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1 Introduction

1.1 Problem Formulation

Today’s cars are becoming more and more sophisticated. They contain more
electrical hardware components and less mechanical and hydraulic ones. Ex-
amples of this are the actuators used for control such as in brake-by-wire,
steer-by-wire and active suspension. In future cars there might be a very
large number of possible configurations for these actuators. This means that
forces and torque for control action can be applied in many different ways.
What we want is to optimally employ these actuators such that

e control is achieved with minimum control action

e the solution is robust to plant uncertainties, and a failure of one actu-
ator can be compensated by the remaining ones

e the controller can be adapted to any specific actuator configuration

To achieve all three objectives, a multivariable control scheduling system
has to be used that has already been applied to robotics, satellite attitude
control and ship control but is a novelty for the field of automotive control.
It requires the solution of problems unique to automotive control such as

e handling uncertain nonlinear tyre forces

e time varying constraints on the maximum available tyre forces due to
changing road conditions

Using existing modelled vehicle dynamics, reference yaw rate and side slip
angle are generated from a driver command. With proper model matching,
and considering disturbances and uncertainties, control commands should be
given such that the reference is followed.

In this work 4 wheel steering (front and rear axle) is used for control,
with yaw rate and side slip angle as outputs from the car, and front and
rear wheel steering angles as the input to the car. The problem is to control
the yaw rate and side slip angle simultaneously (normally, the side slip angle
has to be kept under a certain threshold), and at the same time fulfil the
specifications that are set up for the control system.

The internal structure of the system involves a certain degree of cross-
coupling between inputs and outputs. An approach with a decoupled con-
troller structure, as well as a model based state space design in the time
domain, where one controller is used for yaw rate and another for side slip
angle, constructed independently of each other, already exists. The front
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wheel steering angle is generated using both feedforward and feedback, and
for the rear wheel steering angle only feedforward is used. This decoupling
approach has some major disadvantages. One is the lack of robustness, both
to plant uncertainties and time delays. The limitations in constraint handling
are another disadvantage.

By also taking the dependency between yaw rate and side slip angle con-
trol into account, and using a coupling approach, a more robust solution can
be obtained that meets the theory and specifications in a better way. The
intention is to use feedforward and feedback for both rear and front wheel
steering. However, feedback design will be the central point.

1.2 Thesis Outline

This work consists of three main parts. The first part, system modelling,
problem specification and survey of different design strategies, is discussed
in chapter 2 to chapter 4. In chapter 2 the fundamental concepts of ve-
hicle dynamics are explained. The general ideas and specifications of the
multivariable controller design are discussed in chapter 3. Some ideas about
feedforward will be presented, but focus will be put on feedback design. The
feedback design approach chosen for this work, Individual Channel Design,
is explained in chapter 4. Beyond that, a rough structure for the controller
will be discussed in the chapter.

The second part is the controller design. This will be described in chapter
5. The software environment used for the design is Matlab, and in particular
the SISO root-locus design tool in Matlab.

Simulations and experimental results are the third part of this work.
The simulations will be carried out in Matlab Simulink. A complete car
model, containing the same dynamics as a real car, will be used to verify
the performance and robustness of the controller. The simulation results are
discussed in chapter 6. The most important parts of the Matlab code used
during the design are given in the Appendix.
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2 The Car Model

When modelling car dynamics different co-ordinate systems can be used de-
pending on the physical quantity considered.

vehicle
2. Vertical
moticn

.’XI‘/- XI\' v Yeois
il G rolling pitch  vehical
vehicle 13 Ly /
longiiudinal T motion lateral
motion steering motion
motion

Figure 2.1: The different degrees of freedom of the vehicle.

o The center of gravity co-ordinate system (figure 2.2) has its origin at
the vehicle center of gravity and is of the most importance. This co-
ordinate system is used as the reference for all movements of the vehicle

body.

o The fized inertial system (figure 2.3) is the only co-ordinate system
that doesn’t move during travel but is instead used as a reference for
the position of the vehicle, i.e the center of gravity co-ordinate system.

o The wheel co-ordinate system (figure 2.4) can be different for each in-
dividual wheel but differs normally only between front and rear axle.

Figure 2.1 shows the six degrees of freedom of the vehicle as well as the
center of gravity coordinate system.

The most important variables and quantities for the co-ordinate systems
are summarized in table 2.1 and they will all be explained at some point in
the chapter.
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Figure 2.2: The CoG co-ordinate system and its main quantities.

Yo

Figure 2.3: The CoG co-ordinate system in relation to the inertial.

2.1 Wheel Model

The location of the wheel ground contact point (marked by P in figure 2.4)
normally differs from the origin of the wheel co-ordinate system. Its exact
location depends on the steering mechanism, the vertical normal force dis-
tribution of the vehicle, the tyre stiffness and is described by the casters n,,
and ns. The frictional forces (S and U in figure 2.4) that act on the wheel
in the contact point determine the behaviour of the vehicle. The dynamic
characteristics of these forces are nonlinear with respect to the wheel slip (see
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A

Figure 2.4: The wheel co-ordinate system. Road surface contact area viewed

from above.

Table 2.1: Co-ordinate system variables

TCoG s YCoG, 2CoG
Tw,Yw, 2w
LIn, ylna ZIn

(0

o

)
G

St/r
Us/r

Vg
Uy

Q@

, Cu
87)\u

>~

Axis for the center of gravity co-ordinate system

Axis for the wheel co-ordinate system

Axis for the inertial co-ordinate system

Yaw angle (rotation about zo.q)

Tyre side slip angle (angle between xy and vy, the
wheel ground contact point velocity)

Wheel steering angle

Vehicle body side slip angle (angle between z¢,¢ and
Vooa, the vehicle velocity)

Lateral wheel ground contact force (acting in the direc-
tion of yw )

Longitudinal wheel ground contact force (acting in the
direction of zy)

The forward velocity, in the direction of z¢.q

The lateral velocity, in the direction of ycooc

The resulting velocity. Geometrical sum of v, and v,
Tyre stiffness in the direction of yy and xy,

Wheel slip in the direction of yy and xy

figure 2.5), which is defined as

. Wyheel * Twheel — Uy

Ay = 2.1

- 1)
As =sina =~ « (2.2)
Ar = VA2 4+ A2 (2.3)
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where v, is the geometrical sum of the longitudinal and lateral wheel velocity
components v, and vs. The tyre force saturates when a certain wheel slip
is reached. The definition of the wheel slip varies in the literature. Here it

wheel slip

Figure 2.5: Lateral tyre force S vs. wheel slip A.

is defined in the longitudinal and lateral direction of the wheel co-ordinate
system. The presence of a lateral wheel slip A, causes the velocity vector of
the wheel to have a direction different from zy,. The resulting angle is called
tyre side slip angle (figure 2.6) and is defined as

I, .
04f=5f+ﬁf=5f+ﬁ—v—f¢ (2.4a)
I
arzér+ﬁrzér+ﬁ+v—z/z (2.4b)

where (3 is the side slip angle of the entire vehicle body (angle between vehicle
center of gravity velocity vector and x¢,¢) and 0 is the steering angle. 3y and
0, are transformations of the side slip angle to, respectively, the front and the
rear axle. v (yaw rate) is the rotational speed around z¢,g. The presence of
the wheel casters will introduce a slight change in the wheel steering angle

n

§=6 -8 2.5

Z (25)

where 0* is the original angle given by the steering mechanism and C}, is
an elasticity constant. If we use a linearised static wheel lateral force S =
CsAs = Csar (linear part in figure 2.5), where Cf is the lateral tyre cornering
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stiffness, and combine it with equation (2.5), the resulting equation for the
tyre force S will be

Cs

S =—
1+g—2ns

(6" +B) = Cra” (2.6)

The virtual tyre stiffness C? is reduced in comparison to Cs.
The dynamic tyre characteristics can be modelled linearly or nonlinearly.
The linear approach simplifies the design but is of limited use:

S = 05 s = C o\ = Car (2.7)
OAs As=Ay=0

U= ou A= Cu)y (2.8)
a)‘u As=Ay=0

The complete nonlinear model is [Niethammer]

Cs)\s <
g =1 E-D’+Cis L=l (2.9)
s P &> 1
_ —Cydu <
U =1 (E-1*+Ciéu sl (2.10)
3 P €u>1

with the following definitions of the normalised wheel slip

Ar
L= 2.11
f )\Smax ( )
A
= 2.12
£U /\Umax ( )

2.2 The One-track Bicycle Model

As a base for the controller design a linear one-track bicycle model is used
(figure 2.6). This simple model considers front and rear wheel steering as
well as actuator dynamics. It is not very well purposed for simulation, but
for controller design it should be sufficient.

