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1. Introduction

1.1 Background

Visual servoing
When robots operate in industry, as is the case with the majority of the
robots in use today, the environment can usually be controlled to suit the
robots. For instance, assembly and other tasks are set up so that the robots
know exactly where the different objects in the workspace can be found.
However, if robots are to be used in an environment that can not be con-
trolled in this way, for instance in a home, or in the control of mobile
robots, much more flexibility is needed. This flexibility could also be use-
ful in a traditional industrial environment, to avoid time consuming setup
procedures.

One way to increase the flexibility would be to integrate more sensors
in the robot systems. Cameras are examples of such sensors, and the use of
visual information can increase the flexibility considerably in some tasks.
By using data from the cameras it is possible to locate and control the
interaction with different objects in the environment. Cameras can give
a lot of information about the environment of the robot, but it could also
be difficult and time consuming to extract all this information from the
images.

Visual servoing is one example of the use of vision in robotics. A good
background on visual servoing is given in [7], see also [4]. The main idea of
visual servoing is to use the cameras as sensors, and use the data extracted
from the images in a feedback loop. The goal is usually to align the manip-
ulator with the object to be manipulated in a desired way, for instance so
that the object can be grasped. It is convenient to describe this alignment
as the desired relative pose, see Appendix B, between the manipulator and
the object, given by

To
n = To

b

(
Tnb
)−1

where To
b and Tnb are the poses of the object and the manipulator respec-

tively, expressed in the robot base coordinate frame. The problem is of
course that the object pose To

b is in general unknown.
One straightforward way of solving the alignment problem would be

to do a full euclidean reconstruction of the object to be grasped, and then
moving the robot manipulator to the pose

T̂nb = (To
n)−1T̂o

b

where T̂o
b is the estimated pose of the object. The problem with this ap-

proach is that it requires a very accurate calibration of the camera system
to be accurate, an assumption that is not realistic in most scenarios. If the
setup of the camera system changes slightly, for instance if the cameras are
moved, or the intrinsic parameters change, the system will have to be recal-
ibrated or there will be errors in the euclidean reconstructions. Sufficiently
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Chapter 1. Introduction

accurate calibration of the system can be a very time-consuming task, or
even impossible if high accuracy is required. Therefore this approach is not
suitable for many robotics tasks.

One solution to this problem is to use the camera measurements directly
in a feedback loop, with a controller acting on the control error e, in its
simplest form defined as

e = yr − y

where yr is the setpoint and y is the measurements from the cameras.
In this way the camera is considered to be just another sensor, and using
feedback we can avoid the dependence on accurate calibration of the sys-
tem. By using an appropriate controller it is possible to make the control
error go to zero, which means that the alignment is, in theory, exact.

The quantities e, yr and y can be either poses in cartesian space, in
which case we have a so called position-based servo, or image-space coordi-
nates in an image-based servo. In the position-based servo the error signal
e is calculated as the difference between the 3D-reconstruction of the ma-
nipulator y, and the object to be grasped yr. Since this method requires
3D-reconstructions it is sensitive to calibration errors. The image-based
servo solves this problem. Here, the signals e, yr and y are defined di-
rectly in image space. Therefore, no 3D-reconstruction is necessary. The
camera measurements y are simply the pixel coordinates of some features
on the end-effector that are to be aligned with some features on the object
with image space coordinates yr. If a suitable set of features are selected,
then e = 0 will imply that the pose of the manipulator Tnb is equal to the
pose of the object To

b. In this way we can achieve a positioning accuracy
that is ideally independent of the calibration accuracy.

Force/vision control
When robots interact directly with objects in the environment, force sensing
capabilities are crucial. Force control and hybrid force/position control have
been studied for many years, and an introduction can be found in [5].

The nature and limited accuracy of vision based position control makes
it less suitable for controlling interaction with objects in the environment.
An interesting and obvious solution is to combine force control and visual
servoing in a multi-sensor control system. In the last couple of years, some
research on this subject has been presented [14, 10, 2, 11, 6].

Perhaps the most obvious approach to the problem is to combine the
data from the cameras and force sensors using multi-sensor fusion meth-
ods. However, as many researchers have pointed out [10], the force- and vi-
sual sensors are fundamentally different, in that they measure very differ-
ent physical phenomena, while the goal of most multi-sensor fusion meth-
ods is to obtain a single information from the sensor data. This makes such
an approach less suitable in this case. Therefore, most force/vision control
methods are based on a division of the workspace into force- and vision con-
trolled directions. When a robot is interacting with a rigid surface, move-
ment in the normal direction of the surface should be force controlled in
order to accurately control the interaction. The remaining, unconstrained
degrees of freedom could then be controlled by, for instance, a (constrained)
visual servoing algorithm. A special problem is that the exact location and
orientation of the surface may be unknown, and therefore has to be esti-
mated.

4



1.2 The robot and camera system
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Figure 1.1 Irb 2000 and robot gripper frame.
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Figure 1.2 Structure of robot joint controllers.

1.2 The robot and camera system

In the robot lab at the Department of Automatic Control, Lund Institute
of Technology, there are two industrial robots. The first one is an ABB In-
dustrial Robot 2000, Irb 2000, which is the one used in these experiments.
There is also an ABB Irb-6 robot, which holds the cameras. In these exper-
iments the cameras are considered to be fixed in the workspace, and the
Irb-6 is not moved during the experiments.

The Irb 2000 is built up by two large arms and a wrist, see Figure 1.1.
The robot has 6 degrees of freedom, which means the end-effector can be
moved to any desired position and orientation within the task space.

The robot has one built-in controller for each of the 6 joint angles.
These controllers are cascaded PID controllers, with an outer position loop
around an inner velocity loop according to the block diagram in Figure 1.2.
The velocity signal used in the inner loop is obtained by differentiating
and low-pass filtering the position signal. The robot can be controlled from
Matlab/Simulink by sending trajectories of position- and velocity data to
the robot through the network.

In the lab there are also two Sony DFW-V300 digital cameras. Both
cameras are used in the experiments. The cameras are set up to take 30
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Chapter 1. Introduction

Figure 1.3 Robot with attached JR3 force/torque sensor.

images per second, and the images we get from the cameras are on the YUV
4:2:2 format. Only the grayscale (intensity) part of the images is used in the
servoing, which makes the conversion from YUV very simple. The images
are read into a computer using a IEEE-1394 (FireWire) connection, using
the Fire-i API from UniBrain. The cameras are not synchronized, which
means that the delay from image capture to control signal is not the same
for both cameras.

We can also measure forces an torques on the robot gripper using a
JR3 force sensor, shown in Figure 1.3. The JR3 is placed between joint
six and the end-effector. It measures forces and torques in the x-, y- and
z-directions of the end-effector coordinate system.

To protect the force sensor and robot from large contact forces at impact,
the connection to the force sensor and end-effector is done by a pneumatic
lock, which is connected to the emergency stop.

1.3 Problem formulation

The main goal of this work is to make the robot identify and interact
with its environment, by using a combination of force measurements and
computer vision. The chosen task is to make the robot pick up a pen,
and use this to draw a picture on a whiteboard in the workspace. At the
same time, it should accurately estimate the location and orientation of
the whiteboard, and use this information to improve the control.

The drawing is specified by the user, who puts a number of dots on
the whiteboard, and the robot will complete it by connecting the dots with
straight lines. In order to complete this task it is necessary to use other
sensors than just the cameras, because of the low accuracy of the visual
information. The force control must make sure that the robot is in contact
with the whiteboard, and that the contact force between the whiteboard
and the gripper is constant. At the same time it must also make sure that
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1.4 Organization of the report

the pen is drawing a line between the specified points, which means that
the tip of the pen should be moving across the whiteboard.

This task can be divided into a number of subtasks described below.

Camera and stereo system calibration
It is also intuitively obvious that the system needs some information on
where in the workspace the cameras are located, and the camera setup.
We can get this information by calibrating the cameras and the stereo
system. The calibration process should give us information on where the
two cameras are located relative to the robot, and the intrinsic parameters
of the cameras, see Appendix A.

