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Chapter 1

Introduction

In this project we have developed new image processing techniques for automat-
ing X-ray registration, which is a central process within radiation oncology. X-
ray registration involves the comparision of two X-ray images to estimate the
relative displacement and rotation between the two pictures. The translation
can be either horizontal (x) or vertical (y), and the one dimensional rotation is
considered along the z-axis, which is perpendicular to the xy-plane.

Prior to the set of X-ray cancer treatments, a reference image of the patient
and the best possible location of the tumor is simulated in an Odelft Simulix
MC radiotheraphy simulator1. The film used for recording this image is of
diagnostic quality and accordingly the image, which will be refered to as the
simulated image in this report, is almost free from any disturbance. Still, as it
can be seen in Figure 1.2, the image has prominent gridlines which may cause
problems for the comparision of the two X-ray images later on. The images
shown in Figure 1.2 and Figure 1.3 correspond to a cancer tumor in the pelvis
region.

For the pelvis cancer treatment, a Varian 600C or a Varian Clinac 1800 lin-
ear accelerator2 is used to produce 4MV or 6MV photons. Different energy level
photons are used for different treatments. A collimator situated after the accel-
erator delimits the area where the X-ray radiation is let through, and the beam
of X-rays is then aligned with the cancer tumour according to Figure 1.1. Some
of the patients are treated on a 2 cm thin mattress, called hyper, which improves
patient comfort. The hyper is then used on both simulator and treatment ma-
chines. Under the hyper or directly under the patient, the recording X-ray plate
is found. The collimator is set to let only an as small as possible beam through,
ideally only hitting the tumor. High-dose X-rays are used for therapeutic pur-
poses and it is, therefore, vital that as little as possible of the surrounding tissues
are hit. After each high-dose treatment, the collimator is expanded. Low-dose
X-rays, covering also the surroundings of the tumor, are used to take the so
called portal image, see Figure 1.3. The portal image is later used for the com-
parision to the simulated image, to check the patient alignment. As the portal
image is taken with the same equipment as is used for the treatment, only a con-
ventional X-ray film of lower quality than the diagnostic film is used. Also, the
recording of megavoltage photons makes the image lack contrast resolution [22]

1Nucletron Odelft, Delft, The Netherlands.
2Varian, Palo Alto, CA, USA.
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Figure 1.1: The set up.

and get very blurred. The comparision of the two X-rays is complicated since
the two X-rays are of different quality, intensity, size and perhaps even scale.

As already mentioned, image registration becomes important to prevent the
high-dose therapeutic X-rays from hitting to much of the tissues surrounding
the cancer tumor. In both the simulated and the portal images, corresponding
edges representing bony landmarks of the patient are sought. Once the edges are
found, with the help of some edge detecting operator, only the simplier images
obtained after the edge detection are used for the registration. In order to make
these edge images as simple as possible, it is desirable to decrease the number
of edges found by the edge detecting operator. This can be done by some sort
of preprocessing of the original X-rays, for example filtering. By so doing, main
features of the original X-rays can be strengthened before the edge detection.
The problematic parts of the edge detection are the prominent gridlines in the
simulated image and the pronounced rectangle, originating from the high-dose
treatment area, which is in the middle of the portal image. These steep edges
might have to be removed before the edge detection to distinguish the required
edges of bonemarks. When the corresponding edges are found, a minimisation
algorithm is used to detect possible translation and rotation. The minimisation
algorithm uses a cost function (V ), which is based on a least square algorithm
between the pixel values; the two X-rays are put on top of each other and the
square of the difference in grey value on each pixel position is sum up to a total
cost:

V (Θ) =
N∑
k=1

M∑
j=1

[Zref (k, j)− Z(k, j)]2. (1.1)

The cost function refers to a NxM image matrix, where Zref and Z corresponds

10



Figure 1.2: The simulated X-ray.

Figure 1.3: The portal X-ray.
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to the simulated and the portal image respectively. Θ = [θ1θ2θ3] represents the
translation (x, y), and the rotation (z). After having computed the cost at one
position, the X-rays are moved with respect to each other in order to find the
position that gives the lowest cost. The direction in which one of the X-rays,
the portal, is moved is determined by gradient and hessian calculations. A
pilot study has shown that the cost function has a clear global minimum for
translation of very simple images, such as the images we obtain after the edge
detection.

At present, all registration is done by hand. This motivates a software
for automating the process, that would improve both accuracy and speed of
the treatment. Using this software, decisions about possible alignment will no
longer be based on intuition, consequently the registration could also be carried
out by less qualified personnel.

More and more departments are beginning to use electronic portal imaging
devices (EPID) to verify the positioning of the patient. These devices electron-
ically acquire an image from the treatment field and are therefore easier to use
than portal films as more than one image can be acquired per treatment and the
image can be electronically enhanced immediately after acquisition [22]. Still,
there are reports suggesting that portal images are superiour to EPID [8]. In
addition, new portal images with higher contrast qualities are developed [7].
Many former studies in the area have been carried out with various results.
Some examples of methods can be found in [5], [15] and [16]. The preceding
pilot study suggests that a deeper study, that would go beyond the scope of this
project, is needed for the task. This report is intended to be a first approach to
the problem and to give some guidance on directions that future research could
take. Different approaches to the problem of image registration of X-rays are
presented and tested.

In the first part of this report the technical research is presented. The
second part consists, among others, of different aspects of group work and a
SWOT analysis of the software and the project itself. This part is included in
order to meet the requirements for a Master of Science in Electrical Engineering
with alignment in Business Mangement at Lund Institute of Technology. In
the third part, a final discussion and a conclusion of the two former parts are
found. This project is the part of a joint effort between the Department of
Electrical and Computer Engineering at the University of Newcastle, the Physics
Department at the Mater Hospital and the Department of Radiation Oncology,
also at the Mater Hospital, which are situated on the outskirts of Newcastle in
NSW, Australia.
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Chapter 2

Theoretical Background

2.1 Preliminaries

An image is a reproduction of an object. A radiant source, as for example a
laser, an acoustic wave source as ultrasound, or, as in our case, X-ray radiation,
is used to irradiate the object. The radiation, that has not been scattered away
on its way through the object, or that has been reflected from the object, is then
recorded by a sensor. There are a lot of different sensors, such as the retina in
our eyes, the film in a camera, and CCD cameras, and some are more suitable
than others for various types of radiation. Different radiation also causes varying
disturbances to the recording of the images; for example diffraction, multiple
reflection, back scattering, and surrounding radiation often make the image of
the object blurred, distorted, or noisy. After being recorded by the sensor the
output is sampled and quantisised, hence it becomes digital.

A digital image is an image that has been discretesised in both spatial coor-
dinates and gray level values1. Each digital image is represented by a matrix. In
the matrix each entry (row and colum position) has a value, f(x, y), propotional
to the brightness (or gray level) of the image at the spacial coordinates (x, y),
which correspond to the row and colum position of the matrix, see Figure 2.1.

As a result of the enormous variety of both radiant sources and sensors,
it is hard to build a model for an image recording system. A general block
description is given in Figure 2.2, where f is the radiant energy distribution,
reflected from the object. The optical system, often consisting of lenses, forms
the radiant energy distribution, b.

In the case of this project, f is the radiant energy distribution of the X-ray
beam after going through the body. No optical system is gathering the radiation
before the recording by the sensor, i.e. f = b. The X-ray plates are the sensors. i
represents the intensity image on the plates, which then are converted to bitmaps
through digitisation. Even if X-ray radiation is the radiant source for both of
the images, X-ray radiation with different intensity and films of different quality
are used for the recording. As it can be seen in Figure 1.2 and Figure 1.3, it is
much harder to distinguish different features on the portal image than on the
simulated image.

1Often the gray scale is expressed in values from 0− 255 (28), where 0 is completely black
and 255 is white. The intermediate values represent different darker or lighter gray tones.
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Figure 2.1: Representing a digitalised image with a matrix of size NxM.

Figure 2.2: Model of a general digital image registration system.

Both the simulated and the portal images are already recorded and digitised
into bitmaps on arrival from the hospital. Still, even though the task of this
project begins after the image formation and recording, it is helpful to know
details about the recording in order to continue the chain of blocks presented in
Figure 2.2 in the best possible way for this particular application.

2.1.1 Image registration

The image registration process can be divided into three major blocks, presented
in Figure 2.3. Within each field, different theories have been tried out searching
for the best possible result. Information about the actual recording and digiti-
sation of the images is important, and almost necessary, when selecting from the
huge variety of filters and wavelets, which can be used for the filtering prior to
edge detection. Both theory and trials of different already implemented filters
and wavelets in Matlab have been used while seeking for good preprocessing
methods. Attempts using different edge detection operators were carried out
only on the original simulated image and the original portal image. The best
operator on the original images should also have the best effect on an improved
image, for example after filtering. To not get stuck in the first blocks, all the
minimisation tests were performed on other test images, similar to those that
can be obtained as a result of the edge detection.
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Figure 2.3: Model of the image registration part.
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2.2 Filtering

A filter is a linear or nonlinear operator, L(.), that is acting on the input vector,
x(t) to create the output vector, y(t).

y(t) = L(x(t)) (2.1)

A unit impulse at time zero2 as input causes an important output called the
impulse response where y(t) = h(t) = L(δ(t)). The filter coefficients are rep-
resented in the impulse response function, h(t). For a digital filter, the filter
coefficients are taken at discrete times, t = n ∗ k, h(n):{ h(0), h(1),. . . }. Filters
with a finite number of filter coefficients, a finite h(n), are called Finite Impulse
Response (FIR) filters. Alternatively, Infinite Impulse Response (IIR) filters
have an infinite number of filter coefficients and therefore an ideal response, see
Section 2.2.4. However, they are often impossible to construct. The output
from a casual filter never comes before the input, i.e. h(n) = 0 for n < 0.

In the time domain, the use of linear filters is carried out through convolution
of h(t) and x(t), as shown for a digital filter in Equation 2.2.

y(n) = h(k) ∗ x(k) =
∑
k

h(k)x(n− k) (2.2)

The filter can also be represented in the frequency domain by applying a
Fourier transform on h(t). Convolution in the time corresponds to multiplication
in the frequency domain and, as the latter is an easier action to carry out, it
is often preferable to implement filtering in the frequency domain. H(w), the
impulse response function in the frequency domain, is frequently used to describe
filters throughout this report.

2.2.1 Characteristics of filter

A filter has a stop band, a pass band and also, in the non-ideal case, a transition
band as shown in Figure 2.4(b). H(w), the impulse response function in the
frequency domain, is ideally equal to zero in the stop band and therefore prevents
the frequencies in this interval from passing through the filter. In the same way,
H(w) = 1 (ideally) in the pass band. Realisable filters are often not ideal and
hence do not have an instant change from stop band to pass band or vice versa.
The interval between the two bands is the transition band.

The filter that constraints on what is allowed is called a brick wall filter,
see Figure 2.4(a), because of the step function in its response [26]. This brick
wall filter is an ideal low pass filter and its response, a square wave, is the
ideal low pass response. Thus, the ideal coefficients for a low pass filter are
samples from the sinc function described in Equation 2.3. Equation 2.4 shows
the approximated impulse response function in the frequency domain.

h(n) =
sinc(πn

2 )
πn

=


1
2 , n = 0
± 1
πn , n odd

0 n even, n 6= 0
(2.3)

H(ω) =
1
2
− eiω + e−iω

π
+
ei3ω + e−i3ω

3π
− ei5ω + e−i5ω

5π
+ . . . . (2.4)

2x(t) = δ(t) = (. . . 0, 0, 1, 0, 0 . . .)
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Figure 2.4: Ideal low pass filter and an approximation with 20 terms. The
cut-off frequency is at ω = π

2 , where H(π2 ) = 0.5.

The first term in the summation in Equation 2.4 sets the “DC term” as it
remains when ω = 0. The rest of the summation adds up all of the odd num-
bered frequencies, forming the desired square wave. Ideally, all odd numbered
frequencies are included, i.e. the sum should be infinite. A FIR filter chops off
the series in Equation 2.4 after N terms and produces as a result a Nth approx-
imation of the filter response. The errors due to the cut off are represented in
form of ripple on the output, see Figure 2.4(b). The bigger the N , the narrower
the ripple gets. Nevertheless, its amplitude approaches a constant, about 0.09.
This is called the Gibbs phenomenon [26].

2.2.2 Linear filters

For a linear filter, the operator, L(.), in Equation 2.1, is linear, i.e. it satisfies the
superposition and proportionality principles [19]. These two principles enable
filtering through convolution with the impulse response function, h(n). If L(.)
also is shift-invariant, the filter is linear shift-invariant and it is better known
as a LSI filter.

Two common linear filters are the high pass and the low pass filters. The
simpliest low pass filter takes the average of the input, x(n), and the input
x(n− 1); it is a moving average. x(n) is sometimes referred to as the “identity”
and x(n− 1) as the “delay”. As any linear operator working on an input vector,
the low pass filter can be represented by a matrix. In this case, the matrix would
consist of numbers only in the main diagonal and the sub diagonal on the left
hand side of the main diagonal,

0.5 0 0 0
0.5 0.5 0 0

0 0.5 0.5 0
0 0 0.5 0.5

 .

The number in the diagonals indicates the cut-off frequency of the filter using
normalised frequency. Thus, 0.5 represents the middle of the frequency span,
± π

2 . A low pass filter smoothes the input, as it reduces all smaller and faster
changes in the image. Ideally H(0)=1, but also H(0) ≈ 1 can be called a low
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pass filter3. However, the latter can not produce wavelets, see Section 2.3. The
impulse response of this low pass filter is the coefficients in the main diagonal.

