ISSN 0280-5316
ISRN LUTFD2/TFRT--5670--SE

Computer Vision and Kinematic
Sensing in Robotics

Luis Manuel Conde Bento
Duarte Miguel Horta Mendonca

Department of Automatic Control
Lund Institute of Technology
June 2001

Department of Automatic Control
Lund Institute of Technology
Box 118

SE-221 00 Lund Sweden

Document name

MASTER THESIS

Date of issue

June 2001

Document Number

ISRN LUTFD2/TFRT—5670--SE

Author(s)
Luis Manuel Conde Bento
Duarte Miguel Horta Mendonca

Supervisor

Mattias Haage, LTH
Johan Bengtsson, LTH
Rolf Johansson, LTH

Sponsoring organization

Title and subtitle

Computer Vision and Kinematic Sensing in Robotics (Visuell aterkoppling i robotsystem)

Abstract

To use vision in a robotic setting it is important to achieve realtime performance. Real-time vision may be
used to directly steer robots using for instance visual servoing techniques. In this thesis, an experimental
vision setup using a stereo rig mounted on an industrial robot (ABB Irb-6) was built from ground up and
then used to perform two experiments; visual servoing and collection of data for calibration of stereo rig
and positioning of second robot (ABB Irb-2000) using visual feedback. The system is currently capable of
achieving a ~15Hz visual feedback rate which could be easily extended into the 20Hz domain.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 74

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through:

University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

Computer Vision and Kinematic Sensing in Robotics

ABSTRACT

To use vision in a robotic setting it is important to achieve realtime
performance. Real-time vision may be used to directly steer robots
using for instance visual servoing techniques. In this thesis, an
experimental vision setup using a stereo rig mounted on an industrial
robot (ABB Irb-6) was built from ground up and then used to perform
two experiments; visual servoing and collection of data for calibration
of stereo rig and positioning of second robot (ABB Irb-2000) using
visual feedback. The system is currently capable of achieving a ~15Hz
visual feedback rate which could be easily extended into the 20Hz
domain.

Department of Automatic Control, Lund Institute of Technology 1

Computer Vision and Kinematic Sensing in Robotics

CONTENTS
N 0153 1 = T
(@] 1 =] 1 =
R o) o T 16 Tox i o] I
I A {0 o o) 1 [0 PN 4
2V T o o 4
1.3 Short explanation of the investigationcccoociiiiiiiiieineenee. 5
1.4 TheSiS OULHNE ... e 6
D22 4 = 1o] o
Y238 R 1 g | 1 (o Yo [T 1 (o] o S 7
2.2 Camera Model 7
2.2.1 Pinhole Camera Model ..o 7
2.2.2 LIght @Nd LENS....ieiiiiiiei et 8
2.3 Projective GEOMETIYcuu ettt e eeas 10
2.4 Feature EXTraCtionc..iiuiiiiiie et 12
2.5 Correspondence Problem ... 14
P RG] B = T=To o] 153 o U ox o o 10 15
2.7 Real-Time Problem e 16
3 Kinematic Estimation and Control using Visual Feedback 17
1C 200 R 1 1 4 oY 16 Tod o (o o PP 17
3.2 Experimental SETUPooeuiiiiei e 17
3.3 EXPEIIMENTS ..o et 21
3.3.1 Calibration Movement..........coooiiiiiiiiie e 21
3.3.2 Positioning Movementcocoviiiiiiiiiec e 22
3.3.3 Virtual Robot (Java RODOT).......cccuiiiuiiiiiiieeeeeeeeeee e 22
3.4 Real Time Stereo Vision Pipelinecooiiiiiiiiiiiiiieeeeeeeen, 23
3.4.1 IMage ProCeSSINGcuiuuiiiiieiieieee e e e e aeen 23
3.4.2 Closest Neighbor Vector Field........cccoooiiiiiiieea 25
3.4.3 Line Segments EXTractioncooveuiiiiiieiiie e 27
3.4.4 Lines Extraction and Center Cross Estimation................... 29
3.4.5 3D Lattice and Feature Points Correspondence.................. 31
3.4.6 Interpolation and Extrapolationccoeveiviiiiiiiienneennn. 34
3.4.7 3D Kinematic Estimation using Lattice...........ccc.oceveenneennn. 35
3.5 Concerns using Virtual RoObOt ..o 37
3.6 3D Kinematic EStimation........c.cccouviuiiiiiiiieeeee e 38
3.7 Robot Control using Visual Feedback...........cccooeiiiiiiiiiiinnnnnnn. 41
3.7.1 Control of RODOTccueeiiiiieeee e 43
3.7.2 Control of Virtual RODOtcoouiii e 45
N (0 1 W0 1 1Y/ 0 1< 47
4.1 System Architecture with Dataflow Diagram..........c..cccceeevneennn. 47
4.2 External API (robot, matcomm, Camera)cccoeeeeueeeeennennennnns 48
4.3 Kinematics Control (Simulink/Matlab) ..., 53
4.3.1 Calibration MOVEMENT.......couuiiiiie e 53
4.3.2 POSItioN MOVEMENTuiieiiiiei e eeaes 57
4.4 Vision Processing (Visual CH+) ..o 59
5 Results and CoNCIUSION ... e 66
5.1 Performance Estimation and Code Profilingcccccevveviennnn.e. 66

Department of Automatic Control, Lund Institute of Technology 2

Computer Vision and Kinematic Sensing in Robotics

LI = {0] 0 11 1] 1 [T 66
LTRG-S 67
LS B @01 (o3 11 1] L] o 1 67
5.5 FULUIE RESEAICH ...eeeeiee e 67
=] 1=] =1 1= 69
A-SIMUIINK MOEIS. ... e 70

Department of Automatic Control, Lund Institute of Technology 3

Computer Vision and Kinematic Sensing in Robotics

1 INTRODUCTION

1.1 Robotics

Today automation is used frequently in industry for different
applications. The robot industry grew very fast primarily due to large
investments done by the automotive industry. Modern industrial
robots have increased in capability and performance through
controller and language development, improved mechanisms, sensing,
and drive systems.

The present level of robotics technology, in such areas as machine
vision, tactile sensing and artificial intelligence is still primitive
compared to the adaptability and dexterity of humans. This thesis
investigates the vision applied in a robotics setting.

Robots with restricted sensor feedback are limited in the kinds of
behavior they can exhibit. Yet, this is how robots currently used in
industrial applications perform their tasks.

The needs for motion descriptions and operator interactions clearly
show that robot control requires its own control techniques.

In this investigation the robot control is done with visual feedback
that give the relative position compared to a reference position

Traditional robot control uses world and joint coordinate system
representations to describe goals, plan and execute moves. In a static
industrial environment, where the environment, the robot model and
the task are known, this works well. Some models are used to
transform the task into a sequence of robot motions. However, most
natural settings are not structured or easy to model analytically.

1.2 Vision

In robotics there are many tasks in which inspection, manipulation, or
measure of three-dimensional objects are involved. To be able to use
feedback control in these tasks it is necessary to use techniques that
return three-dimensional information about the objects. For this
purpose there are several types of sensors. If we look in the robotics
domain these types of sensors are denominated as external. External
sensors can be classified from the way that they acquire the measure
in two classes; the ones that require direct physical contact, such as
contact switch, force on tact sensors, and the ones that don’t require
direct contact, such as ultra-sound sensors, infra-red sensors, laser
and video cameras. Computer vision systems enables the use of
robots in non-structured environments, i.e. the work area isn’t limited
to a special room or environment.

Computer vision is commonly denominated as “Image understanding”
but understanding is far from being easy. The processing of visual

Department of Automatic Control, Lund Institute of Technology 4

Computer Vision and Kinematic Sensing in Robotics

information presents problems that are hard to manage. For instance
many surfaces composed by different materials and with different
geometric properties have the same image making it hard for the
vision system to differ between them. Therefore it is difficult to recover
a good interpretation of images using surface models. These problems
are especially important for three-dimensional objects being
represented in two-dimensional images.

Human vision is a controlled hallucination. This means that what we
infer from images is more than we can explain using physics of light
or image formation models, as illustrated in Figure 1.1.

An example of how human’s process images is called “pictorial depth
cues”. A “cue” can be the most familiar size, interposing or occlusion
(both are represented in Figure 1.1), shades or shaded areas, size of
the object related to horizon line, motion and motion parallax and
binocular perception (i.e. stereoscopy).

Figure 1.1

Stereoscopy means the study of corresponding images to recreate
three-dimensional coordinates. It is the disparity between the two
retinal images that enables stereoscopic perception of depth. It is
based on projective geometry.

1.3 Short explanation of the investigation

The goal of this thesis is to implement a self-calibrating system which
after calibrated is able to track moving objects and accurately
determine their position in 3D coordinates. The technique used
provides a control system based on visual information which doesn’t
depend on the cameras parameters, this is a major gain since
achieving a good calibration accuracy on the cameras parameters is
very hard to get. Since the cameras parameters aren’'t important to
this kind of implementation, it is avoided one of bottleneck of
Computer Vision.

To implement the system it is used a robot and two cameras, the robot
is used as positioning system and the two cameras compose a
stereovision system mounted in the end-effector of the robot. The

Department of Automatic Control, Lund Institute of Technology 5

Computer Vision and Kinematic Sensing in Robotics

system performs a calibrating routine by a well-known trajectory, the
information acquired is used as pattern in future real time tracking
and positioning.

In this investigation it is presented a method to obtain some three-
dimension information of a specific object in the surrounding area of a
robot, by the use of images. The estimation of that information
basically consists of the determination of the distance to the object
using disparity cues. It was developed a system to determine the
relative position between objects, that use a stereo rig composed by
two cameras with no geometry pre-defined for their referential,
mounted on the end-effector of a IRB-6 robot. The IRB-6 position the
stereo rig right above a plate, with reflective surface (calibration plate)
and an array of holes where feature points are extracted. The stereo
rig is calibrated by moving the IRB-6 end-effector in a linear
movement sampling image feature points from a calibration plate.

The lattice is made from several layers corresponding each layer to
one z relative distance to the calibration board. A layer is composed by
the displacement of each feature point visualised by both cameras, so
in this way using interpolation, it is possible to build an x and y
characteristic displacement for the image area covered by both
cameras. This is done for a set of z relative distances to the calibration
board. After all the layers been saved it is possible to estimate the
relative distance of any point in image area covered by both cameras,
using either interpolation for points with a depth between the layers,
for depths higher or smaller than the set of relative distances saved in
the pattern/database the depth is extrapolated.

Although, the method is not wide spread it is foreseen as a method for
the future with lot of potential.

1.4 Thesis Outline

The thesis is organized as follows:

The second chapter introduces problems in vision, particularly in
stereo vision.

The third chapter gives an overview of the system architecture and its
modules. It describes experiments, control problems and their causes.
Also describes the algorithms implemented at the vision level.

Chapter four describes the software prototype.

In Chapter five presents results and conclusions.

Department of Automatic Control, Lund Institute of Technology 6

Computer Vision and Kinematic Sensing in Robotics

2 VISION

2.1 Introduction

In this chapter gives a short theoretical orientation of computer vision
problems. It shows image acquisition and processing methods
necessary to produce data estimation of 3D kinematics data.

2.2 Camera Model

In a work that involves image analysis to determine three-dimensional
structure, it is necessary to establish a model that describes
projection to 2D image planes.

There are two considerations to take into account: the projective
geometry that determines where a point of the scene would be
projected onto the image plane and the physics of light that
determines how brightness changes as a function of scene
illumination and surfaces properties.

2.2.1 Pinhole Camera Model

A camera model for the generation of an image is the pinhole camera.
It is a box that has an infinitesimal small hole through which light
enters and forms an inverted image on the camera back plane. To
simplify things, we usually model a pinhole camera by placing the
image plane between the focal point of the camera and the object, so
that the image is not inverted. This mapping of three dimensions onto
two is called perspective projection. Several alternative projection
models exist, like paraperspective or orthographic projection.
Projective geometry is fundamental to the understanding of image
analysis.

H

Y - -—

[Centre of pmjection focal length £

Figure 2.1

In Figure 2.1 3D feature points are projected onto an image plane with
perspective rays originating at the center of projection (COP). The
origin of the coordinate system is traditionally taken to be the COP
and the focal length. Where f is the distance from the COP to the

Department of Automatic Control, Lund Institute of Technology 7

Computer Vision and Kinematic Sensing in Robotics

image plane along the principal axis (or optical axis). The optical axis
is traditionally aligned with the Z axis.

