parameters
in the simulation will be also performed.

6.1 Singular values, robust control approach

To perform a global approach of the problem, some tools will be introducted.
A study of the singular values of the complementary sensitivity equation will be
performed. The multiplicative uncertainty will be chosen.

Introduction to the singular values

Extracts from Zhou K. and J. Doyle (1998) : �Essentials of Robust
Control�, p. 19.
�A very useful tool in matrix analysis is singular value decomposition (SVD). it
will be seen that singular values of a matrix are good measures of the �size� of
the matrix and that the corresponding singular vectors are good indications of
strong/weak input or output directions.�

LetA 2 Fm�n: There exist unitary matrices

U = [u1; u2; : : : ; um] 2 F
m�n

V = [v1; v2; : : : ; vm] 2 Fm�n

such that

A = U�VT; � =

�
�1 0

0 0

�
;
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where

�1 =

2
6664

�1 0 : : : 0

0 �2 : : : 0
...

...
. . .

...
0 0 : : : �p

3
7775

and

�1 � �2 � : : : � �p � 0; p = minfm;ng:

The following notations for the singular values are often adopted:

��(A) = �max(A) = �1 = the largest singular value of A;

and
�(A) = �min(A) = �p = the smallest singular value of A;

Justi�cation of this approach

See also section 8.2 of Zhou [ 9 ].
On the following diagram, P(s) is the Transfer Function matrix corresponding
to the plant (plant+sensors) andC(s) is the controller Transfer Function matrix
corresponding to the controller.
� is a non-linearity added to the system to symbolize the uncertainties that we
have on the system and W(s) is the weight matrix.
r is the reference-vector and y is the outputs-vector.
The computation of the equivalent system between the points A and B will

r y
C

∆

+

+

+

-

B Aequivalent system

(s)
u

P(s)

Plant

W(s)

Sensors

Figure 6.1: The output multiplicative uncertainty perturbes the system and
hence permits to simulate the uncertainties of the total system (controller +
plant).

give the complementary sensitivity function of the system :

T(s) = P(s)C(s)[I+P(s)C(s)]�1

Computation of C(s) :
Transfer Function matrix of the controller

C(s) = CC(sI �AC)
�1BC

= �L(sI � (A �KC �BL))�1K
with

AC = A �KC �BL

BC = K

CC = �L
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The Outputs (control signal vector: u) - Inputs (output vector of the system
: y) relationship of the controller is described in the state space representation
by the following equation :�

_̂x = (A �KC �BL)x̂+Ky

u = �Lx̂

Where A, B, C are the state space representation of model of the system used
for the observer.

Computation of P(s) :
Transfer Function matrix of the plant

TCath is computed in section 3.2.1 on page 21 and TComp is computed in
section 3.2.2 on page 23 during the modeling of the plant.
The following equations de�ne the relationship between ACath, BCath, CCath,
AComp, BComp, CComp and TCath TComp :

TCath = CCath(sI �ACath)
�1BCath

TComp = CComp(sI �AComp)
�1BComp

With ACath, BCath, CCath the state space representation of the complete
model of the Cathode Power Supply and with AComp, BComp, CComp the
state space representation of the complete model of the Phase Compensator
introduced previously in �gure 3.1 on page 20, we can construct the state space
representation (AP, BP, CP) of the plant :

AP =

�
ACath 0

0 AComp

�
BP =

�
BCath 0

0 BComp

�

CP =

�
CCath CComp

0 CComp

�

TSensorCath computed in section 3.4.2 on page 34 and TSensorComp
computed

in section 3.4.1 on page 32 are used to take care of the sensors dynamics in the
following formula to de�ne the P(s) :

P(s) =

�
TSensorCath

TSensorComp

�
CP(sI � (AP))

�1BP

=

�
TCathCath(s) 0

TCompCath(s) TCompComp(s)

�

The formula above has a 0 instead of TCathComp(s) because there is no rela-
tionship between the input of the Cathode Power Supply and the Phase Com-
pensator Voltage Sensor output, see �gure 3.1 on page 20.

TCathCath(s) is the transfer function integrating the sensor between the in-
put of the Cathode Power Supply and the Cathode Voltage Sensor output.
TCompComp(s) is the transfer function integrating the sensor between the input
of the Phase Compensator and the Phase Compensator Voltage Sensor output.
TCompCath(s) is the transfer function integrating the sensor between the input
of the Phase Compensator and the Cathode Voltage Sensor output.
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Robustness criterion

By looking at the largest singular values of frequency response of the complen-
mentary sensitivity function in all the frequency domain, a robustness criterion
can be deduced.

Results

The computation of the robustness criterion is done on the controller 2.
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1.6

1.7
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Maximum singular value

of the complementary sensitivity function
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Figure 6.2: The maximum point of the curve is 1.7 so it means that 60% ( 1
1:7

)
of uncertainty is tolerated for stability in all the frequency domain. The distur-
bances are mainly around 1 000 Hz and the uncertainty on the plant is mainly
at high frequency. At those frequencies, the percentage of uncertainty tolerated
is increasing to 100% (P (I +W�) ' 2P ).

A good robustness stability seems to be guaranteed. But it is di�cult to con-
clude on the robustness of the performance. A study of the performance when
the controller and the plant change should be performed.
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6.2 System faced with the variations of the plant

and the controller

In this study, we will modify the system. We will simulate a modi�cation of the
system in order to look at the behavior of the system when there is a variation
of the plant due to the modeling for an example or when the implementation is
di�erent from the ideal computed controller.
The study will be done about the performance when the gains will be modi�ed
of - 30% and + 30%, and the frequencies also of - 30% and + 30%.

Variations on the Plant
� 1.3 � 0.7

Gain + 240% (+ 10%) + 25% (- 45%)
(variation of G0Comp

and G0Cath)
Main frequency + 20% (- 50%) + 340% (+ 50%)

(variation of f2 and f13)

Variations of the Controller
� 1.3 � 0.7

Gain + 10% (- 50%) + 30% (- 40%)
(variation of measurement

of the outputs)

The �rst percentage is the di�erence with the RMS criterion found in the
initial result (result of the controller 2 descibed in section 5.4.2.). The second
one is the di�erence compared to the EMW criterion limit.

At the view of this table, we can conclude that the controller is also quite
robust in performance for quite small variation (30%) of the parameters of the
system.
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Chapter 7

Preliminary studies about the

implementation of controller

based on state space

representation

There are several possibilities to implement a controller based on the state space
representation. The one presented below permits not to be redundant in terms
of states and follows precisely the state space approach.
The example of controller presented below has no relationship with the previous
controllers.

7.1 By which kind of analog electronics should

this kind of regulator be implanted ?

The two or three basic elements used will be the summator, the integrator and
the invertor.

Summator

The summator will permit to do the basic additive operation neccessary to
translate linear algebra operation.

+
-

R11

R12

R1n

R2V11

V12

V1n V2

Figure 7.1: A summator permits to accomplish the basic additive operation of
the tensions V1n.

83



The following equation de�nes the behavior of the summator :

V2 = �
R2

R11

V11 �
R2

R12

� :::�
R2

R1n

V1n

Integrator

The integrator will permit to do the basic integration operation neccessary to
translate state space representation.
The following schematic de�nes the integrator. The following equation de�nes

R

C

-
+

V1 V2

Figure 7.2: An integrator permits to accomplish the basic integration routine
necessary to update a state.

the behavior of the integrator :

V2 = �
1

RC

Z t

0

V1 ds ) _V2 = �
1

RC
V1
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7.2 An example of how to design the analog con-

troller (from the state space representation

to the schematic)

The following state space representation de�nes a controller from the inputs of
controller, vector u (outputs of the system to control in our case) to the out-
puts of the controller, vector y (control signals in our case). The state space
representation should be computed in order to have a A matrix as diagonal
as possible to prevent the saturation of the operational ampli�er used in the
implementation.
From the following state space representation, an implementation will be per-
formed:

_x =

�
�2�! !2

1 0

�
x+

�
1

0

�
u

y = (0 !2)x

x1 = �
R
(2�!x1 + !2x2 � u) dt

x2 = �
R
(�x1) dt

y = !2x2

So one integrator summator, one integrator and one inversor will be used as
shown on �gure 7.3 on page 86.
Now, we should choose the resistors Rn so that :

R1C1 = 1

R2C1 =
1

2�!

R6C1 = 1

R3C2 = 1

R5

R4+R5

= !2

The numerical values will be for ! = 1 and � = 0:7 :

R1 = R6 = R3 = 470k


C1 = C2 = 2�F

R2 = 330k


R4 = 0


R5 = 47k


7.3 Remarks

A very important point in this kind of implementation is to have a A matrix as
diagonal as possible.
The nonlinearities (typically anti-windup) can be quite easily added to the sys-
tem because the state space structure is respected.
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Chapter 8

Last control results in

simulation

Since the last meeting with EMW (July 2000, the 12th), a question has appeared
in the modeling of the disturbances. If we take a look at the disturbances, pre-
sented in section 3.3.5, we can see that the total of disturbances is increasing
all the time.
This does not seem to be correct and to provoke the problem of the drift on the
Phase Compensator Voltage.

The Controller 2 is used in the results with the following modi�cation on
the modeling of the system.

8.1 Modi�cation of the current pulses

The modi�cation of the modeling of the pulses is the following. The idea is to
keep only the AC component of the last modeling of the pulses by removing the
DC Component of 0.025 A (2.5% of duty cycle).
In this case the pulses will go from -0.025 A to 0.975 A.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I : current
in ampères

Time in seconds

Figure 8.1: The amplitude of current pulses are now considered to be of 1 A
from -0.025 A to 0.975 A.
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+ Vdistcomp
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Figure 8.2: The resulting disturbance does not increase for ever. It seems to be
a more correct modeling of the disturbances.

