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1. Introduction

1.1 A brief history

The idea of using an iterative method to compensate for a repetitive er-
ror is not new. When letting a machine do the same task repeatedly it is,
at least from an engineering point of view, very sound to use knowledge
from previous iterations of the same task to try to reduce the error the
next time the task is performed. The first academic contribution to what
today is called ILC appears to be a paper by Uchiyama (1978). Since it was
published in Japanese only, the ideas did not become widely spread. What
is a bit remarkable is however that an application for an US patent on
’Learning control of actuators in control systems’ (Garden 1971) was done
already in 1967 and it was accepted as a patent in 1971. The idea in the
patent is to store a command signal in a computer memory and iteratively
update the command signal using the error between the actual response
and the desired response of the actuator. This is clearly an implementation
of ILC, although the actual ILC updating equation is not explicitly formu-
lated in the patent.
From an academic perspective it was not until 1984 that ILC started to
become an active research area. Arimoto (1984), Casalino and Bartolini
(1984), and Craig (1984) independently published papers about a method
that iteratively could compensate for model errors and disturbances. The
name Iterative Learning Control was first introduced by Arimoto.
The development of ILC stems originally from the robotics area where
repetitive motions show up naturally in many applications.
The focus for the ILC research in the late 90’s and in the beginning of the
00’s is not so easy to establish but it seems that it has moved from being
very focused on stability towards also considering design and performance.

1.2 ILC in relation to other techniques

The classical formulation of the Iterative Learning Control problem is,
given a reference trajectory and a system, find (using an iterative pro-
cedure) the input to the system such that the output follows the desired
trajectory as well as possible. Clearly, if a description of the system is avail-
able the optimal solution is to invert this description (if possible) and use
this to calculate the input that produces the desired output. This is a one-
step procedure which can be considered as a feed-forward control scheme.
This approach has been applied successfully, for example, in robotics con-
trol where it is referred to as inverse dynamics.
If the system presentation, describing the mapping from input to output,
is not completely known, then it is obvious that the inverse dynamics ap-
proach will never achieve a perfect tracking. If instead it is assumed that
the structure of the system is known while the exact value of one or more
of the parameters are unknown, another well known technique can be ap-
plied, namely identification. Normally identification together with control
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1.3 Thesis outline

is referred to as adaptive control. The adaptive control approach is very
appealing since it will, theoretically, give a good behavior for all input sig-
nals, during all working conditions. It should be noted that this is true
as long as the structure of the system is correct and some conditions on
excitation are met.
Iterative Learning Control is an alternative to the inverse dynamics and
adaptive control approaches in the case when, given a particular reference
trajectory and a system, the input signal shall be calculated such that the
output follows the desired output as well as possible. Using ILC the control
signal is found by an iterative procedure. This can be seen as an iterative
search procedure which obviously has to converge to give a successful re-
sult. Convergence has been and still is an important research field for ILC.

1.3 Thesis outline

Chapter 2 describes three ILC approaches: Heuristic ILC, Model Based ILC
and Optimization Based ILC. Some theorems about ILC stability are also
shown. In the last section of the chapter simulation results are presented.

Chapter 3 gives an overview of the robot system used in the experi-
ments. The first section presents the physical robot, the second section the
experimental platform and the third section the interaction between the
robot and Matlab.

In Chapter 4 are shown some experimental results regarding the ap-
plication of ILC algorithms to the robot.

Chapter 5 introduces the problem of the motion control of open contain-
ers with slosh constraints. An algorithm for the slosh control is described
together with simulations. The last section reports experimental results
obtained applying ILC to the robot in order to improve the motion perfor-
mance of open containers with liquid.

Conclusions and some recommendations for further work are given in
Chapter 6.
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2. ILC Description

2.1 ILC formulation

Suppose to have a closed loop system (process + controller) and a reference
trajectory which is sent repeatedly as input. For example our system could
be an industrial robot that has to repeat every time the same task, therefore
the same input trajectories are sent to robot to be tracked. By observing
the tracking error in each iteration of the same task it becomes clear that
it is actually highly repetitive,even though disturbances from noise and
possibly slightly changing friction dynamics affect the response.

Iterative Learning Control (ILC) allows to iteratively compensate for
and, hence to remove this error. The main idea of ILC is that when repet-
itive tasks must be executed it is possible to improve the control system
in the current task by using the information from the tasks previously
executed.

At every iteration an external control signal (ILC) will be added to
the input. The aim is to have, iteration by iteration, a smaller tracking
error, ideally converging to zero value. Figure 2.1 shows the scheme we
are taking into account. Let yd(t) be the reference signal that we want

Closed Loop Controlled System

uk(t)

yd(t)
yk(t)

Tc(q)

Figure 2.1 ILC applied to the controlled system

to track and yk(t) , uk(t) , ek(t) = yd(t) − yk(t) are the output, the ILC
input and the tracking error of the system at iteration k respectively. The
following equations describe the problem:

yk(t) = Tc(q)yd(t) + Tc(q)uk(t) (2.1)
ek(t) = yd(t) − yk(t) (2.2)
uk(t) = Q(q)[uk−1(t) + L(q)ek−1(t)] (2.3)

where Tc(q) is the closed loop transfer function of the system and q is the
time shift operator.
Equation (2.3) is the ILC control added to the system and Q(q), L(q) are
filters to be designed. In fact our task is to design these filters so that the
system has satisfactory tracking performance.

Now if we consider the equations (2.1), (2.2), (2.3), after some calcula-
tions, we obtain the following recursive expression for the tracking error:

ek(t) = [(1− Q)(1 − Tc)]yd(t) + [Q(1 − L ⋅ Tc)]ek−1(t) (2.4)

10



2.2 Heuristic ILC

By analyzing Equation (2.4), it can be observed that in order to have
asymptotically zero iterative error it is necessary to choose Q(q) = 1. Only
with this choice the first term on the right hand side of Equation (2.4) can
be zero and if the filter (1− L ⋅ Tc) is asymptotically stable it will result in
limk→∞ ek = 0. We must observe that in real applications, for robustness
considerations, the filter Q(q) is chosen as a low-pass filter and conse-
quently this implies that the iterative tracking error will not converge to
zero asymptotically. Anyway, if an opportune choice of Q(q) is done, the
asymptotic error will reach values close to zero and that is satisfactory.

It is important when we start to iterate and update the control sig-
nal using ILC, that the system is stable along the iterations. If the error
starts growing as a function of iterations, nothing is gained from using the
method. It is therefore important to introduce the following criterion for
the convergence of ILC.

THEOREM 2.1—(NORRLÖF, 1999)
Given a SISO LTI system on the form (2.1) using an ILC given by (2.3),
convergence will be achieved if

h 1− L(eiω ts) ⋅ Tc(eiω ts) h<h Q−1(eiω ts) h (2.5)

where ω ∈ [−π ,π ] and ts is the sampling time.

The problem in ILC control is to design the filters Q(q) and L(q) subject
to the stability constraint (2.5). After this brief description we can now
introduce three different ILC algorithms [Norrlöf, 2000].

2.2 Heuristic ILC

The first design algorithm does not use much knowledge of a system model
in the design of the Q(q) and L(q) filters. Consequently it might not give
very good performance.
A heuristic design procedure:

1. Choose the Q filter as a low-pass filter with cut-off frequency such
that the band-width of the learning algorithm ’is sufficient’.

2. Let L(q) = κ qδ . Choose κ and δ such that the stability criterion (2.5)
is fulfilled. Normally it suffices to choose δ as the system time delay
and κ : 0 < κ ≤ 1 to get a stable ILC system.

It is to be observed that in the algorithm shown the filters Q(q) and L(q)
can be chosen anti-causal. The implementation of anti-causal filters is pos-
sible in ILC algorithms because, in order to calculate the control sequence
uk at iteration k, Q(q) and L(q) operate on the whole time sequences uk−1
and ek−1, already known from the previous iteration k− 1.

2.3 Model Based ILC

Here we consider an algorithm which uses the knowledge of a system model
to design the filters Q and L.

11



Chapter 2. ILC Description

Algorithm:

1. Build a model of the relations between the ILC input and the result-
ing correction on the output (i.e. find a model T̂c of Tc).

2. Choose a filter Hb(q) such that it represents the desired convergence
rate for each frequency. Normally this means an high-pass filter.

3. Calculate L by L(q) = T̂−1
c (q)(1− Hb(q)).

4. Choose the Q filter as a low pass with cut-off frequency such that the
band-width of the resulting ILC is high enough and desired robust-
ness is achieved.

The meaning of the filter Hb(q) can be explained by Equation (2.4). In fact
if we choose Q(q) = 1 we obtain ek(t) = (1 − L ⋅ Tc)ek−1(t) and if T̂c is a
good model (i.e. T̂c u Tc) then Hb u (1 − L ⋅ Tc) . So clearly the choice of
Hb decides the nominal convergence rate for the error.

In the frequency domain the filter Hb can be adjusted to give a slower
but more robust convergence for some frequencies. The choice of Hb must
be realizable. It is clearly not possible to choose Hb small for frequencies
where the model is very uncertain since this most likely leads to a divergent
behavior of the resulting ILC. The choice of Hb has, therefore, also to
include robustness considerations, although robustness is also achieved
with the Q filter.