Grasping the pen
The goal is to guide the robot to the pen, and grasp it. The servo should be
image-based, that is, no 3D-reconstruction of the scene should be required.
The use of an image-based servo also means that only a coarse calibration
of the camera system is needed.

The pen is placed on the table, the exact location is unknown. The goal
here is to align the robot gripper with the pen in a pre-specified way, so
that the pen can be grasped easily. The alignment between the gripper and
the pen is specified as a relative pose in 3D, and is then transferred into
image coordinates for the image-based servo. Here it is necessary to use
4 degrees of freedom, the position in the x-, y- and z-directions and the
rotation around the z-axis of the robot.

Drawing on the board
After the pen has been grasped, the pen should be moved to the white-
board, and lines should be drawn between the marker points on the board.
During this phase, the orientation of the gripper will be kept constant,
which means that this is a 3-degrees-of-freedom servoing task. The visual
servoing algorithm will be used in combination with force control, to make
sure that the contact forces between the pen and the whiteboard are kept
constant while drawing.

Estimating the location of the board
The trajectories that the robot must follow are constrained to lie in the
plane of the whiteboard. If the exact location of the board was known this
could be used to improve the control. Here, the equation of the whiteboard
plane must be estimated recursively from measurements of force, position
and the image data.

1.4 Organization of the report

Chapter 2 describes the setup used, and the general methods used in the
implementations. Section 2.2 presents the ideas behind the calibration
method used to obtain the desired relative poses and camera matrices.
In section 2.3 we present the image-based visual servoing system, used
for constrained and unconstrained motion of the robot. We also present a
method for specifying the end position yr in image-space using cartesian
object information, and a feature extraction and tracking method based on
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Chapter 1. Introduction

Kalman filters. A simple error analysis is also presented, to give us an idea
of the accuracy of the visual information. Section 2.4 presents a method
of combining force control with visual servoing for drawing on the white-
board, based on explicit estimation of the location of the rigid constraint
surface.

In chapters 3 and 4 experimental results are presented, and the strengths
and weaknesses of the proposed method are discussed.

Appendices A and B presents some basic material on the perspective
camera model and cartesian transformations, necessary for the under-
standing of the presented calibration- and visual servoing methods.
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2. Methods

2.1 Setup

c2

Tc1
b

Tc1
tn

Tc1
c2

Tc1
t

b

t

c1

Tt
n

Tnb

Figure 2.1 The most important frames and transformations

In the workspace we have a number of different frames, attached to differ-
ent objects in the workspace, see Figure 2.1. The most important frames
are the following:

c1 & c2 are the frames attached to the cameras, according to Figure A.1
in appendix A.

t is the frame attached to the calibration object. The coordinates of the
model of the calibration object are expressed in this coordinate sys-
tem.

n is attached to the end-effector, or gripper, on the robot.

b is attached to the base of the robot.

The transformations used to convert between frames are also shown in
Figure 2.1. A background on cartesian coordinate transformations is given
in Appendix B.

The different transformations used here are

Tc1
t & Tc2

t are the time-varying transformations between the cameras and
the calibration object.
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Chapter 2. Methods

Tc1
c2 describe how the cameras are oriented with respect to to each other.

Tc1
b describe the transformation between camera 1 and the robot base.

Ttn is the transformation between the gripper frame and the frame at-
tached to the planar calibration object.

Tnb is the transformation from the robot base to the gripper frame. This
transformation is time-varying.

The transformations Tc1
t , Tc2

t , Tc1
c2, Tc1

b and Ttn are estimated in the calibra-
tion, even if Ttn is not used in the servoing. Tnb can be accurately calculated
from the measurements of the joint positions and kinematics of the robot.

2.2 Calibration of the camera system

Many methods for camera calibration use a number of images of a pla-
nar calibration object to estimate the camera parameters. The images are
taken from many different positions and orientations, and the calibration
estimates both the intrinsic and the extrinsic camera parameters, see Ap-
pendix A. One such method is described in [15].

In our case we attach the calibration object to the robot gripper itself,
and from the kinematics of the robot we can get very accurate information
about how the calibration object has moved between the images. There-
fore, the extrinsic parameters are not completely unknown, and this extra
information is used in the algorithm. Most importantly, this way we will
need to estimate much fewer parameters, something that can be expected
to increase the accuracy and robustness of the algorithm.

The setup of the camera/robot system is shown in Figure 2.1. The two
cameras are fixed in the workspace, observing a calibration object (the
target) that is rigidly attached to the gripper of the robot. The target is an
A4 paper with a printed chessboard pattern. The goal of the calibration is to
be able to calibrate the entire camera system using image information and
cartesian robot gripper position information. The position and orientation
of the gripper is obtained from measurement of the joint angles and the
kinematics of the robot. Image information is obtained by taking a picture
of the planar calibration object with each of the two cameras for n different
robot gripper positions.

The calibration algorithm consists of three steps:

1. Calibration of intrinsic and extrinsic camera parameters

2. Hand-target calibration

3. Simultaneous optimization of all the calibration parameters in the
entire camera/robot system

Steps 1 and 2 are used for obtaining suitable starting values for the
nonlinear least squares optimization performed in step 3.

Estimation of intrinsic/extrinsic parameters
The method described here is based on [15]. The homogeneous image coor-
dinates m = (u v 1)T and calibration object coordinates M = (X Y Z 1)T
are related by the projective transformation H (see [15] for details):

λm = HM
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2.2 Calibration of the camera system

where H is a 3x4 matrix

H =
(

h1 h2 h3 h4

)
= l ⋅ K

(
r1 r2 r3 t

)
(2.1)

where K is the matrix of intrinsic parameters, and l is an arbitrary scalar,
since H is defined only up to a scale factor.

Using the fact that we can set Z = 0 in the planar calibration object,

we have M =
(

X Y 0 1
)T

and we can rewrite 2.1 as

H =
(

h1 h2 h4

)
= l ⋅ K

(
r1 r2 t

)
(2.2)

Using the orthonormality of r1 and r2 we obtain two constraints on the
intrinsic camera parameters as

rT
1 r1 = 0 => hT

1 K−TK−1h2 = 0 (2.3)
rT

1 r1 = rT
2 r2 => hT

1 K−TK−1h1 = hT
2 K−TK−1h2 (2.4)

A closed form solution of the calibration problem is obtained by first
estimating the projective transformation matrix H and then rewriting and
solving these two equations. For estimation of H the method described in
[15] is used.

If we define

B = K−TK−1 =

 B11 B12 B13

B12 B22 B23

B13 B23 B33


and let the i:th column vector of H be

hi =
(

hi1 hi2 hi3

)T

we have
hT

i Bh j = vT
i jb

with

vi j =
(
hi1hj1, hi1hj2 + hi2hj1, hi2hj2, hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3

)T

and
b = (B11, B12, B22, B13, B23, B33)T

and equations 2.3 and 2.4 can be rewritten as(
vT

12

(v11 − v22)T

)
b = 0

By stacking n ≥ 3 such equations and solving them using for instance
Singular Value Decomposition we can obtain a unique solution. The esti-
mated intrinsic camera parameters can easily be obtained directly from
the solution b, see [15]. Then 2.2 gives us the estimation of the extrinsic
camera parameters
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Chapter 2. Methods

r1 = K−1h1/iK−1h1i
r2 = K−1h2/iK−1h1i

r3 = r1 � r2

t = K−1h4/iK−1h1i

In general, because of noise in the data, the matrix R =
(

r1 r2 r3

)
does not satisfy the property RTR = I of a rotation matrix. The solu-
tion is to perform a singular value decomposition on R = USVT , and set-
ting Rrot = UVT . This gives the rotation matrix Rrot which minimizes the
Frobenius norm of the difference

iR−Rroti2 = trace((R−Rrot)T(R−Rrot))
The estimation of K can be improved if we apply a ML-estimation by

simply minimizing the error in the m reprojected pixels in all the n images

n∑
i=1

m∑
j=1

(
mi j − m̂i j(K, ri

1, ri
2, ti, M j)

)2

with respect to K, ri
1, ri

2, ti. This can easily be done with a suitable non-
linear least squares method. This optimization is not necessary here, since
the results will be used just to get a rough estimation of the parameters.

