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1. Introduction  
The purpose of this master thesis consist of two differents parts: 

1. By means of the maple program, and using two differents method’s, obtain 
the dynamical model of a serial Robot that in our case will have three or two 
links. 

2. Estimate inertial parameters of this Robot ,in a pendulum and in a real plant, 
that in our case will be the inertia-wheel.  

1.1 Estimation of inertial parameters 

There are three main methods for restimating the inertial parameters, 
First ,physical experiments: If we could disassemble the robot to isolate each part of 
it, then the following parameters could be obtain by physical experiments 
(Armstrong): 
 

•  The mass could be weighed directly 
•  The coordinates of the center-of –mass could be estimated by determining        

counterbalanced of points of the link. 
•  The diagonal elements of the inertia tensor could be obtained by pendulum 

motion. 
 

Second, using CAD/CAM models: all robotics CAD/CAM packages provides tools 
to calculate the inertia from 3D models. This method is prone to errors due to the 
fact that the geometry of the links is complicated to define precisely, and those 
certain parts such bearings,bolts,nuts and washers are generally neglected. 
Third,identification,this approach is based on the analysis of the “input/output” 
behaviour of the robot on some planned motion and on estimation of the parameters 
values minimizing the differences between a function of the real robot variables and 
its mathematical model. This method has been used extensively and was found to be 
the best in terms of ease of experimentation and precision of the obtained values. 
 
1.1 Identification procedure 
 
Several schemes have been proposed in the literature to identify the dynamic 
parameters. These methods presents the following features: 
 

•  The use of a linear model in the dynamic parameters 
•  The construction of an over determined linear systems equations by applying     

the identification model at sufficient number of points along some trajectories 
of the robot. In general a constant sampling rate is used between the different 
points 

•  The estimation of the parameters values using linear regression technique
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2. Different  algorithm types applied to estimation. 

2.1 Least squares 
 
The least-squares method can be applied to large variety of problems. It is 
particularly simple for mathematical model that can be written in the form[1], 

 
                  0 0 0 0

1 1 2 2( ) ( ) ( ) ( ) ( )T
n ny i i i i iϕ θ ϕ θ ϕ θ ϕ θ= + + + =L                        (2.1) 

   
where y is the observed variable 0 0 0

1 2, , , nθ θ θK  are parameters of the model to be 
determined, and 1 2, , , nϕ ϕ ϕK  are known functions that may depend on other know 
variables. The vectors 

                                ( )1 2( ) ( ) ( )   ( )T
ni i i iϕ ϕ ϕ ϕ= L                                  (2.2) 

                      ( )0 0 0 0
1 2    

T

nθ θ θ θ= L                                            (2.3) 

                                      ( ) 1ˆ T TYθ
−

= Φ Φ Φ                                                     (2.4) 
 

have also been introduced. The model is indexed by the variable i, which often 
denotes time. The variables iϕ  are called the regression variables or the regressors 
and the model(2.1) is called regression model. Pairs of observations and regressor 
are obtained from n experiment. The problem is to determine the parameters in such 
a way that the outputs computed from the model are  as closely as possible with the 
measured variables y(i) in the sense of least-squares. 
 
Least squares has several attractive features for purposes of identification: 
 

1. Large errors are penalized. 
2. The least-squares estimates can be obtained by straightforward matrix 

algebra. 
3. The least-squares criterion is related to statistical variance, and the properties 

can be analysed according to statistical criteria. 
 

2.2 Linear estimation algorithm for affine parametric   

      non-linear system proposed by Middleton and Goodwin.   

 
Consider the following parametric non-linear model 
 



2.Different algorithm types applied to estimation 

                                                                                               

1 0

2 1

( ) ( , )Tx f x F x u
x x

θ = +


=

&

&
                           (2.5) 

 
with 
 

state variables 

non-linear functions 

vector of unknown constant parameters 

and suppose that 1x  and 2x  are known, but not 1x& .Let us apply the stable filter 1
1s +

 

to the first equation of (2.5), in order to avoid the calculation of the joint 
accelerations, then we have  
 

                            1 0
1 1( ) ( , )

1 1 1
Ts x f x F x u

s s s
θ= +

+ + +
                              (2.6) 

 
Denoting the filtered versions of the known quantities 1x , 0 ( )f x  and ( , )TF x u  by 
 

                                                     1, 1
1       

1fx x
s

=
+

                                            (2.7) 

                                                       0, 0
1( ) ( )

1ff x f x
s

=
+

                                       (2.8) 

                                                     1( , ) ( , )
1

T T
fF x u F x u

s
=

+
                                  (2.9) 

we can rewrite (2.6) as  
 
                                               1 0, 1,( ) ( , )T

f f fx f x F x u xθ= + +                                 (2.10) 
 
If instead of the unknown θ  we use its estimatedθ̂ ,the corresponding predicted 
value of 1x  is 
 
                                               1 0, 1,

ˆˆ ( ) ( , )T
f f fx f x F x u xθ= + +                                 (2.11) 

 
and the prediction error e is related to the estimation error ˆθ θ θ= −%  as follows: 
 
                                               1 1 1ˆ ( , )T

fe x x x F x u θ= − = = %%                                     (2.12) 
 
We propose the following unnormalized gradient-type estimation algorithm: 
 

1 2

0

,

( ) , ( , )

n

n T n p

p

x x R

f x R F x u R

Rθ

×

∈

∈ ∈

∈
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                                                      ˆ ( , )fh F x u eθ = ⋅ ⋅&                                             (2.13)                       
 
with h positive constant 
The following lemma establishes some of the properties of the above estimator. 
 
Lemma 1 The estimator(2.13) applied to the system(2.12),yields the following 
properties 

 
1. θ%  is bounded. 
2. If rank ( ( , ) ( , ))T

f fF x u F x u p=  then ˆlim 0
t

θ
→∞

= . 

Proof.  Consider the Lyapunov function 
 

                                                        1( )
2

TV θ θ θ=% % %                                              (2.14) 

 
using (2.12) and (2.13) we can show that 
 
                                             ( , ) ( , )T T

f fV h F x u F x uθ θ= − % %&                                      (2.15) 
 
V& is negative definite whenever rank ( ( , ) ( , ))T

f fF x u F x u p= ,otherwise is negative 
semidefinite, than we will see the desidered result in the next chapter. 
 
 

2.3 Unnormalized least squares estimation 

The dynamic equations of motion for a general rigid link manipulator having n 
degrees of freedom can be describes as follows: 
 

                                { } 1( ) ( ) ( )
2

T
G M

d dI I
dt d

θ θ τ θ τ θ θ θ
θ
 = + +  

& & &
% %

                          (2.16)       

where 
 

is the robot joint angles;

   is the robot joint angular velocities;

( ) ( ) ( )  is the inertia matrix
 is the gravity torque vector;

 is the motor or actuatortorque vec

n

n

T n n

n
G

n
m

R

R

I I R
R

R

θ
θ

θ θ θ
τ
τ

×

∈

∈

= > 0, Ι ∈

∈

∈

%
&
%

% % %

%

%
tor
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We will assume that some parameters are known, by physical mesurements, and we 

take the view that is illogical to estimate known quantities. 

We now define: 

 

                                          
1

( ) ( ) ( )
N

k k
k

I J K mθ θ θ
=

= +∑                                           (2.17) 

where ( )J θ  represents the known portion of the inertia matrix and ( )kK θ  is the 

gravity matrix corresponding to the location of the kth mass. 

We can rewrite then: 

                                             
1

( ) ( ) ( )
N

G k k
k

G H mτ θ θ θ
=

= +∑
%% % % % %

                                    (2.18) 

and in view of (2.17) we shall rewrite 

                                   
1

1 ( ) ( , ) ( , )
2

N
T

k k
k

d I D E m
d

θ θ θ θ θ θ θ
θ =

  = +  ∑& & & &
%% % % % % %

%

                       (2.19) 

Using (2.17),(2.18) and (2.19) we can rewrite (2.16) as: 

                                                       T
MM Yφ τ= +

% %
                                                (2.19) 

where 

                                        { }( ) ( ) ( , )dY J G D
dt

θ θ θ θ θ= − + +& &
% %% % % % % %

                               (2.20) 

                                             [ ]1 2  T
NM m m m= LL

%
                                    (2.21)  

              
   , and the kth row of  isN nRφ φ×∈  
 

                                   { }( ) ( ) ( , )
T

k k k
d K H E
dt

φ θ θ θ θ θ = − −  
& &

% %% % % % %
                            (2.22) 

 
Note that equation (2.19) is linear in the parameter vector, M

%
,and so linear 

estimation can be used provided φ , and mY τ
% %

 are available. 
Now we will suppose that only velocities and position are kown.In order to achieve 

this, we operate on the left of (2.22) by 
D

ω
ω+

 where dD
dt

=  and ω  is some 

constant. 
 