The resulting L filter might have an unnecessary high degree, therefore
it can be possible to make a model reduction.

2.4 Optimization Based ILC

This algorithm derives from the minimization of a quadratic cost and in
this meaning we refer to it as optimal.
In general the system at iteration k is described by :

yk(t) = Tr(q)yd(t) + Tu(q)uk(t) (2.6)

where Tr(q) is the transfer function from the reference to the output and
Tu(q) the transfer function from the ILC control to the output. Let us now
introduce the matrix form for the system (2.6):

yk = Tryd + Tuuk (2.7)

where yk, yd and uk are time-indexed vectors. Tr and Tu are lower trian-
gular Toeplitz matrices obtained from the impulse response of Tr(q) and
Tu(q) respectively. Let the quadratic criterion be formulated according to

Jk+1 = eT
k+1Week+1 + uT

k+1Wuuk+1

where ek+1 = yd − yk+1 is a vector. The idea is to determine uk+1 in such
a way that the the error ek+1 becomes as small as possible with respect
to the criterion. The weighting matrices We and Wu decide the trade off

12



2.4 Optimization Based ILC

between performance and input energy. The criterion is minimized subject
to the constraint:

(uk+1 − uk)T(uk+1 − uk) ≤ δ (2.8)
Introducing the Lagrange multiplier yields the criterion:

Jk+1 = eT
k+1Week+1+uT

k+1Wuuk+1+λ((uk+1 − uk)T(uk+1−uk)−δ ) (2.9)
From (2.7) it follows that ek+1 is given by

ek+1 = (I − Tr)yd − Tuuk+1 (2.10)
Using this result together with (2.9) makes it possible to do a differentia-
tion of Jk with respect to uk+1. This gives:

VJk+1

Vuk+1
= −TT

u Week+1 +Wuuk+1 + λ(uk+1 − uk) = 0 (2.11)

where the optimum is achieved when the derivative equals zero. In the
last equation the aim is to extract uk+1, but Tu is unknown and ek+1 at
iteration k+ 1 is not still available.
In order to overcome these problems we can use T̂u which is a model of Tu
and we can try to predict ek+1. A prediction êk+1 of ek+1 in Equation (2.10)
is given by the next equation

êk+1 = (I − T̂r)yd − T̂uuk+1 (2.12)

Notice that T̂r and T̂u are lower triangular Toeplitz matrix created from
the impulse response of T̂r(q) and T̂u(q). T̂r(q) and T̂u(q) denote a nominal
model of the closed loop system and the transfer function from the ILC in-
put to the output, respectively. This implies that some a priori knowledge of
the system to be controlled is available. So Equation (2.11) is transformed
into :

−T̂T
u We(I − T̂r)yd + T̂T

u WeT̂uuk+1 +Wuuk+1 + λ(uk+1 − uk) = 0 (2.13)
which solved with respect to uk+1 gives:

uk+1 = Q(uk + Lêk) (2.14)
Q = (Wu + λ ⋅ I + T̂T

u WeT̂u)−1(λ ⋅ I + T̂T
u WeT̂u) (2.15)

L = (λ ⋅ I + T̂T
u WeT̂u)−1T̂T

u We (2.16)

The updating matrices Q and L hence depend on the nominal model T̂u
and the weighting matrices Wu and We. Note however that the Lagrange
multiplier λ is not computed explicitly. It is instead used as a design vari-
able which puts a weight on ((uk+1 − uk)T(uk+1 − uk) − δ ) but does not
necessarily fulfill the constraint (2.8).

In Equation (2.14) the error signal is formed using the nominal model
of the system, while in real use the actual error signal from the system is
used. The conventional definition of the error ek = yd − yk leads to

uk+1 = Q(uk + Lek) (2.17)
where Q and L are given by (2.15) and (2.16). The next theorem is useful
for the filters design strategy.

13



Chapter 2. ILC Description

THEOREM 2.2—(NORRLÖF, 2000)
If λ > 0 and the nominal model corresponds to the true system then the
proposed optimization based ILC algorithm always gives a stable ILC sys-
tem.

Moreover in the design of Q and L, if we choose We = I and Wu = ρ ⋅ I ,
with ρ > 0 , then we can deal also with non-minimum phase systems and
assure that the stability criteria fulfilled. Therefore we have the following
algorithm :

1. Build a model of the relations between the ILC input and the result-
ing correction on the output (i.e., find a model T̂u of Tu). The matrix
T̂u is simply the lower triangular Toeplitz matrix created from the
impulse response of T̂u(q).

2. Choose the weight matrices as We = I and Wu = ρ ⋅ I with ρ > 0 ,
choose also λ > 0.

3. Q and L are calculated according to

Q = ((ρ + λ) ⋅ I + T̂T
u T̂u)−1(λ ⋅ I + T̂T

u T̂u) (2.18)
L = (λ ⋅ I + T̂T

u T̂u)−1T̂T
u (2.19)

4. Use the ILC updating equation 2.17 with u0 = 0.

It has to be remarked that the computational complexity of this algorithm
grows fast with data size.

2.5 Simulations using ILC algorithms

The aim of this section is to show how some algorithms based on Itera-
tive Learning Control work when applied to a simple model of robot joint.
All the results that will be shown come from Matlab simulations. Let us
introduce a robot joint model expressed by the Laplace transfer function:

Gc(s) = 1
J ⋅ s2

where J is the joint moment of inertia.
From Gc(s) we obtain G(z), that is the z-transform of Gc(s) including the
Zero Order Hold (ZOH) :

G(z) = T2
s

2J
z+ 1
(z− 1)2

Ts is the sampling time. The joint is controlled by a P.D. feedback controller
F(z) and by a feed-forward controller Ff (z).

F(z) = kp + kd

Ts

z− 1
z

= kpTs + kd

Ts
⋅

z− kd
kpTs + kd

z

14



2.5 Simulations using ILC algorithms

hence

F(z) = Fnain ⋅
z− Fzero

z

and

Ff (z) = J
T2

s
⋅
(z− 1)2

z2 = Ff nain ⋅
(z− 1)2

z2

J = 0.0094 N⋅s2 , kp = 12.7 , kd = 0.4 , Ts = 0.001 s.
Figure 2.2 shows the scheme we are considering. yd(t) is the reference
signal we want to track as well as possible and yk(t) , uk(t) , ek(t) =
yd(t) − yk(t) are respectively the output, the ILC input and the tracking
error of the system at the iteration k. In equations:

yk(t) = Tr(q)yd(t) + Tu(q)uk(t) (2.20)
ek(t) = yd(t) − yk(t) (2.21)
uk(t) = Q(q)[uk−1(t) + L(q)ek−1(t)] (2.22)

Tu is the transfer operator from uk(t) to yk(t) and Tr from yd(t) to yk(t).

OUTPUT
y_k

1

REFERENCE
SIGNAL  y_d

[T,U_k]

ILC CONTROL
u_k

G_gain(z+1)

(z−1)2

G (z)

Ff_gain(z−1)2

z2

F_f (z)

F_gain(z−F_zero)

z

F (z)

Figure 2.2 ILC applied to the controlled system.

According to the scheme considered we have:

Tu(q) = F(q)G(q)
1+ F(q)G(q) (2.23)

Tr(q) =
(F(q) + Ff (q))G(q)

1+ F(q)G(q) (2.24)

The controller operating on the joint is already a good controller. See
its tracking performance in the simulations results shown in Figure 2.3.
The reference choice has been yd(t) = sin(2π t).

We wish to improve the performance of the controlled system by adding
to the system a suitable external control signal, that is ILC.

Tu in our example results:

Tu(q) = 0.02195q2+ 0.00067q− 0.02128
q3 − 1.978q2 + 1.001q− 0.02128

(2.25)
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Chapter 2. ILC Description
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Figure 2.3 Closed loop controlled system behavior without ILC

or equivalently in the zero-pole form:

Tu(q) = 0.022
(q+ 1)(q− 0.9692)

(q− 0.9779− 0.02299i)(q− 0.9779+ 0.02299i)(q− 0.0222)
(2.26)

The next subsections will show simulation results using different ILC al-
gorithms. The number of ILC iterations performed is every time 10.

Simulations using Heuristic ILC
In the implementation of this algorithm Q(q) is chosen zero phase low-pass
filter and L(q) = κ . Simulation results after 10 ILC iterations are shown
in Figure 2.4 There is a some tracking improvement in comparison with
the case where no ILC is applied.

A simulation with different L filter choice is performed, L(q) = κ q. Ob-
serve that the L filter choice is not causal. We are allowed to use anti-causal
filters in the ILC design because they operate on already known sequences
from the previous iteration. Figure 2.5 displays simulation results after 10
iterations.

The last choice for the filter L results in a better tracking than the
previous one.

Simulations using Model Based ILC
Here it is considered an algorithm that uses the knowledge of a system
model to design the ILC filters. In simulations the following model T̂u of
Tu expressed in Equation (2.26) is considered:

T̂u(q) = 0.022
q(q− 0.9692)

(q− 0.9779− 0.02299i)(q− 0.9779+ 0.02299i)(q− 0.0222)
(2.27)
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2.5 Simulations using ILC algorithms
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                                HEURISTIC ILC  (  where filter L is causal ) 

Figure 2.4 Simulation results after 10 iterations of Heuristic ILC with the filter
L(q) = κ .