Geometry shows that if we denote the distance of the image plane to
the centre of projection by f, then the image coordinates (x;,yi) are
related to the object coordinates (Xo,Y0,Z0) by

f f
X=X and Y =_y,
0 Zo

These equations can be easily expressed by introducing homogeneous
transformations, which is a matter of placing euclidean geometry into
the projective geometry space. In homogeneous coordinates, the
perspective projection onto the plane is given by:

L., Eexu
exu éf 0 0 00’y
e u_é 1A Ve
WeYa=gd f 0 OHSZZH
11U 80 0 1 Ofpdoy
glY € H‘éla

Under perspective projection, parallel lines (train tracks) converge to a
point on the horizon.

2.2.2 Light and Lens

Real world light is affected by error introducing effects such as lens
effect, sampling, quantification, etc before reaching the final state as a
digital image.

The camera lens mimics the pinhole camera, without using small
apertures. Ideally a lens receives all the light radiated by object-point
and focus all the radiation in only one image-point.

The limitation of lenses is that they can only bring into focus those
objects that lie on a particular plane parallel to the image plane.
Assuming the lens is relatively thin and that its optical axis is
perpendicular to the image plane, it operates according to the
following law:

+

ClP

1
f

<|Pk

Where u is the distance of an object point from the plane of the lens, v
is the distance of the focused image from this plane, and f is the focal
length of the lens Figure 2.2.

Department of Automatic Control, Lund Institute of Technology 8

Computer Vision and Kinematic Sensing in Robotics

i Object
focal point ’_,a’.r] P
1 P_.--" |'|l -,I et -
Lmage ll"l'],-—*'*' | __J_-- o
- —1 k| . . :
e [Oiptical axis
v ---:."-{i"'_’ l'. h'|_
o optical center
L

f

Figure 2.2

Points that don’t belong to the focal plane have their representation as
circles instead of points; the circle is called “blur circle”.

The diameter of the circle is proportional to the aperture diameter. If
the aperture diameter decreases the range of world approximately
focused increases but there is a reduction on light intensity. Longer
exposure times can solve the reduction of light intensity but is
accompanied by a loss of time resolution; the trade off is between loss
of spatial resolution or time resolution.

The lenses also impose several aberrations:

- Chromatic aberration in a lens will not focus different colors in
exactly the same place because the focal length depends on
refraction. The index of refraction for blue light (short wavelengths)
is larger than that of red light (long wavelengths) exhibits.

Spherical aberration exists for lenses made out of spherical
surfaces. Rays which are parallel to the optic axis but at different
distances fail to converge at the same point.

Coma aberration causes rays from an off-axis point of light in the
object plane to create a trailing “comet-like” blur directed away
from the optic axis.

Oblique astigmatism is a result of different lens curvatures in
different planes.

Curvature of field causes a planar object to project to a curved
(nonplanar) image.

Distortion occurs due to the geometry of the lens, this is the reason
for a practical limitation in the magnification.

After crossing the lens the light, in digital cameras, reaches the
Charged-Coupled Device (CCD), and here another problem arise due
to the fact that cameras in most cases uses a three color model
technique to capture the light (RGB). For each pixel there are three
detectors in the sensor. This cause a effect called “lateral
displacement”, i.e. there is a spatial displacement from the video
signal and the point in the world.

Department of Automatic Control, Lund Institute of Technology 9

Computer Vision and Kinematic Sensing in Robotics

Another loss of information occurs when sampling and quantization is
applied to digitalise the image.

2.3 Projective Geometry

Intrinsic Conditions- Although focal length is the most emphasized
internal camera geometry parameter, there exist more complex
parameterizations. In fact, real cameras have many other internal
geometry variables. For an ideal pinhole camera to deliver a
perspective image a mapping must be done. This mapping can be
characterized completely by using six parameters, called the intrinsic
parameters of the camera:
- focal length, in pixels (f);

x-coordinate of the center of projection (uo)

y-coordinate of the center of projection (vo);

scaling of the image plane along the x (sy)

scaling of the image plane along the y (sy) axes;

skew between the optical axes (Sq).

The matrix K includes all six intrinsic parameters, which is effectively

reduced to five parameters because s, and s, are dependent on each
other.

gfsx fs Uol

K=e¢o0o fs
€0 o 1
8 g

The image coordinates (xj,yi) are related to the object coordinates
(Xo0,Y0,Z0) by the following relation:

L. ey U
Xy el
“\/ > = k€YU
Weé = K&2%
g1 %y
elg

Extrinsic Conditions- There are six extrinsic camera parameters:
three are for the position of the center of projection, and three are for
the orientation of the image plane coordinate frame:

P= lR(3x3)T(3x1)]

The final relation between image coordinates (Xi,yi) and object
coordinates (Xo,Yo0,20) IS given by:

Department of Automatic Control, Lund Institute of Technology 10

Computer Vision and Kinematic Sensing in Robotics

L. éx,u
exu &
wiey,=Pr Vel
§10 ¢y
elg

The result of the matrix multiplication PK is the calibration matrix this
transformation matrix gives the relation between points in the image
plan and the pixels in the sampled image.

The fundamental geometric relationship between two perspective
cameras is represented in Figure 2.3.

M
ML MR
dL d R
T ¥
Baseline
i -
oL IR
Left Right
optical optical
centre centre
Left image plane Right image plane
Figure 2.3

The epipole is the point of intersection of the line joining the optical
centers (the baseline) with the image plane. The epipole is the image in
one camera of the optical centre of the other camera. The epipolar
plane is the plane defined by a 3D point and the optical centres or
equivalently, by an image point and the optical centres.

The epipolar line is the straight line of intersection of the epipolar
plane with the image plane. It is the image in one camera of a ray
through the optical centre and image point in the other camera. All
epipolar lines intersect at the epipole.

Stereo vision determines the position in space by using triangulation.
That is, by intersecting the rays defined by the centers of projection
and the image. Triangulation depends crucially on the solution of the
correspondence problem.

The disparity measures the difference in retinal position between
corresponding points in two images. Depth is inversely proportional to
disparity. It is possible to verify by looking at moving objects that
distant objects seem to move more slowly than closer ones.

Department of Automatic Control, Lund Institute of Technology 11

Computer Vision and Kinematic Sensing in Robotics

2.4 Feature Extraction

The sequence of operations of most computer vision system begins by
the detection, location and representation of special parts of the
image, called image features, usually corresponding to interesting
elements of the scene.

In computer vision the term image feature refers to two possible
entities:

A global property of an image or part thereof, for instance the average
grey level the area in pixel (global feature).

A part of the image with some special properties, for instance a circle,
a line, or a textures region in an intensity image, planar surface in a
range image (local feature).

How to detect special parts of intensity and range images like points,
curves, particular structures of gray levels or surfaces patches
represents the second definition and the focused one.

Image features are local, meaningful, detectable parts of the image.
Meaningful means that the features are associated to interesting
scene elements via the image formation process, such as sharp
intensity variations created by the contours of the objects in the
scene, or image regions with uniform gray levels, for instance image
planar surfaces.

Detectable means the location algorithms must exist, otherwise a
particular feature is no use. Different features are, of course,
associated to different detection algorithms, these algorithms output
collections of feature descriptors, which specify the position and other
essential properties found in the image.

Image features can be edges, points, corners, surfaces, lines, curves,
etc.

Edges points or simple edges, are pixels at or which values undergo a
sharp variation. Image edges are commonly presented as
discontinuities in the underlying irradiance function, but it seems
more accurate to speak of sharp image variations than discontinuities,
the reason being that the scene radiance is low pass filtered by optics
and the resulting image brightness cannot have real O-order
discontinuities.

There are various reasons for the interest in edges. The contours of
potentially interesting scene elements like objects, marks in surfaces
and shadows, all generate intensity edges. Moreover, image lines,
curves, and contours are often basic elements for stereopsis,
calibration, motion analysis and recognition, are detected from chains
of edges points.

The edges detection bottleneck is to locate the edges generated by the
scene elements and not by the noise. The trade off is to suppress the
noise as much as possible, without destroying the true edges.

Department of Automatic Control, Lund Institute of Technology 12

Computer Vision and Kinematic Sensing in Robotics

Corners can be characterized more easily than edges in mathematical
terms, but do not correspond necessarily to any geometry entities of
the observed scene. These features can be interpreted as corners, but
not only in the sense of intersections of the image lines. They capture
corners in patterns of intensities. Such features are stable across
sequences of images, and are therefore interesting to track objects
across sequences.

A corner is identified by two strong edges, feature points include high
contrast image corners and junctions generated by the intersection of
objects contours, but also corners of the local intensity pattern not
corresponding to obvious scene features.

In general terms, at corners points the intensity surface has two well-
pronounced and distinctive directions.

Many objects, especially man-made, can be conveniently described in
terms of shape and position, of the surfaces they are made of. Surface
based descriptions are used for classification, pose estimation and
reverse engineering, and are omnipresent in computer graphics.

The solution for several computer problems involving 3D models is
simpler when using 3D features than 2-D features, as image
formation must be taken into account for the latter.

To solve the problem its needed two tools: a dictionary of shape
classes and a algorithm determining which shape class approximates
best the surface at each pixel.

Lines and curves are important features because they define the
contours of objects in the image.

Lines extraction is difficult because of pixelization and errors
introduced by image acquisition and edge detection, there is no line
going exactly through all the points, it has to be found the best
compromise for line.

In Lines and Curves extraction there are problems to overcame. Which
image points in the image compose each instance of the Line or Curve,
and given a set of image points probably belonging to a single
instance of the target Line or Curve, find the best Line or Curve
interpolating the points.

Another problem that arises is due to accidental positioning two 3D
Lines or Curves far apart from each other project onto close image
Lines or Curves.

In 3D computer vision feature extraction is an intermediate step, not
the goal of the system. We do not extract features, just to obtain
features representations, we extract deatures to navigate robots, to
decide whether an image contain a certain object, to calibrate
cameras, etc.

Department of Automatic Control, Lund Institute of Technology 13

Computer Vision and Kinematic Sensing in Robotics

2.5 Correspondence Problem

Correspondence consists in determining which item in the left camera
corresponds to the item in the right camera. A rather subtle difficult is
that some arts of the scene are visible by one camera only. Therefore,
a stereo system must also be able to determine the image parts that
should not be matched.

The correspondence problem involves two decisions: which image
element to match and which similarity measure to adopt.

The correspondence algorithms can be classified in two classes,
correlation-based and feature-based methods. The correlation-based
methods apply to the totally image points, while feature-based
methods attempt to establish a correspondence between sparse sets of
image features.

In correspondence correlation-based methods, the elements to match
are image windows of fixed size, and the similarity criterion is a
measure of the correlation between windows in the to images. The
corresponding element is given by the window that maximizes the
similarity within a search region.

In correspondence feature-based method, there is correspondence
search restricted for a sparse set of features. Instead of windows, they
use numerical and symbolic properties of features available from
feature descriptors. Instead of correlation like measures, they use a
measure of the distance between feature descriptors.

Unfortunately there is no correspondence method giving optimal
results under all possible circumstances. Choosing the method
depends on factors like the application, the available hardware, or
software requirements.

Correlation-based method is easier to implement and provide dense
disparity maps for the purpose of reconstructing surfaces. They need
textured images to work well. However, due to foreshortening effects
and change in illumination direction, they are inadequate for
matching image pairs taken from very different viewpoints. Also, the
interpolation necessary to refine correspondences from pixel to
subpixel precision can make correlation-based matching quite
expensive.

Feature-based methods are suitable when a priori information is
available about the scene, so that optimal feature can be used. A
typical example is the case of indoor scenes, which usually contain
many straight lines but rather untextured surfaces. Feature-based
algorithms can also prove faster than correlation-based ones, but any
comparison of specific algorithms must take into account the cost of
producing the feature descriptors. The sparse disparity maps

Department of Automatic Control, Lund Institute of Technology 14

Computer Vision and Kinematic Sensing in Robotics

generated by these methods may look inferior to the dense maps of
correlation-based matching, but in some applications (e.g., visual
navigation) they may well be all you need in order to perform the
required tasks successfully. Another advantage of feature-based
techniques is that they are relatively insensitive to illumination
changes and highlights.

2.6 3D Reconstruction

If the geometry of the stereo system is known, the disparity map can
be converted to a 3D map of the viewed scene that is a 3D
reconstruction. Our 3D perception of the world is due to the
interpretation that the brain gives of the computed difference in the
retinal position, named disparity, between items. The disparities of all
the image points form the disparity map, which can be displayed as
an image.
So given a number of corresponding parts of the left and right image,
and possibly information on the geometry of the stereo system, it is
possible to obtain the 3D location and structure of the observed
objects.
The 3D reconstruction that can be obtained depends on the
parameters amount of priori knowledge available on the parameters of
the stereo system. There are tree cases possible to identify:
If both intrinsic and extrinsic parameters are known, in this case it
is possible the reconstruction problem unambiguously by
triangulation.
If only the intrinsic parameters are known, in this case it is
possible to solve the problem by estimate the extrinsic parameters
of the system, but only up to an unknown scaling factor.
If the pixels correspondences are the only information available
and neither the intrinsic nor the extrinsic parameters are known, it
is possible to obtain 3D reconstruction of the environment, but
only up an unknown, global projective transformation.