Instead of taking the sum of the signal and the delayed signal to make the
average, the high pass filter takes the difference between the same samples.
The matrix has coefficients in the same places, but the coefficients in the sub-
diagonal are negative instead of positive. A high pass filter picks up the bumps in
the signal. Also, worth mentioning, the Haar wavelet, presented in Section 2.3,
is in fact a high pass filter with coefficients ±1. The impulse response is the
coefficients in the main diagonal.

An example of a simple high pass filter:
0.5 0 0 0
−0.5 0.5 0 0

0 −0.5 0.5 0
0 0 −0.5 0.5

 .

A high pass and a low pass together form a band pass filter , where only
frequencies between the two cut-off frequencies are let through. If instead the
same frequencies are being blocked, the filter is called a band stop filter .

A low- and a high pass filter can be represented in a filter bank and then be
called a Quadrature Mirror Filter, QMF 4.

A FIR filter, low or high pass, is rarely invertible due to the shortened
summation. Nevertheless, a filter bank, see Section 2.2.5, using only low and
high pass filters can be invertible.

2.2.3 Non-linear filters

The operator, L(.), is in this case not linear; it does not satisfy either one or
both of the superposition or the proportionally principles. Therefore, filtering
can not be carried out through convolution between the input and the impulse
response function.

A common family of non-linear filters are the order statistic filters, often
used for noise removal [19]. One of the simpliest filters in this family is the
median filter5. The median value m of a population (i.e. a set of pixels forming
a neighborhood) is that value in which half of the population has smaller and
the other half has larger values than m. A median filter smoothens the data
while keeping small and sharp details such as edges. However, there is a tradeoff
between noise reduction and the sharpness of the image when the size of the
population is increased. The filters, or algorithms, which arrange the pixels
within this certain population in increasing order are described by a mask.
One of the pixel values covered by the mask is set to the current median pixel
value. Examples of masks can be seen in Figure 2.5. A basic median filter
exchanges the middle value of the mask, but a filter can be implemented to
exchange any of the pixel values. The pixel values involved can also be weighted.
Weighted Median, WM, filters are of great interest as they inherent robustness
and edge preserving characteristics from the median filter and resemble linear
FIR filters in certain properties. They offer much greater flexibility in design

3ω = 0 means near very low frequencies as ω = 2πf .
4First constructed by Croisier-Esteban-Galand in 1976.
5Implemented for the first time by Tukey in 1971.
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Figure 2.5: Different masks used in median filtering.

specifications than the median filter, as their filtering behavior can be controlled
by a set of weights. A nonnegative integer is assigned to each input sample in
the observation and the filter (or the algorithm) duplicates each sample to the
number of the corresponding weight and chooses the median value from the new
sequence. Also, nonnegative weights can be used, but the filter is then harder
to implement. Other examples of order statistic filters are the stack filters, the
median hybrid filters, the α-trimmed mean filters, and the L-filters [19].

Another example of non-linear filters are the morphological filters . As
in mathematical morphology, these filters search for geometric forms instead of
analytic features in the images. Many of the members of this family have found
more and more applications in biomedical image processing, shape recognition,
and edge detection etc. [19].

One of the oldest groups of non-linear filter are the homomorphic filters .
These filters use non-linearities such as logarithms to transform convoluted or
non-linear signals to additive signals and then process them with linear filters.
The output from the linear filter is afterwards transformed with the inverse non-
linearity, such as the exponential function for the logarithm. Noise on recorded
images such as the X-rays in this project, is multiplicative. Accordingly, by
using a homomorphic filter, the noise becomes additive and can thus be dealt
with using linear filters such as a low pass filter or a wiener filter[19]. Homo-
morphic filters are also used for image enhancements as they follow the same
principles as the human eye; they increase the intensity of a region of actual
constant intensity, close to the edges of the region. This is called the Mach band
effect and it shows how important edges are to our eyes and, hence, that our
eyes react like high pass filters [19].

More complicated non-linear filters are for instance the polynomial filters
based on Volterra series, and adaptive non-linear filters. Also, neural networks
can be found within the field of non-linear filtering [19].

2.2.4 Designing FIR filters

There are different ways of truncating the ideal response of an IIR filter to
make the best possible Nth order FIR approximation. The easiest way is by
windowing. As the name indicates, a window is applied to the function to form
the pass and the stop band (and the enclosed transition band). The bigger the
window size, the closer to the cut off frequency, ωc the ripple gets in location.
Still, the error amplitudes do not decrease6. Three well known windows are the

6Gibb’s phenomenon.
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Figure 2.6: Structure of a filter bank.

Hanning, Hamming, and Kaiser windows [26].
There are various filters designed to meet different expectations for the ripple

in the stop band and respectively in the pass band. Some examples are the
equiripple filters with the smallest maximum error, the half band and Mth
band filters designed to handle changes in sampling rate, the maximum flat
filters, and the eigenfilters [26].

2.2.5 Filter Banks

A filter bank is a set of filters. Often an analysis bank divides the input signal
into frequency bands, before sending or storing. Afterwards, a synthesis bank
recombines the signal. The filter banks often only consists of low pass and
high pass filters, the output of which is downsampled (analysis) or upsampled
(synthesis). As the signal is both high and low pass filtered in each step of
the bank, down/upsampling is needed to prevent a signal of double size, see
Figure 2.6. The downsampling often implies that only the even samples of the
signal are kept after filtering.

Filters in the filter bank are represented as matrices. An orthogonal filter
bank consists of transposes and inverses of the filter matrix, a biorthogonal of
only inverses. The only total effect of a filter bank after analysis and synthesis
is a delay. Wavelets are, in fact, a filter bank, dividing the original function
into frequency bands. Yet, unlike the FIR filter banks, the frequency bands in
wavelet based banks are logarithmic; the size of the frequency band gets twice
as long in time for each step. In a FIR filter bank, all interval are of equal size.
Sometimes the frequency bands can overlap each other, causing aliasing and
non-orthogonality, see Figure 2.7.
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Figure 2.7: Overlapping responses cause aliasing.
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2.3 Wavelets

A wavelet is a small wave, which is localised both in time and in frequency; the
oscillating property makes it a wave, the localisation a wavelet. Originally, the
word wavelet came from French literature on geophysics [26]. As the wavelet
wave is localised in time, the French word for wave, onde, became ondolette
meaning small wave and, accordingly, through direct translation to English the
word wave became wavelet. The first wavelet was constructed by Alfred Haar
in 1910 and had the shape of a square-wave. Still, Haar did not then call the
function a wavelet. Nowadays, after a fast development in the 80’s, a variety of
different applications are using wavelets and a big diversity of different wavelets,
with various properties, covers almost any need. It is, in most cases, unneces-
sary to create new wavelets. Wavelets are used for applications such as signal
processing, image analysis, and efficient data compression.

Recent important names within the wavelet area are Stéphane Mallat, a
French mathematician, who introduced multiresolution analysis, MRA, described
in Section 2.3.2, in 1989. Ingrid Daubechis, a Belgian mathematician, has con-
structed several families of wavelets and has also shown that wavelets other than
the Haar wavelet can have compact support7. She is also the author of a well
known book on how to apply wavelets [3].

Wavelets can be deeply mathematical, but like Daubechis book, this report
strives only for a very brief and more applied introduction to the immense field
of wavelet theory. Perhaps “Notes on wavelet theory” would be a more correct
title for the section.

2.3.1 Wavelet and Fourier Analysis

Like Fourier analysis, wavelets describe a certain function with the help of some
basic functions. Wavelets were introduced to increase the speed of computa-
tions by making the theory of decomposition applicable also for non-periodic
functions. Fourier analysis8 decomposes functions into components of the
trigonometric functions {sin(j), cos(j), j = 1, 2, . . .}, i.e. it uses these trigono-
metric functions to construct the base onto which the original function is pro-
jected. The Fourier transform is a transformation from the time plane to the
frequency plane and has the following general form:

f(t) = 0.5a0 +
∞∑
i=1

aj ∗ cos(jx) + bj ∗ sin(jx). (2.5)

Trigonometric functions are perfectly localised in frequency (as can be seen
when studying the frequency spectrum of a sin or cosine function), but are
not at all limited in time. Only periodic functions, having the same frequency

7compact support ≈ the time interval of the signal that the wavelet covers (unlike the
cosine and sinus used in Fourier, the wavelets are localized in time). Stricter definition of
support = the closed interval in continuous time outside which the wavelet, W (t), equals zero.
When we close the set where it is nonzero to include the jump location t = 0.5 as well as the
end points, we have found the support of function W (t). Compact support = this closed set
is bounded.

8Jean-Baptiste Fourier, a French mathematician, discovered that it is possible to decompose
any of a large class of functions into component function of only standard trigonometric
functions while studying heat conduction in the early 19th century [18].
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contents throughout the whole signal, can therefore be described by Fourier
analysis. Each Fourier coefficient represents how much of a certain frequency
the original function contains. Many functions can hence be well described, only
by using the significantly large coefficients. This is something that we will find
for wavelet analysis as well. As always, there is one exception to the rule of time
localisation for Fourier analysis, the Short Time Fourier Transform.

The Short Time Fourier Transform, STFT, is also called the Gabor trans-
form after its inventor. A sliding Gaussian window version is used to create a
Fourier transform which is localised in both time and frequency. Stationarity
is assumed inside the window and the window size is, unlike wavelet analysis,
constant. The smaller the window, the better the time resolution. However, the
smaller the window size, the fewer the number of discrete frequencies that can
be represented in the frequency domain. The STFT transform has the following
form:

STFT (τ, ω) =
∫ ∞
−∞

s(t)g(t− τ)e−jωtdt (2.6)

where s(t) represent the signal, g(t − τ) the window around the time-point, τ ,
and the frequency, ω.

Wavlet analysis uses time and frequency located9 wavelets instead of the
periodic trigonometric functions to construct the basis upon which the original
function, f(t), is to be projected. The wavelet transform divides the function
into different frequency interval, or scales. Each scale has its own basis for its
approximation of the original function and for its details, i.e. details containing
frequencies within the frequency intervall that this scale represents, see Sec-
tion 2.3.2. The whole family of basis vectors comes from one single so called
mother wavelet, covering the time interval t = [0, N ]. The mother wavelet is
then dilated and translated with the help of the scaling function, Θj,k, (also
called the father wavelet) throughout the transform. In Figure 2.8 it is shown
how the time interval that the wavelet covers changes, due to dilation and trans-
lation. Notice that the number of periods inside the interval always stays the
same; the carrier frequency changes. This is the fundamental difference be-
tween wavelets and the STFT, which is the closest related Fourier transform,
see Figure 2.10. Thanks to the frequency localisation, wavelet analysis often
needs fewer coefficients than Fourier analysis in order to reconstruct the orig-
inal function. Sudden changes can be described using a high frequent wavelet
only on the position of the change. The periodic trigonometric functions used
for Fourier analysis are not localised in frequency and long summations (hence
more coefficients), such as in Section 2.2.1, have to be used to obtain a good
approximation of the function.

In other words, the resulting wavelet coefficients represent the frequency
content at different positions and on different scales of the image, and their
connection to the original function, f(t), is described by the wavelet transform.
The wavelet transform converts from the time plane to a scale/translation plane,
(j, k), and the scaling functions has the following form:

Θj,k = 20.5∗j ∗Θ(2jt). (2.7)

9time located = the wavelet only approximates the part of the function being in the same
time interval as the wavelets compact support, see footnote in Section 2.3.
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Figure 2.8: Mother wavelets and two dilations and translations.

Figure 2.9: Different levels of approximation of the original function.
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Figure 2.10: The difference between STFT and wavelets.
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2.3.2 Wavelet transforms and multiresolution analysis

Wavelets are splitting functions into several scales of resolution, Vj . Multireso-
lution analysis (MRA) combines the details from different scales; it consists of
studying the differences of approximations made at adjacent levels, the detailed
signals. When it was discovered that the wavelet coefficients could be found
recursively, i.e. that there is a connection between Vj and Vj−1, wavelet trans-
forms became fast transforms; the same transform, or the same filters, are used
over and over again in the decomposition of the original signal.

The transform moves towards larger and smoother subspaces, Vj , and com-
plementing detail spaces, Wj , by taking differences (high pass filtering, see
Section 2.2.2) and averages (low pass filtering, see Section 2.2.2). The differ-
ences between two adjacent samples stay at the finer scale as so called details,
dj,k. The detailed projection of the original function, f , on this scale plane, is
expressed by the coefficients, dj,k, using the wavelets, wj,k, in order to span the
detail space, Wj,k, see Figure 2.11.

Unlike the differences, the averages between the samples continue down (or
up for a pyramidical representation) to the next scale, to become the coefficients,
cj,k, of this scale. At every scale, the scaling function, Θj,k, forms a base for its
approximating subspace, Vj , see Figure 2.9. The approximation (the projection)
of f(t) on Vj , is a combination of basis vectors spanned by the scaling functions
(instead of the wavelets as in the case of the detail space) and expressed by the
coefficients cj,k.

Each scale plane can be looked upon as the result of band pass filtering
applied to the original function (or image matrix), as it represents the original
function in a certain frequency interval. As we re-scale and change levels, the
frequency increases by 2j and the time interval decreases by the same factor.
Borders or features from the image, containing frequencies within the interval
that the scale represents, should be visible in a graphical representation of the
details of the plane. The approximation of the original function in a represen-
tation of the coefficients cj,k should be visible in Vj .

As mentioned earlier in Section 2.3.1, a longer wavelet (in time) represents
lower frequencies of the image. Because of its longer length, less coefficients
are needed to cover low frequency features of the whole image. Often, these low
frequency structures in the image therefore are represented in a very smoothened
and low sampled version of the image. This blurred image is complimented with
coefficients representing finer and higher frequency details. Just as a human ear
can not distinguish between two slightly different high frequencies with the same
accuracy as for lower frequencies, our eyes can not detected too quick or too
small changes in an image or a film. All the coefficients, representing the very
finest details in an image or audio recording, are therefore usually not being
used. Data can be compressed through saving only coefficients representing, for
us, detectable changes or having significantly large values. Different accuracy is
needed for different applications.