The filter Q is chosen zero phase low-pass and the aggressive choice L(q) =
T̂−1

u is done. Such L is obtained by imposing the filter Hb(q) = 0
Figure 2.6 shows the performance of this algorithm when applied to our

joint.

Simulations using Optimization Based ILC
In simulations this technique results to have the best performance in com-
parison with the previous algorithms shown. The algorithm has been ap-
plied in the matrix form consequently the ILC filters are expressed through
the matrices Q and L

Figure 2.7 displays the performance of this algorithm when applied to
our simulation problem using the following model choice T̂u(q) = Tu(q)
from (2.26).

Figure 2.8 shows the performance of the algorithm when T̂u(q) is chosen
equal to (2.27)
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Chapter 2. ILC Description
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Figure 2.5 Simulation results after 10 iterations of Heuristic ILC with the filter
L(q) = κ q.
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2.5 Simulations using ILC algorithms
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Figure 2.7 Simulation results after 10 iterations of optimization Based ILC, with
T̂u(q) = Tu(q)
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3. A Brief Description of the
Robot System

3.1 The ABB industrial robot Irb-2000

The robot used in the experiments is an Irb-2000, ABB industrial robot.
The robot has seven links wich are connected by six joints, as shown in
Figure 3.1. It is built up by two big arms and a wrist. Joint 2 (axis B in the
figure) is used to move the lower arm back and forth, whereas joint 3 (A)
moves the upper arm up and down. Joint 4 (D) is used to turn the wrist
unit and joint 5 (E) bends the wrist unit around its center. The sixth joint
(F) is used to turn the robot end effector, which is mounted on the tip of
the wrist. The end effector is not shown in the figure. Finally joint one (C)
turns the entire robot around its base.

Figure 3.1 The ABB-2000 industrial robot.

The robot system has different built-in controllers, one for the control of
each joint angle. These controllers are cascaded PID controllers. The block
diagram for a single joint is shown in Figure 3.2.

3.2 The experimental platform

The experimental platform consists of:
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3.2 The experimental platform

  
 pos. ref.

vel. ref.

PID PID JOINT

position

velocity

Figure 3.2 Block diagram for a controlled joint. The velocity signal used in the
velocity loop is the position signal differentiated and low-pass filtered.

• Reconfigured Irb-2000 robot system (robot and control cabinet).
• VME based board computer system (target system).
• Host computer system consisting of Sun workstations (host system).
• Ethernet connection between host and target.

The Irb-2000 is controlled from VME-based embedded computers [Nils-
son, 1996]. Sun workstations are used for software development and control
engineering, as well as for robot operator interaction.

Figure 3.3 shows the Irb-2000 part of the laboratory. Signals from in-
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Figure 3.3 The experimental Irb-2000 system.

ternal sensors of the robot to the VME system go via the sensor interface
to the DSP board connected to the VME bus.

The master computer in the VME computer is based on Power PC pro-
cessor. Supervision and safety functions are implemented on a M68030
board, well separated from the rest of the system to prevent damage of the
robot. Digital Signal Processors (DSP) are used for low-level control and
filtering of sensors signals. Sensors requiring very high data bandwidths
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Chapter 3. A Brief Description of the Robot System

Figure 3.4 The Exc_handler Matlab window which makes it possible to assign
additional reference trajectories to certain robot links and to record the outputs
from the robot sensors.

are connected directly to the DSP boards. An additional DSP board belongs
to the force-torque sensor.

3.3 The Matlab-robot connection

By the Sun workstations described in the previous section it is possible the
development of programs to control the robot or to send it references to be
tracked. That can be done inside the Matlab environment.

A Matlab program called Exc_handler is available for simple excitation
experiments on the robot. This program can be used to define velocity and
position references to the built-in controllers or to directly define torque
references to the motors. The inputs can be steps, ramps, sinusoids, noise
or other arbitrary signals from the Matlab workspace (see Figure 3.4).

A lot of signals can be recorded during the excitation. These include
input torques, position measurements, differentiated position (velocity),
and force and torque measurement from the force sensor. The recorded
signals can then be exported to the Matlab workspace for plotting and
data processing.
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4. Experimental Results, ILC
Applied to Robot
Learning,

4.1 Objectives and assumptions

The robot
Two of the three algorithms discussed in the previous section have been
applied to an industrial robot manufactured by ABB Robotics. The robot
is an Irb2000 with an Open Control architecture developed at the Dept.
of Automatic Control, Lund, Sweden, [Nilsson, 1996]. It has 6 joints and
2 joints (joints 2 and 3) have been used in order to draw bidimensional
trajectories.

Objective
ILC algorithms have been applied to the joints involved in the experiments
to improve the tracking performance of the robot controllers.
Each joint of the robot is controlled by cascaded PID controllers. We observe
that if the frequency range of the references signals sent to the joints covers
only low frequencies then the joints controllers work good and there is no
need of adding external ILC. If this range covers also higher frequencies
then we can reach a situation where the behavior of the joint controllers
is not enough. Therefore we need to use ILC in order to improve the robot
tracking performance.

Introduction of a model for the controlled joint
Let us assume that the closed loop system from the angular position refer-
ence to the angular position response can be approximately described using
a low order linear continuous time model. That is for the generic joint i:

T̂c,i(s) = 1
ais+ 1

(4.1)

See also Figure 4.1.

position resp.position ref.

JOINT i

T̂c = 1
ais+1

Figure 4.1 Simple model adopted for the controlled joint.
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Chapter 4. Experimental Results, ILC Applied to Robot Learning,

The parameter ai in Equation (4.1) is identified from the simple step
response of joint i.

We will use the joint model just introduced for the implementation of
the Model Based ILC algorithm on joints 2 and 3.

4.2 The Spiral experiment

The first experiment done was to draw a spiral from the peripheral start-
ing position to the center and once reached the center to draw back to the
starting position following the path already drawn.
The spiral is drawn with constant angular velocity by the robot. The du-
ration time of the operation is 20 seconds.

For both joints the Q-filters were chosen as zero-phase filters Qi(q) =
Q̄i(q)Q̄i(1

q), where Q̄i(q) is a second order Butterworth low-pass filter. For
each joint involved in the experiment the L-filter was chosen as the inverse
of the discretized version of the joint continuous model (4.1), that is Li(q) =
Td,i(q)−1. The integer i : 2, 3 is the index that selects the joint we are
considering.

Results from the experiment
The first ILC algorithm applied in the spiral experiment was the Model
Based one and the joints involved were joint 2 and joint 3.

Figure 4.2 shows how ILC improves iteration by iteration the tracking
of the ideal trajectory (dotted line). In iteration 0 there is no ILC control
applied and the figure points out how the joints controllers behave. In
the first row of the Figure 4.2 (from left to right) we can see how ILC
improves the performance when the spiral is drawn by the robot moving
in the anti-clockwise direction. In the second row of Figure 4.2 it is shown
the ILC improvement when the second part of the trajectory is drawn, that
is when the robot draws from the center to the most peripheral point in
the clockwise direction.

Figure 4.3 shows the reference signals for joint 2 and joint 3 (J2 and
J3) and the tracking error of the two joints through the iterations.

In all these plots, on the vertical axes there are the motor radians
and on the horizontal axes the time in seconds. All the joints signals are
expressed in motor radians (i.e. radians on the motor side) because the
reference and the ILC control signal have to be applied to the joint motor.
Therefore the joints angles expressed in radians are converted through a
gear ratio to motor radians.

We observe from Figure 4.3 that in the second ILC iteration the track-
ing error is really small almost everywhere except for the initial instants
on joint2 where it is nearly 0.25 motor-radians. This peak is however ac-
ceptable and it decreases if further iterations are executed.

Also the heuristic ILC algorithm was applied to the robot system in
the spiral experiment. Qi(q) was chosen as a zero phase low pass filter
and Li(q) = ki ⋅ q. In Figures 4.4 and 4.5 we can see the results of two
iterations of ILC.
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4.3 The Christmas Tree experiment
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Figure 4.2 Forward and Backwards Spirals in the Model Based experiment. The
measurements for the spirals figures are in [mm].

Discussion
Satisfactory results can be seen after only 2 iterations of ILC. If we com-
pare the results shown in the figures regarding the spiral experiments
performed using two different ILC algorithms, we realize that the tracking
performance after two iterations of the Model Based algorithm is better
than the Heuristic one. That is coherent with what we can expect from the
ILC theory, and from the simulations in the previous Section 2.5.

4.3 The Christmas Tree experiment

The spiral is a smooth figure and consequently the input references to
the joints are smooth. In order to test ILC in different conditions a new
experiment using another bidimensional trajectory was performed. This
trajectory is the sketch of a Christmas Tree, a figure composed by lines and
angles. The Tree with its abrupt changes of trajectory during the drawing
represents a good way to test the ILC algorithms. Figure 4.6 is a picture of
the robot drawing the Tree. The algorithm used is The Model Based one.
ILC was applied to joint 2 and joint 3 with the following choice of filters: Q
filters were chosen as a zero-phase filters Qi(q) = Q̄i(q)Q̄i(1

q) with Q̄i(q)
as a second order Butterworth low-pass filter. The L filters were chosen as
Li(q) = Td,i(q)−1.