8.2 General view of the results of controller 2

with modi�cation of the current pulses

Cathode Voltage

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

4

0.038 0.0382 0.0384 0.0386 0.0388 0.039 0.0392 0.0394 0.0396 0.0398 0.04

−2.402

−2.4

−2.398

−2.396

−2.394

−2.392

−2.39
x 10

4

Cathode Voltage Zoom during the disturbances

in Volts

Time in seconds

Figure 8.3: The Cathode Voltage converges to its reference quite quickly. On
the zoom, the disturbances are also well rejected. It seems more easy for the
controller to reject the disturbance because there is less overshot than for the
previous modeling of the disturbances with the same Controller.
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Phase Compensator Voltage

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

50

100

150

200

250

300
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Phase Compensator Voltage Zoom during the disturbances
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Figure 8.4: The Phase Compensator needs some time to reach its value because
of the time necessary to the Cathode Voltage to reach its nominal value and
also because of the limitation at its output. There is no more too much static
error on the Compensator voltage. On the zoom, we can also see how the
Phase Compensator helps very well the Cathode Power Supply to reject the
disturbances.

8.3 Detailed results of controller 2 with modi�-

cation of the current pulses

Ouput error

0.038 0.0382 0.0384 0.0386 0.0388 0.039 0.0392 0.0394 0.0396 0.0398 0.04

Error on the Cathode Voltage

in Volts

Time in seconds

Figure 8.5: The values of the Cathode Voltage are even closer to each other
when the pulses are coming. There is no �ringing�.
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Control signals

0.038 0.0382 0.0384 0.0386 0.0388 0.039 0.0392 0.0394 0.0396 0.0398 0.04
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Control Signals

Solid : Cathode P.S. ; Dashed : Phase Compensator
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Figure 8.6: Both control signals do not saturate so much to compensate the
disturbance. It seems very good.

Observer error
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Figure 8.7: The estimation of the Phase Compensator Voltage seems to be
degraded. But anyway it is not very important. The most important thing is
that the Cathode Voltage is very well observed.

RMS criterion

The RMS criterion is around 55% less than the limit �xed by EMW with pulses
at alternatively every 180�s and 620�s. The results are therefore very good.

90



Drift

If we take a close look at the Phase Compensator voltage, we can not see a drift
anymore.
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0

50

100

150

200

250

300

0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.04
200

200.5

201

201.5

202

202.5

203

Zoom on the inferior limit of the Phase Compensator Voltage
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Figure 8.8: No more drift appears on the �gure.

8.4 Conclusion on the controller 2 with modi�-

cation of the current pulses

The controller 2 includes 8 states. The speci�cations are met with pulses alter-
natively every 180�s and 620�s. The results are better because there is no more
drift on the Phase Compensator Voltage. The controller with the new modeling
of the current pulses meets all the speci�cation with pulses every 180 �s and
620�s which is quite close.
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Chapter 9

Conclusions

The �rst conclusion is : since the last control results in simulation with the
modi�cation of the modeling of the disturbances, the controller meets all the
speci�cations.

The di�erent problems will be reviewed. The results will be presented and
also possibilities of future work will be suggested.

9.1 Problems with no modi�cation of the model-

ing of the pulses

If we do not modify the modeling of the pulses by only taking their AC com-
ponent, there is no controller designed that completely meets the speci�cations
for di�erent reasons :

� Drift problem.
A slow drift appears on the Phase Compensator Voltage when there is no
integral action. When the Phase Compensator voltage hits the limitation,
the performance will be degraded hence the speci�cation will not be met.
See also section 8.3 on page 91.

� Performance when there is use of integral action.
The addition of integral action permits not to have the drift problem but
the performance is degraded.
See also section 5.5 on page 71.

9.2 Project results

By modifying the modeling of the pulses, the following results appear at the
end of this project :

Sensor of the Cathode Voltage

The sensor of the Cathode Voltage slows down the slow loop, because, in time
domain, the Cathode Voltage sensor output does not have the same shape as the
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Cathode Voltage by itself. In order to be able to control the Cathode Voltage,
it is necessary to include it in the model used for the observer.
See also section 4.3.5 on page 50.

Modeling of the system

A model of the system based on the linear model of the plants has been per-
formed that can be used for later investigations. This model includes the plants,
the disturbances, the known nonlinearities and the sensors.
The identi�cation of the transfer function from the EMW data was quite con-
servative in order to be sure that the results correspond to the reality.

Performance and Speci�cation

A controller has been designed which can meet the speci�cation with distur-
bances alternatively every 180�s and 620�s (duty cycle of 2.5%). With the
modi�cation of the modeling of the pulses, no more drift appears on the Phase
Compensator voltage. So the met performances are very interesting for EMW.

Knowledge brought to EMW

A state space approach to design a controller has been presented to EMW.
New tools like optimal control approach and robust control approach have been
performed in this Master Thesis. More simple development like antiwindup has
also been presented.
Finally, a preliminary study of an implementation of a controller based on state
space representation has been explained.

9.3 Future works suggested

Implementation of the controller

Since the speci�cations are met, an implementation with analog device can be
done. An implementation in discrete time (more convenient from a control
point of view) with a microprocessor can also be considered even if a computer
controlled system should be set up.

Modeling of the system

The system studied is a quite complex electrical network. A linear model of
such system does not re�ect all its characteristics.
For instance, it is di�cult to be sure that the Bode diagrams of the two systems
are enough to build a model. Maybe, it is necessary to split further the system.
Several objects could result. The connection between the several objects will be
better identi�ed and the nonlinearities of the di�erent objects respected.
This could be performed with tools like Modelica, maybe more adapted to the
problem. The new language Modelica (www.modelica.org) will permit to re-
spect all the nonlinearities of the electrical network. There is some electrical
and power system library in Modelica that permits to simulate electrical circuit
easily. The model is then usable in Matlab/Simulink to design the regulator.
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Such modeling will be much less conservative than the one performed in this
master thesis.
Erik Möllerstedt, PhD student at the department, did some modeling of power
system using Modelica. A master thesis on the modeling of the complete elec-
trical network with the actual controller seems realistic by him.

More modest modi�cation by keeping the same general de-

sign as before, described in section 2.2 on page 12.

� By upgrading just a bit the slow loop
Some work can be done by changing the PI controller on the slow loop
into a PID or better into a PID with anti-windup mechanism.

� By trying to upgrade the fast loop
A study can also be performed on the way to upgrade the fast loop. But
�rst in this case, a very good understanding of its current mechanism
should be accomplished.

� By upgrading the Cathode Voltage sensor
A study of the possibility to upgrade the Cathode Voltage sensor which is
a limitation of the performance of the system could also be done.

H1 optimization

Another design such as H1 optimization could also be performed in this kind of
problem because we mostly know in which frequency domain the uncertainties
are. So we can compute a controller by adjusting, for example, the weights of the
optimal problems so that the robust properties will be located in the frequency
domain of the uncertainties. This approach permits to keep the general approach
of Multivariable system developed in this Master Thesis.
But this kind of tool is quite complicated and requires a theoretical background
in Robust Control.
See also the robustness analysis with the robust control approach in section 6.1
on page 78.

Use of the information of the moment of the arrival of the

pulses

This knowledge can improve the system very much. A rejection of the distur-
bances in 100�s can be considered as a good objective.
Such information would transform completely the control problem. A feed-
forward mechanism can be added inside the regulator.
Such information requires some study on the system by EMW. Informations of
the moment of the arrival of the pulses and the kind of current pulses (ampli-
tude, length) seem to be known by the system.

9.4 Conclusion on the project in general

A study about the possibilities to upgrade the current controller by a multivari-
able system approach has been done. The results do fully meet the speci�cation.
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It has been shown during this Master Thesis that there is a way to upgrade the
existing system.
The project permits to bring some knowledge to EMW.
It was a good �rst approach of modern automatic control that will permit, I
hope, further developments.
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Chapter 11

Summary in French / Résumé

Introduction

Ce projet de �n d'étude porte sur le contrôle d'une alimentation haute ten-
sion de l'ampli�cateur d'onde radio d'un système radar. Ericsson Microwave
Systems situé à Mölndahl près de Göteborg en Suède a voulu étudier les pos-
sibilités d'améliorer le système existant. Le travail a été réalisé à 90% au sein
du laboratoire d'automatique de Lund et à 10% au sein de l'équipe FX/NT
d'Ericsson Microwave Systems (EMW) à Mölndahl.

Formulation du problème d'automatique

Le problème d'Ericsson Microwave Systems est de pouvoir rejeter les pertur-
bations en tension qui s'ajoutent sur les sorties du systèmes lors de chaque

T le plus petit possible (autour de 200 microsecondes)

80V

1 A

10µτ s

cathE∆

Impulsions de courant

Ecath

-24 000V

Différence de la tension de cathode entre deux impulsions

Figure 11.1: Le problème d'automatique est de concevoir un contrôleur capa-
ble de rejeter tout particulièrement ce type de perturbation avec une grande
précision avant la prochaine impulsion.
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ampli�cation d'onde. De la stabilité de la tension de cathode dépend la qualité
des ondes transmises et donc la qualité et la précision du système radar.
Le système étudié comporte deux principaux sous-systèmes, l'alimentation de
la cathode et le compensateur de phase. Ce système est donc 2 entrées (signaux
de contrôle de l'alimentation de la cathode et du compensateur de phase), 2
sorties (tension de cathode et tension de compensateur de phase).
On peut approximer le type des perturbations ajoutées au système sur la sortie
tension Cathode à un échelon.
La référence de la sortie tension de cathode est constante et de -24KV et la
référence de la sortie tension de compensateur de phase est également constante
et de 200 V en sachant qu'elle est limitée entre 0 V et 400 V.

