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A.2.2 Derivatives of ŷ10 . . . . . . . . . . . . . . . . . . . . . . . 62
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1 INTRODUCTION

1 Introduction

1.1 Irrigation

In earliest times the purely agricultural communities tended to settle down in
the better-watered regions, i.e. in areas of highest or most reliable rainfall and
along the main rivers. There is, however, evidence that irrigation was practiced
from prehistoric times (see [1]). Egypt claims to have had the world’s oldest
dam, built 5000 years ago to store water for drinking and irrigation. Basin irri-
gation introduced in the Nile valley around 3000 B.C. still plays an important
part in the Egyptian agriculture.

During the industrial revolution of Europe, people moved from the countryside
to the cities and the population started to grow. Many irrigation projects were
set up in Egypt, India, Pakistan, and Iraq by British engineers to find out how
to meet the growing needs of water, both for the growing cities and for arid land.

Aridity is not unnatural. The arids now existing in the world are far too vast
to have been created wholly by human beings (see [2]) . Of course man-made
deserts do exist—parts of the earth’s surface where the intervention of man has
prevented plant growth. But their total extent is probably small in relation
to the areas of arid land for which the forces of nature alone are responsible.
The countries or continents that have arid land are Africa, the Middle-East, the
United States, Australia, some parts in South-America and the north of India.
In these countries and continents there is a great need for irrigation on farms
for crops and animals.

Water has now become a very scarce resource in many parts of the world be-
cause of the increasing population. We have taken for granted the seemingly
endless supplies of water and access to water has been the key to agriculture
and industrialization. A lot of water is used in agriculture and the number is
growing. To grow 320 tons of food on one square mile (≈2.6 km2) of land, more
than one million tons of water may be needed. Studies, see [4], have shown that
building large new dams and river diversions is becoming costly and environ-
mentally damaging. In most cases it is better to use the water already supplied
more efficiently. It is therefore very important to reduce the wastages of water
through, for example, better control of irrigation channels. A lot of water in
the channels is wasted because of lack of efficient control. The channels are
often overdimensioned because of lack of knowledge when they were built and
causes much water to go wasted. The water delivering system is not perfect
and to make it better we have to minimize the water losses, but we also have to
deliver water to the farmers on demand. In this thesis we have tried to develop
a predictive controller for a specific part of the Haughton Main Channel, HMC,
to see if this kind of controller would be suitable for irrigation channels. The
HMC is situated in Queensland, on the east coast of Australia. The HMC gets
its water from the Burdekin Dam in north Queensland. For more information
see [3].
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1 INTRODUCTION 1.2 The problem

1.2 The problem

This project is a part of the Rubicon project. Rubicon Systems Australia [5] is
a systems integration company which supplies specialist operational technology
to the water industry. Erik Weyer, our supervisor, is working together with Ru-
bicon to help them develop better methods to reduce the losses of the irrigation
channels.

The goals of the project are:

• Keep the water level constant in the main channel despite of disturbances

• Move the gates as little as possible

The water level should be kept on a constant level so there always is enough
water for the farmers. The gates should be moved as little as possible because
of the limited power from the solar cells. Movements of the gates can also cause
waves in the channel and we do not want that because the model does not in-
clude wave effects.

To reach these goals the first thing to do is to find a good model for the chan-
nels. We want to describe the channel and its behaviour with mathematical
functions. The next thing to do is to find the function to be optimized. The
function to be minimized is the error and the last head over gate. In our case the
error is the difference between the real water level and the desired water level.
The error and the head over gate should then be minimized by MPC (Model
Predictive Control) theories, and this is done in the chapter called Predictive
Control. MPC gives high performance control systems that can operate without
intervention for long periods of time which is needed in irrigation systems.

1.3 Outline

In this report a predictive controller is developed. We start by giving a de-
scription of the system in chapter 2. The physical description of the channel
was supplied to us by our supervisor Erik Weyer. We have made the state-
space formulation and the formulation of the problem. In chapter 3 we give an
overview of Model Predictive Control, the control strategy that we have been
using. Chapter 4 shows the different optimization tools that have been used.
The final optimization tool that we implemented our problem in, is a program
made by James Wettenhall. The performance of the predictive controller is
described in chapter 5. Here we have made different simulations to see how
the controller reacts in different situations. The simulation model that we have
been using is made by [E. Weyer, E. Lim]. We have made some changes in the
model to suit our problem. Chapter 6 completes the report with conclusions
and suggested future work.
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2 DESCRIPTION OF THE SYSTEM

2 Description of the System

An irrigation channel consists of many gates and between two gates there is
a stretch called a pool. The water level in the pool is controlled by the gates
located at both ends of the pool. We have considered gate eight, nine and ten of
the HMC. The measurements available are the water level upstream and down-
stream of each gate and the gate position. The height of water above a gate is
called the head over gate and can be computed from the upstream water level
and the gate position. The upstream water level is referred to as yi and the
head over gate as hi, see figure 1. The water levels are all measured in mAHD
(meters Australian Height Datum). This is a level with a reference to a certain
point in Australia which is set to be zero.
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gate i

gate i+1

hi+1

Figure 1: The Channel

The gates are overshot gates, which means that the water is moving over the
gates. In some places undershot gates, when the water goes under the gate, are
used but not in this case. The gate opening increases by rotating the whole gate
around the lower edge axis. The gate position is represented by p in meter as
shown in figure 2. When the gate is completely closed the value of p is zero.

The desired water levels are referred to as y9sp and y10sp and the values are:

y9sp = 26.50 mAHD
y10sp = 23.85 mAHD
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2 DESCRIPTION OF THE SYSTEM 2.1 Physical constraints

Head over gate

Head over gate

p

Waterlevel

Figure 2: The Gate

2.1 Physical constraints

It is just possible to move the gate between two values. These values are differ-
ent from gate to gate. The different limitations are shown below in meter:

0 ≤ p08 ≤ 2.005

0 ≤ p09 ≤ 1.474

0 ≤ p010 ≤ 1.487

We also have a limitation of how much the gates can change in every time
step, ∆p08, ∆p09 and ∆p010. There is a rate limit of the gate movements and
this limit is ±0.4 meter per time step. Another limitation that is not actually
a physical limitation is that we do not want the head over gate to be negative.
This limitation will also decrease the movements of the gates. The shapes and
dimensions of the pools are shown in figure 3 and 4.

2.2 Offtakes

When a farmer takes out water from the channel we refer to it as an offtake.
We show below how these are calculated for pool eight and nine.

2.2.1 Offtake in pool eight

In the real pool eight there exist some offtakes that we have to take into consid-
eration. The maximum offtake is 30 mega liters per day but this offtake is a bit
too small to see the influence on the pool so we decided to try an offtake of 530
mega liters per day instead. This offtake is implemented as a disturbance in the
model. To be able to implement the disturbance we calculated the difference in
water level per minute, ∆y, that corresponds to the difference in the flow. The
amount of 530 mega liters turned out to be a good value to see reactions on the
pool.
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2 DESCRIPTION OF THE SYSTEM 2.2 Offtakes

A

h
2h

6 m

1600 m

Figure 3: the shape of pool eight

The difference in the water level is so small so we assume the area is constant
over this interval. The area times ∆y corresponds to the volume per minute.

Calculations:

A = 1600 · (6 + 2 · 2h)
h = 1.6m =⇒ A = 19840m2

change in volume per minute:

∆V = A ·∆y

With the flow disturbance 540 mega liters per day ∆y becomes:

∆y = 530·103

60·24 /19840 ≈ 0.01855m

2.2.2 Offtake in pool nine

Even if there does not exist any offtakes in pool nine it is possible that somebody
wants to implement an offtake later on. In this case we counted with an offtake
of 300 mega liters per day. The calculation for this pool is shown below:

A

h
2h

6 m

900 m

Figure 4: the shape of pool nine

The area times ∆y corresponds to the volume per minute.

A = 900 · (6 + 2 · 2h)
h = 1.6m =⇒ A = 11160m2

change in volume per minute:

∆V = A ·∆y
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2 DESCRIPTION OF THE SYSTEM 2.3 The model

With the flow disturbance 300 mega liters per day ∆y becomes:

∆y = 300·103

60·24 /11160 ≈ 0.01867m

2.3 The model

Prediction and control of irrigation channels require models. The water level is
the controlled variable, so it is clear that a model for control should have the
water level as output. As the gate position is the variable that is changeable
this is considered as the input signal.

In most irrigation channels the channel is modeled by the St. Venant equa-
tions, see [18]. These equations are nonlinear and are derived from mass and
momentum balances and are given by:

∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+ (

gA

B
− Q2

A2
) · ∂A

∂x
+

2Q
A
· ∂A
∂x

+ gASf − gA~S = 0

where
A is the cross section area of the channel
B is the width of the water surface
Q is the flow
g is the gravity
Sf is the friction slope
~S is the mean bed slope

The St Venant equations are known to be good from laboratory experiments
but the real world is different from the ideal laboratory environment. In our
model the problems with the St Venant equations are that the friction slope
is unknown, the equations do not model the flow over the gate and it is also
difficult to use the equations for prediction and control. However, the St Venant
equations together with some equations for the flow across the gates are usually
taken as starting point for developing models for control.

2.4 Our model

Using system identification [6], [7], we are able to obtain models that are in
agreement with the physical reality and also useful for predictive control.

If the behaviour of the overshot gate is approximately the same as a sharp
crested weir, then the flow over the gate can be written as

Q(t) = ch3/2(t) (1)

where Q is the flow, h is the head over gate and c is an unknown parame-
ter. c incorporates the effect of the discharge coefficients introduced in order
to compensate for the incorrect assumptions made in the derivation in the flow
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2 DESCRIPTION OF THE SYSTEM 2.5 State-space representation

equation.

If a simplified mass balance is considered and the volume in the pool is consid-
ered to be proportional to the water level the mass balance would be:

ẏ9(t) = c̃1h
3/2
8 (t) + c̃2h

3/2
9 (t) = c̃1h

3/2
8 (t) + c̃2(y9(t)− p9(t))3/2 (2)

y9(t) is the water level upstream of gate ten, h8(t) the head over gate eight,
h9(t) the head over gate nine and p9(t) the position of gate nine. There is a
time delay between the two gates and taking this into account and introducing
an Euler approximation for the derivatives means that the following equation
([6]) can be obtained:

y9(t+ 1) = y9(t) + c1h
3/2
8 (t− τ) + c2(y9(t)− p2(t))3/2 (3)

The model for the stretch of the channel from gate eight to gate ten can be
modeled in a similar way and the result is:

y9(t+ 1) = y9(t) + c1h
3/2
8 (t− τ8) + c2h9(t)3/2 (4)

y10(t+ 1) = y10(t) + c3h
3/2
9 (t− τ9) + c4h10(t)3/2 (5)

The waves in the channel are not represented in this model as more complex
models are needed for this which are unnecessary complex for controller design.

The relation between the gate position, the water level and the head over gate
is as follows:

hi(t) = yi(t) + pi(t)
1000 − gi

where hi(t) is the head over gate (m), yi(t) the upstream water level (m), pi(t)
the gate position (mm) and gi is the adjustment factor.

2.5 State-space representation

To be able to do Model Predictive Control we need a mathematical model for
the system. The water level in the next time step can be described by:

y9(k + 1) = y9(k) + c1h
3/2
8 (k − τ8) + c2h

3/2
9 (k)

y10(k + 1) = y10(k) + c3h
3/2
9 (k − τ9) + c4h

3/2
10 (k)

where

τ8 = 6 min
τ9 = 4 min

For one minute sampling period
c1 = 0.0208
c2 = −0.0278
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2 DESCRIPTION OF THE SYSTEM 2.5 State-space representation

c3 = 0.0650
c4 = −0.0660

For two minutes sampling period
c1 = 0.0416
c2 = −0.0554
c3 = 0.1488
c4 = −0.134

The water level in the next time step, y(k+1), is the water level in the previous
time step, y(k), plus the flow into the pool minus the flow out from the pool.
τ8 and τ9 are the time delays for the different pools, k is the time step, h is the
head over the gate and c is a constant that compensates for incorrect assump-
tions made in the derivation in the flow equation 1. c is determined by system
identification, see [6] and [7]. τ8 and τ9 have to be adjusted for the sampling
period. We must be able to express the time delay τ in k because we want
to replace the time delays with states. We have been using different sampling
periods, one and two minutes because a sampling time of two minutes reduced
our model and it was easier for our optimization tool to handle this. We have
also been using two different models, one linear and one nonlinear. In the case
of a linear model we have put the nonlinearity on the constraints instead. The
nonlinear model with linear constraints turned out to be the best representation
for the optimization tool. This model is shown in chapter 2.5.4.

The following equation which shows the difference in flow was also used:

h
3/2
i (k + 1) = h

3/2
i (k) + ∆xi(k)

Here ∆xi(k) is the difference in the head over gate risen to three halves be-
tween two time steps and is used as our input signal for the system.

To take care of the time delays new states were introduced. This is shown
in the representation below.