In Figure 2.11, the principles of multiresolution analysis will be shown by
transforming a 4x4 matrix using the earlier mentioned Fast Wavelet Transform
in two dimensions. Most of the unidimensional wavelets and transforms also
have multidimensional counterparts.

For orthogonal transforms, see Section 2.3.3, each scale can be calculated
from the former as seen in Equation 2.8. Hence, the original image can be
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Figure 2.11: Multiresolution explained by an example using the Fast Wavelet
Transform.

restored by the sum of all scales. For biorthogonal wavelets, the restoration is
not a direct sum [26].

Vj = Vj−1 +Wj−1 (2.8)

Instead of splitting the frequencies into uniform bands, w to w+∆w, mul-
tiresolution divides the frequencies into octave bands, with steps from w to 2w.
This is the same partitioning as for the music scale. Most commonly, the short-
est note is a 32nd note, corresponding to the 5th level 2−5= 1/32. Often wavelets
stop on that resolution as well, even though the theory goes on to infinity [26].
The only difference is that in music there are notes between for example two
C:s separated by an octave, wavelets only have the end notes.

There are at least two different ways of introducing wavelets, the Continuous
Wavelet Transform, CWT, and the Discreet Wavelet Transform, DWT.

CWT The Continuous Wavelet Transform. The input signal is correlated with
an analysing continuous wavelet. In practice, some discrete version of the
continuous transform will almost always be used, except for showing mod-
ules and phases for some transforms [10]. Leaving out the proofs, we just
state that the CWT is a linear transform and it is covariant under trans-
lation and dilation. The definition of the continuous wavelet transform
follows in Equation 2.10.

W (a, b) =< f,Ψa;b > (2.9)

where Ψa,b represents the scaling function:

Ψa,b =
1√
|a|

Ψ(
x− b
a

). (2.10)
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The signs <> indicates the inner sum, a (a > 0) is the scale parameter
and b indicates the position. f is the original function.

DWT The Discreet Wavelet Transform. A discrete version of the continuous
transform, that generally does not have an exact analytical reconstruction
formula. Two subclasses of the discrete transform exist: redundant ver-
sus non-redundant (e.g pyramidal) transforms and orthogonal versus non
orthogonal bases of wavelets [24]. When it was shown that the wavelet
coefficients on different levels could be found recursively through MRA,
the DWT became the Fast Wavelet Transform, FWT, or as it also is called
the Pyramid algorithm or Mallat algorithm.

2.3.3 Three wavelets

There are three different main kinds of wavelets: orthogonal, biorthogonal, and
semi-orthogonal. Two properties are established for the bases they produce:
linear dependence and completeness. Adding extra vectors to a subspace will
destroy the independence and remove the completeness. Three properties for
wavelets are symmetry, compact support and orthogonality. All three of the
properties mentioned above can not be optimised for the same wavelet, with the
Haar wavelet as the unique exception. Depending on the application, one of the
three properties might be more important than the others and one particular
kind of wavelets might be preferable.

Orthogonal wavelets

Orthogonal vectors are perpendicular to each other and their vector product,
x ∗ y = 0. Real functions are orthogonal when

∫
X(w)Y (w)dw = 0. Mutually,

perpendicular vectors form an orthogonal basis, which becomes orthonormal
when it is normalised thorough division by

√
2.

Orthogonality of wavelets comes from orthogonality of filters [26]. Orthog-
onal wavelets have compact support, see footnote in Section 2.3. Thus, as the
wavelet is zero outside a bounded interval, it represents a FIR filter10. Two
wavelets with the same dilation index, j, but differing k can never have over-
lapping support and are therefore orthogonal [18].

For orthogonal wavelets, all wavelets, w(2jt), are orthogonal to the scaling
functions Θ(t− k). Hence, the wavelets, w(2jt− k), and the scaling functions,
Θ(t − k) are also mutually orthogonal. Moreover, the wavelets are orthogonal
to all of its translations and dilations. Yet, orthogonality does not hold between
scaling functions on different scales; Θ(t) is not orthogonal to Θ(2t).

Orthogonal wavelets give orthogonal matrices and unitary transforms [26].
An unitary transform is a lossless transform, which means that the rows of
the matrix (the perpendicular axes) are correctly normalised. An orthonormal
transform is a square matrix with orthonormal columns. Its inverse, X−1, is its
transpose, XT , which means that the analysis bank matrix, see Section 2.2.5, is
inverted by its transpose.

As mentioned before, in multiresolution analysis with orthogonal wavelets,
each scale can be calculated from the former, see Equation 2.8, and the original
image is the sum over all subspaces, Vj , and detail spaces, Wj .

10FIR= Finite Impulse Response. The filter has a finite number of nonzero coefficients.
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Two signals, which are orthogonal in discrete time, have orthogonal trans-
forms in continuous frequency.

There are, at least, two famous families of orthogonal wavelets, the Battle-
Lemarie family including for example the Haar wavelet, and some of the Daubechis
families such as symmlets and coiflets [18].

Linear independence is automatic for orthonormal vectors.

Biorthogonal wavelets

A biorthogonal wavelet is compact supported, symmetric, but not orthogonal
(even though the name might seem to indicate so). For some applications, sym-
metry can be more important than orthogonality, hence the need for biorthogo-
nal wavelets. Biorthogonal wavelets give invertible matrices and perfect recon-
struction [26]. When the rows of the matrix, T , are a basis, the rows of T−1 are
the biorthogonal basis, or the dual basis. When T t=T−1, the bases are self-dual
and the same as an orthogonal basis.

As the name dual basis hints, biorthogonality refers to two separate bases
belonging to two multiresolution analysises, one dual to the other. Both the
mother wavelets to the corresponding MRAs are dual and so are the scaling
functions. In the orthogonal wavelet case the two MRAs coincide and there-
fore the two scaling functions and the two mother wavelets are the same. A
biorthogonal wavelet is orthogonal to the scaling functions.

An orthogonal wavelet forms an orthonormal basis (after normalisation),
whereas a biorthogonal wavelet forms a so called Riesz basis, also called a stable
or an unconditional basis (uniformly independent) [26]. The translations of the
scaling function are also a Riesz basis. A MRA with a biorthogonal wavelet does
not form an orthogonal basis (only a Riesz basis) for V0. The detail spaceW0, the
wavelet, and the detailed spaces are no longer orthogonal to the approximation
spaces. It is, however, possible to sum over the spaces, but the sum is no longer
direct [10].

Semi-orthogonal wavelets

Semi-orthogonal wavelets are a special case of biorthogonal wavelets. They keep
the orthogonality between detail levels,Wj , but still do not create an orthogonal
basis for the different scales. These wavelets are formed from B-splines and not
filters [26]. The semi-orthogonal wavelets were described by Chui and Wang in
1991 and are therefore also called Chui-Wang wavelets or pre-wavelets [18].

For an index m, the scaling function has support [0,m] and the mother
wavelet [0, 2m − 1]. m = 1 represents the Haar system. The semi-orthogonal
wavelets are symmetric for even m and anti symmetric for odd m.

2.4 Edge detection

In the process of finding edges in an image, a filter operation that emphasises
the changes in gray values and suppresses areas with constant gray values is
necessary. It is found [6][11] that derivatives are suitable for this operation,
and they are used in most of the edge detection techniques present today. By
searching for local maxima in the first order derivative of the image, or zero-
crossings in the second order derivative, an edge can be identified.
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In the two dimensional case the derivative is calculated as the magnitude
and the direction of the gradient vector. In the image f(x, y) at location (x, y)
the gradient vector is defined by Equation 2.11.

G[f(x, y)] =

 Gx

Gy

 =

 δf
δx

δf
δy

 . (2.11)

The vector G points in the direction of the maximum rate of change of
f at location (x, y). The magnitude of the gradient vector is calculated in
Equation 2.12, and the direction in Equation 2.13.

G[f(x, y)] = [G2
x +G2

y]1/2 (2.12)

θ = tan−1

[
∆y

∆x

]
(2.13)

In an image, the derivatives can only be approximated, and different edge
detection techniques use different approximation methods. We will here present
the edge detection techniques that we have been investigating. Most of them
use the derivative, however, the last technique uses a wavelet transform in order
to find the edges.

2.4.1 Sobel’s method

One way of calculating the derivatives is to use the Sobel operators [6], which
is the two 3x3 masks shown in Figure 2.12(b) and (c). A 3x3 size mask tends
to make the derivative operations less sensitive to noise, without increasing the
computational cost too much.

A part of an image is shown in Figure 2.12(a), x5 is the pixel value at (x, y)
and the other xi represents the gray scale values of the eight neighbors of (x, y).
The component of the gradient vector in the x and y directions is defined in
Equation 2.14 and Equation 2.15.

Gx = (x7 + 2x8 + x9)− (x1 + 2x2 + x3) (2.14)

Gy = (x3 + 2x6 + x9)− (x1 + 2x4 + x7). (2.15)

By convolving the masks with an image, f(x, y), the vector gradient at all
points in the image, is calculated. Equation 2.12 is then used to calculate the
gradient, G[f(x, y)].

2.4.2 Robert’s method

With reference to Figure 2.12(a) the gradient according to Robert’s method [6]
is calculated as

G[f(x, y)] =
√

(x5 − x9)2 + (x8 − x6)2, (2.16)

and the direction of the gradient is given by

α = −π
4

+ tan−1

(
x8 − x6

x5 − x9
)
)
. (2.17)
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x1 x2 x3

x4 x5 x6

x7 x8 x9

(a)

-1 -2 -1

0 0 0

1 2 1

(b)

-1 0 1

-2 0 2

-1 0 1

(c)

Figure 2.12: (a) A part of an image. (b) The Sobel mask for the x-direction and
(c) for the y-direction.

0 1 0

1 -4 1

0 1 0

Figure 2.13: The Laplacian mask.

2.4.3 Laplacian operator

The Laplacian operator [6] searches for zero crossings after filtering the image
with a Laplacian filter. The Laplacian is a second order operator and is defined
in Equation 2.18.

L[f(x, y)] =
δ2f

δx2
+
δ2f

δy2
(2.18)

Equation 2.19 is used in order to calculate the digital Laplacian on the image
in Figure 2.12 (a) and the mask in Figure 2.13 gives the coefficiants for each
pixel value.

L[f(x, y)] = x2 + x4 + x6 + x8 − 4x5 (2.19)

Since the Laplacian is a second order derivative it is seldom used for edge
detection by itself since it makes the detection very sensitive to noise. However,
it is often used in combination with other filters.

2.4.4 Gaussian operator

By using a Gaussian smoothing filter together with the Laplacian operator it is
possible to detect edges [32]. The Gaussian distribution with two variables is
given by Equation 2.20.

g(x, y) =
1

2πσ2
e−(x2+y2)/2σ2

(2.20)
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σ is the standard deviation representing the width of the Gaussian distribution.
Once the image is smoothed with the Gaussian operator a Laplacian filter

can be applied to the image. The total operation then becomes

∆2(f(x, y) ∗ g(x, y)), (2.21)

where f(x, y) is the image pixel value at (x, y) and g(x, y) is the gaussian opera-
tor. This operator is usually referred to as the Laplacian of a Gaussian, LOG. It
is possible to convolve the original image with the operator in Equation 2.21 di-
rectly. By ignoring zero-crossings produced by small changes in image intensity,
the LOG-operator can be made more resistant to noise.

However, the LOG-operator can become very large, and as an approxima-
tion the Difference of Gaussian (DOG) can be used instead as shown in Equa-
tion 2.22.

g(x, y) =
1

2πσ2
e

e−(x2+y2)/2σ2
e − 1

2πσ2
i

e−(x2+y2)/2σ2
i (2.22)

2.4.5 The Canny Edge Detector

In 1983, John Canny introduced the Canny edge detection scheme [1] and it has
since then been the standard edge detection scheme used around the world [33].

Canny introduced a function that was the sum of four exponential terms.
However, the function resembled the first derivative of a Gaussian and it was
the Gaussian function that ended up being used.

An image, f(x, y), is convolved with an operator g′n(x, y) which is the first
derivative of the two dimensional Gaussian, in some direction n.

g′n(x, y) =
δg(x, y)
δn

(2.23)

n should ideally be oriented normal to the direction of the edge to be detected.
However, this direction is not known and an estimation, shown in Equation 2.24
must be used. This turns out to be a very good estimation for edge normal
directions since a smoothed step has a strong gradient normal to the edge.

n =
∇(g(x, y) ∗ f(x, y))
|∇(g(x, y) ∗ f(x, y))| (2.24)

An edge point is defined to be a local maximum of the operator g′n(x, y)
applied to the image f(x, y), i.e

δ

δn
g′n(x, y) ∗ f(x, y) = 0 (2.25)

and when substituting Equation 2.23 into Equation 2.25 the above becomes

δ2

δn2
g(x, y) ∗ f(x, y) = 0. (2.26)

The edge strength at such an edge point will be the magnitude of

|g′n(x, y) ∗ f(x, y)| = |∇(g(x, y) ∗ f(x, y))|. (2.27)

When the Canny edge detection scheme is implemented, the image is usually
convolved with a symmetric Gaussian and thereafter the second order derivative
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is computed and put equal to zero in order to locate edges. This can be done
because of the associativity convolution. The magnitude is used to estimate
the edge strength. The method can detect strong and weak edges by using two
different threshold values, but there is a trade-off between good edge detection
and good edge localisation. Weak edges are only included in the output if they
are connected to a strong edge and the method is therefore less likely to be
fooled by noise.

