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1. Background

Controlling a sailing vessel is in many ways unlike controlling motorized
water vehicles. Though the two tasks share properties related with cur-
rents, wave disturbances and inertia, the control performance of the sailing
vessel is perhaps most limited by its dependence on wind. The speed and
direction of the wind determines not only the possible speed of the sailing
vessel, but also what trajectories that are feasible.

Sailing vessels cannot travel directly towards the wind. Combined with
the fact that the maximum attainable speed is not only determined by the
speed of the wind but also depends nonlinearly on the angle between the
wind and the heading of the boat, this makes choosing a good trajectory
non-trivial and choosing an optimal one difficult. Other complicating factors
are disturbances, caused by waves and water currents, as well as the the
limited braking capabilities of the sailing vessel. A skilled navigator can do
fairly well on common sense and experience but since computers started to
become more and more powerful, it is not uncommon for professional yacht
racers to make heavy use of computerized optimization for helping out.
Much of this software is proprietary and expensive, forcing most hobbyist
navigators to cope without them. This thesis is my attempt in bringing
some help to those of us without large corporate sponsors that still would
like to win a race or two.
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Figure 1 The boat in a Cartesian coordinate system with the heading θ

2. Problem Formulation

This thesis aims to answer how to compute a minimal time path for taking
a sailing boat between two predefined points given boat dynamics and wind
conditions and while avoiding stationary obstacles. A secondary objective
is to prototype an autopilot able to steer a sailing boat along this course. As
such, the solution must be possible to implement on a computer or device
that can reasonably be fitted on the boat.

3. Modeling a Sailing Boat

A sailing boat is subject to a lot of non-linear dynamics. A commonly known
example of this is that the boat cannot sail directly towards the wind.
More precisely, the maximum speed of the boat in any given direction
depends nonlinearly on the relative angle between the boat heading and
wind direction, but also quite logically on the wind speed. A simple and
intuitive model of this in state space form would be



ẋ

ẏ

θ̇


 =



v(θ) cos(θ)
v(θ) sin(θ)
f (u)


 (1)

where x and y denote the Cartesian coordinates of the boat and θ is
the heading of the boat as shown in Figure 1.
From here we can use for instance forward difference approximation of

the derivatives, which will give us the discrete time model

x(k+ 1)
y(k+ 1)
θ(k+ 1)


 =



x(k) + hv(θ(k)) cos(θ(k))
y(k) + hv(θ(k)) sin(θ(k))

θ(k) + hf (u(k))


 (2)

where h is the sampling period and kh some constant depending on h.
Given the focus of this thesis and the typical update frequency of a normal
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Figure 2 A plot of a series of measured maximum speeds for one given boat and
wind speed. The diagram was borrowed with permission from [3].

GPS unit, the sampling period will be 1 second unless another value is
given specifically.

3.1 Modeling Wind Dependent Dynamics v(θ)
The complex dynamics of the interaction between the wind and the boat
will make calculating the function v(θ) from theoretical models very dif-
ficult. Today, many professional boat builders use advanced software to
estimate the maximum boat speed from properties such as hull shape and
rig setup. These programs (Velocity Prediction Programs or VPPs) are ex-
pensive and many sailors resolve to the more traditional practice of em-
pirical measuring. The resulting data are commonly presented in a polar
plot called the speed curve. Figure 2 shows an example of this curve for a
typical boat.
Estimates of the speed curve in between the data points can then be

calculated using several different techniques.

Linear Interpolation The tabular form of the gathered data makes
linear interpolation an attractive choice. It is robust for non-continuous
phenomena and computationally cheap. The most obvious drawback is that
it is tricky to handle for analytical computations.

Polynomial Approximation Polynomial approximation makes analyt-
ical calculations much simpler and can be even more computationally ef-
fective than linear interpolation. Its biggest drawback is that making a
good fit can require substantial user interaction in choice of polynomial
degree and handling non continuous phenomena. Figure 5 shows what can
happen when using a cubic spline approximation.