2.5.1 Representation with linear model and nonlinear constraints
with sampling-time one

In this state-space model the sampling-time is one minute. The calculation is
shown below:

z0(k) = h
3/2
8 (k)

z0(k + 1) = h
3/2
8 (k + 1) = h

3/2
8 (k) + ∆x8(k) = z0(k) + ∆x8(k)

z1(k + 1) = z0(k)
z2(k + 1) = z1(k) = z0(k − 1)
z3(k + 1) = z2(k) = z0(k − 2)
z4(k + 1) = z3(k) = z0(k − 3)
z5(k + 1) = z4(k) = z0(k − 4)
z6(k + 1) = z5(k) = z0(k − 5)

s0(k + 1) = h
3/2
9 (k + 1) = h

3/2
9 (k) + ∆x9(k) = s0(k) + ∆x9(k)

s1(k + 1) = s0(k)
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2 DESCRIPTION OF THE SYSTEM 2.5 State-space representation

s2(k + 1) = s1(k) = s0(k − 1)
s3(k + 1) = s2(k) = s0(k − 2)
s4(k + 1) = s3(k) = s0(k − 3)

w0(k + 1) = h
3/2
10 (k + 1) = h

3/2
10 (k) + ∆x10(k) = w0(k) + ∆x10(k)

y9(k + 1) = y9(k) + c1h
3/2
8 (k − 6) + c2h

3/2
9 (k) = y9(k) + c1z6(k) + c2s0(k)

y10(k + 1) = y10(k) + c3h
3/2
9 (k − 4) + c4h

3/2
10 (k) = y10(k) + c3s4(k) + c4w0(k)

Written in matrix form this becomes:

z0(k + 1)
z1(k + 1)
z2(k + 1)
z3(k + 1)
z4(k + 1)
z5(k + 1)
z6(k + 1)
s0(k + 1)
s1(k + 1)
s2(k + 1)
s3(k + 1)
s4(k + 1)
w0(k + 1)
y9(k + 1)
y10(k + 1)



=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 c1 c2 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 c3 c4 0 1





z0(k)
z1(k)
z2(k)
z3(k)
z4(k)
z5(k)
z6(k)
s0(k)
s1(k)
s2(k)
s3(k)
s4(k)
w0(k)
y9(k)
y10(k)



+



1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0



[
∆x8(k)
∆x9(k)
∆x10(k)

]

The nonlinear constraints are written on the form g(k) ≥ 0

g0(k) = z
2/3
0 (k)− y8 + 27.693

g1(k) = −(z
2/3
0 (k)− y8 + 27.693 − 2.005)

g2(k) = s
2/3
0 (k)− y9(k) + 26.545

g3(k) = −(s
2/3
0 (k)− y9(k) + 26.545 − 1.474)

g4(k) = w
2/3
0 (k)− y10(k) + 24.018

g5(k) = −(w
2/3
0 (k)− y10(k) + 24.018 − 1.487)

g6(k) = z0(k)

g7(k) = s0(k)

g8(k) = w0(k)

2.5.2 Representation with linear model and nonlinear constraints
with sampling-time two

In the next state-space model the sampling time,l, is two minutes. Now the calcula-
tions become:

z0(kl) = h
3/2
8 (kl)

z0(kl + l) = h
3/2
8 (kl + l) = h

3/2
8 (kl) + ∆x8(kl) = z0(kl) + ∆x8(kl)

z1(kl + l) = z0(kl)
z2(kl + l) = z1(kl) = z0(kl − l)
z3(kl + l) = z2(kl) = z0(kl − 2l)

— 17 —



2 DESCRIPTION OF THE SYSTEM 2.5 State-space representation

l = 2 =⇒

z0(2k) = h
3/2
8 (2k)

z0(2k + 2) = z0(2k) + ∆x8(2k)
z1(2k + 2) = z0(2k)
z2(2k + 2) = z1(2k)
z3(2k + 2) = z2(2k)

s0(kl + l) = h
3/2
9 (kl + l) = h

3/2
9 (kl) + ∆x9(kl) = s0(kl) + ∆x9(kl)

s1(kl + l) = s0(kl)
s2(kl + l) = s1(kl) = s0(kl − l)

l = 2 =⇒

s0(2k + 2) = s0(2k) + ∆x9(2k)
s1(2k + 2) = s0(2k)
s2(2k + 2) = s1(2k)

w0(kl + l) = h
3/2
10 (kl + l) = h

3/2
10 (kl) + ∆x10(kl) = w0(kl) + ∆x10(kl)

l = 2 =⇒

w0(2k + 2) = w0(2k) + ∆x10(2k)

y9(kl + l) = y9(kl) + c1h
3/2
8 (kl − 6) + c2h

3/2
9 (kl) = y9(kl) + c1z3(kl) + c2s0(kl)

y10(kl + l) = y10(kl) + c3h
3/2
9 (kl − 4) + c4h

3/2
10 (kl) = y10(kl) + c3s2(kl) + c4w0(kl)

l = 2 =⇒

y9(2k + 2) = y9(2k) + c1z3(2k) + c2s0(2k)
y10(2k + 2) = y10(2k) + c3s2(2k) + c4w0(2k)

Written in matrix form this becomes:

z0(2k + 2)
z1(2k + 2)
z2(2k + 2)
z3(2k + 2)
z4(2k + 2)
z5(2k + 2)
z6(2k + 2)
s0(2k + 2)
s1(2k + 2)
s2(2k + 2)
s3(2k + 2)
s4(2k + 2)
w0(2k + 2)
y9(2k + 2)
y10(2k + 2)



=



1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 c1 c2 0 0 0 1 0
0 0 0 0 0 0 c3 c4 0 1





z0(2k)
z1(2k)
z2(2k)
z3(2k)
s0(2k)
s1(2k)
s2(2k)
w0(2k)
y9(2k)
y10(2k)


+



1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0



[
∆x8(2k)
∆x9(2k)
∆x10(2k)

]
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2 DESCRIPTION OF THE SYSTEM 2.5 State-space representation

The nonlinear constraints are written on the form g(2k) ≥ 0

g0(2k) = z
2/3
0 (2k)− y8 + 27.693

g1(2k) = −(z
2/3
0 (2k) − y8 + 27.693 − 2.005)

g2(2k) = s
2/3
0 (2k)− y9(2k) + 26.545

g3(2k) = −(s
2/3
0 (2k) − y9(2k) + 26.545 − 1.474)

g4(2k) = w
2/3
0 (2k)− y10(2k) + 24.018

g5(2k) = −(w
2/3
0 (2k) − y10(2k) + 24.018 − 1.487)

g6(2k) = z0(2k)

g7(2k) = s0(2k)

g8(2k) = w0(2k)

2.5.3 Representation with nonlinear model and linear constraints
with sampling-time one

In this representation we have introduced the gate position as the first state as this is
the variable we want as input to the system.

x0(k) = p8(k)
x0(k + 1) = p8(k) + ∆p8(k) = x0(k) + u0(k)
x1(k + 1) = h8(k) = y8 + x0(k)− g8

x2(k + 1) = h8(k − 1) = x1(k)
x3(k + 1) = h8(k − 2) = x2(k)
x4(k + 1) = h8(k − 3) = x3(k)
x5(k + 1) = h8(k − 4) = x4(k)
x6(k + 1) = h8(k − 5) = x5(k)
x7(k + 1) = p9(k) + ∆p9(k) = x7(k) + u1(k)
x8(k + 1) = h9(k) = y9(k) + p9(k)− g9 = x13(k) + x7(k)− g9

x9(k + 1) = h9(k − 1) = x8(k)
x10(k + 1) = h9(k − 2) = x9(k)
x11(k + 1) = h9(k − 3) = x10(k)
x12(k + 1) = p10(k) + u2(k) = x12(k) + u2(k)

x13(k+1) = y9(k)+ c1 ·h3/2
8 (k− τ1)+ c2 ·h3/2

9 (k) = x13(k)+ c1 ·x3/2
6 (k)+ c2 · (x13(k)+

x7(k)− g9)3/2

x14(k+1) = y10(k)+c3 ·h3/2
9 (k−τ2)+c4 ·h3/2

10 (k) = x14(k)+c3 ·x3/2
11 (k)+c4 ·(x14(k)+

x12(k)− g10)3/2

Simplified this becomes:

x0(k) = p8(k)
x0(k + 1) = x0(k) + u0(k)
x1(k + 1) = y8 + x0(k)− g8

x2(k + 1) = x1(k)
x3(k + 1) = x2(k)
x4(k + 1) = x3(k)
x5(k + 1) = x4(k)
x6(k + 1) = x5(k)
x7(k + 1) = x7(k) + u1(k)
x8(k + 1) = x13(k) + x7(k)− g9

x9(k + 1) = x8(k)
x10(k + 1) = x9(k)
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2 DESCRIPTION OF THE SYSTEM 2.5 State-space representation

x11(k + 1) = x10(k)
x12(k + 1) = x12(k) + u2(k)

x13(k + 1) = x13(k) + c1 · x3/2
6 (k) + c2 · (x13(k) + x7(k)− g9)3/2

x14(k + 1) = x14(k) + c3 · x3/2
11 (k) + c4 · (x14(k) + x12(k)− g10)3/2

The constraints are written on the form g(k) ≥ 0

g0(k) = x0(k)

g1(k) = 2.005 − x0(k)

g2(k) = x7(k)

g3(k) = 1.474 − x7(k)

g4(k) = x12(k)

g5(k) = 1.487 − x12(k)

2.5.4 Representation with nonlinear model and linear constraints
with sampling-time two

x0(2k) = p8(2k)
x0(2k + 2) = p8(2k) + ∆p8(2k) = x0(2k) + u0(2k)
x1(2k + 2) = h8(2k) = y8 + x0(2k) − g8

x2(2k + 2) = h8(2k − 2) = x1(2k)
x3(2k + 2) = h8(2k − 4) = x2(2k)
x4(2k + 2) = h8(2k − 6) = x3(2k)
x5(2k + 2) = p9(2k) + ∆p9(2k) = x5(2k) + u1(2k)
x6(2k + 2) = h9(2k) = y9(2k) + p9(2k) − g9 = x10(2k) + x5(2k)− g9

x7(2k + 2) = h9(2k − 2) = x6(2k)
x8(2k + 2) = h9(2k − 4) = x7(2k)
x9(2k + 2) = p10(2k) + u2(2k) = x9(2k) + u2(2k)

x10(2k + 2) = y9(2k) + c1 · h3/2
8 (2k− τ1) + c2 · h3/2

9 (2k) = x10(2k) + c1 · x3/2
6 (2k) + c2 ·

(x10(2k) + x5(2k)− g9)3/2

x11(2k+ 2) = y10(2k) + c3 ·h3/2
9 (2k− τ2) + c4 · h3/2

10 (2k) = x11(2k) + c3 · x3/2
8 (2k) + c4 ·

(x11(2k) + x9(2k)− g10)3/2

Simplified this becomes:

x0(2k) = p8(2k)
x0(2k + 2) = x0(2k) + u0(2k)
x1(2k + 2) = y8 + x0(2k)− g8

x2(2k + 2) = x1(2k)
x3(2k + 2) = x2(2k)
x4(2k + 2) = x3(2k)
x5(2k + 2) = x5(2k) + u1(2k)
x6(2k + 2) = x10(2k) + x5(2k)− g9

x7(2k + 2) = x6(2k)
x8(2k + 2) = x7(2k)
x9(2k + 2) = x9(2k) + u2(2k)

x10(2k + 2) = x10(2k) + c1 · x3/2
6 (2k) + c2 · (x10(2k) + x5(2k)− g9)3/2

x11(2k + 2) = x11(2k) + c3 · x3/2
8 (2k) + c4 · (x11(2k) + x9(2k)− g10)3/2
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3 PREDICTIVE CONTROL 2.6 Summary

The constraints are written on the form g(2k) ≥ 0

g0(2k) = x0(2k)

g1(2k) = 2.005 − x0(2k)

g2(2k) = x5(2k)

g3(2k) = 1.474 − x5(2k)

g4(2k) = x9(2k)

g5(2k) = 1.487 − x9(2k)

2.6 Summary

The model we finally used in our optimization is the nonlinear model with linear
constraints and sampling-time two minutes. Two minutes sampling-time reduces the
states for the model and makes it easier for the optimization to handle the problem.
We have also found out that simple and linear constraints are preferable as they give
a faster solution from the optimization program.

3 Predictive Control

3.1 Model Predictive Control

Model Predictive Control (MPC) (see [10]) is a family of controllers in which there
is a direct use of an explicit and separately identifiable model. Control design meth-
ods based on the MPC concept have found wide acceptance in industrial applications
and have been studied by academia. MPC have flexible constraints capabilities and is
applicable to non-linear systems and therefore would be a good method to solve our
problem with.

The name “Model Predictive Control” arises from the manner in which the control
law is computed. At the present time k the behaviour of the process over a time hori-
zon p is considered as seen in figure 5 . Using a model the process response to changes
in the manipulated variable is predicted. The moves of the manipulated variables are
selected such that the predicted response has certain desirable characteristics. Only
the first computational change in the manipulated variable is implemented. At the
time k + 1 the computation is repeated with the time horizon moved by one time
interval. The resulting control law is in general time varying and cannot be expressed
in closed form.

MPC is an attractive tool when there is a need for control of rapid changes. There
are though some areas where there is a need for more research. When working with
non-linear systems there are uncertainties in the constraint handling that are unan-
swered. Also large-scale applications can be a problem as the algorithms supplied for
constraint handling are not efficient enough. When there exists constraints on both
the input and the output it is possible that the system is unable to find a feasible
solution when a disturbance pushes the process outside the usual operating region.

3.1.1 Simple example of MPC

MPC has a close relationship with linear quadratic control, LQ-control. They are both
based on a state-space representation of the model and the cost-function of the model.
The difference between MPC and LQ-control is that in MPC you can take care of
constraints. This is not possible in LQ-control.
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k+1 k+2 k+p

y(k)

^
y(k+1|k)

u(k+1)

horizon

past future

        target

 k

Figure 5: The “moving horizon” approach of Model Predictive Control

The model can be written on state-space form as:

x(k + 1) = A(k)x(k) +B(k)∆u(k) (6)

where A(k) and B(k) are time-varying matrices. The loss function for the system can
be written as:

J =
1

2
·
∞∑
k=1

y>(k)Qy(k) +

∞∑
k=1

∆u>(k)R∆u(k) (7)

The design criteria we will use is a way of weighting the magnitude of the states
and control signals. This is done by the weighting matrices Q and R, which are
symmetric positive matrices. The optimal control problem is now defined to be finding
the admissible control signal that minimizes the loss function of 7 when the model is
described by the model of 6. This optimal control problem is solved for a certain
horizon and only the first computational change is implemented. In the next time step
the optimization is repeated with the time horizon moved by one time interval. This
will result in a control law that is different in every time step and cannot be expressed
in closed looped form as in the linear quadratic case.

3.2 Optimization strategy

To find the most optimal controller is the same as to find the control signal that min-
imizes the loss function. To learn more about predictive control and optimization we
read [11], [16] and [17]. The loss function for the system would be:

J = 1
2
·
∑∞

k=1
ŷ>(k)Qŷ(k) +

∑∞
k=1

∆u>(k)R∆u(k)
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3 PREDICTIVE CONTROL 3.2 Optimization strategy

The function ŷ(k) represents the error and the last head over gate. The error is the
difference between the real water level and the desired water level. We tolerate a dif-
ference between these two in ± 5 centimetres (see figure 6). This interval we want
to have because we do not want to move the gates if it is not necessary. A difference
of five centimetres from the set point is too small to take into account. We want to
minimize the last head over gate because the water that goes over this gate is often
wasted. Another variable that we want to minimize is the gate movement because we
do not want to use more power than necessary. Movements of the gates can also cause
waves in the channel and our model does not take wave effects into account. Q and R
are the weighting matrices described in the chapter called Model Predictive Control
and are the design parameters in our controller.

-5 cm +5 cm

Figure 6: The Penalty function

This means that the function can be written:

ŷ9(k) =

{
0, |y9(k)− y9sp| ≤ 0.05
(y9(k)− y9sp − 0.05), y9(k)− y9sp ≥ 0.05
(−0.05− y9(k) + y9sp), y9(k)− y9sp ≤ −0.05

ŷ10(k) =

{
0, |y10(k)− y10sp| ≤ 0.05
(y10(k)− y10sp − 0.05), y10(k)− y10sp ≥ 0.05
(−0.05− y10(k) + y10sp), y10(k)− y10sp ≤ −0.05

The loss function for this problem can then be written as:

J =
1

2

n∑
k=1

[
ŷ9(k)
ŷ10(k)
h10(k)

]> [
q1 0 0
0 q2 0
0 0 q3

][
ŷ9(k)
ŷ10(k)
h10(k)

]
+

1

2

n∑
k=1

[
∆u8(k)
∆u9(k)
∆u10(k)

]> [
r1 0 0
0 r2 0
0 0 r3

][
∆u8(k)
∆u9(k)
∆u10(k)

]

=⇒
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4 OPTIMIZATION 3.3 Summary

J =
1

2

n∑
k=1

(ŷ2
9(k) · q1 + ŷ2

10(k) · q2 + h2
10(k) · q3) +

1

2

n∑
k=1

(∆u2
8(k) · r1 + ∆u2

9(k) · r2 + ∆u2
10(k) · r3)

where q1, q2, q3 ≥ 0 and r1, r2, r3 > 0. These are the tunable parameters in the
controller. ŷ9(k) is the error of the water level in pool eight, ŷ10(k) is the error of the
water level in pool nine and h10(k) is the head over gate ten that we want to minimize.
∆u8(k) is the gate movement of gate eight, ∆u9(k) is the gate movement of gate nine
and ∆u10(k) the gate movement for the last gate, gate number ten.