Hand-target calibration
The purpose is to obtain the rigid (cartesian) transformation Ttn, see Figure
2.1. This problem is solved by noting the similarity to a common problem in
visual servoing called the hand-eye calibration problem. This is the problem
of obtaining the cartesian transformation between the robot gripper and
camera frames when the camera is mounted on the robot gripper. Most
solutions to the hand-eye calibration problems work by solving a matrix
equation of the form

AX = XB (2.5)
where A is the 4x4 transformation matrix between two positions of the
camera frame, and B the transformation between the corresponding posi-
tions of the gripper frame. X is the unknown hand-eye transformation. In
our case we note that for the two different gripper poses the relation

(Tck
t )i Tt

n (Tnb)i = (Tck
t ) j Tt

n (Tnb) j

:;
(Tck

t )−1
j (Tck

t )i Tt
n = Tt

n (Tnb) j (Tnb)−1
i (2.6)

which is equivalent to 2.5 must hold for camera k, where Tck
t and Tnb are

known from the robot and image measurements, and Ttn is the hand-target
transformation.

Equation 2.5 can be decomposed into two equations, the first depending
only on rotation:
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2.3 Visual servoing

RaRx = RxRb

Using the property that rotation matrices have one eigenvalue equal to
1 we can rewrite this as

RaRxnb = RxRbnb = Rxnb

where nb is the eigenvector of Rb corresponding to the eigenvalue 1. From
this equation it can be concluded that

Rxnb = na (2.7)
where na is the eigenvector of Ra corresponding to the eigenvalue 1. This
can now be solved for the unknown Rx. One method was introduced in [13].
The rotation Rx is represented by its unit eigenvector Rx and an angle θ x.
The rotations Ra and Rb are similarly represented by eigenvectors na and
nb and angles θ a and θ b. Equation 2.7 can be rewritten as (see [13]) as

(2 sin(θ a

2
)na + 2 sin(θ b

2
)nb) � n = 2 sin(θ a

2
)na − 2 sin(θ b

2
)nb

where n = tan(θ x
2 )nx. Since this equation can be shown to be rank deficient,

at least two such equations are needed in order to obtain a unique solution.
Therefore we need at least three different poses of the robot hand in order
to obtain a least-squares solution, from which Rx can be computed [13].

Finally tx, the translation part of X, can be calculated from the linear
second equation

(Ra − I)tx = Rxtb − ta

obtained from equation 2.5.

Full system calibration
As a final improvement of the calibration an optimization is performed to
minimize the error of the m reprojected points in the n images from each
camera, given by

n∑
i=1

m∑
j=1

2∑
k=1

(
mi jk − m̂i jk(K1, K2, Tt

n, Tc1
c2

, Tc1
b , M j)

)2

where k is the camera number and m̂i jk is given by

λ1m̂i j,1 = K1Tc1
b (Tnb)−1

i (Tt
n)−1M j

λ2m̂i j,2 = K2(Tc1
c2
)−1Tc1

b (Tnb)−1
i (Tt

n)−1M j (2.8)

The minimization is done with respect to K1, K2, Tc1
b , Tc1

c2 and Ttn.
The purpose of the last step is to use as much information about the

physical setup of the camera/robot system as possible. Here we use the
fact that the transformations Tc1

c2, Tc1
b and Ttn are constant.
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Figure 2.2 Image-based visual servo.

2.3 Visual servoing

In an image-based visual servo, see Figure 2.2 and section 1.1, the control
is defined directly in image space quantities, by defining the control error
e as

e = yr − y

where yr and y are vectors of image space coordinates, yr is the desired
(end) position of the gripper in the images, and y is the measured current
position. A simple control law in image-space that would drive the error e
to zero is

ui = ẏd = Kve (2.9)
where Kv is a constant gain. The output ẏd from this controller is an image-
space velocity vector, containing the desired velocities of the end-effector
points in the image. Note that due to the rigidity of the end-effector, in
general this set of velocities is not possible to achieve exactly.

The control signal sent to the robot is defined in task space, as a trajec-
tory calculated from a so called velocity screw. The velocity screw is defined
as a 6-vector of translational and angular velocities. Therefore the con-
troller needs to relate the velocities in image space to those in task space,
in order to achieve the desired movement of the end-effector in the image
plane. If we let r be the coordinates of the end-effector in (m-dimensional)
task space, and y = f(r) be a k-vector of image coordinates, this can be
done using the so called image Jacobian

Jv(r) =
[ Vf
Vr

]
=


V f1(r)
Vr1

⋅ ⋅ ⋅ V f1(r)
Vrm

...
...

V fk(r)
Vr1

⋅ ⋅ ⋅ V fk(r)
Vrm


and the relationship

ẏ = Jv(r)ṙ,
where ẏ is the image-space velocity of a feature point, and ṙ is the corre-
sponding velocity screw in task space. Note that the image Jacobian is in
general a function of the coordinates of the end-effector in task-space. The
equation

ẏd = Jv(r)ṙ,
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2.3 Visual servoing

can be solved using the least-squares method, assuming that Jv is of full
rank. This gives the velocity screw ṙ that will minimize hJv(r)ṙ − ẏdh2.
The velocity screw is usually expressed in the camera coordinate system.
In order to generate the correct trajectories for the robot we also need to
transform the velocity screws to the robot base coordinate system. There-
fore we need the estimations of cartesian camera-robot transformations,
obtained from the calibration of the stereo system described in section 2.2.

Image Jacobian
The image Jacobian for two cameras fixed in the workspace is derived as
follows. First we derive the full Jacobian used for 6DOF servoing tasks,
which can then be modified for the 4DOF and 3DOF servoing used here.
Using the intrinsic camera matrices K1 and K2 we can normalize the cam-
eras using the equations (

u1

v1

)
= xn

1 = K−1
1 x1,

and equivalently for camera 2

xn
2 = K−1

2 x2

giving the projection equations for a normalized camera(
u

v

)
= 1

Z

(
X

Y

)
(2.10)

Since the end-effector is a rigid object, its motion in the work space
can be described by a velocity screw ṙ, consisting of a translational and an
angular velocity vector

T(t) =
(

Tx(t) Ty(t) Tz(t)
)T

Ω(t) =
(

ω x(t) ω y(t) ω z(t)
)T

The time derivatives of the coordinates of a point on the end-effector
(X Y Z)T , expressed in the camera frame, can then be written as

Ẋ = Zω y − Yω z + Tx (2.11)
Ẏ = Xω z − Zω x + Ty (2.12)
Ż = Yω x − Xω y + Tz (2.13)

Differentiating the projection equations with respect to time and using
these expressions we get

u̇ = d
dt

(
X
Z

)
= Ẋ Z − X Ż

Z2 = Zω y − Yω Z + Tx

Z
− (2.14)

− X
Yω x − Xω Y + Tz

Z2 = [X = uZ , Y = vZ] =
= ω y − vω z+ Tx/Z − uvω x + u2ω y − uTz/Z

15
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v̇ = d
dt

(
Y
Z

)
= Ẏ Z − YŻ

Z2 = Xω z − Zω X + Ty

Z
− (2.15)

− Y
Yω x − Xω Y + Tz

Z2 = [X = uZ , Y = vZ] =
= uω z −ω x + Ty/Z − v2ω x + uvω y − vTz/Z

which can be written on matrix form

(
u̇

v̇

)
=

(
1/Z 0 −u/Z −uv 1+ u2 −v

0 1/Z −v/Z −1− v2 uv u

)


Tx

Ty

Tz

ω x

ω y

ω z


=

= J(u, v, Z) ṙ (2.16)

The image Jacobian is obtained by stacking the equations for both cam-
eras and all points into one large matrix. One difficulty is that the velocity
screws in the derivation above are expressed in the coordinate systems of
the cameras, and are therefore not the same for the two different cameras.
Therefore we need to express the velocity screws in the same coordinate
system before stacking the equations for the two different cameras, prefer-
ably the robot base coordinate system, see [9]. This can be done using the
equations

ṙc =
(

Rc
bTb −Rc

bΩb � tc
b

Rc
bΩb

)
= (2.17)

=
(

Rc
bTb + tc

b �Rc
bΩb

Rc
bΩb

)
=

=
(

Rc
b S(tc

b)Rc
b

03x3 Rc
b

)
ṙb = Mc

bṙb

where b is the base frame, c is the camera and S(t) is the skew-symmetric
matrix given by

S(t) =

 0 −t(3) t(2)
t(3) 0 −t(1)
−t(2) t(1) 0


This gives us the following expression for the Jacobian for two cameras,

with n points in each camera
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2.3 Visual servoing

Jv(r) =



J(uc1
1 , vc1

1 , Zc1
1 )Mc1

b
...