Periodic Expansion Calculating the relative angle between boat and
wind can involve a lot of non differentiable operations such as modulo π and
abs(). An interesting way to handle this would be to make an even periodic
approximation using the cosine half period expansion. For an explanation
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Figure 3 Large periodic residuals due to discontinuities. The dotted line repre-
sents the curve from the linear interpolation.

of the theory see e.g. [5]. The approximation of v(θ) will here be given by:

v(θ) = a0
2

+
N∑
k=1
ak cos(

kπ (θ − θv)
L

) (3)

L = π (4)
which gives

v(θ) = a0
2

+
N∑
k=1
ak cos(k(θ − θv)) (5)

where θv is the direction of the wind.
The most apparent advantage of this approach is that it gives a differ-

entiable approximation while on the other hand being much more compu-
tationally expensive. We can see from Figure 6 that this approach suffers
from problems similar to those of the spline approximation, although of a
smaller magnitude. The ripples (commonly known as Gibb’s phenomenon)
are to be expected when approximating discontinuous functions in this
manner. The effect decreases when using more coefficients but is never
eliminated. Some improvements might be gained from modifying the speed
curve so that it is smoother. In Figure 3 we can see large periodic errors
when comparing the linear interpolation and the expansion (this time for
30 coefficients) while in Figure 4 the effect is reduced. Depending on the
specific problem and choice of optimization routine, this may or may not
affect the results.
Using a large number of coefficients might pose a performance problem

in numerical optimizations, but since the computations are based on sums
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Figure 4 The residuals are reduced considerably by smoothing the curve

much could be done in parallel. If applied to a gridded state space, precal-
culated values for all angles in the grid would also increase speed. Many
moderns CPUs support so called SIMD-instructions1 which could perhaps
be used to achieve even better performance.

Dealing with Stochastic Wind While it is common to regard the wind
as a parameter that changes slowly over time, typically being of constant
direction and speed for hours, in reality it behaves much more chaotically
and the usual measurements should be considered a time average. Often
used as a text book case for stochastic prediction models, a lot could be
said on this subject. In this thesis we will disregard the faster dynamics
and consider the wind to be constant in direction and speed over time, but
may vary from one place to another.

3.2 Turning Dynamics

The turning dynamics of the boat modeled by the function f (u) are also
non-linear. The maximum rate at which the boat can turn is limited by a
number of factors including:

• The size and shape of the hull

• The current speed of the boat

• The maximum rudder angle (usually 90○ relative to the heading of
the boat)

1Single Instruction, Multiple Data-Instructions. Typically used in geometry and signal
processing applications where convolutions and other sum-based operations make up a
large part of the computational burden.
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Figure 5 Comparison between different approximation methods
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In this thesis we will approximate f (u) with an ordinary saturation under
the following assumptions

• The boat will always move with maximum speed. A typical boat can
reach maximum speed within seconds of changing course.

• The boat will make small changes to its course except when tacking.
A turn usually takes only a few seconds and inertia will keep the
boat going while moving over a slow section of the speed curve.

The inclusion of turning dynamics is a matter of scale. For optimization
over long distances, the significance of turning decreases while it is impor-
tant when trying to navigate in tight spaces and short time horizons.

3.3 Disturbances

When considering the boat dynamics over shorter distances one has to
take into account two significant disturbances, namely water currents and
waves.

Water Currents Water currents are typically constant over a long pe-
riod of time but can vary quite a bit from one location to another. Their
contribution to the dynamics will be modeled as stationary disturbances
to x and y that vary with the current location. Currents would also be
significant for calculationg longe distance routes.

Wave Disturbances Riding up and down the waves will cause the boat
to turn and we will therefore have to consider their influence when trying
to stay on course. The waves are periodic in nature and a skilled sailor will
quickly adapt to their rhythm and compensate with the rudder. An autopi-
lot has no easy way of seeing the waves and can only use the measurement
of the current boat heading when determining the wave disturbances. This
can be modeled using an ARMAX-model as follows:

θ(k+ 1) = θ(k) + hbu(k) + C(z−1)e(k) (6)
where b is a constant gain determined by linearization of f (u), e(k) is the
innovations process and the C(z−1)-polynomial will have to be determined
for each occasion. From this it is a straight forward task to determine a
linear predictor (e.g., a Kalman filter) for determining the wave influences.
See Chapter 10 for more on this.

3.4 The Final Model

Combining the discrete time model with the disturbance models we get



x(k+ 1)
y(k+ 1)
θ(k+ 1)


 =



x(k) + hv(θ(k)) cos(θ(k)) + dx(x, y)
y(k) + hv(θ(k)) sin(θ(k)) + dy(x, y)

θ(k) + hbu(k) + Cw(z−1)e(k)


 (7)

In this thesis I will study a hypothetical boat with the speed curve
shown in Figure 7.
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Figure 7 The speed curve of the hypothetical boat used in this thesis

4. Hamiltonian optics and sailing

This chapter is mostly a summary of [2]. The figures are also from that
article.