2.4.6 Spatial Selective Noise Filtration Technique

In order to suppress noise in signals and images Xu, Weaver, Healy and Lu
presented a filtration technique [28] that reduces the noise content by more
than 80% while maintaining at least 80% of the value of the gradient at most
edges. Since this filtration technique works by identifying edges we have been
studying it to see whether it is applicable to our image registration problem.

Wavelet transforms are very attractive in image filtering because the basis
function, ψm,nx,ny(x, y), used are locally supported; they are nonzero only over
the domain represented, see Section 2.3. This means that sharp transitions in
images are preserved and depicted extremely well. The developed technique
aims at finding edges, identified as features that have signal peaks across many
wavelet scales. The filter extracted with this technique can be seen as a low
pass filter that passes selected high frequency data. By computing the correla-
tions between adjacent scales, edges are detected from noise. Small scale data
is passed at positions where the correlation is large and suppressed if the corre-
lation is small. The direct multiplication of wavelet transform data at adjacent
scales are used to compute the correlation, which is given in Equation 2.28.

Corrl(m,nx, ny) =
l−1∏
i=0

W (m+ i, nx, ny) 1 ≤ nx ≤ Nx, 1 ≤ ny ≤ Ny

(2.28)
l is the the number of resolution scales involved in the direct multiplication,
and m is the intended processing scale. The sharp edges have large coeffi-
cients over many wavelet scales and therefore, the direct spatial correlation,
Corrl(m,nx, ny), between wavelet coefficients at different adjacent scales of the
wavelet transform is used to accurately detect the locations of edges or other
significant features.

The algorithm

An algorithm was developed in order to calculate a spatial filter that selects the
part of the data to keep and the part of the data to eliminate. The algorithm
for the one-dimensional case is outlined below.

For each resolution scale m, the power of Corr2(m,n) and W (m,n) are
computed and the power of each pixel in Corr2(m,n) is re-scaled to that of
W (m,n). The pixel values in the new Corr2(m,n) are then compared with
W (m,n) and an edge is identified at the position n if |Corr2(m,n)| > |W (m,n)|.
The edge position and its corresponding value are stored. Finally, all the edges
identified in this way are extracted from Corr2(m,n) and W (m,n) by reset-
ting the values of these signals to 0’s. The reminder of the data points in
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W (m,n) and Corr2(m,n) after the first round of edge extraction are referred
to as Corr′2(m,n) and W ′(m,n). By re-scaling the power of Corr′2(m,n) to
that of W ′(m,n) and comparing their absolute values, the next most significant
edges are extracted. This process can be iterated many times until the power of
the unextracted data points in W (m,n) is nearly equal to some reference noise
power at the wavelet scale m.

First, save a copy of W (m,n) to WW (m,n)
Initialize the "spatial filter mask": mask(m,n) to 0’s
Loop for each wavelet scale m
{
Loop for the iteration process
{
Compute the power of Corr2(m,n) and W (m,n):
PCorr(m) =

∑
n Corr2(m,n)2

PW (m) =
∑
nW (m,n)2

Re-scale the power of Corr2(m,n) to that of W (m,n):
Loop for each pixel point n
{

new Corr2(m,n) = Corr2(m,n) ∗
√

PW (m)
PCorr(m)

} end loop n
Loop for each pixel point n
{
Compare pixel values in new Corr2(m,n) and W (m,n):
if |Corr2(m,n)| > |W (m,n)|
{
Extract edge information from W (m,n) and Corr2(m,n),
and save it in the "spatial filter mask":
Corr2(m,n) = 0.0
W (m,n) = 0.0
mask(m,n) = 1

} end if
} end loop n
iterate until PW (m) ≤ the noise threshold at scale m

Apply the "spatial filter mask" to the saved copy, WW (m,n),
at scale m. Save the filtered data to Wnew(m,n):
Loop for each pixel point n
{
Wnew(m,n) = mask(m,n) ∗WW (m,n)

} end loop n
}end loop m

The code is easily transformed into the two-dimensional case by substituting
(m,n) with (m,nx, ny) and looping for every pixel pair instead of every pixel. It
is an easy algorithm to implement and that is its advantage over more compli-
cated algorithms [13][27] which detect edges directly on the wavelet transform.
The disadvantage is that it may be less accurate than the more sophisticated
techniques.
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Figure 2.14: A simple image.

Results

When testing the algorithm Xu, Weaver, Healy and Lu found that the wavelet
filtering technique was superior to the Wiener filtering algorithm that was used
for comparison. They used a 256 by 256 large digital image as a test image
and added a certain amount of synthetic Gaussian distributed white noise. In
the implementation of the filter, only two adjacent scales (l = 2) were used in
calculating the direct spatial correlation and the wavelet transform data was
filtered at six scales (m = 1 . . . 6).

With this method the average SNR was enhanced by more than 25 dB which
corresponded to a 90% noise reduction, however, the lowest contrast parts of
the image could not be fully recovered. The Wiener filtered image had less noise
reduction, the average SNR was 22.5dB. In addition, the image sharpness was
lost and ringing at the edges was noticeable.

The wavelet domain filter is said to be superior to the Wiener filter and it
is therefore an approach worth trying. The results of our investigation of this
algorithm are presented in Section 4.3.5.

2.5 The cost function

To find the true translation and rotation between two images, a cost function,
which penalises the disparity between pixel values, is introduced, see Equa-
tion 2.29.

V (Θ) =
N∑
k=1

M∑
l=1

|Zref (k, j)− Z(k, j)|2. (2.29)

Zref (k, j) is the matrix of the reference image, and Z(k, j) is the translated
and rotated image. By penalising the disparity and trying to minimise the cost
function, the true translation and rotation can be found.

The cost function can look very differently depending on the reference image
and the translated and rotated image. If the cost function has several local
minima it can be hard to find the global minimum. By translating the image in
Figure 2.14, the cost function in Figure 2.15 is obtained. This is an extremely
simple image but it can be used to test a minimisation algorithm since there are
no local minima.
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Figure 2.15: The cost function associated with the translation of a rectangle.

Figure 2.16: A simple image.

Another example of a cost function is the one in Figure 2.17, which is ob-
tained from translating the image in Figure 2.16. It is also a rather simple image
but a small local minimum in one of the corners is noticeable.

So far, the global minimum has been quite sharp and therefore easy to detect.
When noise is added, as in Figure 2.18, the cost function becomes much flatter
as can be seen in Figure 2.19.

The images described in this chapter have been of the original image trans-
lated into different positions, rotation has been left out in order to show the
cost function graphically. In reality, rotation is added to the translation.

2.6 The minimisation algorithm

Once the cost function is defined, see Section 2.5, a way to find the θ that
minimises the function needs to be implemented. This section aims at describing
the theory behind a number of line search methods and considerations that need
to be taken into account when using a line search method.

The minimisation problem is solved by using a line search method, which is
an iterative search routine that aims at finding a θ that minimise the function
f , that is minθ f(θ). If the function f is an objective function that depends
on real variables, with no restrictions at all on the values of these variables,
the optimisation problem becomes unconstrained [17]. The function, f , is quite
often complex and can not be described with an equation. In addition, the
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Figure 2.17: The cost function associated with the translation of the peaks.

Figure 2.18: An image with added noise.
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Figure 2.19: The cost function associated with the translation of the peaks with
added noise.
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knowledge of f is usually local and since the computation is often demanding,
we only want to visit a few points in the iterative search for the minimum.

All algorithms for unconstrained minimisation require the user to supply
a starting point, θ0, and then the algorithm generates a sequence of {θk}∞k=0

through iteration. To decide how to move from one θk to another the algorithms
use information about the function f at θk and sometimes also from earlier
iterations θ0, θ1, . . . , θk−1. The information is used to find a new θk+1 with
lower function value than θk.

2.6.1 Line Search Methods

Each iteration of a line search method computes a fixed search direction, pk, and
then decides how far to move along that direction by choosing an appropriate
step length, αk. The iteration is given by:

θk+1 = θk + αkpk. (2.30)

The success of a line search method depends on the choice of direction and step
length. Most algorithms require pk to be a descent direction, meaning that
pTk∇fk < 0. This property guarantees that f can be reduced along the chosen
direction. The search direction often has the form:

pk = −B−1
k ∇fk, (2.31)

where Bk is a symmetric and non singular matrix. The line search method
chooses a direction, pk, and searches along this direction from the current iter-
ation θk for a θk+1 that has a lower function value, i.e. f(θk+1) < f(θk). The
distance to move along pk is decided by the step length which is usually large
at the beginning and then divided it into smaller steps until it finds a new θ
that loosely approximates the minimum. From there a new search is performed.
There are several ways to choose the search direction and the most used methods
are described in the coming sections.

Steepest descent

The most obvious choice of direction in which to search for the minimum would
be in the direction where f most rapidly decreases. This approach is called the
steepest descent method and it moves along the direction

p = − ∇fk||∇fk||
. (2.32)

The iteration is given by substituting Equation 2.32 into Equation 2.30.

θk+1 = θk − αk
∇fk
||∇fk||

. (2.33)

Newton direction

Another way of choosing the direction in which to search for the minimum is
the Newton direction search. It is derived from the second-order Taylor series
approximation:

f(θk + p) ≈ fk + pT∇fk +
1
2
pT∇2fkp

def= mk(p). (2.34)
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The step length is naturally 1 and if ∇2fk is positive definite we obtain the
Newton direction by finding the vector p that minimises mk(p). By setting the
derivative of mk(p) to zero, the search direction, pk, becomes

pk = − ∇fk
||∇2fk||

. (2.35)

The Newton direction search is reliable when the difference between the true
function f(θk + p) and its quadratic model mk(p) is not too large.

The main drawback of the Newton direction search is the use of a Hessian
which demands a lot of computations. The Quasi-Newton search does not use
the Hessian. Instead it uses an approximation, bk, which is updated after each
step to take into account the additional knowledge obtained.

To obtain global convergence, we require the search direction in Equation 2.35
to be a descent direction, which is true if the Hessian ∇2f(xk) is positive def-
inite. If the Hessian is not positive definite, or close to being singular, pk may
be an ascent direction. A strategy to ensure that the step is of good quality is
presented in Section 2.6.5.

Nonlinear conjugate gradient methods

The nonlinear conjugate gradient method is one of the best methods for solv-
ing large linear systems of equations and can be adapted to solve nonlinear
optimisation problems. The search direction is given by:

pk = −∇f(xk)βkpk−1, (2.36)

where βk is a scalar which ensures that pk and pk−1 are conjugate, which means
that pk ∗ pk−1 = 0. This method is usually more effective than the steepest
descent method and almost as easy to compute. It does not attain the fast
convergence rates as the Newton method but, on the other hand, it does not
require much memory storage either.

2.6.2 Step Length

There are a number of methods available to choose the step length and also
some trade offs to be considered. On one hand, we would like to choose a step
length that gives a substantial reduction of f , on the other hand, we would not
like to spend too much time deciding the step length. The simpliest approach
is to choose αk as a constant.

For Newton and quasi-Newton methods, the step α0 = 1 is the best initial
choice. This choice ensures that unit step lengths are taken whenever they
satisfy the termination conditions, see Section 2.6.3, and allows the rapid rate-
of-convergence properties of these methods to take effect.

A method that works well in practical systems [30] is the so called damped
method in which αk is initialised as αk = 1 and then

f(θk + αkpk(θk)) < f(θk) (2.37)

is tested. If true, then a new prediction θk+1 = θk + αkpk(θk) is made and the
iteration repeats. If not true, then αk is reduced by half, αk := αk/2, and Equa-
tion 2.37 is re-tested. This procedure continues until the test in Equation 2.37
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is successful. This method can be developed further by using cubic modeling
when reducing the αk and it is then known as the ’backtracking approach’.

Regarding the steepest descent and the conjugent gradient methods, it is
important to take into account the current information about the problem and
the algorithm to make a initial guess [17] about the step length.

2.6.3 Termination conditions

When the function f is complex, it can be difficult or even impossible to find
the exact minimum without an immense computational effort. Therefore, it is
important to decide upon a number of termination conditions. It is found [30]
that the iteration routine should be terminated in any of three ways:

1. If the gradient Euclidean norm, ||∇f(θk)||, falls below a set threshold, then
it may be concluded that a minimum has been reached and the search is
terminated.

2. If the number of iterations of updating θk is greater than a predefined
number, the search is terminated.

3. If the cost can not be decreased, the search is terminated.

2.6.4 Local or global minimum?

Another aspect of the minimisation problem is to determine whether the mini-
mum found is a local or global minimum. This can be done by examining the
gradient, ∇f(θ∗), and the Hessian, ∇2f(θ∗). A necessary condition for a vector,
θ∗, to be a local minimum is that ∇f(θ∗) = 0 and that ∇2f(θ∗) > 0. A vector
θ∗ is a global minimum of f(θ) if it gives the lowest value of f(θ), which means
that there exits a θ∗ so that

f(θ∗) ≤ f(θ), ∀θ ∈ Rn. (2.38)

It might seem like the only way to determine if a minimum is global or local
is to examine all the points to make sure that none of them have a smaller
function value. Luckily this is not the case; [17] gives a couple of solutions to
the problem.

2.6.5 Hessian Modifications

Line search in the Newton direction produces the fastest possible convergence [30]
to a local minimum. However, in practice, the Hessian is often ill conditioned
due to two principal reasons:

1. The function f(θ) is locally linear at θ = θk which means that ∇2f(θk) ≈
0.

2. A ridge of θ exits for which the function f(θ) has a constant value.

To avoid an ill conditioned Hessian, a regularisation method is needed. Still, the
modification should be small in order to preserve the second order information
in the Hessian as far as possible. The ’Levenberg-Marquardt’ regularisation
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method calculates the relative condition number11 of the Hessian approximation,
∇2f(θk), and if the condition number falls below a threshold κ, the Hessian
approximation is substituted with a regularised version

∇2f(θk) := ∇2f(θk) + δI. (2.39)

Typical values are δ = 10−8 and κ = 10−18.