                                                        T

F FM Yψ τ= +
% %

                                             (2.23) 
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where 

                                                      T

D
ωψ φ

ω
 =  + 

                                              (2.24) 

                                                      FY Y
D

ω
ω

 =  + % %
                                              (2.25) 

and  
 

                                                       F mD
ωτ τ

ω
 =  + % %

                                           (2.26) 

 
 

 and FYψ
%

 are functions of and θ θ&
% %

,but not θ&&
%

.The dependence of  and FYψ
%

 on θ&&
%

 
has been eliminated by the filtering. 
We propose that estimation be based on (2.23) as follows. Given an estimated M̂

%
, of 

M
%

define the vector prediction error, ˆ( )e M
%%

by 
 
                                     ˆ ˆ ˆ( ) ( ) ( )T T

F Fe M Y M Mτ ψ ψ= + − = −
% % %% %

                               (2.27) 
 
 
where  ˆM M M= −%

% % %
 

 
A large number of parameter estimation procedures can be derived on the above 
equations by simple extensions to the estimators in Goodwin and 
Mayne(1985).Since the robot equations are coupled and non-linear, additional 
problem arise in the stability analysis of adaptive controllers. We propose the 
following unnormalized least squares estimation algorithm: 
 

                                                      M̂ P eα= ⋅ ⋅Ψ ⋅&

% %
                                               (2.28) 

TP P Pα= − ⋅ ⋅Ψ ⋅Ψ ⋅&                                           (2.29) 
 
where , (0) (0) 0 and N N TP R P P α×∈ = >  is a positive ,constant. The following 
lemma established some of the properties of the above estimator. 
 
Lemma 1 The estimator(2.28),(2.29) applied to the system(2.27),yields the 
following properties 
 

1. M̂  is bounded. 
2.  e

%
belongs to 2L  

 
Proof.  Consider the Lyapunov function 
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1TV M P M−= % %
% %

                                                        (2.30) 
 
using (2.27) to (2.29) we can show that 
                                                  TV e eα= −&

% %
                                                          (2.31) 

 
The desired results then follow.  
Note also that any modification to (2.29) can be included provided: 
 

1. The modification is positive Semi-definite. 
2. The  modification is such that P remains bounded for all time. 

 

3. Method’s to obtain the model 

3.1 Newton-Euler iterative method 
 
Consist of two different steps 
 
First, Outwards iterations to compute velocities and accelerations. 
In order to compute inertial forces acting on the links it is necessary to compute            
the rotational velocity and linear and rotational acceleration of the center of mass of 
each link of the manipulator at given at any instant. 
These computations will be done in an iterative nature starting with link 1 and 
moving sucessively, link by link to, outward to link n. 
The propagation of rotational velocity from link to link is given by, 
 
i+1 i+1 i i+1

i+1 i i i+1 i+1
ˆω = R ω +θ Z&                  (3.1) 

 
The propagation of rotational acceleration from link to the next link is given by, 
 
i+1 i+1 i i+1 i i+1 i+1

i+1 i i i i i+1 i+1 i+1 i+1
ˆ ˆω = R ω + R ω ×θ Z +θ Z& &&& &                                                        (3.2) 

 
When the joint is i+1 is prismatic, this simplifies to 
 
i+1 i+1 i

i+1 i iω = R ω& &                                                                                                         (3.3) 
 
The linear acceleration of each link frame origin is  
 

( )i+1 i+1 i i+1 i i i i
1 i i i+1 i i i+1 iv = R ω × P + ω × ω × P + vi+

  && &                       (3.4) 

 
which for prismatic joint i+1 becomes 
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( )i+1 i+1 i i+1 i i i i
1 i i i+1 i i i+1 i

1 1 1
1 1 1 1 1

v = R ω × P + ω × ω × P + v

ˆ ˆ           2

i

i i i
i i i i id Z d Zω

+

+ + +
+ + + + +

  

+ × +

&& &

& &&
                                                      (3.5) 

 
We also need the linear acceleration of the center of mass of each link, which also 
can be found by applying 
 

( )i+1 i+1 i+1

i+1 i+1 i+1 i+1 i+1 i i+1
c i+1 c i+1 i+1 c i+1v = ω × P + ω × ω × P + v&& &                                               (3.6) 

 
Where we imagine a frame,{ }iC , attached to each link with its origin located at the 

center of mass of the link, and with the same orientation as the link frame, { }i . 
Note that the application of the equations to link 1 is especially simple since  
 
0 0

0 0 0ω ω= =&                    (3.7) 
 
Having computed the linear and angular accelerations of the mass center of each 
link, we can apply the Newton-Euler equations to compute the inertial force and 
torque acting at the center of mass of each link. Thus we have, 
 

ii cF =mv&                    (3.8) 
i ic c

i i i iN I Iω ω ω= + ×&                   (3.9) 
  
Where { }iC  has its origin at the center of mass of the link, and has the same 

orientation as the link frame, { }i . 
Second, Inwards iterations to compute forces and torques. 
 
Having computed the forces and torques acting on each link, it now remains to 
calculate the joint torques which will result in these net forces and torques being 
applied to each link. 
We can do this by writing a force balance and moment balance equation based on a 
free body diagram of a typical  link. 
Each link has forces and torques exerted on it by its neighbors,and in addition 
experiences an inertial  the force and torque. 
The complete algorithm for computing joint torques from the motion of the joints is 
composed of two parts. First, link velocities and accelerations are iteratively 
computed from link 1 to link n and the Newton-Euler equation are applied to each 
link. Second, forces and torques of interaction and joint actuator torques are 
computed recursively from link n back to link 1.The equations are summarized 
below from the case of all joints rotational 
 
 
 



3. Method’s to obtain the model 

                                                                                                

Outward iterations:   i: 0  to 2 
 
i+1 i+1 i i+1

i+1 i i i+1 i+1
ˆω = R ω +θ Z&                (3.10) 

i+1 i+1 i i+1 i i+1 i+1
i+1 i i i i i+1 i+1 i+1 i+1

ˆ ˆω = R ω + R ω ×θ Z +θ Z      & &&& &                                                (3.11) 

( )( )i+1 i+1 i i i i i i
i+1 i i i+1 i i i+1 iv = R ω × P + ω × ω × P + v& & &                                                        (3.12) 

( )i+1 i+1 i+1

i+1 i+1 i+1 i+1 i+1 i i+1
c i+1 c i+1 i+1 c i+1v = ω × P + ω × ω × P + v&& &                        (3.13) 

i+1

i+1 i+1
i+1 i+1 cF =m v&                            (3.14) 

i+1 i+1c ci+1 i+1 i+1 i+1
i+1 i+1 i+1 i+1 i+1 i+1N = I ω + ω × I ω&              (3.15) 

 
 
Inward iterations:   i:  3 to 1 
 
i i i+1 i

i i+1 i+1 i= R +f f F              (3.16) 

i+1

i i i i+1 i i i i i+1
i i+1 i+1 c i i+1 i+1 i+1= R + P P Rin N n F f+ × + ×          (3.17) 

i
ˆi T i

i in Zτ =               (3.18) 
 
Mass distribution 
 

xx xy xz

I yx yy yz

zx zy zz

I I I
A I I I

I I I

 − −
 = − 
 − − 

            (3.19) 

 

( )

( )

( )

2 2

0 0 0

2 2

0 0 0

2 2

0 0 0

w h l

xx

w h l

yy

w h l

zz

I y z dxdydz

I x z dxdydz

I x y dxdydz

ρ

ρ

ρ

= +

= +

= +

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

                       

( )

( )

( )

0 0 0

0 0 0

0 0 0

w h l

xy

w h l

xz

w h l

yz

I xy dxdydz

I xz dxdydz

I yz dxdydz

ρ

ρ

ρ

=

=

=

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 

 
3.1.1 Example 
We assume that the mass distribution is simple; all mass exists as a point mass at the 
distal end of each link. The masses are m1 and m2. 
The vectors which locate the center of mass for each link are 
 

1

1
1 1

ˆ
CP l X=                (3.20) 
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2

2
2 2

ˆ
CP l X=                (3.21) 

 
Because of the point assumption, the inertia tensor written at the center of mass for 
each link is the zero matrix: 
 

1 0C
CI =                (3.22) 

2 0C
CI =                (3.23) 

 
There are no forces acting on the end effector, and so we have 
 

3 0f =                              (3.24) 

3 0n =                              (3.25) 
 
The base of the robot is not rotating, and hence we have 
 

0 0ω =                   (3.26) 

0 0ω =&                   (3.27) 
 
To include gravity forces we will use 
 
0

0 0̂v gY=&                  (3.28) 
 
The rotation between succesives link frames is given by 
 
 

1 1

1 1 1

0
0

0 0 1

i i
i

i i i

c s
R s c

θ θ
θ θ

+ +

+ + +

− 
 =  
  

               (3.29) 