4.1 Approach

Light travels on time optimal paths from one point to another. This is
assured by Fermat’s principle and is used in Hamiltonian optics. By re-
formulating this into the language of sailing, an interesting application
arises. While the sailing boat has its speed curve, light moving through
and anisotropic material has an indicatrix, which is a polar plot conceptu-
ally much like the speed curve, but ellipsoidal in shape and without the
slow parts.
Consider a boat which after starting out always will sail in a time op-

timal way. The possible locations for this boat after some time t would be
described by a curve analogous to the light wavefront described by Hamil-
ton’s time space function T(r) = t. The evolution of the wavefront and the
paths of the boat to reach a point on the curve is governed by Huygens’
principle and the shape of the speed curve.
If ∆t = t1 − t0 is sufficiently small, Huygens’ principle tells us that

we can acquire the next evolution of the wavefront by placing the speed
diagram at all points along T(r) = t0 and scaling them by ∆t (so to change
the speeds into appropriate distances). The envelop curve touching the
outer edges of the speed diagrams will then be T(r) = t1.
If you want to advance as fast as possible in a specific direction p, you

draw a tangent to the speed curve that is perpendicular to p. You then

12



Figure 8 Two curves showing the possible position of the boat at times t0 and
t1. The dotted curve shows the time-minimizing path for a sailboat which passes
though r0 at time t0.

Figure 9 How to find the direction v to sail when you want to advance as fast
as possible along the direction p given the wind direction W. Note that in general,
p and v are not parallel

draw a vector from the origin of the speed curve to the point where the
tangent touches. This vector will point in the most advantageous direction.
Note that this is in general not parallel to p. Two examples of this is shown
in Figure 9.
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4.2 Results

The way to advance fastest in any direction can be found by applying a
tangent to the speed curve perpendicular to the desired direction. The point
at which the tangent touches the speed curve represents the direction in
which to sail. The speed curve would of course have to be reorientated in
order to reflect the direction of the wind.

4.3 Conclusion

This is an elegant theory and despite its many limitations not entirely
without uses. In this form it cannot answer how to get to any specific
point but it is usable for other situations, like getting to the shore as fast
as possible or crossing a large body of water. Tacking costs or trajectory
constraints cannot be easily introduced and although the article does show
how to deal with time and position dependent wind, you need deterministic
information in order to make the computations.

5. The RIOTS Toolbox

RIOTS2 is a Matlab toolbox by Adam Schwartz for solving optimal control
problems. It solves a large class of finite-time problems and allows for
a variety of constraints and cost functions. It assumes that the control
signal(s) can be expressed as spline functions and optimizes the coefficients
in these functions.
RIOTS allows dynamics to be expressed in continuous time, but it is

not clear how (or if) it could be used to handle stochastic disturbances as
the version available at the time of writing only supports optimization of
one goal function.

5.1 Approach

The objective is to calculate an optimal trajectory and the corresponding
optimal control sequence using RIOTS. Should the performance of the cal-
culations be good enough, that is if they can be completed fast enough
using limited hardware, it would be possible to base an autopilot on this
software. Since speed and memory usage are an issue, the boat model is
implemented in C rather than as Matlab functions for better results.

Disturbances We disregard the water currents and the wave distur-
bances for the moment.

The handling of free final time RIOTS is built around a fixed final
time problem formulation, but suggests that free final time can be handled
by augmenting the system dynamics with an additional state (two for non-
autonomous problems). RIOTS can then be configured to see that state as
a free choice variable and try to find the appropriate time interval that
would fit the optimal trajectory. More on this can be found in Section 2 of
the RIOTS manual.
With the augmented state t f the model becomes:

2RIOTS stands for Recursive Integration Optimal Trajectory Solver. More on RIOTS can
be found in [4]
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ẋ

ẏ

θ̇
ṫ f


 =



t f v(θ) cos(θ)
t f v(θ) sin(θ)

t f u

0


 (8)

5.2 Results

A few possibly non-optimal trajectories could be computed, while most opti-
mizations failed. No apparent connection between initial values, the num-
ber of decision points or initial guess for control signal and optimization
success was found. No improvement could be observed when using user
supplied gradient expressions instead of finite differences.