3.3 Summary

In this chapter we have been given an overview of Model Predictive Control (MPC),
the optimization tool we have been using. A simple example has been given and our
optimization strategy has been explained. In our problem we have a penalty function
that allows the water levels to vary around set point with ± 5 centimetres. In this
interval the error in the loss function is set to be zero. We tolerate this variation in
the water levels because we do not want to move the gates more than necessary. The
loss function is:

J =
1

2

n∑
k=1

(ŷ2
9(k) · q1 + ŷ2

10(k) · q2 + h2
10(k) · q3) +

1

2

n∑
k=1

(∆u2
8(k) · r1 + ∆u2

9(k) · r2 + ∆u2
10(k) · r3)

where q1, q2, q3 ≥ 0 and r1, r2, r3 > 0. These are the tunable parameters in the
controller. ŷ9(k) is the error of the water level in pool eight, ŷ10(k) is the error of the
water level in pool nine and h10(k) is the head over gate ten that we want to minimize.
∆u8(k) is the gate movement of gate eight, ∆u9(k) is the gate movement of gate nine
and ∆u10(k) the gate movement for the last gate, gate number ten.

4 Optimization

4.1 MATLAB programming

To minimize the loss function some different methods have been tried out. The prob-
lem we want to implement is rather large and we need some kind of computational
tool to be able to minimize it. The first thing we tried was the Optimization Toolbox
in MATLAB, see [13]:

• MATLAB - constr

The first method we tried in MATLAB was constr. constr finds the constrained
minimum of a function of several variables. This function has now been replaced
in MATLAB by fmincon.

This method we used to get started, to get familiar with our problem and to
learn more about the Optimization Toolbox in MATLAB. constr does not handle
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nonlinear behaviour so we started with a linear model of the problem. constr
worked but was quite slow. As it was replaced by another function we thought
that method would be better.

• MATLAB - fmincon

fmincon makes the same thing as constr but is more efficient and can handle
nonlinear behaviour. The gradient of the function was provided (see appendix
E), as were the derivatives of the constraints (see appendix F). The calculations
are shown in appendix A. In fmincon you can choose to run with large-scale
algorithm or the medium-scale algorithm depending on the size of your prob-
lem. Certain conditions must be met to be able to use the large-scale algorithm;
the gradient must be provided, only upper and lower bounds may be specified,
or only linear equality constraints must exist. Unfortunately our constraints
are inequalities and this means that we had to choose to use the medium-scale
method instead. As our problem is of a large scale it could be hard for fmincon
to give a feasible solution in short time, as we demand.

fmincon was tried out with the medium-scale method. The iteration was slow,
an optimization time of less than one minute was desired and our optimization
with fmincon took over 30 minutes with a horizon of 30 minutes.

This behaviour could depend on many things. Of course it would be better
to be able to use the large-scale algorithm. Another reason for being slow could
be our starting-values of the control-vector. If they are too far away from the
real values it could take a long time before fmincon finds a solution. If we could
find starting-values closer to the solution it would probably go faster.

• MATLAB - lsqnonlin

The function lsqnonlin solves a nonlinear least-squares problem, this means our
problem without the constraints. Outputs from lsqnonlin would probably give
better starting values of the control-vector (see appendix G). With these values
we got fmincon to take only 12 minutes for the optimization routine to evaluate
its value with a time horizon of 50 minutes.

4.1.1 Conclusion

The result with MATLAB was not good enough and our conclusion was that MATLAB
was too slow for our problem. We had too find another optimization tool to solve our
large-scale problem with.

4.2 Implementation in C

To be able to make a faster evaluation than the functions in MATLAB could do we
considered to find a program made in Fortran, C++ or C. These languages are the
most common languages to write optimization code in. After some searching on the
WWW and at the university one program was found that might be our solution.
A student named James Wettenhall had made a program [12] which could take care
of constrained nonlinear optimal control problems, exactly the kind of problem we had.
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4.2.1 Description of the program

The program [12] is implemented in C except for one part which is in Fortran. It
uses a linear search method to find the optimal solution to a constrained problem
depending of several variables. A primal-dual interior point algorithm has been used
together with a differential dynamic programming algorithm to be able to solve this
problem. The primal-dual interior point algorithm we used is based on approximate
complementary and is referred to as ETTZ. The differential dynamic programming
(DDP) is a technique which approximates both the cost function and the transition
equations by quadratic functions of a differential perturbation away from the current
estimate of the solution as determined by the previous iteration.

We had to formulate our own problem in the program. To do that we had to write
some functions. The functions were:

cost evaluates the cost function

cost deriv the first derivatives of the cost function

cost 2ndderiv the second derivatives of the cost function

transition f the transition function for the model

transition deriv the first derivatives of the transitions

transition 2ndderiv the second derivatives of the transitions

ineqconstraint the constraints of the gate positions and the head over gates (written
on form greater or equal to zero)

ineqconstraint deriv the first derivatives of the constraints

ineqconstraint 2ndderiv the second derivatives of the constraints

As we already had our problem formulated it was not too hard to reformulate it. The
main difference was that we now had to take the derivatives and the second derivatives
with respect to the state parameters and the control parameters just in one time step,
i.e we could see them as independent variables. The calculations are made in appendix
B, C and D. The program itself calculates the derivatives in all other necessary time
steps. We also had to set some constants in the program. These constants were:

NumStages the number of time stages

dim u the number of components in the control vector

dim x the number of components in the state vector

ineqs per stage the number of inequality constraints per time stage

uhi an array containing the upper bounds for the control

ulo an array containing the lower bounds for the control

xhi an array containing the upper bounds for the state

xlo an array containing the lower bounds for the state

x initial an array containing the initial conditions for the state

initial guess u an array containing an initial guess for the optimal control

tol an error tolerance used by the optimization routine

MAX ITER maximum number of iterations of the optimization routine

initial mu initial value of the barrier parameter

iterations between decreasing mu steps between the barrier parameter mu

mu reduction strategy if zero the strategy ETTZ is used, if one GOW is used

slow version of ETTZ how fast the barrier parameter is decreased
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4.2.2 Up and running

As the program is not commercial and has not been tested for so many different cases
we could not be sure how well it should work for our problem. The program did not
work correctly in the beginning. There were some small bugs in the program that
had not been discovered before which made the program not work for our large-scale
problem. It took a while for us to find these bugs and we had a lot of contact with
the author of the program, James Wettenhall. It was also hard to understand what
actually was happening sometimes because the program is rather large and we did not
have any user’s manual. Finally we got the program running and could get results.
But the program crashed when we used a larger horizon than 20 minutes. The prob-
lem was hard to find. We knew that the more complicated our constraints were the
harder it was for the program to find a feasible solution. We decided to rewrite our
problem. We rewrote our constraints to be linear and transmitted the nonlinearity to
the transition-variables.

Now the time horizon was exceeded to be 50, but the norm was too large so this
was not good enough either. The norm is a parameter in the program that tells us
how close we are to the optimal solution. It is also possible to sample our problem with
a sampling-time of two minutes instead of one. The program seems to have problems
with large scaled problems so we rewrote our problem again, this time to a sample
time with two minutes. This reduces our transitions and gives a less number of evalu-
ations. The program handled this problem formulation even better. But we still had
one problem. In some cases we got the answer NaN (Not a Number). It took a while
for us to find what caused the problem, but finally we did. In the program a division
by zero was made. We did not know what to do about this problem, and neither
did James, the author of the program. We tried to increase the number of iterations
between decreasing mu to get around this problem and fortunately it worked. The
norm was though quite large for a large horizon and we did not know if it was large
because the program gave a bad solution or if the program was close to the constraints
or bounds. If it was the case that we were close to the constraints the MPC would still
work and give good results, if it was the first case we would have to change something
to make the program better. After a while we understood that it was the program
which gave a bad solution and we determined to decrease the horizon to find a smaller
norm. We could now finally let the program calculate the optimal solution for 40 time
steps which in this case means 80 minutes with a very low norm and we decided to be
satisfied with that. The optimization is also very fast which is desired.

4.3 Simulation model

To be able to try out our control design we have a simulation model [E. Weyer, E.
Lim]. This model is made in Simulink, the simulation environment in MATLAB. The
simulation model is different from our model. In the Simulink model wave effects are
taken into account and this is not done in our model.

Factors involved in the control of the irrigation channel is, for example, available
water in reservoirs/rivers, required water for crops and demanded patterns. These
factors makes it necessary to have a model for long time planning (see [9]). The model
consists of gate eight to twelve of the Haughton Main Channel (HMC). Data is taken
from system identification experiments on the channel on the 29th of September 1999
[8] and the model itself is made with system identification tools. The model is consid-
ered to be a good approximation of the real channel.

We modified this model to suit our problem with help from [14]. The model included
a feedback controller which was taken away in our version as we were going to build
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4 OPTIMIZATION 4.3 Simulation model

a predictive controller ourselves. For our problem we just need two pools, pool eight
and pool nine so the model was reduced to consist of only two pools. To be able to
run the model for just one time step, we had to replace the time-delay blocks with
transition functions. When replacing the time delays with transition functions we can
get different initial values for the time delays which is not possible with a time-delay
block. We used the following state-space representations for the time-delays:

Time-delay six:

x(2k + 2) =

 0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 x(2k) +

 1
0
0
0

u(2k)

y(2k) =
[

0 0 0 1
]
x(2k)

=⇒ y(2k) = h3/2(2k − 6)

Time-delay four:

x(2k + 2) =

[
0 0 0
1 0 0
0 1 0

]
x(2k) +

[
1
0
0

]
u(2k)

y(2k) =
[

0 0 1
]
x(2k)

=⇒ y(2k) = h3/2(2k − 4)

Figure 7: The Simulink model

In the model we also changed the integrators to be transfer functions to avoid setting
initial values. Inputs to the model are the three gate positions, P08, P09 and P010,
which are collected from workspace in MATLAB. Outputs are the upstream water
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levels of gate nine and ten, y09 and y010. We assume that the water level in pool
seven is constant, as this pool is not included in our model.

4.4 Interface with Simulink model

To be able to do MPC, which means many iterations of the simulation in not too long
time we had to make an interface between our C-program and MATLAB—Simulink.
After some reading we decided to call MATLAB from our C-program, run one simula-
tion in Simulink from MATLAB and then return the results to the C-program. We did
this by using the MATLAB Engine, see [15]. The MATLAB Engine Library is a set
of routines that allows you to call MATLAB from your own C or Fortran programs,
thereby employing MATLAB as a computation engine. The MATLAB engine oper-
ates by running in the background as a separate process from your own program. On
UNIX, the operative system we use, the engine library communicates with the MAT-
LAB engine using pipes. To do the simulation and optimization efficient we would like
to do the following in one run of our C-program:

• To get the right starting values for the Simulink model we want to run the
simulation for a while until we get steady state. The gate positions are here
constant values.

• Run one optimization in the C-program with one initial guess on the states and
one on the control signal.

• Deliver the result from the optimization of the gate positions to MATLAB, i.e.
the values at x[10] and x[11] in every time step.

• Run one simulation in Simulink for two minutes with the gate positions from
the optimization.

• Deliver the result of the water levels in pool nine and ten from the simulation
in time step two back to the optimization routine.

• Run the optimization again, this time with the water levels in pool nine and
ten from the simulation as initial values at x[10] and x[11]. Initial values on the
rest of the states are set to be the optimal solution from the previous run of the
optimization shifted one step i.e we start the simulation with the result from
time step two from the previous run. The initial guess on the control signal is
the optimal control solution from the previous run.

• Repeat all the points, except point one and two, until we are in the last time
step.

To be able to do this we wrote two for-loops in our C-program. First of all we start
MATLAB from our C-program. To get the Simulink model to the right initial values
we send constant values for P08, P09 and P010 to the model, and run the simulation
in the first for-loop ten times. The constant values for P08, P09 and P010 were tuned
out to be values so the water level is the desired in steady state. The model is ready to
start run the actual simulations. The new for-loop is now entered. This runs the sim-
ulation in Simulink and then the optimization, passing the needed variables between
the two programs as many times as wanted. In every run of the simulation, needed
results are saved.
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OPTIMIZATION

xFinal

MATLAB-SIMULINK

P08
P09
P010

START

10 times

initial_guess_u[0][0]
initial_guess_u[0][1]
initial_guess_u[0][2]
            .            .

.

..

            .
x_initial[11]=ymatlab(2)=y010(2)
x_initial[10]=ymatlab(1)=y09(2)
x_initial[9]=new_p010_vector[1]
x_initial[8]=x_initial[7]
x_initial[7]=x_initial[6]
x_initial[6]=ymatlab(1)+new_p09_vector[0]-g9

x_initial[4]=x_initial[3]
x_initial[3]=x_initial[2]
x_initial[2]=x_initial[1]
x_initial[1]=y8+new_p08_vector[0]-g8
x_initial[0]=new_p08_vector[1]

            .            .            .

p08=x[0]
p09=x[5]
p010=x[9]
tid=[0.0 2.0 ... 2*NumStages-2]
tidpunkt

y8
y9
y10

MATLAB-SIMULINK

Simulink_runs

initial_guess_u[NumStages-1][0]
initial_guess_u[NumStages-1][1]
initial_guess_u[NumStages-1][2]

x_initial[0]

x_initial[9]
x_initial[10]
x_initial[11]

ymatlab=[y09[2] y010[2]]

x_initial[5]=new_p09_vector[1]

initial_guess_u[0][0]=optimal_control[0][0]
initial_guess_u[0][1]=optimal_control[0][1]
initial_guess_u[0][2]=optimal_control[0][2]

initial_guess_u[NumStages-1][0]=optimal_control[NumStages-1][0]
initial_guess_u[NumStages-1][1]=optimal_control[NumStages-1][1]
initial_guess_u[NumStages-1][2]=optimal_control[NumStages-1][2]

Figure 8: Running the program

4.5 Summary

We made the conclusion that the optimization toolbox in MATLAB is not suitable for
our large problem as it is too slow. The C-program that we used was able to do the
optimizations much faster. The communication between MATLAB and the C-program
worked well and made the optimization easy and fast. Our time horizon is not as large
as we desired but the program could not handle a larger one.

The finally problem formulation for the optimization is shown below.