J(uc1
n , vc1

n , Zc1
n )Mc1

b

J(uc2
1 , vc2

1 , Zc2
1 )Mc2

b
...

J(uc2
n , vc2

n , Zc2
n )Mc2

b


(2.18)

and finally 

u̇c1
1

v̇c1
1
...

u̇c1
n

v̇c1
n

u̇c2
1

v̇c2
1
...

u̇c2
n

v̇c2
n



= Jv(r)



Tx

Ty

Tz

ω x

ω y

ω z



b

(2.19)

The unknown depths Zc
i are estimated from the measurements of the

robot end-effector pose and the calibration.
In practice the four equations given by each point includes some re-

dundancy, since the point only contains three degrees of freedom. The re-
dundant information is expressed by the epipolar constraint [12]. For our
camera setup the epipolar constraint can be approximated by v1 = v2,
meaning that the redundant information is in the vertical direction in the
images. We remove this redundant information by simply deleting every
fourth row in the Jacobian, more specifically the ones corresponding to the
v-coordinate of the points in image 2. More general forms of the epipolar
constraint could also be handled, see for instance [8].

4-degree-of-freedom Jacobian During the grasping phase the gripper
could always be aligned so that the gripper z-axis points in the opposite
direction of the z-axis of the robot base frame, that is, the gripper z-axis
points straight down. This means that ω x(t) and ω y(t) are equal to 0, and
that

ẏ = Jv(r)



Tx

Ty

Tz

0

0

ω z



b

= J4
v(r)


Tx

Ty

Tz

ω z


b

(2.20)

where J4
v(r) denotes the matrix that consists of columns 1, 2 , 3 and 6

of the full 6DOF Jacobian Jv(r).
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Chapter 2. Methods

Constrained 3-degree-of-freedom Jacobian Similarly, during the draw-
ing phase we can keep the orientation of the gripper constant, so that we
can set ω x(t), ω y(t) and ω z(t) to 0. This gives us

ẏ = J3
v(r)

 Tx

Ty

Tz


b

where J3
v(r) is the matrix of the first three columns of Jv(r).

During this phase there is also the constraint that the motion should
be in the board plane p̂ in cartesian space defined by

p̂T r̂ = 0 (2.21)

where p̂ = (p1, p2,−1, p4)T and r̂ = (X , Y, Z , 1)T . This leads to an
equation

pT ṙ = 0 (2.22)

for the constrained end-effector velocity ṙ = (Ẋ , Ẏ , Ż
)T

, where we have
p = (p1, p2, − 1)T . The reduced image Jacobian on the surface of the
plane is now given by

ẏ =
(

J1 + p1J3 J2 + p2J3

)( Ẋ

Ẏ

)
=

= J3
v,c(r)

(
Ẋ

Ẏ

)
(2.23)

where Ji denotes the i:th column in the Jacobian J3
v(r) for the uncon-

strained motion. It is obvious that if J3
v(r) has full rank, so has J3

v,c(r).

Implementation of control law
The controller in Figure 2.2 is implemented as a proportional controller

ui = Kve (2.24)

where

e = yr − y.

The image-space control signal ui is as an image-space velocity vector,
which is then converted into a velocity screw using the pseudo inverse of
the appropriate image Jacobian from section 2.3

ṙ = J+v (r)ui (2.25)

This velocity screw is then converted into a corresponding one sample long
trajectory segment, which can be sent to the robot.
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2.3 Visual servoing

Calculation of trajectories

The conversion of the velocity screw ṙ(t) =
(

T(t)
Ω(t)

)
into a trajectory

segment is done by first using the equivalent angle-axis representation of
a rotation matrix, see [5]. The angular velocity Ω is first converted into a

unit vector K̂ =
(

kx ky kz

)T
and an angle θ K , describing the angle

and the axis of the rotation that the gripper should perform in the next
sampling interval. This conversion is done with the simple equation

K(t) = θ K (t)K̂(t) = θ K (t)

 kx

ky

kz

 = hΩ(t) (2.26)

where h is the sampling period of the system. The rotation matrix corre-
sponding to K is given by (see [5])

RΩ(t) =

 k2
xvθ + cθ kxkyvθ − kzsθ kxkzvθ + kysθ

kxkyvθ + kzsθ k2
yvθ + cθ kykzvθ − kxsθ

kxkzvθ − kysθ kykzvθ + kxsθ k2
zvθ + cθ

 (2.27)

where sθ = sinθ K , cθ = cosθ K and vθ = 1− cosθ K .
Then the translation is calculated as

t(t) = hT(t) (2.28)
and the total transformation matrix is given by

Tt+h
t (t) =

(
RΩ(t) t(t)
01�3 1

)
(2.29)

Then the current joint angles j(t) of the robot are measured, and the
current pose Tnb(t) is calculated with the help of the kinematics of the robot.
The desired pose in time t+h is given by

Tnb(t+ h) = Tt+h
t (t)Tnb(t) (2.30)

which is converted into the corresponding joint angles j(t + h) using the
inverse kinematics of the robot. Then the correct position trajectory is gen-
erated by linear interpolation between j(t) and j(t+h), and the (constant)
joint space velocity trajectory is generated as

dj
dt
(t) = j(t+ h) − j(t)

h
. (2.31)

Image feature detection/extraction
The features on the end-effector that are used are four circular black dots
on the front of the gripper, each with an approximate radius of 2 mm.
The position of the dots can be measured accurately. First, the tracker, see
section 2.3, predicts where the marks will be in the next frame, and the
black pixel closest to this location is selected. A pixel at location (x y)T
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is considered to be black if its value in the image satisfies the condition
I(x, y) < It, where It is some pre-determined threshold. Then, all black
pixels 4-connected to this pixel can be found using a simple algorithm, and
the exact location is estimated by calculating the mass center of all the n
black pixels

xm =
∑n

i=1(I(xi)xi)∑n
i=1 I(xi)

which gives a sub-pixel estimation of the location of the black dot.

Grasp position specification
Before we do visual servoing we must specify the end position yr, which is a
vector of image-space coordinates. The coordinates show where the gripper
feature points should be when the gripper is aligned with the object to be
grasped. One method of acquiring these points is by direct measurement of
the end position in a "teach by showing" approach. Another more flexible
method is to calculate yr from the camera projection equations, and the
position of the object in the images.

Here the end position is calculated using models of the gripper and the
object in the aligned position, described in an object centered basis. Let
Xo

i and xo
i = (xo

i,1, xo
i,2, 1)T be the model and image space homogeneous

coordinates of a point i on the object, and Xni the model points of the gripper.
From the projection equations in appendix A we know that the object points
are related by a projective transformation H

λxo
i = HXo

i , (2.32)
expressed in homogeneous coordinates. Here we use the fact that the mod-
els of the gripper and object are planar, so we can set Z = 0 in Xo

i and
Xni . We can transform equation 2.32 for each point into a linear system of
equations in the unknown matrix elements Hij

(
(Xo

i )T 01�3 −xo
i,1(Xo

i )T
01�3 (Xo

i )T −xo
i2(Xo

i )T

) ĥ1

ĥ2

ĥ3

 = 0 (2.33)

where ĥi is row i of H. If we know at least 4 points Xo
i and xo

i we can stack
the equations and solve the resulting system using SVD, which gives H up
to a scale factor. We can then reproject the gripper model points Xni onto
the image using equation 2.32, which gives us a value for yr.