5.3 Conclusions and Remarks

The results from RIOTS seem unreliable. Often the optimization fails with
error messages like ’linear search failed’ or ’maximum number of itera-
tions reached’. Changing the initial guess of the control sequence and the
number of decision points sometimes helps but I have not been able to find
any pattern in this. When the optimization actually finishes normally, the
solutions are often found to be suboptimal.
For instance, in an example with the wind angle π /4 and starting in

(-10, 0), RIOTS computed the trajectory that is seen in Figure 10, which
is quite obviously suboptimal. In this case the initial guess of the control
sequence was [0 0 ... 0](= u1) and the final time was 12.74 seconds. With
the initial control signal u2 chosen as −u1 RIOTS gives the solution found
in Figure 11. The final time was 12.73, that is slightly better. This suggests
that there are many local minima close to the optimal solution that will
make it very difficult to find the actual minimum.
I have tried switching from finite difference approximation of the gra-

dients to user supplied gradients but without any improvement.
The supplied gradient expressions are:

∇ f (x,u) =



0 0 � ẋ

�θ v(θ) cos(θ)
0 0 � ẏ

�θ v(θ) sin(θ)
0 0 0 u

0 0 0 0


 (9)

where

� ẋ
�θ = t f

(∑n
k=1−akk sin(k(θ − θv))

)
cos(θ)−

t f
(
a0
2 + ∑n

k=1 ak cos(k(θ − θv))
)
sin(θ)

� ẏ
�θ = t f

(∑n
k=1−akk sin(k(θ − θv))

)
sin(θ)+

t f
(
a0
2 + ∑n

k=0 ak cos(k(θ − θv))
)
cos(θ)

(10)

(θv is the direction of the wind) and for the final cost function g(t, z0, zf ):

g(t, z0, zf ) = x2f + y2f (11)

�g
� xf

= 2xf , �g
� yf

= 2yf , �g
�θ f

= 0, �g
� t f

= 0 (12)
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Figure 10 Suboptimal trajectory as the wind direction is π /4. The time to com-
plete the route is 12.74 seconds

−10 −8 −6 −4 −2 0

−8

−6

−4

−2

0

2

4

6

8

−10 −5 0 5
−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

Figure 11 Less suboptimal trajectory. Wind direction is still π /4 and the time to
complete the route is 12.73 seconds
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Figure 12 Non optimal trajectory found by RIOTS for a two-state-boat model

There could be some error in my calculations or the implementation of
the gradient calculations in the boat dynamics. RIOTS test functions show
very small differences between the results given by the above calculations
and the gradient estimation by the finite differences. This suggests that
the calculations are correct and that the error lies elsewhere.
Using the reduced order, 2 state model of the boat where the turning

dynamics have been removed, yields no better results. Figure 12 shows an
trajectory from RIOTS where θv is 0.1.

6. Static optimization of simple trajectories

6.1 Approach

We assume that the possible trajectories are going to be triangular, that is
we change tack at most once. Research done with dynamic programming
suggests that this is a reasonable assumption. See for example [3] for an
example. We also assume that the boat can turn sufficiently fast in order
to make the sharp turn and keep fairly close to the triangle.
Figure 13 shows how the course from A to B via C can be defined by

two parameters, the angle α and the distance a. From these it is possible
to calculate the angle β and the distance b, which gives the following
expression for the course time:

T = a

v(α ) + b

v(−β) (13)
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Figure 13 Simple parameterized trajectory

Figure 14 Value function for triangle trajectory when sailing towards the wind
(θwind = 0)

The expressions for b and β are

b =
√
a2 + c2− 2acos(α ) (14)

β = arcsin(a sin(α )
b

) (15)

It is then a matter of static optimization. We minimize T with respect
to a and α using for instance the Matlab function fminunc.
It is important to select the optimization starting point carefully when

sailing upwind as the value function is undefined for many values of a and
α , which can be seen in Figure 14.

18



Figure 15 Value function for triangle trajectory when sailing downwind (θwind =
π )

Sailing downwind is much easier, as the value function allows for any
choice of initial values except for α = θwind. Many times this will also work,
but in the case of sailing with the wind exactly towards the target point,
the optimization could stall. A plot of the value function for θwind = π is
shown in Figure 15.