Results from the experiment
Figure 4.7 shows some results from the Tree experiment. In iteration zero,
without ILC, the angles of the Tree are drawn in a smooth way by the
robot. The tracking error on the involved joints is consequently rather big
near the angles of the figure (because the desired Tree has sharp angles).
ILC operates in order to reduce this error on the Tree angles and it is
finally possible for the robot to draw a figure with sharper angles. The
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Chapter 4. Experimental Results, ILC Applied to Robot Learning,
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Figure 4.3 References and Position Tracking Errors for joint 2 and joint 3 in the
spiral Model Based experiment. The measurements for the References and for the
Position Tracking Errors are in [motor rad.] versus [s].

figure points out how the tracking error on joint 2 and joint 3 decreases
after two iteration of the learning algorithm.

4.4 ILC applied to the joint velocity input

Up to now we have considered only the position inputs of the joints, fol-
lowing the scheme in Figure 4.8 .

More generally each joint accepts as inputs one position input and one
velocity input (see Figure 4.9).

The joint controllers are implemented as cascaded controllers with an
inner velocity loop and an outer position control loop. The bandwidth of the
velocity controller is higher than the bandwidth of the position controller.
It means the joint controller tracks velocity references better and faster
than position references, especially for signals containing higher frequency
components. Therefore it could be interesting to implement ILC on the
joint velocity input according to the scheme shown in Figure. 4.10

Results from the experiment
The velocity ILC algorithm implemented was the heuristic one and it was
applied to joint 2 in this experiment. In Figure 4.11 is shown the reference
to joint 2. In Figure 4.12 we see how the velocity tracking error is reduced
from iteration 0 to iteration 5. In the same figure we compare the velocity
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4.4 ILC applied to the joint velocity input
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Figure 4.4 Forward and Backwards Spirals in the Heuristic experiment. The
measurements for the spirals figures are in [mm].

tracking error in iteration 0 and in iteration 5 and we realize that its
variation range has been reduced from ±3.5 to ±0.8 motor-rad./s.

Discussion
By analyzing Figure 4.12 we see that through the iterations the tracking
error is reduced with respect to iteration zero but higher frequency os-
cillations appear. In the scheme of Figure 4.10 we can see that the use of
velocity ILC updating makes the joint velocity input is not the exact deriva-
tive of the position input. It was assumed for the experiment that, since
the bandwidth of the velocity controller is larger than that of the position
controller, the joint position controller behavior is very slightly affected by
velocity ILC updating. The oscillations present through iterations suggest
that this assumption does not work completely.

In my opinion this is not the main cause of this poor behavior. The
velocity reference sent to joint 2 is fast. The joint increases from zero con-
siderably its velocity and then it has to reduce the velocity in a very short
time. The ILC updating applied to velocity can be too abrupt. For example
when the joint velocity must decrease very fast to zero it means the rel-
ative mechanical link must decrease fast to zero its velocity, it has heavy
mass and is not easy to stop a mass moving fast in a short time interval
without drawbacks. In this time interval the joint velocity tracking error is
not small and consequently velocity ILC tries to compensate. ILC reduces
the tracking error range but it is not avoid the presence of oscillations (vi-
brations). Note that Heuristic ILC was implemented and it does not use
too much knowledge about the system.

Probably Model Based and Optimization based ILC can give better per-
formance but they need the introduction of a model for the joint involved. A
model describing the joint dynamics when fast movements are performed
(taking also into account the joint flexibility problem and the nonlinear
coupling terms between the links) would be to prefer but it is not straight-
forward to do. In conclusion the tracking error is reduced but there are still
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Figure 4.5 References and Position Tracking Errors for joint 2 and joint 3 in
the spiral Heuristic experiment. The measurements for the References and for the
Position Tracking Errors are in [motor rad.] versus [s].

some vibrations during the motion. Velocity ILC is appealing but there are
some unsolved problems that affect the performance.
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4.4 ILC applied to the joint velocity input

Figure 4.6 The robot draws the Tree using ILC to improve the tracking of the
reference.
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Figure 4.7 Tree plotting and Position Tracking Errors in the tree Model Based
experiment. The measurements for the tree figures (first row) are in [mm] and for
the Position Tracking Errors (second row) are in [motor rad.] versus [s].
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4.4 ILC applied to the joint velocity input
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Figure 4.12 The Velocity Tracking Error on joint 2 is reduced trough the ILC iter-
ations but higher frequency oscillation appear. The measurements for the Velocity
Tracking Errors are in [(motor rad.)/s] versus [s].
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5. Case study: Movement of
Open Containers Using a
Robot

5.1 Abstract

In this chapter ILC is applied to a robot in order to improve the perfor-
mance regarding the motion of a container with liquid inside. The purpose
is to shorten the motion time of the container and to keep under control the
slosh inside. The algorithm for the slosh control is iterative [Grundelius,
1998], [Grundelius and Bernhardsson, 2000], [Grundelius, 2000], [Grun-
delius and Bernhardsson, 1999b], [Grundelius and Bernhardsson, 1999a].
ILC is also used in an ’inner iteration loop’ to improve the robot tracking
of the desire acceleration profile. First an introduction and a problem for-
mulation is given. The algorithm for reducing the slosh is given in the next
subsection, followed by some simulations and finally the experiments on
the robot system are described and presented.

5.2 Problem introduction

The problem of motion of open containers with liquid will be investigated,
[Grundelius and Bernhardsson, 1999b]. This is a common problem in the
packaging industry. A packaging machine fills the container with liquid
and proceeds to seal it. Once filled the package is moved by a holder to a
position where it will be sealed. The movement of the package is executed
stepwise, the number of steps depends on the machine type. The same
movement is applied in every step on all packages. In Figure 5.1 is shown
a scheme of packaging machine. The aim is to shorten the motion time of

fold

fill

seal

direction

Figure 5.1 Scheme of the packaging machine
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Figure 5.2 The surface elevation displayed is the response to an acceleration
impulse applied to the container.

the package because in this way it is possible to increase the production.
Increased production rate gives a lower packaging cost and higher profit.

The problem is that we cannot move the container as fast as we want
because we must take into account that there is liquid inside and the
package movement causes motion in the liquid. We will refer to it as slosh.
The amount of slosh depends on how the package is accelerated and on the
properties of the liquid used. There is the risk that when the container is
moved fast the slosh causes some liquid to go outside the container or to
wet the carton surfaces that should be sealed. This can result in packages
that are not properly sealed and possibly not airtight. If the package is not
airtight the storage time is much decreased. Therefore in the problem of
minimizing the package motion time we must take into account constraints
due to slosh in the liquid (the maximum slosh elevation must be below a
certain value).

We want to find the best acceleration profile in order to move the pack-
age one step, fulfilling the slosh constraints.

The same acceleration profile is applied at each step. The acceleration
must be such that the slosh constraint is not violated when the acceleration
profile is repeated. One way to achieve this is to ensure that the slosh is
in the same state at the beginning of each movement step. The natural
choice of initial state of the slosh is that with the liquid at rest.

The problem is solved by first deriving a model of the slosh and then
applying optimal control techniques to calculate the acceleration profile
for the container. The choice of slosh model is not trivial. The nonlinear
effects are evident for very rapid movements when the surface elevation
is large. Figure 5.2 shows the results of an impulse response experiment.
In the figure two nonlinear phenomena can be observed: the oscillation is
asymmetric and the oscillation frequency is slightly amplitude dependent
(the oscillation frequency increases with decreasing amplitude).

A linear slosh model with four states is introduced.

ẋ = Ax + Bu (5.1)
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with

A =


−2ζ ω −ω 0 0

ω 0 0 0

0 0 0 0

0 0 1 0

 B =


aω/2n

0

1

0


where x2 is the surface elevation in meters, x1 is the time derivative of
the surface elevation divided by ω , x3 is the container velocity and x4 the
container position. The following constraints must be considered:

1. Acceleration: hu(t)h ≤ umax = 9.81 m/s2

2. Slosh: hx2(t)h ≤ smax = 0.035 m

3. Initial state: x(0) = [0 0 0 0 ]T

4. Terminal state: x(T) = [0 0 0 d ]T

T is the movement time and d = 0.2 m the movement distance. smax is the
maximum surface elevation. For a rectangular container with liquid depth
h and width a the oscillation frequency of the first harmonic is given by
the following expression:

ω m =
√
nπ
a

tanh
(

bπ
a

)
(5.2)

which gives approximately the value ω = 21.0 rad/s. The residual slosh
ρ(t) is defined as

ρ(t) = s(t+ T)∀t ≥ 0

where s(t) is the surface elevation.

The Minimum Energy Approach
The objective is to calculate the ’best’ acceleration profile for the package
and one way to do it is to minimize the loss function (5.3) taking into
account the constraints previously described.

J =
∫ T

0
u2(t) dt (5.3)

In the Minimum Energy Approach the aim is to minimize the total energy
put into the system.