Tracking image features
Searching for features in an image can be very time consuming, because of
the large data volumes involved. In our images there are 320�240= 76800
pixels, and we have two images to process every sample. If we were to pro-
cess all of the images every sample, we would introduce delays which would
affect the performance of the controller. The most common way to avoid this
delay is to choose only a part of each image to process, based on the loca-
tion of the interesting features in the previous images. The window-based
tracking techniques can decrease the time required for feature extraction
considerably, but require that we can predict the location of the features
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2.3 Visual servoing

in each image accurately enough to place the search window correctly. A
short review of window-based tracking and feature extraction is given in
[7].

Here we use a Kalman filter together with a simple model of the dy-
namics and the image Jacobian to track the features. Simple experiments
show that the robot dynamics can be described as a first order system
with a time-constant of around 100 ms, giving us the following discretized
equation for the velocity of a point in the image

ẏi(k+ 1) = aẏi(k) + (1− a)J′v(r)ṙ(k) (2.34)
where ẏi(k) is the velocity at sample k, a = 0.5134, J′v(r) are the rows in
the image Jacobian corresponding to the point, and ṙ is the velocity screw
sent to the robot at sample k. The full system model for the movement of
an image feature point in the x- or y-direction in the image is

x(k+ 1) =
(

1 h

0 a

)
x(k) +

(
0

1− a

)
J′′v(r)ṙ(k) + ε x(k) def=

def= Ax(k) + Bu(k) + ε x(k)
y(k) =

(
1 0

)
x(k) + ε y(k) def= Cx(k) + ε y(k) (2.35)

where the state vector x = (u u̇)T is the position and velocity of the feature
point coordinate, J′′v(r) is the row in the Jacobian that corresponds to the
feature coordinate and ε x and ε y are Gaussian white noise processes with
zero mean and estimated covariance matrices

E
(

ε x(k)ε T
x (k)

)
= R1 =

(
0.5 0

0 10

)
E
(

ε y(k)ε T
y (k)

)
= R2 = 0.5

E
(

ε x(k)ε T
y (k)

)
= R12 = (0 0)T

(2.36)

The feature can now be tracked using the equations for an ordinary
Kalman filter, see [1]

K(k) =
(

AP(k)CT +R12

)(
R2 +CP(k)CT

)−1
(2.37)

x̂(k+ 1) = Ax̂(k) +Bu(k) +K(k) (y(k) −Cx̂(k)) (2.38)

P(k+ 1) = AP(k)AT +R1 −K(k)
(

CP(k)AT +RT
12

)
(2.39)

The size of the search window is 15 � 15 pixels, chosen to be large
enough to cover the tracked feature at every sample. The features are
then extracted with sub-pixel precision using the method in section 2.3.
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Handling of time delays

Error analysis
As we have already mentioned above, one of the most important advantages
of image-based visual servoing is that the error will go to zero even if
there are calibration errors. An error of zero in the image space will also
generally mean that the objects are aligned exactly in cartesian space.
However, in practice the specification of the end position is not exact. If
we specify the end point using the "teach by showing" approach there will
always be a small error in the estimated position of the features, and if we
instead calculate the end point using the projection equations there will be
additional errors in the calculations.

The question is what these image-space errors will translate to in carte-
sian space. Here we analyze a slightly simplified case, which will give a
rough approximation of the errors in cartesian space for the 3DOF visual
servoing.

bCamera 1 Camera 2

(X Y Z)T

Z

Y
X

O

Figure 2.3 The simplified stereo rig.

We assume that we have two identical cameras, arranged as in Figure
2.3. The distance between the cameras is b, and the focal lengths are f .
The cameras observe the desired end point (X , Y, Z)T measured in the
basis O, which is located at the exact midpoint between the cameras. This
point is projected in the two cameras as (see Appendix A)(

u1

v1

)
= f

Z

(
X + b/2

Y

)
(2.40)

(
u2

v2

)
= f

Z

(
X − b/2

Y

)
(2.41)

in the error-free case.
We now assume that, because of measurement errors, the servoing will

instead converge to the point (X +∆ X , Y+∆Y, Z+∆Z)T . The correspond-
ing exact image points are now (u1 + ∆u1, v1 + ∆v1)T and (u2 + ∆u2, v2+
∆v2)T , where ∆u1, ∆v1, ∆u2 and ∆v2 can be interpreted as the measurement
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2.4 Drawing on the whiteboard

errors in the image. The projection equations for (X + ∆ X , Y + ∆Y, Z +
∆Z)T can be written as(

u1 + ∆u1

v1 + ∆v1

)
= f

Z + ∆Z

(
X + ∆ X + b/2

Y + ∆Y

)
(2.42)

(
u2 + ∆u2

v2 + ∆v2

)
= f

Z + ∆Z

(
X + ∆ X − b/2

Y + ∆Y

)
(2.43)

We now simplify the problem further by assuming that ∆v2 = ∆v2.1 Equa-
tions 2.42 and 2.43 can then be rewritten as a linear system of 3 equations
in the unknowns ∆ X , ∆Y and ∆Z.

 − f 0 u1 + ∆u1

0 − f v1 + ∆v1

− f 0 u2 + ∆u2


 ∆ X

∆Y

∆Z

 =
 ( b

2 + X ) f − (u1 + ∆u1)Z
Y f − (v1 + ∆v1)Z

(− b
2 + X ) f − (u2 + ∆u2)Z


Straightforward calculations gives the solution

∆Z � ∆u2 − ∆u1

f b
Z2

∆ X � ∆u1 + ∆u2

2 f
Z (2.44)

We see that the errors in Z increases rapidly with the distance, and
decreases when the baseline b is increased. Therefore, in order to achieve
a good positioning accuracy we want to observe the scene from a short
distance, using a stereo rig with a long baseline. This is not always possible,
due to the constraint that the entire scene must be visible in both cameras
at the same time.

We also see that ∆Z depends only on the difference between the errors
in the two cameras, while ∆ X is proportional to the sum of the errors.

2.4 Drawing on the whiteboard

The force control must control the force in the z-direction of the gripper
to a constant value, see Figure 1.1, while the visual servo is moving the
gripper and pen across the board. One way to approach this task is to
divide the degrees of freedom of the problem into force- and vision con-
trolled directions, which in our case would mean that the z-direction of
the gripper would be controlled using only force control. However, then we
would not use all the available information on the state of the system in
the z-direction, and it would therefore be a good idea to use a combination
of force and vision control to control this degree of freedom. Imagine for
instance that the pen loses contact with the board, which means that the
force in the z-direction Fz = 0. Then the only information on the system

1With this particular camera setup, this condition could be satisfied if we use the epipolar
constraint v1 = v2 in the end point specification and feature extraction.
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state from the force sensor is that Z ≤ Z0. From the vision system how-
ever, we can still get information on the position of the pen, and use this
to control the pen back to the board.

A method that combines force control with the visual servoing described
above is presented below. This method is based on the observation that the
force constant of the spring mounted pen and the environment combined
is relatively stiff, meaning that a small change in the position of the pen
will lead to a large change in the contact force. Therefore it is appropriate
to use the force measurements to adjust the trajectories from the visual
servo so that the correct force is obtained. It also means that since the
force control typically makes very small adjustments to the trajectories,
these adjustments will not affect the results of the visual servo part of the
algorithm.

Force control

force
reference

F

Vision based feedforward

velocity ref.

velocity
dz/dt

Robot

1
s

F_r

F u

Force
controller Environment

stifffness

Figure 2.4 Force controller structure.

The block diagram for the closed loop system can be seen in Figure 2.4.
The outer force loop provides the setpoint for the inner velocity control
loop, which is the position/velocity control system already implemented in
the robot. The resulting robot dynamics is approximated with a first order
system

Grob =
1

sTrob + 1
(2.45)

where Trob can be estimated from a simple step response experiment.
The environment is approximated by an integrator and a spring with

the nonlinear characteristics

F =
{

kz(Z − Z0) Z > Z0

0 Z ≤ Z0
(2.46)

where Z0 is the z-position of the board surface.
When the pen is in contact with the system will be like a normal spring,

otherwise the force is zero. In this case the control must quickly steer the
pen back into contact with the board.

