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1. Introduction

In many physical systems, such as robots and vehicles, there are unmea-
sured environmental forces that can modify their expected behavior. As
examples of these environmental forces we can consider contact forces for
robot manipulators and wind and sea currents for marine vehicles. From
the control point of view, these environmental forces are extremely impor-
tant as they can decrease the control performance and even destabilize the
system. The estimation of these environmental forces is the purpose of this
Master’s thesis.

1.1 Problem Formulation

Consider a general dynamic system described by{
ẋ = f (t, x, u, F)
y = h(t, x, u, F) (1.1)

where u is the vector of known inputs, F is the vector of unknown inputs
(the environmental forces) and y is the measured output of the system.
Assuming that velocity measurements are not available, so that the vector
y is composed of position measurements only, we want to obtain an estimate
F̂ of the unknown input F.

This is a very general problem but we will concentrate on more specific
systems. As example of linear systems we will study the rigid body and a
damped rigid body. As examples of nonlinear systems, we will consider a
simplified model of a ship and a robot manipulator.

1.2 Force Sensing and Control

Force control is quite a new field and it is becoming more important every-
day. In the robotics case, there are many industrial applications in which
we may need to control the forces between the robot and its environment.
Consider for instance assembly operations or tasks that involve the interac-
tion of the robot with fragile objects. For an understanding of force sensors
and force control techniques see [13], [14], [12].The main objective of this
thesis is to develop a method to estimate these environmental forces, so
that they afterwards can be used for control purposes.

One of the first questions that we might think of is why don’t we use a
force sensor? Force sensors have drawbacks that make them not suitable
in some applications. For example:

• High prize;

• Not applicable where we would like the force measurement;

• High noise-to-signal ratio;

• Complexity;
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Figure 1.1 Force sensor used in the robot manipulator and noisy force signal

• Sensitive to temperature and environment changes;

• Not able to work in hazardous environments;

There are other situations in which force sensing may be not possible. For
example, in the case of ships, there exist no sensors to measure the sea
currents and its interaction with the ship dynamics, even though they can
have extremely importance in the control performance. In Figure 1.1, we
can see a picture of a force sensor attached to a robot manipulator and its
sensed signal.

1.3 Velocity Measurements and ‘‘Dirty
Derivatives’’

Another question that needs to be answered is why don’t we use veloc-
ity measurements? We have assumed that there are not velocity sensors
available but, is this a real situation? In most industrial robotic manip-
ulators there are not velocity sensors, but only position measurements.
However, velocity estimates are needed for control tasks. In these cases,
a common technique to obtain velocity estimates is simply to differenti-
ate position measurements. This is also known as dirty derivatives and
has some drawbacks that must be considered. Very insignificant noises in
position measurements can lead to completely distorted and dirty velocity
estimates. As a clear example of this problem we will see later in this thesis
how a slight nonlinearity in the resolvers of the robot system produced an
important distortion that needed to be compensated (see Fig. 1.2). More-
over, there are other situations in which velocity sensing is not trivial. In
the ship case consistent velocity measurements are very hard to obtain due
to the strong effect of sea currents. A different approach to obtain velocity
estimates is the use of observers.

1.4 Observers

In many applications where sensors are not available it is necessary to
estimate some unmeasured quantities of the system. An observer is an
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Figure 1.2 Position measurement and dirty velocity estimates by differentiation

algorithm that reconstruct the unmeasured internal states of a system
from the measured output. In the linear case the observer theory is well
investigated and the observability and detectability properties are closely
connected to the existence of observers with strong convergence properties.
However, in the nonlinear case, the existence of a solution is not assured.
The design of nonlinear observers is not straight forward and requires
the use of a wide number of techniques as for instance Lyapunov stability
theory or Passivity formalism.

Observers for Linear Systems
Consider the linear system {

ẋ = Ax + Bu

y = Cx
(1.2)

Under observability/detectability assumptions on the pair [A, C], an ob-
server for the system in (1.2) can be constructed as{

˙̂x = Ax̂ + Bu+ K(y − ŷ)
ŷ = Cx̂

(1.3)

where K(y− ŷ) is the linear output injection. If the gain matrix K is chosen
such that (A−KC) is Hurwitz, then the error dynamics are asymptotically
stable, that is limt→∞ x̂(t) = x(t).

Observers for Nonlinear Systems
This is a field in which there is still much to investigate. The design of non-
linear observers does not have a systematic solution, and we might have to
try different techniques before being successful. One approach to the prob-
lem makes use of the linearization of the system around a different number
of design points and uses a different linear observer in each region. With
this method we can use the well known techniques for linear systems but
on the other hand we will not be able to assure asymptotic stability any-
more, but only local stability around each of the design points. As we will
see when studying the ship dynamics, another drawback that arises with
the linearization approach is that as the number of linearization points
increases so does the quantitative complexity of the observer.
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We might look forward to obtain a more compact and usable observer
by increasing its qualitative complexity. Given a nonlinear system{

ẋ = f (x, u)
y = h(x, u) (1.4)

where the structure of f and h is assumed to be known. It is possible to
think of an observer copying the dynamics of (1.4) as{

˙̂x = f (x̂, u) + K(y − ŷ)
ŷ = h(x̂, u) (1.5)

In this case, in order to assure the stability of the observer error dynamics
we need to make use of Lyapunov stability analysis or Passivity. Despite
the fact it seems a quite simple problem there might be no solution to an
asymptotically stable observer. For a detailed study on nonlinear observers
and control see for example [4].

1.5 Lyapunov Stability Theory

This is one of the basic tools when dealing with nonlinear systems and it
will be widely used in the course of this thesis. In this section we will just
point out the basic theorem of Lyapunov Stability Theory. For a deeper
understanding and proofs see for example [22] or [23].

THEOREM 1.1
Let x = 0 be an equilibrium point for ẋ = f (x) and let V : D → R be a
continuously differentiable scalar function on a neighborhood D of x = 0
such that

V (0) = 0 and V (x) > 0 in D − {0} (1.6)
V̇(x) ≤ 0 in D (1.7)

then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (1.8)

then x = 0 is asymptotically stable in D.

1.6 Passivity Theory

Passivity theory is a very powerful branch of system theory that can give
many intuitive insights over the behavior and stability of physical systems.
We will mention some basic definitions that are going to be used in the
sequel. For a good overview over passivity and how it can be used for
control purposes see for example [24].
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1.6 Passivity Theory

DEFINITION 1.1—DISSIPATIVITY

Consider a dynamical system Σ with equal input and output dimensions

Σ :

{
ẋ = f (x, u), x ∈ Rn, u ∈ Rp

y = h(x, u), y ∈ Rp (1.9)

If there exist a function w(u, y), the supply rate, and a positive definite
function S(x) ≥ 0, the storage function, such that

S(x(t)) − S(x(0)) ≤
∫ t

0
w(u(τ ), y(τ ))dτ (1.10)

for all admissible inputs u and all t ≥ 0, then the system is called dissipa-
tive.

DEFINITION 1.1—PASSIVITY

A system Σ is said to be passive if it is dissipative with the supply rate
w(u, y) = uT y. The system (1.9) is passive if

uT y ≥ 0 (1.11)

9



2. Force Observer for Linear
Systems

2.1 Introduction

In this chapter we are going to introduce a force observer for linear sys-
tems. We will first study a general second order dynamic system and find a
solution to the force estimation problem. Then we will apply it to common
linear systems as a rigid-body and a damped rigid-body. Comments about
the behavior of the force estimation error will be given for each case.

Force estimation using H∞ sensitivity techniques has been studied by
Ohishi and his coworkers in [3]. Observer based force estimation has been
introduced by Hacksel and Salcudean in [1]. In this thesis we will con-
tinue this approach giving new results and extending it to the nonlinear
dynamics case.

2.2 System Model and Problem Formulation

Consider a second order linear system with an environmental force F as
an unknown input. We can write a state space representation as{

ẋ = Ax + B(u+ F)
y = Cx

(2.1)

where,

x =
(

x1

x2

)
, A =

(
a11 a12

a21 a22

)
, B =

(
0

b

)
, C =

(
1 0

)
We assume that only x1 is available to measure. The environmental force
F acts in the same way as u, that is only on x2. We want to obtain an
estimate F̂ of the environmental force.

2.3 General Solution

The main idea is to build an observer for the linear system in which the
environmental force is not considered. The mismatch between the observer
and the real system will produce structured estimation errors that will
make possible to deduce the environmental force.

A linear observer for the system in (2.1) in which the environmental
force has not been considered can be written as{

˙̂x = Ax̂ + Bu+ K(y − ŷ)
ŷ = Cx̂ = x̂1

(2.2)

10



2.3 General Solution

with

x̂ =
(

x̂1

x̂2

)
, K =

(
K1

K2

)
Lets define x̃ = x − x̂ = [x̃1 x̃2]T . Then from (2.1) and (2.2) we can obtain
the error dynamics

˙̃x = (A− KC)x̃ + B F (2.3)

lets define

A = A− KC =
(

a11 − K1 a12

a21 − K2 a22

)

Then we can split (2.3) and write

˙̃x1 = a11 x̃1 + a12 x̃2 − K1 x̃1 (2.4)
˙̃x2 = a21 x̃1 + a22 x̃2 + bF− K2 x̃1 (2.5)

from (2.4) is obvious that

x̃2 = 1
a12
( ˙̃x1 − a11 x̃1 + K1 x̃1) (2.6)

Deriving (2.4) and using (2.5)-(2.6) we can obtain the equation for the
dynamics of x̃1

Λ2 ¨̃x1 + Λ1 ˙̃x1 + Λ0 x̃1 = F (2.7)

with 

Λ2 = 1
a12b

Λ1 = K1 − trA
a12b

Λ0 = K2a12 − K1a22 + detA
a12b

(2.8)

If

Λ2, Λ1, Λ0 ≥ 0 (2.9)

the matrix A is Hurwitz and x̃1 shows an interesting property. We can
see in (2.7) that the estimation error x̃1 behaves as a damped spring mass
system driven by the environmental force F. This is one of the main results
from which the force estimator will be derived. There exist an equilibrium
point of (2.7) at x̃1 = Λ−1

0 F. Hence, when F is enough slow time varying,
under assumption (2.9), we claim that is possible to obtain an estimate of
the environmental force F̂ as

F̂ = Λ0 x̃1 (2.10)

11



Chapter 2. Force Observer for Linear Systems

Now consider the system formed by (2.3) and (2.10) with input F and
output F̂ {

˙̃x = (A− KC)x̃ + B F

F̂ = Λ0Cx̃
(2.11)

we can obtain its transfer function

G F̂(s) = Λ0C(sI − A+ KC)−1 B (2.12)

and for constant environmental forces we want F̂ � F, so that the static
gain of G F̂(s) should be the identity

G F̂(0) = I ; Λ0C(−A+ KC)−1 B = I ;
Λ0 = [C(−A + KC)−1 B

]−1 (2.13)

which in our case becomes

Λ0 = [ ( 1 0 )
(

K1 − a11 −a12

K2 − a21 −a22

)−1( 0

b

)]−1

= [ ( 1 0 ) 1
K2a12 − K1a22 + detA

( −a22 a12

a21 − K2 K1 − a11

)(
0

b

)]−1

= K2a12 − K1a22 + detA
a12b

(2.14)

Hence, using (2.13) we have arrived to the same result as in (2.8).