11The relative condition number is the ratio of the smallest to the largest eigenvalue.
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Chapter 3

Software For Testing

3.1 Why a software for testing?

The software was implemented in order to simplify the required tests, both
during the project and in any future research that may have use of the results
of this project. Compared to, for example, creating a file system, which would be
harder to have a quick glance of, the software is a pratical way of presenting the
work accomplished throughout this thesis. All the m-files implemented to carry
out various operations on the images are gathered and connected to a graphical
user interface (GUI), which is saved on a compact disk. Figure 3.1 shows how
the files implemented during this project relate to each other and enables an
easy check up if all the functions are obtained after a possible download of all
the software from the compact disk. The graphical user interface enables an
easy execution of the functions, one by one or one after the other; only a simple
click on a button is needed. The result is shown in one of the windows on the
left-hand side of the graphical user interface, see Figure 3.2.

After the theory behind the different fields and before presenting the per-
formed tests and results, an introduction to the implemented software is appro-
priate.

Figure 3.1: The structure of the files connected to the Graphical User Interface.
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Figure 3.2: The implemented graphical interface (GUI).

3.2 Functions

The presentation of functions strives for following the same structure as in Sec-
tion 2.1. General functions are first described in Section 3.2.1, followed by
functions in order to create a test image in Section 3.2.2. Thereafter the three
main parts of the image registration task, see Section 2.1, are presented in Sec-
tions 3.2.3-3.2.5.

3.2.1 General functions

All these functions can be found as push buttons to the very right of the graphi-
cal interface. All functions, except for “Close”, act on the marked image window
on the left-hand side of the graphical user interface. The user can choose which
image to process by clicking on the radio buttons, see Appendix B, located
above the image windows.

Load image from file Load a bitmap image to the window indicated by the
radio buttons above the image windows on the left hand side of the graph-
ical user interface. The file system can be browsed to find the file.

Load specified image Load a special image designed for testing the algorithm
to find the translation and rotation between the images.

Save Saves the choosen image as a bitmap file.

Undo Resets the image as it was before the last action was carried out.

Zoom Enables to zoom in on a particular part of the image. Choose which
image to zoom with the radio buttons. When the marker turns into a
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cross, mark the interesting area. The result will appear in a new resizable
window.

Close Closes the graphical user interface.

3.2.2 Creating a test image

Enables translation and/or rotation of any image similar to the image expected
to be obtained after edgedetection on the simulated or the portal image. Thus, it
is possible to test the minimisation program that is detecting the translation and
rotation, see Section 3.2.5, even if the preprocessing of the image is unsatisfying.
A substitute for the portal image is created by the translation and rotation and
can thereafter be compared to the original image, see Section 3.2.5.

Translate & Rotate Translates and rotates the selected image by the pixels
and degrees given in the dialog box which appears when pressing the push
button.

3.2.3 Preprocessing

As mentioned in Section 2.1, the portal image is very blurred and lacks con-
trasts. The preprocessing is an attempt to strengthen required edges of certain
bonemarks and to distinguish them from other edges. One good way of getting
an idea of which, out of a hugh variety of wavelets to use or to try different
parameters for filters is to test how they work on the actual X-ray images.

Wavelets

The idea behind the wavelet based approach is more thouroughly explained in
Section 4.1. A scroll list contains options of different wavelets such as the Haar
wavelet, Symlets, a Daubechis wavelet and a biorthogonal (spline1) wavelet. De-
composition levels from 1-8 (normally 5 is the lowest level used) can be choosen
from the scroll list beneath. Either the Discrete or two versions of the Fast
Wavelet Transform, see Section 2.3.2, can be used.

The wavelet functions require Matlab Wavelet Toolbox and has not been
tested on the final GUI since we did not have the required toolbox at the time.

Fix filters

The push button on the left marked “Filter” uses already implemented filter
routines from Matlab. The name of the Matlab m-file is written in parentheses
after each filter options mentioned below. Default settings for the filters are
used and no paramaters can be changed.

Filter A scroll list with different filters to choose from appears. The filter
options are a medianfilter (medfilt2), a wienerfilter (wiener2), a second
order filter (ordfilt2) and high, low, and bandpass filters (FIR1).

1For more information about the three different methods of wavelet construction, refere
to [25].
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Adjustable filters

In the frame underneath the wavelet frame in the middle of the graphical user
interface, different options for implementing filters are gathered. Choose be-
tween a low or a high pass filter, which are implemented as the matrices in
Section 2.2.2. For creating a bandpass filtering, a low and a high pass filtering
have to be carried out irrespectively of the order. The filter coefficient, i.e. the
matrix entries, and the filter size, i.e. the size of the matrix, can also be chosen.

3.2.4 Edge detection

The edge detection is mainly used to see which pair of preprocessing and edgede-
tection that reveals few but required edges of useful bonemarks for the detection
of the translation and/or rotation. This is to make the images used in the min-
imisation as simple as possible.

Edge detection A pop-up menu, see Appendix B, with different operators
to use appears. Options are the following operators: Sobel’s, Prewitt’s,
Robert’s, Canny’s, Laplacian, and Zero crossing. Descriptions of the dif-
ferent operators can be found in Section 2.4.

3.2.5 Calculating the translation and rotation

The algorithm for finding the translation and rotation is implemented and ex-
ecuted when pressing the push button described below. Note that a good pre-
processing of the image is necessary in order for the algorithm to work. The
best results is obtained when using the images found when pushing the Load
specified images button. Use the Translate & Rotate button to define a
translation and rotation and then push the Find T & R button. The result
will have opposite sign to the defined translation and rotation.

Find T & R The translation and rotation between the upper and lower images
in the graphical user interface is calculated when pressing the push button.
The result is presented in a dialog box.
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Chapter 4

Results

4.1 Wavelet Based Approach

The wavelet transform enables examination of details in the image having fre-
quencies within a certain range separately from others with different frequency
contents. On each level, a projection of the original function onto the approx-
imating space, Vj , and another on the detail space, Wj , are to be found. As
mentioned in the theory of wavelets, the approximating space is spanned by the
scaling functions and the detail space by the wavelets. Approximations of a
noisy test function in different scales is shown in Figure 4.1 and the details of
each scale are found in Figure 4.2. Similar figures are found in [18].

Edges often contain higher frequencies than other features in the images,
where the frequency depends on how steep the edge is (e.g. how big the difference
in gray scale value is from one side to the other). Moreover, the edge frequencies
are mostly lower than the frequencies of noise. Consequently, a reasonable guess
would be to expect to find the edge frequencies among the higher of the lower
frequencies in the images, that would be under the noise scale but over other
bigger features of the images, i.e. in one of the lower levels of a decomposition
like the one in Figure 4.2. The primary goal was to examine whether a certain
scale, where most of the frequencies representing the edge of interest for the
comparison between the two images, could be found. If so, it might be possible
to use only the wavelet coefficients representing these frequencies, instead of
the whole images, in the minimisation algorithm to find the translation and the
rotation.

To be able to use this detection, the wavelet transform, and therefore the
coefficients, should preferably be translation and rotation invariant. Also, the
two images might have different scales, the edges in the images should prefer-
ably be reinforced, and at least the portal image might have to be noise filtered.
Searching for the perfect transform became a time-consuming matter and in-
stead, different transforms from the different wavelet toolboxes, see Section 5.2,
where tested on the simulated X-ray image.

Several sources pointed towards non-orthogonal wavelets in order to solve
similar problems. As orthogonality is one of the biggest advantages of the use of
wavelets, they might not be what we are searching for. A frequency analysis of
the images would be helpful in order to understand what could be expected from
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Figure 4.1: Multiresolution approximation of a noisy test function.

Figure 4.2: Multiresolution decomposition of a noisy test function. Details of
Figure /reffig:mra approx.
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the result. A wavelet transform is in fact a filter bank, yet with a logarithmic
partition, and therefore the next field to try became filters and filter banks, see
Section 4.2. Band pass filters could hopefully be used both for the preprocessing
and for the frequency analysis of the images.

4.2 Filters

The golden rule of striving for simple solutions became clear when even the
simpliest of high pass filters, see Section 2.2.2, gave a better result for the
following edge detection than the wavelet transforms. Both linear and non-
linear filters were tested on the portal image to get rid of the pronounced edges
of the treatment region in the images, i.e. the dark rectangle in the middle. In
addition, an already edge detected image was filtered to hopefully pick out only
the necessary edges needed for the minimisation algorithm. When detecting
edges, we have been using the Canny edge detection algorithm because of its
superiority over other algorithms as shown in Section 4.3.

The linear high pass and low pass filters were tested based on the advice from
a number of different sources within the field of image analysis and processing.
For the frequency analysis of the images, the high pass and low pass filters were
combined to form band pass filters. Yet, only the simple filters described in
Section 2.2.2 have been used to represent the two filters in the convolutions.
Since the result of the filtering could not be seen directly on the images, an
edge detection was carried out to examine the results. Edge detection is more
thouroughly explained in Section /refsec:tests:edgedetection. The same edge
detection algorithm is used in all Figures. The result of the linear filtering is
shown in Figures 4.3 - 4.9.

4.2.1 Linear filters

By changing the size of the filters within the interval 1x1 to 6x6, the size influence
of the low pass and high pass filters was examined. All sizes were tried out with
normalised cut off frequencies from 0.1 to 0.9. Both the simulated and the portal
images were used for the filtering.

Low pass filtering

A low pass filtering was carried out on both the simulated and the portal image,
using a 3x3 filter. In Figure 4.3 the results of the edge detection after the low
pass filtering on the simulated images are shown. The normalised frequency of
the three different filters was 0.1, 0.5, and 0.9. The same operation, but carried
out on the portal image, is shown in Figure 4.4.

High pass filtering

The same tests used for the low pass filter were carried out with the high pass
filter. The results on the simulated images is shown in Figure 4.5 and on the
portal images in Figure 4.6.

Having seen both results, it is clear that neither individual low pass nor
high pass filtering would give a better result than an edge detection directly on
the original image. The result is even clearer for the portal image than for the
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simulated image. As edges have mostly high frequencies, a high pass filter should
be more appropriate for this application. The tests confirm this theory, even if
the result of high pass filtering is not overwhelming. A comparison between edge
detection after 3x3 high pass and low pass filtering, both with filter coefficient
0.5, is shown in Figure 4.7. The influence of the filter size is shown in Figure 4.8.
As seen, there is not a big difference due to choice of filter size. Yet, for filter
coefficients larger than and equal to 0.5, we noticed some blurring effects. Also,
black areas appeared on the borders of the images, probably because the filter
was taking into account too many pixels from the outside of the actual image
matrix, when filtering pixels closer to the borders.

The conclusion drawn after these tests is that a band pass filter would better
meet our expectations of filtering out certain edges and that the size of the filters
is of less importance than the filter coefficients, i.e. the cut off frequency. From
now on, primarily filters of size 3x3 will be used.

Band pass filtering

A band pass filter was implemented by using a low pass filter followed by a high
pass filter. The size of the pass band, between the cut off frequencies of the two
filters, was changed from 0.4 to 0.1 in normalised frequency. Thereafter, the pass
band was drawn over the image to cover all different intervals. When performing
the tests, both the simulated and the portal images were used. However, we
have chosen to only include the results from the band pass filtering of the portal
image with the interval 0.3 between the two cut off frequencies. In Figure 4.9
the result of the band pass filtering of the portal image is shown. We find the
result a bit surprising and disappointing, as we expected the filter to better filter
out frequencies in the interval specified by the band pass filter. The expected
outcome would be images where different edges were detected in different images.
Yet, this is not the case and, perhaps, a more sophisticated filter is needed.
These results encouraged us to investigate non-linear filters.

4.2.2 Nonlinear filters

According to the theory, a non-linear filter should give better result on multi-
plicative noise in images, shape recognition, edge detection etc. As multiplica-
tive noise appears on “recorded” images, such as the X-ray images in this case,
non-linear filters should give better result than the linear filters presented in the
earlier sections of this chapter.

Median filtering

From the beginning the size of the mask, determining the number of neighbor-
hood pixels taken into account, was held constant on 3x3. Various shapes of
the mask were tested to see if a difference in the edge detection could be seen.
Different shapes of the mask were for instance a ’X’, a cross, a star and a square.
The patterns can be seen in Figure 4.10.

Better results than with the linear filters were obtained accordingly to the
theory. Still, too few tests were performed to prove the advantages of median
filtering over other filters.
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Figure 4.3: (a) Edge detection on the simulated image, (b)-(d) edge detection
after low pass filtering, 3x3. Filter coefficients are 0.1, 0.5, and 0.9 respectively.

Figure 4.4: (a) Edge detection on the portal image, (b)-(d) edge detection after
low pass filtering, 3x3. Filter coefficients are 0.1, 0.5, and 0.9 respectively.
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Figure 4.5: (a) Edge detection on the simulated image, (b)-(d) edge detection
after high pass filtering, 3x3. Filter coefficients are 0.1, 0.5, and 0.9 respectively.

Figure 4.6: (a) Edge detection on the portal image, (b)-(d) edge detection after
high pass filtering, 3x3. Filter coefficients are 0.1, 0.5, and 0.9 respectively.
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Figure 4.7: Comparison between high pass and low pass filtering with filter
coefficient 0.5 and filter size 3x3. (a) Low pass filtered image, (b) edge detection
on (a), (c) high pass filtered image, (d) edge detection on (c).