Representation with nonlinear model and linear constraints with sampling-time two:

x0(2k) = p8(2k)
x0(2k + 2) = x0(2k) + u0(2k)
x1(2k + 2) = y8 + x0(2k)− g8

x2(2k + 2) = x1(2k)
x3(2k + 2) = x2(2k)
x4(2k + 2) = x3(2k)
x5(2k + 2) = x5(2k) + u1(2k)
x6(2k + 2) = x10(2k) + x5(2k)− g9

x7(2k + 2) = x6(2k)
x8(2k + 2) = x7(2k)
x9(2k + 2) = x9(2k) + u2(2k)
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5 THE PERFORMANCE OF THE PREDICTIVE CONTROLLER

x10(2k + 2) = x10(2k) + c1 · x3/2
6 (2k) + c2 · (x10(2k) + x5(2k)− g9)3/2

x11(2k + 2) = x11(2k) + c3 · x3/2
8 (2k) + c4 · (x11(2k) + x9(2k)− g10)3/2

The loss-function for the system:

J =
1

2

n∑
k=1

(ŷ2
9(k) · q1 + ŷ2

10(k) · q2 + h2
10(k) · q3) +

1

2

n∑
k=1

(∆u2
8(k) · r1 + ∆u2

9(k) · r2 + ∆u2
10(k) · r3)

where q1, q2, q3 ≥ 0 and r1, r2, r3 > 0. These are the tunable parameters in the
controller. ŷ9(k) is the error of the water level in pool eight, ŷ10(k) is the error of the
water level in pool nine and h10(k) is the head over gate ten that we want to minimize.
∆u8(k) is the gate movement of gate eight, ∆u9(k) is the gate movement of gate nine
and ∆u10(k) the gate movement for the last gate, gate number ten.

The constraints of the gate positions are shown below in meter:

0 ≤ p08 ≤ 2.005

0 ≤ p09 ≤ 1.474

0 ≤ p010 ≤ 1.487

Other limitations (in meter):

−0.4 < ∆pi < 0.4

hi > 0

5 The Performance of the Predictive Controller

5.1 Tuning of parameters

It is possible to tune different parameters in the model to get better results of the
MPC. The changeable parameters are the weighting parameters, Q and R, in the cost
function. Q determines how large influence the water levels and the last head over
gate will have in the cost calculations. R determines how large weight the different
gate movements should have and they can have different values dependent on how
important they are. For example, if we set R to be a large value, it will “cost” a lot
to move the variables influenced by R and they will therefore not move very much
in comparison with the other values in the cost function. Q and R are symmetric
positive semidefinite matrices and are in our problem of size 3×3, which here means
they consists of three changeable variables each.

The first water level in our model, y8, is changeable and can be tuned. It is lim-
ited by the adjustment factor, which is 27.693 mAHD, and should not be larger than
this. We want to have the possibility to close off the flow into pool eight. After some
experiments we got y8 to be 27.60 mAHD. This value seemed to satisfy both the op-
timization routine and the simulation model.

Before an optimization run is started, it is important that the simulation model is
in steady-state to take away incorrect values from the time-delays in the simulation
model. Tests have also shown that a starting-point close to the set points gives better
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5 THE PERFORMANCE OF THE PREDICTIVE CONTROLLER 5.1 Tuning of parameters

values of the water levels and takes away a lot of initial disturbances. The set points
for the water levels are 26.50 mAHD for y8 and 23.85 mAHD for y9.

When we started to do MPC we had the horizon in the optimization to be 40 time
steps, this means 80 minutes and run the MPC-horizon for 800 minutes. With a
horizon of 40 time steps we found a small norm and also a good solution where we
finally could see reactions on load disturbances and other tests. Figure 9 shows the
upstream water levels in pool eight and nine. Q is here set to I and R to 400·I (I is
here the identity matrix). The water levels have some small initial disturbances but
goes quite fast to stable values. Figure 10 shows the gate positions of gate eight, nine
and ten when the water levels goes to a stable value. The gate-positions should move
as little as possible and also have upper and lower constraints. The most they can
move between every interval is 0.4 meter. Here we can see that the gates are closing
(goes to zero) just as we want. In figure 11 we can see the corresponding head over
gate. The head over gate should be as small as possible over gate ten to minimize the
water losses. Notice that we have different scales in different figures.
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Figure 9: The water level is stable
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Figure 10: The gates are closing
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Figure 11: The head over gates are getting smaller
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5.2 Performance tests

To be able to see the performance of the predictive controller we do a stability analysis
to see how the controller will react on load disturbances (offtakes) and a start above
and under its usual operating region (too much or too little water in the pool). These
are cases that can happen in the reality and it is therefore important to do these tests
on the model.

As the horizon is only 80 minutes, we had to make sure that the results made sense.
A test was made, and this is shown in figure 12 and 13. Here one optimization has
been made followed by another one with initial water levels and initial ∆p : s from the
first optimization. If the second optimization gives an answer that not correspond and
follow the first one, then the optimization with a horizon of 80 minutes is probably
not good enough. In this case we can see that the result is quite good, the simulations
seems to smooth out. Our conclusion from this test is that a horizon of 80 minutes is
probably good enough. Notice that the scale is different in different figures.
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Figure 12: Two optimizations of y9 after each other, then put together in the
last diagram
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Figure 13: Two optimizations of y10 after each other, then put together in the
last diagram

— 34 —



5 THE PERFORMANCE OF THE PREDICTIVE CONTROLLER 5.2 Performance tests

5.2.1 Disturbance in pool eight

When the parameters were tuned to be the best possible it was time to see how our
model took care of disturbances. We implemented an offtake as a change in the water
level in our Simulink model in form of a step change subtracted from the water level.
The step is turned on in time step 100 minutes and turned off in time step 170 minutes.
The calculations for the offtake can be seen in chapter 2.2.1.

Figure 14 has got a disturbance in form of an offtake of 530 mega liter on pool
eight. Different values of R were tried out, and the best results were given with R
set to be 500·I, see figure 14. The water level in pool eight goes fast inside the op-
erating region, as desired, after the load diturbance is turned off after 170 minutes.
The water level in pool nine goes first to a too high value after the load disturbance is
turned off. This behavior can be explained by the time constant in the pool, it takes a
while before the water level in pool nine is stable. The gate position can be seen in fig-
ure 15 and the head over gates in figure 16 and h10 is trying to be as small as possible.

Now let the optimization program know that we have a disturbance in pool eight.
We introduced this known disturbance in the transition functions in the C-program.
Head over gate ten is minimized around 0.1 meter. This means that we want to mini-
mize around a constant flow over the last gate. The loss function now becomes:

J =
1

2

n∑
k=1

(ŷ2
9(k) · q1 + ŷ2

10(k) · q2 + (h10(k)− 0.1)2 · q3) +

1

2

n∑
k=1

(∆u2
8(k) · r1 + ∆u2

9(k) · r2 + ∆u2
10(k) · r3)

If the behaviour is better than without a known disturbance can be discussed (see figure
17, 18 and 19). Gate eight and nine start to open to prepare for the disturbance in
pool eight, with the result that the water level in pool nine starts to increase. Pool
nine has for that reason a water level above the error tolerance before the disturbance
but goes to a final value inside the tolerance. An expected behaviour of the water
level in pool eight would be an increased water level before the offtake. This does not
happen, and an explanation can be that pool eight is reacting slower than pool nine
and it takes longer time to increase the water level in pool eight. Unfortunately, we
get a too large water level in pool eight but the level never goes that low as in the
offtake without a known disturbance.
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Figure 14: The water levels with a disturbance in pool eight, and a weight R of
500
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Figure 15: The gate positions with a disturbance in pool eight, and a weight R
of 500
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Figure 16: The head over gates with a disturbance in pool eight, and a weight
R of 500
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Figure 17: The water levels with a known disturbance in pool eight
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Figure 18: The gate positions with a known disturbance in pool eight
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Figure 19: The head over gates with a known disturbance in pool eight

— 37 —



5 THE PERFORMANCE OF THE PREDICTIVE CONTROLLER 5.2 Performance tests

5.2.2 Disturbance in pool nine

A disturbance is now introduced in pool nine as a step change that starts in time step
50 and stops in time step 170 minutes. The calculations for the offtake can be seen in
chapter 2.2.2.

A load of 300 mega liters is taken of the pool nine. The responds is good (see fig-
ure 20), the water level in pool eight is just above the operating region and the water
level in pool nine is just below. The behaviour of the gates and the head over gates
can be seen in figure 21 and 22.

A known disturbance is now introduced in pool nine. The minimization of h10 is
here made around 0.1 meter. This means that we want to minimize around a constant
flow over the last gate. The result is shown in figure 23, 24 and 25. The water levels
have a better behaviour than without a known disturbance. As we can see the water
level in pool nine does not go as low in this case compared to an unknown disturbance.
We also notice that this water level increases from the beginning before the distur-
bance to prepare for the offtake. Also the water level in pool eight starts to increase
before the disturbance is put into action. When we look at the head over gate ten we
can see that it strives to go to 0.1 meter as desired.
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Figure 20: The water levels with a disturbance in pool nine
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Figure 21: The gates are opening to let more water into the pools
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Figure 22: The head over gates are increasing because of the disturbance
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Figure 23: The water levels with a known disturbance in pool nine
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Figure 24: The gate positions with a known disturbance in pool nine
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Figure 25: The head over gates with a known disturbance in pool nine
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5.2.3 Initial water level in pool eight below error tolerance

First we run a simulation when the water level in pool eight is around 0.1 meter below
the error tolerance. The values of p are the values used to get the Simulink model in
steady state.

p08 = 10 mm
p09 = 140 mm
p010 = 170 mm

Values used in the simulations (m):
x initial[0] = 0.1
x initial[1] = 0.0000000001
...
x initial[4] = 0.0000000001
x initial[5] = 0.15
x initial[6] = 0.0000000001
...
x initial[8] = 0.0000000001
x initial[9] = 0.17
x initial[10] = y9 = 26.405 mAHD
x initial[11] = y10 = 23.851 mAHD

x initial[0] initial guess for gate position for gate eight
x initial[1] . . . x initial[4] initial guess for head over gate eight
x initial[5] initial guess for gate position for gate nine
x initial[6] . . . x initial[8] initial guess for head over gate nine
x initial[9] initial guess for gate position for gate ten
x initial[10] initial guess for water level in pool eight
x initial[11] initial guess for water level in pool nine
Comment We want the head over gates to be as small as

possible without getting to close to the con-
dition that they should be greater than zero.
Therefore we let the initial values of the head
over gates to be very close to zero.

Figure 26: Explanation of the x initial values

run r1 r2 r3 q1 q2 q3 comments

1 400 400 400 1 1 0.1 put in a condition that h10 should
minimizes around 0.1 m

2 400 400 400 1 1 0.0 the condition on h10 does not have
any effect because q3 is zero.

It seems like the optimization program has problems when we are close to the er-
ror tolerance. We have to increase iterations between decreasing mu to three to get
it to run at all. Even after that the solution is not perfect but the norm is low which
is good. Pool eight is quite long, 1.6 km, and the time delay is also long. These two
factors make the reactions in pool eight slow. The expected response will just be to
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open gate eight to let more water into pool eight until the water level is inside the error
tolerance. Why this does not happen is hard to explain. When looking at the water
levels in figure 27 we can see that the controller has some problems in the beginning
to rise the water level in pool eight, and it takes a while before it actually starts in-
creasing the level. When it finally does that it increase the level a bit too much. But
when the water level is above the error tolerance we can see that it actually starts
decrease again towards the set point. We can also see that the water level in pool nine
starts increasing. This depends on that we have a minimization around 0.1 meter for
h10 and gate ten does not want to open more because of that. When looking at the
head over gates (figure 29) we can see that h10 starts increase to get rid of water in
pool nine while this water level is to high. When the water level in pool eight starts to
go into the tolerance we can see that h10 starts to close because it wants to be around
0.1 meter and this is a good behaviour. It would be good if the controller was a bit
faster and if the water level in pool eight does not increase that much, but we can see
that the controller reacts and in a correct way.

In run two q3 is put to be zero. This results in that the minimization does not
take any consideration about minimizing h10. As we can see in figure 30 the water
level in pool eight has a better final value than for run one, but unfortunately the
water level in pool nine is worse. The water level in pool eight is going to a value
inside the error-tolerance. Gate p10, see figure 31, is slowly continuing to open and
will probably make the water level in pool nine a bit lower. We also notice that
the head over gates are quite large in figure 32. Of course it can be discussed which
is the best solution, but if it is important that h10 is quite small run one is the best one.

The next test to do is to start the simulation when the water level in pool eight
is around 0.01 meter below the error tolerance. The following values are used:

p08 = 10 mm
p09 = 100 mm
p010 = 200 mm

Values used in the simulations (m):

x initial[0] = 0.1
x initial[1] = 0.0000000001
...
x initial[4] = 0.0000000001
x initial[5] = 0.1
x initial[6] = 0.0000000001
...
x initial[8] = 0.0000000001
x initial[9] = 0.2
x initial[10] = y9 = 26.447 mAHD
x initial[11] = y10 = 23.82 mAHD

These values are explained in figure 26.
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run r1 r2 r3 q1 q2 q3 comments

3 400 400 400 1 1 0.1 put in a condition that h10 should
minimizes around 0.1 m

4 400 400 400 1 1 0.0 the optimization program did not
handle this minimization

As we can see in figure 33 the controller has problems to control the water levels
even when we start 0.01 meter below the error tolerance. The water level in pool eight
starts to decrease for about 100 minutes before it changes to increase instead. This
may depend on that h10 strives to go to 0.1 m. The minimization is a balance between
the different factors that we want to minimize and sometimes they compete against
each other. As we can see in figure 35 h10 is around 0.2 meter when it is stable. The
water level in pool nine is a bit too high, about 5 millimetre. Why does the controller
not just open gate ten and let some water out? Again this can depend on that the
minimization of the different factors are competing against each other. We want the
error of the water level to be minimized but we also want the head over gate ten to be
minimized. If we let more water out, i.e. open gate ten this will result in a higher head
over gate as well. When looking at the results from the optimization we also have to
take into consideration that the optimization is just running in a time-horizon of 40
steps i.e 80 minutes and this may be too low to get an optimal solution.
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Figure 27: The water levels for run 1, initial water level about 1 dm below error
tolerance
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Figure 28: The gate positions for run 1
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Figure 29: The head over gates for run 1
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Figure 30: The water levels for run 2, initial water level about 1 dm below set
point
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Figure 31: The gate positions for run 2
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Figure 32: The head over gates for run 2
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Figure 33: The water levels for run 3, initial water level slightly below error
tolerance
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Figure 34: The gate positions for run 3
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Figure 35: The head over gates for run 3

— 46 —



5 THE PERFORMANCE OF THE PREDICTIVE CONTROLLER 5.2 Performance tests

5.2.4 Initial water level in pool nine below error tolerance

Next test is to start with the water level in pool nine just under the error tolerance.
The values of p are the values used to get the Simulink model in steady state.

p08 = 30 mm
p09 = 40 mm
p010 = 230 mm

Values used in the simulations (m):
x initial[0] = 0.1
x initial[1] = 0.0000000001
...
x initial[4] = 0.0000000001
x initial[5] = 0.05
x initial[6] = 0.0000000001
...
x initial[8] = 0.0000000001
x initial[9] = 0.24
x initial[10] = y9 = 26.502 mAHD
x initial[11] = y10 = 23.788 mAHD

These values are explained in figure 26.

run r1 r2 r3 q1 q2 q3 comments

1 400 400 400 1 1 0.1 put in a condition that h10 should
minimizes around 0.1 m

2 400 400 400 1 1 0.0 q3 is zero so the minimization
around 0.1 m for h10 does not have
any effect

If we take a look in figure 36 we can see that the controller reacts in a correct
way. It starts increasing the water level in pool nine and this is a correct behaviour
when that water level is too low. We can see that the water level goes to a nice value
around set point. The water level in pool eight also decreases in the beginning but the
level stays inside the error tolerance. It does not look as it goes to a certain value but
it is inside the limit. One explanation for this is that pool eight is longer than pool
nine and it needs more time to stabilize the water level.