Summary
Given a linear system with the structure of (2.1) it is possible to obtain an
estimate of the environmental force by using

˙̂x = Ax̂ + Bu+ Kx̃1

x̃1 = x1 − x̂1

F̂ = Λ0 x̃1

(2.15)

with x̂ = [x̂1 x̂2]T , Λ0 as in (2.8) and K = [K1 K2]T such that (2.9) is
fulfilled.

Stability Considerations
It is important to notice that in this first observer (2.2) we don’t want to
estimate the states of the system. Using the terms observer and observer
error dynamics can be confusing and we have to be careful. We call it
observer because it has its structure, but it is not used as a state estimator
but as sensor for disturbance forces. Hence, we don’t expect the estimation
error to converge to zero. We expect that this observer has a bounded
error necessary to perform the force estimation. First we will show how for
bounded environmental forces the estimation error remains bounded and
we will find an expression for this boundary. Later, a final statement on
passivity will be introduced.

Consider the following Lyapunov function candidate

V = x̃T Px̃ (2.16)

12



2.3 General Solution

with P = PT > 0. The time derivative of V along the solution of (2.3) is

V̇ = ˙̃xT Px̃ + x̃T P ˙̃x

= x̃T(A T P+ PA )x̃ + 2x̃T PB F (2.17)

the matrix A is Hurwitz under assumption (2.9). Hence, there exists sym-
metric positive definite matrices Q and P such that A T P+PA = −Q. Then
we can write

V̇ = − x̃T Qx̃︸ ︷︷ ︸
1

+ 2x̃T PB F︸ ︷︷ ︸
2

(2.18)

The first term of (2.18) is negative definite and will tend to bring the
estimation error x̃ to zero. The second term is not definite so it can be
positive and tend to increase x̃. The first term contains a quadratic term
in x̃ so its stabilizing effect will be more important as x̃ grows. We see that
there is a balance between both terms of the equation, so that the first
term will always keep V from growing more than a certain finite boundary
determined by F. Lets now find an expression for this boundary.

V̇ ≤ −λmin(Q)ix̃i2 + 2ix̃iiPBiiFi
= −∆2

a + ∆a∆b (2.19)

where ∆a =
√

λmin(Q)ix̃i, ∆b = 2iPBiiFi√
λmin(Q)

, and λmin represents the mini-

mum eigenvalue. Using completion of squares we can write

V̇ ≤ −∆2
a + ∆a∆b ≤ −1

2
∆2

a + ∆c∆2
b (2.20)

this inequality holds if ∆c = 1
2 . Moreover,

V ≥ λmin(P)ix̃i2 −→ ix̃i2 ≤ 1
λmin(P)V (2.21)

then

V̇ ≤ −1
2

∆2
a +

1
2

∆2
b

= −1
2

λmin(Q)ix̃i2 + 2iPBi2

λmin(Q)iFi2

≤ −1
2

λmin(Q)
λmin(P)V + 2iPBi2

λmin(Q) iFi2

= −ε V + γ iFi2 (2.22)

where

ε = 1
2

λmin(Q)
λmin(P)

γ = 2iPBi2

λmin(Q)

13



Chapter 2. Force Observer for Linear Systems

The solution to the differential equation of (2.22) can be written and sys-
tematically bounded by

V (t) ≤ e−ε tV (0)+
∫ t

0
γ e −ε (t−s)iF(s)i2ds

≤ e−ε tV (0)+ γ iFi2
∞

∫ t

0
e −ε (t−s)ds

= e−ε tV (0)+ γ
ε
(1− e−ε t)iFi2

∞

≤ e−ε tV (0)+ γ
ε
iFi2

∞ (2.23)

where iFi∞ = supt≥0 iF(t)i.
Hence, given a bounded environmental force, we have obtained a bound-

ary for the estimation error x̃.

2.4 Force Estimation Error Dynamics

It has been shown how the position estimation error of the first observer
behaves as a damped spring mass system driven by the environmental
force. Applying Laplace transformation we can rewrite (2.7) in a transfer
function form

X̃1(s) = 1
Λ2s2 + Λ1s+ Λ0

F(s) (2.24)

From (2.7) and (2.10) we can obtain an expression of the force estimation
error

F̃ = F − F̂ = Λ2 ¨̃x1 + Λ1 ˙̃x1 + Λ0x̃1 − Λ0 x̃1

= Λ2 ¨̃x1 + Λ1 ˙̃x1 (2.25)

which can be written in transfer function form

F̃(s) = s(Λ2s+ Λ1) X̃1(s) (2.26)

From (2.24) and (2.26) we can find the transfer function between F̃ and F

H (s) = F̃(s)
F(s) =

s(Λ2s+ Λ1)
Λ2s2 + Λ1s+ Λ0

(2.27)

We can also obtain the transfer function H (s) by considering the system{
˙̃x = (A− KC)x̃ + B F

F̃ = F − Λ0Cx̃
(2.28)

with input F and output F̃. Then,

H (s) = [I − Λ0C(sI − A+ KC)−1 B
] (2.29)

which will yield to the same result as in (2.27).

14



2.4 Force Estimation Error Dynamics

H (s) is a strictly stable transfer function for all Λ2, Λ1, Λ0 > 0. It has
one zero at s = 0 which shows that the force estimation error converges to
zero for constant environmental forces. Moreover, we see how the parame-
ters Λ i contain all the information about the behavior of F̃; and, according
to (2.8), by choosing appropriate observer gains K1 and K2 we have the
possibility to shape these dynamics. This a good result but we can still want
H (s) to fulfill other properties regarding passivity or positive realness of
the estimator.

DEFINITION 2.1
[23, page 127] A transfer function n(s) is positive real if

Re[n(s)] ≥ 0 for all Re[s] ≥ 0 (2.30)

It is strictly positive real if n(p− ε ) is positive real for some ε > 0.

Direct application of Definition 2.1 to check positive realness is often diffi-
cult for high order transfer functions. The following theorem can be used
instead.

THEOREM 2.1
[23, page 128] A transfer function n(s) is strictly positive real (SPR) if and
only if

i) n(s) is a strictly stable transfer function

ii) the real part of n(s) is strictly positive along the jw axis,i.e.,

∀w ≥ 0 Re[n( jw)] > 0 (2.31)

Consider the force estimation error transfer function H (s), we have

H ( jw) = −w2Λ2 + jwΛ1

−w2Λ2 + jwΛ1 + Λ0

= w2(Λ2
1 − Λ2Λ0 + w2Λ2

2) + j(wΛ1Λ2)
(Λ0 −w2Λ2)2 + (wΛ1)2 (2.32)

and

Re[H ( jw)] = w2(Λ2
1 − Λ2Λ0 +w2Λ2

2)
(Λ0 − w2Λ2)2 + (wΛ1)2 (2.33)

From (2.33) we see that if

Λ2
1 > Λ2Λ0 or (2.34)

(K1 − trA)2 > K2a12 − K1a22 + detA (2.35)

then Re[H ( jw)] > 0. Hence, for K1 and K2 fulfilling (2.35), and according
to Theorem 2.1, H (s) is a strictly positive real (SPR) transfer function. It
can be shown that for linear systems this is the same to say that there
is a Passive mapping between F and F̃. In Figure 2.1, we can see a Bode
and Nyquist plot of H (s) in which the SPR properties can be checked
graphically.
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Bode Diagram
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Figure 2.1 Bode and Nyquist plots of H (s) whit Λ2 = 1, Λ1 = 6 and Λ0 = 9.
Parameters obtained when studying a rigid body with mass m = 1 and observer
gain K = [6 9]T . We can see the high pass characteristic of H (s). K is such
that fulfills (2.35).Hence, SPR can be checked noticing that the Nyquist plot never
enters the left half plane.

2.5 Example I: Rigid Body

Consider a rigid body with mass m, position q, input force u and unknown
environmental force F (see Fig. 2.2)

mq̈ = u+ F (2.36)
We can write (2.36) in a state-space form as follows:

ẋ = Ax + B(u+ F)
y = Cx

(2.37)

where

x =
(

q

q̇

)
, A =

(
0 1

0 0

)
, B =

(
0
1
m

)
, C = ( 1 0 )
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2.5 Example I: Rigid Body

1
ms2

q

F

u

Figure 2.2 Block diagram of the rigid body.

The parameters Λ become (2.8)

Λ2 = 1
a12b

= m

Λ1 = K1 − trA
a12b

= mK1

Λ0 = K2a12 − K1a22 + detA
a12b

= mK2

(2.38)

the force observer takes the form (2.15)
˙̂x = Ax̂ + Bu+ Kx̃1

x̃1 = x1 − x̂1

F̂ = mK2 x̃1

(2.39)

Stability conditions require K1 , K2 > 0. If K2
1 > K2, then the force es-

timation error transfer function is SPR. In the simulations (see Figures
2.3-2.5) we chose K = [6 9]T so that both properties are fulfilled. More-
over, looking at (2.27) we can obtain an expression of the poles of H (s)
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Figure 2.3 Force estimation in presence of a square environmental force. As we
expected, for constant environmental forces, the force estimation error tends to
zero.