 

 

1 1
1

1 1

0
0

0 0 1

i i
i

i i i

c s
R s c

θ θ
θ θ

+ +
+

+ +

 
 = − 
  

                                            (3.30) 

 
And the transformation is given by 
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1

1 1 1 11

1 1 1 1

0

0 0 0 1

i i i

i i i i i i ii
i

i i i i i i i

c s a
s c c c s s d

T
s s c s c c d

θ θ
θ α θ α α α
θ α θ α α α

−

− − − −−

− − − −

− 
 ⋅ ⋅ − − ⋅ =
 ⋅ ⋅ ⋅
 
 

                 (3.31) 

 
The outwards iterations for link 1 are as follows: 
 

1
1 1 1

1

0
ˆ 0Zω θ

θ

 
 = =  
  

&

&
                (3.32) 

 

1
1 1 1

1

0
ˆ 0Zω θ

θ

 
 = =  
  

&&&

&&
                (3.33) 

1 1 1
1

1 1 1 1

0 0
0

0 0 1 0 0

c s gs
v s c g gc

     
     = − =     
          

              (3.34) 

1

2
1 1 1

1
1 1 1

0
0

0 0 0
C

l gs
v l gc

θ
θ

 −   
    = + +    
        

&

&&&                (3.35) 

2
1 1 1 1 1

1
1 1 1 1 1 1

0

m l m gs
F m l m gc

θ
θ

 − +
 = − + 
  

&

&&                (3.36) 

1
1

0
0
0

N
 
 =  
  

                 (3.37) 

 
The outwards iterations for link 2 are as follows: 
 

2
2

1 2

0
0ω

θ θ

 
 =  
 + & &

                         (3.38) 
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2
2

1 2

0
0ω

θ θ

 
 =  
 + 

&
&& &&

                (3.39) 

2 2
2 2 1 1 1 1 2 1 2 12

2 2
2 2 2 1 1 1 1 1 2 1 2 12

0
0

0 0 1 0 0

c s gs l l s l c gs
v s c gc l l c l s gc

θ θ θ
θ θ θ

   − − + 
    = − + = + +    
         

& && &

&& && &            (3.40) 

2

2
1 1 2 1 1 2 1 2 12

2 2
2 1 2 1 1 2 1 2 12

0 ( )
( ) 0

0 0 0
C

l l s l c gs
v l l c l s gc

θ θ θ θ
θ θ θ θ

   − + − + 
    = + + + + +    
         

& & && &

&& && && &&            (3.41) 

2
2 1 1 2 2 1 2 2 12 2 2 1 2

2 2
2 2 1 1 2 2 1 2 2 12 2 2 1 2

( )
( )

0

m l s m l c m gs m l
F m l c m l s m gc m l

θ θ θ θ
θ θ θ θ

 − + − +
 = − + − + 
  

&& & & &

&& & && &&             (3.42) 

 

2
2

0
0
0

N
 
 =  
  

                 (3.43) 

 
Inwards iterations for link 2 are as follows: 
 
2 2

2 2f F=                  (3.44) 

2
2

2 2
2 1 2 2 1 2 1 2 2 1 2 2 12 2 2 1 2

0
0

( )
n

m l l c m l l s m l gc m lθ θ θ θ

 
 =  
 + + + + && & && &&

           (3.45) 

 
Inwards iterations for link 1 are as follows: 
 

2
2 2 2 1 1 2 2 1 2 2 12 2 2 1 2

1 2
1 2 2 2 1 1 2 2 1 2 2 12 2 2 1 2

2
1 1 1 1 1

1 1 1 1 1

0 ( )
0 ( )

0 0 1 0

       +
0

c s m l s m l c m gs m l
f s c m l c m l s m gc m l

m l m gs
m l m gc

θ θ θ θ
θ θ θ θ

θ
θ

 − + − + 
  = − − + − +  
     

 − +
 − + 
  

&& & & &

&& & && &&

&

&&

          (3.46) 
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1
1

2 2
2 1 2 2 1 2 1 2 2 1 2 2 12 2 2 1 2

2
2 1 1 1 1 1

2 2 2
2 1 1 2 1 2 2 1 2 2 2 2 12 2 1 2 2 1 2 2 2 2 12

0
0

( )

0
    0

0
    0

( ) ( )

n
m l l c m l l s m l gc m l

m l m l gc

m l m l l s m l gs s m l l c m l gc c

θ θ θ θ

θ

θ θ θ θ θ

 
 =  
 + + + + 
 
 +  
 + 
 
 +  
 − + + + + + 

&& & && &&

&&

&& & & && &&

    (3.47) 

 
Extracting the Ẑ components of the i

in ,we find the joints torques: 
 

2 2
1 2 2 1 2 2 1 2 2 1 2 1 2 1 1

2 1 2 2 1 2 2 2 12 1 2 1 1

( ) (2 ) ( )

      2 ( )

m l m l l c m m l

m l l s m l gc m m l gc

τ θ θ θ θ θ
θ θ

= + + + + +

− + + +

&& && && && &&

& &
            (3.48) 

2 2
2 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 12 1 2 1 1( ) ( )m l m l l c m l l s m l gc m m l gcτ θ θ θ θ= + + + + + +&& && && &          (3.49) 

3.2 Using the Lagrange method   

To present the general form of the dynamic model of robots and to get an insight into 
its properties. We consider an ideal system without friction or elasticity, exerting 
neither forces nor moments on the environment. 
The Lagrange formulation describes the behaviour of a dynamic system in terms of 
work and energy stored in system. The Lagrange equations are commonly written in 
the form: 
 

     1,...i
i i

d L L for i n
dt q q

∂ ∂Γ = − =
∂ ∂&

              (3.50) 

 
where L is the Lagrangian of the robot defined as the difference between the kinetic 
energy E and the potential energy U of the system: 
 
L=E-U                  (3.51) 
 
Define the Kinetic energy as, 
 
1
2

T Tq Aq&                  (3.52) 
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where A is the (nxn) symmetric and positive definite inertia matrix of the robot. Its 
elements are function of the joint positions. 
Since the potential energy is a fuction of the joints positions equations (3.51) and 
(3.52) lead to, 
 

( ) ( , ) ( )A q q C q q q Q qΓ = + +&& & &                (3.53)
  
where 
 
 ( , )C q q q& &  is the (nx1) vector of coriolis and centrifugal torques, such that: 

ECq Aq
q

∂= −
∂

&& &                 (3.54) 

[ ]1
T

nQ Q Q= K   is the vector of gravity torques.     
 
Consequently, the dynamic model of a robot is described by n coupled and non-
linear second order differential equations. 
There exits several forms for the vector ( , )C q q q& & .Using the Christoffell symbols 

,i jc ,the (i,j) element of the matrix C can be rewritten as 
 

,
1

,

                                                                                           (3.55)

1                                                
2

n

ij i jk k
K

ij jkik
i jk

k j i

C c q

A AAc
q q q

=

=

 ∂ ∂∂= + + ∂ ∂ ∂  

∑ &

                      (3.56)







        
 
The elements of A,C and Q are functions of the geometric and inertial parameters of 
the robots . 

3.2.1 How to obtain the matrices A,C,Q 

 
To compute the elements of A,C and Q,we begin by symbolically computing the 
expressions of the kinetic and potential energies of all the links of the robot. 
 
Computation of the kinetic energy: 
 
The kinetic energy is given as follow, 
 

1

n

j
j

E E
=

=∑                  (3.57) 
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where jE  denotes the kinetic energy of link j,which can be computed by: 
 

1
2

T T
j j G j j j G j G jE I M V Vω ω = +                                                                             (3.58) 

 
If observe the  graph() the velocity of the center of mass can be expressed as 
 

jG j j jV V Sω= + ×                 (3.59) 
 
and  
 

ˆ ˆ
j G j j j jJ I M S S= −                 (3.60) 

 
then the Eq. becomes: 
 

( )1 2
2

T T T
j j j j j j j j jE J M V V MS Vω ω ω = + + ×              (3.61) 

 
Equation(3.58) is not linear in the coordinates of the vector jS .On the contrary 
equation(3.61) is linear in the elements of ,   j j jM MS and J ,which we call the 
standard inertial parameters. The linear and angular velocities  and j jV ω  are 
computing using the following recursive equations 
 

1j j j jq aω ω σ−= + &                 (3.62) 

1 1j j j j j j jV V L q aω σ− −= + × + &                (3.63) 
 
where 0jσ =  if joint j is revolute, 1jσ =  if joint j is prismatic, and 1j jσ σ= −  
 
If the base of the robot is fixed, the previous equations are initialized by 

0 00  0V and ω= = . 
All the elements appearing in equation(3.61) must be expressed in the same frame. 
The most efficient way to express them relative to frame jR .Therefore, the equations 
(3.61),(3.62)and (3.63) are rewritten as, 

 
 

( )
1

1 2
2

n
j T j j j T j j T j j

j j j j j j j j j j
j

E E J M V V MS V xω ω ω
=

 = = + + ∑                (3.64) 

1
1 1

j j j j
j j j j j jA q aω ω σ−

− −= + &               (3.65) 

( )1 1 1
1 1 1

j j j j j j
j j j j j j j jV A V x P q aω σ− − −

− − −= + + &            (3.66) 
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The parameters  and j j
j jJ MS  are constants. 