Modélisation du système à contrôler

Le système à contrôler comporte di�érentes entités : les deux sous-systèmes
d'alimentation, les saturations, les perturbations et les capteurs.Le but de ce
projet de �n d'étude est donc de contrôler le système ci-dessus.

+

+

+

+

Impulsions de courant

Compensateur de Phase

Alimentation de la

l’alimentation de Cathode

Impédance de sortie de

Compensateur de Phase

Impédance de sortie

Signal de controle

Compensateur de Phase

Alimentation de la Cathode
Signal de controle

Cathode
Capteur
Cath

Capteur
Comp

+

+

Sortie du capteur

de tension Cathode

0 V 400 V

Tension de Cathode

Sortie

Sortie du capteur de tension

Compensateur de PhaseSortie

Compensateur de Phase

-12 V 12 V

-12 V 12 V

Figure 11.2: Tous les éléments du système doivent être modélisés.

Modélisation des perturbations

ZoutCath

ZoutComp

I

I

10 µ s
1A

Alimentation

de Cathode

Compensateur

de Phase

VpertCath

VpertComp

temps

Signal de contrôle

Signal de contrôle

Figure 11.3: Les impulsions de courant viennent charger les impédances de sortie
des deux sous-systèmes et créent donc une perturbation en tension sur la tension
de Cathode.
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La modélisation des perturbations doit permettre de les simuler sous MAT-
LAB / SIMULINK et donc de pouvoir essayer de les rejeter par la suite.
Les impulsions de courant venant du TWT (système d'ampli�cation des ondes
radio) chargent les impédances de sortie des deux sous-systèmes.
Le calcul des impédances a été réalisé après étude des schémas électroniques du
système.
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Figure 11.4: Les perturbations sur la tension de Cathode sont essentiellement
proportionnelles à l'intégrale des impulsions de courant.

Modélisation des alimentations
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Figure 11.5: Les données fournies par EMW (la courbe) ne permettent pas de
connaître le comportement des systèmes après 100 kHz pour le compensateur de
phase et 80 kHz pour l'alimentation de cathode. Le présence d'un PWM (Pulse
Width Modulator) sur chacun des sous-systèmes en est la raison. Les croix
montrent les modèles utilisés lors des simulations sous MATLAB/SIMULINK.

Les diagrammes de Bode ont été fournis par EMW par un logiciel de simula-
tion appelé Simplis fonctionnant sous UNIX. Donc aucun processus d'identi�cation
de mesures sur le procédé lui-même n'a été réalisé pendant ce projet.
Par contre, des fonctions de transfert ont été déduites des diagrammes de Bode
fournis.
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Nonlinéarités identi�ées et incertitudes sur les modèles

Il y a deux limitateurs -12V +12V sur les signaux de contrôle et il y a également
un limitateur en sortie de compensateur de phase.
Mise à part l'absence de connaissance sur le comportement des sous-systèmes au-
delà de la fréquence d'horloge des PWMs, les modèles fournis sont des modèles
linéaires d'un système rendu très non-linéaire par la présence à l'intérieur de
sous-systèmes non-linéaires et l'existance de plusieurs boucles de contrôle.
La séparation du système au complet en di�érentes sous-parties ne faisait pas
partie du projet de �n d'étude car un tel travail aurait été trop long.

Modélisation des capteurs

La modélisation des capteurs permet également de les inclure dans la simulation
et de conclure sur leur in�uence sur le système.
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Figure 11.6: Sur les graphiques ci-dessus, on constate que les dynamiques sont
très faibles donc que l'on peut considérer les capteurs commede simples diviseurs
de tension dans la conception du contrôleur.

La commande

La commande est une commande basée sur la théorie du principe de séparation.
Il s'agit d'un observateur-contrôleur.
L'observateur va permettre d'estimer les états du système grâce à un modèle du
système, aux informations d'entrée et de sortie de ce système .
D'après l'estimation des états du système, une commande par retour d'état
permettra de contrôler le système et donc de rejeter les perturbations.

Placement optimal des pôles

Le placement optimal des pôles de l'observateur par la commande Matlab lqe et
des pôles du contrôleur par la commande Matlab lqr permet de pénaliser plus
ou moins certains signaux de commande et de sortie a�n de mieux rejeter les
perturbations. Un �ltre de Kalman et un linéaire quadratique régulateur sont
de fait utilisés.
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Modèles utilisés pour observer les états

Les modèles sont assez simples et d'un faible ordre pour limiter le nombre d'états
a�n de faciliter une éventuelle mise en ÷uvre.
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Figure 11.7: Après 20 000 Hz, on peut voir une nette di�érence entre le modèle
utilisé pour simuler le système (croix) et le modèle utilisé dans l'observateur (cer-
cle) principalement sur la courbe de phase. Le modèle utilisé dans l'observateur
est en e�et plus simple pour limiter le degré du modèle et donc le nombre d'états
de l'observateur et donc la complexité du contrôleur.

Résultats de simulation
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Figure 11.8: La tension de Cathode rejoint sa consigne assez rapidement. Sur le
zoom pendant les perturbations, on constate qu'elles sont e�cacement rejetées.
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la consigne compte tenu des non-linéarité et des temps nécessaire à la tension de
Cathode d'atteindre sa valeur nominale. L'erreur statique n'est pas importante
pour les spéci�cations. Sur le zoom, on voit bien comment la tension du com-
pensateur de phase aide l'alimentation de Cathode à rejeter les perturbations.
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Figure 11.10: Sur ces diagrammes, les perturbations arrivent alternativement
toutes les 180�s et 620�s mieux que ce que ne requiert EMW. Le critère de
performance est également atteint (valeur con�dentielle). Mais une dérive ap-
paraît sur la tension du compensateur de phase qui ne permet pas d'atteindre
les spéci�cations édictées par EMW.

Lorsque que l'on ajoute une action intégrale, le contrôle du système est
ralenti et donc les spéci�cation des performances ne sont pas atteintes.

Derniers développements

Après une modi�cation de la modélisation des perturbations (en ne conservant
que la composante alternative des impulsions de courant), le problème de dérive
des sorties n'apparaît plus. Ainsi l'ensemble des spéci�cations et des perfor-
mances demandées ont été atteintes.
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Conclusion

Ce projet a permis de réaliser une étude sur les possibilités d'améliorer le système
existant. Les résultats prouvent que ces possibilités existent. Une mise en
÷uvre peut maintenant être envisager par EMW. EMW a pu par ce projet
construire un modèle linéaire du système qui pourrait être utilisé par la suite.
De plus, beaucoup de connaissances ont été apportées à EMW par présentation
des concepts de l'automatique moderne.

Coût du projet

Le coût du projet a été partagé par EMW (déplacements et indemnités) et le
département d'automatique de Lund (en utilisant ses moyens informatiques et
techniques) à hauteur de 70 000FF.
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Appendix A

Data from Ericsson

Microwave Systems

Phase Compensator
Frequency in Herz Gain in dB Phase in degree

1.0000 e-01 9.8758 e+01 -1.4030 e+01

2.0000 e-01 9.8053 e+01 -2.6550 e+01

3.0000 e-01 9.7044 e+01 -3.6848 e+01
4.0000 e-01 9.6013 e+01 -4.4968 e+01

5.0000 e-01 9.4378 e+01 -5.1310 e+01

6.0000 e-01 9.3907 e+01 -5.6273 e+01
7.0000 e-01 9.2938 e+01 -6.0222 e+01

8.0000 e-01 9.2037 e+01 -6.3401 e+01

9.0000 e-01 9.1201 e+01 -6.6000 e+01
1.0000 e+00 9.0421 e+01 -6.8181 e+01

2.0000 e+00 8.4876 e+01 -7.8665 e+01

3.0000 e+00 8.1448 e+01 -8.2371 e+01
4.0000 e+00 7.8982 e+01 -8.4247 e+01

5.0000 e+00 7.7060 e+01 -8.5375 e+01

6.0000 e+00 7.5485 e+01 -8.6126 e+01
7.0000 e+00 7.4152 e+01 -8.6659 e+01

8.0000 e+00 7.2995 e+01 -8.7058 e+01

9.0000 e+00 7.1975 e+01 -8.7366 e+01
1.0000 e+01 7.1060 e+01 -8.7612 e+01

1.0000 e+01 7.1060 e+01 -8.7610 e+01

2.0000 e+01 6.5046 e+01 -8.8657 e+01
3.0000 e+01 6.1526 e+01 -8.8940 e+01

4.0000 e+01 5.9029 e+01 -8.9033 e+01

5.0000 e+01 5.7092 e+01 -8.9050 e+01
6.0000 e+01 5.5510 e+01 -8.9028 e+01

7.0000 e+01 5.4175 e+01 -8.8985 e+01

8.0000 e+01 5.3017 e+01 -8.8929 e+01
9.0000 e+01 5.1997 e+01 -8.8863 e+01

1.0000 e+02 5.1083 e+01 -8.8792 e+01

2.0000 e+02 4.5112 e+01 -8.7968 e+01
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Frequency in Herz Gain in dB Phase in degree