To obtain information about the behaviour of the system, in other words
the transfer function G(s), a state space representation is made, with the
yaw rate, 1/}, and the side slip angle at the rear axle, ., as outputs and front
and rear wheel steering angles, (d¢,d,), as inputs to the process. The input,
output and state vectors are

= (n)-(%) 19
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Figure 2.6: The one-track bicycle model.
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-(2)-()

¢
_| B
xr = S; (2.15)
Sy
The force equations of the vehicle are
ma, = Fxy+ Fx, :m<i}z—vy1/}> (2.16)

may, = Fy¢ + Fy, =m <1’1y + Uz¢>

where Fyy and Fx, act in the vehicle direction and Fy; and Fy, are lateral
forces. The moment equilibrium around the center of mass leads to the
differential equation

L.t = Fygly — Fy,l, (2.17)
where the forces can be rewritten as
Fxy=Ujcosdy — Sysindy (2.18)
Fyx, = U, cosd, — S, sin o,
Fyy=Uy;sindy + Sycosdy
Fy, =U,sind, + S, cosd,

By assuming small front and rear wheel steering angles, a linearisation can
be made:

cosdy = cosd, =1 (2.19)
sin 5f = (Sf
sin 9, = 0,
Ur=U,=0
Combining equation (2.18) with the equations (2.17) and (2.16) gives
.1
¢ = ]_ (lfo - ZTST) (220>
by = —vg) + 5+ 5 (2.21)
m

The side slip angle 3 is defined as

({8 = arctan (—&) ~ _ Y (2.22)

Vg Vg
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Assuming a constant v,, and combining (2.21) with (2.22), gives the differ-
ential equation for the side slip angle

Sf-l—Sr

B =1 — o (2.23)
With ,
=B+ =0 (2.24)
FMU

the side slip angle is transformed to the rear axle, and equation (2.23) can

be modified to ;

lg'r = ) — 75} 2.25
The dynamics of the tyre side forces are given by

Uy

Sy=a-(Sslay) = 51) = ooz oE — o5 (Crar—5) (2.26a)
. — Vg
Sr =a- (Sr(Oér) — ST) = m (CrOér — ST) (226b>

where @ is the initialisation transient and C' - « is the linearised tyre char-
acteristics. The initialisation transient is the time range, given a certain
speed, needed for the frictional force to saturate. The tyre stiffness has to be
translated to the one-track model. C is calculated by applying the caster
equation (2.6) on the cornering stiffness, to get the modified tyre stiffness
C7s, which is then multiplied by 2 to get the corresponding value for the one
track model, i.e. Cy = 2-C7;. For the rear axle, a multiplication by 2 is
enough, since there is no caster, i.e. C, =2 - C,.

The actuator dynamics can be modelled with a second order differential
equation.

.. 1 R
5f = T_}% <U1 — Dfo(Sf — (5f) (2.27&)
.. 1 .
=1 <u2 ~D.T,5, — 5T> (2.27b)

T is the time constant and D the damping ratio. The actuators will be added
externally, and will not be included in the state space representation.

And finally, by adding up everything, a fourth order state space repre-
sentation is obtained

& = Az + Bu (2.28)
y=Cz+ Du (2.29)
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with
1 0 0 —r
Lyt -
A=| o (-0 wicp a0 (2.30)
7122
a (C’T Tvlfm) a-C. 0 —a
0 0
0 0 1000 0 0
B=1a.c, o C‘<0100) D‘(o 0) (2:31)
0 a-C,

The transfer function of the state space model is

Gls) = D+C(sT— A)' B = ( z;g 528 ) (2.32)

2.3 Model Parameters

The experimental vehicle used is an S-class, and is called Techno Shuttle
w220. 1t has front and rear wheel electro-hydraulic steering, active suspension
and 4 electrohydraulic brakes. The parameters and constraints needed for
the design and in the simulation are given by table 2.2.

With the parameters from table 2.2, and a speed of v, = 14 m/s, the
transfer function of the model is

358.9744(s2+7.6925+293) —512.8205(s2+7.6925+205.1)
G — ( (5249.3545+216.8)(s2+6.0351296.6)  (52+9.3545+216.8) (52 +6.035+296.6) ) (2.33)
358.9744(s+3.506) —293.0403(s2+9.4425+223.7) :
(5249.3545+216.8)(s2+6.0351296.6)  (52+9.3545+216.8) (52 +6.035+296.6)
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Table 2.2: Parameters and constraints of the car model

Parameter | Unit Remarks w220

Cy [N/rad] | Front tyre stiffness 144000

C, [N/rad] | Rear tyre stiffness 283000

Cr [N/rad] | Elasticity constant 10000

ns [m] Lateral front wheel caster | 0.055

gy [rad| Front wheel steering angle | [—40°,40°]

Oy [rad| Rear wheel steering angle [—5°, 5°]

oy [rad/s] | Front wheel steering angu- | [-800°/s,800°/s]
lar velocity

o, [rad/s] | Rear wheel steering angular | [—88°/s, 88°/s]
velocity

I.. [kg - m?] | Mass moment of inertia 5000

m [kg] Vehicle mass 2364

ls [m] Distance between the center | 1.673
of mass and the front axis

L [m] Distance between the center | 1.412
of mass and the rear axis

L [m] Distance between the front | 3.085

and the rear axis
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3 Control Strategies and Specifications

3.1 Specifications

When discussing the specifications, there are four main concepts that have
to be mentioned

e Model matching. From the modelled vehicle dynamics, mentioned in
the introduction, the achievement of some particular driving dynamics
is desired. The reference signals are the only interface to the unknown
model and a good tracking of these references is desired. With this as
a starting point, the objective is to make the plant behave just like the
model, and in that way obtain the desired driving dynamics. To achieve
this, a plant inverse can be calculated to generate the steering angles
corresponding to the particular reference values. In the ideal situation,
i.e. if the plant transfer function is perfectly known, the problem would
be solved; the output would always be equal to the reference. But cal-
culating the inverse is not a trivial matter, not only because of plant
uncertainties. If the plant transfer function has unstable zero dynam-
ics and time delays, giving it non-minimum phase characteristics, the
inverse would become unstable. This shows the difficulties of obtaining
a good inverse. However, an approximate inverse provides a steering
angle reference trajectory, and feedback can be used to stabilise around
this nominal trajectory.

o Robustness to system uncertainties. To handle uncertainties of the real
plant, a feedback has to be used to handle small excitations of the actual
trajectory from the reference trajectory given by the inverse above.

e Disturbance rejection. Uneven road surface, wind disturbances and
inclination of the road are examples of disturbances that can appear
and that have to be taken care of by the feedback.

o System integrity. The system has to be stable in all situations. This
means that even if one actuator fails, the remaining active controller
should be able to keep the system in stability. In this particular case,
the specification is restricted to comprise only rear actuator failure.
With a front actuator failure, and the hard constraints on the rear
wheel steering angle, a stabilisation would be very hard to achieve.
Other factors that might put system integrity to the test, and brake
the feedback loop, could be sensor failure or hitting steering angle con-
straints.
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The closed loop system should have low pass characteristics. It must have
a specified closed loop bandwidth (or open loop crossover frequency, which
is almost equivalent), and large enough phase and gain margin to guarantee
stability. A high roll-off is needed to achieve good noise reduction, to protect
the actuators and to handle high frequency uncertainties. Furthermore, the
design has to be resistant to a certain time delay. This will, depending on
the magnitude of the time delay, introduce a reduction in the phase margin
of the open loop system. Thus, the damping will decrease, and perhaps the
stability will be put at risk as well. Because of this, it is of huge importance
to design the controllers such that the system has enough phase margin and
in that way guarantee the system stability. The open loop specifications are
given in table 3.1.

Table 3.1: Specifications
bandwidth | 3 Hz = 18.8 rad/s
damping 0.5
time delay 20 ms = 0.020 s
settling time | max. 0.5 s

The specified time delay will give a reduction in phase margin (A¢) by
0.020 s - 18.8 rad/s = 0.376 rad = 21 degrees at the crossover frequency. A
damping (D) of 0.5 is equivalent to a phase margin of 51 degrees, according
to table 3.2 [Burmeister|. By taking the time delay into account, the speci-
fication of the phase margin has to be changed from the original 51 degrees
to 72 degrees.