Reconstruction by triangulation is the simplest case. If you know both
the intrinsic and extrinsic parameters of your stereo system,
reconstruction is straightforward.

Reconstruction up to a scale factor is when only intrinsic parameters
of both cameras are known, extrinsic parameters as well as the 3D
structure of the scene are derived. Unlike triangulation, in which the
geometry of the stereo system was fully known, the solution cannot
rely on sufficient information to locate 3D points unambiguously.
Since the baseline of the system is unknown it isn’t possible to recover
the true scale of the viewed scene. Consequently, the reconstruction is
unique only up to an unknown scaling factor.This factor can be
determined if we know the distance between to points in the observed
scene.

Department of Automatic Control, Lund Institute of Technology 15

Computer Vision and Kinematic Sensing in Robotics

Reconstruction up to a projective transformation is a 3D
reconstruction even in the absence of any information on the intrinsic
and extrinsic parameters. This reconstruction is unique only up to
unknown projective transformation of the world. It is worth noticing
that, if no estimates of intrinsic and extrinsic parameters are available
and non-linear deformations can be neglected the accuracy of the
reconstruction is only affected by the algorithms computing the
disparities, not by calibration.

2.7 Real-Time Problem

A real-time application is one that can respond in a predictable, timely
way to external events. Real-time system requirements are typically
classified as hard or soft real-time. For a hard real-time system,
events must be handled predictably in all cases; a late response can
cause a catastrophic failure. For a soft real-time system, not all
events must be handled predictably; some late responses are
tolerated. For many real-time computer vision applications, a soft
real-time system is sufficient. For example, in a real-time gesture
recognition system, it may be tolerable to occasionally or
systematically drop video frames, as long as the system is designed to
robustly handle frame drops.

For fast tracking systems a drop video frame is not tolerable.

Real time vision is interested the visual information that can be
extracted from spatial and temporal changes occurring in an image
sequence.

The temporal dimension in visual processing is very important, the
apparent motion of objects onto the image is a strong visual cue for
understanding structure and 3D motion.

In order to acquire fast image sequences it is necessary a frame
grabber capable of storing frames at fast rate. If the grabbing rate is
allowed to be chosen, then it should be fast enough to guarantee that
the discrete sequence is a representative sampling of the continuous
image evolving over time. In order to process the images inside the
time rate fast algorithms must be implemented. In stereopsis it should
be taken into account the image grabbing time, to synchronize the
cameras.

Department of Automatic Control, Lund Institute of Technology 16

Computer Vision and Kinematic Sensing in Robotics

3 KINEMATIC ESTIMATION AND CONTROL

USING VISUAL FEEDBACK

3.1 Introduction

This chapter is divided in four main subjects.

The first subject is related to the system architecture, where the
architecture of the vision system, control system and global system,
which is composed by the two previous, is described.

The second main subject explains the experiments carried out in the
investigation.

The third subject describes the vision processing in every stage.

The description is organized in four elements: the virtual Java robot
image processing, the processing of the raw image, the lattice and the
object recognition.

3.2 Experimental Setup

The architecture of the robot software is an open architecture.

An open robot architecture allows the system to be connected easily to
devices and programs made by researchers and manufacturers. A
system with a closed architecture, on the other hand, is one whose
design is proprietary, making it difficult to connect the system to other
systems.

Sun workstations are used for software development, control
engineering, as well as for robot operator interaction. The robots IRB-6
and IRB-2000 are controlled from VME-based embedded computers.
Signals from the internal sensors of the robot to the VME system go
via the sensor interface to the DSP board connected to the VME bus.

Department of Automatic Control, Lund Institute of Technology 17

Computer Vision and Kinematic Sensing in Robotics

1 1 Ethernet 1
Work- Work- Work-
station station station
__ SUN_
VME
CPU-board CPU-board CPU-board CPU-board M
™ 6x DSP32C [JR2 DSP 'L MEB040 MB8030
~ ol [[[
[4]
E.. Accalaration F?;T.a' I VME-bus
m Dig RS232
é lie}
0 Resolver —
— | toDigital
£ Converters (’
E Interface to
g 4 intermal ABB bus
o “ o A]
= - : B~ ABB control
17} , contro rede=int cabinet and
= interface IRB-2000 drive electronics

Hardware configuration of the open architecture robot controller

The robot characteristics of the IRB-2000: it has 6 DOF (Degrees of
freedom) and a precision of 0.1 mm. Joint 1, 4, 6 are cylindrical joints
and the others three joints 2, 3, 5 are revolute joints. This robot can
reach all the points in the possible work area with arbitrary
orientation.

The IRB-6 is a robot with five degrees of freedom and a precision of 0.2
mm. The joints are connected with six links, the joints 1 and 5 are
cylindrical and the others (2,3,4) are revolute joints.

The control system used in RobotLab is composed in three modules:
IgripServer, Trajec and Regul. This control system is for both robots
and only it is different in Cartesian coordinate system because they
have different degree of freedom, Figure 3.1.

trajectaria

| Rt poprtn |

lgripSernver

!

Trajec
¥
Regul

S,

Figure 3.1

Control System

IgripServer module communicates by a socket to an application, e.g.
Matlab, which generate the trajectory. Sockets sets up a two ways
network communication and usually do not use TCP. This makes it

Department of Automatic Control, Lund Institute of Technology 18

Computer Vision and Kinematic Sensing in Robotics

possible to communicate between computers, so the application only
has to be run on a computer, which is connected to the network. The
IgripServer receive pre-calculated trajectories and send sends to the
Trajec module.

Trajec module is able to calculate a trajectory or use a pre-calculated
trajectory and then calculates the velocity and the acceleration
references for every joints. Trajec sends the position, velocity and
acceleration of each joint to the Regul module, which will perform the
motion.

Regul module controls the robot and uses cascaded Pl controllers for
each joint. The velocity and acceleration are feedforwarded.

The stereo vision system is built with this robot and the two cameras
see 3.2. The robot has mounted in the end-effector an uncalibrated
stereo rig. This stereo rig has two cameras with a unknown distance
and angle between them. The distance and the angle between cameras
have not been measured because the goal is to overcome the intrinsic
and extrinsic conditions without any calculation.

Windows
Winrkstation

Ethernet L |

L Sun
DM o Workstation

Figure 3.2

Vision System

The cameras communication is made by Fire-i, that is a standard
IEEE 1394-1995 for High Performance Serial Bus.

The cameras are connected with the board FireBoard 400 that works
in Windows stations with a CPU 400 MHz. This machine is connected
to the same Ethernet that the Sun workstations use to communicate
with the robot IRB-6 and IRB-2000.

The cables used between the cameras and the board work for all
frequencies between 100MHz and 400MHz.

The cameras used are Sony DFW V-300 that utilizes the IEEE 1394
high performance serial bus to provide, non-compressed YUV digital

Department of Automatic Control, Lund Institute of Technology 19

Computer Vision and Kinematic Sensing in Robotics

data for image capturing, compression and transmission systems.
With the DFW V-300 are possible control functions such as color tone,
brightness, picture quality, white balance and AGC (Automatic Gain
Control). The camera signals are transmitted with data rates of 200
megabits and 30 images per second. The picture format of 640 x 480
pixels (4:1:1) can be modified to 320x240 pixels (4:2:2) that is the
resolution used.

A video picture is an array of pixels. The position of each pixel is
defined by 2 numbers: horizontal & vertical co-ordinates inside the
array.

With this camera is possible changing several parameters but only the
shutter and the gain is adjusted in our software.

The shutter is used to reduce camera sensitivity in high light
conditions, to reduce picture blur for fast moving subject, and to
match camera integration time to pulsed light sources in order to
avoid flickering.

The gain works combined with iris control. Increasing exposure by
gain adds noise to the picture and increasing exposure by iris reduces
the depth of field of the picture.

The Fire Wire is a high-speed, non-proprietary, scaleable digital serial
bus that can transport data at rates of 100, 200 and 400 Mbits per
second. The bus enables true plug and play which allows the user to
connect new devices with the system switched on and the bus active.

The features are:
dates rates of 100, 200 and 400 Mb/s
real time transmission of data is ideal for video & audio
universal I/0 interconnect
peer-to-peer communication structure
based on a "memory-mapped-like" architecture
backwardly compatible speeds
bus is dynamically configurable and active termination is not
needed

Matcomm is software that was developed in Department of Automatic
Control. This software works with protocol TCP/IP to transmit data
between computers in network and with different systems. The reason
to use Matcomm is because it is a easy and fast way to connect with
another machine without necessity of the setting all the parameters.
Matcomm can be use in Unix and Windows environment. Data are
sent using sockets in array format.

The vision system, shown in Figure 3.2, is a closed loop that starts in
the cameras, which interact with the world environment. Then the
images of both cameras are processed in a PC running Windows
platform. The visual feedback is sent by Matcomm to the Sun
workstations that communicates and control the IRB-6 and IRB-2000.

Department of Automatic Control, Lund Institute of Technology 20

Computer Vision and Kinematic Sensing in Robotics

3.3 Experiments

3.3.1 Calibration Movement

This experiment was the most important one in the investigation, and
the one in which more time resources were spent.

It consists in the acquisition of disparities maps called layers for a set
of well-known relative depths.

It was used a calibration plate to acquire the feature points and build
the disparity map.

The disparity map for a certain depth is called layer and the set of all
the layers is called lattice.

The calibration plate is composed by a reflecting surface with
structured non-reflective holes on it.

The disposition of the holes is done in a way that a cross can be found
in the centre of the plate. The holes have a linear distribution in x and
y coordinates (Figure 3.3).

An IRB-6 robot performs the movement of the stereo rig between
depths; this represents very accurate depth position. Using IRB-6 for
depth position an add feature is obtained, the depth positioning is
actually a z positioning, and the x and y positioning are the add
feature.

Figure 3.3

The x and y positioning is used in order to position the robot right
above the plate, which means more feature points and more reliable
lattice.

The lattice is made from several layers corresponding each layer to
one z relative distance to the calibration plate. A layer is composed by
the displacement of each feature point visualized by both cameras, so
in this way using interpolation, it is possible to build an x and y
characteristic displacement for the image area covered by both
cameras. This is done for a set of z relative distances to the calibration
plate. After all the layers been saved it is possible to estimate the

Department of Automatic Control, Lund Institute of Technology 21

Computer Vision and Kinematic Sensing in Robotics

relative distance of any point in image area covered by both cameras,
using either interpolation for points with a depth between the layers,
for depths higher or smaller than the set of relative distances saved in
the lattice the depth is extrapolated.

3.3.2 Positioning Movement

In this experiment, we address the problem of visually guiding and
controlling a robot in projective 3D-space using stereo vision. The
experimental setup is composed by one stereo rig mounted on the
end-effector of IRB-6 robot, and two cross drawings. One in the object
and the other in the end-effector of the IRB-2000 robot.

The method is entirely formulated using comparison of the disparity
between the cameras and applying it to the lattice built in the
calibration movement.

The IRB-6 was used to position the cameras in a position where the
two crosses were in the image area covered by both cameras.

The IRB-2000 is used to position the cross centre, mounted in the
end-effector, right above the cross centre located in the object.

This was performed in real time, and the control feedback minimizes
the error computed by the depth, x and y difference between the
crosses centre.

The experiment is done with the object stopped and with the object in
motion.

3.3.3 Virtual Robot (Java Robot)

Virtual reality can be used to test some applications implemented in
the real world.

The virtual robot was used to test algorithms of control, image
processing and the communication between the different modules.
Using virtual robot is possible to avoid collisions and bad trajectories
before using in the real robot and it is a fast and safe test bench for
the system.

The graphical appearance of the virtual environment is shown in
Figure 3.4.

Figure 3.4

Virtual Robot

Department of Automatic Control, Lund Institute of Technology 22

Computer Vision and Kinematic Sensing in Robotics

3.4 Real Time Stereo Vision Pipeline

3.4.1 Image Processing

The image constitution follows a three-color model and its respective
RGB components can be retrieved from the image buffer.

The plate is made of reflective material, see Figure 3.5.

By adjusting the shutter and gain a natural contrast between the
color of the plate surface and their holes is achieved.

: Camera RealityViewer

""""""""""
.........

Figure 3.5

The image is stored in a buffer and then displayed in order to provide
visual feedback on the effect of changing the shutter and gain.

In the experimental setup the light conditions are controlled and the
image contain enough information to recognize the feature points, in
this case the holes on the plate. The colored image is passed through
a threshold filter to produce a binary image.