3.0000 e+02 4.1670 e+01 -8.7142 e+01
4.0000 e+02 3.9277 e+01 -8.6405 e+01

5.0000 e+02 3.7468 e+01 -8.5793 e+01

6.0000 e+02 3.6033 e+01 -8.5327 e+01
7.0000 e+02 3.4858 e+01 -8.5020 e+01

8.0000 e+02 3.3869 e+01 -8.4876 e+01

9.0000 e+02 3.3025 e+01 -8.4894 e+01
1.0000 e+03 3.2287 e+01 -8.5066 e+01

1.1000 e+03 3.1638 e+01 -8.5389 e+01

1.2000 e+03 3.1056 e+01 -8.5848 e+01
1.3000 e+03 3.0531 e+01 -8.6434 e+01

1.4000 e+03 3.0047 e+01 -8.7128 e+01

1.5000 e+03 2.9599 e+01 -8.7920 e+01
1.6000 e+03 2.9180 e+01 -8.8798 e+01

1.7000 e+03 2.8785 e+01 -8.9751 e+01

1.8000 e+03 2.8409 e+01 -9.0764 e+01
2.0000 e+03 2.8048 e+01 -9.1828 e+01

2.2000 e+03 2.7701 e+01 -9.2938 e+01

2.5000 e+03 2.6108 e+01 -9.8980 e+01
3.0000 e+03 2.4640 e+01 -1.0507 e+02

3.2000 e+03 2.4076 e+01 -1.0745 e+02

3.5000 e+03 2.3249 e+01 -1.1091 e+02
4.0000 e+03 2.1917 e+01 -1.1632 e+02

4.5000 e+03 2.0642 e+01 -1.2130 e+02

5.0000 e+03 1.9406 e+01 -1.2581 e+02
5.5000 e+03 1.8246 e+01 -1.2983 e+02

6.0000 e+03 1.7125 e+01 -1.3346 e+02

6.5000 e+03 1.6055 e+01 -1.3674 e+02
7.0000 e+03 1.5032 e+01 -1.3978 e+02

7.5000 e+03 1.4052 e+01 -1.4249 e+02

8.0000 e+03 1.3114 e+01 -1.4497 e+02
8.5000 e+03 1.2218 e+01 -1.4723 e+02

9.0000 e+03 1.1357 e+01 -1.4936 e+02

9.5000 e+03 1.0530 e+01 -1.5131 e+02
1.0000 e+04 9.7354 e+00 -1.5310 e+02

1.1000 e+04 8.2382 e+00 -1.5631 e+02

1.2000 e+04 6.8474 e+00 -1.5918 e+02
1.3000 e+04 5.5519 e+00 -1.6168 e+02

1.4000 e+04 4.3376 e+00 -1.6398 e+02

1.5000 e+04 3.1945 e+00 -1.6603 e+02
1.6000 e+04 2.1073 e+00 -1.6745 e+02

1.7000 e+04 1.0892 e+00 -1.6914 e+02

1.8000 e+04 1.2250 e-01 -1.7079 e+02
1.9000 e+04 -7.9870 e-01 -1.7229 e+02

2.0000 e+04 -1.6758 e+00 -1.7368 e+02

2.1000 e+04 -2.5112 e+00 -1.7507 e+02
2.2000 e+04 -3.3133 e+00 -1.7632 e+02

2.3000 e+04 -4.0821 e+00 -1.7758 e+02

2.4000 e+04 -4.8231 e+00 -1.7873 e+02
2.5000 e+04 -5.5326 e+00 -1.7989 e+02

2.7000 e+04 -6.8790 e+00 -1.8203 e+02

3.0000 e+04 -8.7432 e+00 -1.8505 e+02
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Frequency in Herz Gain in dB Phase in degree

3.5000 e+04 -1.1519 e+01 -1.8918 e+02
4.0000 e+04 -1.3960 e+01 -1.9356 e+02

4.5000 e+04 -1.6156 e+01 -1.9792 e+02

5.0000 e+04 -1.8198 e+01 -2.0179 e+02
5.5000 e+04 -2.0095 e+01 -2.0634 e+02

6.0000 e+04 -2.1910 e+01 -2.1132 e+02

6.5000 e+04 -2.3700 e+01 -2.1675 e+02
7.0000 e+04 -2.5547 e+01 -2.2233 e+02

7.5000 e+04 -2.7500 e+01 -2.2939 e+02

8.0000 e+04 -2.9730 e+01 -2.3747 e+02
8.5000 e+04 -3.2541 e+01 -2.4665 e+02

9.0000 e+04 -3.6287 e+01 -2.5792 e+02

9.5000 e+04 -4.2425 e+01 -2.7200 e+02
9.7000 e+04 -6.8025 e+01 -2.6522 e+02

1.0000 e+05 -1.1785 e+02 -2.4873 e+02
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Cathode Power Supply
Frequency in Herz Gain in dB Phase in degree

1.0000 e-01 9.1763 e+01 1.7436 e+02

2.0000 e-01 9.1640 e+01 1.6884 e+02

3.0000 e-01 9.1441 e+01 1.6351 e+02
4.0000 e-01 9.1177 e+01 1.5846 e+02

5.0000 e-01 9.0861 e+01 1.5373 e+02

6.0000 e-01 9.0502 e+01 1.4937 e+02
7.0000 e-01 9.0114 e+01 1.4536 e+02

8.0000 e-01 8.9705 e+01 1.4167 e+02

9.0000 e-01 8.9284 e+01 1.3838 e+02
1.0000 e+00 8.8856 e+01 1.3534 e+02

2.0000 e+00 8.4918 e+01 1.1677 e+02

3.0000 e+00 8.1922 e+01 1.0847 e+02
4.0000 e+00 7.9624 e+01 1.0395 e+02

5.0000 e+00 7.7780 e+01 1.0110 e+02

6.0000 e+00 7.6251 e+01 9.9156 e+01
7.0000 e+00 7.4929 e+01 9.7727 e+01

8.0000 e+00 7.3804 e+01 9.6631 e+01

9.0000 e+00 7.2796 e+01 9.5760 e+01
1.0000 e+01 7.1886 e+01 9.5039 e+01

1.0000 e+01 7.1886 e+01 9.5039 e+01

2.0000 e+01 6.5895 e+01 9.1394 e+01
3.0000 e+01 6.2374 e+01 8.9674 e+01

4.0000 e+01 5.9867 e+01 8.8439 e+01

5.0000 e+01 5.7918 e+01 8.7401 e+01
6.0000 e+01 5.6321 e+01 8.6464 e+01

7.0000 e+01 5.4965 e+01 8.5588 e+01
8.0000 e+01 5.3785 e+01 8.4751 e+01

9.0000 e+01 5.2740 e+01 8.3944 e+01

1.0000 e+02 5.1798 e+01 8.3160 e+01
2.0000 e+02 4.5415 e+01 7.6194 e+01

3.0000 e+02 4.1386 e+01 7.0601 e+01

4.0000 e+02 3.8323 e+01 6.6285 e+01
5.0000 e+02 3.5828 e+01 6.3036 e+01

6.0000 e+02 3.3731 e+01 6.0595 e+01

7.0000 e+02 3.1936 e+01 5.8719 e+01
8.0000 e+02 3.0377 e+01 5.7216 e+01

9.0000 e+02 2.9010 e+01 5.5955 e+01

1.0000 e+03 2.7796 e+01 5.4835 e+01
1.1000 e+03 2.6717 e+01 5.3798 e+01

1.2000 e+03 2.5739 e+01 5.2794 e+01

1.3000 e+03 2.4853 e+01 5.1800 e+01
1.4000 e+03 2.4039 e+01 5.0798 e+01

1.5000 e+03 2.3289 e+01 4.9777 e+01

1.6000 e+03 2.2597 e+01 4.8730 e+01
1.7000 e+03 2.1952 e+01 4.7655 e+01

1.8000 e+03 2.1348 e+01 4.6551 e+01

2.0000 e+03 2.0239 e+01 4.4261 e+01
2.2000 e+03 1.9249 e+01 4.1861 e+01

2.5000 e+03 1.7919 e+01 3.8099 e+01

3.0000 e+03 1.6015 e+01 3.1484 e+01
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Frequency in Herz Gain in dB Phase in degree