17



Chapter 2. Force Observer for Linear Systems

0 5 10 15 20 25 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time [s]

F
or

ce
 [N

]

Environmental force estimation

F
F̂

Figure 2.4 Force estimation and force estimation error in presence of a ramp
environmental force. Notice that the force estimation error tends to a constant
value. This fact will be exploited later on to build and improved force estimator
able to follow ramp signals
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Figure 2.5 Force estimation in presence of a sinusoidal environmental force. The
force estimation error is also a sinusoidal which amplitude and phase lag could have
been determined a priori from the bode plots of H (s) (figure 2.1)

depending on K1 and K2. In the rigid body example, the denominator of
H (s) is s2 + K1s+ K2. For instance, for K1 = 6 and K2 = 9, H (s) has two
real poles at s = −1

2 K1. Hence, the step response of the force estimator
does not present any overshoot or oscillation.
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2.6 Example II: Damped Rigid Body

2.6 Example II: Damped Rigid Body

Consider the the model of a damped rigid body with mass m, damping
coefficient d > 0, position q, input force u and unknown environmental
force F as

mq̈+ dq̇ = u+ F (2.40)
This can be written in the same form as in (2.37) with

x =
(

q

q̇

)
, A =

(
0 1

0 − d
m

)
, B =

(
0
1
m

)
, C = ( 1 0 )

The parameters Λ become (2.8)


Λ2 = 1
a12b

= m

Λ1 = K1 − trA
a12b

= d+mK1

Λ0 = K2a12 − K1a22 + detA
a12b

= dK1 +mK2

(2.41)

and the force observer takes the form (2.15)
˙̂x = Ax̂ + Bu+ Kx̃1

x̃1 = x1 − x̂1

F̂ = (dK1 +mK2) x̃1

(2.42)

The stability condition is K1, K2 > 0. The transfer function H (s) is SPR
for (2.35)

K2 < K2
1 +

d
m

K1 + d2

m2 (2.43)

Simulation results are shown in figure 2.6.
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Figure 2.6 Force estimation with differetn environmental forces in the damped
rigid body. The results are almost identical to the rigid body. The observer gains
are the same but now a different Λ0 was applied.
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ẋ = Ax + B(u+ F)
y = Cx

q
F

u

F̂

x̂o2

F̂ = Λ0 x̃1

Force estimator

Force corrected observer

˙̂x = Ax̂ + Bu+ K x̃1

x̃1 = q− x̂1

˙̂xo = Ax̂o + B(u+ F̂) + Ko x̃o1

x̃o1 = q− x̂o1

Figure 2.7 Block diagram of the system and the Force corrected observer.

2.7 Force Corrected Observer

Now that we have obtained an estimation of the environmental force we
will build an observer that takes into account this force. To avoid confusion,
in the future we will call Force observer to (2.15) and reserve the term
observer for what is shown in this section. We have assumed that only
position measurements are available, and we look forward to obtain an
estimate of the system velocities.

An observer copying the system dynamics making use of the previous
force estimation can be written

˙̂xo = Ax̂o + B(u+ F̂) + Ko(y− ŷo)
ŷo = Cx̂o = x̂o1

(2.44)

with

x̂o =
(

x̂o1

x̂o2

)
, Ko =

(
Ko1

Ko2

)
(2.45)

We have defined x̂o as the observer state to differentiate it from the force
observer state x̂. We can define the observer error as x̃o = x− x̂o = [x̃o1, x̃o2].
The error dynamics becomes

˙̃x0 = (A− KoC)x̃o + B F̃ (2.46)

Notice that this has the same structure as (2.3) except for that the force F
has been replaced by the force estimation error F̃. This fact will be exploited
later to build a force observer able to follow ramp environmental forces. The
force corrected observer and force observer scheme is illustrated in Figure
2.7. Simulations show the good performance of the observer for enough slow
time-varying environmental forces (Figure 2.8). The following parameters
have been used in the simulations: m = 1 [Kg], K = Ko = [6 9]T .
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Figure 2.8 Velocity estimation for the rigid body using the force corrected ob-
server with different environmental forces.
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2.8 Choice of the Gain K

The gain K = [K1 K2]T is extremely important and determines the perfor-
mance of the force estimator. We saw how the constants Λ2, . . . , Λ0 are the
coefficients of an imaginary damped spring mass system that guides the
position estimation error. These Λ parameters are determined by the sys-
tem matrices A, B, C and the observer gains K1, K2 (2.8). To achieve good
force estimations the environmental force should be big enough to deflect
over the noise level of the system. A very stiff, heavily damped, spring will
not deflect significantly over the influence of small forces and will require
very high resolution in the position sensing. We should notice that noise
considerations are specially important in our case due to the high pass
characteristic of H (s).

There are different approaches to set this gain.

Pole Placement
As we can see from (2.27) the poles of H (s) are the roots of Λ2s2+Λ1s+Λ0.
Choosing appropriate gains K1 and K2 and according to (2.8) we can place
these poles. For example, it can be interesting to set K such that both poles
are real, and avoid overshoots in the step response of the force estimation
error.

Kalman Filter Solution
Having some information about the system noise characteristics it is pos-
sible to find an optimal filter that minimizes the variance of the output es-
timation error. In our case this is directly related to minimize the variance
of the force estimation error. We will present the time-invariant continu-
ous version of the Kalman Filter found in [18]. Extensive literature can be
found on optimal filtering, see for example [19], [20] or [21].

Consider a system

ẋ(t) = Ax(t) + Bu(t) + v(t)
y(t) = Cx(t) +w(t) (2.47)

with A,B,C constant matrices and

E[v(t)v′(τ )] = Q(t)δ (t− τ ); E[v(t)] = 0

E[w(t)w′(τ )] = R(t)δ (t−τ ); E[w(t)] = 0

E[v(t)w′(τ )] = S(t)δ (t− τ ) = 0; for all t and τ
(2.48)

Suppose that the noise processes v and w are white, Gaussian, zero mean,
and independent with constant covariance matrices Q and R. Assume that
R is not singular and that the pair [A, C] is detectable.

There exist a time-invariant optimal estimator for the system (2.47) as

˙̂x = Ax̂ + Bu+ K(y − Cx̂) (2.49)

with the constant gain K given by

K = PCT R−1 (2.50)
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2.8 Choice of the Gain K

and the constant matrix P computed as the solution of the quadratic matrix
equation

PAT + AP− PCT R−1CP+ Q = 0 (2.51)
Notice that in (2.47) the environmental force is not considered. The ob-
server gain is chosen to minimize the estimation error variance due to the
system noises, but not the variance due to the environmental forces. This
is a good solution but can be not optimal. There might be a better solution
to the choice of K in which a optimization problem considering the force
F is solved. However, we must remember that we don’t want to minimize
the observer error variance but to minimize the force estimation error vari-
ance. How this two terms are related and how to solve the optimization
problem is an open question that we will not further study.
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3. Force Observer for Ramp
Environmental Forces

3.1 Introduction

In this chapter we are going to present a force observer able to follow ramp
environmental forces. When exciting the force observer of (2.15) with a
ramp environmental force, the force estimation error converged to a non
zero value (see Figure 2.4). In this case, if we use the force corrected
observer, the position observation error will not converge to zero but to
a certain value. The main idea is to characterize this error and use it to
build an improved force observer.

3.2 New Force Observer

Consider the force corrected observer with error dynamics as in (2.46).
Following the same methodology we used to derive the force observer, we
will write the observer position estimation error as a function of the force
estimation error. We can split (2.46) into

˙̃xo1 = a11 x̃o1 + a12 x̃o2 − Ko1 x̃o1 (3.1)
˙̃xo2 = a21 x̃o1 + a22 x̃o2 + bF− Ko2 x̃o1 (3.2)

from (3.1) is obvious that

x̃o2 = 1
a12
( ˙̃xo1 − a11 x̃o1 + Ko1 x̃o1) (3.3)

Deriving (3.1) and using (3.2)-(3.3) we can obtain the equation for the
dynamics of x̃o1

∆2 ¨̃xo1 + ∆1 ˙̃xo1 + ∆0 x̃o1 = F̃ (3.4)

with 

∆2 = 1
a12b

∆1 = Ko1 − trA
a12b

∆0 = Ko2a12 − Ko1a22 + detA
a12b

(3.5)

We see from (3.4) that the position estimation error of the force corrected
observer x̃o1 behaves as a spring-mass system driven by the force esti-
mation error F̃. The main motivation for this ramp environmental force
observer is the fact that when using the force observer of (2.15) with ramp
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3.3 New Force Estimation Error

ẋ = Ax + B(u+ F)
y = Cx
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x̃o1
F

F̂ = Λ0 x̃1

Force Observer

Force Corrected Observer

Ramp Force Observer

˙̂x = Ax̂ + Bu+ Kx̃1

x̃1 = q− x̂1

˙̂xo = Ax̂o + B(u+ F̂) + Ko x̃o1

x̃o1 = q− x̂o1

F = F̂ + ∆0 x̃o1

Figure 3.1 Block diagram of the system and the Ramp Force observer.

environmental forces, the force estimation error F̃ converged to a constant
value. Under this situation we expect (3.4) to have an equilibrium point
at x̃o1 = ∆−1

0 F̃. Hence, we can obtain an estimation of the force estimation

error ˆ̃F with
ˆ̃F = ∆0 x̃o1 (3.6)

The new force estimation will be the sum of the previous force estimation
F̂ and the estimate of the force estimation error ˆ̃F

F = F̂ + ˆ̃F = Λ0x̃1 + ∆0 x̃o1 (3.7)

Summary
Given a linear system with the structure of (2.1) we can obtain a force
estimator F able to follow ramp environmental forces by using

˙̂x = Ax̂ + Bu+ Kx̃1

x̃1 = x1 − x̂1

F̂ = Λ0 x̃1

˙̂xo = Ax̂0 + B(u+ F) + Kox̃o1

x̃o1 = x1 − x̂o1

F = F̂ + ∆0 x̃o1

(3.8)

with x̂ = [x̂1 x̂2]T , x̂o = [x̂o1 x̂o2]T Λ0 as in (2.8), ∆0 as in (3.5), K = [K1 K2]T
and Ko = [Ko1 Ko2]T .

3.3 New Force Estimation Error

The new force estimation error becomes

F̃ = F −F = Λ2 ¨̃x1 + Λ1 ˙̃x1 − ∆0 x̃o1 (3.9)
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Bode Diagram
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Figure 3.2 Bode plots of the force estimation error transfer functions H and
H ramp . The observer gains are K1 = Ko1 = 6 and K2 = Ko2 = 9.

It is possible to find the new transfer function from the environmental force
to the new force estimation error using the following equations:

F̃(s) = Λ2s2 + Λ1s
Λ2s2 + Λ1s+ Λ0

F(s) (3.10)

x̃o1(s) = 1
∆2s2 + ∆1s+ ∆0

F̃(s) (3.11)

x̃1(s) = 1
Λ2s2 + Λ1s+ Λ0

F(s) (3.12)

and finally we obtain:

H ramp(s) = F̃ (s)
F(s) =

s2(Λ2s+ Λ1)(∆2s+ ∆1)
(Λ2s2 + Λ1s+ Λ0)(∆2s2 + ∆1s+ ∆0) (3.13)

The new transfer function is strictly stable for all Λ2, . . . , Λ0, ∆2, . . . , ∆0 > 0
and has two zeros at s = 0. Hence the new force estimation error will tend
to zero for constant and ramp signals.