The spring constant kz is estimated to approximately 400 N/m in a
simple experiment. This means that a force of 1 N will correspond to a
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2.4 Drawing on the whiteboard

change in z-position of just 2,5 mm. Compare this with the estimations of
the visual positioning accuracy for the stereo rig in section 3.3.

The main problem with the force sensor is the very low signal-to-noise
ratio. The forces used in the drawing on the board are quite small, usually
1–3 N is enough, which unfortunately means that the amplitude of the
signal from the force sensor and the noise are of the same magnitude.
Using the internal digital low-pass filters in the JR3 force sensor increases
the SNR, but also introduces extra lag into the system.

The force control law is chosen as a simple proportional motion rate
controller

Ż = KF(Fr − F) (2.47)
where KF is a constant gain and Fr is the reference.

Force control with vision based feed-forward
The force control described will now control the movement in the z-direction
of the gripper, leaving the other degrees of freedom for the visual servoing.
However, the z-axis is not exactly orthogonal to the whiteboard plane. We
can rewrite the plane equation 2.22 as Z = f (X , Y) = p1 X + p2Y + p4. If
p1 �= 0 or p2 �= 0, movement in the x- and y-directions will affect also the
z-position of the pen relative to the board, and unless the force control is
fast, this will cause noticeable errors in the contact force.

This can however be compensated for, if we use the z-part of the vision
based control signal as a feed-forward signal for the force control loop. The
constrained velocity in the z-direction is calculated from equation 2.21 as

Ż = p1 Ẋ + p2Ẏ (2.48)

where
(

Ẋ Ẏ
)T

is the velocity screw obtained from equation 2.25, using the
constrained Jacobian from equation 2.23.

By combining equations 2.23, 2.24, 2.25, 2.47 and 2.48, we see that the
combined force/vision control law becomes

ṙH =

 0

0

KF(Fr − F)

+
 1 0

0 1

p1 p2

(Kv
[
J3

v,c(r)
]−1 (yr − y)

)
(2.49)

Estimating the location of the board
The constraint, described by equation 2.21, is in general unknown. [14]
presents a method based on local estimation of the constraint using mea-
surements of forces and torques. In our case the low signal-to-noise ratio
of the force sensor, in combination with considerable friction effects, makes
this method less suitable. Instead we estimate the parameter vector p̂ us-
ing a recursive least-squares method and the equations(

Xm Ym

(
Zm − Fz

kz

)
1
)

p̂ = 0 (2.50)

(p1 p2 − 1)
([

J3
v(r)

]−1 (yr − y)
)T
= 0 (2.51)

where Xm, Ym and Zm are measured cartesian coordinates for the end-
effector obtained from the robot kinematics, and Fz and kz are the mea-
sured force and the force constant in the z-direction. J3

v(r) is the uncon-
strained 3DOF Jacobian from section 2.3. Equation (2.51) comes from the
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fact that in an accurately calibrated stereo system, the unconstrained carte-
sian velocities ṙ obtained from the control law will produce trajectories that
are straight lines. If the system is moving between two points that both lie
in the constraint plane, then all the velocities ṙ(t) will be approximately
parallel to the plane. Including this in the plane estimation, we will ben-
efit from the “look-ahead” capabilities of the vision system, which can be
expected to improve the convergence rate of the estimation. A drawback is
that it makes the estimation more sensitive to calibration errors.

Note that the equation (2.50) require that the force constant kz is
known. However, it is possible to use just a rough estimation, since the
force control will keep Fz approximately constant. Because of this the slope
of the plane should still be estimated correctly. The value of kz could also
be estimated online.
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3. Results

The experiments are performed in the robot lab at the Department of Au-
tomatic Control, Lund Institute of Technology.

3.1 Calibration

The calibration object used is a checkered pattern with 48 corner features,
and the size of the object is approximately 10�15 cm. The resulting output
from the calibration of the stereo system are the intrinsic camera parame-
ter matrices K1 and K2, and the relative poses Tc1

b and Tc1
c2. As a by-product

in the calculations we also get Ttn, the relative pose of the calibration ob-
ject relative to the gripper frame. The matrices Tc1

c2 and Ttn can be checked
against their measured values, to test if the results are reasonable.

The results from the calibration of the system used in the experiments
are

K1 =

 816.5573 −1.2822 78.2626

0 854.2631 96.6541

0 0 1.0000



K2 =

 814.9845 2.2944 175.0039

0 846.9191 139.9104

0 0 1.0000



Tc1
b =


−0.9996 0.0089 0.0286 1.2825

−0.0275 0.1107 −0.9935 1.2439

−0.0120 −0.9938 −0.1104 1.6403

0 0 0 1.0000



Tc1
c2

=


0.9156 0.0240 −0.4013 0.7192

0.0056 0.9974 0.0725 0.0128

0.4020 −0.0686 0.9131 0.1944

0 0 0 1.0000



Tt
n =


−0.7762 0.6303 −0.0151 0.0747

−0.0088 0.0130 0.9999 −0.3087

0.6304 0.7763 −0.0045 −0.0245

0 0 0 1.0000


To test the calibration we compare these results with the results we

get when we use only four of the images, and the results obtained from
a calibration done with a well known camera calibration toolbox [3]. The
results can be seen in tables 3.1–3.4.
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Chapter 3. Results

Calibration α β γ u0 v0

Images 1–8 816.5573 854.2631 -1.2822 78.2626 96.6541

Images 1, 3, 5, 7 810.3757 851.1468 -1.2700 66.3426 99.1179

Images 2, 4, 6, 8 828.7196 865.8866 -2.7935 88.5513 88.9727

Toolbox 806.4±5.8 829.2±6.0 0 79.3±10.5 85.5±9.0

Table 3.1 Intrinsic parameters, camera 1

Calibration α β γ u0 v0

Images 1–8 814.9845 846.9191 2.2944 175.0039 139.9104

Images 1, 3, 5, 7 816.6615 848.8810 4.9501 150.6089 112.3556

Images 2, 4, 6, 8 811.9553 843.3814 -1.0145 171.2718 154.0182

Toolbox 804.4±5.8 829.0±7.0 0 123.4±10.9 87.1±9.9

Table 3.2 Intrinsic parameters, camera 2

Error analysis
We test the calibration by creating eight "virtual images" of the calibration
object for each camera, by using the estimated transformations and intrin-
sic parameters from a normal calibration, and reprojecting them back on
the images with the equations

xc1 = 1
λ1

K1Tc1
b Tb

nT
n
t Xt + ε1 (3.1)

xc2 = 1
λ2

K2Tc1
c2

Tc1
b Tb

nT
n
t Xt + ε2 (3.2)

where ε1 and ε2 is normally distibuted white noise in the pixel coordinates
with mean 0 and standard deviation σ . The calibration is run 10 times for
each of a number of different noise levels, and the mean absolute errors of
the parameters are calculated. The corner detection algorithm used in the
calibration is capable of calculating the position with a standard deviation
σ of less than 0.1 pixels, of course depending on image quality.

Intrinsic parameters The errors in the estimated intrinsic parameters
are plotted against σ , see Figures 3.1–3.2. We see that the only parameter
estimation that is improved considerably in the final optimization step is
the image skew γ .