When looking at the gate positions in figure 37 we can see that they start to open.
This behaviour is correct because we want the water level in pool nine to increase. To
reach this goal we have to open gate eight and nine. Gate ten opens because we want
the head over gate ten to be minimized around 0.1 meter and to achieve that the gate
has to open.

The head over gates, see figure 38, increase because we want more water in pool
nine. We also see that the head over gate ten strives against 0.1 meter.

In run two q3 is put to be zero. This results in that the minimization does not take
any consideration about minimizing h10. It seems like the water levels becomes more
stable in this case. The head over gate ten becomes larger. The controller also have
larger problems in the beginning than in run one. We make the conclusion that run
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one is better than run two. Figures for run two are not shown in the report because
run one was much better.

We also want to see how the controller reacts when the water level is around one
decimetre below the error tolerance in pool nine. The following values are used in this
simulations:

p08=40 mm
p09=40 mm
p010=330 mm

Values used in the simulations (m):
x initial[0] = 0.1
x initial[1] = 0.0000000001
...
x initial[4] = 0.0000000001
x initial[5] = 0.05
x initial[6] = 0.0000000001
...
x initial[8] = 0.0000000001
x initial[9] = 0.350
x initial[10] = y9 = 26.502 mAHD
x initial[11] = y10 = 23.687 mAHD

These values are explained in figure 26.

run r1 r2 r3 q1 q2 q3 comments

3 400 400 400 1 1 0.1 put in a condition that h10 should
minimizes around 0.1 m

4 400 400 400 1 1 0.0 q3 is zero so the minimization
around 0.1 m for h10 does not have
any effect

The water level in pool eight, see figure 39, starts increase immediately because
we need more water for pool nine. It is a bit strange that the water level in pool nine
starts to decrease in the beginning. This behaviour can be explained with that the
head over gate ten wants to be minimized around 0.1 meter. But why the head over
gate ten does not stop increase when it reaches 0.1 meter is strange. After a while the
water level starts increase and finally it reaches a water level inside the error tolerance.
The water level in pool eight increases a bit too much, but it seems like it strives to
go against the set point.

In the next simulation (run four) q10 is set to zero. That means that we do not
have any minimization on h10. If we look at the water levels for this run, see figure
42, we can see that the final value for them are better than for run three. It is even
more strange that gate ten starts to open in this case because we do not have any
desire that it should go to 0.1 meter this time.
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Figure 36: The water levels for run 1, initial water level slightly below error
tolerance
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Figure 37: The gate positions for run 1
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Figure 38: The head over gates for run 1
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Figure 39: The water levels for run 3, initial water level about 1 dm below error
tolerance
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Figure 40: The gate positions for run 3
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Figure 41: The head over gates for run 3
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Figure 42: The water levels for run 4, initial water level about 1 dm below error
tolerance
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Figure 43: The gate positions for run 4
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Figure 44: The head over gates for run 4
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5.2.5 Initial water level in pool eight above error tolerance

In this test we put the water level about 0.01 meter above the error tolerance in pool
eight. The results are good and can be seen in figure 45, 46 and 47. The values of p
are the values used to get the Simulink model in steady state.

p08=210 mm
p09=80 mm
p010=270 mm

x initial[0] = 0.1
x initial[1] = 0.0000000001
...
x initial[8] = 0.0000000001
x initial[9] = 0.17
x initial[10] = y9 = 26.562 mAHD
x initial[11] = y10 = 23.854 mAHD

These values are explained in figure 26.

run r1 r2 r3 q1 q2 q3 comments

1 400 400 400 1 1 0.1 h10 is minimized around 0.0 meter

p08=320 mm
p09=80 mm
p010=370 mm

x initial[0] = 0.1
x initial[1] = 0.0000000001
...
x initial[8] = 0.0000000001
x initial[9] = 0.17
x initial[10] = y9 = 26.652 mAHD
x initial[11] = y10 = 23.853 mAHD

These values are explained in figure 26.

run r1 r2 r3 q1 q2 q3 comments

2 400 400 400 1 1 0.1 h10 is minimized around 0.0 meter

With an initial water level starting about one decimetre above the error tolerance
in pool eight, the behaviour is the same as for they starting 0.01 meter above. The
result can be seen in figure 48.
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Figure 45: The initial water level in pool eight slightly above the error tolerance
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Figure 46: The gate movements with an initial water level slightly above the
error tolerance
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Figure 47: The head over gates with an initial water level slightly above the
error tolerance
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Figure 48: The initial water level in pool eight above the error tolerance

5.2.6 Initial water level in pool nine above error tolerance

The final test we did was to put the water level in pool nine above the error tolerance.
Values used in the first tests are shown below:

p08=40 mm
p09=40 mm
p010=330 mm

Values used in the simulations (m):
x initial[0] = 0.1
x initial[1] = 0.0000000001
...
x initial[4] = 0.0000000001
x initial[5] = 0.05
x initial[6] = 0.0000000001
...
x initial[8] = 0.0000000001
x initial[9] = 0.12
x initial[10] = y9 = 26.505 mAHD
x initial[11] = y10 = 23.908 mAHD

These values are explained in figure 26.

run r1 r2 r3 q1 q2 q3 comments

1 400 400 400 1 1 0.1 put in a condition that h10 should
minimizes around 0.1 m

2 400 400 400 1 1 0.0 q3 is zero so the minimization
around 0.1 m for h10 does not have
any effect

As we can see in figure 49, 50 and 51 the result from run one is not particu-
larly good. The water level in pool nine never succeed to reach the error tolerance
within 800 minutes. In run two the results are much better as you can see in figure
52, 53 and 54. Both the water levels are inside the error tolerance in the end and they
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also look stable. Even if the condition that h10 should be minimized is taken away in
this run we can see that the head over gate ten is small. Why run two is better than
run one is a bit hard to explain but it could be that the minimization has too many
variables to minimize and it is difficult for the tool to do the minimization. The next
thing to do should be to run simulations with the initial water level in pool nine about
one decimetre above the error tolerance. We tried to run this but the optimization
did not handle this situation (we got NaN immediately). We ran simulations with the
water level around five centimetres above the error tolerance instead. Values used are
shown below:

p08=135 mm
p09=80 mm
p010=105 mm

Values used in the simulations (m):
x initial[0] = 0.1
x initial[1] = 0.0000000001
...
x initial[4] = 0.0000000001
x initial[5] = 0.05
x initial[6] = 0.0000000001
...
x initial[8] = 0.0000000001
x initial[9] = 0.07
x initial[10] = y9 = 26.500 mAHD
x initial[11] = y10 = 23.951 mAHD

These values are explained in figure 26

run r1 r2 r3 q1 q2 q3 comments

3 400 400 400 1 1 0.1 put in a condition that h10 should
minimizes around 0.0 m

The optimization manages to run the problem without getting NaN but the solu-
tion is not good, see figure 55, 56 and figure 57. The expected behaviour would be
to close gate eight and nine and open gate ten to get rid of the water in pool nine. As
we can see this is not happening. Both gate eight and nine start to open and this gives
an even higher water level in the beginning for pool nine than we had before. The
water level in pool eight is decreasing in the beginning but then starts increasing and
goes to a value just outside the error tolerance. Even if the behaviour is not good we
can see that the water level in pool eight goes to a stable value. The water level in pool
nine decreases after about 50 minutes so its final value is inside the error tolerance in
the end. The bad behaviour could depend on initial disturbances as can be seen in
the beginning of the water levels.
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Figure 49: The water levels for run 1, initial water level slightly above error
tolerance
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Figure 50: The gate positions for run 1
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Figure 51: The gate positions for run1
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Figure 52: The water levels for run 2, initial water level slightly above error
tolerance
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Figure 53: The gate positions for run 2
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Figure 54: The head over gates for run 2
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Figure 55: The water levels for run 3, initial water level about 1 dm above error
tolerance
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Figure 56: The gate positions for run 3
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Figure 57: The head over gates for run 3
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5.2.7 Summary

The controller reacts in a good way when the water levels are around set point from
the beginning. We made simulations when we started both above and below the error
tolerance and we also made simulations with disturbances to the pools. These simula-
tions showed that the optimization tool probably is not the best one. In many cases it
would be better to have a larger horizon but the optimization program did not man-
age to handle this. It also seems like the optimization tool wants the gate positions to
follow each other and this gives strange results in some cases. This behaviour is hard
to explain but it might be the short horizon in the optimization program that causes
trouble. In general it is easier for the optimization program to handle disturbances in
pool nine than in pool eight. This can be explained by that pool eight is longer than
pool nine and because of that it takes longer time to see changes in pool eight.

The tunable parameters for our controller are the weighting matrices Q and R. It
is a bit unexpected to have R, the weight on the gate movements, as large as we have,
in most cases around 400 · I . It is expected to have higher weight on the error in the
water levels and last head over gate, the Q matrix, instead. q1 and q2 are in most cases
set to be one and q3 to be 0.1, where q1 and q2 are the weights on the error in the
water levels and q3 is the weight on the last head over gate. These values we choose
to make the optimization routine work in a satisfying way.

5.3 Practical implementation

5.3.1 Computational requirements

In the real world it is important that the optimization goes fast. The optimization
must of course go faster than the water level is sampled, in our case this means two
minutes. Our controller is satisfying in this point of view, one optimization in the
program normally takes less than one minute, in most cases just a few seconds. The
whole MPC takes 30-70 minutes and the predicted horizon is 800 minutes (13 hours)
so this is also a good result.

5.3.2 Communication

In most irrigation systems the irrigators must order their water requirements in ad-
vance to enable the supply strategy to be determined. In this channel an interactive
voice response system has been integrated. It is a Rubicon production database which
enables computer controlled voice based interaction between the water production staff
and irrigators. The water ordering, scheduling and confirmation transaction necessary
for each and every irrigator order is now performed using computer assembled voice
messages and telephone tones with minimal operator intervention.

To be able to supply enough water for the farmers there is a communication between
some quantities in the channel and a central computer. The water levels in the channel
are measured with a ultra sonic sensor. The gate positions are also measured. The
values of these variables are sent to the central computer. The optimization is made
in the computer and new gate positions are sent back to the gates.
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6 Conclusions

6.1 Results

The result is satisfying in some aspects. The controller works fine when the initial
water levels are around set points. A better behaviour is desired when we add distur-
bances to the system and also when the initial water levels are above and below the
error tolerance.

The largest problem was to find an optimization tool for the minimization of the
cost function. Our minimization problem is quite large and MATLAB was too slow.
We decided to try a C-program that a student at the University of Melbourne had
written, James Wettenhall. We finally got the optimization to work but just for a time
horizon of 80 minutes. This can explain some of the strange results in the optimization.
We found out that the results of the optimization depends very much of the initial
conditions. It also seems like the optimizer wants the gate positions to follow each
other and this is a strange behaviour that we found hard to explain. It might come
from the short horizon in the optimization program. To get a better optimization a
longer time horizon is needed. We have also learnt that it is preferable to have simple
and linear constraints (and move the nonlinearities to the transfer functions) as this
makes the optimization easier and faster. With a better optimization tool the result
had probably been even better.

The tunable parameters for the controller are the weighting-matrices Q and R. It
was hard to make the optimization program work for a large weight on the error and
the last head over gate as we wanted to have. To be able to get results from the
optimization program we have a small weight on the error and the head over gate ten,
and a large weight on the gate movements.

Another result to notice is that the control of disturbances in pool eight takes much
longer time to stabilize than disturbances in pool nine. It depends on that pool eight
is longer than pool nine and have a longer time delay. The controller is satisfying
when we start around the set point but a better behaviour when we add disturbances
is desired.

6.2 Future work

The most important thing to do in the future is to find a better optimization tool to
be able to increase the horizon of the optimization. We have been studying two pools
in the channel, pool eight and pool nine, and one thing to continue with is to take
more pools into consideration. Much work has been done on irrigation channels to
make them better, but there is still a lot to do. The model we have used does not
take wave-effects in the channel into account and another thing to do is to increase
the model so it takes the wave-effects into account as well.
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A DERIVATIVES USED IN MATLAB - FMINCON

A Derivatives used in MATLAB - fmincon

A.1 Derivatives of h8(k) - h10(k) with respect to ∆ h8(k)- ∆
h10(k)

h8(k) = h8(k − 1) + ∆h8(k)
h9(k) = h9(k − 1) + ∆h9(k)
h10(k) = h10(k − 1) + ∆h10(k)

h8(k) = h8(0) +
∑n

k=1
∆h8(k)

h9(k) = h9(0) +
∑n

k=1
∆h9(k)

h10(k) = h10(0) +
∑n

k=1
∆h10(k)

hi(−6) = const
...
hi(0) = const
hi(1) = hi(0) + ∆hi(1)
hi(2) = hi(1) + ∆hi(2) = hi(0) + ∆hi(1) + ∆hi(2)
hi(3) = hi(2) + ∆hi(3) = hi(0) + ∆hi(1) + ∆hi(2) + ∆hi(3)
...
hi(n) = hi(0) + ∆hi(1) + . . .+ ∆hi(n)

for i=1,2,3

∂hi(−6)
∂∆hi(j)

= 0

...
∂hi(j−1)
∂∆hi(j)

= 0

∂hi(j)
∂∆hi(j)

= 1

...
∂hi(n)
∂∆hi(j)

= 1

for i=1,2,3 and j=1 . . . n

A.2 Calculation of the gradient

A.2.1 Derivatives of ŷ9

ŷ9(k + 1) = y9(k) + c1h8(k − 6) + c2h9(k)− y9sp

ŷ10(k + 1) = y10(k) + c3h9(k − 4) + c4h10(k)− y10sp

ĥ3(k + 1) = h10(k) + ∆h10(k)

∂ŷ9
∂∆h8

:

∂ŷ9(1)
∂∆h8(j)

= ∂y9(0)
∂∆h8(j)

+ c1
∂h8(−6)
∂∆h8(j)

= 0

...
∂ŷ9(6+j)
∂∆h8(j)

= ∂y9(5+j)
∂∆h8(j)

+ c1
∂h8(j−1)
∂∆h8(j)

= 0
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∂ŷ9(7+j)
∂∆h8(j)

= ∂y9(6+j)
∂∆h8(j)

+ c1
∂h8(j)
∂∆h8(j)

= c1

...
∂ŷ9(k)
∂∆h8(j)

= ∂y9(k−1)
∂∆h8(j)

+ c1
∂h8(k−7)
∂∆h8(j)

= (k − (6 + j))c1

...
∂ŷ9(n)
∂∆h8(j)

= ∂y9(n−1)
∂∆h8(j)

+ c1
∂h8(n−7)
∂∆h8(j)

= (n− (6 + j))c1

for j=1 . . .n

∂ŷ9
∂∆h9

:

∂ŷ9(1)
∂∆h9(j)

= ∂y9(0)
∂∆h9(j)

+ c2
∂h9(0)
∂∆h9(j)

= 0

...
∂ŷ9(j)
∂∆h9(j)

= ∂y9(j−1)
∂∆h9(j)

+ c2
∂h9(j−1)
∂∆h9(j)

= 0
∂ŷ9(j+1)
∂∆h9(j)

= ∂y9(j)
∂∆h9(j)

+ c2
∂h9(j)
∂∆h9(j)

= c2

...
∂ŷ9(k)
∂∆h9(j)

= ∂y9(k−1)
∂∆h9(j)

+ c2
∂h9(k−1)
∂∆h9(j)

= (k − j)c2
...
∂ŷ9(n)
∂∆h9(j)

= ∂y9(n−1)
∂∆h9(j)

+ c2
∂h9(n−1)
∂∆h9(j)

= (n− j)c2

for j=1 . . . n

∂ŷ9
∂∆h10

:

ŷ9 does not depend on ∆h9 so all derivatives are zero.