Now we have improved the behavior of the force estimation in front of
ramp environmental forces, but as can be seen in the simulations (Fig.3.3)
the step response of the system is slower and presents an overshoot. An-
other interesting characteristic of the new transfer function is the existence
of a small peak due to the slow zeros of the system. This means that for
certain frequencies there is an amplification of the force estimation er-
ror. All this drawbacks can be minimized by choosing the proper observer
gains. However, we should always have in mind that increasing these gains
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Figure 3.3 Plots of the force estimations F and F̂ when exciting a rigid body
with square and sawtooth environmental forces.

will increase as well the noise sensitivity of the system. This is specially
important in our case due to the high pass characteristic of the transfer
function. Thus, as usual, there must be a balance between the estimation
performance and its robustness against noise.

27



4. Force Observer in Ship
Dynamics

4.1 Introduction

In this chapter we will introduce an observer for the environmental forces
acting on a ship. In the previous chapters we have studied a force observer
for linear systems. However a ship is a nonlinear system and a new solution
has to be considered. The basic nonlinearity is due to the existence of two
reference frames that are expressed through a nonlinear Jacobian matrix.
There are many more nonlinear phenomena involved in the ship dynam-
ics, as for instance nonlinear damping forces, that we will not consider,
as they can be simplified under certain assumptions. The force estimator
deduced here is specially indicated for constant and very slow time varying
environmental forces, for instance wind and sea currents.

For detailed understanding of marine vehicles modeling and control see
[5], [6], [7], [8].

4.2 Ship Model and Problem Formulation

The earth-fixed positions (x, y) and the yaw angle ψ can be expressed in
vector form by η = [x, y,ψ ]T . The ship-fixed velocities can be expressed in
vector form by ν = [u, v, r]T , where u is the surge velocity, v is the sway
velocity and r is the yaw angular velocity. Let τ = [τu,τ v,τ r]T , expressed in
the ship-fixed reference, be the vector of control forces and moments pro-
vided by the propulsion system. Let b = [bx, by, bψ ]T be the vector of un-
known environmental forces and moments acting on the ship expressed in
the earth-fixed reference. In Dynamic Positioning systems and Low Speed
applications a simplified model of the ship dynamics can be expressed by

Mν̇ + Dν = τ + JT(η)b (4.1)
η̇ = J(η)ν (4.2)

The matrix J(η) represents the transformation between the ship-fixed ref-
erence X YZ and the earth-fixed reference XEYE ZE and is defined as

J(η) = J(ψ ) =
 cos(ψ ) −sin(ψ ) 0

sin(ψ ) cos(ψ ) 0

0 0 1

 J−1(η) = JT(η)
detJ(η) = 1

(4.3)

Notice that J(η) is non-singular for all ψ . The mass matrix M = MT is
positive definite and constant. The damping matrix D is in general non-
symmetrical but fulfills xT Dx = 1

2 xT (D + DT)x > 0 for all x �= 0, that is
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4.3 Force Observer

YE
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Y

X

(x, y)

ψ

Figure 4.1 Definition of the earth-fixed XE YEZE and ship-fixed X Y Z reference
frames.

D is strictly positive.

M =
m11 0 0

0 m22 m23

0 m32 m33

 , D =
 d11 0 0

0 d22 d23

0 d32 d33

 (4.4)

fulfilling

0 < Mm < M < MM , and 0 < Dm < D < DM (4.5)

4.3 Force Observer

We assume that only positions measurements are available, and this is
a quite realistic assumption. Velocity sensors in ships are usually based
in the vessel surface velocity. This quantity measures the relative velocity
between the ship and the water. Under the action of sea currents this
measurement is not consistent. The (x, y) position measurements are given
by a GPS or a DGPS system. The yaw angle ψ is assumed to be measured
with good accuracy by using a gyro compass.

The basic idea is to build a nonlinear observer and use its position
estimation error to determine the environmental forces.

Defining A = −M−1 D and B = M−1 we can rewrite (4.1) and (4.2) as

ν̇ = Aν + Bτ + BJT(η)b (4.6)
η̇ = J(η)ν (4.7)

Assuming that only position measurements,η, are available we can build
the following nonlinear observer [6]

˙̂ν = Aν̂ + Bτ + JT(η)K1η̃ (4.8)
˙̂η = J(η)ν̂ + K2η̃ (4.9)
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Chapter 4. Force Observer in Ship Dynamics

with K1 > 0 and K2 > 0 constant gain matrices. Defining η̃ = η − η̂ and
ν̃ = ν − ν̂ , the observer error dynamics becomes

˙̃ν = Aν̃ + BJT(η)b− JT(η)K1η̃ (4.10)
˙̃η = J(η)ν̃ − K2η̃ (4.11)

From (4.11) it is obvious that

ν̃ = JT(η)( ˙̃η + K2η̃) (4.12)

then, deriving (4.11) and using (4.10) and (4.12)we can obtain the equation
of the position estimation error dynamics

¨̃η = J̇(η)ν̃ + J(η) ˙̃ν − K2
˙̃η

= J̇(η)JT(η)( ˙̃η + K2η̃)
+J(η)

(
A
(
JT(η)( ˙̃η + K2η̃))+ BJT(η)b− JT(η)K1η̃

)
−K2

˙̃η (4.13)

Collecting terms it is straight forward to obtain

Λ2
¨̃η + Λ1

˙̃η + Λ0η̃ = b (4.14)

with
Λ2 = J(η)M JT(η)
Λ1 = J(η)M JT(η)[K2 − J̇(η)JT(η) − J(η)AJT(η)]
Λ0 = J(η)M JT(η)[K1 − J̇(η)JT(η)K2 − J(η)AJT(η)K2

] (4.15)

The position estimation error behaves like a damped spring mass system
driven by the environmental force b. This is a similar result to the one
obtained when studying the linear case. For constant environmental forces
there is an equilibrium for (4.14) that suggests the estimator

b̂ = Λ0η̃ (4.16)

The structure of the force estimator is the same as in the linear case, but
there are some qualitative differences that have to be considered. The ma-
trices Λ are time varying and contain a derivative term of the transforma-
tion matrix J̇(η) which seems hard to deal with. Lets study this matrices
with some detail.

About the Λ Matrices
Given an n� n matrix A we denote by Am and AM , respectively the min-
imum and maximum eigenvalue of 1

2(AT + A). Consider the matrix norm
i ⋅ i defined as

iAi =
√

max
einenvalue

AT A (4.17)
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4.3 Force Observer

Define

ρ =
0

0

r

 , S(ρ) =
 0 −r 0

r 0 0

0 0 0

 (4.18)

where r is the vessel turning rate or yaw velocity. The following interesting
properties hold

J̇(η) = J(η)S(ρ) (4.19)
J(η)S(ρ)JT(η) = S(ρ) (4.20)

iS(ρ)i = hrh (4.21)

Using (4.19),(4.20) and (4.21) we can derive some valuable information
about the matrices Λ. Remember that we defined A = −M−1 D and as-
sumed that all the eigenvalues of A had negative real part. An interest-
ing property that follows shows how the derivative term on J(η) can be
disregarded under certain assumptions.

PROPERTY 4.1
if the absolute value of the ship turning rate hrh is smaller than a certain
boundary δ and according to (4.19) and (4.21) the derivative term in Λ0
fulfills

iJ̇(η)JT(η)K2i ≤ hδ hiK2i (4.22)
which means that if δ is enough small, this term can be disregarded with-
out affecting the quality of the force estimator.

PROPERTY 4.2—POSITIVENESS OF Λ MATRICES

Consider the positive diagonal observer gains K1 and K2. Assume that
hrh < δ . If they are chosen such that

K2 m + {M−1 D}m > hδ h (4.23)
K1m + {M−1 D}mK2m > hδ hiK2i (4.24)

then the matrices Λ are strictly positive.

Λ2 = J(η)M JT(η) ≥ Mm > 0 (4.25)
Λ1 = J(η)M JT(η)[K2 − J̇(η)JT(η) − J(η)AJT(η)]

= J(η)M JT(η)[K2 − S(ρ)︸ ︷︷ ︸
≤hδ h

−J(η)AJT(η)︸ ︷︷ ︸
≥{M−1 D}m

]
≥ Mm

[
K2m − hδ h + {M−1 D}m

] > 0 (4.26)
Λ0 = J(η)M JT(η)[K1 − J̇(η)JT(η)K2 − J(η)AJT(η)K2

]
= J(η)M JT(η)[K1 − S(ρ)K2︸ ︷︷ ︸

≤hδ hiK2i

−J(η)AJT(η)K2
]︸ ︷︷ ︸

≥{M−1 D}m K2 m

≥ Mm
[
K1m − hδ hiK2i + {M−1D}m K2m

] > 0 (4.27)
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Chapter 4. Force Observer in Ship Dynamics

4.4 Stability Analysis

Lets first study the linearized system around the trajectory ψ = 0, that is
when the ship is moving forward with a constant heading angle equal to
zero. In this case we have

J(η) = JT(η) = I

Λ2 = M > 0

Λ1 = M
[
K2 − A

] > 0

Λ0 = M
[
K1 − AK2

] > 0

(4.28)

The linearized position estimation error dynamics can be written in state
space form [ ˙̃η

¨̃η

]
=
[

0 I

−BΛ0 −BΛ1

]
︸ ︷︷ ︸

Φ

[ η̃
˙̃η

]
+
[

0

B

]
b (4.29)

with BΛ0 and BΛ1 strictly positive matrices. We will show that the sys-
tem matrix Φ is Hurwitz so that the linearized error dynamics system is
asymptotically stable (see [15, page 192]).

Let λ ∈ C be an eigenvalue of Φ with corresponding eigenvector v =
(v1, v2), v �= 0. Then,

λ
[

v1

v2

]
=
[

0 I

−BΛ0 −BΛ1

][
v1

v2

]
=
[

v2

−BΛ0v1 − BΛ1v2

]
(4.30)

It follows that if λ = 0 then v = 0, and hence λ = 0 is not an eigenvalue
of Φ. Further, if λ �= 0, then v2 = 0 implies that v1 = 0. Thus, v1, v2 �= 0
and we may assume without loss of generality that iv1i = 1. Using this
we write

λ2 = v∗
1λ2v1 = v∗

1λv2 (4.31)
= v∗

1(−BΛ0v1 − BΛ1v2) = −v∗
1BΛ0v1 − λv∗

1BΛ1v1 (4.32)

where ∗ denotes complex conjugate transpose. Since α = v∗
1BΛ0v1 > 0 and

β = v∗
1BΛ1v1 > 0, we have

λ2 + α λ + β = 0 α , β > 0 (4.33)

and hence, the real part of λ is negative so that Φ is Hurwitz. This implies
that the linearized system is asymptotically stable and we can conclude
local asymptotic stability complete nonlinear system. This is a good result,
but we still want to know more about the effect of the environmental force
in this system. We also need some conditions over the observer gain K that
applies to the nonlinear system.