3.2000 e+03 1.5334 e+01 2.8749 e+01
3.5000 e+03 1.4377 e+01 2.4583 e+01

4.0000 e+03 1.2914 e+01 1.7514 e+01

4.5000 e+03 1.1579 e+01 1.0355 e+01
5.0000 e+03 1.0336 e+01 3.1563 e+00

5.5000 e+03 9.1645 e+00 -4.0432 e+00

6.0000 e+03 8.0420 e+00 -1.1220 e+01
6.5000 e+03 6.9623 e+00 -1.8350 e+01

7.0000 e+03 5.9115 e+00 -2.5424 e+01

7.5000 e+03 4.8842 e+00 -3.2426 e+01
8.0000 e+03 3.8767 e+00 -3.9334 e+01

8.5000 e+03 2.8825 e+00 -4.6145 e+01

9.0000 e+03 1.8986 e+00 -5.2849 e+01
9.5000 e+03 9.2260 e-01 -5.9436 e+01

1.0000 e+04 4.7000 e-02 -6.5898 e+01

1.1000 e+04 -1.9681 e+00 -7.8357 e+01
1.2000 e+04 -3.8679 e+00 -9.0245 e+01

1.3000 e+04 -5.7380 e+00 -1.0150 e+02

1.4000 e+04 -7.5755 e+00 -1.1223 e+02
1.5000 e+04 -9.3770 e+00 -1.2248 e+02

2.0000 e+04 -1.8101 e+01 -1.6767 e+02

2.5000 e+04 -2.6264 e+01 -2.0214 e+02
3.0000 e+04 -3.3539 e+01 -2.2943 e+02

3.5000 e+04 -4.0002 e+01 -2.5291 e+02

4.0000 e+04 -4.6656 e+01 -2.7965 e+02
4.5000 e+04 -5.0774 e+01 -2.9508 e+02

5.0000 e+04 -5.5223 e+01 -3.1700 e+02

5.5000 e+04 -5.8851 e+01 -3.4049 e+02
6.0000 e+04 -6.1619 e+01 -3.6588 e+02

6.5000 e+04 -6.3323 e+01 -3.9383 e+02

7.0000 e+04 -6.4199 e+01 -4.2513 e+02
7.5000 e+04 -6.4520 e+01 -4.6208 e+02

8.0000 e+04 -6.8579 e+01 -6.1733 e+02

8.5000 e+04 -6.9470 e+01 -5.4127 e+02
9.0000 e+04 -7.4542 e+01 -5.7092 e+02

9.5000 e+04 -7.9398 e+01 -5.9021 e+02

1.0000 e+05 -8.3987 e+01 -6.0205 e+02
1.0000 e+05 -8.4330 e+01 -6.0087 e+02

2.0000 e+05 -1.3825 e+02 -6.9854 e+02

3.0000 e+05 -1.3936 e+02 -4.6552 e+02
4.0000 e+05 -1.3871 e+02 -6.8855 e+02

5.0000 e+05 -1.6192 e+02 -8.1204 e+02

6.0000 e+05 -1.6057 e+02 -6.5237 e+02
7.0000 e+05 -1.5590 e+02 -7.7493 e+02

8.0000 e+05 -1.5338 e+02 -1.0033 e+03

9.0000 e+05 -1.5537 e+02 -1.3787 e+03
1.0000 e+06 -1.5702 e+02 -1.4939 e+03
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Appendix B

Matlab code used

MATLAB �le : controller2script.m

clear all;

close all;

init;

rescaleFactor=1e-5;

bodeOfSensors;

close all;

UpperLimit=12;

LowerLimit=-12;

%%%%%% CATH %%%%%%%%%%%%%%%%%

G1o =-3.9e+04;

f1 =1.0e+00;

f2 =1.55e+04;

f7 =8.4e+02;

f8 =4.4e+02;

fx =3.2e+04;

xx =1.2e+04;

xz=2.2;

zeros_Cath=(-[-xx+i*xz*fx;-xx-i*xz*fx;f7]*(2*pi));

poles_Cath=(-[xx+i*xz*fx;xx-i*xz*fx;fx;f1;f2;f2;f2;f2;f8]*(2*pi));

G1=G1o*(prod(-poles_Cath)/prod(-zeros_Cath));

NumCath=G1*poly(zeros_Cath);

DenCath=poly(poles_Cath);

SysCath=tf(NumCath,DenCath);

set(SysCath,'InputDelay',0.0000); %tau1

[MagCath,PhaseCath,WCath]=bode(SysCath,{(0.1*(2*pi)),(500000*(2*pi))});

NumCath=[ 0 0 0 0 0 0 NumCath];

NCath=size(DenCath);

NCath=NCath(1,2)

for j=1:NCath

NumCathrs(j)=NumCath(j)/(rescaleFactor^(NCath-j-1));

DenCathrs(j)=DenCath(j)/(rescaleFactor^(NCath-j-1));

end

SysCathrs=tf(NumCathrs,DenCathrs);

%%%%%% COMP %%%%%%%%%%%%%%%%%

G2o =8.95e+04;

f4 =6.4e+03;

f5 =1.1e+03;

f6 =2.1e+03;

f9 =4.2e+4;

f10 =6.3e+04;

f11 =3.9e-01;

f12 =1.6e+05;

f13=1.2e+4;

f14=1.55e+4;
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f15=1.8e+4;

zeros_Comp=[f5;f10;f14;f14]*(-2*pi);

poles_Comp=[f11;f4;f6;f9;f12;f13;f15]*(-2*pi);

G2=G2o*(prod(-poles_Comp)/prod(-zeros_Comp));

NumComp=G2*poly(zeros_Comp);

DenComp=poly(poles_Comp);

SysComp=tf(NumComp,DenComp);

set(SysComp,'InputDelay',0.0000);%tau2

[MagComp,PhaseComp,WComp]=bode(SysComp,{(0.1*(2*pi)),(500000*(2*pi))});

NumComp=[ 0 0 0 NumComp];

NComp=size(DenComp);

NComp=NComp(1,2)

for j=1:NComp

NumComprs(j)=NumComp(j)/(rescaleFactor^(NComp-j-1));

DenComprs(j)=DenComp(j)/(rescaleFactor^(NComp-j-1));

end

SysComprs=tf(NumComprs,DenComprs);

%%%%%% CATH taking into account the high frequency assumption %%%%%%%%%%%%%%%%%

G1o =-3.9e+04;

f1 =1.0e+00;

f2 =1.55e+04;

f7 =8.4e+02;

f8 =4.4e+02;

fx =1.2*3.8e+04;

xx =1.2*1.8e+04;

xz=2.2;

f50=2e+4;

f51=5e+4;

f52=8e+4;

wCath=80000*2*pi;

psy1Cath=0.38;

psy2Cath=0.92;

NumButterCathHf=wCath^4;

Den1ButterCath=[1 2*psy1Cath*wCath wCath^2];

Den2ButterCath=[1 2*psy2Cath*wCath wCath^2];

DenButterCathHf=conv(Den1ButterCath,Den2ButterCath);

zeros_CathHf=(-[-xx+i*xz*fx;-xx-i*xz*fx;f7;f51;f52]*(2*pi));

poles_CathHf=(-[xx+i*xz*fx;xx-i*xz*fx;f1;f2;f2;f2;f2;f8;f50]*(2*pi));

G1=G1o*(prod(-poles_CathHf)/prod(-zeros_CathHf));

NumCathHf=G1*poly(zeros_CathHf);

DenCathHf=poly(poles_CathHf);

NumCathHf=conv(NumCathHf,NumButterCathHf);

DenCathHf=conv(DenCathHf,DenButterCathHf);

NumCathHf=[ 0 0 0 0 0 0 0 0 NumCathHf];

NCathHf=size(DenCathHf);

NCathHf=NCathHf(1,2)

for j=1:NCathHf

NumCathHfrs(j)=NumCathHf(j)/(rescaleFactor^(NCathHf-j-1));

DenCathHfrs(j)=DenCathHf(j)/(rescaleFactor^(NCathHf-j-1));

end

SysCathHfrs=tf(NumCathHfrs,DenCathHfrs);

SysCathHfrs=ss(SysCathHfrs);

%%%%%% COMP taking into account the high frequency assumption %%%%%%%%%%%%%%%%%
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G2o =(8.95e+04);

f5 =1.1e+03;

f6 =2.1e+03;

f11 =3.9e-01;

%%%%%%%%%%%%%%

fx =0.05e+05;

xx =1e+05;

xz=1;

fx2 =0.11e+05;

xx2 =1e+05;

xz2=27;

%%%%%%%%%%%%%

wComp=85000*2*pi;

psy1Comp=0.38;

psy2Comp=0.92;

f42=5e+03;

f43=1.2e+05;

zeros_CompHf=[f5]*(-2*pi);

poles_CompHf=[f11;f6;f42;f43]*(-2*pi);

NumButterCompHf=wComp^4;

Den1ButterComp=[1 2*psy1Comp*wComp wComp^2];

Den2ButterComp=[1 2*psy2Comp*wComp wComp^2];

DenButterCompHf=conv(Den1ButterComp,Den2ButterComp);

G2=G2o*(prod(-poles_CompHf)/prod(-zeros_CompHf));

NumCompHf=G2*poly(zeros_CompHf);

DenCompHf=poly(poles_CompHf);

NumCompHf=conv(NumCompHf,NumButterCompHf);

DenCompHf=conv(DenCompHf,DenButterCompHf);

NumCompHf=[ 0 0 0 0 0 0 0 NumCompHf];

NCompHf=size(DenCompHf);

NCompHf=NCompHf(1,2)

for j=1:NCompHf

NumCompHfrs(j)=NumCompHf(j)/(rescaleFactor^(NCompHf-j-1));

DenCompHfrs(j)=DenCompHf(j)/(rescaleFactor^(NCompHf-j-1));

end

SysCompHfrs=tf(NumCompHfrs,DenCompHfrs);

SysCompHfrs=ss(SysCompHfrs);

%%%%%%%%%%%%%% MODELISATION OF DISTURBANCES %%%%%%%%%%%%%%%%%%%%%

%% Outputs IMPEDANCES %%

L=0.002;

C1=1e-6;

C2=20e-6;

C3=140e-9;

r=0.1;

R=80;

%% LOAD Cath %%

R3=100e+6;

C4=100e-12;

R4=1e+6;

C5=10e-9;

R5=20e+3;

C6=500e-9;

C7=10e-9;

R6=1.5e+6;

%% LOAD Comp %%

C12=94e-12;

112



R7=0.1;

R13=232e+3;

C13=470e-9;

R14=46.4;

NumZoutComp1=[(C2*L*r*C1) ((L*C2)+(C2*R*r*C1)) ((C2*R)+(C1*r)) 1];