We can summarize that if a slosh model is available, the acceleration
reference can be calculated using the optimal control technique just shown.
However, in the experiments this method requires a very accurate model
to be successful. The linear slosh model works enough well when the al-
lowed maximum slosh is small. Nevertheless in the case we consider the
allowed maximum slosh is relatively large and the linear model does not
fully describe the real slosh behavior. Therefore a different approach is
needed in order to calculate the ideal acceleration profile. This approach is
the Iterative Learning Control.
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5.3 Slosh Iterative Learning Control

The Iterative Learning Control algorithm considered starts using as initial
acceleration that derived from the solution of the Minimum Energy Prob-
lem presented above and after, at each iteration the acceleration profile is
updated taking into account the measured slosh behavior with respect to a
slosh given reference [Grundelius and Bernhardsson, 2000]. The usual way
to implement ILC is to use the following updating formula for the input
signal uk(t)

uk+1(t) = Q(q)(uk(t) + L(q)ek(t)) (5.4)
where Q(q), L(q) are linear filters, not necessarily causal, and ek(t) =
r(t)− yk(t) is the tracking error. In this application of ILC the input signal
uk(t) is the acceleration reference. The specification on the movement gives
the following constraints on u(t)∫ T

0
u(t) dt = 0

∫ T

0

∫ t

0
u(s) dsdt = d (5.5)

Where T is the movement time. We start with one value of T but we
will try to have it as small as possible according to the ILC slosh problem
performance. These constraints make it hard to choose the filters Q(q) and
L(q).

From the linear slosh model and the solution of the Minimum Energy
Problem a reference r(t) for the surface elevation on the backward side
of the package and an initial acceleration reference u0(t) are respectively
obtained. The surface elevation is measured on the backward and on the
forward side of the package giving the measurements y1(t) and y2(t). The
linear model used when calculating r(t) gives a symmetric surface eleva-
tion, hence −r(t) is the surface elevation on the forward side of the package.

The acceleration reference and the surface elevation reference is sam-
pled with sampling period h such that T = nh. The surface elevation is
augmented with zeros giving m > n. This is to make it possible to penal-
ize the residual slosh after the movement. The problem is to find δ uk(t)
in uk+1(t) = uk(t) + δ uk(t) that minimizes the error in the next iteration
ek+1(t) = r(t) − yk+1(t). By supposing that the slosh is approximately de-
scribed by the linear discrete time operator G(q) this gives

ŷ1
k = G(q)uk(t) ŷ2

k = −G(q)uk(t)

Then the error in iteration k+ 1 is approximately given by

e1
k+1(t) � e1

k(t) − G(q)δ uk(t)
e2

k+1(t) � e2
k(t) + G(q)δ uk(t)

definition of the vectors

δ Uk = [δ uk(0) δ uk(h) . . . δ uk((n − 1)h) ]T

E1
k = [ e1

k(0) e1
k(h) . . . e1

k((m − 1)h) ]T

E2
k = [ e2

k(0) e2
k(h) . . . e2

k((m − 1)h) ]T
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and the matrix

G =



n(0) 0 . . . 0

n(h) n(0) . . . 0

. . . . . . . . . . . .
n((n− 1)h) n((n− 2)h) . . . n(0)

. . . . . . . . . . . .
n((m − 1)h) n((m − 2)h) . . . n((m − n)h)


(5.6)

where n(t) is the impulse response of G(q). We have the following equations

Uk+1 = Uk + δ Uk (5.7)
E1

k+1 � E1
k − Gδ Uk (5.8)

E2
k+1 � E2

k + Gδ Uk (5.9)

Zero-order-hold sampling and normalization of the constraints (5.5) gives

A ⋅ δ Uk =
[

0

0

]
with

A =
[

1 1 . . . 1

n− 1
2 n− 3

2 . . . 1
2

]
The update of the acceleration reference δ Uk is now given as the solution
to the following quadratic optimization problem

min
δ Uk

{(E1
k+1)T W1 E1

k+1 + (E2
k+1)T W2 E2

k+1 + (Uk+1)T WuUk+1} (5.10)

subject to
Aδ Uk = 0
All δ Uk that satisfy the constraints are given by Kθ where K is the Kernel
of A and θ is an arbitrary vector. Insertion in (5.10) of (5.7), (5.8), (5.9),
δ Uk = Kθ and differentiation with respect to θ gives

δ Uk = K [KT (GT (W1 + W2)G +Wu)K ]−1 �
KT (GT (W1 E1

k −W2 E2
k) −WuUk) (5.11)

The update law for the ILC is given by (5.7) and (5.11) and can be written
as

Uk+1 = QUk + L1 E1
k + L2 E2

k (5.12)

5.4 Simulations

The update law in (5.12) is evaluated using simulations. The model used
in the update law is given in continuous time by the transfer operator

Gc(p) = a
2n

ω 2
m

p2 + 2ζ mω mp+ω 2
m
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Figure 5.3 Initial acceleration reference u0(t) (left fig.) and surface elevation
reference (right fig.) r1(t) and r2(t) (dashed)

with ζ m = 0 and ω m =
√
nπ
a tanh bπ

a = 21 rad/s where a = 0.07 m is the
package width and b = 0.2 m is the liquid depth. The system sampling
time is h = 0.01 s which gives the discrete time transfer operator G(q)
and the matrix G. The surface elevation reference and initial acceleration
reference are calculated using this model and minimum energy approach
shown previously. The surface elevation reference is augmented with 20
zeros, Figure 5.3 shows the initial acceleration reference and the surface
elevation references.

The movement time is T = 0.46 s and the movement distance is d = 0.2
m. In our simulation we use the following continuous time linear model to
describe the slosh process:

P(p) = 1.1a
2n

ω 2
p

p2 + 2ζ ω pp+ω 2
p

with ω p = 0.9ω m and ζ = 0.01. The measurements are given by

y1
k(t) = P(p)uk(t)

y2
k(t) = −P(p)uk(t)

The first choice of the weights is W1 = W2 = I and Wu = ϕ I with ϕ =
0.00001. This value of ϕ represents a good tradeoff between error and
maximum control signal. Figure 5.4 shows the acceleration reference and
the surface elevation after five ILC iterations using the previous weights
choice. We can see that the ILC algorithm successfully finds an acceleration
reference that fulfills the specifications.

Since the container motion is performed stepwise, a waiting time be-
tween the end of each step and the beginning of the next is necessary to let
the slosh inside the package be zero. The more the residual slosh is reduced
the shorter is the waiting time interval between two steps. Consequently
the package motion from the filling station to the sealing station will take
shorter time. This means increased production rate and higher profit.

In the algorithm it is possible to reduce the residual slosh by increasing
the weights on the last 20 samples. Figure 5.5 shows the surface elevation
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Figure 5.4 Acceleration reference (left fig.), initial (dotted) and after five itera-
tions of ILC. Surface elevation y1(t) (solid) on the backward side of the package
(center fig.) at iteration zero and at iteration five (right fig.). The linear process
model has been used for simulations with the weights choice W1 = W2 = I and
Wu = 0.00001I .
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Figure 5.5 Surface elevation y1(t) (solid) on the backward side of the package
at iteration five (right fig.) using the linear model with the weights choice W1 =
W2 = I and Wu = 0.00001I . Surface elevation y1(t) (solid) on the backward side at
iteration five (right fig.) using the linear model with the weights choice W1 = W2 =
dian(I46, 10I20) and Wu = 0.00001I . We can see that the residual slosh is reduced
in the second case by increasing the weights in the last part of the reference

after five iterations for the weights choice W1 = W2 = I and Wu = 0.00001I
and W1 = W2 = dian(I46, 10I20) , Wu = 0.00001I. The figure shows that
the residual slosh is reduced if the weights are increased in the final part. It
was observed that the linear slosh model gives a good description of the real
slosh when the slosh is small that is when not so fast package movement
are considered. When fast package movements are executed that causes
big slosh inside the container and the process exhibits nonlinear behavior.
Therefore to have an idea how the ILC slosh algorithm works in a nonlin-
ear context a non linear process model is introduced in simulations.This
nonlinear process model is chosen to mimic some of the non linear behavior
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Figure 5.6 In the first row are shown the surface elevations on the backward
(left fig.) and forward (right fig.) side of the package at iteration zero, respectively
y1(t) and y2(t) (solid). In the second row y1(t) and y2(t) (solid) are shown after
five iterations. The nonlinear process model has been used with the weights choice
W1 = W2 = dian(I46, 10I20) and Wu = 0.00001I .

experienced in reality but there is no direct physical meaning of the model.

ẋ1(t) = −2ζ ω mx1(t) −ω 2m
tanh 30x2(t)

30
+ aω 2

m

2n uk(t)
ẋ2(t) = x1(t)
y1

k(t) = 4
5

x2(t) + 7x2
2(t)

y2
k(t) = −4

5
x2(t) + 7x2

2(t)

where ζ , ω m, a is the same as before. The term tanh 30x2(t)
30 will give an

amplitude dependent oscillation frequency and the quadratic term in the
output equations will give asymmetric oscillation. Figure 5.6 shows the
surface elevation on the backward and forward side respectively after five
iterations with the nonlinear process model and the weights W1 = W2 =
dian(I46, 10I20) and Wu = 0.00001I. The figure points out that the residual
slosh is small but there are large differences between the resulting surface
elevation and the reference.