A Line Scan algorithm was implemented to perform the threshold and
acquire the x, y positions of the feature points.

Department of Automatic Control, Lund Institute of Technology 23

Computer Vision and Kinematic Sensing in Robotics

' Camera Reality¥iewer

o
] +

* -
-

-

ppm
........

Figure 3.6

The threshold limits for the plate application were:

RERL

(R(x, y) < 200)and(G(x, y) < 200)and (B(X, y) < 200)
=in.
10,if

otherwise

B(x,y)

the resulted image is shown on Figure 3.6.

Due to the difference between the reflective surface and the holes on
the calibration plate a high contrast is achieved.
This threshold is sufficient for finding feature points.

The color mass is calculated for each feature point. It is then used in a
filter to exclude feature points from noise.

The noise can be differentiated from feature points by excluding small
and large color regions.

The limiting threshold parameters can be changed online

On start-up they are: minimum color mass equals 5 and maximum
color mass equals 100.

_iLif

(B(x, y,m) >5) & (B(X, y,m) <100)
=0 .
10,if

FP(x,)
(x.y) otherwise

Where m is the color mass and FP is feature point.

After the filtering the color mass center is computed and saved in
Feature Point (feature point) x and y array.

Figure 3.7 displays the feature points after the applying the filter.

Department of Automatic Control, Lund Institute of Technology 24

Computer Vision and Kinematic Sensing in Robotics

' Dusplay Beality Yiewer

Figure 3.7

By applying a threshold followed by filtering the amount of
information to be processed is reduced.

3.4.2 Closest Neighbor Vector Field

In this stage the goal is to find the center of the cross. It is important
to exclude feature points that aren’t included in the cross.

The x and y position stored for each feature point is now used to build
a relation between every point and its closest neighbor, this is done by
calculating the euclidean distance to a every feature point with no
closest neighbor already associated.

The feature point with the minimum distance associated is store to an
array of closest neighbors.

In Figure 3.8 it is shown the vectors from each point its closest
neighbor.

i Display Reality Viewer

Figure 3.8

It is important to notice that once a feature point has a closest
neighbor associated he cant no longer be a closest neighbor for others

Department of Automatic Control, Lund Institute of Technology 25

Computer Vision and Kinematic Sensing in Robotics

feature points. Each feature point has a unique closest neighbor. This
algorithm was chosen to prevent two feature points from having the
other as closest neighbor.

Other way could be the Hough transform but we didn't use this
method.

The reason why almost all vectors have their direction to the right or
to the bottom is because the feature points were stored from left to the
right, top to the bottom when the LineScan was made.

Now we have all points with a vector associated, but we still don't
know which vector belongs or not to the cross.
In order to get the cross, several filters were implemented, the first one
was based on the average length of the vectors.

As it is possible to see from the Figure 3.8 the vectors that belong to
the cross have a shorter length than the others do. Since the vectors
belonging to the cross have a bigger rate of occurrences than the
others do, if an average is computed, the value of the average will be
close to the size of vectors belonging to the cross. This is used as a
term of comparison to exclude more points.

i ae oy -0 e

[caVz ¢ ga
* Ci=l * Ci=1
FP(x)_Illf gM>003 : .andgv‘)<25 - f
::: | g g % g g %
T if otherwise
B8 &
] ca
Where M is Euclidian length and giﬂn : iIs the Euclidian average
8 =

length of vectors.

It must be taken into account that several aberration vectors will ruin
the average, because they are thousands of times bigger than the
vectors that belong to the cross. In order to avoid the bad effect of the
aberration vectors a previous filter is superimposed, it takes the
previous average and excludes large vectors. This filter introduces a
problem by using old averages, but still it is very useful if the first
measure could be rejected.

Department of Automatic Control, Lund Institute of Technology 26

Computer Vision and Kinematic Sensing in Robotics

I e 2f 150 0
o cal|z =
fLif “V|<10*Git_* T~
FP(xY) =1 QM ¢ n ¥~
i0 8 T X
T g1
T if otherwise
&ed
] Ta 2
Where M iIs Euclidian length and g‘ ~ is the Euclidian average
n -
& a.

length of vectors in the previous image.

After this filter almost every vector that doesn’t belong to the cross
was eliminated. It is possible to change the parameters of the filters
online.

3.4.3 Line Segments Extraction

Once almost all the undesired points have been excluded, the points
that have an similar vector length are left.

In order to exclude more points that could be noise or points that
aren’t noise but don’t belong to the cross, a direction filter is required.
The direction filtering takes into account that all the vectors have an
angle associated, which can vary from 0 to 90 degrees. This is very
important to state, because other ranges must have different
approaches. The angle of a vector is taken by the x and y size of the
vector and then clustered to the first quadrant.

The direction filtering is done together with a new vector length
filtering. Lets take the example on Figure 3.9 with the vectors from O
to 7, vector i (Vi), when il {1.. 7}.

5 6 7 9@
U Ly

Figure 3.9

Lets start on vector O (VO) and take it as a reference of analysis. When
compared with V1 the angle is the same but the size is larger so the
chain is broken here since there was no similarities among the to
vectors. Now lets take the V1 as reference. When compared with V2
the size is almost the same and the angle as well, so the two vectors
are consider belonging to the chain, and it proceeds to the next vector.
The vector V3 is compared with the average size and angle of the

Department of Automatic Control, Lund Institute of Technology 27

Computer Vision and Kinematic Sensing in Robotics

chain, their values are inside the limits, so V3 is also included in the
chain.

The next vector to be evaluated is V4 and their values are quite
different from the average size and angle of the chain, which makes a
break on the chain.

Since the vectors included in the chain are in sufficient number to be
consider as a connected vector, (i.e. it has more then 2 vectors
included in the chain) then the first point and the last point on the
chain are saved to an database of connected vectors called CV.

The last chain was finished and a new chain starts on V4 but it has
no continuation due to the disparity of the sizes and angles

The process starts again on V5. The analysis of V6 includes it on the
chain but excludes V7. Now there are only two vectors on the chain,
so these vectors are discarded.

In Figure 3.10 the several chains that fulfilled all the requirements are
shown. They are represented as straight lines.

' Dusplay Beality Yiewer

Figure 3.10

All the points included on the chain, (i.e. all the points associated with
vectors included on the chain) were stored to an array, where they
were clustered to the respective chain.

It is important to notice that all relevant information related to each
chain is saved to a database of connected vectors, such as feature
points included in the chain, the total number of points included in
the chain, the start/end position of the chain.

The size limits is set up to minimum 0.05 and maximum 2.0.

The allowed angle variation is set to +10°.

The minimum number of vectors in the chain is set to 3.

All the values mentioned above could be changed online for test
results evaluation.

Department of Automatic Control, Lund Institute of Technology 28

Computer Vision and Kinematic Sensing in Robotics

I & &S |- ('j 00
B W L L
| * i=1 - * i=1 =,
1, if .05+ ¢ T<MV|<2 _-:and
@ X O £ g ,g, 8 s
Ysartr + | & Y
gx.g.t = 9 sabvy -
Cve e =y 9PV - G2 7<10°Zand(n > 2)
g yflnlsh’ _ '|' g n ! =
gFPcham : ! g E
gNFPchainB :-O, if otherwise
:
I
|
t
aed 150
] ca M|
Where M is Euclidian length and ELT Is the Euclidian average
n -
& o
& -0
¢a bV =
gl * average angle of
Q -_—
e 1)

vectors and n is the n of connected vectors included.
The above structure represents the algorithm implemented.
3.4.4 Lines Extraction and Center Cross Estimation

At this stage the information stored in the database is enough to
estimate the center of the cross, but still before finding the cross
center the connected vectors have to be classified as Horizontal Line
(HL) or Vertical Line (VL). Finding the cross center is then a question
of solving the intersection of two lines.

The group of CV that belong to HL are defined as the ones that have a
longer x than y length. The inclusion on the HL is not straightforward,
there is a filtering process in between. For instance the x versus y
length can satisfy the requirements but there are situations in which
it shouldn’t be included in that set.

Lets take a look on the example stated in Figure 3.11.

Department of Automatic Control, Lund Institute of Technology 29

Computer Vision and Kinematic Sensing in Robotics

3 4
d2
di| 1
_
2
Figure 3.11

The first Connected Vector CV1 has a similar angle to CV2 but is
obvious that it shouldn’t belong to the same set as CV1. The two CV
are parallel and the way to exclude from a set and include in another
set, no longer can be their angle. From CV1 a normal vector is traced
until it intersects the line that includes CV2, the length d1 is the
resulted prolongation of the normal vector.

The length of the normal vector is a relevant variable, due to its
importance the normal vector length is used in grouping the CV in
different sets.

In Figure 3.11 the previous fact can be stated, CV1l and CV3 are
included in the same set, but CV2 is not included, CV4 is obviously
not included in none of the sets for the HL.

The CV4 is a vector in which the x length component is smaller than
the y so this one will be clustered in one of VL sets.

After fitting every CV in the correct group and line (HL or VL), it is time
to assign the correct set as function of the line. This is done in a very
simple way, the set with greater amount of feature points associated
to the CVs belonging to that set; is the chosen one.

The feature points assigned to each line don’'t actually represent the
line, first it is necessary to use a least square line method and fit the
line in there.

i Display Reality Viewer

Figure 3.12

Department of Automatic Control, Lund Institute of Technology 30

Computer Vision and Kinematic Sensing in Robotics

The least-squares line uses a straight line y=a+bx to approximate
the given set of data, feature point (x1, yl1), feature point (X2, y2),...,
feature point(xi,yi). The values a and b are unknown coefficients while
all feature point (x;,yi) are given. To obtain the least squares error, the
unknown coefficients a and b must yield zero first derivatives.

The unknown coefficients a and b can therefore be obtained.

This is applied to both lines HL and VL. The centre of the cross is the
intersection given by the to lines equation, see Figure 3.12.

3.4.5 3D Lattice and Feature Points Correspondence

To fill the lattice it is necessary to know which feature point in the left
camera corresponds to the feature point in the right camera

A better accuracy of the lattice means as many feature point as
possible in the image area covered by both cameras.

The centre of the cross as already been found and it is possible to use
it as feedback in order to center robot above the centre of the plate,
which means more feature point as desired. It is important to state
that the centre of the cross is also the center of the plate.

Before finding the correspondence of feature point, it is important to
group them for further processing.

The grouping of the feature point was performed by override all feature
point and fit them into a parallel lines to the VL, the HL parallel lines
weren’t suitable to cluster feature point. It was used VL parallel lines
to cluster feature point because the real lines made by the holes in
plate, were still parallel in the projective image plane, but the same
didn’t happen with the horizontal lines.

The horizontal lines when projected to the image plane suffer a tilting
effect, and that makes them harder to use as a method for clustering
feature point.

In Figure 3.13 this effect is shown, by analyzing the tree VL it is
possible to observe that they have almost the same slope, rather the
HL lines which have a very different slope due to the tilting effect.

i Display Reality Viewer

Figure 3.13

Department of Automatic Control, Lund Institute of Technology 31

Computer Vision and Kinematic Sensing in Robotics

As described above the VL lines can be used for grouping feature
point, the Figure 3.14 exhibits how feature points were grouped.

i Display Reality Viewer

Figure 3.14

The image was override by a parallel line to the VL belonging to the
cross and the feature point were inserted into groups, first line groups
and further into left line groups and right line groups, this is VL
parallel (VLP) that were situated to the left or right side of the VL
belonging to the cross (VLC).

The VPL to each side were numbered increasing from their distance to
the VLC, this is first VLP to the left side was the immediate line to the
left side and so on to left border of the image. The same numbering
process was used for the right side VLP.

In order to have a easier correspondence, the feature point were again
clustered into two new set inside the VPL left and right. The feature
point above the HLC were grouped into a new set, HCL up and the
feature point below the HLC were grouped into a new set, HCL down,
and they numbering followed the assumption that more far from the
HL more high would be their index.

In Figure 3.15 the numbering of the VLP follows the horizontal arrows
direction, and the numbering of the feature point inside the four sets
follows the vertical arrows direction,

Department of Automatic Control, Lund Institute of Technology 32

Computer Vision and Kinematic Sensing in Robotics

. LeftUp | . Right Up |
o ‘;A o ‘ CROS
o e||ie o
< >
< >
e e o ®
@ () ® (
. Left Down i | Right ;
Figure 3,15

This enumeration method was chosen because the centre of the cross
is well known, as the VL and HL, so this information is used for
correspondence proposes.

After this complex clustering the correspondence is straightforward
problem, the points always find their correspondence in the same
database position for the other camera, e.g. lets analyze the first the
left top point in the Figure 3.15, it is included in the second left VLP,
then he is grouped to the top left values and is position is the second,
so its final position is indexed to second VLP and second feature point
in the top group.