DenZoutComp1=[(L*C2*C1) ((C2*R*C1)+(C2*C1*r)) (C1+C2) 0];

NumZoutCath1=[(C3*r) 1];

DenZoutCath1=[(C3) 0];

NumZout1=(conv(NumZoutComp1,DenZoutCath1)+conv(NumZoutCath1,DenZoutComp1))

DenZout1=(conv(DenZoutCath1,DenZoutComp1))

N=size(NumZout1);

N=N(1,2);

for j=1:N

NumZout(j)=NumZout1(j)/(rescaleFactor^(N-j-1))

DenZout(j)=DenZout1(j)/(rescaleFactor^(N-j-1))

end

N=size(NumZoutComp1);

N=N(1,2);

for j=1:N

NumZoutComp(j)=NumZoutComp1(j)/(rescaleFactor^(N-j-1))

DenZoutComp(j)=DenZoutComp1(j)/(rescaleFactor^(N-j-1))

end

N=size(NumZoutCath1);

N=N(1,2);

for j=1:N

NumZoutCath(j)=NumZoutCath1(j)/(rescaleFactor^(N-j-1))

DenZoutCath(j)=DenZoutCath1(j)/(rescaleFactor^(N-j-1))

end

SysZoutCath=tf(NumZoutCath1,DenZoutCath1);

SysZoutComp=tf(NumZoutComp1,DenZoutComp1);

%%%%%% CATH MODEL FOR THE OBSERVERS %%%%%%%%%%%%%%%%%

G1obs =-15e+04;

f2 =1.55e+04;

fx =3.2e+04;

xx =1.2e+04;

xz=2.2;

zeros_CathObs=(-[-xx+i*xz*fx;-xx-i*xz*fx]*(2*pi));

poles_CathObs=(-[xx+i*xz*fx;xx-i*xz*fx;fx;f2;f2;f2;f2]*(2*pi));

%poles_CathObs=(-[f2;f2;f2;f2;fx;xx+i*xz*fx;xx-i*xz*fx]*(2*pi));

GCathObs=G1obs*(prod(-poles_CathObs)/prod(-zeros_CathObs));

NumCathObs1=GCathObs*poly(zeros_CathObs);

DenCathObs2=poly([0; poles_CathObs])

DenCathObsR1=poly([poles_CathObs]);

NumCathObs1=[0 0 0 0 0 NumCathObs1];

NumCathObs2=[0 NumCathObs1]

NR=size(DenCathObsR1);

NR=NR(1,2)

for j=1:NR

NumCathObs(j)=NumCathObs1(j)/(rescaleFactor^(NR-j-1));

DenCathObsR(j)=DenCathObsR1(j)/(rescaleFactor^(NR-j-1));

end

for j=1:(NR+1)

NumCathObs3(j)=NumCathObs2(j)/(rescaleFactor^(NR-j))

DenCathObs3(j)=DenCathObs2(j)/(rescaleFactor^(NR-j))

end

SysCathObsR=tf(NumCathObs,DenCathObsR);

SysCathObsR=ss(SysCathObsR,'inv');

ACathObsR=SysCathObsR.a;

BCathObsR=SysCathObsR.b;

CCathObsR=SysCathObsR.c;

DCathObsR=SysCathObsR.d;

SysCathObs3=tf(NumCathObs3,DenCathObs3);
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%%%%%% COMP MODEL FOR THE OBSERVERS %%%%%%%%%%%%%%%%%

G2obs =22.5e+04;

f6 =2.1e+03;

f5 =1.1e+03;

f20=5e+03;

f21=1.2e+05;

zeros_CompObs=[f5]*(-2*pi);

poles_CompObs=[f6;f20;f21]*(-2*pi);

GCompObs=G2obs*(prod(-poles_CompObs)/prod(-zeros_CompObs));

NumCompObs1=GCompObs*poly(zeros_CompObs);

DenCompObs2=poly([0; poles_CompObs]);

DenCompObsR1=poly([poles_CompObs])

NumCompObs1=[0 0 NumCompObs1]

NumCompObs2=[0 NumCompObs1]

NR=size(DenCompObsR1);

NR=NR(1,2)

for j=1:NR

NumCompObs(j)=NumCompObs1(j)/(rescaleFactor^(NR-j-1));

DenCompObsR(j)=DenCompObsR1(j)/(rescaleFactor^(NR-j-1));

end

for j=1:(NR+1)

NumCompObs3(j)=NumCompObs2(j)/(rescaleFactor^(NR-j))

DenCompObs3(j)=DenCompObs2(j)/(rescaleFactor^(NR-j))

end

SysCompObsR=tf(NumCompObs,DenCompObsR)

SysCompObsR=ss(SysCompObsR,'inv');

ACompObsR=SysCompObsR.a;

BCompObsR=SysCompObsR.b;

CCompObsR=SysCompObsR.c;

DCompObsR=SysCompObsR.d;

SysCompObs3=tf(NumCompObs3,DenCompObs3);

%%%%%% CATH For OBSERVER REDUCED %%%%%%%%%%%%%%%%%

G1o =-15e+04;

f2 =1.55e+04;

poles_CathObsRed=(-[f2;f2;f2;f2]*(2*pi));

G1=G1o*(prod(-poles_CathObsRed));

NumCathObsRed=G1;

DenCathObsRedR=poly([poles_CathObsRed]);

NumCathObsRed=[ 0 0 0 0 NumCathObsRed];

NCathObsRed=size(DenCathObsRedR);

NCathObsRed=NCathObsRed(1,2)

for j=1:NCathObsRed

NumCathObsRedrs(j)=NumCathObsRed(j)/(rescaleFactor^(NCathObsRed-j-1));

DenCathObsRedrsR(j)=DenCathObsRedR(j)/(rescaleFactor^(NCathObsRed-j-1));

end

SysCathObsRedrsR=tf(NumCathObsRedrs,DenCathObsRedrsR);

SysCathObsRedrsR=ss(SysCathObsRedrsR,'inv');

ACathObsRedrsR=SysCathObsRedrsR.a;

BCathObsRedrsR=SysCathObsRedrsR.b;

CCathObsRedrsR=SysCathObsRedrsR.c;

DCathObsRedrsR=SysCathObsRedrsR.d;

%%%%%% COMP For OBSERVER REDUCED %%%%%%%%%%

G2o =22.5e+04;

f5 =1.1e+03;

f6 =2.1e+03;

f42=5e+03;

zeros_CompObsRed=[f5]*(-2*pi);

poles_CompObsRedR=[f6;f42]*(-2*pi);

G2=G2o*(prod(-poles_CompObsRedR)/prod(-zeros_CompObsRed));

NumCompObsRed=G2*poly(zeros_CompObsRed);

DenCompObsRedR=poly(poles_CompObsRedR);
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NumCompObsRed=[ 0 NumCompObsRed];

NCompObsRed=size(DenCompObsRedR);

NCompObsRed=NCompObsRed(1,2)

for j=1:NCompObsRed

NumCompObsRedrs(j)=NumCompObsRed(j)/(rescaleFactor^(NCompObsRed-j-1));

DenCompObsRedrsR(j)=DenCompObsRedR(j)/(rescaleFactor^(NCompObsRed-j-1));

end

SysCompObsRedrsR=tf(NumCompObsRedrs,DenCompObsRedrsR);

SysCompObsRedrsR=ss(SysCompObsRedrsR,'inv');

ACompObsRedrsR=SysCompObsRedrsR.a;

BCompObsRedrsR=SysCompObsRedrsR.b;

CCompObsRedrsR=SysCompObsRedrsR.c;

DCompObsRedrsR=SysCompObsRedrsR.d;

%%%%%%% CONSTRUCTION OF THE COMPLETE SYSTEM (OBSERVER)%%%%%%%%%%%%%%%%%%%%%

NCathR=size(ACathObsR);NCathR=NCathR(1,1);

NCompR=size(ACompObsR);NCompR=NCompR(1,1);

SysObsGene=ss([ACathObsR zeros(NCathR,NCompR)

zeros(NCathR,1) zeros(NCathR,1);zeros(NCompR,NCathR) ACompObsR

zeros(NCompR,1) zeros(NCompR,1);CCathObsR*rescaleFactor

CCompObsR*rescaleFactor 0 0;zeros(1,NCathR)

CCompObsR*rescaleFactor 0 0],[BCathObsR

zeros(NCathR,1);zeros(NCompR,1) BCompObsR;0 0;0

0],[zeros(1,NCathR) zeros(1,NCompR) 1 0;zeros(1,NCathR)

zeros(1,NCompR) 0 1],[0 0;0 0]);

AObsGene=SysObsGene.a;

BObsGene=SysObsGene.b;

CObsGene=SysObsGene.c;

DObsGene=SysObsGene.d;

%%%%%%% CONSTRUCTION OF THE COMPLETE SYSTEM (REDUCED OBSERVER)%%%%%%%%%%%%%%%%%%%%%

NCathRedrsR=size(ACathObsRedrsR);NCathRedrsR=NCathRedrsR(1,1);

NCompRedrsR=size(ACompObsRedrsR);NCompRedrsR=NCompRedrsR(1,1);

SysObsGeneRedrs=ss([ACathObsRedrsR

zeros(NCathRedrsR,NCompRedrsR) zeros(NCathRedrsR,1)

zeros(NCathRedrsR,1);zeros(NCompRedrsR,NCathRedrsR) ACompObsRedrsR

zeros(NCompRedrsR,1) zeros(NCompRedrsR,1);CCathObsRedrsR*rescaleFactor

CCompObsRedrsR*rescaleFactor 0 0;zeros(1,NCathRedrsR)