Table 3.2: Connection between damping and phase shift
D [Joo 02 03 04 05 06 07 08 09

Ag || 11.4° 22.6° 33.3° 43.1° 51.8° 59.2° 65.2° 69.9° 73.5°

3.2 The Feedforward

Although feedforward is the topic of this section, a more general description
has to be made, involving both feedforward and feedback. Some ideas will
be given on how feedforward can be combined with feedback. The feedback,
however, will be described more in detail in section 3.3 and in chapter 4.
Attaining a desired system response as specified by a system transfer
function 7'(s), and simultaneously achieving sufficient feedback to handle
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uncertainties and disturbances acting on the plant, requires a configuration
with at least two degrees of freedom. The general design paradigm employed
here will be the so called two degree of freedom design. With a reference
trajectory generator, for example the human driver, as the starting point,
the objective is to obtain a good trajectory following. From the reference
trajectory, a nominal state space and plant input trajectory is generated using
a full nonlinear plant description. This reference tracking is the first degree
of freedom. The second degree of freedom uses linear theory to deal with
disturbance rejection, stabilisation and robustness to system uncertainties.
In this way the problem is divided into one feedforward tracking and one
feedback stabilisation part. Experiments and simulations have shown that
stabilisation around a nominal trajectory allows a more aggressive response
for nonlinear systems [Nieuwstadt]. The system can be divided in two parts,
one linear and one nonlinear. Eventually they will be combined to obtain
the paradigm described above.

3.2.1 Linear system

Several different structures can be used to describe the two degree of freedom
configuration. The structure used here is shown in fig 3.1. The significant
feature of any such structure is that the system transfer function 7" and the
system sensitivity function S can be independently realised. They fix the
values of Ky and K;. With

Ty(s) = (I + G(s)Ki(s))) " G(s) K (s) (3.1)

as the closed loop transfer function of the feedback loop and K5 as the feed-
forward precompensation, the system equation can be written as

o) Kale) =700 = (1200 1240 ) (32)

ta1(s) taa(s)
and the sensitivity function
S(s) = (1 + G(s) K (5)) ™ (3.3)

The feedforward pre-compensation is used to compensate for the dynam-
ics in the feedback loop. Even though a coupling design is used for the
feedback (as will be seen in chapter 4), a significant degree of decoupling is
desired for the system transfer function 7T'. If, for example, a yaw rate and
a side slip angle reference is used, it would make sense if the outputs do not
contain any significant cross-coupling with the references; The yaw rate out-
put should not depend on the side slip angle reference, and vice versa. The
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v

LK K, - G

Figure 3.1: The two-degree-of-freedom structure.

feedforward compensator can be designed in such a way, that a decoupling
is obtained. A K, that decouples the system would look as follows:

Ka(s) = Ti(s)"" - ( Y ) (3.4)

However, a pre-compensator like this might be difficult to implement. If it
contains pure derivatives, it would have to be approximated, and the real
values of K; and GG might differ from the values used in the calculations. In
the steady state, a pre-compensator is easily obtained. The system steady
state equation would be

T = Ty(0) - K»(0) = ( oY > (3.5)

and a steady state pre-compensator can be calculated. It would give a correct
tracking, at least for low frequencies.

3.2.2 Nonlinear system

For a nonlinear system, a controller is used to stabilise around a nominal
trajectory. The trajectory is generated from some realisable inverse of the
vehicle model using model matching, and is independent of the controller. It
generates a feedforward control signal used as input to the plant. Further-
more, it has to provide information about the states, which is needed in the
feedback. Figure 3.2 illustrates the feedforward.

The most likely approach would be a steady state feedforward inverse.
By calculating the dc-gain of the system matrix, |Gyenice(0)], and inverting
it, an inverse will be obtained that is at least a good approximation in the
steady state. This is a sufficient solution only if the gain of the plant is more
or less constant in the range of the specified bandwidth.

A more general inverse would require minimum phase properties of the
plant transfer function. This would make an inverse hard to realise. Instead,
a common way of doing it is using a feedback loop and a high gain controller,
according to figure 3.3.
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Figure 3.2: Control using feedforward and feedback.

Model

High Gain "
Controller
H vehicle

Figure 3.3: Feedback loop with high gain controller used to generate the
system inverse, giving U, ...

3.2.3 Combining the nonlinear feedforward and the linear feed-

back

Uref

Cy

K,

K,

v

Figure 3.4: Two-degree-of-freedom design combining the nonlinear and the

linear system.
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A combination of the linear and the nonlinear approach can be done
according to figure 3.4 and the problem will be investigated in a linear setting.
The feedback loop is used for stabilisation around the nominal trajectory and
the input-output relationship that describes the tracking performance would
look according to equation (3.6).

Y =T Yy = (I +GK)) " (GK Ky + GCfy) Yyes (3.6)

1

With some kind of inverse, C'yy = G™1, as the starting point, the transfer

function would be

T=(I+GK)" <GK1K2 v GGH) — (I +GK) " (GK. K>+ G1) (3.7)

where G; = GG™! has low pass characteristics and is some kind of ”approxi-
mate” unit matrix. The second factor is the sensitivity function with low gain
for low frequencies. This would give a transfer function for low frequencies
according to

Tiowreq = (I + GK,) "' GK K, (3.8)

and allowing a shaping of the feedforward K5 to obtain the desired closed
loop characteristics for low frequencies. If the whole frequency spectrum is
considered, and the feedforward is set to Ky = G, the transfer function from
reference to output would be

Y = (I +GK) " (GEK\Gy + G1) Yyer = Gy - Yyog (3.9)

This would result in a considerable amount of decoupling (recall that G is
close to an unit matrix), and give the system low pass characteristics.

3.3 The Feedback

There are different theories and approaches regarding control of the yaw rate
and side slip angle of a car. Here are some of them:

e Decoupling by inverting the system equation and using PD-control (ENT-
controller). The integral part in the controller is replaced by a distur-
bance observer.

o Decoupling with constraints on the side slip angle. Switching between
ENT- and SM2-controller.

e [ndependent control of front and rear azle (SM2/BSR). Yaw rate con-
trol with the front axle and side slip angle control with the rear axle.



3 CONTROL STRATEGIES AND SPECIFICATIONS 20

e Decoupling through coordinate transformation. Generalisation of the
first approach.

e Control without using the side slip angle (OBETA ).

o Coupling by Individual Channel Design. The design used in this work.
Made in the frequency domain, and not in the time domain as the
previous ones. Described in chapter 4.

In previous work, decoupled controllers are used, where system integrity
cannot be guaranteed. Furthermore, the difficulties of accommodating time
delays and unstructured uncertainties when doing state space design are ex-
tensive and have to be mentioned.

The feedback design will be based on the bicycle model from chapter 2.2.
Nothing says that this model is a close representation of a real car, mainly
because of the nonlinear tyre forces that appear when driving a real car,
and which are not considered in the model. But in the linear region and for
small signals the bicycle one track model should be sufficient. The nonlinear
differential system equation is # = f(x,u) and a linearisation can be done in
two ways:

1. Around an equilibrium point, xg, ug, that satisfies f(xg,uo) =0, or

2. Around a nominal reference trajectory, z,.s, u,.r, that satisfies

f(’rT‘efa U/T‘ef) = :tref (310)
In this particular case, this is a more suitable approach.

Some deviations in the behaviour of the model compared to a real car
can be accepted, on condition that the feedback is designed in such a way
that these uncertainties are suppressed.

There also exist constraints on the steering angles, giving nonlinear actu-
ator dynamics. The front actuator is limited to 40 degrees and the rear to 5
degrees. If one of them saturates, and an integrator is used in the controller,
the resulting windup will cause large overshoots or even make the system
unstable. This is something that has to be taken into consideration when
making the design, by constructing an appropriate anti-windup. It is done
according to [Astrom], and will not be presented here.

Further, the lightly damped closed loop channel poles change with speed.
This implies that the feedback design has to be done for different speeds such
that the specifications are fulfilled for different driving situations.
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4 Coupled Feedback Design with Diagonal Con-
troller - Individual Channel Design

To guarantee the global stability of a car with front wheel steering, or, in
other words, preventing it from losing traction, the side slip angle must be
kept under control and under a certain threshold. If it exceeds the critical
value, the yaw rate control has to be switched to a pure side slip angle control.
Simultaneous control of both quantities is impossible with only front wheel
steering. If, instead, a vehicle with both front and rear wheel steering is
used, control of both quantities, i.e. the side slip angle and the yaw rate, is
enabled.

Individual Channel Design (ICD) will be used for the two-variable feed-
back design in the frequency domain. It is an application-oriented design,
and it starts from the premise that feedback design is interactive; it involves
an interplay between specifications, uncertain plant characteristics, and the
multivariable feedback design process itself. Each of these will be present in
this work, at one point or another.