3.2.2 Computation of the potential energy 

 
The potential energy is given by 
 

( )0,
1 1

n n
T

j j j j
j j

U U M g L S
= =

= = − +∑ ∑               (3.67) 

 
where 0, jL  is the position vector from the origin 0   jO to O .Projecting the vectors 
appearing in (3.67) into frame 0R ,we obtain: 
 

( )0 0 0T j
j j j j jU M g P A S= − +                            (3.68) 

 
an expression then can be rewritten linearly in ,  elements of  :j jM and MS as   
 

( )0 0 0T j
j j j j jU g M P A MS= − +               (3.69) 

 
Since the kinetic and potential energies are linear in the elements of  

,   j j jM MS and J ,we deduce that the dynamic model is also linear in these 
parameters. 
 

3.2.3 Dynamic model properties 

 
In this section we summarize some properties of the dynamic model of robots: 
 

1. The inertia matrix A is symmetric and positive definite 
2. The energy of link j is function of ( ) ( )1 1, ,  and , ,j jq q q q& &K K  

3. The element ijA  is a function of 1, ,k nq q+ K  with k=min(i,j),and of the inertial 
parameters of links , ,r nK with r=max(i,j) 

4. iΓ is a function of the inertial parameters of links , ,i nK  

5. The matrix ( )2 ,d A C q q
dt
 −  

&  is skew-symmetric for the choice of the matrix 

C given in equation(3.55) and (3.56) 
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6. The inverse dynamic model is linear in the elements of the standard inertial 
parameters ,   j j jM MS and J .This property is exploited to identify the 
dynamic parameters, to reduce the computation burden of the dynamic 
model. 

7. There exist some positive real numbers 1 7, ,a aK  such that for any values of 
 and q q& we have: 

 
                                    2

1 2 3( )A q a a q a q≤ + +                                      (3.70) 

                                    ( )4 5( , )C q q q a a q≤ +& &                                       (3.71) 

                                     6 7Q a a q≤ +                                              (3.72) 
 
    *where  indicates a matrix or vector nrm.If the robot has only revolute  
    joints, these relations becomes, 
                                                 1( )A q a≤                                                   (3.73) 

                                             4( , )C q q a q≤& &                                              (3.74) 

                                                               6Q a≤                                                   (3.75) 
 

8. A robot is a passive system which dissipates energy 
 

3.2.4 Example 

 
First let consider the following  coordinated system in relation with the next frame 
 

 
 

Using the transformation matrix that follow 
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1
1 1

1

0

000 1
0 0 0 1

i i i
i i

i i i i i i ii i i
i

i i i i i i i

c s a
s c c c s s dA P

T
s s c s c c d

θ θ
θ α θ α α α
θ α θ α α α

−
− −

−

− 
 ⋅ ⋅ − − ⋅   = =   ⋅ ⋅ ⋅ 
 
 

                (3.76) 

 

where: 
 

1i
iA−  defines the orientation of frame i with respect to frame i-1 

1i
iP−  defines the position of the origin of the frame i with respect to frame i-1 

 
 
And considering a three-link manipulator with the following geometrical description: 
 

j  
jσ  jα  jd  jθ  jr  

1 0 0 0 1θ  0 

2 0 2π  0 2θ  0 

3 0 0 3D  3θ  0 

 
First of all we need to compute the angular and linear velocities 
 
0

0 0ω =                                                (3.77) 

1
1

1

0
0ω
θ

 
 =  
  &

                     (3.78) 

2 2 2 1
2 2 1 2

2 1 1 2 2 2 2 2 1

1 2 2

0 0 0
0 0 0

0 1 0

c s s
A a s c c

θ
ω ω θ θ

θ θ θ

      
      = + = − + =      
      −       

&

& &

& & &
         (3.79) 

3 3 2 1 23 1
3 3 2 3

3 2 2 3 3 3 3 2 1 23 1

2 3 1 2

0 0
0 0

0 0 1

c s s s
A a s c c c

θ θ
ω ω θ θ θ

θ θ θ θ

      
      = + = − + =      
       +      

& &

& & &

& & & &
          (3.80) 

0
0 0v =                     (3.81) 

1
1 0v =                     (3.82) 

1 1 1 1
2 1 1 2 0v v Pω= + × =                (3.83) 
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2
2 0v =                  (3.84)

  

2 2 2
3 2 3 3 2

2 3 1

0
v P D

c D
ω θ

θ

 
 = × =  
 − 

&

&
               (3.85) 

3 3 2
3 3 2

3 2 3 3 3 2

2 3 1

s D
v A v c D

c D

θ
θ
θ

 
 = =  
 − 

&

&

&
                                     (3.86) 

 
Second step is to compute the inertia matrix A, 
 

j
j

j j

j

MX
MS MY

MZ

 
 =  
  

                (3.87) 

1

2

3

0 0

, 0 0

0 0

aj j j
j

j j j j a a

j j j a

IXX XY XZ
J XY YY YZ I I

XZ ZY ZZ I

  
  = =   
      

            (3.88) 

 
Obtaining  the following  elements of the inertia matrix 
 
 

11 1 1 2 2 2 2 2 2 23 3
2

23 3 23 3 2 23 3 3 2 23 3 3 2 3 3

ZZ 2

        2 2 2

A Ia ss XZ cs XY cc YY ss XX

cs XY cc YY c cc D MX c ss D MY cc D M

= + + + + +

+ + + − +
         (3.89) 

12 2 2 2 2 2 2 23 3 23 3 23 3 3 23 3 3
1 1 1 1
2 2 2 2

A s XZ c XZ c YZ s XZ c YZ c XY s c D MZ= + + + + + −      (3.90) 

13 23 3 23 3 23 3
1 1
2 2

A s XZ c YZ c XY= + +                          (3.91) 
2

22 2 2 3 3 3 3 3 3 3 3 3ZZ ZZ 2 2A Ia c D MX s D MY D M= + + + − +                       (3.92) 

23 3 3 3 3 3 3 3ZZA c D MX s D MY= + −                                     (3.93) 

33 3 3ZZA Ia= +                 (3.94) 

 
Computation of the gravity forces 
 
We assume that the gravitational acceleration is given as  
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                                                        0

3

0
0

T

g
g

 
 =  
  

                                                  (3.95) 

 
and using the equation(3.68) the following solutions are obtained as 
 

( )3 1 2 2 2 2 23 3 23 3 3 2 3U g MZ s MX c MY s MX c MY D s M= − + + + + +           (3.96) 

1 0Q =                   (3.97) 

( )2 3 2 2 2 2 23 3 23 3 3 2 3Q g c MX s MY c MX s MY D c M= − − + − +            (3.98) 

( )3 3 23 3 23 3Q g c MX s MY= − −                           (3.99) 

 
4. Programs in Maple 

4.1 Program using Dynamic model 

Before build the program in maple is very important to know our coordinated system 
In relation with the next frame 
 

 

 
 

 
 
 

1
1 1

1

0

000 1
0 0 0 1

i i i
i i

i i i i i i ii i i
i

i i i i i i i

c s a
s c c c s s dA P

T
s s c s c c d

θ θ
θ α θ α α α
θ α θ α α α

−
− −

−

− 
 ⋅ ⋅ − − ⋅   = =   ⋅ ⋅ ⋅ 
 
 

             (4.1) 

 

where: 
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1i
iA−  defines the orientation of frame i with respect to frame i-1 

1i
iP−  defines the position of the origin of the frame i with respect to frame i-1 