6.2 Results

A time optimal path can be calculated provided you only need to make
one turn or less. Experiments with dynamic programming suggest this
would be the case for all unconstrained trajectories if we disregard the
disturbances.

Sailing upwind Using the method for an upwind situation with C 150
meters away you get the trajectory shown in Figure 16 with a = 106,α =
−0.7854. The time to complete the route is 60 seconds.

Sailing downwind An interesting result appears when sailing with the
wind to the back. Figure 17 shows the optimal trajectory which is clearly
not a straight line. The method suggests a = 88,α = 0.5424 and the time
to complete the route is 41 seconds, as compared to 47 seconds for the
shortest route.

6.3 Conclusion and Remarks

This method has proven quite reliable, as long as the starting point is cho-
sen reasonably. Although quick and robust, it is not suitable as a solution to
the complete problem formulation (including obstacles) as as multiple turn
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Figure 16 The optimized trajectory when sailing from A to C with θwind = 0
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trajectories will yield very complex trigonometric expressions and quite
possibly difficult optimization problems. Handling stochastic disturbances
could also be a problem. It is however useful for quickly generating an
initial guess for more numerically expensive calculations, such as dynamic
programming and for long range and unconstrained sailing.

7. Analytical calculations

Optimal control theory suggests an analytical way to compute the optimal
control signal by ways of dynamic optimization.

7.1 Approach

Minimize the cost function

J =
∫ tf

0
dt (16)

subject to

z=
(
x y θ

)T
(17)

ż=



v(θ)cos(θ)
v(θ)sin(θ)

u


 (18)

z(0) =
(
x0 y0 θ0

)T
(19)

x(t f ) = 0 (20)
y(t f ) = 0 (21)

The Hamiltonian H then becomes

H = 1+ λ(t)T


v(θ)cos(θ )
v(θ)sin(θ)

u


 (22)

λ(t) is defined as (λ1(t) λ2(t) λ3(t))T which gives

H = 1+ λ1(t)v(θ)cos(θ ) + λ2(t)v(θ)sin(θ) + λ3(t)u (23)

λ̇(t)T = −�H
� z (24)

λ̇1(t) = λ̇2(t) = 0 (25)

λ̇3(t) = −λ1( dv
dθ
cos(θ) − v(θ) sin(θ)) − λ2( dv

dθ
sin(θ) + v(θ) cos(θ)) (26)

θ(t) = θ0 +
∫ t

0
u(τ )dτ (27)

This primitive is very hard to find and currently beyond this thesis.
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8. The CDP Toolbox

CDP3 is a Matlab toolbox developed by Sven Hedlund at the Department
for Automatic Control, Lund Institute of Technology for solving optimal
control problems for hybrid systems. The underlying theory is based on
converting the non-linear problem into a larger linear programming form.
It uses a discretized state space and can be configured to use a number of
different linear programming solvers. In this thesis I have used the built-in
Matlab solver linprog. More on the theory CDP is based on can be found
in [1].
As CDP uses a numerical discretization of the state space, memory con-

straints limits precision when using lots of states. Using many states also
increase the computational complexity. For these reasons, the number of
states has been reduced to two, discarding the turning dynamics. Initially,
we also disregard the disturbances.

(
ẋ

ẏ

)
=

(
v(u) cos(u)
v(u) sin(u)

)
(28)

Using this model, cdplowm was run with the following arguments:

uv = [0:pi/4:2*pi]’;

O = [-20 -20 20 20 ]’;

xmin = [-10 -10]’;

xmax = [10 10]’;

XQ = [xmin ; xmax ; 1 ];

xqf = [0 0 1 ]’;

N = [11 11]’;

tb = 0;

Subsequently, cdpctrl is used to calculate a control matrix determining
the optimal control signals for different points in the state space.

8.1 Results

I have not yet been able produced a usable control law with CDP given the
current problem formulation.

8.2 Remarks

The problems using CDP may well be associated with memory problems.
I have tried solving basic problems with small linear systems (one or two
states) and have found that a too small grid can cause the optimization to
fail or yield obviously wrong results. Since increasing the number of grid
points to more than 11x11 required more memory than the available com-
puter was equipped with (384 Mb + 0.5 Gb swap), I decided this approach
was not suited for autopilot implementation.
It should be noted that the massive memory usage could be the result

of using linprog. Unfortunately, I haven’t had access to other solvers (e.g.
PCx or similar) so that possibility remains unchecked.