Figure 4.8: Filter size comparison. (a) 3x3, (b) 6x6.
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Figure 4.9: Bandpass filtering with passband 0.3 on the portal image. (a) 0.0-
0.3, (b) 0.1-0.4, (c) 0.2-0.5, (d) 0.3-0.6, (e) 0.4-0.7, (f) 0.5-0.8, (g) 0.6-0.9, (h)
0.7-1.0 in normalised frequency.
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Figure 4.10: The different shapes of the mask used in the median filtering.

Homomorphic and morphological filtering

The edges seem to preserve too little of the structure to be used in the minimi-
sation algorithm and are also sometimes too fragile. A possible idea would be
to search for segments of the images instead of only edges. This is how mathe-
matical morphology works on images; hence, morphological filters are perhaps
a likely solution to the preprocessing task.

No documented tests of these two families of non-linear filters were carried
out. Still, their existence is well worth being mentioned once more.

4.3 Edge detection

The filtering of the image is performed with the purpose of detecting frequencies
which contain the important edges. If this approach is successful, it will most
likely help the edge detection algorithm to detected the preferred edges. To find
the best edge detection method, a number of tests have been performed on the
two test images, i.e. the simulated and the portal X-ray. The results are shown
in the following sections and the theory behind each edge detection method is
presented in Section 2.4.

4.3.1 Sobel’s method

Because of its simplicity, the Sobel method does not demand much computation
power. On the other hand, it is often too simple to handle images distorted by
noise. When applying the Sobel mask to the simulated and the portal images, see
Figure 4.11, hardly any edges from the interesting bone structure are detected.
The grid pattern is the only feature that the Sobel method can detect. It is
clear that the Sobel method is too simple to be used on our images.

4.3.2 Robert’s method

Robert’s method uses Robert’s approximation of the derivative and return edges
where the gradient is maximum. The results on the simulated and portal images
are shown in Figure 4.12. As in the Sobel case, only the grid features are present
and nothing from the bone structure is detected.
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Figure 4.11: The Sobel mask applied to the simulated (a) and the portal (b)
images.

Figure 4.12: The simulated (a) and the portal (b) images with Robert’s method.

4.3.3 Laplacian of Gaussian method

The result of the simulated and portal images after applying the Laplacian
of Gaussian method is shown in Figure 4.13. The method fails to detect any
bone structure and has a more of distortion than the images where Sobel’s and
Robert’s methods were used. The Laplacian of Gaussian method by itself is not
good enough for our special application.

Figure 4.13: The simulated (a) and the portal (b) images with the Laplacian of
Gaussian method.
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Figure 4.14: The simulated (a) and the portable (b) images with the Canny
edge detector method.

4.3.4 The Canny Edge Detector

The Canny edge detector is a more sophisticated method, using more complex
calculations and therefore the computational cost is increased. Even so, it is the
only method using derivatives so far that has been able to detect something but
the grid features. In Figure 4.14 the results are shown and some of the bone
structure is visible. Still, the result is not good enough for our application and
additional treatment of the images before applying the edge detector method is
going to be necessary.

4.3.5 The Spatially Noise Filtration Technique

Unlike all the other edge detection methods we have been investigating, the
spatially noise filtration technique uses the wavelet transform to produce a mask
that is used to detect edges in an image. The theory and algorithm is described
in Section 2.4.6. In order to test the method, we implemented the algorithm in
Matlab.

As test images, we used the simulated and portal X-rays, on which a wavelet
transform was applied, using the Haar wavelet as a mother wavelet. As seen
in Figure 4.15, the correlations between adjacent scales detects quite well some
edges in the simulated image when using the correlation between scales one and
two. However, as soon as we use lower scales, the resulting correlation image
becomes useless. The portal image is even worse, no correlation can be detected
even when using scales one and two.

The correlation images are then used to produce a mask that will filter
the original images, Figure 4.16. Since the calculation of the masks relies on
good correlation images, the resulting masks also become very distorted in all
cases but the first. It is only when calculating the mask for the simulated
image, using the first and the second wavelet scales, that some patterns from
the original image could be detected. The remaining three images show no
interesting features.
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Figure 4.15: (a) The correlation between scales one and two using the simulated
X-ray. (b) The correlation between scales two and three using the simulated X-
ray. (c) The correlation between scales one and two using the portal X-ray. (d)
The correlation between scales two and three using the portal X-ray.

Figure 4.16: The masks for the simulated and portal images.
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Figure 4.17: The two images used to test the minimisation algorithm.

4.4 Minimisation of the cost function

The image is filtered and an edge detection algorithm is applied to the image in
order to enhance the features that will help us determine the true translation
and rotation between the portal and the simulated image. Calculating and
trying to minimise the cost function is the third and final block in our chain,
see Section 2.1.

The theory behind the minimisation algorithm can be found in Section 2.6.
The implemented program first searches in a Damped Newton direction. If a
decrease in cost is not possible, the program switches to a Gradient line search.
In addition, if the Hessian is ill-conditioned, Levenberg-Marquardt regularisa-
tion is added. The program returns a rough answer and which is tested to see
if additional improvements can be made.

Since the real images are complex and difficult to work with, we have pro-
duced simplier images in order to test the minimisation program. The pictures
used are shown in Figure 4.17 (a) and (b). The image is rotated and translated
and is given as an input to the minimisation program together with the original
and unaltered image. The translation and rotation is later compared with the
minimisation program result. These images are quite different from the real im-
ages this project deals with, nevertheless, they are important as a test to make
sure that the implemented algorithm is working as intended.

Several trials have carried out using these images and the minimisation al-
gorithm works well for a number of translations and rotations. Table 4.1 and
Table 4.2 show some input and the corresponding output when testing the pro-
gram on the images in Figure 4.17.

As Table 4.1 and 4.2 imply, the program returns the translation and rotation
which need to be performed in order to make the two images identical again.
When developing the software further, considerations about the computational
cost need to be taken into account since the real pictures often are quite large.
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Input Output
θ = 2, 2, 2 θ = −2,−2,−2
θ = 0, 6, 8 θ = 0,−6, 8

θ = −6, 0,−7 θ = 6, 0, 7
θ = 4,−7, 5 θ = −4, 7, 5

Table 4.1: Test results from the minimisation program using Figure 4.17 (a).
The output is the action to perform to align the images.

Input Output
θ = 6, 6, 6 θ = −6,−6,−6

θ = −10, 5,−4 θ = 10,−5, 4
θ = −3, 10,−9 θ = 3,−10, 9
θ = −7,−4,−1 θ = 7, 4, 1

Table 4.2: Test results from the minimisation program using Figure 4.17 (b).
The output is the action to perform to align the images.
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Chapter 5

Used software

In this chapter, the main software used throughout the project are presented.
Needless to say, the Internet has been an almost irreplaceable source of infor-
mation. All the software has been licensed for the Department of Electrical and
Computer Engineering or found as free software on the internet (or it has just
been used under a free trail period of time).

5.1 EXcursion V2

EXcursion V2 is a XRemote Technology provided by NCD Inc. It is a X11R6-
based, 32-bit X Windows System Server. Digitally developed, the eXcursion
family of display server products provide interoperability between desktop per-
sonal computers (PCs) running the Microsoft Windows operating system and
remote hosts running the X Window System operating system under the UNIX
or OpenVMS operating systems. Through an xterm window, the unix envi-
ronment becomes as easy to use as all other software on the PC. For more
information about eXcursion, refer to [34].

5.2 Matlab 5.3

Matlab 5.3 from The MathWorks, Inc., is an easy-to-use computing environ-
ment, that simplifies the calculation of various numerical problems. Additional
toolboxes, in for example signal processing, optimisation, wavelets and images,
increase the functionality and enable the use of Matlab also for more field spe-
cific problems. Neither the wavelet, nor the image toolboxes were accessible
in the PC environment and there was only one license for the image toolbox
under unix. The wavelet and image toolboxes were therefore only used under
the 30 days of free trail period obtained when downloading the toolboxes from
the Internet. Substituting toolboxes, see Section 5.2, were also found on the
Internet.

An introduction on the implementation of graphical interfaces in Matlab can
be found in Appendix B.
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Additional Toolboxes

As no license for the Matlab Wavelet Toolbox was available, similar toolboxes
had to be found on the Internet. All three of them are free software. The
descriptions and more information can be found on [35].

Wavekit The Wavekit-toolbox is a collection of functions for Matlab that
implement the following wavelets and wavelet packet algorithms: One- and two-
dimensional (periodic) fast wavelet and wavelet packet transforms and the best
basis algorithm for wavelet packets. An implementation of the fast matrix mul-
tiplication algorithm of Beylkin, Coifman, and Rokhlin for both wavelets and
wavelet packets. Various demonstrations on visualizing wavelets, signal analysis,
and the multiplication algorithm. The author of the toolbox is Harri Ojanen.

WaveLab802 Library of Matlab routines for wavelet analysis, wavelet-
packet analysis, cosine-packet analysis and matching pursuit. The WaveLab
library is implemented at the Stanford University, USA.

Uniwave3 Advanced toolbox from the University of Vigo. Among its func-
tions are: Discrete Wavelet Transform, Scale Function and Wavelet Function,
Multiresolution analysis.

Mex-files

It is possible to call C or Fortran subroutines from Matlab as if they were normal
Matlab functions. These files are referd to as Mex-files and they are dynamically
linked subroutines that the Matlab C/Fortran compiler can load and execute.
On the PC, the Borland C++ Builder Compiler has been used. This compiler
can be downloaded for free from [36].

The advantage with Mex-files is that highly computational parts of a pro-
gram, usually for-loops, are computed much more efficiently if they are written
in C++ or Fortran than in Matlab code. The cost computation would have been
too slow to use, if it had not been for Mex-files. The Mex-files also makes it
possible to use large, already written Fortran and C programs without rewriting
them as m-files. Only Mex-files written in C have been used in the project. The
source code of a C Mex-file consists of two parts, the computational routine and
the gateway routine. The former routine contains the C code for performing
the computations that you want to implement in the Mex-file, the latter is the
interface between the computational routine and Matlab. Input and output
arguments for the computations are defined and space is allocated in memory.
The gateway routine calls the computational routine as a subroutine.

For a more complete introduction to Fortran and C Mex-files and also to
the rest of the Matlab Application Program Interface, API, refer to [29]. The
application program interface does not only support Mex-files, but also Mat-
files, providing the possibility to import and export data to and from the Matlab
environment, and a set of routines that allows you to call Matlab from your own
programs, only using Matlab as a computation engine. These routines are called
engine programs or engine applications and they are written in C or Fortran.

5.3 LATEX V2

LATEX V2 is a popular software system, especially for the writing of technical
reports, books, articles etc. LATEX is more like a programming language than

63



other software such as Microsoft Words; it uses an editor, for example emacs
(unix) or WinEDT (PC) for the writing, commands for creating features such as
titles, tables, figures and changings in font, and also a LATEX compiler in order
to check the document for errors and to convert the text document to a more
readable format. LATEX makes it easier to concentrate more on the text during
the writing and leave the layout for later.

Xdvi

Xdvi is used by LATEX to show how the actual document looks like. Even
though we had some problems with the setup and only had light green text on
a dark green background, Xdvi was a great help to get an impression of how the
document would look like. The text in the document is unfortunately a little
bit too small in Xdvi to actually be read.

WinEDT and MiKTeX

The PC version of LATEX is called MiKTeX and it uses WinEDT as its editor.
MiKTeX is a very easy-to-use graphical interface, that writes much of the code
for you. For this project the LATEX under unix has been used for the writing,
but WinEDT (MiKTeX) has been used for spelling.

5.4 Miscellaneous software

Most of the figures in the report are made in Microsoft Power Point 97 and
thereafter cut to proper formats in Paint on the PC. Afterwards, the images
were transferred to the unix system using ftp and converted to postscript format
in Xv.
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Part II

Analysis
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Chapter 6

Analysis of the research
project

6.1 Introduction

Adapting yourself to new surroundings and to the way local people live when
going abroad, is a well known goal. Yet, it can be harder than expected to
actually reach this goal. Expectations and demands on similar tasks can be
completely different. How could you, for example, even expect that something
as defined as an eight hour working day could be considered in various ways?
Inviting beaches, a shining sun, friendly people and great surroundings, all lovely
things, but they sometimes do seem to be against your determined will to keep
up with your own “standards” and expectations from back home. Different
university degree systems also make it hard to explain to people around you
what you actually try to achieve with your work. Consequently, it is hard for
them to know how to classify you in their system. A shared working space shows
how different attitudes to “work” can be, new friendships and acquaintances
lighten up your day but also demand a lot of your energy1. Without a car, in a
country in which having a car is a standard, makes the smallest tasks very time
consuming. Indeed, everything becomes a smaller excursion, even buying milk.

However, this is in a way what you are actually searching for, when choosing
to go abroad. The chance to set up a new life and do something different for a
shorter period of time: to try something new. But how do you deal with such a
situation, once there? How do you make it effect your work as little as possible?

As always, communication and open discussions have helped us to avoid
many misunderstandings and taught us a lot about ourselves. This period of
time has also been a giving experience and a great opportunity to learn more
about different mentalities, nationalities, and personalities.

In this chapter, we analyse some of the situations that you may encounter
when going abroad to do your Master thesis based on our own experiences in
Australia. Also, our general ideas, subjects of discussions, and thoughts about
our personal cooperation as well as the project and the developed software in
general, are presented in this section. Our goal is to obtain or to increase the
understanding of how important the dynamic of a group is in order to work

1Especially with the dry and ironic Australian humour.
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Figure 6.1: Australia.

together irrespective of the number of people in it. One thing is for sure: the
technical aspect of the problem is not the only challenge.