To check the correspondent point in the other camera it is just a
question of retrieving the point on the same position in the database
of the other camera.

A rather subtle difficult in correspondence is that some feature point
visible for one camera but not for the other, this is overcame by the
previous method, if the x and y values in one database are null it
means that the point isn’t seen by the camera.

The information contained in the database is displayed in the next two
Figures.

Figure 3.16 Figure 3.17

Department of Automatic Control, Lund Institute of Technology 33

Computer Vision and Kinematic Sensing in Robotics

In Figure 3.16 the three dimensional feature point are displayed in
two dimensions x (0,320) versus z (0,290), each line corresponds to
the trajectory of the one feature point in the image plane while the
stereo rig is moved away from the plate, the black and lines represent
the feature point trajectory in the left camera and right camera
respectively.

It is observed that when the stereo rig moves away from the plate the
feature point’'s tend to move to the opposite way of the tilt camera
angle, and more feature point are included in the image area plane.
This is better stated in Figure 3.17 where a 3D view of the feature
point’s trajectory is displayed.

This means that more far from the plate better is the accuracy of the
database since more points are included, and smaller interpolation
space is obtained.

It is also possible to visualize the several z layers constituents of the
database.

This information combined gives the x and y displacement for several
z layers, which builds a characteristic displacement map for all the
feature point with different depths.

3.4.6 Interpolation and Extrapolation

The lattice is a discrete function of the feature point, in order to solve
characteristic displacements maps with depths not included inside the
range of depths with data acquired it is necessary to extrapolate the x
and y displacements.

It is also necessary to interpolate the x and y displacements for depths
in between the depths with data acquired.The
interpolation/extrapolation is done via a second order polynomial
approximation:

z= 1t (wherea, and a, arethe polynomial coefficients)
a*x+a,*Xx

z= _ (Whereb, and b, are the polynomial coefficients)
b,*x+b,*x
The Figure 3.18 (z,x) show the approximation made to the x position of
one feature point through the z position, i.e. the depth versus x
estimation.
The line represents the approximation when only the 20 first values of
the chain were take in to account, i.e. only the values until z=190
where used for the coefficients to obtain the polynomial coefficients.
The points in the chain with z>190 were acquired during the
calibration movement but weren’'t used in the polynomial coefficients
in order to evaluate the accuracy of extrapolation.

Department of Automatic Control, Lund Institute of Technology 34

Computer Vision and Kinematic Sensing in Robotics

e RTI | INVI) SR e e e

o 5:] I|5[| 1‘93 Jfl] 2= 7= 1] =) o 150 xa 250

Figure 3.1 8 Figure 3.19

In the Figure 3.19 it is shown the approximation of the y position
through the depth. The method and the amount of data used were the
same as for the x position estimation through the depth.

The results where quite satisfactory, with a maximum error of 3 pixels
for the several chains of feature point analyzed.

The error is represented by the bottom line in both figures.

The Figure 3.20 represents the approximation in X, y and z using the
method previously described.

!
T T Iy
= k.
. : .
il “' - ek
Lyl RK ’ -
B i
e |
0o

Figure 3.20

Until now it was only approached the problem of extrapolation and
interpolation between depths, but also a interpolation and
extrapolation must be performed for the same layer. Locations that
don’t belong to feature points in the same layer have to be interpolated
or extrapolated.

3.4.7 3D Kinematic Estimation using Lattice

In Figure 3.21 and 3.22 it is shown in 3D one layer acquired. This
layer corresponds to the 400mm plus a small offset distance not

Department of Automatic Control, Lund Institute of Technology 35

Computer Vision and Kinematic Sensing in Robotics

known to the calibration board. Where the left camera was taken has
reference and the z axis represents the x disparity.

Figure 3.21 Figure 3.2 2

The Figure 3.23 shows the layer but now in 2D, the Figure 3.24
represent a lattice built on base of the Intrinsic parameter matrix and
the transformation matrix between cameras.

An observation of the two graphics shows a consistency on the values
acquired.

PR R USRI W SRR (SRR SR SRR (R

xa =0 300 30 400 =1 8] om 1000 1m 1200 1300 1400 £ LE]

Figure 3.23 Figure 3.24

In Figure 3.25 and 3.26 it is shown in 3D one layer acquired. This
layer corresponds to the 400mm plus a small offset distance not
known to the calibration board. Where the left camera was taken has

reference and the z axe represent the x disparity.

Department of Automatic Control, Lund Institute of Technology 36

Computer Vision and Kinematic Sensing in Robotics

e

o
Figure 3.25 Figure 3.26

The Figure 3.27 shows the layer but now in 2D, the Figure 3.28
represent a lattice built on base of the Intrinsic parameter matrix and
the transformation matrix between cameras.

An observation of the two graphics shows a consistency on the values

acquired.

o 50 100 150 0 2=0 300 3=0 400 B0 2m 1000 11m 1200 1300 1400 =00

Figure 3.27 Figure 3.28

3.5 Concerns using Virtual Robot

The vision algorithms in the investigation are tested with a simulation
of the robot IRB-6. The main feature of this robot is the image shown
from the end-effector, that is a view of the plane perpendicular to the
Z-axis of the gripper. The virtual image is a view of the camera
mounted in the end-effector, representing the visual sensor that
performs the image acquisition to feedback the robot controller.

The task is to process the image to center the object in the window.

Department of Automatic Control, Lund Institute of Technology 37

Computer Vision and Kinematic Sensing in Robotics

The image is received on a PC running the Windows operating system
by using socket inter-process communication. The image is then
processed in visual C++.

The object is a cube with the colors blue, red and green in each face.
The image is received on each face as three matrices(R, G, B), each
one having a size of 200x200 elements and being approximately
1Mbytes.

After the image acquisition an image scan is done in order to find the
cube centre. The scan starts on the first row and column and scans
from the upper left corner to the right bottom corner. The image
background is black and the cube colors are sharp. For example to
find a blue color a scan is done in blue matrix searching for a blue
component higher than 240 and in red and green component with
value below 10. These reference values are chosen because it is a 8
bit color range. To find blue, the values should be R=0, G=0 and
B=255.

The color mass center

rean(e) =4 &%)

is calculated on regions with pixels of the same color. (Xj,y;) are the
coordinates of each pixel in the region. The color mass center is sent
to the virtual robot.

3.6 3D Kinematic Estimation

Once the lattice is built its possible to use it to calculate relative
distance between objects, and that’'s the goal and reason of all the
efforts spent on building the database.

In our case the objects are one test object (TO) and the end-effector of
the robot IRB-2000 (RO).

Both TO and RO have a cross draw in one of the faces.

The configuration looks like the one represented in Figure 3.29.

Department of Automatic Control, Lund Institute of Technology 38

Computer Vision and Kinematic Sensing in Robotics

' Camera Reality¥iewer

Figure 3.29

To easy recognize the TO and the RO each cross as different
background color, in this case the TO as blue background color, and
the RO as red background color.

The colors are placed in opposite sides in the chromaticity spectrum
in order to better distinguish the TO from the RO.

The Line Scan algorithm was implemented to, at the same time
perform the threshold and acquire the X, y position of the feature

points, now it is applied two times one for the TO cross and another
for the RO cross.

The threshold limits for the TO application were:

1Lif (R(x,y) <200) & (G(x,y) <200) & (B(x,y) >180)

TOCross(x,y) =1 _ . ,
(%) ':‘O,If otherwise

The threshold limits for the RO application were:

ROCross(x,y) = | g; it (R0) >200) & (G(x, y) <150)& (B(x,Y) <150)
1 0,if otherwise

The resulted image is shown on Figure 3.30.

Department of Automatic Control, Lund Institute of Technology 39

Computer Vision and Kinematic Sensing in Robotics

' Camera Reality¥iewer

Figure 3.30

At this time there is two databases with the feature point from the TO
and the RO, as displayed in Figure 3.31.

i Display Reality Yiewer

Figure 3.31

Now by applying the algorithm used in the plate, it is possible the get
the center of both crosses in both images.
In Figure 3.32 the cross centre achieved is displayed, and on the right
window it is draw the cross position of the left camera, this was done
to have a better visual idea of the displacement of one cross to the
correspondent cross in the other camera.

Department of Automatic Control, Lund Institute of Technology 40

Computer Vision and Kinematic Sensing in Robotics

i Display Reality Yiewer

Figure 3.32
The relative distance can now be solved using the lattice information.

3.7 Robot Control using Visual Feedback

The control of the IRB-6 and IRB-2000 was done in two main fields,
the kinematics control and the controllers implemented.

The kinematics control was done mainly in inverse kinematics. This
means that is given the end point of the structure, in coordinates, to
calculate the joint angles to achieve that end point.

There were implemented different solutions for the controllers to find a
good relation between fast response, to reach the desired point and a
good stability. The controllers tested were proportional and
proportional with integral part.

The system architecture of the robot control visual feedback can be

seen in Figure 3.33. This system is built in four main modules: robots,
robot system, robot control and vision.

Department of Automatic Control, Lund Institute of Technology 41

Computer Vision and Kinematic Sensing in Robotics

Rohat Contral

Trajectory
generatar

_______ il
1

arbntSystem

: L pre
laARSeneT T trajectory
1
1
1

Contraller

!

Trajec
T
Regul

o —

Images 30 points
) Vision B

L e e e e e e - = - L |

Figure 3.33

Robot control using Visual Feedback

The robot control module and the vision module that we built are
connected with the robots and robot system module, forming the close
loop that we will describe. These units receive, processes and send the
control information that takes some time delays and errors. These are
observed and measure to get the sources error.

The transfer information between the different modules takes some
time. This time is not constant and depends of the network load,
electrical disturbances and data amount.

The information processing takes some time too. In general depends of
the amount of image, the way to process it, such as, if it is recursive
or how many times is process it, the image area, the points extracted,
and the different parameters of the analysis in the same time.

Another delay is added when the image is printed on the screen that
means time spent in on plotting to the desktop

The acquiring camera images delays the system because the cameras
are not synchronised and then the data acquiring can have different
timings.

The three main kinds of time delays observed on the system are:
Communication delay in network
Computation delay in vision and control processing
Acquiring images

The errors observed in the system are the following:
Soft triggering of cameras
Assumption of position and images available at the same point in
time

Department of Automatic Control, Lund Institute of Technology 42

Computer Vision and Kinematic Sensing in Robotics

3.7.1 Control of Robot

The aim in this control is to make the movement of the robot fast,
smooth and stable as possible in a way to realize the desired
trajectory.

The feedback is provided from the cameras, so the inputs are X, y in
image space coordinates and the outputs are the joint angles.

It is assumed that there is a perfect relation between the image
Coordinates and the robot Coordinates. This means that one pixel
correspond one 1 mm in the robot coordinates.

P Control
The implemented control in this research is a proportional controller
and it works in discrete-time.

The proportional controller in continuous-time is described by the
equation

u(t,) = K*e(t,)
but the inputs x and y are in discrete time:

x,(kh) = K * D, (kh)
Yy, (kh) = K* Dy(kh)

K is the gain or the proportional gain of the controller.

The proportional controller is a function of the error. That is the
difference between the reference position and the actual position. This
error is obtained in image coordinates.

Dx =(Xref - X)
Dy :(Yref - y)

Pl control
In order to keep x =0 and vy =0either a proportional (P) or a

proportional-integral (Pl) controller can be used. The integral part is
used to eliminate the stationary error. The Pl controller introduces an
integrating effect. The integral term is given by

I(t) = % Cp(s)ds

it follows that

Department of Automatic Control, Lund Institute of Technology 43

Computer Vision and Kinematic Sensing in Robotics

d _K

da Ti
using the forward differences gives

I (tk+1) - | (tk) — kh
f _?ie(tk)

This leads to the following recursive equation for the integral term

| (te) = 1 () +$ie<tk>

and the PI control will be
K
u(tk) = K(e(tk) +?e(tk)

Parameters T; has the dimension time called the integral time.
PID control

Using PID control is possible to improve the damping of an oscillatory
system. The PID is implemented in the following way. It is add in PI
control a D term. In D term is used a backward differences, with the
following equation

Td D(t) - D(t...)

_ y(t)- yt,.,)
S a +D(t,) = - KTd 2k Dket/

h
This can be rewritten as

Td KT,N

T, +Nh D(t,..) - Td+—NhY((tk)' (1)

D(t,) =

An integral windup [C.C.S.] is an effect that takes place when a PI
must compensate for a longer time for an error, so it was implemented
a integral anti windup in the Pl controller. If the control error is so
large that the integral saturates the actuator, the feedback path will
be broken because will remain saturated even if the process output
changes, Figure 3.34.