3Short for Convex Dynamic Programming
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Figure 18 The black line represents the shortest route between Hässleholm and
Malmö.

9. Dynamic Programming

Dynamic programming is a principle for solving dynamic optimization prob-
lems by ways of using partial results. It has many close relatives in graph
algorithms (such as Dijkstra’s algorithm) and can be applied to a large
class of problems, ranging from optimal control to game theory and pro-
duction planning.

9.1 Brief Introduction to Dynamic Programming

The fundamental principle is very simple in itself and best illustrated by
an example. Imagine three cities, let’s call them Malmö, Lund and Hässle-
holm. We place ourselves in Hässleholm and in some way we manage to
calculate the time optimal way of driving from Hässleholm to Malmö. By
chance, this happen to take us through Lund. If later we find ourselves
in Lund and would want to go to Malmö as fast as possible, the dynamic
programming principle would tell us that this would take us along the last
part of the optimal route from Hässleholm to Malmö. The route is shown
in Figure 18.
Let’s expand the example by adding a few other cities, say Landskrona,

Trelleborg and Sjöbo. For some reason, you already know the optimal way
of getting from all these three places to Malmö. If you then happen to find
yourself somewhere in Skåne (the area of Sweden shown in Figure 18)
without knowing how to get to Malmö as fast as possible, you can perhaps
figure out which one of these known cities is easiest to reach. Rephrased
in another way, you need to figure out which one of these cities might lie
on the optimal route to Malmö and then use the partial result of how to
getting from that city and to your final destination.
Mathematically speaking, imagine an optimal discrete time trajectory
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z0, z1 . . . zf given the transition cost function g(z1, z2) and a set of admissible
control signals U . We can now define the cost-to-go function V (z) that gives
the remaining cost of moving along the optimal trajectory from z to zf as

V (zk) =
{
0 i f zk = zf
min {g(zk, zk+1) + V (zk+1)} otherwise

(29)

The method of solving for the optimal trajectory from any given state
will be to start out in zf and then recursively go backwards until you reach
the desired initial state. Observe that since we are in discrete time (with
typically uniformly sampled systems) we cannot know the number of steps
needed for a specific initial state if the object is to achieve a minimal time
trajectory.

9.2 Approach

The number of recursions in each case will be limited by the number of
admissible control signals (i.e. the number of elements in U) but will soon
grow very large unless restricted. In a continuous state space, there is an
infinite number of possible states so our first step will be to sample each
state uniformly. We can now also introduce a memory so that the algorithm
is able to recognize a state is has visited before.
On its current recursive form, the algorithm will still require a large

number of recursions for any normal sized problem. Assuming we sample
each second and that we wish to travel 100 m along a straight line in the
direction where the boat is fastest, we could still need some 30 decisions for
a typical situation. Using a conservatively discretized control signal with
3 admissible choices (max turn left, max turn right and straight ahead)
we would then end up with 330 � 1014 recursions which obviously is too
much.

Approximate Iterative Algorithm Using that the dynamic program-
ming algorithm relies on partial results we can reform the recursive algo-
rithm in an iterative way. We now introduce the following

X = (X0, X1 . . . Xm−1),
∣∣Xi − Xj ∣∣ = ∆x�i �= j, i, j ∈ [0,m − 1] (30)

Y = (Y0, Y1 . . .Yn−1),
∣∣Yi − Yj∣∣ = ∆ y�i �= j, i, j ∈ [0, n− 1] (31)

Θ = (Θ0, Θ1 . . . Θk−1),
∣∣Θ i − Θ j

∣∣ = ∆θ �i �= j, i, j ∈ [0, k− 1] (32)

as a sampled region of the continuous state space. We now compute an
estimation V̂ (z) of V (z) iteratively. Let V̂k(z) be the estimate of V (z) after
k iterations. For compact notation, we will write the system dynamics as
zt+1 = Φ(zt,u) and the state space region defined by X , Y, Θ as S.

V̂k(z) =




0 k = 0, z= zf
∞ k = 0, z �= zf , z ∈ S
∞ z /∈ S

minu∈U
{

g(z, Φ(z,u)) + V̂k−1(Φ(z,u))
}
otherwise

(33)
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A problem with this formulation is that it is unlikely that you will move
exactly the distance between two points in S during one discrete time step.
This can be solved in two ways.