6.2 Methods

When doing your final thesis, the most important challenge and motivation is
the amount of freedom you are given in order to solve a problem or task the best
way you can. It is easy to lose sight of the overall goal and put time and energy
on parts that will not contribute to the final result. As this is the case, a method
for how the work should be performed and how goals should be met is necessary
to develope. We have not followed any particular theory when developing a
working method; instead, we have had discussions about how we would like to
work, and used the outcome of the discussions to identify and decide on some
key aspects.

6.2.1 Internal dividends of work

To get the widest possible knowledge about the theory behind image processing
and to perform all the tests needed, the work had to be divided between the
two of us. This was done by first giving both of us the opportunity to learn
a little about every related topic and then decide on which subjects to focus
on. The idea was that, as the project evolved, the dividends of work would
come naturally. This worked out, since we have quite different interests. Should
we both had had interest in the same issues, we would have solved it through
discussions.

6.2.2 Learning from each other

As we gained knowledge about different theories and test results, the need for
educating each other increased. The updating was done on a regular basis so
that information and knowledge were not forgotten or lost. The education did
not aim at teaching the other person everything about the subject, but rather to
give a brief introduction, to enable discussions of its application to our project.
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Figure 6.2: The importance of teamwork.

6.2.3 Meetings with the supervisor

The meetings with our supervisor were regarded as a very important part of the
project. The aim was to have meetings every two weeks to discuss what had
been done, what needed to be done and also encouraging a discussion about
different theories and approaches to the problem. E-mails were used for smaller
questions and also for the communication with our supervisor in Sweden.

6.2.4 Setting up goals on the way

Achieving the main goal in one step is both hard and undesirable, as you lose
sight on what is important. One of our main ambitions was to have relevant
and realistic smaller goals throughout the project to ensure that the project
developed as it had been intended. Goals such as finishing parts of the report,
having early versions of software running, and reading about different theories
were set up and later checked to know whether they had been achieved in time.
If not, an analysis was performed to find out why the goal had not been met
and what effect the delay would have on the overall project.

6.2.5 Who had the outermost responsibility?

We had shared responsibility for the quality and the outcome of the project. The
shared responsibility put high demands on communication within the group to
make sure that no tasks fell between chairs. This was accomplished by making
sure that everyone was allowed to have their opinion and that the working
environment encouraged discussion about problems that might have disturbed
the communication opportunities. No regular meeting were set up between us,
instead, we had a discussion whenever we needed it.

6.3 SWOT-analysis

The SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis is a
useful tool for the evaluation of any collaboration or project. It requires an in-
ternal survey of strengths and weaknesses and an external survey of threats and
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opportunities. The internal survey of this analysis covers personal backgrounds
and individual preparedness for the work, whereas the external looks more into
the environment at work.

SWOT analysis can be performed individually or in groups. Group tech-
niques are particularly efficient in providing structure, objectivity, clarity, and
focus to discussions, which might otherwise be strongly influenced by personal-
ity. This section starts with a SWOT-analysis of the image registration software
and thereafter continues with an analysis of the project itself.

6.3.1 SWOT-analysis of the image registration software

Making a SWOT-analysis of the developed product, helps you to collect your
thoughts and to present the advantages and the disadvantages for yourself and
others in a very predictable manner. It might even help you to get some new
ideas about how to improve the product. Many factors can, and should, be
placed in several of the four categories (strengths, weaknesses, opportunities,
and threats).

Strengths

By decreasing the influence of the human factor, the image registration software
will improve the accuracy of the treatment. Thus, neither a doctor having a
bad day nor his former experiences in the field, will affect the treatment due
to differences in decision making. Also, the software will simplify the gathering
of statistical data and enables different statistical analysis, which might have
been hard to perform before. Finally, the software does not require extreme
computer power and runs on standard operative systems.

Weaknesses

Unfortunately, no strengths come without weaknesses. Should we really strive
for computerising everything and totally neglect the importance of the human
intuition and the personal contact between doctor and patient? As we are
still treating human beings, the latter is an essential question in many cases.
Hopefully, this test product will develop with time and be a more flexible tool.
Unfortunately, 20 weeks of time is far too short to develop more than a test
version of the final software.

Opportunities

This project is the result of a cooperation between the Department of Electrical
and Computer Engineering at the University of Newcastle and the Mater Hos-
pital in Newcastle. As the field of image analysis surely can be used for various
applications within medical technology, we hope to see this project only as the
start of an increasing collaboration from both sides in the future. Moreover, it
could strengthen the links between the Department of Electrical and Computer
Engineering (The University of Newcastle) in Australia and Lund’s Institute of
Technology (The University of Lund) in Sweden.
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Threats

The problem of comparing images of different quality, size, and even origin
have long caused many difficulties. Many different angles of approach have
been tried, with different results. Each case seems to have its own optimal
solution, depending on various factors. Thus, an extensive study of different
fields, many of which for us were completely new, was necessary. Different
theories were continuously tested, and the result of the tests pointed us towards
new suggestions of solutions to our problem. Little contact with the hospital in
general, rather few meetings with our supervisor at the University of Newcastle,
and the fact that the project is on the very border of the field of our swedish
supervisor at Lund’s Institute of Technology, may have increased the hours of
self studies and therefore decreased the results obtained in the given time frame.
It also made it easier to occasionally get on to the wrong track.

6.3.2 SWOT-analysis of the project

Unlike the more objective analysis of the software in the earlier section, this
investigation strives for treating our individual backgrounds, different personal-
ities, and their effect on the project and indirectly on the software itself.

Strengths

With different alignments inside the vast field of electrical engineering, working
together had the advantage of having greater basic skills and also different ways
of looking and understanding new things thanks to former experiences. More-
over, a big motivation for making the best project possible in order to finish the
Master of Science degree in time and in a good manner, our goal consciousness,
and persistency often helped us to keep up the motivation in harder periods
and to still keep on developing the project. Furthermore, good communication
between the two of us helped unraveling small problems occurring in the every
day life and preventing them from getting more complicated than necessary.

A similar attitude towards the problem and very competent, yet sparse,
tutoring from our supervisor at the University of Newcastle were two very im-
portant strengths of this project. Also the habit of learning new things, received
from our home university, has been a valuable support.

Weaknesses

To go abroad is a very instructive personal experience, but perhaps not the most
efficient way of doing a 20-weeks-project. Personal concerns such as finding out
about transportation, food stores, and bank accounts easily dominates the first
weeks and a different social order keeps on giving you surprises and compete
about your precious and limited time. As mentioned in the introduction, many
new and interesting things tend to draw your attention from work towards
leisure.

Besides, the surroundings are not the only new thing. You work very close
to another person and the process of getting to understand each other is a time
consuming but important matter. To clear the air is sometimes a necessity.
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Everything sums up by the words “lack of time”. In addition, it was our first
small research project and therefore a completely new situation for the both of
us.

Opportunities

Thanks to this experience of working in Australia and earlier similar experi-
ences of other countries, we hope to have increased the possibilities of getting a
work abroad, for a longer or shorter period in the future. Furthermore, it will
hopefully help us to better understand possible foreign customers. It has been
an excellent chance to learn the language and to get to know the australian
culture. Also new experiences of cooperation, structuring of your work, inde-
pendent working, and handling of computers, might hopefully lead to a more
interesting work, involving greater responsibility.

Threats

Fairly poor computer access in general resulted in the sharing of the workspace
with persons having rather different attitudes to our and their work. Sometimes
this put us all in disagreeable situations. Also temperatures over 30◦ Celsius
without air conditioning, dry air, and poor lighting decreased the efficiency. To
have the complete responsibility for your work and your result over such a long
period was another sometimes hard, but yet very instructive experience.

6.4 Cost Savings and Quality Assurance

The SWOT analysis shows a number of possible improvements that can be
achieved when implementing the image registration software. The main goal
of the software is to improve treatment accuracy. However, it is interesting
to investigate conceivable improvements that can be measured in economical
terms.

Time savings Today, the image registration is done by the doctor at typically
seven occasions. Each time, the doctor spend around three minutes with
the image registration. With the image registration software, the time
saving would be approximately half of this.

Farming out the image registration Another possible economical benefit
could be to let less qualified staff handle the image registration. The
obvious cost saving would be salary expenses.

Another important aspect is the quality assurance and as we have understood
it, there is no such thing today. We highly recommend the implementation of
a quality assurance scheme in order to evaluate and prove the improvements
gained by the image registration software.

6.5 Time plan

Time is always something you cannot get enough of. No matter how hard you
try planning your time you often end up with a heavy amount of workload at
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the end. Nevertheless, a carefully considered time plan can make the workload
bearable and it becomes a vital tool when planning your work. Timeplanning
is one of the best ways to determine if the project is going to reach its goals on
time and should give an early warning if there are any problems. A time plan
is not a static document; things happen under the way and affect the project.
Therefore, the time plan also has to be changed. Yet, it is always important
to consider why a time plan needs to be altered, for instance, has something
happened or did we fail to give an accurate time estimation from the beginning?

At the start of the project, a timeplan was outlined and it is enclosed in
Appendix A. Different tasks were defined and described and have served as a
guide throughout the project. In the following section, a brief description of the
different tasks is presented as we defined them in the beginning of the project.

Initial literature studies An important part of the project, which should be
allowed to take time, is the search for and the study of literature within
the area. This initial literature study serves to give an introduction to the
area of image processing and to give us different ideas on how to approach
the problem.

Testing of theory and implementation of tests When the initial literature
studies have been performed, the next step is to test the theory on real ap-
plications. This is done by planning and implementing algorithms, mainly
in Matlab. Thereafter, a number of tests are performed to make sure the
algorithms are implemented accurately and that the theory is applicable
to the reality, which is often not the case.

Writing the theoretical parts of the report After a severe amount of stud-
ies, the importance of writing it all down and organising the knowledge
is increasing. This time is set aside at an early stage in order to make
the final writing of the report easier and also giving us a chance to review
the theory, with the results of the tests in mind, before continuing the
development of software.

Economical aspects The inclusion of the economical aspects in the final re-
port have two reasons. First, it is important to consider a project from
more than the technical point of view and we feel that a good technical
solution cannot replace the possibility that there is no need for the product
at all. Second, is one of the team members alignment towards Production
Management and the need to include the economical aspects in order to
fulfill her undertaking as a student specialised in Production Management.

Further development of software When writing the theoretical parts of the
report, a number of ideas are surely raised on how to improve the algo-
rithms and also some new theories might be found which would be in-
teresting to implement and test. This part of the project is devoted to
combining the existing software with the new theories to improve the al-
gorithms.

Optimisation of software In this part, it is our goal to have working software,
and then make it as efficient as possible. In the case were the different
parts of the software is not working together, see Section 2.1, the aim is to
optimise each individual block. Time consuming calculation loops in the
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software were implemented in C and included in Mex-files to be recognised
by Matlab. This significantly increased the speed of the calculations.

Test of software As a quality assurance, testing the software is an important
part of the project. During this period, the software is tested on real
images and the aim is to make it as user-friendly as possible with no
errors and bugs.

Finishing the report and preparing the presentation The report is your
chance to show people the results and the work we have been doing for the
last 20 weeks and it is a compulsory part of the thesis. We also feel that
it is an important part of the project since communicating your results is
helpful for further research within the area.

Reviewing another project As a part of our final year project, the reviewing
of another project has to be undertaken. This is done in Australia to
simplify matters and also give us a opportunity to read an English written
report.

Learning LATEX The best tool we could find to write a report was LATEX and
since none of us ever used it before, some time had to be set aside to learn
the basic features.

Presentation Communicating your results is an important part of the project
and this is our chance to show the outcome of the project to interested
people. Moreover, it is an compulsory part of the final year project at
Lund Institute of Technology and we hope it will be a successful ending
to our project.

6.6 Discussion

Moving to a foreign country, even if it just for 6 months, is exiting and provides
you with new experiences and knowledge about yourself and the world around
you. However, is also something that demands a lot of energy and commitment;
finding a place to live and the way to university and the food store are just some
obstacles that you might encounter at the beginning. Some may sound easy to
solve, but without a car in a country prepared for cars, every task become an
adventure itself. This chapter is written to bring some, for us, important aspects
of the working environment to the surface. It is not supported by any theory;
it is just based on our own thoughts about the matter.

6.6.1 Communication

Why should such a natural thing like communication cause any problems? It
is not the communication itself that is a source of problem, it is the lack of
communication that can destroy every opportunity to successful results. Even
though good communication is something vital, it is not always something easy
to achieve. Nevertheless, you can do your best to encourage good communica-
tion and that will in many cases be enough for a healthy, openminded working
environment. The fact that your fellow-worker is also your friend, with whom
you spend your free time, could be considered a disadvantage as things tend
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to be personal instead of work related. However, we have chosen to see this as
an advantage and regard it as a possibility to improve the communication even
more. One of the most important aspects of communication is listening to each
other which may sound like an easy task, and it is, if you just think about it.

In order to make sure that no one is feeling overlooked, regular conversations
about the projects development and our contributions are important. However,
no special time is set aside for this. Instead, whenever a problem occurs, you
bring it up to discussion. Since we both are outgoing persons, ready to speak our
minds, the chance of a problem not being discussed is minimal. Furthermore,
good knowledge of each other personalities is a good help in order to understand
each other and solve problems.

6.6.2 The importance of well defined goals

Even though the honours thesis is not a particular large project, it is still large
enough for losing sight of the over all goal. To only work towards one main
goal is not something that motivates you to perform your best, you easily get
lost along the way. A more realistic approach is to set up smaller goals and
achieve them one at the time, which is something we have been trying to do.
It has not always been easy, and often we have been feeling that we have been
tumbling around in the dark. Sitting down, and trying to analyse the situation
has helped, even though it also sometimes has taken a lot of time and effort
to do so. The problem, as we see it, has been to determine realistic goals. In
addition, time estimation is a difficult skill to learn. Tasks that are planned to
take a day can easily end up taking weeks.