Department of Automatic Control, Lund Institute of Technology 44

Computer Vision and Kinematic Sensing in Robotics

errar

—
-

Image2iarldCoordd

Saturation

=1

Driscrete-Time
Integrator

&

Gaind

Figure 3.34

Controller Pl with anti-windup

Another feature that can improve control is compensating the time
delays. They are not constant so, we should predict the error in way to
improve to be faster.

It was implemented three different ways to solve the time delays.

- One way to predict the error is set the zero error. So when the time
delays is bigger than the sampling time it is set with zero. Figure
3.35(a).

The second one is keep the error. So the error is constant until new
data be received. Figure 3.35(b)

The last one to predict the error is to set it with the two last errors
received. Figure 3.35(c)

Error

T T
Time (sec) Time (sec] Tirme [sec)

(a) (k) (<)

Exror received * Emor predicted

Figure 3.35

Different ways to predict the error

A good way to predict the error is to implement the Kalman filter to
estimate the error. This filter was tested but it was difficult to find
good parameters for the system. The result was not so good.

3.7.2 Control of Virtual Robot

The Virtual Robot is a useful tool to test implementations.

Department of Automatic Control, Lund Institute of Technology 45

Computer Vision and Kinematic Sensing in Robotics

It runs on Java platform and communicates using matcomm.
Matcomm is software that was developed in the Department of
Automatic Control and is used as a tool to establish a communication
line between processes.

§ Unix : . Windows
. platform ! ' platform |
§ : Matcomm § . Matcomm
| Virtual | .y Virtual |
. | Robot | : i | Image §
Figure 3.36

Communication and Feedback control of virtual robot

A flow chart for the virtual robot feedback loop is showed in Figure
3.36. The loop starts in the virtual robot and it sends images all the
time. This image is a view from the end-effector camera.

The image is processed in Visual C++ in the Windows environment,
where it is received and processed. This function is explained in more
detail in the Virtual Java Robot Image Processing section. It returns
the Coordinates X and Y to give the path that the robot should move
for.

The Cartesian-space coordinates have to be converted to joint angles
by application of the IRB-6 inverse kinematics giving the position and
orientation of the end-effector of the robot. After that the joint values
are sent to the robot to close the feedback loop.

The user can interact with the robot by dragging the cube to another
position and which activates the control system and its feedback .

Department of Automatic Control, Lund Institute of Technology 46

Computer Vision and Kinematic Sensing in Robotics

4 PROTOTYPE

Two platforms are used in the investigation, a Windows NT platform
and a Solaris platform.

The reason for choosing Windows is that the Fire-i APl was only
available for this platform. Windows has a large number of hardware
peripherals available (with supported drivers), particularly for frame
grabbers (essential for real-time vision applications).

Windows also provides source software development tools that aren’t
available on Linux.

Some reasons for choosing Windows NT over the more popular
Windows 98 are: Windows NT has a better architecture for real-time
applications than Windows 98; Windows NT is more robust than
Windows 98.

The PC used was an Intel Pentium Ill 450MHz with 128Mb RAM
memory. The Pentium Ill includes integer and floating point Single
Instruction Multiple Data (SIMD) instructions, which can greatly
increase the speed of computer vision algorithms.

The code was developed in Microsoft Visual C++ 6.0 Enterprise
Edition.

Matlab 6.0 was running in the Sun Solaris 8 platform.

4.1 System Architecture with Dataflow Diagram

The vision system for the two experiments is shown in Figure 4.1. The
dataflow shows the different modules implemented. They are the ABB
robots, the vision and the robot control for each experiment.

matcomm ABB Irb 2000

ABB Irb &

ire-i Robot Control Robot Control
Fire-i -
for or
Calibration Position
Movemnment Movemnent
matcomm
| — Vision rmatGomim
Figure 4.1

Dataflow the system

Department of Automatic Control, Lund Institute of Technology 47

Computer Vision and Kinematic Sensing in Robotics

The robots and the robot system are described in detail in section
3.2. The robot system executes the pre-calculate trajectory sent by the
Robot Control module.

The vision module processes the image received from the stereo rig
and returns a feature point in image coordinates. This point can be
sent to the IRB 6 to make a calibration movement (section 4.5) or can
be sent to the IRB 2000 to make the position movement (section 4.6).
The camera communication with vision module is made through a
Fire-Wire. Network connection communication with Robot control
module is made through matcomm. The vision module is further
described in section 4.4.

The robot control module receives a feature point in image
coordinates in order to control and generate the trajectory that is sent
in joint space through matcomm to the robot. For each experiment
was built a robot control module.

The system forms a close loop which start with the cameras that
sends the feature points to the Robot Control module. Then, a
trajectory is built to move the robot to the desired position.

4.2 External API (robot, matcomm, camera)

Robot

Functions used for ABB IRB-6

irb6boot
It is a shell scrip to boot the robot system for IRB-6.

make action
Open the connection with the robot IRB-6.

Functions used in Matlab for ABB IRB-6

Sync
Function to send the robot to the home position.

[joints]=CartToJdoints([x y z j4 j5])
Inverse kinematics, that converts Cartesian coordinates to Joints values. The
inputs are the Cartesian coordinates and return the joint -values.

[xy z j4 j5]=JointsToCart([j1 j2 j3 j4 j5])
Forward kinematics, that converts Joints values to Cartesian coordinates.
The inputs are the joint-values and return the Cartesian coordinates.

Functions used for ABB IRB-2000:

irb2000boot
it is a shell scrip to boot the robot system for IRB-2000.

Department of Automatic Control, Lund Institute of Technology 48

Computer Vision and Kinematic Sensing in Robotics

make action
open the connection with the robot IRB-6.

mjdeg([j1 j2 j3 j4 j5 j6 time socket])
Used to send joint values to IRB-2000.

Joint=invkin2400(toolToBase, front, noflip, tool_length)
Inverse kinematics, that converts Joints values to Cartesian coordinates. The

inputs are: joint space, front, noflip and tool length. It returns the Cartesian
coordinates.

[ToolToBaseFrame]=forward2400(joints, tool_length)

Forward kinematics, that converts Joints values to Cartesian coordinates.
The inputs are the joint-values and tool length. It returns the Cartesian
coordinates.

Matcomm

The Matcomm functions used in the Solaris system are the following:

[ID] = matcomm('server', PROCESS)
To create a server called by process that listens for incoming requests.

[ID] = matcomm(‘'open’', TARGET, PROCESS)
To open a communication line with process. Target is the host to connect.

[b] = matcomm(‘'more’, ID)
To determine if data is available from the communication line in ID process.
Return one or zero if receive or not data respectively.

matcomm(id, data)
Writes a packet to the id system.

[data] = matcomm(id)
Reads a packet from the id system.

[ID] = matcomm('close’, ID)
To explicitly close communications line with ID.

The Matcomm functions used in the Windows system are the
following:

void M atCommwWin32Init();

Initializes the WINSOCK2 library and it must be called before using any
Matcomm functions in WIN32.

MatCommLine *MatCommOpen(char *host, char *process, int timeout);
Opens a communication line to the selected 'process' in 'host'. The call
terminates after 'timeout’ seconds if 'timeout’ greater than 0O, even if a
connection has not been made.

Department of Automatic Control, Lund Institute of Technology 49

Computer Vision and Kinematic Sensing in Robotics

int MatCommReadDouble(MatCommLine *line, double *data, int rows, int
cols);

If packet contains reals reads them into data and returns true otherwise it
skips one datapacket and returns false; rows and cols contains the
dimensions of the data matrix.

void MatCommWriteDouble(MatCommLine *line, double *data, int rows, int
cols);
Writes a data packet type double to the target system; rows and cols contains
the dimensions of the data matrix.

void MatCommcClose(MatCommLine *line);
Closes an opened ‘line’.

Camera

The Fire-i APl can be divided into tree different parts:
Camera Initialization and Control Engine
Isochronous Receive Engine
Display Engine

The three parts operate independently from each other. The isochronous Receive
Engine uses a FIREI_ CAMERA_STARTUP_INFO dructure to perform a
isochronous receive. These structures are created and exported by the Camera Control
Engine. The same goes for the FIREi_CAMERA_FRAME structure, which is created
by the Isochronous Receive Engine and then used by the Display Engine.

The scheme below describes the structure of the Fire-i API.

The Fire-1 API functions are need in the following sequence:

Functions used to initialize the vision system.

FIREi_STATUS Filnitialize(void);
Initializes the Fire-i dll for the caller.

FIREi_STATUS FiBusReset(IN ULONG uAdapterNumber,
IN BOOLEAN bShortReset);
Issues a software initiated long or short bus reset.

FIREi_STATUS FiLocateCameras(
IN OUT FIREI_CAMERA_GUID *pCameraGuidArray,IN ULONG uFlags,
IN OUT ULONG *uNumberOfCameras);

Locates Digital Cameras on the local bus.

FIREi_STATUS FiOpenCameraHandle(

OUT PFIREi_CAMERA_HANDLE pCamerahandle,
IN PFIREI_CAMERA_GUID pCameraGuid);

Department of Automatic Control, Lund Institute of Technology 50

Computer Vision and Kinematic Sensing in Robotics

Opens a handle to one of the cameras on the local bus.

FIREi_STATUS FilnitializeDisplay();
General initialization of all the display objects.

FIREi_STATUS FiCreateDisplayWindow(IN HWND hWnd,
ouT PFIREiI_DISPLAY_HANDLE pDisplayHandle,IN
PFIREi_CAMERA_STARTUP_INFO pStartupinfo,IN POINT DisplayPosition,
IN OUT BOOL* bOverlay);
Creates a FIREi Camera Display Window and attaches it to a user provided GDI
window.

FIREi_STATUS FiShowDisplayWindow(
IN FIREi_DISPLAY_HANDLE hDisplay);
Shows a FIREi Camera Display Window.

FIREi_STATUS FiCreatelsochReceiveEngineg(
OUT PFIREI_ISOCH_ENGINE_HANDLE phlsochEngine);

Creates an Isochronous receive engine and returns a handle to it.

FIREi_STATUS FiStartlsochReceiveEngine(

IN FIREi_ISOCH_ENGINE_HANDLE hlsochEngine,

IN PFIREi_CAMERA_STARTUP_INFO Startuplnfo,

IN ULONG uAdapterNumber);
Starts the provided Isochronous Receive Engine and prepares it to receive frames
described by the Startuplnfo structure.

FIREI_STATUS FiResetCamera(
IN FIREi_ CAMERA HANDLE CameraHandle);
Resets the camera.

FIREi_STATUS FilsCameraRunning(
IN FIREi_ CAMERA _HANDLE CameraHandle,
OUT BOOLEAN *plsRunning);

Stops the camera.

FIREI_STATUS FiStartCamera(

IN FIREi_ CAMERA_HANDLE CameraHandle,

IN PFIREI_CAMERA_STARTUP_INFO pCameraStartuplinfo);
Starts the camera with the specified startup format.

FIREi_STATUS FiQueryCameraHandleEXx(
IN FIREi_ CAMERA _HANDLE CameraHandle,
IN ULONG Offset,
OUT PVOID Buffer);
Returns the data contained in the specified offset of the camera.

FIREi_STATUS FiSetCameraRegister(
IN FIREi_ CAMERA HANDLE CameraHandle,
IN CONTROL_OID ControlOID,
IN OUT PVOID Buffer,
IN ULONG uBufferLength);
Set various features of the camera to specific values.

The following functions are used every time a frame is retrieved and
displayed.

FIREi_STATUS FiGetNextCompleteFrame(

Department of Automatic Control, Lund Institute of Technology 51

Computer Vision and Kinematic Sensing in Robotics

OUT PFIREi_CAMERA_FRAME pCameraFrame,
IN FIREi_ISOCH_ENGINE_HANDLE hlsochEngine,
IN DWORD dwTimeOut);
Retrieves a pointer to the next complete Frame transmitted by the camera.

FIREi_STATUS FiYuv2Rgb(
IN PFIREI_CAMERA FRAME CameraFrame,
OUT BYTE *pRgbBuffer,
IN OUT DWORD *pdwBufferBytes)
Convert a image from YUV to RGB representation.

FIREi_STATUS FiDisplayCameraFrame(

IN FIREi_DISPLAY_HANDLE hDisplay,

IN PFIREIi_CAMERA_FRAME CameraFrame);
Displays a camera frame in a specified window.

The followings functions are used to terminate the vision system.

FIREi_STATUS FiCloseDisplayWindow(
IN FIREi_DISPLAY_HANDLE hDisplay);

Cleanup and destroys all objects created by FiCreateDisplayWindow.

FIREi_STATUS FiStoplsochReceiveEnging(
IN FIREi_ISOCH_ENGINE_HANDLE hlsochEngine);
Stops the provided Isochcronous Receive Engine.