Calibration tx/m ty/m tz/m θ x/○ θ y/○ θ z/○
Images 1–8 1.2825 1.2439 1.6403 -96.3400 0.6883 -178.4269

Images 1, 3, 5, 7 1.3130 1.2375 1.6167 -96.2044 -0.0548 -178.6448

Images 2, 4, 6, 8 1.2577 1.2616 1.6617 -95.9078 1.4203 -178.2152

Table 3.3 Tc1
b , translation and Euler angles
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3.1 Calibration

Calibration tx/m ty/m tz/m θ x/○ θ y/○ θ z/○
Images 1–8 0.7192 0.0128 0.1944 -4.2973 -23.7007 0.3522

Images 1, 3, 5, 7 0.7212 0.0117 0.1828 -2.2894 -24.5660 0.3090

Images 2, 4, 6, 8 0.7159 0.0162 0.2207 -5.8154 -24.7093 0.7018

Table 3.4 Tc1
c2 , translation and Euler angles
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Figure 3.1 Errors in estimated intrinsic parameters for camera 1, before
(dashed) and after (solid line) the final optimization step.

Extrinsic parameters Errors in the extrinsic parameters can be seen
in Figures 3.3–3.5. Note the very large improvement in the final optimiza-
tion step for the estimation of the hand-target pose Ttn. The estimations of
the camera-camera and camera-robot transformations Tc1

c2 and Tc1
b are also

improved considerably.
Other sources of error not included in the analysis are measurements

errors in the model target points, systematic non-planarity of the calibra-
tion object, kinematic errors caused by errors in the calibration of the robot,
and various distorsions in the camera. The errors due to the distorsions can
be reduced by including a model of the radial distorsion in the estimation
[15].

Robustness of the algorithm
The convergence of the final optimization depends on the accuracy of the
initial values obtained in step 1 and 2 above. Especially the hand-target
calibration in step 2 is sensitive to the experimental setup, especially the
different end-effector poses. This shows that it is important to choose these
poses in a suitable way, see [13]. In practice the convergence is not a prob-
lem as long as a number of poses with different orientations are used for
the gripper.
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Figure 3.2 Errors in estimated intrinsic parameters for camera 2, before
(dashed) and after (solid line) the final optimization step.
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Figure 3.3 Errors in Tc1
c2 , translation t and Euler angles θ , before (dashed) and

after (solid line) the final optimization step.

3.2 Picking up the pen

In Figures 3.6–3.7 we see the image-space trajectories of the features on
the end-effector during the 4DOF visual servoing phase. The trajectories
are not exactly straight lines in the image, which is due to the fact that the
gripper is a rigid body, and the solution to equation 2.20 therefore gives
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3.2 Picking up the pen
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Figure 3.4 Errors in Tc1
b , translation t and Euler angles θ , before (dashed) and

after (solid line) the final optimization step.
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Figure 3.5 Errors in Tt
n, translation t and Euler angles θ , before (dashed) and

after (solid line) the final optimization step.

the best approximation to the straight-line trajectory, in the least-squares
sense, that satisfies this geometric constraint. We see that the output of
the system converges to a value close to the desired feature parameter
vector. The mean absolute error between the desired and measured image
coordinates at convergence is 1.7 pixels, mostly because of large errors in
the specification of the end point. In the workspace the error in an object
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Chapter 3. Results

Figure 3.6 Image space trajectories, camera 1 and 2
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Figure 3.7 Image space feature positions and references, camera 1 and 2.
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3.3 Drawing on the board
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Figure 3.8 Joint space trajectories.

centered coordinate system is measured to be approximately

∆ X � 3 mm

∆Y � 1 mm

∆Z � 2 mm

∆θ � 5○ (3.3)

We can see that the error ∆Z which corresponds roughly to the depth in
the cameras is relatively small, thanks to the relatively large baseline of the
system, see section 2.3. The error in the orientation ∆θ is larger, because
of image-space measurement errors in the grasp position specification.

The resulting joint space trajectory sent to the robot is plotted in Figure
3.8. The cartesian position and orientation of the gripper during servoing
is plotted in Figure 3.9. Note the slightly irregular behaviour of the orien-
tation angle θ .

3.3 Drawing on the board

Here only one feature point in each image is used in the feedback loop.
In the experiments we use the internal low-pass filter of the force sensor,
with a cutoff frequency of 125 Hz. We see from the Figures 3.10–3.12 that
the trajectories are now almost straight lines in the image, since there is
of course no rigidity constraint on the solution when we are using a single
point. The velocity screw sent to the robot is plotted in Figure 3.13.

The contact force in the z-direction of the end-effector is plotted in Fig-
ure 3.14.
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Figure 3.9 Cartesian position/orientation of the end-effector.
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Figure 3.10 Pen trajectory, camera 1.

The stationary cartesian positioning error can be estimated using the
results from section 2.3. In the camera system used in the experiments1

we have b � 0,7 m, (X , Y, Z)T � (0, 0, 2,0)m, f � 850 and the estimated
worst-case image error ∆u � 1,0. This gives us the worst case estimations

1In the real stereo rig, the two cameras are tilted slightly inwards, corresponding to a
rotation of about 12○ around the y-axis of each camera. This is ignored in this analysis.
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Figure 3.11 Pen trajectory, camera 2.
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Figure 3.12 Pen trajectory, cartesian space.

∆ X = 3 mm and ∆Z = 14 mm.

3.4 Board equation estimation

The final estimation for the parameters of the plane is

p̂ = (−0.0461, 0.0128, − 1, 1.235)T
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Figure 3.13 3DOF velocity screw.
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Figure 3.14 Measured force F and reference Fr = 2 N.

which should be compared to the correct values

p̂r = (−0.0478, 0.0155, − 1, 1.237)T

obtained from an accurate measurement using the robot. The recursively
estimated parameters can be seen in Figure 3.15. The estimation is started
at t = 6.7 s.
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4. Discussion

We see in Figures 3.1–3.5 that at our estimated noise level of σ = 0.1
pixels, the errors in the estimated intrinsic camera parameters are small,
with a relative error in α and β of around 0.7%.

The relative error in the principal point is much larger, around 5%.
For image-based visual servoing purposes, this error can still be consid-
ered to be very small. The error is due to the very small relative depth
in the images. A small relative depth will make it difficult to distinguish
between translations of the cameras in cartesian space, and translations
of the principal point in the cameras, causing the calibration problem to
become very ill-conditioned. The calibration object is small, 10 � 15 cm,
and the images are taken from a distance of around 1.5–2 meters. Ideally,
we would want to use a large calibration object, and take the images from
a shorter distance and from many different angles. These requirements
are however difficult to satisfy in practice, since we have the constraint
that the entire calibration object must be visible in both images at once.
One solution would be to use fixed values for the principal point, perhaps
obtained from an accurate calibration of one camera at a time.

The errors in the estimations of the poses Tc1
c2 and Tc1

b are also very
small, with absolute errors in the translation of less than 1 cm, and less
than 1○ in orientation. Again, this is much less than what is required for
image-based visual servoing, where a coarse calibration is sufficient [7].

The simulated results of Figures 3.1–3.5 should be compared to the
experimental results in Tables 3.1–3.4. Note that the experimental results
are affected by not only image noise, but also errors in the model of the
calibration object and the robot. The estimated errors in the model points
is in our case over 1%, which explains the small difference in our values
of α and β from to the reference values. We also see that the errors in the
principal points are large, showing the effects of poor depth information
described above.

During the writing phase, we see from Figure 3.14 that the force over-
shoots slightly at the beginning of the first line at t � 7s. The reason is
that the estimate of the plane equation p̂ has not yet converged, and the
accuracy of the reference trajectories from the vision system is therefore
limited. The combined stiffness of the environment and the spring-mounted
pen is estimated to 400 N/m, which means that the overshoot corresponds
to an error of approximately 1.5 mm in the reference trajectory. Figure
3.14 also shows the stick-slip effect due to friction at t � 16 s. This effect
is even more visible in the force plots when a dry pen with a larger friction
coefficient is used.

Another source of error is the noise resulting from errors in the image
feature extraction, most clearly seen in Figure 3.10. This will result in
noise in the reference trajectories and the resulting contact forces, see
Figure 3.14.