CCompObsRedrsR*rescaleFactor 0 0],[BCathObsRedrsR

zeros(NCathRedrsR,1);zeros(NCompRedrsR,1) BCompObsRedrsR;0

0;0 0],[zeros(1,NCathRedrsR) zeros(1,NCompRedrsR)

1 0;zeros(1,NCathRedrsR) zeros(1,NCompRedrsR) 0 1],[0 0;0 0]);

AObsGeneRedrs=SysObsGeneRedrs.a;

BObsGeneRedrs=SysObsGeneRedrs.b;

CObsGeneRedrs=SysObsGeneRedrs.c;

DObsGeneRedrs=SysObsGeneRedrs.d;

%%%%%%% CONSTRUCTION OF THE COMPLETE SYSTEM (REDUCED OBSERVER

%%%%%%% + SENSOR )%%%%%%%%%%%%%%%%%%%%%

NCathRedrsR=size(ACathObsRedrsR);NCathRedrsR=NCathRedrsR(1,1);

NCompRedrsR=size(ACompObsRedrsR);NCompRedrsR=NCompRedrsR(1,1);

SysSensorCathrs=ss(SysSensorCathrs);

SysSensorCathrs=minreal(SysSensorCathrs);

NSensorCath=2;

ASysObsGeneRedSensorrs=[ACathObsRedrsR zeros(NCathRedrsR,NCompRedrsR)

zeros(NCathRedrsR,1) zeros(NCathRedrsR,1)

zeros(NCathRedrsR,NSensorCath);zeros(NCompRedrsR,NCathRedrsR)

ACompObsRedrsR zeros(NCompRedrsR,1) zeros(NCompRedrsR,1)

zeros(NCompRedrsR,NSensorCath);CCathObsRedrsR*rescaleFactor

CCompObsRedrsR*rescaleFactor 0 0 0 0;zeros(1,NCathRedrsR)

CCompObsRedrsR*rescaleFactor 0 0 0

0;zeros(NSensorCath,NCathRedrsR) zeros(NSensorCath,NCompRedrsR)

SysSensorCathrs.b zeros(NSensorCath,1) SysSensorCathrs.a];
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BSysObsGeneRedSensorrs=[BCathObsRedrsR

zeros(NCathRedrsR,1);zeros(NCompRedrsR,1) BCompObsRedrsR;0

0;0 0;0 0;0 0];

CSysObsGeneRedSensorrs=[zeros(1,NCathRedrsR) zeros(1,NCompRedrsR)

SysSensorCathrs.d 0 SysSensorCathrs.c;zeros(1,NCathRedrsR)

zeros(1,NCompRedrsR) 0 1 0 0];

DSysObsGeneRedSensorrs=[0 0;0 0];

SysObsGeneRedSensorrs=ss(ASysObsGeneRedSensorrs,BSysObsGeneRedSensorrs,CSysObsGeneRedSensorrs,DSysObsGeneRedSensorrs);

AObsGeneRedSensorrs=SysObsGeneRedSensorrs.a;

BObsGeneRedSensorrs=SysObsGeneRedSensorrs.b;

CObsGeneRedSensorrs=SysObsGeneRedSensorrs.c;

DObsGeneRedSensorrs=SysObsGeneRedSensorrs.d;

%%%%%% KALMAN FILTER FOR THE REDUCED OBSERVER %%%%%

Gamma11=1/1000;

Gamma12=1/10;

Gamma101=10000000;

Gamma102=100000;

Gamma103=1000;

Gamma104=100;

Gamma105=10000000;

Gamma106=100000;

Gamma107=10000;

Gamma108=10000;

Qe=diag([ Gamma101 Gamma102 Gamma103 Gamma104 Gamma105 Gamma106 Gamma107 Gamma108]);

Ge=eye(8);

Re=1*[Gamma11 0;0 Gamma12];

Ne=zeros(8,2);

[KObsGeneRedrs,P,E] = lqe(AObsGeneRedrs,Ge,CObsGeneRedrs,Qe,Re,Ne);

%%%%%% KALMAN FILTER FOR THE REDUCED OBSERVER + SENSOR%%%%%

Gamma11=1/1000;

Gamma12=1/10;

Gamma101=10000000;

Gamma102=100000;

Gamma103=1000;

Gamma104=100;

Gamma105=10000000;

Gamma106=100000;

Gamma107=10000;

Gamma108=1000000;

Gamma109=1;

Gamma110=10;

Qe=diag([ Gamma101 Gamma102 Gamma103 Gamma104 Gamma105 Gamma106 Gamma107 Gamma108 Gamma109 Gamma110]);

Ge=eye(10);

Re=1*[Gamma11 0;0 Gamma12];

Ne=zeros(10,2);

[KObsGeneRedSensorrs,P,E] = lqe(AObsGeneRedSensorrs,Ge,CObsGeneRedSensorrs,Qe,Re,Ne);

%%%%% LINEAR QUADRATIC REGULATOR FOR THE REDUCED OBSERVER %%%%%

Gamma1=500000*1/(24000^2);

Gamma2=0.07/(300^2);

Gamma3=1/(12^2);

Gamma4=1/(12^2);

Gamma1=500000*1/(24000^2);

Gamma2=0.07/(300^2);

Qr=CObsGeneRedrs'*[Gamma1 0;0 Gamma2]*CObsGeneRedrs;

Rr=[Gamma3 0;0 Gamma4];

Nr=zeros(8,2);

[LsfbackGeneRedrs,S,E]=lqr(AObsGeneRedrs,BObsGeneRedrs,Qr ,Rr,Nr)
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%%%%% LINEAR QUADRATIC REGULATOR FOR THE REDUCED OBSERVER + SENSOR %%%%%

Gamma3=1/(12^2);

Gamma4=1/(12^2);

Gamma1=1000000000000*1/(24000^2);

Gamma2=1/(2.4^2);

Qr=CObsGeneRedSensorrs'*[Gamma1 0;0 Gamma2]*CObsGeneRedSensorrs;

Rr=[Gamma3 0;0 Gamma4];

Nr=zeros(10,2);

[LsfbackGeneRedSensorrs,S,E]=lqr(AObsGeneRedSensorrs,BObsGeneRedSensorrs,Qr ,Rr,Nr)

%%%% LINEAR QUADRATIC REGULATOR FOR THE REDUCED OBSERVER WITH

%%%% 2 INTEGRAL ACTION %%%%%

epsilon2=0.0001;

epsilon1=0.000001;

Gamma1=4*500000*1/(24000^2);

Gamma2=10/(200^2);

Gamma3=1/(12^2);

Gamma4=1/(12^2);

QrInt=[CObsGeneRedrs'*[Gamma1 0;0 Gamma2]*CObsGeneRedrs zeros(8,2);zeros(1,8) epsilon1 0;zeros(1,8) 0 epsilon2];

RrInt=[Gamma3 0;0 Gamma4];

NrInt=zeros(10,2);

AObsGeneRedrsInt2=[AObsGeneRedrs zeros(8,2) ; CObsGeneRedrs(1,:) 0 0; CObsGeneRedrs(2,:) 0 0];

BObsGeneRedrsInt2=[BObsGeneRedrs;0 0;0 0];

[LsfbackGeneRedrsInt2,S,E]=lqr(AObsGeneRedrsInt2,BObsGeneRedrsInt2,QrInt ,RrInt,NrInt)

%%%%%%% CONSTRUCTION OF THE REDUCED OBSERVER %%%%%%%%%%%%%%%%%%%%%

AAObsGeneRedrs=AObsGeneRedrs-KObsGeneRedrs*CObsGeneRedrs;

BBObsGeneRedrs=[BObsGeneRedrs KObsGeneRedrs];

CCObsGeneRedrs=[eye(NCathRedrsR+NCompRedrsR+2)];

DDObsGeneRedrs=[zeros(NCathRedrsR+NCompRedrsR+2,4)];

%%%%%%%% COMPUTATION OF THE MATRIX FOR THE REFERENCE FOR THE

%%%%%%%% REDUCED OBSERVER %%%%%

AAAObsGeneRedrs=[AObsGeneRedrs

-BObsGeneRedrs*LsfbackGeneRedrs;KObsGeneRedrs*CObsGeneRedrs

AObsGeneRedrs-KObsGeneRedrs*CObsGeneRedrs-BObsGeneRedrs*LsfbackGeneRedrs];

BBBObsGeneRedrs=[BObsGeneRedrs; BObsGeneRedrs];

CCCObsGeneRedrs=[CObsGeneRedrs zeros(2,8)];

c=-CCCObsGeneRedrs*inv(AAAObsGeneRedrs)*BBBObsGeneRedrs;

LrGeneRedrs=inv(c);

%%%%%%%% COMPUTATION OF THE MATRIX FOR THE REFERENCE FOR THE

%%%%%%%% REDUCED OBSERVER + SENSOR %%%%%

AAAObsGeneRedSensorrs=[AObsGeneRedrs

-BObsGeneRedrs*LsfbackGeneRedrs;KObsGeneRedSensorrs(1:8,:)*CObsGeneRedrs

AObsGeneRedrs-KObsGeneRedSensorrs(1:8,:)*CObsGeneRedrs-BObsGeneRedrs*LsfbackGeneRedrs];

BBBObsGeneRedSensorrs=[BObsGeneRedrs; BObsGeneRedrs];