FIREi_STATUS FiDeletelsochReceiveEnging(
IN FIREi_ISOCH_ENGINE_HANDLE hlsochEngine);

Deletes an open IsochReceiveEngine and frees all the structures created by
FiCreatelsochReceiveEngine.

FIREi_STATUS FiStopCamera(
IN FIREi_ CAMERA HANDLE CameraHandle);
Stops the camera.

FIREI_STATUS FiCloseCameraHandle(
IN FIREi_CAMERA_HANDLE CameraHandle);
Closes the handle of a camera.

void FiTerminate(void);
Terminates Fire-i support for the specified application.

These functions are used in the vision initialization phase and every
time that a camera parameter is changed, in our case shutter and
gain.

FIREi_STATUS FiQueryCameraHandleEx(
IN FIREi_ CAMERA_HANDLE CameraHandle,
IN ULONG Offset,
OUT PVOID Buffer);
Returns the data contained in the specified offset of the camera.

FIREi_STATUS FiSetCameraRegister(

IN FIREi_CAMERA_HANDLE CameraHandle,
IN CONTROL_OID ControlOID,

IN OUT PVOID Buffer,

IN ULONG uBufferLength);

Department of Automatic Control, Lund Institute of Technology 52

Computer Vision and Kinematic Sensing in Robotics

Set various features of the camera to specific values.

4.3 Kinematics Control (Simulink/Matlab)

The kinematics control of the IRB 6 and IRB 2000 robots are done in
Matlab/Simulink environment that runs on Solaris platform.

The Simulink model runs with the fixed sampling time of 0.05
seconds.

The model has two subsystems, Figure A.1. One for moving the end-
effector to a goal position, Figure A.2 and another to use in the control
loop.

The calibration movement starts by positioning the stereo rig into an
area so the cameras have a full vision of the board. The positioning
movement starts by moving the IRB 2000 end-effector in the vision
volume of the stereo rig mounted on IRB 6.

The corresponding Simulink blocks have the same structure for both
movements. They only differ in internal functions, such as
ReceivingPoints and Traj2Robot.

The ReceivingPoints function receives the points from the vision
module (section 4.5) by matcomm and is describe in detail for both
movements.

The Traj2Robot2 receives the desired destination in Cartesian

coordinates and returns a trajectory for the robot. It has the following

steps:
- Receive the error in coordinates x, y and z.

Update the trajectory with the last position.

Convert Cartesians to joints.

Perform the trajectory of the robot with the interpolate

function.

Send the trajectory by Matcomm to the robot.

The Interpolate function creates a trajectory from the last position
parameters to the desired position. The trajectory is split into small
pieces and the entire trajectory is performed in 0.1s.

4.3.1 Calibration Movement

The stereo rig is mounted on the IRB 6, which is used for the
calibration movement.

The calibration consists of sequence of movements along the world
space X, y and z-axis. In x and y, the purpose is to keep the cameras

Department of Automatic Control, Lund Institute of Technology 53

Computer Vision and Kinematic Sensing in Robotics

centered on the board for the calibration to have a bigger area of
analysis. The movement in z-axis is in intervals of 10 mm.

The calibration model is a board with several holes and a cross in the
center, needed to create a reference on the board.

A problem found in this experiment was that of different orientations
between the robot coordinate system and the cameras system. A first
task was to align the system coordinates of systems, robot and stereo
rig x and y coordinates.

This experiment starts to use a proportional controller with different
gains in each coordinate, Figure A.3. The step response of the closed
loop system is shown in Figure 4.2. The figure shows clearly that there
is a steady state error. The error decreases when the controller gain is
increased, but the system then becomes oscillatory.

Erer s

=E
P k=015
0 P02

Figure 4.2

Proportional controller applied to x coordinate in Cartesian space. It can be
seen how much the gain can influence the response.

To eliminate the stationary error a Pl controller was implemented, see
Figure A.4. This controller improves a bit the response. The gain is
K=0.07 and the integral time is Ti=30 (Figure 4.3)

Department of Automatic Control, Lund Institute of Technology 54

Computer Vision and Kinematic Sensing in Robotics

Ermrer i

P =0t

il P =007 Ti=M
[0 4n 60 B0 Ly 120 140 160] 00
Time 1013}
Figure 4.3

Pl controller compared with P controller.

It was also tested a PID control, that improve the response (Figure
A.5). The parameters for this control are k=0.1, T,=30 and the
derivative time is Tq=0.25. With PID is possible to see that it has a fast
response but the trajectory is shaking a bit. The reason of these
oscillations during the trajectory is because it is needed to predict
some reference points. Figure 4.4.

=] = =

=

Errar &
e

210 =l 1 Ti=30 Ted=id 25
Pl k=007 Ti=10
281 PRe01

B 0 an 50 B0 W iz 140 180 180 00
Time (.13}

Figure 4.4

PID Controller.It is compared with different controllers such as P and Pl

Department of Automatic Control, Lund Institute of Technology 55

Computer Vision and Kinematic Sensing in Robotics

Another test to improve the control was a Pl with anti-windup. The
behavior of this control is unstable than only PI. Figure 4.5.

Pl k=007 Ti=dl
2 Pl ani-windup B=0 08 Ti=30 Ti=1

Ermor x

20 0 &0 8a WO NEE Ba0 TED 180 200
Tima [38c)

Figure 4.5

Pl controller with anti windup

There was implemented also some improvements to control the time
delays due to the vision module has a variation in a sampling and the
control model has a fix sampling time. This means that some
samplings are needed to predict to have a fast control. There were
tested three different approaches that can be seen in Figure 4.6.

Emor

=10

Thit (G

Figure 4.6

Different predictors

A good way to predict the next state is to use the Kalman filter with
predictor but it was difficult to find good parameters for the system.
The result was not so good.

Department of Automatic Control, Lund Institute of Technology 56

Computer Vision and Kinematic Sensing in Robotics

In the calibration experiment the best controller is a PID to control the
position for x and y coordinates.

4.3.2 Position Movement

The positioning movement is made with the two robots, IRB 6 and IRB
2000. The IRB 6 put the stereo rig in a pre-defined position to have a
full vision of the two crosses. The IRB 2000 starts the control in start
position pre-defined also.

This experiment has the same problem as the previous experiment,
which is that orientation of the coordinate system of the IRB 2000 and
the cameras. The angle of difference between the coordinate systems
was measured g =46,09 degrees to align the coordinates. This is made

with a rotation matrix about the z-axis

gos(a) - sin@) 0 Oy

0
e u
~sn(@) cos(@) O O
RZ(CI):e 1 u
0

D

0 0 ou
0 0 1

D:D

Now coordinate axis of the robot and the cameras are aligned. For this
experiment is applied the same control as in calibration experiment,
but due to the restrictions in time it was not tested a PID to see if it
works better than a proportional control. The behavior is shown in
Figure 4.7.

Figure 4.7
Behavior of P controller applied in x and y coordinates.
The y robot coordinate represents the control in depth between the
object and the end-effector. The error y is distance between objects.

The distance between the cameras and the depth of the object is
calculated using displacement

Department of Automatic Control, Lund Institute of Technology 57

Computer Vision and Kinematic Sensing in Robotics

CalcDiffZ = ((Xirb2000cam1 - Xirb2000cam2) = (Xobjectcam1 = Xobjectcam2))

These two displacements are subtracted from each other, which
equals the difference in depth between the object and the robot.

If CalcDiffZ is negative, it means that the object is closer to the stereo
rig than the IRB 2000 tool. The CalcDiffZ is applied to the Yropot
coordinate.

Then, after calculation the error is inserted into a proportional
controller and sent to the Traj2robotIRB2000 function, that
downloads the trajectory to the IRB 2000.

Department of Automatic Control, Lund Institute of Technology 58

Computer Vision and Kinematic Sensing in Robotics

4.4 Vision Processing (Visual C++)

The Vision Processing prototyping is divided in to three main areas:
The camera communication and image retrieved.
The communication through Matcomm with the Sun
workstation.
The interface communication and visualization.

The dataflow sequence starts by initializing all variables. In particular
the state variables (VirState=0; CamState=0; DisState=0;
CalibState=0; RedBlueState=0). It also allocates memory to perform
the image processing algorithm.

Enviroment Thread

Bar Window
Camera Window
Image
ProcessingWindow
Virtual Window

Initialize Desktop - Image Conversion
Application YUV to RGB
Initialize Fire-I > - LineScan and
and Cameras Feature Points
Initialize variables Extraction

Length Filtering
Connected Vectors

Detection
Lines Detection

Cross Detection

Image Processing Thread

VirState is set to 1 if running the Virtual Robot Experiment.
CamState is set to 1 if the cameras are being used.

DisState is set to 1 if running the Image Processing.

CalibState is set to 1 if sending the lattice to the Sun Workstation.
RedBlueState is set to 1 if running the Positioning Experiment.

long*malloc_regionscan_buffer() and long*
malloc_regionscan_rstat() allocate memory to use in the line scan
algorithm.

The Firei-i initialization, communications channels and camera

structures were filled using BOOL InitCameraHandleArray() .

Department of Automatic Control, Lund Institute of Technology 59

Computer Vision and Kinematic Sensing in Robotics

The image format for display in windows is defined using BOOL
CreateDIB().

In BOOL InitApplication(HINSTANCE hlinstance) the windows
format was specified.

After this setup the Main window is built and a call back procedure
waits for user interaction Figure 4.8, by LRESULT CALLBACK
WndDIgProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM
IParam).

|
Ry
e | T
ntiply | Twkig | Subniishies]
Fitm drgla / Tramhokd | - Camunication Fitas Ditanca
Eabvssmr Wachon: §red Pard Bebess Wenlite
bR 1] [s
Bt . ekt Pase E B b Wed o
|_ 0 I_'w'-a
; : g5, Fosit
Hin et o pisehy M Ebasan iacion
1 Siake -3
M 'Winight of pissh b Vedt o
I o i
g [B
Lafl Cisgrm ik Faphi Cawmn
Gan Ghtte E.n-F‘-lml s Shadl
HED.-'H.LEl J _I
Mo
S
I Rowks
™ Ve
I Connect Wact
L
T Unflesd Math
T Fitessd Mesh
2 L i vead ke b 1 2 |
P I Treshend Lo
1 T s kd
Ohgaci Fiobad
L™ Leky Iem Lot Ly
— ks Twe I I
Fighl® RAghly’ o Fight! Fighif
;|
'
DL DY DEtM Gy
=0 [Ek

Figure 4.8

User Interface

The button “Virtual” initializes the communication with the Sun
machine via matcomm using void InitControlRobot(HWND
m_hwndL,HWND m_hwndR) and starts a thread for the image
processing. The state variable VirState is set to 1. The BOOL
CreateWinVir() function creates a window for the camera image.

The centre cube position is solved and sent back via matcomm to the
Sun workstation using void ControlRobot(void* a _pNoUse). When

Department of Automatic Control, Lund Institute of Technology 60

Computer Vision and Kinematic Sensing in Robotics

the Virtual thread is finished the communication is terminated and
the window closed using void FreeRobotHandle().
The state variable VirState is set to O.

The button “Camera” creates a window for the camera image to be
displayed in, using BOOL CreateWinCam(). The cameras are started
using BOOL InitDisplayWindowArray(HWND hwndL,HWND hwndR).
The state variable CamState is set to 1.

The gain and shutter registers for the cameras are set using BOOL
Var(). The scroll bars are initialized using BOOL
OnDlgInitDialog(HWND a_hDIg).

Another thread is created using void WaitAndDisplayFrame(void*
a_pNoUse) to receive the camera frames in real time.

If the camera window is closed the camera is stopped from
transmitting images and the communication line is closed. The state
variable CamState is then set to O.

It is possible to change the shutter and gain in real time for both
cameras, this is done using void OnHScroll(HWND a_hDIlg,WPARAM
wParam, LPARAM IParam), which is call by the call back function for
the main window.

The button “Display” creates a window for the processed image to be
displayed in, using BOOL CreateWinDis(). The state variable DisState
is then set to 1.

The image and vision processing is done according to the next flow
chart.

Feature
Image PRgbBuffer || inescan and Points Length
conversion |~ Feature "> Filtering
YUV to RGB | Points '
Extraction

Horizontal Connected

Line and Vectors
Cross Vertical line | Lines information | Connected
Centre <: Detection <: Vector_s
Detection Detection

The box “lmage Conversion YUV to RGB” calls the function
FiYuv2Rgb(&CameraFrame,pRgbBuffer,&pdwBufferBytes)).
pRgbBuffer is passed to the next box.

The image is received through a fire-wire card and is stored in memory

where it is retrieved by the use of a UBcore function to a buffer. There
is an independent buffer for each camera image.