 
In the next code we have developed a program to obtain  the model of a robot with 
the next geometric parameters: 
 

j  
jσ  jα  jd  jθ  jr  

1 0 0 0 1θ  0 

2 0 2π  0 2θ  0 

 
 

 
 with(linalg): 
with(linalg,randmatrix):
c[1]:=0:
c[2]:=0:
alpha[1]:=0:
cos(alpha[2]):=0:
sin(alpha[2]):=1:
d[1]:=0:
d[2]:=0:
r[1]:=0:
r[2]:=0:
Ia:=matrix(3,3,[Ia1,0,0,0,Ia2,0,0,0,Ia3]):
for j from 1 by 1 to 2 do
ms[j]:=matrix(3,1,[mx[j],my[j],mz[j]]):
A[j]:=transpose(matrix(3,3,[cos(q[j]),-
sin(q[j]),0,cos(alpha[j])*sin(q[j]),cos(alpha[j])*cos(q[
j]),-
sin(alpha[j]),sin(alpha[j])*sin(q[j]),sin(alpha[j])*cos(
q[j]),cos(alpha[j])])):
J[j]:=matrix(3,3,[XX[j],XY[j],XZ[j],XY[j],YY[j],YZ[j],XZ
[j],XY[j],ZZ[j]]);
a[j]:=matrix(3,1,[0,0,1]):
od:
for j from 1 by 1 to 2 do
p[j]:=matrix(3,1,[d[j],-
r[j]*sin(alpha[j]),r[j]*cos(alpha[j])]):
if (j=1) then

v[1]:=matrix(3,1,[0,0,0]):
w[1]:=evalm((1-c[1])*diff(q[1],q)*a[1]):
else
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w[j]:=evalm(A[j]&*w[j-1]+(1-c[j])*diff(q[j],q)*a[j]);
v[j]:=evalm(A[j]&*(v[j-1]+convert(crossprod(convert(w[j-
1],vector),convert(p[j],vector)),matrix))+c[j]*diff(q
[j],q)*a[j]);
fi:
od: 
 for j from 1 by 1 to 2 do

E[j]:=evalm(1/2*(transpose(w[j])&*J[j]&*w[j]+m[j]*transp
ose(v[j])&*v[j]+2*transpose(ms[j])&*convert((crossprod(c
onvert(v[j],vector),convert(w[j],vector)),matrix))));
od:
Kinetic:=evalm(E[1]+E[2]): 
M[1,1]:=coeff(Kinetic[1,1],diff(q[1],q)^2)*2:
vvv:=coeff(Kinetic[1,1],diff(q[1],q)):
M[1,2]:=coeff(vvv,diff(q[2],q)):
M[2,1]:=M[1,2]:
M[2,2]:=coeff(Kinetic[1,1],diff(q[2],q)^2)*2:
Inertia:=matrix(2,2,[M[1,1],M[1,2],M[2,1],M[2,2]])+evalm
(Ia); 
 
for j from 1 by 1 to 2 do
T[j]:=evalm(matrix(4,4,[cos(q[j]),-
sin(q[j]),0,d[j],cos(alpha[j])*sin(q[j]),cos(alpha[j])*c
os(q[j]),-sin(alpha[j]),-
r[j]*sin(alpha[j]),sin(alpha[j])*sin(q[j]),sin(alpha[j])
*cos(q[j]),cos(alpha[j]),r[j]*cos(alpha[j]),0,0,0,1]));
od:
TR[1]:=evalm(T[1]):
TR[2]:=evalm(TR[1]&*T[2]):
for j from 1 by 1 to 2 do
U[j]:=-
matrix(1,4,[0,0,g2,0])&*TR[j]&*matrix(4,1,[ms[j][1,1],ms
[j][2,1],ms[j][3,1],m[j]]);

od:
Potencial:=evalm(U[1]+U[2]):
for j from 1 by 1 to 2 do

Q[j]=map(diff,evalm(Potencial[1,1]),q[j]):
od:
gravity:=matrix(2,1,[evalm(Q[1]),evalm(Q[2])]):
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 for i from 1 by 1 to 2 do
for j from 1 by 1 to 2 do
for k from 1 by 1 to 2 do

evalm(M[i,k]);
tmp1[k]:=diff(M[i,k],q[j]);

tmp2[k]:=diff(M[i,j],q[k]):
tmp3[k]:=diff(M[j,k],q[i]):

res[k]:=1/2*(tmp1[k]+tmp2[k]-tmp3[k]);
od;

od;
od;
for k from 1 by 1 to 2 do
coriolis:=res[K]*diff(q[k],q);
od:  
 for k from 1 by 1 to 2 do
for i from 1 by 1 to 2 do
for j from 1 by 1 to 2 do
tmp1[i,j,k]:=diff(M[i,k],q[j]);
tmp2[i,j,k]:=diff(M[i,j],q[k]);
tmp3[i,j,k]:=diff(M[j,k],q[i]);
res[i,j,k]:=1/2*(tmp1[i,j,k]+tmp2[i,j,k]-tmp3[i,j,k]);
od;
od;
od;
 for i from 1 by 1 to 2 do
for j from 1 by 1 to 2 do
X[i,j]:=res[i,j,1]*diff(q[1],q)+res[i,j,2]*diff(q[2],q);
od;od;
coriolis:=matrix(2,2,[X[1,1],X[1,2],X[2,1],X[2,2]]); 

 
 

After apply this program we obtain: 
 
The inertia matrix: 
 

( )M q =  
 

11 1 1 2 2 2 2 2 2 2 2ZZA Ia ss XZ cs XY cc YY cs XY= + + + + +                 (4.2) 

12 2 2 2 2 2 2
1 1 
2 2

A s XZ c XZ c YZ= + +                            (4.3) 

21 2 2 2 2 2 2
1 1
2 2

A s XZ c XZ c YZ= + +                            (4.4)

22 2 2A Ia ZZ= +                   (4.5) 
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where 
 
The coriolis matrix has the following elements: 
 

( , )C q q =&  
 

1,1 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2
2 2 2 2 2

1 ((cos(q )XX -sin(q )XY )sin(q )+(sin(q )XX +
2

1          cos(q )XY )cos(q )+ (cos(q )XY -sin(q )YY )cos(q )-
2

q          (sin(q )XY +cos(q )YY )sin(q ))
t

C =

∂
∂

                         (4.6) 

1,2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2

1
2

1 ((cos(q ) XX  - sin(q ) XY ) sin(q )+ 
2

         (sin(q ) XX  + cos(q ) XY ) cos(q )
          + (cos(q ) XY  - sin(q ) YY ) cos(q )-
         (sin(q ) XY +cos(q )YY ) 

q          sin(q ))) +(cos
t

C =

∂
∂

2
2 2 2 2 2 2

q1 1(q )XZ - sin(q )XY - sin(q )YZ )
2 2 t

∂
∂

           (4.7)

  

2,1 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

1
2 2 2 2 2

1 (-(cos(q )XX -sin(q )XY )sin(q )-
2

            (sin(q )XX +cos(q )XY )cos(q )
1        - (cos(q )XY -sin(q )YY )cos(q )+
2

q        (sin(q )XY +cos(q )YY )sin(q ))
t

C =

∂
∂

                          (4.8) 

2,2 0C =                    (4.9) 
 
 
And the gravity matrix: 
 

( )G q =  
 

2 2 2 2

0
 -g cos(q ) mx  + g sin(q ) my
 
 
 

              (4.10) 
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4.2 Program using Newton-Euler Iterative method 

 
To implement the next program we need to use the following coordinated system 
In relation with the next frame 
 

1

1
1 1

ˆ
CP l X=                                        (4.11) 

2

2
2 2

ˆ
CP l X=                  (4.12) 

 
Because of the point assumption, the inertia tensor written at the center of mass for 
each link is the zero matrix: 
 

1 0C
CI =                  (4.13) 

2 0C
CI =                  (4.14) 

 
There are no forces acting on the end effector, and so we have 
 

3 0f =                   (4.15) 

3 0n =                              (4.16) 
 
The base of the robot is not rotating, and hence we have 
 

0 0ω =                   (4.17) 

0 0ω =&                   (4.18) 
 
To include gravity forces we will use 
 
0

0 0̂v gY=&                  (4.19) 
 
The rotation between succesives link frames is given by 
 

1 1

1 1 1

0
0

0 0 1

i i
i

i i i

c s
R s c

θ θ
θ θ

+ +

+ + +

− 
 =  
  

               (4.20) 

 
 

1 1
1

1 1

0
0

0 0 1

i i
i

i i i

c s
R s c

θ θ
θ θ

+ +
+

+ +

 
 = − 
  

               (4.21) 
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And the transformation is given by 
 
 

1

1 1 1 11

1 1 1 1

0

0 0 0 1

i i i

i i i i i i ii
i

i i i i i i i

c s a
s c c c s s d

T
s s c s c c d

θ θ
θ α θ α α α
θ α θ α α α

−

− − − −−

− − − −

− 
 ⋅ ⋅ − − ⋅ =
 ⋅ ⋅ ⋅
 
 

                                 (4.22) 

 
 