Consider the ship model of (4.6)-(4.7), the nonlinear observer of (4.8)-
(4.9) and the observer error dynamics of (4.10)-(4.11).Consider the follow-
ing Lyapunov function candidate

V (η̃,ν̃) = 1
2

(
η̃T P1η̃ + ν̃ T P2ν̃

) (4.34)
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4.4 Stability Analysis

it’s time derivative along the solutions of (4.10) and (4.11) is

V̇ = η̃T P1 ˙̃η + ν̃ T P2 ˙̃ν
= η̃T P1

[
J(η)ν̃ − K2η̃

]+ ν̃ T P2
[
Aν̃ + BJT(η)b− JT(η)K1η̃

]
= −η̃T[P1 K2

]
η̃ − ν̃ T[− P2 A

]
ν̃ + ν̃ T[JT(η)PT

1 − P2JT(η)K1
]
η̃

+ν̃ T P2 BJT(η)b (4.35)

taking P1 = I , P2 = I and remembering that B = M−1, A = −M−1 D we
have

V̇ = −η̃T K2η̃ − ν̃ T[M−1 D
]
ν̃ + ν̃ T JT(η)[I − K1

]
η̃

+ν̃ T BJT(η)b (4.36)

we can write

V̇ ≤ −σ 1iη̃i2 −σ 2iν̃i2 + (1+σ 3)iη̃iiν̃i + ν̃ T BJT(η)b (4.37)

were

σ 1 = K2m > 0

σ 2 = {M−1D}m > 0

σ 3 = iK1i > 0 (4.38)

We defined the observer gain matrices K1, K2 to be diagonal positive defi-
nite so it holds σ 1 > 0 and σ 3 > 0. The mass matrix M and the damping
matrix D are positive definite matrices. However this does not necessary
imply that A = −M−1 D is Hurwitz, characteristic of course-stable ships.
An extension to the design of nonlinear observers of course-unstable ships
is done in [9]. To assure σ 2 > 0 we will assume that A is Hurwitz.

Now, as a first approach, let the environmental force b be zero. Then
defining z= [η̃ ν̃

]T we can rewrite (4.37) in the form

V̇ ≤ −zT Qz (4.39)

It can be shown that Q is positive definite if

σ 1 > (1+σ 3)2
4σ 2

(4.40)

Hence, we have proven global asymptotic stability of the observer when
b = 0. Consider now a bounded nonzero environmental force. From (4.37)
equation (4.39) becomes

V̇ ≤ −zT Qz+ ν̃ T Bb

= − zT Qz︸ ︷︷ ︸
1

+ zT
[

0

B

]
b︸ ︷︷ ︸

2

(4.41)

When z is big, the first part of (4.41) will be dominant to the second part
due to the quadratic term in z so V̇ will be negative. On the other hand,
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Chapter 4. Force Observer in Ship Dynamics

when z is small the second term will be more important so V̇ will become
positive. This suggests that the Lyapunov function V remains bounded and
so does the observer estimation error.

The system shows an interesting passivity property. Integrating (4.41)
over [0 t] we have

V (t)− V (0) ≤ −
∫ t

0
zT(τ )Qz(τ )dτ +

∫ t

0
zT
[

0

B

]
bdτ (4.42)

≤
∫ t

0
zT
[

0

B

]
bdτ (4.43)

which shows that the system is passive with respect to the input b and
output (0 BT)z= BTν̃ with storage function V and dissipative rate zT Qz.

4.5 Simulation Results

The ship model used in the simulations is taken from [7], in which the M
and D matrices are

M =
 5.3122 ⋅ 106 0 0

0 8.2831 ⋅ 106 0

0 0 3.7454 ⋅ 109

 (4.44)

D =
 5.0242 ⋅ 104 0 0

0 2.7229 ⋅ 105 −4.3933 ⋅ 106

0 −4.3933 ⋅ 106 4.1894 ⋅ 108

 (4.45)

The observer gains have been chosen

K1 =
 0.1 0 0

0 0.1 0

0 0 0.1

 , K2 =
 1.1 0 0

0 1.1 0

0 0 1.1

 (4.46)

The input signal was a constant surge force of value 1 ⋅ 105 N. The envi-
ronmental forces were designed to simulate the wind and sea disturbances
characteristics. We used a second order system excited by a white-noise
sequence, see [5] for details.

Simulation results are shown in Figures 4.2-4.7.

4.6 Discussion

The input signal was constant surge force and no control strategy was im-
plemented so the environmental forces could modify very easily the heading
angle of the vessel. This is not a real situation as in most of the times there
will be a control signal that will try to compensate for these disturbances.
In this situation, constant heading angle, simulations proved a better be-
haviour of the Force Observer.

We assumed than only position measurements will be used. However,
the matrice Λ0 contain a derivative term of J(η) that implies the use of
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4.6 Discussion
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Figure 4.3 Estimation of the x environmental force b̂x and force estimation error

the yaw velocity r. Thanks to Property (4.1) we see how this term can be
disregarded. Actually, in all the simulations Λ0 has been computed without
considereing the derivative term, that is

Λ̂0 = J(η)M JT(η)[K1 − J(η)AJT(η)K2
] (4.47)

Simulations showed how this simplification did not affect the the force
estimation.
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error
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5. Force Observer for Robot
Manipulators

5.1 Introduction

In this chapter we will introduce an observer for the environmental forces
acting on a robot manipulator. Robotic applications often imply the in-
teraction of the manipulator with its environment, which generates con-
tact forces of extremely importance for the task performance. Force control
applications in robotics are more common every day, and its theoretical
knowledge is far ahead of the practical implementation of these methods.
The main reason for this is the unpopularity of force sensors, due to their
high prize and complexity.

We present a model based approach to the estimation of these environ-
mental forces. We assume that only position measurements are available
and, again, this is a real situation in most of the industrial robotic manip-
ulators.

5.2 System Model and Properties

The equations of motion of a robot manipulator can be written as

M(q)q̈+ C(q, q̇)q̇+ Dq̇+ G(q) = u+ JT(q)F (5.1)
where

q vector of generalized coordinates q ∈ Rn

q̇ vector of generalized velocities q̇ ∈ Rn

M(q) inertia matrix M(q) ∈ Rn�n

C(q, q̇)q̇ matrix of centrifugal and Coriolis torques C(q, q̇)q̇ ∈ Rn�n

D diagonal matrix of viscous friction coefficients D ∈ Rn�n

G(q) vector of gravitational torques G(q) ∈ Rn

u vector of input torques u ∈ Rn

J(q) geometric Jacobian matrix J(q) ∈ Rn�l

F wrench of environmental forces and torques F ∈ Rl

The vector of environmental forces and torques F is unknown and needs
to be estimated. F is acting on the manipulator end-effector and is trans-
mitted to the joint torques through the transpose of the Jacobian J(q).

The robot model has the following important properties

PROPERTY 5.1
M(q) is a symmetric positive definite matrix fulfilling

0 < Mm < iM(q)i < MM ∀ q ∈ Rn (5.2)
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5.3 Force Observer

PROPERTY 5.2
A suitable definition of C(q, q̇) makes the matrix Ṁ(q) − 2C(q, q̇) skew-
symmetric. Remember that if A is a n�n skew-symmetric matrix then for
all x ∈ Rn, xT Ax = 0.

PROPERTY 5.3
Given two n� 1 vectors x and y

C(q, x)y = C(q, y)x (5.3)

PROPERTY 5.4
The norm of C(q, q̇) satisfies

iC(q, q̇)i ≤ kciq̇i (5.4)

We will assume in the future that the robot velocities are bounded so that

iq̇(t)i ≤ kq, ∀t ≥ 0 (5.5)

5.3 Force Observer

The basic idea is to build a nonlinear observer for the system, as the one
presented in [2], and use its position estimation errors to deduce the en-
vironmental force. Defining the states x1 = q and x2 = q̇ we can write a
state space representation of (5.1) as

ẋ1 = x2 (5.6)
ẋ2 = M−1(x1)

[− C(x1, ẋ1)ẋ1 − Dẋ1 − G(x1) + u+ JT(x1)F
] (5.7)

We can construct a nonlinear observer copying the dynamics of the system,
without considering the environmental force. We assume that only joint
positions are measured so that x1 is the output variable.

˙̂x1 = x̂2 + K1 x̃1 (5.8)
˙̂x2 = M−1(x1)

[− C(x1, ˙̂x1) ˙̂x1 − D ˙̂x1 − G(x1) + u+ K2 x̃1
] (5.9)

x̃1 = x1 − x̂1 = q− x̂1 (5.10)
where K1 and K2 are symmetric positive definite gain matrices, usually
diagonal. Subtracting (5.9) from (5.6) we obtain

˙̃x1 = x̃2 − K1 x̃1 (5.11)
˙̃x2 = M−1[− C(x1, ẋ1)ẋ1 − C(x1, ˙̂x1) ˙̂x1 − D ˙̃x1 + JT(x1)F

− K2 x̃1
]

= M−1[− C(x1, ẋ1) ˙̃x1 − C(x1, ˙̂x1) ˙̃x1 − D ˙̃x1 + JT(x1)F
− K2 x̃1

] (5.12)
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Chapter 5. Force Observer for Robot Manipulators

where property 5.3 has been used. Now it is possible to find the dynamics
for x̃1 by differentiating (5.11) and using (5.12)

¨̃x1 = ˙̃x2 − K1 ˙̃x1

= M−1[− C(x1, ẋ1) ˙̃x1 − C(x1, ˙̂x1) ˙̃x1 − D ˙̃x1 + JT(x1)F − K2 x̃1
]

− K1 ˙̃x1

(5.13)

Then collecting terms it is straight forward to find

Λ2 ¨̃x1 + Λ1 ˙̃x1 + Λ0x̃1 = JT(x1)F (5.14)

with 
Λ2 = M(x1)
Λ1 = C(x1, ẋ1) + C(x1, ˙̂x1) + D + M(x1)K1

Λ0 = K2

(5.15)

Again, the observer position estimation error behaves as a damped spring
mass system driven by the environmental force. The force F is defined in
the cartesian space, and the term JT(x1)F shows how this environmental
force is transmitted to the joint space through the transpose of the geomet-
ric Jacobian. We expect (5.14) to have an equilibrium point that suggests
the force estimator

F̂ = JT†(x1)Λ0 x̃1 (5.16)
with † denoting the matrix pseudo-inverse defined as A† = (AT A)−1 AT .