A.2.2 Derivatives of ŷ10

∂ŷ10
∂∆h8

:

ŷ10 does not depend on ∆h8 so all derivatives are zero.

∂ŷ10
∂∆h9

:

∂ŷ10(1)
∂∆h9(j)

= ∂y10(0)
∂∆h9(j)

+ c3
∂h9(−4)
∂∆h9(j)

= 0

...
∂ŷ10(j+4)
∂∆h9(j)

= ∂y10(j+3)
∂∆h9(j)

+ c3
∂h9(j−1)
∂∆h9(j)

= 0
∂ŷ10(j+5)
∂∆h9(j)

= ∂y10(j+4)
∂∆h9(j)

+ c3
∂h9(j)
∂∆h9(j)

= c3

...
∂ŷ10(k)
∂∆h9(j)

= ∂y10(k−1)
∂∆h9(j)

+ c3
∂h9(k−5)
∂∆h9(j)

= (k − (4 + j))c3

...
∂ŷ10(n)
∂∆h9(j)

= ∂y10(n−1)
∂∆h9(j)

+ c3
∂h9(n−5)
∂∆h9(j)

= (n− (4 + j))c3

for j=1 . . . n
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∂ŷ10
∂∆h10

:

∂ŷ10(1)
∂∆h10(j)

= ∂y10(0)
∂∆h10(j)

+ c4
∂h10(0)
∂∆h10(j)

= 0

...
∂ŷ10(j)
∂∆h10(j)

= ∂y10(j−1)
∂∆h10(j)

+ c4
∂h10(j−1)
∂∆h10(j)

= 0

∂ŷ10(j+1)
∂∆h10(j)

= ∂y10(j)
∂∆h10(j)

+ c4
∂h10(j)
∂∆h10(j)

= c4

...
∂ŷ10(k)
∂∆h10(j)

= ∂y10(k−1)
∂∆h10(j)

+ c4
∂h10(k−1)
∂∆h10(j)

= (k − j)c4
...
∂ŷ10(n)
∂∆h10(j)

= ∂y10(n−1)
∂∆h10(j)

+ c4
∂h10(n−1)
∂∆h10(j)

= (n− j)c4

for j=1 . . . n

A.2.3 Derivatives of ĥ3

∂ĥ3
∂∆h8

:

ĥ3 does not depend on ∆h8 so all derivatives are zero.

∂ĥ3
∂∆h9

:

ĥ3 does not depend on ∆h9 so all derivatives are zero.

∂ĥ3
∂∆h10

:

∂ĥ3(1)
∂∆h10(j)

= ∂h10(0)
∂∆h10(j)

+ ∂∆h10(0)
∂∆h10(j)

= 0

...
∂ĥ3(j)
∂∆h10(j)

= ∂h10(j−1)
∂∆h10(j)

+ ∂∆h10(j−1)
∂∆h10(j)

= 0

∂ĥ3(j+1)
∂∆h10(j)

= ∂h10(j)
∂∆h10(j)

+ ∂∆h10(j)
∂∆h10(j)

= 1

...
∂ĥ3(k)
∂∆h10(j)

= ∂h10(k−1)
∂∆h10(j)

+ ∂∆h10(k−1)
∂∆h10(j)

= 1

...
∂ĥ3(n)
∂∆h10(j)

= ∂h10(n−1)
∂∆h10(j)

+ ∂∆h10(n−1)
∂∆h10(j)

= 1

for j=1 . . . n
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A.2.4 Derivatives of the constraints

The constraints are written on the form g(k) ≤ 0

g1(k) = −(h8(k)− y8 + 27.693) (8)

g2(k) = h8(k)− y8 + 27.693 − 2.005 (9)

g3(k) = −(h9(k)− y9(k) + 26.545) (10)

g4(k) = h9(k)− y9(k) + 26.545 − 1.474 (11)

g5(k) = −(h10(k)− y10(k) + 24.018) (12)

g6(k) = h10(k)− y10(k) + 24.018) − 1.487 (13)

g7(k) = −(h8) (14)

g8(k) = −(h9) (15)

g9(k) = −(h10) (16)

(17)

Derivatives of constraint function 8

∂g1
∂∆h8

:

∂g1(1)
∂∆h8(j)

= (−1) · ∂h8(1)
∂∆h8(j)

= 0

...
∂g1(j−1)
∂∆h8(j)

= (−1) · ∂h8(j−1)
∂∆h8(j)

= 0
∂g1(j)
∂∆h8(j)

= (−1) · ∂h8(j)
∂∆h8(j)

= −1

...
∂g1(n)
∂∆h8(j)

= (−1) · ∂h8(n)
∂∆h8(j)

= −1

for j=1 . . . n

∂g1
∂∆h9

:

g1 does not depend on ∆h9 so all derivatives are zero.

∂g1
∂∆h10

:

g1 does not depend on ∆h10 so all derivatives are zero.

for j=1 . . . n

Derivatives of constraint function 9

∂g2
∂∆h8

:

∂g2(1)
∂∆h8(j)

= ∂h8(1)
∂∆h8(j)

= 0

...
∂g2(j−1)
∂∆h8(j)

= ∂h8(j−1)
∂∆h8(j)

= 0
∂g2(j)
∂∆h8(j)

= ∂h8(j)
∂∆h8(j)

= 1

...
∂g2(n)
∂∆h8(j)

= ∂h8(n)
∂∆h8(j)

= 1
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∂g2
∂∆h9

:

g2 does not depend on ∆h9 so all derivatives are zero.

∂g2
∂∆h10

:

g3 does not depend on ∆h10 so all derivatives are zero.

for j=1 . . . n

Derivatives of constraint function 10

∂g3
∂∆h8

:

∂g3(1)
∂∆h8(j)

= ∂y9(1)
∂∆h8(j)

= 0

...
∂g3(6+j)
∂∆h8(j)

= ∂y9(6+j)
∂∆h8(j)

= 0
∂g3(7+j)
∂∆h8(j)

= ∂y9(7+j)
∂∆h8(j)

= c1

...
∂g3(k)
∂∆h8(j)

= ∂y9(k)
∂∆h8(j)

= (k − (6 + j))c1

...
∂g3(n)
∂∆h8(j)

= ∂y9(n)
∂∆h8(j)

= (n− (6 + j))c1

∂g3
∂∆h9

:

∂g3(1)
∂∆h9(j)

= (−1) · ( ∂h9(1)
∂∆h9(j)

− ∂y9(1)
∂∆h9(j)

) = 0

...
∂g3(j−1)
∂∆h9(j)

= (−1) · ( ∂h9(j−1)
∂∆h9(j)

− ∂y9(j−1)
∂∆h9(j)

) = 0
∂g3(j)
∂∆h9(j)

= (−1) · ( ∂h9(j)
∂∆h9(j)

− ∂y9(j)
∂∆h9(j)

) = −1
∂g3(j+1)
∂∆h9(j)

= (−1) · ( ∂h9(j+1)
∂∆h9(j)

− ∂y9(j+1)
∂∆h9(j)

) = (−1) · (1− c2)

...
∂g3(k)
∂∆h9(j)

= (−1) · ( ∂h9(k)
∂∆h9(j)

− ∂y9(k)
∂∆h9(j)

) = (−1) · (1− (k − j)c2)

...
∂g3(n)
∂∆h9(j)

= (−1) · ( ∂h9(n)
∂∆h9(j)

− ∂y9(n)
∂∆h9(j)

) = (−1) · (1− (n− j)c2)

∂g3
∂∆h10

:

g3 does not depend on ∆h10 so all derivatives are zero.

for j=1 . . . n
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Derivatives of constraint function 11

∂g4
∂∆h8

:

∂g4(1)
∂∆h8(j)

= − ∂y9(1)
∂∆h8(j)

= 0

...
∂g4(6+j)
∂∆h8(j)

= − ∂y9(6+j)
∂∆h8(j)

= 0
∂g4(7+j)
∂∆h8(j)

= − ∂y9(7+j)
∂∆h8(j)

= −c1
...
∂g4(k)
∂∆h8(j)

= − ∂y9(k)
∂∆h8(j)

= −(k − (6 + j))c1

...
∂g4(n)
∂∆h8(j)

= − ∂y9(n)
∂∆h8(j)

= −(n− (6 + j))c1

∂g4
∂∆h9

:

∂g4(1)
∂∆h9(j)

= 1 · ( ∂h9(1)
∂∆h9(j)

− ∂y9(1)
∂∆h9(j)

) = 0

...
∂g4(j−1)
∂∆h9(j)

= 1 · ( ∂h9(j)
∂∆h9(j)

− ∂y9(j−1)
∂∆h9(j)

) = 0
∂g4(j)
∂∆h9(j)

= 1 · ( ∂h9(j)
∂∆h9(j)

− ∂y9(j)
∂∆h9(j)

) = 1
∂g4(j+1)
∂∆h9(j)

= 1 · ( ∂h9(j+1)
∂∆h9(j)

− ∂y9(j+1)
∂∆h9(j)

) = (1− c2)

...
∂g4(k)
∂∆h9(j)

= 1 · ( ∂h9(k)
∂∆h9(j)

− ∂y9(k)
∂∆h9(j)

) = (1− (k − j)c2)

...
∂g4(n)
∂∆h9(j)

= 1 · ( ∂h9(n)
∂∆h9(j)

− ∂y9(n)
∂∆h9(j)

) = (1− (n− j)c2)

∂g4
∂∆h10

:

g4 does not depend on ∆h10 so all derivatives are zero.

for j=1 . . . n

Derivatives of constraint function 12

∂g5
∂∆h8

:

g5 does not depend on ∆h10 so all derivatives are zero.

∂g5
∂∆h9

:

∂g5(1)
∂∆h9(j)

= ∂y10(1)
∂∆h9(j)

= 0

...
∂g5(j+4)
∂∆h9(j)

= ∂y10(j+4)
∂∆h9(j)

= 0
∂g5(j+5)
∂∆h9(j)

= ∂y10(j+5)
∂∆h9(j)

= c3

...
∂g5(k)
∂∆h9(j)

= ∂y10(k)
∂∆h9(j)

= (k − (4 + j))c3
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...
∂g5(n)
∂∆h9(j)

= ∂y10(n)
∂∆h9(j)

= (n− (4 + j))c3

∂g5
∂∆h10

:

∂g5(1)
∂∆h10(j)

= (−1) · ( ∂h10(1)
∂∆h10(j)

− ∂y10(1)
∂∆h10(j)

) = 0

...
∂g5(j−1)
∂∆h10(j)

= (−1) · ( ∂h10(j−1)
∂∆h10(j)

− ∂y10(j−1)
∂∆h10(j)

) = 0
∂g5(j)

∂∆h10(j)
= (−1) · ( ∂h10(j)

∂∆h10(j)
− ∂y10(j)

∂∆h10(j)
) = −1

∂g5(j+1)
∂∆h10(j)

= (−1) · ( ∂h10(j+1)
∂∆h10(j)

− ∂y10(j+1)
∂∆h10(j)

) = (−1) · (1− c4)

...
∂g5(k)
∂∆h10(j)

= (−1) · ( ∂h10(k)
∂∆h10(j)

− ∂y10(k)
∂∆h10(j)

) = (−1) · (1− (k − j)c4)

...
∂g5(n)
∂∆h10(j)

= (−1) · ( ∂h10(n)
∂∆h10(j)

− ∂y10(n)
∂∆h10(j)

) = (−1) · (1− (n− j)c4)

for j=1 . . . n

Derivatives of constraint function 13

∂g6
∂∆h8

:

g6 does not depend on ∆h10 so all derivatives are zero.

∂g6
∂∆h9

:

∂g6(1)
∂∆h9(j)

= − ∂y10(1)
∂∆h9(j)

= 0

...
∂g6(j+4)
∂∆h9(j)

= − ∂y10(j+4)
∂∆h9(j)

= 0
∂g6(j+5)
∂∆h9(j)

= − ∂y10(j+5)
∂∆h9(j)

= −c3
...
∂g6(k)
∂∆h9(j)

= − ∂y10(k)
∂∆h9(j)

= −(k − (4 + j))c3

...
∂g6(n)
∂∆h9(j)

= − ∂y10(n)
∂∆h9(j)

= −(n− (4 + j))c3

∂g6
∂∆h10

:

∂g6(1)
∂∆h10(j)

= 1 · ( ∂h10(1)
∂∆h10(j)

− ∂y10(1)
∂∆h10(j)

) = 0

...
∂g6(j−1)
∂∆h10(j)

= 1 · ( ∂h10(j−1)
∂∆h10(j)

− ∂y10(j−1)
∂∆h10(j)

) = 0

∂g6(j)
∂∆h10(j)

= 1 · ( ∂h10(j)
∂∆h10(j)

− ∂y10(j)
∂∆h10(j)

) = 1

∂g6(j+1)
∂∆h10(j)

= 1 · ( ∂h10(j+1)
∂∆h10(j)

− ∂y10(j+1)
∂∆h10(j)

) = 1 · (1− c4)

...
∂g6(k)
∂∆h10(j)

= 1 · ( ∂h10(k)
∂∆h10(j)

− ∂y10(k)
∂∆h10(j)

) = 1 · (1− (k − j)c4)
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...
∂g6(n)
∂∆h10(j)

= 1 · ( ∂h10(n)
∂∆h10(j)

− ∂y10(n)
∂∆h10(j)

) = 1 · (1− (n− j)c4)

for j=1 . . . n

Derivatives of constraint function 14

∂g7
∂∆h8

:

∂g7(1)
∂∆h8(j)

= − ∂h8(1)
∂∆h8(j)

= 0

...
∂g7(j−1)
∂∆h8(j)

= − ∂h8(j−1)
∂∆h8(j)

= 0

∂g7(j)
∂∆h8(j)

= − ∂h8(j)
∂∆h8(j)

= −1

...
∂g7(k)
∂∆h8(j)

= − ∂h8(k)
∂∆h8(j)

= −1

...
∂g7(n)
∂∆h8(j)

= − ∂h8(n)
∂∆h8(j)

= −1
∂g7
∂∆h9

:

g7 does not depend on ∆h9 so all derivatives are zero.