  
The second program we have built, were built using the Newton-Euler iterative 
algorithm and are as follow 

 
with(linalg):
pc[1]:=vector([l1,0,0]):
pc[2]:=vector([l2,0,0]):
p[1]:=vector([0,0,0]):
p[2]:=vector([l1,0,0]):
n:=diff(v[0],v)=matrix(3,1,[g,0,0]):
alpha[0]:=0;
alpha[1]:=0;
alpha[2]:=0;  
 for j from 0 by 1 to 2 do
RT[j]:=matrix(3,3,[cos(theta[j+1]),-
sin(theta[j+1]),0,sin(theta[j+1])*cos(alpha[j]),cos(thet
a[j+1])*cos(alpha[j]),-
sin(alpha[j]),sin(theta[j+1])*sin(alpha[j]),cos(theta[j+
1])*sin(alpha[j]),cos(alpha[j])]):
R[j]:=transpose(RT[j]):
z[j]:=matrix(3,1,[0,0,1]):
od:
for j from 0 by 1 to 1 do
omega[0]:=0:
omega[j+1]:=evalm(R[j]&*omega[j]+evalm(Diff(theta[j+1],t
)*z[j]));
temp2[j]:=convert(evalm(Diff(theta[j+1],t)*z[j]),vector)
:
if (j<>0) then
temp1[j]:=convert(evalm(R[j]&*omega[j]),vector):
else
temp1[j]:=vector([0,0,0]):
fi;
##X[j]=omega´s[j+1] derivative
od:
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for j from 0 by 1 to 1 do
X[j]:=evalm(evalm(R[j]&*map(Diff,omega[j],t)+evalm(cross
prod(evalm(temp1[j]),temp2[j]))+evalm(Diff(Diff(theta[j+
1],t),t)*z[j])));
od:  
 for j from 0 by 1 to 1 do
if (j=0) then
Y[j]:=evalm(evalm(R[j])&*matrix(3,1,[0,g,0]));
else
Y[j]:=evalm(evalm(R[j])&*convert(evalm((crossprod(conver
t(map(Diff,omega[j],t),vector),p[j+1]))+crossprod(conver
t(evalm(omega[j]),vector),crossprod(convert(evalm(omega[
j]),vector),p[j+1]))),matrix))+evalm(evalm(R[j])&*Y[j-
1]);
fi;
od:  
 for j from 0 by 1 to 1 do
temp3[j]:=convert(evalm(X[j]),vector);
temp4[j]:=convert(evalm(omega[j+1]),vector);
YY[j+1]:=evalm(crossprod(temp3[j],pc[j+1])+crossprod(tem
p4[j],crossprod(temp4[j],pc[j+1]))+Y[j]);
F[j+1]:=evalm(evalm(m[j+1]*evalm(YY[j+1])));
N[j]:=array(1..3,[0,0,0]);
od:
 i:=2:
while(i<>0) do
f[3]:=matrix(3,1,[0,0,0]):
n[3]:=matrix(3,1,[0,0,0]);
f[i]:=evalm(evalm(evalm(RT[i])&*evalm(f[i+1]))+evalm(F[i
])):
i:=i-1:
od:  
i:=2:
p[1]:=vector([0,0,0]):
p[2]:=vector([l1,0,0]):
while (i<>0) do
if (i=2) then
n[i]:=evalm(convert(evalm(RT[i]&*n[3]),vector)+crossprod
(pc[i],convert(evalm(F[i]),vector)));
else
n[i]:=convert(evalm(RT[i]&*n[i+1]),vector)+crossprod(pc[
i],convert(evalm(F[i]),vector))+crossprod(p[i+1],convert
(evalm(evalm(RT[i])&*evalm(f[i+1])),vector));
fi;
tau[i]:=simplify(evalm(transpose(convert(evalm(n[i]),mat
rix))&*z[i]),trig);
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i:=i-1;
od:
M:=matrix(2,2,[coeff(tau[1][1,1],Diff(Diff(theta[1],t),t
)),coeff(tau[1][1,1],Diff(Diff(theta[2],t),t)),coeff(tau
[2][1,1],Diff(Diff(theta[1],t),t)),coeff(tau[2][1,1],Dif
f(Diff(theta[2],t),t))])&*matrix(2,1,[Diff(Diff(theta[1]
,t),t),Diff(Diff(theta[2],t),t)]);
tmp1:=coeff(tau[2][1,1],Diff(Diff(theta[1],t),t)):
tmp2:=simplify(tau[2][1,1]-
tmp1*Diff(Diff(theta[1],t),t)):
tmp3:=coeff(tau[1][1,1],Diff(Diff(theta[1],t),t)):
tmp4:=coeff(tau[1][1,1],Diff(Diff(theta[2],t),t)):
tmp5:=simplify(tau[1][1,1]-
tmp3*Diff(Diff(theta[1],t),t)-
tmp4*Diff(Diff(theta[2],t),t)):
C:=matrix(2,1,[coeff(tmp5,Diff(theta[2],t),2)*Diff(theta
[2],t)^2+coeff(tmp5,Diff(theta[1],t))*Diff(theta[1],t),c
oeff(tmp2,Diff(theta[1],t),2)*Diff(theta[1],t)^2]);
G:=matrix(2,1,[simplify(coeff(tau[1][1,1],g),trig),simpl
ify(coeff(tau[2][1,1],g),trig)])*g; 

 
 
When the Newton-Euler equations are evaluated symbolically for any manipulator, 
they yield a dynamic equation, which can be written in the form 
  

 

                                          ( ) ( ) ( ),M V Gτ = Θ Θ + Θ Θ + Θ&& &                                  (4.23) 
 
Where ( )M Θ  is the n n×  mass matrix of the manipulator composed of all those 

terms which multiply Θ&& , and it is a function of Θ , ( ),V Θ Θ&  is 1n×  vector and 
contains all those terms which have any dependence on joint velocity, terms which 
depends on the square of joint are caused by centrifugal force and those which 
contains product of two different joint velocities are caused by coriolis force, and 

( )G Θ  is an 1n×  vector and contains all those terms in which appear gravitational 
constant. 
 
Where, 

( ) ( ) 2 2 2
1 2 1 2 2 2 2 1 2 2 2 2 2 1 2 1

2 2
2 2 2 2 1 2 2 2 2

m +m l +m l +2c m l l m l +c m l l
M =

m l +c m l l m l
   Θ

Θ ⋅   Θ   

&&

&&
          (4.24) 
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( )
2

2 1 2 2 2 2 1 2 2 1 2
2

2 1 2 2 1

-m l l s 2m l l s
, =

m l l s
C

θ θ θ
θ

 −
Θ Θ ⋅Θ  

 

& & &
& &

&
             (4.25) 

 

( ) ( )2 2 12 1 2 1 1

2 2 12

m l gc m +m l gc
G =

m l gc
+ 

Θ  
 

              (4.26) 

 
5. Parameters estimation. 

5.1 Pendulum model. 

 

 
 
Find the pendulum’s mass whether gqqq ,,, &&&  and pendulum’s length are known.        
First of all, we have to find the equation, which represent this model, to obtain this    
equation we use the energy’s method, which says: 
 

                                                               dE τ
dt

=                                                      (5.1) 

 
In our problem the energy is divided in kinetic and potential energy, to obtain this 
energy we must be careful with the disposition of our pendulum, and then we have: 
 

                                                       2
K

1E q
2

I= ⋅ ⋅ &                                                    (5.2) 

                                                   pE m g l sen(q)= ⋅ ⋅ ⋅                                              (5.3) 
 
Now we have to derivate and the energy is obtained: 
 

                                                       KdE I q q
dt

= ⋅ ⋅& &&                                                   (5.4) 
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                                                 pdE
m g l q cos(q)

dt
= ⋅ ⋅ ⋅ ⋅&                                         (5.5)

  
Finally is obtained the model of the pendulum: 
 
      
    τcos(q)lgmqI =⋅⋅⋅+⋅ &&                                           (5.6) 
 
 
Now we have to estimate the pendulum’s mass, to estimate it the least square is used, 
then we have to apply the next formula, which say: 
 
                                                 N

T
N

1
N

T
N yφ)φ(φθ̂ ⋅⋅⋅= −                                         (5.7) 

 
Where φ is the regressor, which in our case is: 
     
    2

Nφ l q g l cos(q)= ⋅ + ⋅ ⋅&&                                             (5.8) 
                                                              Ny τ=                                                        (5.9) 

 
Then is obtained 
 

    τ
cos(q)glql

1θ 2 ⋅
⋅⋅+⋅

=
&&

           (5.10) 

 
 
Now with this equation a simulation in matlab is made then the mass is estimated.        
Where the input of matlab function are: 
 
   m = 0.5 Kg   l = 0.2 m g = 9,82 m/s2  τ =0.5 N.m 
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Applying those formulas the estimated mass is 1Kg,how is shown in the next plot:
  
 
 

 
Conclusion 
 
After various simulations with differents values for the torque we observe that the 
pendulum’s mass is independent of it and only depend on the values of the pendulum 
length and position, velocity and acceleration. 
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5.1.1 Pendulum model adding filters 

Consider now that we are not able to measure the pendulum acceleration, q&&  is 
unknown, in order to resolve the problem, a low pass filter is needed it has the next 
expression: 
                                                              w

w s+
                                                      (5.11) 

  
Applying this filter  to the model we obtain : 
 

cos( )w w wI q m g l q
w s w s w s

τ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ = ⋅
+ + +

&&                                                        (5.12) 

2w w s wq q w s
w s w s w s

⋅⋅ = ⋅ = ⋅ −
+ + +

&& &                                                                          (5.13) 

2
2 cos( )w w wm l w q q g l q

w s w s w s
τ

  
⋅ − ⋅ + ⋅ ⋅ ⋅ = ⋅  + + +  
& &                                        (5.14) 

As in the previous case we will try to observe which of the following method obtain 
better result in the estimation. We will start inplementing the least-squares method, 
with the following results. 
 