4.1 Theory

The control approach that is used today is based on decoupled yaw rate and
side slip angle controllers, or compensators. This means that one compen-
sator, with front wheel steering angle as control signal, is used for controlling
the yaw rate, and another one, with rear wheel steering angle as control sig-
nal, controls the side slip angle. The two compensators are designed, in the
time domain, independently of one another, and the mutual interaction is
not considered. Figure 4.1 shows the entire system and it can be seen that
the yaw rate not only depends on the yaw reference input but also on the
side slip angle and vice versa.
This allows us to define a transfer matrix of the plant

gu(s) giz(s) )
G(s) = 4.1
(s) ( g21(s)  g22(s) (4.1)
according to equation (2.32), with the reference input and resulting output
()G (2)-(8)
R = = Y = = 4.2
( T2 ) ( ﬁr,ref Y2 ﬁr ( )

And the multivariable controller, consisting of two single compensators k;
(1=1,2), can be described by a diagonal matrix

K(s) = ( kl((]s) k;gs) ) (4.3)
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k1 —» Oi >

—» O

——» Uy
I U, Y,
kz > O >

Figure 4.1: The Complete System

This results in a multivariable feedback loop where an input u; and a
reference r; can be assigned to each output y; (i=1,2) from the process. Each
compensator k; uses the output information y; and the reference value r; to
give the control signal u;. Under these assumptions one can, without any
loss of information, split this double-input double-output control loop into
two single-input single-output (SISO) loops, each consisting of a channel, C;.

For a multivariable system we have, in matrix form, the expression for
the feedback loop

C1(s) gi2(s) _ha(s)
Y= (- GR) GRR=TiR = B0, M0 )R

g21(s)
gll(s) 1+CQ(S) 1+CQ(S)
where
Ci(s) = ki(s)gii(s) (L = v(s)h;(s)) (4.5)
is the open loop SISO transfer function of the channel,
5y = 912(5)g2(s) (4.6)
911(5)g22(s)

is the complex-frequency multivariable structure function and describes the



4 FEEDBACK - INDIVIDUAL CHANNEL DESIGN 23

internal coupling of the plant, and

_ ki(8)gy5(s)
hi(s) =7 + kj(s)gsi(s) *.7)

describes the impact of the compensator k; on the i:th (i # j) control loop.
The result above gives us the structure according to fig 4.2. In this way the

I - Yi
k1 L’ gllcl‘_yhz) >

Sap,
O

%

921
o n
Ou

— k2 ——> 0, (1-Vh,) >

Figure 4.2: The Two Channels

multivariable control problem decomposes into two single variable channels,
each enclosed within a feedback loop with a compensator that must be de-
signed to meet the unique channel specifications. Each channel C; is subject
to the disturbance d; (i = 1,2) and the behaviour will be affected not only
by the compensator of the channel itself, but also on the behaviour of the
other channel C; (j # 4); when the magnitude of the structure function ~(s)
is much less than one the loop signal interaction is low, otherwise, loop signal
interaction is high.
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The pole-zero structure of the two channels, assuming that no pole-zero
cancellations occur within 7(s), is shown in table 4.1. In equation (4.6) it
can be observed that the poles of g5 and go; and the zeros of gi; and gao
are the poles of y(s). However, the zeros of hy in equation (4.7) include
the zeros of gsy but not g;1, which in that case are poles of (1 — vhy), and
will cancel out the zeros of g1 in front of the bracket. Hence, the zeros of
g11 (1 — vhy) are the zeros of (1 — hy) and the poles of g1; (1 — vhy) are the
poles of g11, g12, go1 and hy. The pole zero structure of C5 is similar.

Table 4.1: Open-loop channel poles and zeros

Zeros Poles

Channel C; Zeros of (1 —~vhy) Poles of ¢11, g12, g21, ho
Channel Cy Zeros of (1 —~hy) Poles of ga9, g12, g21, A1

Individual Channel Design on the original double-input double-output
cross-coupled multivariable system is valid irrespective of the degree of cross-
coupling. This extension is shown in [Leithead, O’Reilly].

4.2 Adding Actuators

Second order actuators from equations (2.27a) and (2.27b) are used, with
the transfer functions

I B 1
front = 1+ DfoS + T?S2
1
Hrear =
1+ D, Tys + T} s?

(4.8)

(4.9)

and time constant and damping according to table 4.2. The transfer func-
tion of the front actuator (equation (4.8)) is multiplied by g11(s) and go1($)
and, similarly, the transfer function of the rear actuator (equation (4.9)) is
multiplied by ge2(s) and g12(s). See figure 4.3.

The entire system would be

Hrontgi1 Hreargi2
G — front rear 110
e ( HfrontQQl Hrearg22 ( )
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Table 4.2: Actuator parameters.

Time constant 7' (s) Damping D (s)

Front actuator 0.012 0.612
Rear actuator 0.0072 0.612
U, Y1
—» Front actuator —» 911 >
—» O
> ’ ng
U, Y,
—» Rear actuator —p g22 >

Figure 4.3: The connection between the plant and the actuators

4.3 The Main Advantages and Disadvantages

As mentioned in the introduction, the control system has to be robust to
plant uncertainties, and a failure of one actuator must not destabilise the
system. The actuators are connected to the plant according to figure 4.3. It
should be recalled that the open loop transmittance C} is the transmittance
between r; and y;, with the feedback loop from plant output 1 to control
input 1 open, but with the other feedback loop closed. And likewise for
channel 2. Hence, a failure of one actuator means that the feedback loop
of the channel C;, which the actuator concerned belongs to, is broken. The
subsystem transfer function in question, h;, can be set equal to zero. The
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other channel will, consequently, have a rather simple structure:

Cji(s) = kj(s)gji(s) (i #J) (4.11)

and it is of great importance to make sure that the remaining active com-
pensator, kj;, can stabilise the system. The performance, and in particular
the stability, of the closed loop system under a failure of one of the feedback
loops may thus be determined directly from inspection of the poles of the
corresponding open loop channel transmittance. In other words, system in-
tegrity after feedback loop failure is guaranteed provided the following two
conditions are satisfied:

1. all the individual plant transfer functions g;;(s) (4,5 = 1, 2), are stable;
2. the subsystem transfer functions h,(s) (i = 1,2), are stable.

With the decoupled system, this would not be self-evident.

When designing the controller for a plant, one of the primary requirements
is robustness; that is, to ensure that the resulting closed loop performance
is not badly degraded by plant uncertainty. This is done by designing con-
trollers such that sufficiently large phase and gain margins are obtained to
guarantee satisfactory closed loop performance even in the presence of plant
uncertainties. But, this is only valid in the SISO case. For a double-input
double-output system, enough phase and gain margins are not sufficient for
robustness to plant uncertainties. There are two reasons for that: excessive
phase/structural sensitivity to plant parameter uncertainty at frequencies
at/below the channel crossover frequency. This leads to the following addi-
tional requirement [Leithead,O'Reilly]:

e For robustness of the closed loop system stability to general plant pa-
rameter uncertainty, it is necessary that the Nyquist plots of the multi-
variable structure functions vh;(s) (i = 1,2) do not go close to the point
(1,0) at frequencies near or less than the channel crossover frequencies.

In the requirement above, large plant uncertainty is implicitly assumed.
When the plant is well known, single-loop control can be used with the
decoupled system.

The feedback design is carried out in the frequency domain. The conver-
sion from state space representation to transfer function means that infor-
mation about the internal structure of the plant is lost. Furthermore, the
design is restricted to the linear region.
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4.4

The Design Procedure

Because of the mutual dependency between the channels, the design of this
two individual channel system is done by iteration, one channel at a time,
until the specifications are met for both channels.

For each design step, the root-locus plot and the bode diagram of the
closed loop channel have to be studied and necessary modifications have to
be made to the compensator. After that is done, the step response should
behave satisfactory, with enough damping, short rise time and settling time.

The design paradigms used are as follows:

Poles to increase the roll-off at high frequencies. These poles are usually
introduced at frequencies of 4 times the crossover frequency or higher

(4-18.8 rad/s).

Complez zero pair to cancel out lightly damped complex poles. The plant
has one lightly damped complex pole pair. A complex zero pair has to
be put such that a satisfactory cancellation occurs. It should be kept in
mind that the position of the pole pair can never be perfectly known,
and only an approximate cancellation can be obtained.

Integrator pole at the origin to eliminate the steady state error.

Correct the control gain such that the specifications for the bandwidth
are met.