CCCObsGeneRedSensorrs=[CObsGeneRedrs zeros(2,8)];

c=-CCCObsGeneRedSensorrs*inv(AAAObsGeneRedSensorrs)*BBBObsGeneRedSensorrs;

LrGeneRedSensorrs=[1 0 ;0 1]*inv(c);

%%%%%%% COMPUTATION OF THE MATRIX FOR THE REFERENCE FOR THE

%%%%%%% REDUCED OBSERVER WITH 2 INTEGRAL ACTION%%%%%

%AAAObsGeneRedrs=[AObsGeneRedrs

%-BObsGeneRedrs*LsfbackGeneRedrsInt2(:,1:8);KObsGeneRedrs*CObsGeneRedrs

%AObsGeneRedrs-KObsGeneRedrs*CObsGeneRedrs-BObsGeneRedrs*LsfbackGeneRedrsInt2(:,1:8)];

%BBBObsGeneRedrs=[BObsGeneRedrs; BObsGeneRedrs];

%CCCObsGeneRedrs=[CObsGeneRedrs zeros(2,8)];

%c=-CCCObsGeneRedrs*inv(AAAObsGeneRedrs)*BBBObsGeneRedrs;
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%LrGeneRedrs=inv(c);

%%%%%%% CURRENT PULSES %%%%%%%%%%%%

%Pulses each 300 us - 500 us

%pulsesTime=([0 10 10 300 300 310 310 800 ]*1e-6)/rescaleFactor;

%Pulses each 250 us - 550 us

%pulsesTime=([0 10 10 250 250 260 260 800 ]*1e-6)/rescaleFactor;

%Pulses each 200 us - 600 us

%pulsesTime=([0 10 10 200 200 210 210 800 ]*1e-6)/rescaleFactor;

%Pulses each 180 us - 620 us

pulsesTime=([0 10 10 180 180 190 190 800 ]*1e-6)/rescaleFactor;

%Pulses each 150 us - 650 us

%pulsesTime=([0 10 10 150 150 160 160 800 ]*1e-6)/rescaleFactor;

%Pulses each 100 us - 700 us

%pulsesTime=([0 10 10 100 100 110 110 800 ]*1e-6)/rescaleFactor;

%Pulses each 70 us - 730 us

%pulsesTime=([0 10 10 70 70 80 80 800 ]*1e-6)/rescaleFactor;

%Pulses each 60 us - 740 us

%pulsesTime=([0 10 10 60 60 70 70 800 ]*1e-6)/rescaleFactor;

%Pulses each 50 us - 750 us

%pulsesTime=([0 10 10 50 50 60 60 800 ]*1e-6)/rescaleFactor;

%([0 10 10 200 200 210 210 800 ]*1e-6)/rescaleFactor

pulsesSize=[1 1 0 0 1 1 0 0];

%[1 1 0 0 1 1 0 0]

TstartPulses=3000;

%%%%%%% SIMULATION %%%%%%%%%%%%

ObsStates=0;

CathStatesInit =0;

CompStatesInit=0;

simEnd=4000;

TtCath=1;

TtComp=1;

CathReference=-24000;

CompReference=300;

sim('controller2',simEnd)

%%%%%%% COMPUTATION OF THE CRITERION %%%%%%%%%%%%

%computation of the indexes of the Time vector

%Pulses each 300 us - 500 us

%index(1)=searchValueBinary(Time,3360,0.1)

%index(2)=searchValueBinary(Time,3390,0.1)

%index(3)=searchValueBinary(Time,3440,0.1)

%index(4)=searchValueBinary(Time,3470,0.1)

%index(5)=searchValueBinary(Time,3520,0.1)

%index(6)=searchValueBinary(Time,3550,0.1)

%index(7)=searchValueBinary(Time,3600,0.1)

%index(8)=searchValueBinary(Time,3630,0.1)

%index(9)=searchValueBinary(Time,3680,0.1)

%index(10)=searchValueBinary(Time,3730,0.1)

%Pulses each 250 us - 550 us

%index(1)=searchValueBinary(Time,3360,0.1)

%index(2)=searchValueBinary(Time,3385,0.1)

%index(3)=searchValueBinary(Time,3440,0.1)

%index(4)=searchValueBinary(Time,3465,0.1)
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%index(5)=searchValueBinary(Time,3520,0.1)

%index(6)=searchValueBinary(Time,3545,0.1)

%index(7)=searchValueBinary(Time,3600,0.1)

%index(8)=searchValueBinary(Time,3625,0.1)

%index(9)=searchValueBinary(Time,3680,0.1)

%index(10)=searchValueBinary(Time,3705,0.1)

%Pulses each 200 us - 600 us

%index(1)=searchValueBinary(Time,3360,0.1)

%index(2)=searchValueBinary(Time,3380,0.1)

%index(3)=searchValueBinary(Time,3440,0.1)

%index(4)=searchValueBinary(Time,3460,0.1)

%index(5)=searchValueBinary(Time,3520,0.1)

%index(6)=searchValueBinary(Time,3540,0.1)

%index(7)=searchValueBinary(Time,3600,0.1)

%index(8)=searchValueBinary(Time,3620,0.1)

%index(9)=searchValueBinary(Time,3680,0.1)

%index(10)=searchValueBinary(Time,3700,0.1)

%Pulses each 180 us - 620 us

index(1)=searchValueBinary(Time,3360,0.1)

index(2)=searchValueBinary(Time,3378,0.1)

index(3)=searchValueBinary(Time,3440,0.1)

index(4)=searchValueBinary(Time,3458,0.1)

index(5)=searchValueBinary(Time,3520,0.1)

index(6)=searchValueBinary(Time,3538,0.1)

index(7)=searchValueBinary(Time,3600,0.1)

index(8)=searchValueBinary(Time,3618,0.1)

index(9)=searchValueBinary(Time,3680,0.1)

index(10)=searchValueBinary(Time,3698,0.1)

%Pulses each 150 us - 650 us

%index(1)=searchValueBinary(Time,3360,0.1)

%index(2)=searchValueBinary(Time,3375,0.1)

%index(3)=searchValueBinary(Time,3440,0.1)

%index(4)=searchValueBinary(Time,3455,0.1)

%index(5)=searchValueBinary(Time,3520,0.1)

%index(6)=searchValueBinary(Time,3535,0.1)

%index(7)=searchValueBinary(Time,3600,0.1)

%index(8)=searchValueBinary(Time,3615,0.1)

%index(9)=searchValueBinary(Time,3680,0.1)

%index(10)=searchValueBinary(Time,3695,0.1)

%Pulses each 100 us - 700 us

%index(1)=searchValueBinary(Time,2320,0.1)

%index(2)=searchValueBinary(Time,2330,0.1)

%index(3)=searchValueBinary(Time,2400,0.1)

%index(4)=searchValueBinary(Time,2410,0.1)

%index(5)=searchValueBinary(Time,2480,0.1)

%index(6)=searchValueBinary(Time,2490,0.1)

%index(7)=searchValueBinary(Time,2560,0.1)

%index(8)=searchValueBinary(Time,2570,0.1)

%index(9)=searchValueBinary(Time,2640,0.1)

%index(10)=searchValueBinary(Time,2650,0.1)

%Pulses each 70 us - 730 us

%index(1)=searchValueBinary(Time,2320,0.1)

%index(2)=searchValueBinary(Time,2327,0.1)

%index(3)=searchValueBinary(Time,2400,0.1)

%index(4)=searchValueBinary(Time,2407,0.1)

%index(5)=searchValueBinary(Time,2480,0.1)

%index(6)=searchValueBinary(Time,2487,0.1)

%index(7)=searchValueBinary(Time,2560,0.1)

%index(8)=searchValueBinary(Time,2567,0.1)

%index(9)=searchValueBinary(Time,2640,0.1)

%index(10)=searchValueBinary(Time,2647,0.1)

%Pulses each 60 us - 740 us

%index(1)=searchValueBinary(Time,2320,0.1)

%index(2)=searchValueBinary(Time,2326,0.1)

%index(3)=searchValueBinary(Time,2400,0.1)

%index(4)=searchValueBinary(Time,2406,0.1)

%index(5)=searchValueBinary(Time,2480,0.1)

%index(6)=searchValueBinary(Time,2486,0.1)
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%index(7)=searchValueBinary(Time,2560,0.1)

%index(8)=searchValueBinary(Time,2566,0.1)

%index(9)=searchValueBinary(Time,2640,0.1)

%index(10)=searchValueBinary(Time,2646,0.1)

%Pulses each 50 us - 750 us

%index(1)=searchValueBinary(Time,2320,0.1)

%index(2)=searchValueBinary(Time,2325,0.1)

%index(3)=searchValueBinary(Time,2400,0.1)

%index(4)=searchValueBinary(Time,2405,0.1)

%index(5)=searchValueBinary(Time,2480,0.1)

%index(6)=searchValueBinary(Time,2485,0.1)

%index(7)=searchValueBinary(Time,2560,0.1)

%index(8)=searchValueBinary(Time,2565,0.1)

%index(9)=searchValueBinary(Time,2640,0.1)

%index(10)=searchValueBinary(Time,2645,0.1)

%computation of the average of the cathode voltage

averageCathode=0;

for i=1:10

averageCathode=averageCathode+Cathode(index(i),2);

end

averageCathode=averageCathode/10

%computation of the criterion

criterion=0;

for i=1:10

criterion=criterion+((Cathode(index(i),2)-averageCathode)^2);

end

criterion=sqrt(criterion)
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Appendix C

Complete electrical

schematics
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