6.6.3 Working in Australia

As mentioned in the introduction to this chapter, working in another country can
be far from easy. It is easy to believe that, just because Australians, who usually
call themselves Aussies, speak English, they would be English. It is not even
true that they resemble the Americans and mentioning anything about possible
similarities to an Australian would often be taken as a great offence. Business
men coming to Australia should be very aware of the fact that Australians are
not Europeans in order to be successful [23]. The main thing we have found
is that as soon as the temperature reaches 30◦ Celsius, work is forgotten and
people head for the beach and light their BBQ’s. If the temperature is raising
above 40◦ Celsius, you would be considered a madman if working.

It is an laid-back attitude and people do not seem to be stressed over little
things. During this autumn, there have been several articles in the Swedish
media regarding people being ill or even dying due to heavy workload. Those
kind of articles is seldom encountered here, and the reason for this, is probably
because of the different attitude towards work. Stress at your working place
does not seem to be as common here as in Europe.

6.6.4 Physical working environment

It became quite clear already from the beginning, that this project were going to
evolve towards research rather than building something. When doing research
or studying, we found it very important to have a calm and relaxing working
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Figure 6.3: Life with a computer.

environment, inspiring you to learning. For a number of reasons, this could
not be arranged, and this fact has sometimes put a limit on our ability to
study. We think that feeling comfortable in your working environment is of
great importance in order to achive good results, and we wish the situation
regarding our working environment could have been different.

Another aspect on working environment is the never ending hassle with
computers, which we are sure everybody have experienced. When hours becomes
days and you do not seem to be any closer to a solution it is easy to give up.
The technical staff at the Electrical and Computer Engineering department,
Newcastle, have been a great help, trying to solve all the problems, and without
them we would still be sitting there.

Moreover, we found that music is an invaluable source of inspiration and
has helped us a lot when trying to focus. However, a shared working space
sets limits on your possibilities to play music. It sometimes becomes difficult to
concentrate, when two or three different songs are playing at the same time in
the same room.

6.7 Conclusions

As stated in the introduction, this chapter has the purpose of bringing a different
aspect to the project, apart from the technical part dealt with in the previous
chapters. We hope we have given the reader an understanding of how our work
have been performed and also our opinions on the project as a whole. As the
SWOT-analyse shows, the project has a great potential if fully developed. Better
and more accurate treatments, cost savings, and patient security are just some
benefits. We will probably not reach as far as to have a complete software for
the image registration problem running. This is a due to a number of reasons;
this project covers an immense area from the field of numerical optimisation to
a number of different image processing techniques. Nevertheless, we hope that
someone else will continue where we finished and hopefully find our research
valuable and interesting. In addition to an insight in image analysis, we have
learned a lot about ourselves, each other and the australian culture throughout
the project. It has been an interesting experience which surely has given us
useful knowledge for our comming working life.
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Part III

Discussion and Conclusion

77



78



Chapter 7

Discussion

Looking back on the project, there are many approaches that would have been
interesting to countinue working on. As always, the more you know the more
interesting it gets. Hopefully this chapter will give some guidance in which
direction future research within this highly interesting field could take.

7.1 Portal image

The main problem of the image registration task is the very blur and contrast
lacking portal image. Still, the question remains if the white layer that covers
the portal image, see Figure 1.3, really is noise? Concentrating more on the
removal of noise from an image, a deeper study of the portal film itself and
known problems of its recording was overlooked in the beginning of the project.
Later on, informative literatur on portal imaging was found and it led us into
the study of, for example, non-linear filters. More information on for instance
how the X-ray images are digitalised (rectangular/hexagonal and with which
distances), the frequency contents of the images and even more knowledge about
the X-ray radiation and typical disturbances for the recording of the radiation,
are matters that should have been studied in an earlier stage of the project.

7.2 Wavelets and Filtering

The wavelet based approach was the first main idea for a solution to the problem.
If wavelet coefficients corresponding to edges representing important bonemarks
could have been found on adjacent scales of the transform, these coefficients
might be the only necessairily representation of the image for the edgedetection
and perhaps even for the translation and rotation detection. The problem of
slow computations due to big image matrices would then have been solved. Why
the wavelet transform did not give satisfactory result is hard to say; either we
used wavelets that were not suitable for the task or the frequency contents of
the images was limited in a too narrow band to be partitioned by the used
wavelet transforms or to be displayed using the already implemented routine
for displaying the result in Matlab. A frequency analysis of the images would
have been very informative, but unfurtunately the attemps of performing such
an analysis were not succesful. Instead of getting deeper into the complicated
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field of mathematics behind wavelets in order to find more suitable wavelets,
we choosed to return to the mathematically much simplier linear filters. This
on the advice of people working in the field of image processing and analysis.
Linear filter gave, as already mentioned, better results than wavelets, but the
most promising results came from the non-linear filters. Also the study of portal
images suggested non-linear filters, as the disturbances on the X-ray images have
the structure of multiplicative noise and therefore can not be treated with linear
filters. Linear filters can only deal with additative noise. If time would had
allowed it, interesting filters to study would have been the morphological filters.
These filters are already frequently used for biomedical applications. Also, the
idea behind mathematical morphology to search for sets of similar functions,
i.e. sets of pixel values when it comes to images, instead of only edges, could be
a more suitable way of finding the required bonemarks in the X-rays. A very
instructive introduction to different families of non-linear filters and also some
theory about image recording and noise is found in [19].

7.3 Calculation of translation and rotation

In this thesis we have used a minimisation program in order to detect the trans-
lation and rotation. Some kind of optimisation method surely has to be used for
this task, but perhaps the cost function (V ) to be minimised could be calculated
in another way than using a sum over the least-square difference between two
samples.

The implemented minimisation algorithm terminates when the decrease in
cost between two iterations is too small and this has shown to be a problem.
The cost between the two X-ray images is rather large and the cost function
around the minimum is pretty flat. The result is an algorithm which terminates
before the minimum is found. Moreover, the problem cannot be avoided even if
the termination conditions are altered. In any future development of the min-
imisations algorithm, this is an important aspect which needs to be considered.

Another suggestion was to not do the comparision between the images pixel
by pixel, but to compare the equilibriums of both images. This was never tested,
but it could be a very interesting approach.
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Chapter 8

Final conclusion

Even though we used different test results and solutions for the two first blocks,
no attempt gave enough satisfactory results to link the fields of preprocessing,
edge detection, and minimisation together. For the preprocessing, a contin-
ued wavelet based approach would demand deeper understanding of the rather
complicated mathematics behind the wavelet theory. This is likely a more com-
plicated way than needed of solving something that probably can be solved in an
easier manner, for instance with non-linear filters. The edge detection is using
the Canny operator, which already is widely known for its good performance.
As for the minimisation, the prestudy preceding this thesis only showed a clear
minimum of the cost-function (V ) when translation and no rotation is involved.
Still, the minimisation of this cost-function would probably work, even with ro-
tation involved, once the images obtained after the edgedetection only contain
edges that are relevant for the comparision. Computations using these edge im-
ages are not too slow to carry out if the loops are implemented in C and used in
Matlab as Mex-files, as it has been done in this project. It would be interesting,
though, to compare the accuracy and the speed of computations, when using
other ways of computing the gradient and the Hessian.

A future research in the area would be guided towards finding out more about
portal images and to keep on testing different non-linear filters as preprocessing
of the portal image. A very interesting family is the morphological filters, which
are already frequently used in the field.

To conclude, this projects deals with a complicated, yet highly interesting
task, comparing X-ray images differing a lot in quality. Still, the very useful
application makes it worth fighting for; it is a technical challenge in order to
faciliate the treatment of two of our dearest possessions, our body and our
health.
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Appendix A

Time plan
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Appendix B

Graphical User Interface in
Matlab

A test platform for testing the different theories and algorithms developed in this
project has been created by using the Matlab graphics toolbox. This appendix
is included in order to give a brief introduction to graphic user interfaces, a
complete coverage can be found in [9][14].

B.1 Graphics Objects

The computer monitor screen is called the root and is the parent of all fig-
ure objects. There can be several figure objects present at the same time
and they are identified with an integer number. By writing the command fig-
ure(figure number) the specified figure becomes active.

The figure objects have three different types of children, namely, uicontrol,
uimenu and axes objects, see Figure B.1. A figure can have multiple children
and the children do not need to be of the same type. Since also the root can have
several children (figures), there can exist several “trees” with different branch
structures. The following sections describes the children and their basic features.

B.1.1 Uicontrol

The uicontrol objects are used to generate graphical user interface controls and
they can be implemented in a number of ways. They are created with the
purpose of asking the user for an action or setting up options for a future action.
The user often uses the mouse pointer to select the desired option.

Check Box This is a useful uicontrol when you like to give the user two options,
often referred to as “on” or “off”. In its off state the square next to the
describing text will consist of an empty square and in the on state, the
square will contain an “X”.

Editable Text The editable text style is used in situations where the user is
required to supply a string of characters or numbers. The editable text
box is often used together with the static text box in order to make the
user aware of what she is suppose to provide to the application.
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Figure B.1: The tree showing the parent-children relationship.

Frames The frame object does not demand any action from the user. However,
it is used as a visual aid when grouping related objects and organising the
GUI in a logical and intuitive fashion. The importance of a user friendly
GUI can not be stressed too much and the frame object is an invaluable
aid.

Pop-up Menus A pop-up menu is usually used in situations where multiple
choices need to be available to the user. The current selection is displayed
in an unopened pop-up menu. However, when the user activates the menu,
a list of choices appears.

Push Buttons The push button is used when an action should take place
immediately. They are often labeled with a verb describing the action
taken if the push button is activated.

Radio Buttons The radio buttons are similar to the check boxes in that there
are two states associated with each button, i.e “on” or “off”. However,
radio buttons are usually mutually excluded which means that you can
only activate one radio button within a group of linked buttons.

Sliders When the user has a fixed range of values to choose from, sliders is a
useful uicontrol object. It is often comprised of a trough, an indicator bar,
and a set of arrows. The trough represents the range of values to choose
from, the indicator bar is used to represent the current value. By clicking
on the arrows or moving the indicator bar, the values are changed.

Static Text Static text do not perform any action if the user clicks on any
part of the object. It is used to create labels, status messages, or other
information to the user.
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Dialog boxes

There are four predefined dialog boxes generating functions that uses some of
the uicontrol objects described above.

Error dialog box The error dialog box will appear in a new figure displaying
some text about the error and a button labeled “Ok”. When pushing the
button the dialog box will disappear.

Help dialog box This dialog box works in the same way as the error dialog
box, displaying a message that will help the user. The dialog box disappear
when the user pushes the “Ok” button.

Warning dialog box Works as described above except for the message type
given to the user.

Question dialog box This dialog box differ somewhat from those described
above. Instead of just being able to press the Ok-button, this dialog box
gives the user two or three option, often “Yes”, “No” and “Cancel”.

B.1.2 Uimenu

In addition to the various uicontrol objects, you can also add pull down menus
to your GUI. If a user clicks and holds down the mouse button when the pointer
is located on the top of a title, a list of menu items will appear. The menu can
also contain submenus and are then indicated as an arrow at the menu item. In
the GUI designed for this project, the uimenus were not used and are therefore
not described any further. However, a full description can be found in [14].

B.1.3 Axes

The child axes contains multiple types of objects, namely, images, lines, patches,
surfaces and texts. The axes objects have a wide range of properties that can be
set to satisfy every need of a GUI designer. However, they will not be discussed
in detail in this appendix. In Figure B.2, the objects are shown graphically.

B.2 Programming the CallBack function

In order to make your GUI do something, apart from looking nice, the CallBack
function needs to be implemented. The problem that needs to be considered, is
that whenever a function A is executed in Matlab’s base workspace, a temporary
workspace is created. This temporary workspace contains all the local variables
and information associated with function A and after the function has been
executed, the temporary workspace is cleared and the local variables are lost.
The only variables left are those specified as global or generated as output from
the function. Function A, in turn, can execute another function B, which also
creates a temporary workspace for its local variables. Figure B.3 shows how the
execution chain might look like.

The issue of temporary workspaces is important when designing a GUI. If you
create graphic objects during the execution of a function, all of the locally stored
information, such as graphic handles which might have been available in the
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Figure B.2: The different axes objects.

Figure B.3: Matlab’s workspace during the execution of several functions.
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functions local workspace, will be lost when the function has finished executing.
This happens unless the information is either globally available, passed back and
stored in the base workspace, or stored in the UserData property of a graphics
object. Since there are so many way of storing and retrieving information, there
are several structures that can be used to program a GUI. We will here discuss
the method used in our GUI design.

B.2.1 Storing Handles as Global Variables

The idea in this method is to put all the code into one function and make the
handles of the graphics objects global variables. When calling the function for
the first time, the GUI is initialised and all the graphic objects and handles
are created. The program then waits for an action by the user and when that
happens the function is called again with another input variable defining the
action that should be performed.

The CallBack functions are separated from the initialisation of the GUI,
which makes the code easier to read and modify. A short example is included
below to clarify the idea.

function example(command_str)

if nargin == 0
command_str = ’initialize’;

end;
global h_1 h_2 ...
if strcmp(command_str,’initialize’)
%INITIALIZE THE GUI SECTION.
%Make sure that the GUI has not been already
%initialized in another existing figure.

elseif strcmp(command_str,’action1’)
%CALLBACK FOR action 1

elseif strcmp(command_str,’action2’)
%CALLBACK FOR action 2

end; %END command_str comparison checks.

There are a couple of problems which are not solved with this method. One
is that an error will occur if the user issues the “clear all” or “clear global”
command. Another is that the code for making sure that the GUI does not
already exist is absolutely necessary. Otherwise, the globally store variables will
contain the graphic handles to the most recently created GUI, that GUI will
control the application, and the older object handles will no longer be stored.
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