Department of Automatic Control, Lund Institute of Technology 61

Feature
Points
not
excluded
on the

Filter

Computer Vision and Kinematic Sensing in Robotics

The image is stored in a buffer of continuous bytes. The format of the
image is RGB with 24 bit color depth (8 bits Red, 8 bits Green and 8
bits Blue.

The color components for each pixel follow BGR distribution in the
buffer, the first byte is the Blue component, the second is the Green
component and the third is the Red component.

The image is composed by three bytes for each pixel and followed by
another three bytes for the next adjacent pixel, and so on. The image
pixels are ordered from left to right and top to bottom. The size of the
image is 320 width and 240 high.

To get the color component for each pixel the following code was used:

for(1=0;1<320;1++)
for(J=0;J<240;J++)
{
count = (320*(239-J)+1)*3;
b=*(pRgbBuffer+count+0);
g=*(pRgbBuffer+count+1);
r=*(pRgbBuffer+count+2);

The box "LineScan and Feature Points Extraction” calls the function
void regionscanBlack (unsigned char* image, long* buffer, long*
rstat, long* rstatlen) which is a line scan on black color segment
detection. The function is called by void Drawlmage(IN BYTE
*pRgbBuffer) where a filtering on the color mass is done (i.e. filter on
number of pixels included ion the color segment). The feature points
are sent to the next box.

The box "Length Filtering” use void
CalculateClosestNeighbour(BYTE *pRgbBuffer) to find the closest
neighbour feature point. The function void FilterDist(BYTE*
pRgbBuffer) use the closest neighbour feature point to compute the
length of vectors between points and perform a filtering on the vector
length size. The feature points not excluded are passed to the next
box.

The box "Connected Vectors Detection” computes a filtering on similar
vectors via the function void CalculateVectors(BYTE* pRgbBuffer).
The information in the connected vectors (length, angle,feature points
included, start, end) is sent to the next box.

The box “Lines Detection” clusters the connected vectors received from
the previous box into a horizontal and vertical line using void
CalculateLinesSegments(BYTE* pRgbBuffer). The horizontal line

Department of Automatic Control, Lund Institute of Technology 62

Computer Vision and Kinematic Sensing in Robotics

and vertical line with their associated information, which is the
connected vectors is sent to the next box.

The last box “Cross Centre Detection” uses the function void
LineCam(BYTE* pRgbBuffer,double* a,double* b,double* c,double*
d,double* Xint,double* Yint) to compute the cross center. This is
done using the least square line method to fit the line in the feature
points included in connected vectors clustered to the line.

If the button “Send Point ” was pressed the cross centre is sent to the
Sun workstation. The function void SendPointInit() is called from the
main window callback function and the state variable SendPoint is
set to 1. This enables the points to be sent via Matcomm by the
function void SendPoint(). The communication is done inside the
image processing thread.

The button “Pause S. Point” pauses the communication, the button
“Stop S. Point” stops the communication and closes the matcomm
line.

The button “Save Pattern” sets the state variable PatternState to 1.
The following data flow then is performed.

Cross

Centre — |

Detection
Lattice Send
Filling —) to

Sun

Points

Corresponde ——— ﬁ

nce

The box “Cross Center Detection” corresponds to the last box in the
previous figure if at the end there is no cross found the filling of the
lattice is not possible.

The box “Points Correspondence Recognition” solves the
correspondence problem, and sends the result to the “Lattice Filling”
box. This box groups the detected points into vertical lines. The two
previous algorithms are performed in void GetTableLines(BYTE
*pRgbBuffer,double a,double b,double c,double d).

If the SendState and PatternState variables are set to 1 then the
lattice is sent via Matcomm to the Sun workstation, using the function
void SendPoint().

The button “RED/BLUE” is used to alternate from the calibration
movement image processing to the positioning movement image

Department of Automatic Control, Lund Institute of Technology 63

Computer Vision and Kinematic Sensing in Robotics

processing. This means that instead of making a black line scan now
it is done two line scans, one for Red and other for Blue.

The data flow is the same as for the calibration movement image
processing after the line scan, but now in two separated databases.

RED RED RED
Length —) Connected [—) Lines
Filtering Vectors Detection
J L
{} RED Cross
- Centre
Image LineScan Detection Send both
Conversion [y and points
YUV o] | Feature BLUE Sun
Points
Cross
Centre
1T
BLUE BLUE BLUE
Length ::> Connected :> Lines
Filtering Vectors Detection

In the box ” LineScan and Feature Points Extraction RED/BLUE” it
was used the function void regionscanBlue (unsigned char* image,
long* buffer, long* rstat, long* rstatlen) which is a line scan on blue
detection. It was used the function void regionscanRed (unsigned
char* image, long* buffer, long* rstat, long* rstatlen) which is a
line scan on red detection. The previous functions are called by void
Drawlmage(IN BYTE *pRgbBuffer) where a filtering on the color mass
is done. The feature points are sent to the next boxes, red feature
points to the upper box and the blue feature points to the bottom box.
Then cross centre is computed and if the button “Send Point ” was
pressed the crosses centre is sent to the Sun workstation.

The check boxes are used to display are used to display in the image
processing in the image processing window.

The upper edit boxes are used to change the parameters on-line of the
filters.

The “Submit Values” is used to apply the parameters change to the
filters.

The bottom left edit boxes are used to display the cross centre
coordinates in both cameras and the (x,y) displacement of the object
Crosses.

The bottom right edit boxes are used to display the cross centre
coordinates in both cameras and the (x,y) displacement of the Robot
Crosses.

The centre edit boxes are used to display the time profile.

Department of Automatic Control, Lund Institute of Technology 64

Computer Vision and Kinematic Sensing in Robotics

If the button “Exit” is pressed all the windows are closed,
communications stopped and the handles for the cameras released in
the function BOOL FreeCameraHandleArray().

Department of Automatic Control, Lund Institute of Technology 65

Computer Vision and Kinematic Sensing in Robotics

5 RESULTS AND CONCLUSION

5.1 Performance Estimation and Code Profiling

The global system is working at 11 Hz when the positioning movement
is performed and 15 Hz when the calibration movement is performed.
This difference is due to the fact that in the positioning movement the
cross recognition algorithm runs twice.

Calibration Movement

The 15Hz frequency means 70 milliseconds of time span. When a
profiling is done it shows that the Line Scan algorithm consumes 15
milliseconds, the interface display and communication takes 30
milliseconds and the rest of the algorithm consumes 25 milliseconds.

Positioning Movement

Then 11Hz frequency means 90 milliseconds of time span. When a
profiling is done it shows that the Line Scan algorithm consumes 15
milliseconds, which actually means 30 milliseconds because it runs
twice, the interface display and communication takes 30 milliseconds
and the rest of the algorithm consumes 30 milliseconds.

These timings weren’'t fixed, they depend on the amount of
information to be processed, but the times shown above are the
maximum obtained in the experiments.

The cameras work at 30 Hz and are software triggered. This means 33
milliseconds between new images and some time difference between
cameras image acquisition.

The time consumed in the communication and in the control loop are
negligible.

5.2 Robustness

The system proved to be robust when used in an environment with
stable light conditions. The cross recognition algorithm is very robust,
i.e. with the cross centre outside the image, it is estimated their
coordinates.

There is good robustness to image noise.

Even with a time delay between samples variable, the control system
has a good response.

When there is a fast movement of the cross, the image processing
algorithm still tracks the cross centre and the control have a sharp
and fast response.

Department of Automatic Control, Lund Institute of Technology 66

Computer Vision and Kinematic Sensing in Robotics

When it is performed the z movement in the calibration experiment,
even with the camera far away from cross the system proof to be
robust.

5.3 Errors

The positing experiment has an error of 2 centimeters in the depth
position and the cross centering is precise. In the calibration
movement the position above the cross centre was precise.
The main cause of the errors were:
Cameras Software Triggering, different point in time for each
camera.
Assumption of position and images available at the same point in
time.
Handling the time delays.
Not using the lattice information (assumption that the disparity at
a certain depth is the same for all the image area)

5.4 Conclusion

In this investigation we have presented the current drawbacks of
image-based visual servoing and described a new method to cope
these drawbacks.

The purpose of this investigation was to build a lattice that could
accurately represent characteristic depth disparities and to use it in
the positioning movement. This has not completely been achieved. The
lattice was obtained but it wasn’'t used on the positioning movement.
We have a system that includes a robot system, a vision system, a
cross recognition algorithm and a lattice acquisition algorithm.

The lattice acquisition was achieved with a good accuracy. The
positioning movement was made relying only on the disparity
difference among the crosses.

The vision system and the image processing algorithms were totally
built during this investigation, which proved to be very time
consuming. Since Microsoft Visual C++, cameras handle and Fire-i
grabber cards were tools for us more time was spent in learning how
to use them.

The results where satisfactory and system proved to be robust. The
errors due to time delays were the main system bottleneck.

5.5 Future Research

Future work in this investigation should focus the improvement of the
time performance in image processing functions.

Also should be improved the control loop, since the scheme directly
uses visual feedback as an input of the control law without any

Department of Automatic Control, Lund Institute of Technology 67

Computer Vision and Kinematic Sensing in Robotics

supplementary estimation step. So path planning in the image should
be a future work.
The system could be greatly improved by overcame the soft triggering

of the cameras.
Although the system isn’t totally developed it is a very good base work
for future investigations.

Department of Automatic Control, Lund Institute of Technology 68

Computer Vision and Kinematic Sensing in Robotics

REFERENCES

Klas Nilsson. “ Industrial Robot Programming”. Department of Automatic
control, Lund Institute of Technology, May 1996.

Emanuele Trucco and Alessandro Verri. “Introductory Techniques for 3-D
computer Vision”. Prentice Hall, NJO7458.

Jorge Batista. “Sistemas de Visao Activa: Comportamentos e Calibracao”.
Doctoral Thesis, Department of Electrical Engineering, Coimbra
University, 1999.

Urbano Nunes. “ Controlo de Robos com Realimentacao Sensorial no
Espaco Tarefa”. Doctoral Thesis, Department of Electrical Engineering,
Coimbra University, 1995.

Johan Nilsson. “Real-Time Control Systems with Delays”. Department of
Automatic control, Lund Institute of Technology, January1998.

Gustaf Olsson and Gianguido Piani. “Computer System for Automatic
and Control”. Department of industrial Electrical Engineering and
Automation, Lund Institute of Technology, 1993.

Karl J. Astrom and Bjorn Wittenmark. "Computer-Controlled Systems”.
Prentice-Hall, ISBN: 0-13-314899-8.

Karl-Erik Arzén. “Real-Time Control Systems”. Department of Automatic
control, Lund Institute of Technology, 2000.

Johan Bengtsson and Anders Ahlstrand. “A robot Playing Scrabble Using
Visual Feedback”. ”. Department of Automatic control, Lund Institute of
Technology, April 1999.

John J. Craig. “Introduction to Robotics”. ISBN 0-201-09528-9.

Department of Automatic Control, Lund Institute of Technology 69

Computer Vision and Kinematic Sensing in Robotics

A-SIMULINK MODELS

[
1] Ind Out Seoped
Constant1 CenterBoard
MATLAB]
[y |
1 Function i
TrajZRobot Scopel
; aut1 Switch
| eIty
Censtant StartPosition
timer | I:l
S-Function Scope

Figure A.1-Main model with sub-systems. This model is general for both
experiments.

) p| MATLAB
= Function Qut
L statposition.m

Otz

Figure A.2-Sub-system of main module. This model has the function of
positioning the robot in a position to start the control.

Department of Automatic Control, Lund Institute of Technology

70

Computer Vision and Kinematic Sensing in Robotics

controlPx

COutput =

120

w reference

n) MATLAR
Function

In1

control Py

MATLAB Fen

Output y

v reference

jointa

Figure A.3 sub-system in calibration experiment. This module performs the
control with a proportional controller.

¥

controlPlx

Errar =

120 Output =

= reference

GainZ

Errarx
—P{ K

Fain3

contralPly

MATLABR
Funetion

In1

MATLAB Fon Qutputyz

a

160

joint 4

o reference Zaing

Figure A.4 -Sub-system in calibration experiment. In this module is tested the
Pl controller.

Department of Automatic Control, Lund Institute of Technology 71

Computer Vision and Kinematic Sensing in Robotics

FID contraller

I controlPlx

Error
120 & Output =
F 3
¥ reference
-]
Gainz

MATLABR SEape s

T Function Vv ol Ti S NzHH

n o ol

MATLAB Fen s Td+HN*h-Td controlPly
Faind

Lrizcrete Fen Output y2

Scope

G0

y referance Gaind

NN

Ll
Td+N*h-Td

joint s

Dizcrete

Figure A.5 -Sub-system in calibration experiment. In this module is tested the
PID controller.

Department of Automatic Control, Lund Institute of Technology 72