With the nonlinear process it is not possible to follow the reference com-
pletely. There is a coupling between the surface elevation on the forward
and the backward side. Therefore, if the peak is lowered on the back-
ward side the crest will be raised on the forward side which will make
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Figure 5.7 Surface elevations y1(t) and y2(t) (solid) respectively on the back-
ward and forward side after five iterations of ILC using the nonlinear model
with the weights W1 = dian(I23, 023, 10I20) and W2 = dian(023, I23, 10I20) and
Wu = 0.00001I .

the quadratic error larger. Since it is more important to lower the maxi-
mum surface elevation one way to deal with the asymmetric behavior is
to set the W1 and W2 to zero where the reference is negative. That means
that we don’t weight in the loss function the errors E1

k+1 and E2
k+1 when

the slosh references become negative. Figure 5.7 shows the surface eleva-
tion after five iterations with the nonlinear process model and the weights
W1 = dian(I23, 023, 10I20), W2 = dian(023, I23, 10I20) and Wu = 0.00001I,
where 0n is a n�n zero matrix. Figure indicates that the maximum surface
elevation is decreased.

5.5 Experiments using a robot

The robot and the additional equipment
An industrial robot has been used to perform the package motion required
by the algorithm that controls the slosh. The robot is an Irb2000, six joints
robot, manufactured by the company ABB Robotics (see section 3.1 for a
description of the robot system at the Department of Automatic Control).

The container is fixed to the wrist of the robot which provides to move
it (see Figure 5.8).

The sampling time for the robot, the sensors and the algorithm in the
experiment is h = 0.005 sec.

In the experiments one slosh measurement sensor is used to get infor-
mation about the slosh inside the moving package. It is displaced on the
backward side of the container and it measures the distance between the
sensor and the liquid surface (see Figure 5.8). The sensor measures this
distance by emitting a laser radiation that, once reached the liquid sur-
face, is reflected back to the sensor. The slosh measurement is obtained at
each sample instant by subtracting the initial measure (collected when the
liquid is at rest) to every measurement collected during the motion.

During the package motion, it is important to keep under control the
slosh on both sides (backward and forward). For this purpose the algorithm
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Figure 5.8 The picture on the left displays in detail how the package is fixed to
the wrist of the robot. Observe the slosh sensor above the package. In the picture
on the right we see the robot-package system in the starting position before the
movement is performed.

that controls the slosh uses, at each iteration, the measurements from both
sides of the package. We need two sensors to measure the slosh on both
sides but in the experiments only one sensor is available (backward side).
See Figure 5.9. It is possible to overcome this problem by performing the

liquid

Figure 5.9 Scheme of the container with slosh inside. Above there are two slosh
sensors. The sensor on the left measures the slosh on the forward side and the sen-
sor on the right measures the slosh on the backward side. In practical experiments
only the right sensor is available

movement two times instead of only one time in case two slosh sensors
were available. During the first time the package is moved forward by a
spatial acceleration uk(t) and the backward side surface elevation y1

k(t) is
measured. The distance d has been covered and the robot waits still some
seconds, necessary to let the slosh inside the container be zero. After that
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Figure 5.10 Ideal scheme for the Slosh ILC algorithm
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Figure 5.11 Real scheme for the Slosh ILC algorithm

the robot moves backward the container with spatial acceleration −uk(t)
(the acceleration has negative sign because the head of the robot moves
backward referring to the Cartesian axes system centered on the base
of the robot). The backward motion makes it possible to measure on the
backward side the same surface elevation y2

k(t) present on the forward side
when the robot moves forward.

Objective and limitations
The aim in the slosh experiments is to shorten the motion time T according
to the fulfillment of the constraints we discussed in the previous sections.
Remark: we will refer to the algorithm that controls the slosh as Slosh
ILC. It is the same algorithm shown in Section 5.3.

Ideally the Slosh ILC algorithm, at iteration k, calculates the accelera-
tion uk. This acceleration is applied to the package, the slosh is measured
and the new measurements are used by the algorithm in order to calculate
the new acceleration (see the scheme in Figure 5.10). Such a scheme is
obviously ideal because it supposes that the same acceleration uk calcu-
lated by the algorithm is applied to the package and that is not exactly
possible in reality. Therefore we need to introduce in the scheme also the
robot. The robot receives as input the acceleration uk but it applies to the
container, being also a real machine, an acceleration u∗

k different (see the
scheme in Figure 5.11). The situation is the following, the Slosh ILC al-
gorithm calculates at iteration k the acceleration uk and sends it to the
robot, since the robot does not track faithfully the references it will apply
to the package a different acceleration u∗

k, which is not the acceleration uk
the slosh algorithm requires. So when the Slosh ILC algorithm receives
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the measurements from the slosh sensor it considers them the response
to the acceleration uk sent to the robot and proceeds to calculate the next
acceleration uk+1 wrongly.

In conclusion, if the robot is not capable to perform a movement with
the acceleration as calculated by the ILC slosh algorithm, there is no hope
the slosh experiment will work. It is impossible to get positive results from
the experiment without modifying the things.

To improve the robot tracking performances Iterative Learning Control
algorithms are applied to the joints.
Remark: we will refer to these algorithms as Slosh ILC (algorithms).

The general algorithm used in the experiment includes the use of the
Slosh ILC and the Robot ILC according to the following scheme:

General algorithm
1. k← 0

2. Calculate the initial acceleration u0 by solving the Minimum Energy
Problem and the slosh reference r(t)

3. Consider the acceleration reference uk(t)
3.1. Execute an iteration of Robot ILC and measure the

acceleration performed u∗
k(t)

3.2. If u∗
k(t) does not approximate well uk(t) go to step 3.1.

4. Execute an iteration of Slosh ILC by reproducing on the robot the ac-
celeration u∗

k(t) performed in the last iteration of Robot ILC.

5. Calculate the new acceleration uk(t) using the Slosh ILC algorithm.

6. k← k+ 1

7. If the slosh behavior needs to be improved go to step 3.

Robot inverse kinematics solution
At iteration k the Slosh ILC algorithm calculates the acceleration profile
uk+1, that must be applied to the package.

Every joint of the robot expects as inputs one angular position reference
and one angular velocity reference (see Figure 5.12).

The Slosh ILC algorithm calculates the spatial acceleration to be ap-
plied to the head of the robot where the package is mounted. The spatial
acceleration cannot directly be used as input to the robot but it is necessary
to calculate the input trajectories to the joints involved in the movement.
Therefore the next procedure must be applied. The spatial acceleration is
time-integrated using the Matlab command cumtrapz in order to get the
spatial velocity. A further time-integration is necessary to calculate the
spatial position. Once the spatial position and spatial velocity references
are available we need to calculate the angular position and the angular
velocity trajectories for each robot joint involved. That is done by using a
function implemented in Matlab called inverse3.m. It solves the robot in-
verse kinematics problem and calculates the angular position and velocity
references for all the joints involved. The joints position and joints velocity
references just calculated are sent to the robot-system which performs the
movement.
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Figure 5.13 Blocks scheme of a robot joint

Robot ILC implementation
We have pointed out that if uk is the desired acceleration, the actual ac-
celeration performed by the robot is u∗

k. How much uk and u∗
k are different

depends on many causes that are to be investigated. We must try to make
the robot produces an u∗

k very close to uk in order to get significant results
from the slosh experiments. That means the tracking performance of the
joints involved in the motion must be improved.

We have said that the joint expects a position and a velocity input in
order to perform the relative link motion. The joint can be considered a
closed loop system if we include its controller. The joint controller is im-
plemented as two cascaded controllers with an inner velocity loop and an
outer position control loop. A simplified controlled joint model is displayed
in Figure 5.13. In the blocks scheme of Figure 5.13 the biggest block con-
tains a simple model of the system link-motor. To understand better what
Robot ILC must improve it is useful to have a look to the results of an
experiment perfromed on joint 2. The position input and the velocity input
displayed (dashed) in Figure 5.14 are sent to joint 2. The second signal is
the time derivative of the first. The figure shows the responses of the joint
to the previous inputs (solid line). We observe that in the velocity response
there are two undesired ripples produced when the velocity reference goes
from nonzero to zero values. In these two areas the velocity reference goes
to zero in a very short time interval. That puts in evidence the difficulty of
the joint controller to reduce very fast to zero the joint velocity. Moreover
the tracking is not so good in proximity of the maximum and the minimum
of the velocity reference. Anyway the problem of the ripples is more crit-
ical. Actually, if we analyze the ripple on the left, it can be seen that the
velocity in a short time interval changes from positive to negative values
and then from negative to positive values. This means that the joint moves
forward with decreasing velocity, then it moves a bit backward and then
again forward.

These effects must be reduced, if it is not possible to avoid, because

44



5.5 Experiments using a robot

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

Time [sec.]

J2
 [m

ot
or

 r
ad

.]

POSITION

0 0.5 1 1.5 2 2.5 3
−80

−60

−40

−20

0

20

40

60

80

Time [sec.]

J2
 [m

ot
or

 r
ad

./s
ec

.]

VELOCITY

Figure 5.14 Response of joint 2 to position and reference inputs.

they could be very dangerous for the package motion. They could produce
undesired shaking in the liquid. The way considered here in order to im-
prove the tracking on the joints involved in the motion is Iterative Learning
Control and the heuristic approach has been used.