 
Now we will use to estimate the pendulum’s mass, the algorithm describes in   which 
says: 
 
                                               ( )ˆ ˆT

fm P mα τ= ⋅ ⋅Ψ − Ψ ⋅&                                       (5.15) 

                                                TP P Pα= − ⋅ ⋅Ψ ⋅Ψ ⋅&                                             (5.16) 
       
Where φ is the regressor, which in our case is: 
     

2
2 w wl q- q  +g l cos(q)

s+w s+w
w
 

Ψ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 


& &              (5.17) 

w
s+wfτ τ= ⋅                             (5.18) 

 
Now with this equation a simulation in matlab is made then the mass is estimated, 
Where the input of matlab function are: 
  
  m = 1 Kg   l = 0.2 m g = 9,82 m/s2  τ =0.5 N.m w=10 alpha=15 
 
Applying those formulas the estimated mass is 0.5Kg,how is shown in the next plot: 
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The last method to implement will be the gradient’s method, which say[2]: 
 
                                                ( )ˆ ˆT

fm mα τ= ⋅Ψ ⋅ − Ψ ⋅&                                         (5.19) 
  
m = 1 Kg   l = 0.2 m g = 9,82 m/s2  τ =0.5 N.m w=20 alpha=20 
  
We obtain the next plot: 
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5.1.2 Pendulum model adding noises 

 
As in the previous chapter we will discuss the different response of the estimation 
algorithms in order to choose which will be the best method therefore ,the method 
that have better response when a noise is introduced to the system. 
First method, Least-squares 
 

 
 
Second method ,unnormalized least-squares method 
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As we can see in those graphs the response of least squares methods is worse than 
gradient’s method due to its elevate time to reach the estimated mass. 
After others simulation in which I have included white noise the response of the 
system was better with the least squares method. 
Third method, gradient 
 
 

 

5.2 Two-link manipulator 

5.2.1 Two-link manipulator scheme 

 

 

5.2.2  Two-link manipulator adding filters 

 
Following the method in ,we obtain the following equation 
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                                           ( ) ( ) ( ),M q q V q q G qτ = + +&& &                                     (5.20) 
 
where 
 
 

                    ( ) ( ) ( )
( )

2
11 2 1 2 2 1 1 2

2
22 2 1 1 2 2 2

m +m l m l l cos
M =

m l l cos m l
qq q

q
qq q

 −  
⋅   −   

&&

&&
                   (5.21) 

 

                            ( ) ( )
2
2 1 2

2 1 2 2 1 2
1 1 2

q,q =m l l sin
q q q

C q q q
q q q

 − + ⋅
⋅ − ⋅ − ⋅ 

& & &
& &

& & &
                            (5.22) 

 

                                      ( ) ( ) ( )
( )

1 2 1 1

2 2 2

m +m l gsin
G =

-m l gsin
q

q
q

− 
 
 

                                      (5.23) 

   
 
As in the previous experiments we will try to made our experiments  without the 
unknowledge of the aceleration,in our case q&&  ,therefore we will use the same low 
pass filter as before: 

                                                              w
w s+

                                                      (5.24) 

 
In that case the result of the regressor is not so obvious because appear new terms 
like cosines and sinus not so easy to integer when we apply the low pass filter, we 
will need to use the integration by parts that says: 
 

( ) ( )1 1 2 1 1 2
1cos cosw wsq q q q q q

w s w s s
 − = − + +  

&& &&             (5.25) 

v du u v u dv⋅ = ⋅ − ⋅∫ ∫                 (5.26) 

1 1      du q u q= =&& &                 (5.27) 

( ) ( )( )1 2 1 2 1 2cos      sinv q q dv q q q q= − = − − −& &                                                   (5.28) 
 
Now we have to estimate the two-link´s masses, to estimate it  the least square [1] is 
used, also gradient method [2] and Goodwin method [3] known  the Ψ  regressor, 
which in our case is: 
    
 

2
2 2

1 1 1 1 1 1sin( )

0

w wl q w l q gl q
s w s wΨ =


− − + +



& &               (5.29) 
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2 2

2 2
1 1 1 1 1 1 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2

2 2
2 2
2 2 2 2 2 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2

sin( ) cos( ) cos( ) sin( )

sin( ) cos( ) cos( ) sin( )

w w w wl q w l q gl q l l q q q wl l q q q l l q q q
s w s w s w s w

w w w wl q w l q gl q l l q q q wl l q q q l l q q q
s w s w s w s w

−− − + − + − + −
+ + + +

−− − + − + − + −
+ + + + 

& & & & &

& & & & &

1

2

w
s+wf

m
m

τ τ

⋅

= ⋅

      


 

Now with this equation a simulation in matlab is made then the mass is estimated. 
Where the input of matlab function are: 
  
    m1 = 1 Kg  l1 = 0.2 m g = 9,82 m/s2  τ2=step w=10 alpha=10 

   m2=  0.5 Kg     l2 = 0.2 m                         τ1 =step 

 
First with the unnormalized least-squares we obtain: 
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Second Gradient method 
 
m1=1 Kg m2=1 Kg w=5 alpha=5 
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5.2.3 Twolink manipulator adding noises.  
 
With unnormalized least-squares we obtain, 

 
 
After others simulation in which I have included white noise the response of the 
system was better with Goodwing method. 
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5.3Inertia wheel model  

5.3.1Inertia wheel model scheme 

 

 
 
 

In this section we will work with first we a model simulated in matlab and after that 
we will try to obtain the same results using a real plant described in [5] 
First of all defines the physical equation of the model in the next form: 
 

sin( )J mgl kuθ θ+ = −&&                         
(5.30) 
                  r rJ kuθ =&&                            (5.40) 
Where u is the control signal, and k is a proportionality constant scaling the input to 
the duty cycle range(0-500) of the PWM amplifier and  
 
 p rm m m= +                  (5.41) 

p p r rml m l m l= +                            (5.42) 
2 2

p p p r rJ J m l m l= + +                 (5.43)
  
As in the previous works we will try to implement differents algorithms types  to 
obtain the estimated parameters of the system. The regressor to estimate three 
parameters is as follow: 
 

sin( ) 0
0 0 r

gθ θψ
θ

 
=  
 

&&

&&
               (5.44) 

 
But let us consider that the acceleration and also the velocities are unknown, then we 
will need to implement two filters instead of one obtaining:
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22 3 4
2

2 2

2
2
ss

s s s w
ω ω ωθ θ ω ω

ω ω
  += − = − + + + 

&&              (5.45) 

 
first we will implement the gradient algorithm that says: 
 

( )ˆ ˆT
fm mα τ= ⋅Ψ ⋅ − Ψ ⋅&              (5.46) 

 
obtained the following graphs and schemes: 
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Trying to implement the gradient method we see that the system is unstable therefore 
is not possible to implement this algorithm to estimate three parameters. 
Now with Goodwin algorithm  
 

( )ˆ ˆT
fm P mα τ= ⋅ ⋅Ψ − Ψ ⋅&                    (5.47) 

TP P Pα= − ⋅ ⋅Ψ ⋅Ψ ⋅&                 (5.48) 
 
obtained the following graphs and schemes: 
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5.3.2 Inertia wheel with noises. 

 
As in the previous chapter is not possible to estimated three parameters with the 
gradient method ,but is also unuseful in case that we only want to estimate two 
parameters because this method is very affected for this noises as we can see in the 
following graphs where the noises´ amplitude is 0.00001, 
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Using again the unnormalized least-squares we obtain
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5.4 Inertia wheel plant. 
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First of all we found a problem with the encoder, this problem that appear in the 
position measurements of the wheel was due to the appearance of a  gap between to 
consecutive position of the wheel,we can se the problem and the solution in the 
following graph, 
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6. Concluding Remarks. 

6.1 Conclusion. 

First, the use of this maple program, that we have use will resolve a difficulties in the 
calculation due to hand made errors and also using it we reduce the time to built our 
models. About what program is better to obtain the models, we must say that the 
Lagrange formulation allow to study the characteristics and properties of the 
dynamic model of robots, but whether we want a model to be used on real time 
implementation our model must be Newton-Euler. 

Second, in the case of the estimation procedures use in this paper, as were shown 
before, the first method use, least-squares estimation, was useful in the case we don’t 
have noises due to the big influence of the noises in the least-squares method. The 
second method used, unnormalized least-squares, present worse response than the 
gradient method when a noise is introduced, excepts in the case of the inertia-wheel 
where the unnormalized least-squares gave us better results. 