PROPERTY 5.1—POSITIVENESS OF Λ MATRICES

If the observer gain K1 is chosen such that

K1m >
2kckq − Dm

Mm
(5.17)

then the Λ matrices are strictly positive. we see that

Λ2 ≥ Mm > 0 (5.18)
Λ1 = C(x1, ẋ1) + C(x1, ˙̂x1)︸ ︷︷ ︸

≥−2kckq

+ D + M(x1)K1︸ ︷︷ ︸
≥Dm+Mm K1m

> 0 (5.19)

Λ0 ≥ K2m > 0 (5.20)

As we will see later the positiveness of the Λ matrices assured by (5.17)
is closely related to the stability of the observer.

5.4 Stability Analysis

We first need to show the stability of the previous nonlinear observer in the
case of zero environmental forces. Then we will study what happens when
this force is not zero and show consistency of the proposed force estimator.
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5.4 Stability Analysis

Let zT = [x̃T
1

˙̃xT
1 ] and let H(x1) = block diag

[
K2, M(x1)

]
. Consider

the following Lyapunov function candidate

V (z, t) = 1
2

zT H(x1)z (5.21)

its time derivative along the solutions of (5.14) is

V̇(z, t) = ˙̃xT
1 K2 x̃1 + ˙̃xT

1 M(x1) ¨̃x1 + 1
2

˙̃xT
1 Ṁ(x1) ˙̃x1

= ˙̃xT
1
[− C(x1, ẋ1) ˙̃x1 − C(x1, ˙̂x1) ˙̃x1 − D ˙̃x1 + JT(x1)F − K2 ˙̃x1

− M(x1)K1 ˙̃x1
]+ ˙̃x1 K2 x̃1 + 1

2
˙̃xT
1 Ṁ(x1) ˙̃x1

(5.22)

Simplifying and using property 5.2 we have

V̇ (z, t) = − ˙̃xT
1
[
M(x1)K1 + D

] ˙̃x1 − ˙̃xT
1 C(x1, ˙̂x1) ˙̃x1

+ ˙̃xT
1 JT(x1)F

(5.23)

properties 5.3 and 5.4 imply

h ˙̃xT
1 C(x1, ˙̂x1) ˙̃x1h = h ˙̃xT

1 C(x1, ẋ1) ˙̃x1 + ˙̃xT
1 C(x1, ˙̃x1) ˙̃x1h

≤ i ˙̃x1i2kc(i ˙̃x1i2 + kq)
(5.24)

then

V̇ ≤ −i ˙̃x1i2[Mm K1m + Dm − kc(i ˙̃x1i2 + kq)
]+ ˙̃xT

1 JT(x1)F (5.25)
Hence, if

i ˙̃x1i2 ≤ Mm K1m + Dm

kc
− kq (5.26)

and

K1m > kqkc − Dm

Mm
(5.27)

so that the right side of (5.26) is positive, we have

V̇ ≤ −βi ˙̃x1i2 + ˙̃xT
1 JT(x1)F (5.28)

where β is a positive constant. Moreover

1
2

Hmizi2 ≤ V (z, t) ≤ 1
2

HMizi2 (5.29)

Lets first assume that the environmental force F is zero. From (5.29) We
see that V (z, t) is a positive definite decrescent function. Furthermore, V̇ is
a negative semi-definite function for all z fulfilling (5.26) under assumption
(5.27). Hence, we conclude that in this case the point z = 0 is uniformly
stable [23, p. 107].

Now consider a nonzero environmental force F. Integrating equation
(5.28) over [0 t] we have

V (t) − V (0) ≤
∫ t

0
βi ˙̃x1(s)i2ds+

∫ t

0

˙̃xT
1 (s)JT(x1)F(s)ds (5.30)

Then, if equations (5.26) and (5.27) are fulfilled, the system in (5.14) is
passive with input JT(x1)F, output ˙̃x1, storage function V and dissipation
rate βi ˙̃x1i2.
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6. Force Estimation
Experiment: Robotic
Manipulator

6.1 Introduction

In this chapter we will present an experiment in which the force observer
will be tested in a real robotic manipulator. Before being able to perform
the experiment some implementation issues had to be solved. In order to
build an observer for the robot, a system identification for the robot Joint 1
and for the gravity torques G(q) was done. The resolvers used to measure
the joint positions introduced a nonlinearity that had to be compensated.

6.2 Gravity Compensation

We assume the following simplified model for Joints 2 and 3 of the indus-
trial robot ABB irb 2000 in Figure 6.1. The equations of the gravity torques
in Joints 2 and 3 assuming a simple friction model f = c ⋅ sinn(q̇) can be
written

q2

q3dx

M2

M3

dy

d2

l2

l3

G(q2)

G(q3)

Figure 6.1 Robot manipulator scheme for gravity compensation.
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6.2 Gravity Compensation
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Figure 6.2 Estimation of the gravity torque in Joint 2. Left: Measured torque
and estimated. Right: Torque estimation error.

G(q3) = M3n
[
dx cosθ3 + dy sinθ3

]+ c3 sign{θ̇3}
= λ1 cosθ3 + λ2 sinθ3 + λ3 sign{θ̇3}

(6.1)

G(q2) = M3n
[
dx cosθ3 + dy sinθ3 + l2 sinθ2

]+ M2nd2 sinθ2

+ c2 sign{θ̇2}
= λ4

[
λ1 cosθ3 + λ2 sinθ3

]+ λ5 sinθ2 + λ6 sign{θ̇2}
(6.2)

where

λ1 = M3ndx

λ2 = M3ndy

λ3 = Friction coefficient of Joint 3

λ4 = Relation between motor torques 2 and 3

λ5 = M3nl2 + M2nd2

λ6 = Friction coefficient of Joint 2

Using least squares identification [17] it is possible to identify all the pa-
rameters λ i. As Γn3 only depends on θ3, we first determined λ1,λ2 and λ3.
Then, using λ1 and λ2 the remaining parameters were obtained:

λ1 = 1.5545 λ2 = 0.4610 λ3 = −0.1764

λ4 = −0.0045 λ5 = −3.0194 λ6 = 0.1696

The results of the gravity torques estimation is shown in Figures 6.2 and
6.3. In the experiment, a position trajectory reference was given and the
resulting control torques were recorded. The controller was active and, as
we will study later, the resolver nonlinearity introduced in the closed loop
a high disturbance which effects can be easily seen in the torque signals.
The position reference trajectory was an ellipsoid, similar to the final ex-
perimental setup, to cover a wide part of the manipulator workspace. The
velocities were kept very low in order to minimize inertia effects. However,
in fig 6.2 between t = 35−40 s we can see an important error caused by the
influence of inertia torques in a special configuration of the manipulator
during the experiment. Another thing that can be noticed from the results
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Figure 6.3 Estimation of the gravity torque in Joint 3 and its estimation error.

is the low accuracy of the model when the velocity is close to zero (t � 12s
and t � 37s). This is due to the simplified friction model used, which is not
very realistic for velocities close to zero.

6.3 Resolver Nonlinearity Compensation

The resolvers used to measure the joint angles introduce a slight nonlinear-
ity almost imperceptible. The problem arises when the position measure-
ments are differentiated to obtain velocity estimates. Then, the influence
of this nonlinearity becomes more important and it makes it necessary to
compensate for. We can see a scheme of the problem in Figure 6.4. The
diagonal dotted line is the ideal position measurement and the solid line
is the real measured position.

As a first approach we tried to model the nonlinearity as a sum of
sinusoidals. That is

qm = q+
∑

k

ak sin(kq+ φk) (6.3)

q

qm

π−π −3 −2 −1 0 1 2 3
−0.03

−0.02

−0.01

0

0.01
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q [rad]

q−
qm

 [r
ad

]

Figure 6.4 Left:Resolver nonlinearity problem. Real position q and measured
position qm. Right: Estimated shape of the resolver nonlinearity.
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6.3 Resolver Nonlinearity Compensation

which can be approximated by

qm � q+
∑

k

ak sin(kqm + φk) (6.4)

= q+
∑

k

α k sin(kqm) + β k cos(kqm) (6.5)

with

α k = ak cos(φk) (6.6)
β i = ak sin(φk); (6.7)

Equation (6.5) is linear in parameters so a standard Least Squares prob-
lem can be formulated. The main problem is to obtain a consistent data of
the nonlinearity qm − q. One way of obtaining an ideal estimate of q− qm
would be to keep the velocity at a constant value and simply De-trend the
resulting position measurements. This is not easy for different reasons.
When doing identification experiments the controller had to be turned off.
Otherwise the effect of the nonlinearity gets inside the feedback loop de-
stroying the validity of the data. It was found that the main modes of the
nonlinearity were k = 2 and k = 1. The Least Squares problem was solved
and the resulting parameters were

a2 = 0.0324 φ2 = 0.8421

a1 = 0.0027 φ1 = −1.0316 (6.8)

It seems that there is also a small amplitude high frequency term (k � 14)
that was very hard to identify. The results of the compensation are shown
in Figure 6.5.
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Figure 6.5 Uncorrected and corrected velocity estimates. We see how quanti-
tatively the improvement is not big, but notice that the main component of the
nonlinearity which causes the oscillation has been eliminated. There is still a very
characteristic kind of peaks that we will try to eliminate.
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Figure 6.6 Position measurement signal with sequences of two and three consec-
utive identical samples. The position signal is differentiated and low-pass filtered
to produce velocity estimates in which the effect of the identical samples can be
easily seen.

At a first sight, it seems that the compensation does not improve sub-
stantially the velocity estimates. If we have a closer look we see that the
fundamental mode of the nonlinearity has been eliminated while there is
a lot of pronounced peaks that are still remaining. It was found that this
peaks had nothing to do with the resolver nonlinearity but with a strange
feature of the measured position signal. We studied the raw unfiltered po-
sition signal coming from the robot system and found that these peaks are
produced by sequences of consecutive identical samples (Figure 6.6). The
number of consecutive equal samples of these sequences is typically two
or three. Although in some exceptional cases we founded up to four equal
samples. The reason for this problem has not been found yet at the mo-
ment of this thesis, and is probably a communication problem between the
robot sensors and the data acquisition system. As we needed to solve this
problem as fast as possible we implemented an alternative provisional so-
lution. A causal nonlinear filter was designed to reconstruct these identical
samples using information only from the past samples. It was conceived
to reconstruct up to three consecutive samples and it didn’t introduce any
sample delay in the system. The results of the compensation including
the nonlinear filter is shown in Figure 6.7. The fundamental mode of the
nonlinearity and the peaks have been eliminated.