∂g7
∂∆h10

:

g7 does not depend on ∆h10 so all derivatives are zero.

Derivatives of constraint function 15

∂g8
∂∆h8

:

g8 does not depend on ∆h8 so all derivatives are zero.

∂g8
∂∆h9

:

∂g8(1)
∂∆h9(j)

= − ∂h9(1)
∂∆h9(j)

= 0

...
∂g8(j−1)
∂∆h9(j)

= − ∂h9(j−1)
∂∆h9(j)

= 0

∂g8(j)
∂∆h9(j)

= − ∂h9(j)
∂∆h9(j)

= −1

...
∂g8(k)
∂∆h9(j)

= − ∂h9(k)
∂∆h9(j)

= −1

...
∂g8(n)
∂∆h9(j)

= − ∂h9(n)
∂∆h9(j)

= −1
∂g8

∂∆h10
:

g8 does not depend on ∆h10 so all derivatives are zero.
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Derivatives of constraint function 16

∂g9
∂∆h8

:

g9 does not depend on ∆h8 so all derivatives are zero.

∂g9
∂∆h9

:

g9 does not depend on ∆h9 so all derivatives are zero.

∂g9
∂∆h10

:

∂g9(1)
∂∆h10(j)

= − ∂h10(1)
∂∆h10(j)

= 0

...
∂g9(j−1)
∂∆h10(j)

= − ∂h10(j−1)
∂∆h10(j)

= 0

∂g9(j)
∂∆h10(j)

= − ∂h10(j)
∂∆h10(j)

= −1

...
∂g9(k)
∂∆h10(j)

= − ∂h10(k)
∂∆h10(j)

= −1

...
∂g9(n)
∂∆h10(j)

= − ∂h10(n)
∂∆h10(j)

= −1
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B Derivatives in C-program, version one

Version one with linear model, nonlinear constraints and one minute sample.
Only derivatives not equal to zero are shown.

B.1 Derivatives of the cost function

J = 1
2
· (x2

13 · q1 + x2
14 · q2 + x2

12 · q3 + u2
0 · r1 + u2

1 · r2 + u2
2 · r3)

∂J
∂u

: ∂J
∂u0

= r1 · u0
∂J
∂u1

= r2 · u1
∂J
∂u2

= r1 · u2

∂J
∂x

: ∂J
∂x12

= q3 · x12
∂J
∂x13

= q1 · x13
∂J
∂x14

= q2 · x14

∂J2

∂u2 : ∂J2

∂u2
0

= r1
∂J2

∂u2
1

= r2
∂J2

∂u2
1

= r3

∂J2

∂x2 : ∂J2

∂x2
12

= q3
∂J2

∂x2
13

= q1
∂J2

∂x2
14

= q2

∂J2

∂x∂u
: All derivatives are zero.

B.2 Derivatives of the transitions

t0 = x0 + u0

t1 = x0

t2 = x1

t3 = x2

t4 = x3

t5 = x4

t6 = x5

t7 = x7 + u1

t8 = x7

t9 = x8

t10 = x9

t11 = x10

t12 = x12 + u2

t13 = c1 · x6 + c2 · x7 + x13

t14 = c3 · x11 + c4 · x12 + x14

∂t
∂x

: ∂t0
∂x0

= 1 ∂t1
∂x0

= 1 ∂t2
∂x1

= 1 ∂t3
∂x2

= 1

∂t4
∂x3

= 1 ∂t5
∂x4

= 1 ∂t6
∂x5

= 1 ∂t7
∂x7

= 1

∂t8
∂x7

= 1 ∂t9
∂x8

= 1 ∂t10
∂x9

= 1 ∂t11
∂x10

= 1

∂t12
∂x12

= 1 ∂t13
∂x6

= c1
∂t13
∂x7

= c2
∂t13
∂x13

= 1

∂t14
∂x11

= c3
∂t14
∂x12

= c4
∂t14
∂x14

= 1

∂t
∂u

: ∂t0
∂u0

= 1 ∂t7
∂u1

= 1 ∂t12
∂u2

= 1
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∂t2

∂u2 : All derivatives are zero.

∂t2

∂x2 : All derivatives are zero.

∂t2

∂x∂u
:All derivatives are zero.

B.3 Derivatives of the constraints

The constraints are written on the form g ≥ 0

g0 = x
2/3
0 − y8 + 27.693 (18)

g1 = −(x
2/3
0 − y8 + 27.693 − 2.005) (19)

g2 = x
2/3
7 − x13 + 26.545 (20)

g3 = −(x
2/3
7 − x13 + 26.545 − 1.474) (21)

g4 = x
2/3
12 − x14 + 24.018 (22)

g5 = −(x
2/3
12 − x14 + 24.018 − 1.487) (23)

g6 = x0 (24)

g7 = x7 (25)

g8 = x12 (26)

(27)

∂g
∂u

: All derivatives are zero.

∂g
∂x

: ∂g0
∂x0

= 2
3
· x−1/3

0
∂g1
∂x0

= − 2
3
· x−1/3

0
∂g2
∂x7

= 2
3
· x−1/3

7
∂g2
∂x13

= −1

∂g3
∂x7

= − 2
3
· x−1/3

7
∂g3
∂x13

= 1 ∂g4
∂x12

= 2
3
· x−1/3

12
∂g4
∂x14

= −1

∂g5
∂x12

= − 2
3
· x−1/3

12
∂g5
∂x14

= 1 ∂g6
∂x0

= 1 ∂g7
∂x7

= 1

∂g8
∂x12

= 1

∂g2

∂u2 : All derivatives are zero.

∂g2

∂x2 :
∂g2

0
∂x2

0
= − 2

9
· x−4/3

0
∂g2

1
∂x2

0
= 2

9
· x−4/3

0
∂g2

2
∂x2

7
= − 2

9
· x−4/3

7
∂g2

3
∂x2

7
= 2

9
· x−4/3

7

∂g2
4

∂x2
12

= − 2
9
· x−4/3

12

∂g2
5

∂x2
12

= 2
9
· x−4/3

12
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C Derivatives in C-program, version two

Version two with nonlinear model, linear constraints and one minute sample.
Only derivatives not equal to zero are shown.

C.1 Derivatives of the cost function

J = 1
2
· (x2

13 · q1 + x2
14 · q2 + (x14 + x12 − g3)2 · q3 + u2

0 · r1 + u2
1 · r2 + u2

2 · r3)

∂J
∂u

: ∂J
∂u0

= u0 · r1
∂J
∂u1

= u1 · r2
∂J
∂u2

= u2 · r3

∂J
∂x

: ∂J
∂x12

= (x14 + x12 − g3) · q3 ∂J
∂x13

= x13 · q1 ∂J
∂x14

= x14 · q2 + (x14 + x12 − g3) · q3

∂J2

∂u2 : ∂J2

∂u2
0

= r1
∂J2

∂u2
1

= r2
∂J2

∂u2
2

= r3

∂J2

∂x2 : ∂J2

∂x2
12

= q3
∂J2

∂x14∂x12
= q3

∂J2

∂x2
13

= q1

∂J2

∂x12∂x14
= q3

∂J2

∂x2
14

= q2 + q3

∂J2

∂u∂x
: All derivatives are zero.

C.2 Derivatives of the transitions

t0 = x0 + u0

t1 = y8 + x0 − g1

t2 = x1

t3 = x2

t4 = x3

t5 = x4

t6 = x5

t7 = x7 + u1

t8 = x13 + x7 − g2

t9 = x8

t10 = x9

t11 = x10

t12 = x12 + u2

t13 = x13 + c1 · x3/2
6 + c2 · (x13 + x7 − g2)3/2

t14 = x14 + c3 · x3/2
11 + c4 · (x14 + x12 − g3)3/2
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∂t
∂u

: ∂t0
u0

= 1 ∂t7
u1

= 1 ∂t12
u2

= 1

∂t
∂x

: ∂t0
x0

= 1 ∂t1
x0

= 1 ∂t2
x0

= 1

∂t3
x2

= 1 ∂t4
x3

= 1 ∂t5
x4

= 1

∂t6
x5

= 1 ∂t7
x7

= 1 ∂t8
x7

= 1

∂t8
x13

= 1 ∂t9
x8

= 1 ∂t10
x9

= 1

∂t11
x10

= 1 ∂t12
x12

= 1 ∂t13
x6

= 3
2
· c1 · x1/2

6

∂t13
∂x7

= 3
2
· c2 · (x13 + x7− g2)1/2 ∂t13

∂x13
= 1 + 3

2
· c2 · (x13 + x7− g2)1/2 ∂t14

x11
= 3

2
· c3 · x1/2

11

∂t14
∂x12

= 3
2
· c4 · (x14 + x12− g3)1/2 ∂t14

∂x14
= 1 + 3

2
· c4 · (x14 + x12− g3)1/2

∂t2

∂u2 : All derivatives are zero.

∂t2

∂u∂x
:All derivatives are zero.

∂t2

∂x2 : ∂t13
∂x2

6
= 3

4
· x−1/2

6
∂t13
∂x2

7
= 3

4
· c2 · (x13 + x7 − g2)−1/2

∂t13
∂x7∂x13

= 3
4
· c2 · (x13 + x7 − g2)−1/2 ∂t13

∂x13∂x7
= 3

4
· c2 · (x13 + x7 − g2)−1/2

∂t13
∂x2

13
= 3

4
· c2 · (x13 + x7 − g2)−1/2 ∂t14

∂x2
11

= 3
4
· c3 · x−1/2

11

∂t14
∂x2

12
= 3

4
· c4 · (x14 + x12 − g3)−1/2 ∂t14

∂x14∂x12
= 3

4
· c4 · (x14 + x12 − g3)−1/2

∂t14
∂x12∂x14

= 3
4
· c4 · (x14 + x12 − g3)−1/2 ∂t14

∂x2
14

= 3
4
· c4 · (x14 + x12 − g3)−1/2

C.3 Derivatives of the constraints

The constraints are written on the form g ≥ 0

g0 = x0 (28)

g1 = 2.005 − x0 (29)

g2 = x7 (30)

g3 = 1.474 − x7 (31)

g4 = x12 (32)

g5 = 1.487 − x12 (33)

(34)

∂g
∂u

: All derivatives are zero.
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∂g
∂x

: ∂g0
∂x0

= 1 ∂g1
∂x0

= −1 ∂g2
∂x7

= 1

∂g3
∂x7

= −1 ∂g4
∂x12

= 1 ∂g5
∂x12

= −1

∂g2

∂u2 : All derivatives are zero.

∂g2

∂x2 : All derivatives are zero.

∂g2

∂u∂x
:All derivatives are zero.
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D Derivatives in C-program, version three

Version three with nonlinear model, linear constraints and two minutes sample

Only derivatives not equal to zero are shown.

D.1 Derivatives of the cost function

J = 1
2 · (x2

10 · q1 + x2
11 · q2 + (x11 + x9 − g3)2 · q3 + u2

0 · r1 + u2
1 · r2 + u2

2 · r3)

∂J
∂u : ∂J

∂u0
= u0 · r1

∂J
∂u1

= u1 · r2
∂J
∂u2

= u2 · r3

∂J
∂x : ∂J

∂x9
= (x11 + x9 − g3) · q3

∂J
∂x10

= x10 · q1
∂J
∂x11

= x11 · q2 + (x11 + x9 − g3) · q3

∂J2

∂u2 : ∂J2

∂u2
0

= r1
∂J2

∂u2
1

= r2
∂J2

∂u2
2

= r3

∂J2

∂x2 : ∂J2

∂x2
9

= q3
∂J2

∂x12∂x9
= q3

∂J2

∂x2
10

= q1

∂J2

∂x9∂x11
= q3

∂J2

∂x2
11

= q2 + q3

∂J2

∂u∂x : All derivatives are zero.

D.2 Derivatives of the transitions

t0 = x0 + u0

t1 = y8 + x0 − g1

t2 = x1

t3 = x2

t4 = x3

t5 = x5 + u1

t6 = x10 + x5 − g9

t7 = x6

t8 = x7

t9 = x9 + u2

t10 = x10 + c1 · x3/2
4 + c2 · (x10 + x5 − g2)3/2

t11 = x11 + c3 · x3/2
8 + c4 · (x11 + x9 − g3)3/2

— 75 —
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∂t
∂u : ∂t0

u0
= 1 ∂t5

u1
= 1 ∂t9

u2
= 1

∂t
∂x : ∂t0

x0
= 1 ∂t1

x0
= 1 ∂t2

x1
= 1

∂t3
x2

= 1 ∂t4
x3

= 1 ∂t5
x5

= 1

∂t6
x5

= 1 ∂t6
x10

= 1 ∂t7
x6

= 1

∂t8
x7

= 1 ∂t9
x9

= 1 ∂t10
x4

= 3
2 · c1 · x

1/2
4

∂t10
∂x5

= 3
2 · c2 · (x10 + x5 − g2)1/2 ∂t10

∂x10
= 1 + 3

2 · c2 · (x10 + x5 − g2)1/2 ∂t11
x8

= 3
2 · c3 · x

1/2
8

∂t11
∂x9

= 3
2 · c4 · (x11 + x9 − g3)1/2 ∂t11

∂x11
= 1 + 3

2 · c4 · (x11 + x9 − g3)1/2

∂t2

∂u2 : All derivatives are zero.

∂t2

∂u∂x :All derivatives are zero.

∂t2

∂x2 : ∂t10
∂x2

4
= 3

4 · x
−1/2
4

∂t10
∂x2

5
= 3

4 · c2 · (x10 + x5 − g2)−1/2

∂t10
∂x5∂x10

= 3
4 · c2 · (x10 + x5 − g2)−1/2 ∂t10

∂x10∂x5
= 3

4 · c2 · (x10 + x5 − g2)−1/2

∂t10
∂x2

10
= 3

4 · c2 · (x10 + x5 − g2)−1/2 ∂t11
∂x2

8
= 3

4 · c3 · x
−1/2
8

∂t11
∂x2

9
= 3

4 · c4 · (x11 + x9 − g3)−1/2 ∂t11
∂x11∂x12

= 3
4 · c4 · (x11 + x9 − g3)−1/2

∂t11
∂x9∂x11

= 3
4 · c4 · (x11 + x9 − g3)−1/2 ∂t11

∂x2
11

= 3
4 · c4 · (x11 + x9 − g3)−1/2

D.3 Derivatives of the constraints

The constraints are written on the form g ≥ 0

g0 = x0 (35)
g1 = 2.005− x0 (36)
g2 = x5 (37)
g3 = 1.474− x5 (38)
g4 = x9 (39)
g5 = 1.487− x9 (40)

(41)
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D DERIVATIVES IN C-PROGRAM, VERSION THREE D.3 Derivatives of the constraints

∂g
∂u : All derivatives are zero.