Scheduling of the controller gain and the complex zero pair with respect
to speed. The pole-zero position of the two channel transfer functions is
speed dependant. This requires scheduling of the compensators, such
that correct bandwidth and pole cancellation is obtained for all speeds.
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5 Feedback Design - Results

The second order actuators have high frequency poles with low damping.
Just cancelling the actuators poles by zeros would be unrealistic since the
lightly damped poles move with changing actuator parameters. Instead, an
approach with no actuator cancellation can be used (according to section
4.4):

Ki(s—2z)(s—27)

b= s (s + 80) (5.1)
Ky (s —2)(s—25)
ho = s (s + 80) (5:2)

The dominant pole structure of the plant looks according to figure 5.1.
After a few iterations, by placing the compensator complex zero right on the

Poles as speed changes from 5 to 30 m/s
20

" vx=5m/s

15k /

vx=5m/s
10r-

vx=30m/s

vx=30m/s

Im
=)
T

5+

-20
-18 -16 -14 -12 -10 -8 -6 -4 -2
Re

Figure 5.1: Poles of the plant as a function of speed

lightly damped complex pole of the plant and adjusting the gain to get the
specified bandwidth, the zero-gain structure in table 5.1 and the root-locus
plots and bode diagrams in figures 5.2 to 5.5, are obtained. The speed is
v, = 14m/s.

The phase margins and cross-over frequencies are shown in table 5.2.

In the bode plot of the first channel (figure 5.3), a plateau around the
frequencies of the controller complex zero (15 rad/s) can be observed. The



5 FEEDBACK DESIGN - RESULTS 29

Root Locus Editor (C)
T

0.64 0.5 0.38 0.28 0.17 0.08
T \-\’_/i/i
60 5 60 i
40 40 .
20 .20 B
E:
o 0 .- . .
2
. <2
-20 20 -
-40 40 ]
-80 R id 4
0.64 0.5 0.38 0.28 0.17 0.08 ;
L L L L 1 L L L
-80 -70 -60 -50 -40 -30 -20 -10 0
Real Axis

Figure 5.2: Channel 1 closed after 2 iterations. Compensators k; and ko,
v, = 14m/s. Second order actuator.

Bode Diagram
Gm = 7.4195 dB (at 66.44 rad/sec), Pm = 83.843 deg (at 18.3 rad/sec)
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Figure 5.3: Bode plot of channel 1 with compensators k; and ko after 2
iterations.
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Figure 5.4: Channel 2 closed after 2 iterations. Compensators ki and ko,
v, = 14m/s. Second order actuator.

Bode Diagram
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Figure 5.5: Bode plot of channel 2 with compensators k; and ko after 2
iterations.
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Step Response
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Figure 5.6: Step response of C, after 2 iterations. Compensators k; and ko,
v, = 14m/s. Second order actuator.
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Figure 5.7: Step response of (5, after 2 iterations. Compensators k; and ko,
v, = 14m/s. Second order actuator.
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Impulse Response
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Figure 5.8: Impulse response of (', after 2 iterations. Compensators k; and
ks, v, = 14m/s. Second order actuator.
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Figure 5.9: Impulse response of Cy, after 2 iterations. Compensators k; and
ko, v, = 14m/s. Second order actuator.
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Table 5.1: Gain, and complex zero pair, of the two compensators with second
order actuator and v, = 14.

Gain K; (i=1,2) Zero z; (i=1,2)

Channel C7 2.4692 —5.1780 + 14.1772:
Channel ¢, -5.8253 —5.1780 + 14.1772:

Table 5.2: Phase margin and crossover frequency of both channels, with
second order actuator and v, = 14.

Phase margin, A¢ Cross-over frequency (rad/s)

Channel C; 84° 18.3
Channel Cy 85° 17.9

gain there is only 1.07 (0.6dB), which might aggravate the closed loop per-
formance in terms of noise rejection around those frequencies. Furthermore,
the slightest uncertainty in compensator gain might change the crossover fre-
quency and phase margin significantly. The gain margin of the first channel
is also very low. This gives, as can be seen in figure 5.6, lightly damped
modes in the step response, caused by bad damping of the actuator poles.
If the specifications are relaxed for the first channel, by allowing a lower
bandwidth, this problem can be solved with a modified first compensator.
There will be a loss in performance, but in this case a tradeoff has to be done
between entirely meeting the specifications and having a high performance.
The resulting zero-gain structure, root-locus plot and bode diagram of the
two channels, after two iterations, are shown in table 5.3 and figures 5.10 to
5.13. The decreased performance of channel 1 compared to channel 2 can
be seen in the step and impulse responses in figures 5.14 to 5.17. Table 5.4
shows the phase margins and crossover frequencies. The closed loop gain for
frequencies within the bandwidth has to be close to 1 for both channels. This
is illustrated in figures 5.18 and 5.19.

Many different solutions for design have been tried out, and the function-
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Figure 5.10: Channel 1 closed after 2 iterations. Modified compensators k
and ko, v, = 14m/s. Second order actuator.

Bode Diagram
Gm =19.76 dB (at 66.44 rad/sec), Pm = 75.823 deg (at 4.9815 rad/sec)
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Figure 5.11: Bode plot of channel 1 with modified compensators k; and ko
after 2 iterations. The crossover frequency is decreased to 5 rad/s.
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Figure 5.12: Channel 2 closed after 2 iterations. Modified compensators ky
and ko, v, = 14m/s. Second order actuator.

Bode Diagram
Gm = 15.305 dB (at 96.528 rad/sec), Pm = 71.697 deg (at 18.06 rad/sec)
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Figure 5.13: Bode plot of channel 2 with modified compensators k; and ko
after 2 iterations.
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Amplitude

Figure 5.14: Step response of C, after 2 iterations.
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Figure 5.15: Step response of Cy, after 2 iterations.
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Figure 5.16: Impulse response of C1, after 2 iterations. Modified compen-
sators ky and ko, v, = 14m/s. Second order actuator.
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Figure 5.17: Impulse response of Cs, after 2 iterations. Modified compen-
sators ky and ko, v, = 14m/s. Second order actuator.
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Bode Diagram
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Figure 5.18: Bode plot of first loop closed with modified compensators k;
and ky after 2 iterations.
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Figure 5.19: Bode plot of second loop closed with modified compensators k;
and ky after 2 iterations.
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Table 5.3: Gain, and complex zero pair, of the two compensators with second
order actuator and v, = 14.

Gain K; (i=1,2) Zero z; (i=1,2)

Channel C; 0.5964 —5.1780 + 14.1772:
Channel ¢, -5.8253 —5.1780 + 14.1772:

Table 5.4: Phase margin and crossover frequency of both channels, with
second order actuator and v, = 14. Modified compensators.

Phase margin, A¢ Cross-over frequency (rad/s)

Channel C; 76° 4.98
Channel Cy, 72° 18.1

ality is shown to be very sensitive to changes in tyre parameters. A notch
filter can be used with the first compensator to get rid of the plateau, and a
higher bandwidth might then be allowed. An additional complex pole pair,
in addition to the complex zero pair already used, has been tried out. This
would pull the lightly damped complex pole pair towards the left in the com-
plex plane and increase the damping of that pole. However, the open loop
phase margin would decrease significantly, with a resulting loss in robustness,
which has been proved in simulations.

5.1 Controller Scheduling

The design in the previous section was made with speed 14 m/s, by placing
a zero right on the most lightly damped pole of the open system. But, the
system must have the same closed loop characteristics for all speeds that can
be reached with normal driving. The bandwidth has to be maintained and
phase margin has to remain above the specified value. Too low speeds do
not cause any need for feedback, and the interesting speeds in this case are
from 5 m/s to 30 m/s. Figure 5.20 shows how the most lightly damped pole
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varies with longitudinal speed.

Lightly damped pole as speed changes from 5 to 30 m/s
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Figure 5.20: Most lightly damped open loop pole as a function of speed

This implies that the compensators have to be adapted continuously with
respect to speed. First, the complex zero pair must be placed on the lightly
damped pole, according to figure 5.20. Then, a gain scheduling has to be done
to obtain the specified crossover frequency (5 rad/s for channel 1 and 18 rad
/s for channel 2). The transfer function of the first channel, C, is calculated.
Since the bandwidth of channel 1 is small in comparison to channel 2, the
transfer function hy can be set to 1, and '} can easily be calculated. Now,
the gain at the desired crossover frequency, i.e. 5 rad/s, is evaluated, and
inverted, which will give the correct gain of the first compensator. Once this
compensator is determined, h; and C5 can easily be calculated. The gain
at 18 rad/s is evaluated, and an inversion will give the gain of the second
compensator. How the scheduling is carried out in practice is shown in the
appendix.