Note that the resolver nonlinearity would be a good reason to use an
observer and to avoid dirty derivatives.
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6.4 System Identification of Joint 1
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Figure 6.7 Uncorrected and corrected velocity estimates after the noise filtering.
The main mode of the nonlinearity and the characteristic signal noise have been
eliminated. Notice (down left, t � 9s) the existence of a peak in the compensated
velocity signal. The nonlinear filter was implemented to compensate when finding
up to three consecutive equal samples. In this case there were four consecutive
equal samples.

6.4 System Identification of Joint 1

In order to build an observer for the robot manipulator we need to obtain a
suitable model and identify the corresponding parameters. We considered
the following model structure for robot Joint 1

m11 q̈1 + d1sign{q̇1} + d2 q̇1 + b = τ1 (6.9)
m11 = a1 + a2 sin2 q2 + a3 sin q2 (6.10)

where m11 represent the inertia of Joint 1 depending only on q2. This holds
since in the experiments only Joints 1 and 2 will move so that q3 = 0.
The torque offset b turned out to be important, despite it has not been
considered before.

An open-loop identification experiment was performed using the PRBS
signal of Figure 6.8 as a torque reference for Joint 1 and an ellipsoidal
position reference for Joint 2. A Least Squares problem was formulated
to identify the continuous time model (see [17, p.255]). We used “state-
variable filters” F0, F1 acting on the inputs and outputs of the system

F0 = 1
s+ 1

, F1 = s
s+ 1

(6.11)

and obtained the following filtered signals:

q1 f = F0q1, q2 f = F0q2, q̇1 f = F0 q̇1

q̈1 f = F1 q̇1, τ1 f = F0τ1
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Chapter 6. Force Estimation Experiment: Robotic Manipulator
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Figure 6.8 Left:PRBS signal used in the identification experiments. Right: Out-
puts from the Robot and from the estimated model

The LS problem becomes
τ1 f = Φθ + e (6.12)

with regressor matrix Φ and vector of unknown parameters θ

Φ = [ q̈1 f q̈1 f sin2 q2 f q̈1 f sin q2 f sign{q̇1 f } q̇1 f 1 ] (6.13)
θ = [ a1 a2 a3 d1 d2 b ]T (6.14)

The parameters obtained were

a1 = 0.0025 a2 = 8.9392 ⋅ 10−5 a3 = 8.1131 ⋅ 10−5 (6.15)
d1 = 0.0385 d2 = 0.0047 b = −0.0015 (6.16)

The Robot position and the position of the obtained model during the ex-
periment are shown in Figure 6.8.

6.5 Force Observer

First we will write (6.9) in state space form as
ẋ2 = [τ1 + Γ F − d1sign{x2} − d2x2 − b] 1

m11

ẋ1 = x2

m11 = a1 + a2 sin2 q2 + a3 sin q2

(6.17)

where x1 = q1, x2 = q̇1 and Γ F is the disturbance torque produced by the
environmental force F. Then we construct an observer as

˙̂x2 = [τ1 − d1sign{x̂2} − d2 x̂2 − b] 1
m11

+ K2 x̃1

˙̂x1 = x̂2 + K1 x̃1

x̃1 = x1 − x̂1

m11 = a1 + a2 sin2 q2 + a3 sin q2

(6.18)
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6.6 Experiment I

F
Γ FFz

Fx,y

l3

Figure 6.9 The contact force F, normal to the surface, generates a disturbance
torque ΓF . The force sensor gives measurements of Fz and Fx,y.

and following the same methodology we used in the previous chapters, the
observer estimation error dynamics yields

m11 ¨̃x1 + (d2 +m11 K1) ˙̃x1 + (d2 K1 +m11 K2)x̃1 = Γ F (6.19)

and the environmental torque can be estimated by

Γ̂ F = (d2 K1 +m11 K2)x̃1 (6.20)

The observer gains K1 and K2 are chosen such that the estimator has two
equal real poles. This holds when

K2 = (a1 K1 − d2)2
4a2

1
(6.21)

Around q2 = 0 we can approximate m11 � a1. Notice that with this force
observer what we really estimate is the environmental torque Γ F and mak-
ing use of the robot geometry is possible to estimate the contact force in
the gripper direction Fz as

F̂z = 1
l3

Γ̂ F (6.22)

In order to compare the measurements of the force sensor and the esti-
mated forces we will use the measurement Fz perpendicular to the robot
gripper coming from the sensor. This is a good approximation as long as
the contact force is perpendicular to the gripper and can be assumed equal
to Fz.

6.6 Experiment I

In the first experiment the robot manipulator was situated in front of a
blackboard and a square torque reference was given for Joint 1. A scheme
of the experimental setup can be seen in Figures 6.10-6.9. We tried to
place the blackboard so that it was perpendicular to the robot gripper
when having contact. In practice, the real contact force F was not exactly
perpendicular so it also generated forces Fx,y in the force sensor.

The results of Experiment 1 are shown in Figure 6.11.
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Chapter 6. Force Estimation Experiment: Robotic Manipulator

Figure 6.10 Experimental setup.
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Figure 6.11 Results of Experiment I. Right-Up the force sensor signal (solid line)
and the estimated environmental force (dashed). The estimated position (dashed),
Left-Down, follows the sensed position (solid) in free movement, but when in con-
tact there is a structured error that makes possible the force estimation.
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6.7 Experiment II
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Figure 6.12 Results of Experiment II. Force estimation while the robot manipu-
lator is moving in a circle in contact with the blackboard. The inertia m11 changes
with Joint 2 and the same constant torque produces different contact forces.

6.7 Experiment II

In the second experiment the robot moved as drawing a circle in the black-
board. A constant reference torque was given for Joint 1 and an ellipsoidal
position reference was given for Joint 2. The forces Fx,y non perpendicular
to the gripper were much bigger during this experiment due to the friction
between the blackboard and the gripper.

The results from Experiment 2 are shown in Figure 6.12.
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Figure 6.13 Simulink model used in the experiments.

6.8 Force Control using the Force Observer

In this section it would be shown how the Force Observer can be used
succesfully to perform a common force control task. The main objective is
to use the Force Observer to control the contact force between the robot
end-effector and the blackboard.

The ABB control computer hardware has been replaced by an external
VME-based control computer. The servo motors on the joints, the resolvers,
the power supply electronics and the safety board remains from the orig-
inal system. Matlab/Simulink and the Real-Time Workshop (RTW) have
been used for the industrial robot force control implementation. This tool-
box produces code directly from Simulink models and automatically builds
programs that can be run in a variety of environments. Figure 6.13 shows
the Real-Time Workshop scheme used for the IRB2000 force control. The
blocks Input to Simulink and Output from Simulink are S-Function writ-
ten in C that communicates the external modules with the Simulink inputs
and outputs. In this case we have 5 parameters inputs (L1..L5), the posi-
tion and the velocity of the IRB-2000 and the robot forces and torques. The
parameter inputs can be varied using a graphical parameter user interface
developed in the Department. It is a front-end interface on the workstation,
which allows the user to adjust the parameters of the controllers during
run-time. In this case we use the L1 parameter input as emergency signal,
L2 as the Kp gain, L3 as force input reference, L4 as reset signal for the
integral action, and L5 as the Ki gain.

The implemented force controller consists of a proportional and integral
part on the force error and a derivative term on the robot velocity.

τ c = Kp(Fref − F̂) + Ki

∫
(Fref − F̂)dt− Kvq̇ (6.23)

In the experiment a reference contact force was given varying from 0
to 60N. Experimental results can be seen in figures 6.14 and 6.15.
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Figure 6.14 Left graph Reference force Fref (dash-dot), sensed contact force F
(solid) and estimated contact force F̂ (dashed). Right graph input control sognal τ c
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Figure 6.15 Left graph sensed force tracking error Fref − F. Right graph force
estimation error F − F̂.

6.9 Discussion

The final implementation of the resolver compensation in the robot system
implied the construction of a look-up table with the values of the modeled
nonlinearity. This increased the computational efficiency of the compen-
sation. By using the look-up table the need for explicit identification of
the amplitude and phase of the harmonics could be by-passed. We directly
construct the table with the estimated values of the nonlinearity. Various
experiments were done until obtaining an estimate of the shape of the
nonlinearity (Figure 6.4).

The experiments show the good behavior of the Force Observer even
with the use of a very simplified model of the robot manipulator. The output
injection in the observer seem to be extremely efficient in compensating
possible parameter and structural model errors, while the environmental
forces were still able to deflect over them and produce consistent position
estimation errors.

Friction Considerations
When applying the Force Observer to systems with friction some important
considerations need to be done. Assume the simplified friction model with
stiction shown in figure 6.16 where the friction force is plotted as a function
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F

fs

q̇

Figure 6.16 Friction model considering stiction, viscous and Coulomb compo-
nents.

of the velocity. If the system has zero velocity, all the environmental forces
smaller that the value fs will not produce any effect on the system dynamics
either on the Force Observer. This means that the Force Observer is blind
to the scale of forces smaller than the stiction threshold f l.
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7. Concluding Remarks

7.1 Conclusion

A model based Force Observer for Vehicles and Robot Manipulators has
been introduced. Several simulations and an experiment with an Indus-
trial Robot have proven the versatility of this sensor-less approach to force
estimation. It has also been shown how the Force Observer for robotic
manipulators can be successfully integrated in a common force control ar-
chitecture.

The performance of the Force Observer depends mainly on how good
models we can obtain. This is actually a theoretical limitation which can be
trespassed with a meticulous system identification procedure. In the Robot
experiments we saw how our simplified model behaved reasonably well,
in part due to the stabilizing effect of the output injection. However, we
should notice that using the introduced Force Observer all the estimation
errors are directly attributed to environmental forces, which can lead to
important force estimation errors when dealing with poor models.

Noise sensitivity of the Force Observer has also been pointed out as a
major source of possible errors. This is specially clear in the linear case,
where we showed the high pass characteristic of the force estimation error
transfer function.

The observer gains play an extremely important role in the force esti-
mation performance. It has been shown how the Λ matrices are coefficients
of an imaginary damped spring mass system, and how the observer gains
can be used to shape these coefficients. Different approaches to the choice
of these gains and how they must balance the trade between sensor quality,
noise characteristics and estimation performance has also been presented.

7.2 Future Work

In the mark of this master’s thesis there is still theoretical and practical
work that can be done. One important implementational aspect to be solved
is the formulation of a systematic procedure for the choice of the observer
gains. As it was mentioned before, an optimization problem could be solved
in which some information about the environmental forces and the system
noises is assumed to be known.