∂g
∂x : ∂g0

∂x0
= 1 ∂g1

∂x0
= −1 ∂g2

∂x5
= 1

∂g3
∂x5

= −1 ∂g4
∂x9

= 1 ∂g5
∂x9

= −1

∂g2

∂u2 : All derivatives are zero.

∂g2

∂x2 : All derivatives are zero.

∂g2

∂u∂x :All derivatives are zero.
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E Costder

function [f,grad] = costder(x)

%This function gives the cost-function and the derivatives with respect to x

n=length(x)/3; % x should be a multiple of 3

c1=0.0208; c2=-0.0278; c3=0.0650; c4=-0.0660;
y8=27.60; y9sp=26.50; y10sp=23.85;

y09=zeros(1,n); y010=zeros(1,n); h010=zeros(1,n);

load resultat1

h080(1)=h08(7);
h081(1)=h08(6);
h082(1)=h08(5);
h083(1)=h08(4);
h084(1)=h08(3);
h085(1)=h08(2);
h086(1)=h08(1);
h090(1)=h09(7);
h091(1)=h09(6);
h092(1)=h09(5);
h093(1)=h09(4);
h094(1)=h09(3);
h010(1)=h10(7);
y09(1)=y9(7);
y010(1)=y10(7);

for k=1:n-1;
h080(k+1)=h080(k)+x(k);
h081(k+1)=h080(k);
h082(k+1)=h081(k);
h083(k+1)=h082(k);
h084(k+1)=h083(k);
h085(k+1)=h084(k);
h086(k+1)=h085(k);
h090(k+1)=h090(k)+x(n+k);
h091(k+1)=h090(k);
h092(k+1)=h091(k);
h093(k+1)=h092(k);
h094(k+1)=h093(k);
h010(k+1)=h010(k)+x(2*n+k);
y09(k+1)=y09(k)+c1*h086(k)+c2*h090(k);
y010(k+1)=y010(k)+c3*h094(k)+c4*h010(k);

end;
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Q=diag([ones(1,3)]);
R=diag([ones(1,3)]);
Flagy9=zeros([1,n]);
Flagy10=zeros([1,n]);

for k=1:n;
y9hat(k)=y09(k)-y9sp;
y10hat(k)=y010(k)-y10sp;
h10hat(k)=h010(k);

%-----------------------------------------------------------------------------
%Penalty function
%-----------------------------------------------------------------------------

if y9hat(k) > 0.05
y9prim(k)=(y9hat(k)-0.05);
Flagy9(k)=1;

elseif y9hat(k) < -0.05
y9prim(k)=(-0.05-y9hat(k));
Flagy9(k)=-1;

else
y9prim(k)=0;
Flagy9(k)=0;

end

if y10hat(k) > 0.05
y10prim(k)=(y10hat(k)-0.05);
Flagy10(k)=1;

elseif y10hat(k) < -0.05
y10prim(k)=(-0.05-y10hat(k));
Flagy10(k)=-1;

else
y10prim(k)=0;
Flagy10(k)=0;

end

nbr1(k)=[y9prim(k); y10prim(k); h10hat(k)]’*Q*[y9prim(k); y10prim(k);
h10hat(k)];
nbr2(k)=[x(k); x(n+k); x(2*n+k)]’*R*[x(k); x(n+k); x(2*n+k)];

end;

f=0.5*sum(nbr1)+0.5*sum(nbr2);

if nargout>1
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%==============================================================================
%The gradient
%==============================================================================

dery9dh1=zeros(n);
dery9dh2=zeros(n);
dery9dh3=zeros(n);
dery10dh1=zeros(n);
dery10dh2=zeros(n);
dery10dh3=zeros(n);
derh10dh1=zeros(n);
derh10dh2=zeros(n);
derh10dh3=zeros(n);

%______________________________________________________________________________
% Part.der y9dh1
%------------------------------------------------------------------------------
b=1;
while b<(n-8)
for k=9:n;
for j=1:b;
dery9dh1(k,j)=Flagy9*(k-(7+j))*c1;

end;
b=b+1;

end;
end;

%______________________________________________________________________________
% Part.der y9dh2
%------------------------------------------------------------------------------
b=1;
while b<(n-2)
for k=3:n;
for j=1:b;
dery9dh2(k,j)=Flagy9*(k-j-1)*c2;

end;
b=b+1;

end;
end;

%______________________________________________________________________________
% Part.der y10dh2
%------------------------------------------------------------------------------
b=1;
while b<(n-6)
for k=7:n;
for j=1:b;
dery10dh2(k,j)=Flagy10*(k-(5+j))*c3;
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end;
b=b+1;

end;
end;

%______________________________________________________________________________
% Part.der y10dh3
%------------------------------------------------------------------------------
b=1;
while b<(n-2)
for k=3:n;
for j=1:b;
dery10dh3(k,j)=Flagy10*(k-j-1)*c4;

end;
b=b+1;

end;
end;

%______________________________________________________________________________
% Par.der h010dh3
%------------------------------------------------------------------------------
b=1;
while b<(n-1)
for k=2:n;
for j=1:b;
derh10dh3(k,j)=1;
end;
b=b+1;

end;
end;

%------------------------------------------------------------------------------

derh10=diag(ones([1,n]),0);

for j=1:n
for k=1:n
p1(j,k)=y9prim(k)*Q(1,1)*dery9dh1(k,j); %Der of y9 wrt dh1(j)
p2(j,k)=y10prim(k)*Q(2,2)*dery10dh1(k,j); %Der of y10 wrt dh1(j)
p3(j,k)=h10hat(k)*Q(3,3)*derh10dh1(k,j); %Der of h10 wrt dh1(j)

p4(j,k)=y9prim(k)*Q(1,1)*dery9dh2(k,j); %Der of y9 wry dh2(j)
p5(j,k)=y10prim(k)*Q(2,2)*dery10dh2(k,j); %Der of y10 wrt dh2(j)
p6(j,k)=h10hat(k)*Q(3,3)*derh10dh2(k,j); %Der of h10 wrt dh2(j)

p7(j,k)=y9prim(k)*Q(1,1)*dery9dh3(k,j); %Der of y9 wrt dh3(j)
p8(j,k)=y10prim(k)*Q(2,2)*dery10dh3(k,j); %Der of y10 wrt dh3(j)
p9(j,k)=h10hat(k)*Q(3,3)*derh10dh3(k,j); %Der of h10 wrt dh3(j)
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p10(j,k)=x(k)*R(1,1)*derh10(k,j); %Der of dh1 wrt dh1(j)
p11(j,k)=x(n+k)*R(2,2)*derh10(k,j); %Der of dh2 wrt dh2(j)
p12(j,k)=x(2*n+k)*R(3,3)*derh10(k,j); %Der of dh3 wrt dh3(j)

end;
end;

s1=sum(p1+p2+p3+p10,2);
s2=sum(p4+p5+p6+p11,2);
s3=sum(p7+p8+p9+p12,2);

grad=[s1’ s2’ s3’];

end;
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F Nonlcon

function [c,ceq,GC,GCeq]=nonlcon(x)

n=length(x)/3; % x should be a multiple of 3

c1=0.0208; c2=-0.0278; c3=0.0650; c4=-0.0660;

y8=27.60; y9sp=26.50; y10sp=23.85;

y9=zeros(1,n); y10=zeros(1,n); h10=zeros(1,n);

load resultat1

h080(1)=h08(7);
h081(1)=h08(6);
h082(1)=h08(5);
h083(1)=h08(4);
h084(1)=h08(3);
h085(1)=h08(2);
h086(1)=h08(1);
h090(1)=h09(7);
h091(1)=h09(6);
h092(1)=h09(5);
h093(1)=h09(4);
h094(1)=h09(3);
h010(1)=h10(7);
y9(1)=y9(7);
y10(1)=y10(7);

for k=1:n-1;
h080(k+1)=h080(k)+x(k);
h081(k+1)=h080(k);
h082(k+1)=h081(k);
h083(k+1)=h082(k);
h084(k+1)=h083(k);
h085(k+1)=h084(k);
h086(k+1)=h085(k);
h090(k+1)=h090(k)+x(n+k);
h091(k+1)=h090(k);
h092(k+1)=h091(k);
h093(k+1)=h092(k);
h094(k+1)=h093(k);
h010(k+1)=h010(k)+x(2*n+k);
y9(k+1)=y9(k)+c1*h086(k)+c2*h090(k);
y10(k+1)=y10(k)+c3*h094(k)+c4*h010(k);

end;
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%compute nonlinear inequalities
for k=1:n;
co1(k)=-(h080(k)-y8+27.693); %Constraint on p08
co2(k)=((h080(k)-y8+27.693)-2.005);
co3(k)=-(h090(k)-y9(k)+26.545); %Constraint on p09
co4(k)=((h090(k)-y9(k)+26.545)-1.474);
co5(k)=-(h010(k)-y10(k)+24.018); %Constraint on p10
co6(k)=((h010(k)-y10(k)+24.018)-1.487);
co7(k)=-h080(k); %Constraint on h080
co8(k)=-h090(k); %Constraint on h090
co9(k)=-h010(k); %Constraint on h10
end

k=1:n;
c=[co1(k) co2(k) co3(k) co4(k) co5(k) co6(k) co7(k) co8(k) co9(k)];

ceq=[];

if nargout > 2

%compute derivatives of nonlinear inequalities

GC11=zeros([n,n]); GC12=zeros([n,n]); GC13=zeros([n,n]); GC21=zeros([n,n]);
GC22=zeros([n,n]); GC23=zeros([n,n]); GC31=zeros([n,n]); GC32=zeros([n,n]);
GC33=zeros([n,n]); GC41=zeros([n,n]); GC42=zeros([n,n]); GC43=zeros([n,n]);
GC51=zeros([n,n]); GC52=zeros([n,n]); GC53=zeros([n,n]); GC61=zeros([n,n]);
GC62=zeros([n,n]); GC63=zeros([n,n]); GC71=zeros([n,n]); GC72=zeros([n,n]);
GC73=zeros([n,n]); GC81=zeros([n,n]); GC82=zeros([n,n]); GC83=zeros([n,n]);
GC91=zeros([n,n]); GC92=zeros([n,n]); GC93=zeros([n,n]);

%compute derivatives of co1(k) wrt dh1

b=1;
while b<(n-1)
for k=2:n;
for j=1:b;
GC11(k,j)=-1;

end;
b=b+1;

end;
end;

%compute derivatives of co1(k) wrt dh2
GC12=zeros([n,n]);

%compute derivatives of co1(k) wrt dh3
GC13=zeros([n,n]);
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GC1=[GC11 GC12 GC13];

%compute derivatives of co2(k) wrt dh1

b=1;
while b<(n-1)
for k=2:n;
for j=1:b;
GC21(k,j)=1;

end;
b=b+1;

end;
end;

%compute derivatives of co2(k) wrt dh2
GC22=zeros([n,n]);

%compute derivatives of co2(k) wrt dh3
GC23=zeros([n,n]);

GC2=[GC21 GC22 GC23];

%compute derivatives of co3(k) wrt dh1

b=1;
while b<(n-8)
for k=9:n;
for j=1:b;

GC31(k,j)=(k-(7+j))*c1;
end;
b=b+1;

end;
end;

%compute derivatives of co3(k) wrt dh2

b=1;
while b<(n-1)
for k=2:n;
for j=1:b;
GC32(k,j)=-(1-(k-j-1)*c2);

end;
b=b+1;

end;
end;
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%compute derivative of co3(k) wrt dh3
GC33=zeros([n,n]);

GC3=[GC31 GC32 GC33];

%compute derivative of co4(k) wrt dh1
GC41=-GC31;

%compute derivative of co4(k) wrt dh2
GC42=-GC32;

%compute derivative of co4(k) wrt dh3
GC43=-GC33;

GC4=[GC41 GC42 GC43];

%compute derivative of co5(k) wrt dh1
GC51=zeros([n,n]);

%compute derivative of co5(k) wrt dh2
b=1;
while b<(n-6)
for k=7:n;
for j=1:b;

GC52(k,j)=(k-(5+j))*c3;
end;
b=b+1;

end;
end;

%compute derivative of co5(k) wrt dh3
b=1;
while b<(n-1)
for k=2:n;
for j=1:b;
GC53(k,j)=-(1-(k-j-1)*c4);

end;
b=b+1;

end;
end;

GC5=[GC51 GC52 GC53];
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%compute derivative of co6(k) wrt dh1
GC61=-GC51;

%compute derivative of co6(k) wrt dh2
GC62=-GC52;

%compute derivative of co6(k) wrt dh3
GC63=-GC53;

GC6=[GC61 GC62 GC63];

%compute derivative of co7(k) wrt dh1

b=1;
while b<(n-1)
for k=2:n;

for j=1:b;
GC71(k,j)=-1;

end;
b=b+1;

end;
end;

%compute derivative of co7(k) wrt dh2
GC72=zeros([n,n]);

%compute derivative of co7(k) wrt dh3
GC73=zeros([n,n]);

GC7=[GC71 GC72 GC73];

%compute derivative of co8(k) wrt dh1
GC81=GC72;

%compute derivative of co8(k) wrt dh2
GC82=GC71;

%compute derivative of co8(k) wrt dh3
GC83=GC73;

GC8=[GC81 GC82 GC83];

%compute derivative of co9(k) wrt dh1
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GC91=GC72;

%compute derivative of co9(k) wrt dh2
GC92=GC72;

%compute derivative of co9(k) wrt dh3
GC93=GC71;

GC9=[GC91 GC92 GC93];

GC=[GC1’ GC2’ GC3’ GC4’ GC5’ GC6’ GC7’ GC8’ GC9’];

GCeq=[];

end;
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G LQR-test

function [u,x0,K] = lqrtest(n)

y8=27.60; y9sp=26.50; y10sp=23.85;

load resultat1

x=[h08(7) h08(6) h08(5) h08(4) h08(3) h08(2) h08(1) h09(7) h09(6) h09(5)
h09(4) h09(3) h10(7) y9(7)-y9sp y10(7)-y10sp]’;

Q=diag([zeros(1,12) ones(1,3)]);
R=diag([ones(1,3)]);

c1=0.0208; c2=-0.0278; c3=0.0650; c4=-0.0660;

A=[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0;
0 0 0 0 0 0 c1 c2 0 0 0 0 0 1 0;
0 0 0 0 0 0 0 0 0 0 0 c3 c4 0 1];

B=[1 0 0;
0 0 0;
0 0 0;
0 0 0;
0 0 0;
0 0 0;
0 0 0;
0 1 0;
0 0 0;
0 0 0;
0 0 0;
0 0 0;
0 0 1;
0 0 0;
0 0 0];
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N=zeros([15,3]);

[K,S,E] = dlqr(A,B,Q,R,N);

u=-K*x;

x0=[u(1)*ones(1,n) u(2)*ones(1,n) u(3)*ones(1,n)];
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