Figures 5.21 to 5.36 show the root locus plots, bode plots, step and im-
pulse responses, for both channels, and for speeds 10 m/s and 25 m/s, after
following the above mentioned scheduling procedure. In figure 5.37, the bode
plot of the first channel, with speeds between 5 m/s to 25 m/s, is illustrated.
For lower speeds, the roll-off around the frequencies of the controller zero is
considerably higher than for high speeds. Furthermore, a higher gain margin
is also observed for low speeds. This means that the system shows a much



5 FEEDBACK DESIGN - RESULTS 41

better noise rejection for low than for high speeds. On the other hand, the
phase margin decreases for lower speeds, as shown in table 5.5. This results
in lower damping and a more oscillatory behaviour, which is never an issue
for high speeds. For the second channel, the behaviour is rather similar for
all speeds (figure 5.38), and, above all, much faster than for the first channel,
mainly due to the higher gain giving a higher crossover frequency. In general,
the system seems to have a faster behaviour for low speeds, but also a larger
settling time, which can be seen in the closed loop step and impulse responses
in figures 5.39 to 5.42. The faster and more oscillatory characteristics for low
speeds can be explained by studying the root-locus plot of the first channel,
for a low and a high speed respectively, as in figures 5.21 and 5.29. For the
lower speed (10 m/s, fig. 5.21), a not completely out-cancelled pole with
damping 0.5 is present, while for the higher speed (25 m/s, fig. 5.29), the
damping is much greater, 0.8. The actuator pole is badly damped, but its
high frequency makes the impact on the channel negligible.

The specifications that were put up for phase margin, are, as can be
seen in table 5.5, precisely met. The specified step response and impulse
noise rejection settling time of 0.5 s, is, according to figures 5.39 to 5.42,
reached for both channels (the definition of settling time can be found in the
litterature). However, the settling time is much longer for channel 1.

Table 5.5: Phase margin of both channels, with second order actuator, and
for different speeds. Modified compensators.

25m/s 21 m/s 18 m/s 14 m/s 10 m/s 5 m/s

Channel ¢ 92.4° 85.1° 80.6° 75.8° 73.9° 76.5°
Channel Cy  79.7° 75.6° 73.7° 71.7° 71.4° 72.2°

5.2 System Integrity and Robustness

In this section, system integrity and robustness to plant uncertainties are
studied. We recall from section 4.3 that determining system integrity is done
by inspection of the poles of C'; and Cj.

1. Figure 5.1 shows that the plant transfer matrix has no right half plane
poles. These poles are equivalent to the poles of the individual plant
transfer functions g;;(s), i, j = 1,2 [Maciejowski.
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Figure 5.21: Channel 1 closed after 2 iterations. Modified compensators k;
and ko, v, = 10m/s. Second order actuator.

Bode Diagram
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Figure 5.22: Bode plot of channel 1 with modified compensators k; and ko
after 2 iterations. v, = 10m/s.
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Figure 5.23: Channel 2 closed after 2 iterations. Modified compensators k;

and ko, v, = 10m/s. Second order actuator.
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Figure 5.24: Bode plot of channel 2 with modified compensators k; and ko

after 2 iterations. v, = 10m/s.
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Figure 5.25: Step response of (1, after 2 iterations. Modified compensators

ki and ks, v, = 10m/s. Second order actuator.
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Figure 5.26: Step response of Cs, after 2 iterations. Modified compensators

ki and ks, v, = 10m/s. Second order actuator.
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Impulse Response
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Figure 5.27: Impulse response of C}, after 2 iterations.
sators ky and ko, v, = 10m/s. Second order actuator.
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Figure 5.28: Impulse response of Cs, after 2 iterations.

sators ky and ko, v, = 10m/s. Second order actuator.
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Figure 5.29: Channel 1 closed after 2 iterations. Modified compensators k

and ko, v, = 25m/s. Second order actuator.
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Figure 5.30: Bode plot of channel 1 with modified compensators k; and ko

after 2 iterations. v, = 25m/s.
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Figure 5.31: Channel 2 closed after 2 iterations. Modified compensators k;
and ko, v, = 25m/s. Second order actuator.
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Figure 5.32: Bode plot of channel 2 with modified compensators k; and ko
after 2 iterations. v, = 25m/s.
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Figure 5.33: Step response of (1, after 2 iterations. Modified compensators

ki and ks, v, = 25m/s. Second order actuator.
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Figure 5.34: Step response of Cs, after 2 iterations. Modified compensators

ki and ks, v, = 25m/s. Second order actuator.



5 FEEDBACK DESIGN - RESULTS 49
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Figure 5.35: Impulse response of C1, after 2 iterations. Modified compen-
sators ky and ko, v, = 25m/s. Second order actuator.
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Figure 5.36: Impulse response of Cs, after 2 iterations. Modified compen-
sators ky and ko, v, = 25m/s. Second order actuator.
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Figure 5.37: Bode plot of channel 1 for different speeds with modified com-

pensators ki and ko after 2 iterations.
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Figure 5.38: Bode plot of channel 2 for different speeds with modified com-

pensators ky and ks after 2 iterations.
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Figure 5.39: Step response of (', after 2 iterations, for different speeds.
Modified compensators k; and ky. Second order actuator.
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Figure 5.40: Step response of (s, after 2 iterations, for different speeds.
Modified compensators k; and ky. Second order actuator.
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Figure 5.41: Impulse response of C, after 2 iterations, for different speeds.
Modified compensators k; and ky. Second order actuator.
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Figure 5.42: Impulse response

of Cy, after 2 iterations, for different speeds.
Modified compensators k; and ky. Second order actuator.
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2. The bode plots of k1g11 and kogee, for speeds between 5 m/s and 25
m/s, are shown in figures 5.43 and 5.44. The phase margin is well above
—180°, which proves the stability of h; and hs.

Similarly, the requirements for robustness from section 4.3 are checked:
1. The phase margins from table 5.5 do not fall below the specified value.

2. Figures 5.45 and 5.46 show Nyquist plots of yh; and yhs, for frequencies
up to the crossover frequency. Neither of them goes close to the point

(1,0).
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Figure 5.43: Bode plot of channel 1, for different speeds, with modified com-
pensators ki and ko after 2 iterations. Second loop broken.
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Figure 5.44: Bode plot of channel 2, for different speeds, with modified com-

pensators ky and ks after 2 iterations. First loop broken.
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Nyquist Diagram
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Figure 5.45: Nyquist plot of vhy for frequencies up to 6 rad/s, and for in-
creasing speed from left to right. Modified compensators k; and ky. Second

order actuator.
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Figure 5.46: Nyquist plot of vhs for frequencies up to 20 rad/s, and for
increasing speed from left to right. Modified compensators k; and k. Second
order actuator.
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6 Simulation Results

In this section, small signal behaviour of the feedback control will be studied.
Simulations are carried out, first on the simple linear one-track model used
for the design, and later on a nonlinear and more realistic complete 4 wheel
steering vehicle model. Robustness and system integrity of the design will be
tested by applying a 20 ms time delay and breaking one of the control loops.
A small impulse disturbance will be used to check the disturbance rejection.

The model that is used for simulation has 4 wheel steering and all the
nonlinear dynamics present in a real vehicle. It is programmed in C, with an
interface to Matlab Simulink. Inputs to the model are front and rear wheel
steering angles, brake torque, surface parameters such as slope and friction
coefficients, and drive train torque. All outputs are measurable states. The
outputs are the lateral and longitudinal acceleration, rotational wheel speeds,
and the yaw rate. The lateral and longitudinal velocities, needed to calculate
the side slip angle, are observable states and are kept in a logged output. A
controller for longitudinal speed is needed to prevent the speed from dropping
while making a turning manoeuvre.

Figures 6.1 to 6.14 show simulations after using the control design and
scheduling from chapter 5. A lowpass filtered step reference of 0.1 rad/s
(5.7°/s) for yaw rate, and a small impulse disturbance 1 second after the
step, are used, beyond trying to keep the side slip angle as small as possible
(constant reference of 0 radians). From these figures, a decreasing peak of
the side slip angle, as the speed decreases, can be observed. Beyond that,
the observations from section 5.1 are confirmed; for low speeds, on the linear
model, there it a more oscillatory behaviour. This is not so evident on the
complete model, probably because of smaller gain or more damping.