An environmental Force Observer in ship dynamics has also been in-
troduced. One possible extension would be to integrate this estimation in
the passive nonlinear observer introduced by T. I. Fossen and J. P. Strand
in [7].

All the robot experiments have been done with a simplified model of
Joint 1. It would be very interesting to obtain a more complex model of the
robot with more degrees of freedom and use it to design more interesting
force control experiments.
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A. Matlab Code

A.1 Resolver Nonlinearity Identification

%---- IDENTIFICATION OF THE RESOLVER NONLINEARITY ----
global in
global inp_X resp_X;
%--- Defining input signals for the experiments-----
% square signal >>> Torque references
clear in
T1=1.4;
T2=15;
tsamp=0.005;
iend1=T1/tsamp;
iend2=T2/tsamp+iend1;
in(1:iend1)=0.17;
in(iend1:iend2)=0.12;
%square with initial ramp >>> Velocity references
A=20;
Tramp=1;
Tend=15;
tsamp=0.005;
iramp=Tramp/tsamp;
iend=Tend/tsamp
i(1)=0;
for i=2:(iramp)
in(i)=A*(i)/(iramp);

end
for i=iramp:iend
in(i)=A;

end

%--- Sending data to Exc_handler
Exc_handler(’update_input’,1,in,’replace’);
% 13 == velocity ref Joint 1 (remember to set Kpos=0)
% 1 == torque reference Joint 1 (remember to set RegOff(1))
% 7 == position reference Joint 1
%---- Using slaveplot the experiments have been recorded
%---- Ideally a sequence of constant velocity is obtained
%---- SSdata == [t q u usat qdot [] [] rawq ... ]
t=SSdata(:,1);
t=t-t(1);
qm=SSdata(:,2); % filtered and linked position
qmdot=SSdata(:,5); % diferentiated and filtered position
rqm=SSdata(:,8); % unfiltered unlinked raw position
%---- qm == Position filtered
%---- qmdot == Position diferentiated and filtered position
%---- rqm == Raw position unfiltered unlinked >> rqm in [-pi,pi]
%---- within one motor turn

clear tc; % determining blocks
tc(1)=1; % within one motor turn
p=2; % tc == vector of block index
for i=1:length(rqm)-1
if abs(rqm(i)-rqm(i+1))>1
tc(p)=i;
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A.1 Resolver Nonlinearity Identification

p=p+1;
end

end

%---- Defining identification data and visualization.
%---- Blocks within one motor turn are assumed with constant
%---- velocity. Then the blocks are de-trended and the nonlinearity
%---- phenomena becomes plausible. A mapping between time and angle
%---- can be done under constant velocity assumption.

figure
hold off
R=[];
Rtable=[]; % data for the construction of the look-up table
tR=[];
res=(2*pi)/(2^14);
angle_scale=[-pi:10*res:pi];
for i=1:length(tc) % we can choose the identification sequence
z=rqm(tc(i-1)+1:tc(i)); % creating a block
z=med_filter_resolver(z); % peack reduction filter
tz=-pi+(0:(2*pi)/length(z):2*pi-(2*pi)/length(z))’; % block angle scale
z=z-((z(length(z))-z(1))/(tz(length(tz))-tz(1)))*tz; % de-trending
z=detrend(z,’constant’);
R=[R;z]; % vector of blocks
tR=[tR;tz]; % vector of angles
%------
tmp=[];
for angle=angle_scale
tmp=[tmp interp1(tz,z,angle)];

end;
Rtable=[Rtable; tmp];

%-----
plot(tz,z)
hold on
grid on
pause % visualization

end

%----------- SINUSOIDAL IDENTIFICATION -----------------------

%---- Least Squares formulation
%---- yfit=a2*sin(2*q+fi2) + a1*sin(q+fi1)
%---- yfit=[a2*cos(fi2)]*sin(2q)+[a2*sin(fi2)]cos(2q)=REG*theta

REG=[sin(2*tR) cos(2*tR) sin(tR) cos(tR)];

theta=inv(REG’*REG)*REG’*R;
a2=sqrt(theta(1:2)’*theta(1:2)); % a2 =0.0324
fi2=atan(theta(1)/theta(2)); % fi2 =0.8421
a1=sqrt(theta(3:4)’*theta(3:4)); % a1 =0.0027
fi1=atan(theta(3)/theta(4)); % fi1 =-1.0316

%----------- LOOK-UP TABLE APPROACH -----------------------
%%---- Defining shape of nonlinearity for look-up table

global nl nllong bias
nl=mean(RRR);
bias=nl(1); % we separate the nonlinearity by nl (nl(1)==0)
nl=nl-bias; % and bias, (bias==nl(1))
nllong=interp(nl,10); % resample

%---------- VALIDATION ----------------------------------------
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%---- validation data loaded, SSdata_validation >> qm, rqm, qmdot...

%---- Non corrected position rqm motor
xl=fast_link_resolver(rqm); % links the raw position
xl=med_filter_resolver(xl); % nonlinear filter, peack filtering
%---- Corrected look-up table rqm motor
rqmcorr=correct_resolver_table(rqm);
qmcorr=fast_link_resolver(rqmcorr);
qmcorr=qmcorr+bias;
qmcorr=med_filter_resolver(qmcorr);
%---- Corrected sinusoidals rqm motor
rqmcorr=rqm-a2*sin(2*rqm+fi2)-a1*sin(rqm+fi1);
qmcorr=link_resolver(rqmcorr);
qmcorr=med_filter_resolver(qmcorr);
%---- Perform filtering and derivating from ’robot_filters.mdl’
%---- UnfilteredPosition -> FilteredPosition, FilteredVelocity
%---- UnfilteredPosition = [time’ qmcorr’]
time=(0:1/4e3:(length(qmcorr)-1)/4e3)’;
UnfilteredPosition = [time qmcorr];

sim(’robot_filters’); % simulink model

A.2 Look-up Table for Nonlinearity Compensation

%--- Table For Resolver compensation
%--- Stored in ’resolver1comp_alex.txt’
%--- and ’resolver1bias_alex.txt’
%---
%--- 0,0,0,0,0,0,0,0,
%--- 0,0,0,0,0,0,0,0,
%--- ...............
%--- 0,0,0,0,0,0,0,0,
%--- 2^12 rows; 2^14=16384 integer values of the nonlinearity
%--- scaled by [0:2*pi]->[0:16383]

% compensation parameters %
% vector nllong=interp(nl,10), length(nllong)=16390
% bias, bias=0.0219 global variables nllong and bias

global nllong bias

fid= fopen(’resolver1comp_alex.txt’,’w’);
fidbias=fopen(’resolver1bias_alex.txt’,’w’);

fprintf(fidbias,’%d \n’,-bias);

p=1;
for i=1:16383
z=round(-nllong(i)*(32768/(pi)));
if p~=8
fprintf(fid,’ %d , ’,z);
p=p+1;

elseif p==8
fprintf(fid,’ %d , \n ’,z);
p=1;

end
end
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A.3 Peak Filtering ( .mod file)

z=(-nllong(16384)/16384)*2*pi;
z=round(z);
fprintf(fid,’ %d \n ’,z);

A.3 Peak Filtering ( .mod file)

IF i=0 THEN
vPos[3] :=vPos[2]; (* Update of vPos *)
vPos[2] :=vPos[1];
vPos[1] :=vPos[0];
vPos[0] :=pos[i];
IF pos[i]=vPos[1] THEN (*two consecutive samples equal*)

IF pos[i]=vPos[2] THEN (*three consecutive samples equal*)
IF pos[i]=vPos[3] THEN (*four!--> position is really constant?!!*)

slope:=0.0;
END;
pos[i]:=vPos[2]+2.0*slope; (*solution to three equal samples*)

ELSE
pos[i]:=vPos[1]+slope; (*solution to two equal samples*)

END;
ELSIF vPos[1]<>vPos[2] THEN (*if pos(i-1)=pos(i-2)->> we can’t update!*)

slope:=pos[i]-vPos[1]; (* update of slope *)
END;

END;

A.4 Identification of Joint 1

%---- IDENTIFICATION OF ROBOT JOINT 1 -------

%---- m_11*qddot + d1*sign(qdot) + d2*qdot + b = u
%---- m_11=a1+a2*sin^2(q2)+a3*sin(q2)

RegOff(1);

%---- After experiments with Exc_handler

u=inp_X(1,:)’;
q1=resp_X(1,:)’;
q2=resp_X(2,:)’;
q3=resp_X(3,:)’;
q1dot=resp_X(4,:)’;

%---- Filtering
tsamp=5e-3;
a=0.95;
Gfilt=tf((1-a),[1 -a],tsamp);
Gfiltd=tf([(1-a) (a-1)],[tsamp -a*tsamp 0],tsamp);
q1f=lsim(Gfilt,q1,time);
q2f=lsim(Gfilt,q2,time);
q3f=lsim(Gfilt,q3,time);
q1dotf=lsim(Gfilt,q1dot,time);
q1ddotf=lsim(Gfiltd,q1dot,time);
uf=lsim(Gfilt,u,time);

%---- Construction of the regressor
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REG1=q1ddotf;
REG2=q1ddotf.*sin(q2f).*sin(q2f);
REG3=q1ddotf.*sin(q3f).*sin(q3f);
REG4=q1ddotf.*cos(q2f).*cos(q2f);
REG5=q1ddotf.*cos(q3f).*cos(q3f);
REG6=q1ddotf.*cos(q3f).*sin(q2f);
REG7=sign(q1dotf);
REG8=q1dotf;
REG9=q1ddotf.*sin(q2f);
REG10=abs(REG7);

REG=[REG1 REG2 REG9 REG7 REG8 REG10];
theta=inv(REG’*REG)*REG’*uf;

a1=theta(1);
a2=theta(2);
a3=theta(3);
d1=theta(4);
d2=theta(5);
b=theta(6);

%---- VALIDATION -------------------------------

%---- we will feed the robot model in the simulink file
%---- ’robobserver.mdl’ with the real robot data
%---- and compare the output of the model with the real positions
u=J1_newexp(:,1);
q1=J1_newexp(:,2);
q2=J1_newexp(:,3);
q3=J1_newexp(:,4);
q1dot=J1_newexp(:,5);
time=(0:tsamp:(length(u)-1)*tsamp)’;
%---- Defining inputs to Simulink >> from workspace
uu=[time u];
pos2=[time q2];
pos3=[time q3];
pos1=[time q1];
vel=[time q1dot];

sim(’robobserver’)
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Figure B.1 Force Observer for linear systems, Force Corrected Observer and
Ramp Force Observer.
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Figure B.5 Force Observer for Ships.
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