The estimated plane parameters change in steps, with fast convergence
to the final value at time t = 13.3 s, the start time for the drawing of
the second line. The estimated values at t < 13.3 s reflects the slope of the
plane along the first line. The small error in the estimation is caused by the
noisy data from the force sensor, errors in the estimation of the stiffness
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of the spring, and calibration errors. Another reason is that the board is
flexible, and is therefore deformed slightly by the contact forces.
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5. Conclusions and future
work

5.1 Conclusions

The subject of this thesis has been the combinination of visual servoing
methods with force control. The task chosen to illustate this involves force
controlled, vision guided drawing on a planar surface. The method is based
on an explicit estimation of the position of an the unknown planar con-
straint surface, and a constrained 3DOF visual servoing algorithm. The
method differs from previous work in that it does not rely on assumptions
of negligible friction forces, or the possibility to locally recover the normal
of the plane from accurate measurements of contact forces and torques
[14, 6, 11]. Instead, we use data from a calibrated robot and camera system
to estimate the constraint location. The main drawbacks of this approach
are that it requires the constraints to be (piecewise) planar surfaces, and
that the accuracy depends on the calibration.

The camera calibration method uses a number of images of a planar
calibration object to estimate both the intrinsic camera parameters and
the location of the camera frames relative to the robot. We use a nonlinear
least squares method to estimate the parameters, and [15] and [13] to
obtain initial values. The calibration object is attached to the robot end-
effector, and therefore the extrinsic camera parameters are not completely
unknown. This extra information is used in the algorithm, in order to
increase accuracy and robustness. It is shown that with simulated data,
using this information will improve the estimation of the cartesian poses
considerably, while the estimations in the camera parameters are improved
very little or not at all.

Despite very poor depth information in the image sequence used, the
results from the calibration are far more accurate than what is required
for visual servoing purposes.

The pen will be grasped using an unconstrained image based visual
servoing method. The reference position is specified using the projection
equations. Inexact measurements and calculations will cause errors in the
specifications of almost 2 pixels. Despite this, the robot will grasp the object
with an error of only a few millimeters, due to the relatively large baseline
of the stereo system.

During the drawing phase, the 3DOF visual servoing method uses an
explicit planar constraint on the possible velocity screws ṙ used to gen-
erate reference trajectories. The values of the constraint parameters are
estimated with a recursive least squares algorithm. Combining the refer-
ence trajectories with a proportional force control law leads to the combined
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5.2 Future work

control law

ṙH =

 0

0

KF(Fr − F)

+
 1 0

0 1

p1 p2

(Kv
[
J3

v,c(r)
]−1 (yr − y)

)
(5.1)

The method is implemented in the robot lab at the Department of Au-
tomatic Control, Lund Institute of Technology. The system is run at a sam-
pling frequency of 15 Hz, which could easily be increased to the the video
rate of 30 Hz. The experiments show that the system will maintain a con-
stant contact force during drawing, despite large friction forces and limited
accuracy of the force/torque sensor. The slope of the constraint plane is es-
timated with an error of around 0.2○.

5.2 Future work

Currently, the calibration is performed off-line using an attached calibra-
tion object. One straightforward improvement would be to remove the cal-
ibration object, and instead use a model of the gripper itself. This way the
calibration could be run on-line, using data obtained during servoing.

The constrained visual servoing could be modified in a very straightfor-
ward way to full 6DOF servoing. The orientation of the gripper would then
be changed during the drawing, where the reference could be for instance
the estimated normal vector of the planar constraint.

In some tasks, an interesting alternative to direct force control would
be to use impedance control in combination with visual servoing, see [10].

Further, many improvements can be made to the image processing, so
that more complex features can be used. The tracking can also be improved,
which will increase robustness and allow faster control.

By including time-stamping and synchronization in the real-time sys-
tem used for acquiring the images, we can compensate for the time delays
and the asynchronous nature of the cameras. The real-time system can
also be made faster, so that a higher sampling rate can be obtained.
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A. Camera models

A.1 Perspective
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Figure A.1 The pinhole camera model.

The most common camera model is the pinhole or perspective camera,
which is used in the calibration method used above, and it is therefore
described briefly here. For more information about this and other camera
models, see [12]. The perspective camera model consists of a point O, called
the center of projection, and a plane π , the image plane. The origin of the
camera centered coordinate system is in O, see Figure A.1. The distance
between O and π is the focal length f. The line perpendicular to π that goes
through O is the optical axis, and the intersection of this line with π is
called the principal point o. The projection equations for a point (X Y Z)T
in cartesian space in the perspective camera are given by

x = f
X
Z

y = f
Y
Z

This can be written using homogeneous coordinates as

λ

 x

y

1

 =
 f 0 0 0

0 f 0 0

0 0 1 0




X

Y

Z

1


where λ = Z is the depth of the imaged point in the camera.
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A.2 Weak perspective

To transform between image-plane coordinates (x y)T to pixel-coordinates
in the camera we need to introduce a number of extra so called intrinsic
parameters that describe the CCD in the camera. These parameters allow
us to describe non-quadratic pixels (aspect ratio�=1), skew, and a principal
point that is not located at the origin in the pixel grid, see [12] for details.
The new camera model becomes

λ

 u

v

1

 =

 α γ u0 0

0 β v0 0

0 0 1 0




X

Y

Z

1

 =

=

 α γ u0

0 β v0

0 0 1


 1 0 0 0

0 1 0 0

0 0 1 0




X

Y

Z

1

 =
def= KR3�4X (A.1)

The matrix K is called the intrinsic camera matrix, and R3�4 is the
extrinsic camera matrix. The intrinsic parameters α and β describes fo-
cal length and aspect ratio, gamma is the skew (usually close to 0), and
(u0 v0)T is the principal point, which is often located near the center of the
image.

The matrix R3�4 can be used to change coordinate system in the world,
usually to a coordinate system attached to some object in the scene:

λ

 u

v

1

 = K
(

R t
)

Xo,

where R is an orthonormal rotation matrix and t is a vector, describing
the orientation and position of the camera and object frames respectively,
see Appendix B. Xo are the object points in the object-centered coordinate
system.

A.2 Weak perspective

An approximation to the perspective camera model that is useful if the
depth of the scene ∆Z is small in comparison to the depth of the object
points Z is the weak perspective camera model. This is described by the
projection equations

x = f
X

Zm

y = f
Y

Zm

where Zm is the average depth of the points imaged in the camera.
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B. Cartesian coordinate
transformations

In robotics, most tasks are specified with respect to a specific coordinate
system, or frame. In our case we have frames attached to for instance the
cameras, the robot base, the end-effector, the calibration object and the
object to be grasped. We will often need to relate the position and orien-
tation of the frames/objects in the workspace to each other, or transform
coordinates from one frame to another. If we want to change coordinate
system from frame b to frame a we use a so called pose, denoted by Ta

b,
which describes the location of frame a relative to frame b. The pose Ta

b
consists of a 3-vector ta

b and a 3� 3 orthonormal matrix Ra
b, satisfiying

(Ra
b)TRa

b = I

det(Ra
b) = 1

The vector ta
b is the vector from the origin of a to the origin of b, ex-

pressed in the coordinate system of a, see Figure B.1. The column vectors
in the matrix Ra

b are the unit x-, y- and z-vectors of the frame b, expressed
in the coordinate system of a:

b

a

ta
b

Ẑa

X̂a

Ŷa

Ẑb

Ŷb

X̂b

Figure B.1 Transformation between frames.

Ra
b =

(
(X̂b)a (Ŷb)a (Ẑb)a

)
If we want to change coordinates from frame b to frame a we can now

do so by applying the equation X a

Ya

Za

 = Ra
b

 X b

Yb

Zb

+ ta
b (B.1)
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We now define the transformation matrix

Ta
b =

(
Ra

b ta
b

01�3 1

)
By using homogeneous coordinates we can now write equation B.1 as

X a

Ya

Za

1

 = Ta
b


X b

Yb

Zb

1


or simply

Xa = Ta
bXb

We can also combine several coordinate transformations in series

Xa = Ta
bXb = Ta

bTb
cXc = Ta

c Xc

or invert the transform

Xb = Tb
aXa = (Ta

b)−1Xa

Due to the special structure of the matrix Ta
b the inverse is easily computed

(Ta
b)−1 =

(
(Ra

b)T −(Ra
b)Tta

b

01�3 1

)
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