6.1 Introducing Time Delay

The control system is designed with enough phase margin to handle a 20
ms time delay. But, its robustness has to be proved, and, even with plant
uncertainties, it has to behave in a satisfactory manner. This is shown in
figures 6.15 to 6.28. In general, the yaw rate step response has slightly more
overshoot than in the case without time delay. Similarly, the peak of the
side slip angle is larger than in the previous case. The jagged behaviour that
can be seen for high speed, in figure 6.15, can be compensated for by the
feedforward. Figures 6.29 and 6.30 show the simulations for speeds between
5 and 25 m/s.
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Figure 6.1: Simulation on model with second order actuator, v, = 25m/s.
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Figure 6.2: Simulation on model with second order actuator, v, = 25m/s.
Side slip angle £,.
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yaw rate vs. time
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Figure 6.4: Simulation on model with second order actuator, v,
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yaw rate vs. time
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Figure 6.5: Simulation on model with second order actuator, v, = 18m/s.
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Figure 6.6: Simulation on model with second order actuator, v, = 18m/s.
Side slip angle £,.
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yaw rate vs. time
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Figure 6.7: Simulation on model with second order actuator, v, = 14m/s.
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Figure 6.8: Simulation on model with second order actuator, v, = 14m/s.
Side slip angle £,.
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yaw rate vs. time
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Figure 6.9: Simulation on model with second order actuator, v, = 10m/s.
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Figure 6.10: Simulation on model with second order actuator, v, = 10m/s.
Side slip angle £,.
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Figure 6.11: Simulation on model with second order actuator, v, = 8m/s.

x107°
1

side slip angle vs. time

0.8

0.6

0.4

0.2

beta (rad)
o

— linear model
—— complete model

I
25
t(s)

4 45

Figure 6.12: Simulation on model with second order actuator,
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yaw rate vs. time
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Figure 6.13: Simulation on model with second order actuator, v, = 5m/s.
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Figure 6.14: Simulation on model with second order actuator, v, = 5m/s.
Side slip angle £,.



6 SIMULATION RESULTS

yaw rate vs. time. 20 ms delay.
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Figure 6.16: Simulation on model with second order actuator, v,
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yaw rate vs. time. 20 ms delay.
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Figure 6.17: Simulation on
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Figure 6.18: Simulation on model with second order actuator, v,
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yaw rate vs. time. 20 ms delay.
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Figure 6.19: Simulation on model with second order actuator, v, = 18m/s.
Time delay 20 ms.
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Figure 6.20: Simulation on model with second order actuator, v, = 18m/s.
Side slip angle (3.. Time delay 20 ms.
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yaw rate vs. time. 20 ms delay.
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Figure 6.21: Simulation on model with second order actuator, v, = 14m/s.
Time delay 20 ms.
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Figure 6.22: Simulation on model with second order actuator, v, = 14m/s.
Side slip angle (3.. Time delay 20 ms.
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yaw rate vs. time. 20 ms delay.
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Figure 6.23: Simulation on model with second order actuator, v,
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yaw rate vs. time. 20 ms delay.
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Figure 6.25: Simulation on model with second order actuator, v, = 8m/s.
Time delay 20 ms.
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Figure 6.26: Simulation on model with second order actuator, v, = 8m/s.
Side slip angle (3.. Time delay 20 ms.
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yaw rate vs. time. 20 ms delay.

0.12 T T T T T
— linear model

—— complete model
r\l\ — reference

psip (rad/s)

1
0 05 1 15 2 2.5 3 3.5 4 4.5 5
t(s)

Figure 6.27: Simulation on model with second order actuator, v, = 5m/s.
Time delay 20 ms.

X107 side slip angle vs. time. 20 ms delay.
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Figure 6.28: Simulation on model with second order actuator, v, = 5m/s.
Side slip angle (3.. Time delay 20 ms.
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yaw rate vs. time in simulation on complete model. 20 ms delay.
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Figure 6.29: Simulation on model with second order actuator, for different
speeds. Time delay 20 ms.

X107 side slip angle vs. time in simulation on complete model. 20 ms delay.
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Figure 6.30: Simulation on model with second order actuator, for different
speeds. Side slip angle 3,. Time delay 20 ms.
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6.2 Keeping the Time Delay and Breaking the Second
Loop

When one actuator fails, or, equivalently, when one of the loops is broken,
the system should remain stable. Of course, control of both yaw rate and
side slip angle, without using additional intervention such as, for example,
braking, is then impossible. Figures 6.31 to 6.36 show the yaw rate and side
slip angle when the rear actuator fails. In section 5.2 the performance of
the controllers under a failure of one of the feedback loops was investigated.
Despite a slight loss in phase margin, the performance of the loop in function
remains the same. The side slip angle control remains stable but reference
tracking is no longer possible. The steady state error after a couple of seconds
is caused by the impulse disturbance applied after 2 seconds, and the absence
of a closed loop integrator.
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yaw rate vs. time. 20 ms delay. Second loop broken.
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Figure 6.31: Simulation on model with second order actuator, v,

t(s)

Time delay 20 ms. Second loop broken.

x10°

side slip angle vs. time. 20 ms delay. Second loop broken.
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Figure 6.32: Simulation on model with second order actuator, v,

1
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Side slip angle (.. Time delay 20 ms. Second loop broken.
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= 25m/s.

= 25m/s.
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yaw rate vs. time. 20 ms delay. Second loop broken.
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Figure 6.33: Simulation on model with second order actuator, v,

t(s)

Time delay 20 ms. Second loop broken.
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side slip angle vs. time. 20 ms delay. Second loop broken.
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Figure 6.34: Simulation on model with second order actuator, v,

1
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Side slip angle (.. Time delay 20 ms. Second loop broken.
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yaw rate vs. time. 20 ms delay. Second loop broken.
0.12 T T T T T T T
— linear model

—— complete model
K — reference

psip (rad/s)

1
0 05 1 15 2 2.5 3 3.5 4 4.5 5
t(s)

Figure 6.35: Simulation on model with second order actuator, v, = 10m/s.
Time delay 20 ms. Second loop broken.

X107 side slip angle vs. time. 20 ms delay. Second loop broken.
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Figure 6.36: Simulation on model with second order actuator, v, = 10m/s.
Side slip angle (.. Time delay 20 ms. Second loop broken.
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7 Conclusions and Future Work

The main concept of this work has been the design of a diagonal feedback
controller for yaw rate and side slip angle, using front and rear wheel steer-
ing. With the today existing decoupled design, there are obvious difficulties
in obtaining a robust solution that can handle time delays as well as actu-
ator and sensor failures or constraint hitting. Instead, coupling based on
Indiwvidual Channel Design has been applied.

Of all approaches tested, the one presented in this report shows the best
ability of fulfilling the specifications. It has a rather easy structure and the
scheduling is quite straightforward. It can also easily be implemented as a
PID-controller.

System integrity, or the performance of the closed-loop system under a
failure of one of the feedback loops, has been studied. The theoretical re-
quirements have been tested, by studying the pole placement of the channels,
and by simulating on a car model.

Robustness to plant uncertainty is very important for the controller to
work on a real plant. It can to some extent be verified in theory. This
has been done by studying the structure function of the system, and by
simulating on the car model. A 20 ms time delay has also been used to
check the robustness. During the design it has been noticed that the plant
dynamics show great variations with changing tyre characteristics, such as,
for instance, the stiffness. This further increases the importance of having a
robust solution.

The physical environment is very uncertain. Changes in the road surface
and wind disturbances are always present. A rejection of those disturbances
is important. An integrator is used in the controller to avoid steady state
erTors.

The specified bandwidth and phase margin have been obtained with the
feedback design for the second channel. The first channel turned out to be
quite ill behaved, and the bandwidth specification had to be relaxed for the
first feedback loop. The lower bandwidth used will affect the performance
in terms of the step and impulse response rise time. Despite the slower
characteristics of the first loop, and the fact that the original specifications
could not be completely fulfilled, feedback can still be used for both front
and rear wheel steering.