Before proceeding we observe that, since every joint is fed with po-
sition and velocity signals, it is important that the velocity reference be
the derivative of the position signal, otherwise there is mismatch and the
tracking response of the joint could be not good.

The bandwidth of the joint to velocity reference is larger than the posi-
tion reference one. Therefore the system is ’faster’ to track velocity refer-
ences than position references. To improve the joint tracking performance
ILC can be used either on the velocity reference or on the position refer-
ences. It is to be avoided the simultaneous use of position and velocity ILC.
In fact if velocity and position references are updated, at each iteration,
by two different ILC algorithms then the total joint velocity input could be
rather different from the derivative of the total position input and as we
said earlier such a mismatch causes bad tracking response of the joint.

Initially I applied ILC to the velocity references of joint 2 and 3 but,
despite the efforts, there were not good results especially on joint3 which
is the more critical joint to control. The velocity ILC introduced vibrations
during the motion and that was very bad for the slosh inside the container.

Alternatively position ILC was taken into account, it was applied to
joints 2 and 3 of the robot. Since in every iteration ILC algorithm updates
the joint position input, it is necessary to send to the joint velocity input the
derivative of the position input in order to avoid mismatches. Anyway it is
not advisable to send directly the derivative because the discrete differen-
tiation causes the presence of high frequencies components in the velocity
reference input. The joint controller tries to track these oscillations caused
by the discrete derivative and consequently oscillations appear also in the
joint response. The result is that the velocity profile is not well tracked.
The presence of these oscillations means undesired vibrations during the
liquid motion. Low-pass filtering of the differentiated position signal is
needed before sending it to the joint velocity input (see Figure 5.15).

In detail let Ji be the time-indexed vector containing the position inputs
to the joint i. The time discrete derivative DJi is calculated from Ji using
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Figure 5.15 Scheme of ILC applied to joints 2 and 3
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Figure 5.16 Joint velocity input without low-pass filtering (on the left) and actual
joint velocity input using low-pass filtering (on the right).

the Matlab command di f f . After that DJi is filtered by a zero phase low-
pass filter which is implemented in Matlab using the command Butter to
have low pass Butterworth filtering and then using the command f ilt f ilt
to have zero phase filtering. After these operations the signal can be applied
to the velocity input of the joint i.

Nevertheless the zero-phase filtering just discussed introduces a bit
of distortion and that causes the signal does not start exactly from zero,
there is a small step from zero to nonzero at the beginning of the velocity
input. We must avoid to send steps in input to the joints especially on
velocity inputs because as told the system is more sensible to velocity steps
(the velocity bandwidth is larger than the position one). This problem is
overcome by smoothing the step using an opportune ramp which starts
from zero. Figure 5.16 shows (on the left) behavior of the joint velocity
input using position ILC without low-pass filtering and (on the right) after
low-pass filtering.

If we analyze for example the position reference (dashed line) in Fig-
ure 5.14, we see that there is no need to use ILC all over the time interval
the reference is sent to the joint. In fact learning is needed where the
position reference changes and not in time intervals where it is constant
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Figure 5.17 Example of ILC control on joint 3 using ramps to smooth the tran-
sition between regions of the reference not updated by ILC-algorithm and updated
regions of the reference.

(because the joint and the relative link are still and the joint controller
holds the position in a very good way). So position ILC is used in the 2
subintervals where the joint moves.

After iteration zero (no ILC is applied), there is the problem that in the
time subintervals considered the ILC control signal is different from zero
and it is zero outside, consequently in the total ILC control signal there are
4 steps. These steps are very dangerous as we have mentioned in the past
because they cause an oscillatory transient in the response, and so they
must to be avoided. One way is to smooth them with appropriate ramps
from zero to nonzero and from nonzero to zero values (starting from the
left to the right).

The problem is more critical when there is a transition from non-zero
to zero because it is hard to stop the motion of the robot link involved in
a very short time. Therefore the smoothing on the right side of the ILC
control signal must be slower than on the left side. That is the duration of
the right ramp must be greater than the left one (Figure 5.17). A greater
duration time means to shift to the right the right extreme of the ramp,
being the left one fixed. The ramp duration must be opportune especially
on the left side of the subintervals. If on the left side it is too short the step
effects are still present and if it is too long the performance of the learn-
ing algorithm is damaged because the ramp extends over a time interval
where learning is needed to improve the tracking.
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Filters design
The heuristic design procedure is :

1. Choose the Q filter as a low pass with cut-off frequency such that the
band-width of the learning algorithm is sufficient.

2. Let L(q) = κ qδ .

In the experiment heuristic ILC algorithm has been implemented on joint
2 and on joint 3. The Q-filter considered is a zero phase filter, Q(q) =
Q(q)Q(1

q), this operation is implemented in Matlab using the command

f ilt f ilt. Q(q) is a second order Butterworth filter created in Matlab by
the command,

>> [Qnum, Qden] = butter(2,ω i);
where ω i is the normalized cut-off frequency of the filter, it is a fraction of
the Nyquist frequency. In detail the following filter parameters choice has
been done for joint 2

ω2 = 0.2
κ2 = 0.9
δ 2 = 4

and for joint 3 the choice has been

ω3 = 0.2
κ3 = 0.9
δ 3 = 6

Experimental Results
Now we can describe the package motion experiment when the movement
time is T = 0.46 sec.. The Robot ILC is used to improve the tracking on
joint 2 and joint 3 of the joints position and velocity signals. Figure 5.18 and
Figure 5.19 show how is improved the position and the velocity tracking
on joint 2 and joint 3 respectively, at iteration 0 of Slosh ILC (when the
joint references are calculated from the solution u0 of the Minimum Energy
Approach in the way described earlier and no Slosh ILC updating is still
considered).
Remark:we will refer to Slosh ILC iterations also as outer iterations. In
fact in the general algorithm shown previously the Robot ILC loop (inner
loop) is inside the Slosh ILC loop (outer loop).

The figures refer to the tracking on the motor side, so position signals
are expressed in motor radians and velocity signals in motor radians per
second. On the horizontal axes there is the time in seconds. In both figures
position signals are on the left and velocity signals on the right.

The robot ILC iterations are shown from top to bottom. The references
are in dashed line, the responses in solid line and the position ILC updating
in dotted line. The Robot ILC is stopped after 3 iterations because the
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Outer iteration 0 on joint 2 (T = 0.46 sec.)
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Figure 5.18 Tracking on the motor side of joint 2 applying Robot ILC to the
position reference. The figure refers to iteration zero of Slosh ILC and to T = 0.46.
Dashed line is used for reference signals, solid line for measured output signals,
dotted line for ILC signals. Every row represents one ILC iteration, on the left
there are the position signals and on the right the velocity signals. The Robot ILC
iterations are shown from top to bottom.
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Outer iteration 0 on joint 3 (T = 0.46 sec.)
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Figure 5.19 Tracking on the motor side of joint 3 applying robot ILC to the
position reference. The figure refers to iteration zero of Slosh ILC and to T = 0.46.
Dashed line is used for reference signals, solid line for measured output signals,
dotted line for ILC signals. Every row represents one ILC iteration, on the left
there are the position signals and on the right the velocity signals. The Robot ILC
iterations are shown from top to bottom
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performance does not improve. On joint 2 and on joint 3 we can see how
ILC is efficient in order to reduce the initial velocity ripples iteration by
iteration.

Figure 5.20 and 5.21 show how is performed Robot ILC tracking on
the motor side of joint 2 and joint 3 in the third and last outer iteration
executed.

In comparison with outer iteration zero shown in Figure 5.18 and 5.19
we can see how position and velocity references have been changed by the
Slosh ILC updating.

Figure 5.22 shows the liquid surface elevation (in cm.) on the backward
side (left column) and on the forward side (right column) when ILC is
applied (from top to bottom of the figure). Row 1 corresponds to outer
iteration zero, row 2 to iteration 1, row 3 to iteration 2 and row 4 to iteration
3. We see on iteration 3 how the peaks on the backward and forward side
are lowered with respect to iteration 0. Moreover, also the residual slosh
is sensibly reduced through the iterations.

Figure 5.23 shows how the acceleration changes from iteration 0 (dotted
line) to iteration 3 (solid line).

Figure 5.24 shows the liquid backward and forward surface elevation
through the Slosh ILC iterations when the movement time has been in-
creased to T = 0.6 sec.. The peaks are lowered and the residual slosh
reduced.

In Figure 5.25 we see the initial acceleration profile (dotted line) and
the acceleration profile at outer iteration 2 (solid line).

Figure 5.26 shows the backward and forward liquid surface elevation
using Slosh ILC (from top to bottom) when t = 0.7 sec. Here there is not
the problem of lowering the maximum peaks, the algorithm reduces the
residual slosh.

In Figure 5.27 the initial acceleration profile (dotted line) and at itera-
tion 2 (solid line).

Discussion
Previously we have said how is necessary to low-pass filter the joint velocity
input before sending it to the robot. At every iteration the position input
Ji to the joint i involved is the sum of the position desired reference J(des)

i

and the ILC updating J(I LC)
i .