 

6.2 Future works. 

Due to this estimation constitute the base of a wide kind of robots model once that 
we know the inertial parameters we will be able to control velocities, position 
,torques,etc.,we can  deduce the influence of inertial parameters on the positional 
accuracy of robots(19) that task is very important for example in the case that we use 
the robot for teleoperation. 
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Appendix A. Commands used in the programs 

A.1 Introduction 

First thing to do is open the maple program, depending on the platform that you are 
using, you need type maple in case that you are using Unix, or click in the maple 
icon if you are using windows machine. 
How obtain help?  
First of all how obtain help from the program, the only thing to do obtain this help is 
to type , 
 
 >?<command> 

>? 

For a short Maple Introduction, first click anywhere on the Worksheet window, 
then type  

>?intro

typing tutorial(1); at the ">" Maple prompt;  

following the directions by typing Return when asked and SPACE when asked for 
"More? or type:  

x to quit and type x again to quit and see the menu, selecting the last item to final 
quit;  

after quitting the Tutorial mode before all the tutorials are finished and are back in 
Maple mode you may type tutorial(<n>); for <n> = 2 or 3 or .. or 16 for one of the 
other tutorial sections that was listed in the menu upon quitting. 

Also maple contains on-line help facility 

A.2 Commands used in Newton-Euler and     

         Lagrange equation method 

Cross product 
linalg[crossprod] - vector cross product 

Calling Sequence 
     crossprod(u, v) 

Parameters 
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     u, v - lists or vectors, each with three elements  

Description 
•  This function computes the vector cross product of u and v, defined to be 

vector([u[2]*v[3]-u[3]*v[2], u[3]*v[1]-u[1]*v[3], u[1]*v[2]-u[2]*v[1]]).  
•  The command with(linalg,crossprod) allows the use of the abbreviated form of 

this command. 
 

Matrix 
linalg[matrix] - create a matrix 

Calling Sequence 
     matrix(L) 
     matrix(m, n) 
     matrix(m, n, L) 
     matrix(m, n, f) 
     matrix(m, n, lv) 

Parameters 
     L - list of lists or vectors of elements  
     m,n - positive integers (row and column dimensions)  
     f - a function used to create the matrix elements  
     lv - a list or vector of elements  

Description 
•  The matrix function is part of the linalg package. It provides a simplified syntax 

for creating matrices. A general description of matrices in Maple is available 
under the heading matrix.  

•  The call matrix(m,n,L) creates an m by n matrix where the first row of the matrix 
is defined by the list/vector L[1], the second row by L[2], and so forth. The call 
matrix(L) is equivalent to matrix(m,n,L) where m = nops(L) and n = max( 
seq(nops(L[i]),i=1..m) ) .  

•  The call matrix(m,n) creates an m by n matrix with unspecified elements.  
•  The call matrix(m,n,f) creates an m by n matrix whose elements are the result of 

the function f (possibly a constant) acting on the row and column index of the 
matrix. Thus, matrix(m,n,f) is equivalent to matrix([[f(1,1), ..., f(1,n)], ..., [f(m,1), 
..., f(m,n)]]) .  

•  The call matrix(m,n,lv) creates an m by n matrix whose elements are read off 
from lv row by row, where lv is a list or vector of elements of type algebraic.  

•  Since matrices are represented as two-dimensional arrays, see array for further 
details about how to work with matrices.  
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•  The command with(linalg,matrix) allows the use of the abbreviated form of this 
command. 

Convert 
Convert - convert an expression to a different form 

Calling Sequence 
     convert(expr, form, arg3, ...) 

Parameters 
     expr - any expression  
     form - a name  
     arg3, ... - (optional) other arguments  

Description 
•  The convert function is used to convert an expression from one form to another. 

Some of the conversions are data-type conversions, for example convert([x,y], 
set) Others are form conversions, for example convert(x^3-
3*x^2+7*x+9,horner,x) yields (((x^3)*x+7)*x)+9.  

 
•  A user can make his own conversions known to the convert function by defining 

a Maple procedure in the following way. If the procedure `convert/f` is defined, 
then the function call convert(a,f,x,y,...) will invoke `convert/f`(a,x,y,...); Note 
that the procedure may be indexed, for example convert([1,2,3], Vector[row]);  

Map 
map - apply a procedure to each operand of an expression 

map2 - apply a procedure with a specified first argument to each operand of an 
expression 

Calling Sequence 
     map(fcn, expr, arg2, ..., argn) 
     map2(fcn, arg1, expr, arg3, ..., argn) 

Parameters 
     fcn - a procedure or a name  
     expr - any expression  
     argi - (optional) further arguments to fcn  

Description 
•  The map(fcn, expr) function applies fcn to the operands of expr.  
•  The ith operand of expr is replaced by the result of applying fcn to the ith 

operand. This is done for all the operands of expr.  
•  For a table or array, fcn is applied to each element of the table or array.  
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•  For an rtable, fcn is applied to each element of the rtable and a new rtable of the 
mapped result is returned.  

•  If fcn takes more than one argument, they are to be specified as additional 
arguments, arg2, arg3, ..., argn, which are simply passed through as the second, 
third, ..., nth arguments to fcn.  

•  The map2 function is similar to map, except that for each operand of expr, arg1 
is passed as the first argument to fcn, the operand of expr is passed as the second 
argument, and arg3, ..., argn are passed as the third, ..., nth arguments.  

•  Since strings are atomic expressions in Maple, you cannot map a procedure over 
a string by using map. However, the StringTools package provides a Map export 
that delivers this functionality.  

•  Note:  map and map2 do not work well with functions that have special 
evaluation rules. For example, map may not return expected results if fnc uses 
parameters that are of type uneval. A workaround that is sometimes useful is to 
``wrap'' the procedure with special evaluation rules with one that has normal 
evaluation rules. (Nothing is lost, since map itself has normal evaluation rules, 
so the arguments to it will be evaluated anyway.)  

Coefficient 
coeff - extract a coefficient of a polynomial 

Calling Sequence 
     coeff(p,x) 
     coeff(p,x,n) 
     coeff(p,x^n) 

Parameters 
     p - a polynomial in x  
     x - the variable (an expression)  
     n - (optional) an integer  

Description 
•  The coeff function extracts the coefficient of x^n in the polynomial p.  
•  If the third argument is omitted, it is determined by looking at the second 

argument. Thus coeff(p,x^n) is equivalent to coeff(p,x,n) for n <> 0.  
•  The cases of the second argument being a number or a product are disallowed 

since they do not make sense.  
•  The related functions lcoeff, tcoeff and coeffs extract the leading coefficient, 

trailing coefficient and all the coefficients of p in x respectively.  
 
Diferenciate 
diff or Diff - Differentiation or Partial Differentiation 
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Calling Sequence 
     diff(a, x1, x2, ..., xn) 
     Diff(a, x1, x2, ..., xn) 
     diff(a, [x1, x2, ..., xn]) 
     Diff(a, [x1, x2, ..., xn]) 

Parameters 
     a - an algebraic expression  
     x1, x2, ..., xn - names  

Description 
•  diff computes the partial derivative of the expression a with respect to x1, x2, ..., 

xn, respectively. The most frequent use is diff(f(x),x), which computes the 
derivative of the function f(x) with respect to x.  

•  Note that where n is greater than 1, the call to diff is the same as diff called 
recursively. Thus diff(f(x), x, y); is equivalent to the call diff(diff (f(x), x), y).  

•  diff has a user interface that will call the user's own differentiation functions. If 
the procedure `diff/f` is defined then the function call diff(f(x, y, z), y) will 
invoke `diff/f`(x,y,z,y) to compute the derivative. See example below.  

•  The sequence operator $ is useful for forming higher-order derivatives. 
diff(f(x),x$4), for example, is equivalent to diff(f(x),x,x,x,x) and 
diff(g(x,y),x$2,y$3) is equivalent to diff(g(x,y),x,x,y,y,y)  

•  The names with respect to which the differentiation is to be done can also be 
given as a list of names. This format allows for the special case of differentiation 
with respect to no variables, in the form of an empty list. In this case, the result is 
simply the original expression, a. This format is especially useful when used 
together with the sequence operator and sequences with potentially zero 
variables.  

•  If the derivative cannot be expressed (if the expression is an undefined function), 
the diff function call itself is returned. (The prettyprinter displays the diff 
function in a two-dimensional d/dx format.)  

•  The diff command assumes that partial derivatives commute.  
•  The capitalized function name Diff is the inert diff function, which simply 

returns unevaluated. The prettyprinter understands Diff to be equivalent to diff 
for printing purposes but formats the derivative in black to visually distinguish 
the inert case.  

•  The differential operator D is also defined in Maple; see D. For a comparison of 
D and diff see operators[D].  
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