A feedforward still remains to be designed. This can be done by using
the general ideas about feedforward (some are presented in section 3.2). The
feedforward used with the today existing feedback design, can possibly be
applied. Furthermore, it should be investigated whether a change of the
outputs would make design somewhat easier. The controllers also need to be
implemented, and finally tested in the experimental vehicle.
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A Matlab Commands

A.1 State Space Modelling

The linear car model that the controller design is based upon, is created with
the following commands:

LV=1.673;

LH=3.085-1.673;

L=LV+LH;

J=5000;

m=2364;

vx=14;

TV=0.03; %time constants of the first order actuators
TH=0.03;

a = vx/(0.03*vx+0.5); %initialisation transient

b = J/LV/m/vx;

CV = 144000; Ytyre stiffness
CH = 283000;
fg = 3; Jclosed loop bandwidth in Hz
wg=fg*2*pi;
A=[ 0, o, Lv/J, -LH/J, o, 0 H
1, 0, o, -L/LV/m/vx, O, 0 H
ax [-CV* (LV+J/LV/m) /vx, Ccv, -1, 0, Ccv, 0] H
ax[ CHx(LH-J/LV/m)/vx, CH, 0, -1, 0, CH] H
0, o, 0, 0, -1/Tv, 0 H
o, 0, o, 0, o, -1/TH H
1;
B = [0,0;0,0;0,0;0,0;1/TV,0;0,1/TH];
C = [1,0,0,0,0,0; 0,1,0,0,0,0];
D = zeros(2,2);

sys = ss(A,B,C,D); Ystate space representation of plant with linear first order actuators.

Gbig= tf(sys); %transfer function of sys.
PT1_front = tf(1,[TV,1,0]); %first order actuator
PT1_rear = t£(1,[TH,1,0]);
A1=[ 0, 0, Lv/J, -LH/J ;
1, 0, 0, -L/LV/m/vx ;
ax [-CV* (LV+J/LV/m) /vx, cv, -1, 0] ;
ax[ CHx(LH-J/LV/m)/vx, CH, o, -1] ;
1;
B1 = [0,0;0,0;a*CV,0;0,a*CH];
¢t = [1,0,0,0;0,1,0,0];
sysl= ss(A1,B1,C1,D); Ystate space representation of plant with no actuators.
G = tf(sysl);
Calt = [1,0,0,0;-J/LV/m/vx,1,0,0];
sysalt = ss(A1,B1,Calt,D); Y%plant with normal side slip angle (not rear axle) as output.
PT2_front = tf([1],[0.012°2,0.612%0.012,1]); %second order actuator
PT2_rear = t£([1],[0.0072°2,0.612*0.0072,1]);

G11 = G(1,1)*PT2_front; %second order actuator applied to the first channel.
G21 = G(2,1)*PT2_front;
G22 G(2,2)*PT2_rear; Ysecond order actuator applied to the second channel.
G12 = G(1,2)*PT2_rear;

minreal(G(1,2)*G(2,1)/G(1,1)/G(2,2)); Ystructure function of the plant.
tf(wg~2, [1,2*xwug,wg"2]); %low pass filter with bandwidth wg.

gamma
H20

G10 = minreal(G(1,1)*(1-gamma*xH20)) ;
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A.2 An Iteration Step

An iteration could look as follows:

h2 = channeltf (Comp2,G22) ;
plantl =  Gl1x(1l-gammaxh2);
figure

bode(plantl,minreal(plant1,0.05)) Y%cancelling close poles and zeros,

%and verifying that the open loop behaviour isn’t changed.
plantisimple=minreal(plant1,0.05)
plantisimple=dcgain(plantl)*plantisimple/dcgain(plantisimple) %applying minreal requires

%correcting the dcgain.

function h=channeltf (k,g)
h=minreal (k*g/(1+k*g));
end;

The compensator Comp1 will, together with planti, represent the first
channel. The root locus, open loop bode plot, closed loop step response
and impulse response of the channel are then studied and the compensator
modified to fit with the desired behaviour. This new compensator is then
used for the second channel:

hi = channeltf (Comp1,G1);
plant2 =  G22*(1l-gammaxhl);
figure

bode(plant2,minreal (plant2,0.08)) Y%cancelling close poles and zeros,

%and verifying that the open loop behaviour isn’t changed.
plant2simple=minreal(plant2,0.08)
plant2simple=dcgain(plant2)*plant2simple/dcgain(plant2simple) %applying minreal requires

%correcting the dcgain.

Now, similarly, the second compensator, Comp2, is modified, and plantl
is re-calculated, based on this new Comp2. This will give an updated first
channel, and the iteration step is finished. This has to be repeated, until
both channels get the desired behaviour.

A.3 Making a PID-controller
A.3.1 Converting into PID-parameters

The PID-controller can be re-written into the rational form, in which the
design is initially done, as follows:

T 1 Kp 1+s(Ty+T)+ 2T, (Tp + T
b= Kp (14 T L) _Ke Ihs i+ D) 4o (To + 1)
L+sT  sT; 17 s(1+sT)
2 g DT 1 (e
:KP(TD‘FT)‘ Ty (Tp+T) "~ Ti(Tp+T) _ (s — z;) (3 Zj)
r S+ o)
52 —2Ref{z;} + 22}
=K e kel (A1)

s(s+%)
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This would give the PID-parameters in terms of 7', the complex zero pair z;
and z7, and gain K:

TI:—%—T (A.2)
1 1

Tp = = - -7 A3

b 1}’ ZjZ; ( )
T

Kp=K———+ A4

p=Kp (A.4)

A.3.2 Scheduling with respect to speed

The controller zero is placed right on the lightly damped pole of the plant.
The complex zero calculation is done with the following function, where the
inputs are the car parameters and the current speed.

function z=makezero(LV,LH,m,J,CV,CH,vx)

L=LV+LH; a = vx/(0.03*%vx+0.5);

pss_f=—-CV*(LV+J/(LV*m)) /vx;

pss_r=CH*(LH-J/ (LV*m)) /vx;

Alpol=[ 1;
2%a;
a~2+a*xCH*L/ (LV*m*vx) - (a*pss_£f*LV/J) +a*pss_r*LH/J;
a”2*CH*L/ (LV*m*vx) - (a*CV*LV/J) - (a~2*pss_f*LV/J) +a~2*pss_r*LH/J+a*CH*LH/J;
-a"2*CV*LV/J-a"~2*CH*pss_f*L/ (LV*m*vx) *LV/J+a~2*CV*pss_r*L/ (LVxm*vx) *LV/J+a~2*CH*LH/J
]’; 'Ycharacteristic polynomial of the state matrix A.

poles=roots(Alpol); Y%poles of the plant.
place_of_pole=find(real(poles)==max(real(poles))); %finds the lightly damped pole.

z=poles(place_of_pole(1));
z=real(z)+abs(imag(z))*i; %returns the lightly damped pole with positive imaginary part.

The compensator gains, Ky and K5, are calculated as follows:

function [Gain_Compl,GainComp2] = makegain(LV,LH,m,J,CV,CH,vx)

L=LV+LH;
a = vx/(0.03*%vx+0.5);
A1=[ 0, 0, Lv/J, -LH/J;
1, 0, 0, -L/LV/m/vx;
a*x[-CV* (LV+J/LV/m) /vx, cv, -1, 0];
a*[ CHx(LH-J/LV/m)/vx, CH, 0, -1];

1
B1 = [0,0;0,0;a*CV,0;0,a*CH] ;
C1 [1,0,0,0;0,1,0,0];
D = zeros(2,2);
sysl = ss(A1,B1,C1,D);
G = tf(sysl); %system transfer function
G11 = G(1,1)*t£f([1],[0.01272,0.612%0.012,1]); %second order actuator applied to channel 1.
G22 = G(2,2)*tf([1],[0.007272,0.612%0.0072,1]); %second order actuator applied to channel 2.
gamma = minreal(G(1,2)*G(2,1)/G(1,1)/G(2,2));

zero = makezero(LV,LH,m,J,CV,CH,vx); %finds the complex zero for speed vx.
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Gain_Compl=abs(evalfr(zpk([zero zero’],[0 -80],1)*G1l1*(1-gamma),i*5))"-1;
%gain of first compensator.

Compl=zpk([zero zero’],[0 -80],Gain_Compl);

hi=channeltf (Compl,G11));

Gain_Comp2=-abs (evalfr(zpk([zero zero’],[0 -80],1)*G22*(1-gammaxhl,i*18))"-1;
%gain of second compensator.

Comp2=zpk([zero zero’],[0 -80],Gain_Comp2);

Since the gain K and zero z; are known, the PID-parameters can easily
be calculated using equations A.2, A.3 and A.4. During simulation, the
parameters are calculated frequently, for example at every sampling instant.

A.3.3 Discretising the controller

The controllers can be discretised in different ways. Euler’s method, back-
ward difference and Tustin’s approximation are some examples and are ex-
plained in [Astrém]. The assumption is that the continuous-time controller
is given as a transfer function. The discrete pulse-transfer function H(z) is
obtained by replacing the argument s in G(s) by s’, where s’ is a function of
the discrete z-variable and H(z) = G(s').

e Tustin’s approximation

T TRz (A.5)
e Backward difference L
s = = (A.6)
e Euler’s method
g=2"1 (A7)
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