Ji = J(des)
i + J(I LC)

i

The joint velocity input is calculated by diffentiating and low-pass filtering
Ji. The low-pass filtering is also needed because the position ILC updating
introduces through the differentiation some undesired higher frequency
oscillations in the velocity input. Therefore an opportune low pass filter
cuts these oscillations. On the other side this filtering causes the velocity
input is smooth also in time intervals (when velocity changes from zero
to nonzero) where the tracking of J(des)

i is good. Consequently the velocity
smoothing, due to low pass filtering, causes the tracking is a bit damaged
in these intervals (see for example Figure 5.18).

Probably, a better solution, though not tried, is to avoid low-pass filter-
ing in the intervals where the robot controller tracks good the input signals
with higher frequency components. I say probably because when the joint
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Outer iteration 3 on joint 2 (T = 0.46 sec.)
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Figure 5.20 Tracking on the motor side of joint 2 applying robot ILC to the
position reference. The figure refers to iteration three of Slosh ILC and to T = 0.46.
Dashed line is used for reference signals, solid line for measured output signals,
dotted line for ILC signals. Every row represents one ILC iteration, on the left
there are the position signals and on the right the velocity signals. The Robot ILC
iterations are shown from top to bottom
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Outer iteration 3 on joint 3 (T = 0.46 sec.)
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Figure 5.21 Tracking on the motor side of joint 3 applying robot ILC to the
position reference. The figure refers to iteration three of Slosh ILC and to T = 0.46.
Dashed line is used for reference signals, solid line for measured output signals,
dotted line for ILC signals. Every row represents one ILC iteration, on the left
there are the position signals and on the right the velocity signals. The Robot ILC
iterations are shown from top to bottom
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Slosh behavior (T = 0.46 sec.)
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Figure 5.22 Liquid surface elevation on the backward side (left column) and
on the forward side (right column) using Slosh ILC (from top to bottom), when
T = 0.46.
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Acceleration profiles (T = 0.46 sec.)
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Figure 5.23 Initial acceleration profile (dotted line) and acceleration profile at
iteration three of Slosh ILC (solid line), when T = 0.46.

velocity changes very fast (high frequency components are present in the
input signal) the problem of joint flexibility could come. That is, the angle
tracking is well performed on the motor side but not on the arm side, there
is an effect similar to that met in the problem of the two masses linked by
a spring.

This effect if present damages the performance on the arm side. It
causes the package is moved improperly not according to the accelerations
produced on the motor side.

Therefore there are situations where it is better not to have very good
tracking on the motor side because flexibility causes deviation on the arm
side.

Before proceeding we observe that in every iteration zero of Robot ILC
the joint velocity input is not the filtered derivative of the position refer-
ence. In iteration zero the ILC control signal is null. I don’t know exactly
how to justify this choice but from experiments done it results better than
to use a low pass filter also in iteration zero.

The Slosh algorithm used does not weight the slosh error when the
references are negative. In other words, it does not care about the track-
ing when the slosh references on both sides (backward and forward) are
negative. This has been discussed earlier and it gives more freedom to the
Slosh algorithm in order concentrate the efforts on how to lower the peaks
and how to reduce the residual slosh.

During the motion it is important to lower the maximum peaks as well
as to reduce the residual slosh. Remember that since the container motion
is performed stepwise, a waiting time between the end of each step and
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Slosh behavior (T = 0.6 sec.)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5.24 Liquid surface elevation on the backward side (left column) and
on the forward side (right column) using Slosh ILC (from top to bottom), when
T = 0.6.

the beginning of the next is necessary to let the slosh inside the package
be zero. The more the residual slosh is reduced the shorter is the waiting
time interval between two steps. Consequently the package motion from
the filling station to the sealing station will take shorter time. This means
increased production rate and higher profit.

In the experiment with T = 0.46 the Slosh algorithm has been stopped
at iteration 3. It does not improve if we run further iterations and there is
even the risk to worsen the performance. Let us have some reflections on
the causes.

Although the position ILC used improves the tracking performances
of the joints controllers with respect to the case without ILC, we cannot
say that the tracking performed by ILC is perfect. The Slosh algorithm
at each iteration calculates the next acceleration reference from the last
acceleration and last slosh measurements. In my opinion the Slosh algo-
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Acceleration profiles (T = 0.6 sec.)
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Figure 5.25 Initial acceleration profile (dotted line) and acceleration profile at
iteration two of Slosh ILC (solid line), when T = 0.6.

rithm does not improve over some iterations (3 ÷ 4) because, in order to
calculate the exact acceleration, it needs from the measured slosh some
small details that only a faithful almost perfect reference tracking of the
robot can assure.

Moreover there are other damaging aspects to take into account. Joint
flexibility is one of them. We have applied ILC to improve the tracking on
the motor side of the joint. There is a gear ratio between the motor angle
and the relative link angle. If the joint reference inputs are not so fast then
the gear ratio is a constant and it is so very easy to determine the link
angle from the motor angle. On the contrary if the joint reference inputs
are fast (the robot moves fast) the gear ratio is not constant anymore and
the relation between motor angle and link angle is not easy to establish.

The robot ILC algorithm implemented improves the tracking on the
motor side. In the case the gear ratio is constant if there is good tracking
on the motor side there is consequently good tracking on the link side.
In the experiment is important the tracking on the link side because the
motion of the package is determined geometrically by the the movements
of the robot links.

In presence of flexibility we can have a situation with good tracking
performed on the motor side but poor tracking on the link side. To overcome
the problem of flexibility is not easy.

We need to add one extra sensor (for example an accelerometer) to
measure the angles on the robot links and there is the problem of per-
forming the sensor-fusion with the measurements of the motor angle and
the Cartesian acceleration measurements. Moreover to make changes to
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Slosh behavior (T = 0.7 sec.)
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Figure 5.26 Liquid surface elevation on the backward side (left column) and
on the forward side (right column) using Slosh ILC (from top to bottom), when
T = 0.7.

the algorithms used and to implement the new theory subjects that are
needed is not simple. There are some aspects that are still open to future
research.

Another problem present during the experiments has been the presence
of disturbances on the measurement system of the joints position. These
disturbances damage the tracking performance of the joint controllers and
of ILC. Therefore it is hard to improve further the tracking performance.

In conclusion we can say that, by taking into account the causes ex-
plained above, the Slosh algorithm improves up to a limit and after that it
is not worth to run further iterations.

We observe that when T = 0.6 and T = 0.7 sec. the Slosh ILC algorithm
changes only slightly the initial acceleration profile. In fact the initial ac-
celeration profile is the solution of the Minimum Energy Approach, which
is the best solution for linear process model.
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Acceleration profiles (T = 0.7 sec.)
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Figure 5.27 Initial acceleration profile (dotted line) and acceleration profile at
iteration two of Slosh ILC (solid line), when T = 0.7.

For large values of T the slosh inside the container has a behavior close
to that described by the linear process model. So being in these conditions,
the linear process model is a good model to describe the real process and
thus it is obvious that the acceleration profile calculated during the Slosh
ILC iterations be very similar to the initial acceleration profile solution of
the Minimum Energy Problem.
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6. Conclusions and Future
Work

6.1 Conclusions

Heuristic, Model Based and Optimization Based ILC algorithms have been
implemented in simulations. The simulation environment used has been
Matlab/Simulink. The Optimization Based ILC algorithm resulted in the
best performance, followed by the Model Based and finally the Heuristic
one.

Heuristic and Model Based ILC has been applied to the robot to improve
the tracking of a spiral reference. In these experiments Model Based ILC
shows a faster convergence than the Heuristic one. That is coherent with
what we can expect from ILC theory and from simulations.

The Model Based ILC has been tested in other experiments where the
robot had to draw the sketch of a Christmas tree. This figure is composed
by lines and angles and represents a good test for the ILC algorithm im-
plemented. ILC works good and it reduces considerably the tracking error
in proximity of the angles of the tree.

In the experiments with open containers, Heuristic ILC has been imple-
mented in order to improve the tracking of a desired acceleration profile.
ILC has been applied ( in simulations and experiments) also for the slosh
control inside a moving container. Iteration by iteration it lowers the max-
imum peaks of the slosh and reduces the residual slosh.

6.2 Future work

ILC has been applied to improve the tracking on the motor side but during
some experiments the problem of joint flexibility has appeared. Especially
in the experiments with the slosh when fast robot movements have been
performed. In presence of flexibility we can have a situation with good
tracking on the motor side but bad tracking on the arm side. To over-
come the problem of joint flexibility extra sensors (accelerometers) must
be added in order to get information about the position and the velocity of
the robot links. ILC algorithms must be consequently modified to take into
account both motor side measurements and arm side measurements.

In the experiments where Model Based ILC has been applied, probably
the models adopted for the controlled joints are too simple. More detailed
models are needed to improve the performance of the ILC algorithm. In
particular joint 3 requires a model which takes into account the effects of
gravity.

Only Heuristic ILC has been implemented in the experiments with
slosh. This was done according to a simple but important ’rule’ which says:
"Try simple things first". Therefore before other things it is advisable to
apply the simplest algorithm. The other two ILC approaches require the in-
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6.2 Future work

troduction of a model for each joint involved. This model must describe the
joint dynamics when fast movements are performed. Unfortunately there
was not enough time for the implementation of these remaining ILC algo-
rithms because there were many problems to face during the development
of slosh experiments. It would be interesting to apply them and see how
they work.
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