Variable Step Time If we allow each step to take a varying amount

of time, we could calculate min
{

g(z, Φ(z,u)) + V̂k−1(Φ(z,u))
}
by selecting

a number of states close to z (e.g., within a given radius) and calculating
the cost to reach them, then selecting the choice with the least cost. Let
znew = (xnew ynew θnew)T denote one such state. Then g(z, znew) could be
expressed as

g(z, znew) =



∞ znew unreachablefromz√
(x−xnew)2+(y−ynew)2

v(θnew) otherwise
(34)

The problem here would be to figure out if znew is unreachable. Also
one must take care to allow for a sufficiently large radius when choosing
candidate states as a too small circle would explore too few directions and
possibly miss a local maxima on the speed curve. For this to work, one
must also assume that any control signal u that is within the span of U
would be allowed.
This approach also makes it difficult to handle disturbances, as you

would have to figure out how to counter the disturbance in order to get to
the state space point in the end.

Linear Approximation in between Points A less complicated way is
to allow znew to be a point in between the grid points of S. V̂k−1(znew) could
then be determined as a linear interpolation of V̂k−1(znew) for the points in
S around znew.
The method to calculate g(z, znew) + V̂k−1(znew) here would be to try

all possible control signals in U and selecting the one that would give the
least cost. It is important to note that in order for this to work, the function
V (z) must be sufficiently smooth for the linear interpolation to be exact
enough. A formal proof of this is beyond this thesis.
Since we are using linear interpolation, allowing V̂k(z) to approach∞ is

not practical and instead we choose a large value, preferably some orders
of magnitude larger than the optimal time.
This method allows for easy handling of the water current disturbances,

as they (if they are known or estimated) can just be incorporated into the
system dynamics function Φ(z,u).

Convergence Given a sufficiently smooth V (z), the estimation converges
for any initial guess. A better initial guess should improve convergence
speed. This is an important property as it allows the algorithm to adapt
to changing system dynamics faster. For this application, measurement of
difference between two iterations will be based on

∆V =
∑
z∈S

∣∣∣V̂k(z) − V̂k−1(z)
∣∣∣ (35)
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Figure 19 Sailing against the wind from (-150,0) to the origin. Boat starts out
heading towards the wind.

Handling Stationary Obstacles Stationary obstacles can be handled
adding special cases to the cost-to-go function similar to how one handles
states outside of S. All points within the obstacle will have a high constant
cost which will make it “expensive” to maneuver through them. In this
thesis, we will limit the experiment to a single, rectangular obstacle defined
by the four coordinates xmin, xmax, ymin, ymax.

Navigating by the Cost-to-go Function After having obtained an es-
timate for V (z) we can use it for feedback control. By doing essentially a
one step iteration from the current state, we select the control signal that
drives us in the direction where the cost-to-go function decreases most
rapidly, in essence a steepest decent method.
It is important to note that the cost-to-go function is calculated in a

batch operation. As long as you navigate inside S and with constant wind
and current conditions, there will be little calculation left to do.

9.3 Results

The above described algorithm was implemented using ANSI C on a Linux
PC.
We use a state space discretization with 101 x 101 x 17 points and 8 con-

trol signals. X, Y stretches between -200 and 200 while U spans between
−π /4 to π /4. The boat reaches the point (-1.113476, 2.612883) after 62
seconds. Calculating the cube used for the simulation took about 1440 sec-
onds (75 iterations) on a Pentium 3, 600 MHz, running a common desktop
Linux OS. Running the actual simulation takes less than 0.01 seconds.
Switching to sailing downwind reveals some interesting results.
Sailing this route takes 41 seconds, as compared to 47 when sailing the

shortest route. This shows that some boats will benefit from not always
taking the shortest route between two points. The gain is quite substantial
(a 12% reduction in sailing time) but for these short distances it might be
more practical to take the slower but simpler route as turning introduces
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Figure 20 Sailing downwind from (150,0) to the origin. Boat starts out heading
away from the wind.

a lot of manual work. Over longer distances the drawbacks of having to
turn will decrease.

Adapting to Changing Wind Changing the wind direction to 0.3 radi-
ans and then allowing the algorithm to recalculate until it converges again
takes 1260 seconds (or 64 iterations), which suggests there is not a lot
to gain by using the adaptive properties in this way. It is possible that
the time it takes for the estimation to converge is more dependent on the
number of grid points and the speed curve than the initial guess.

Handling obstacles Adding obstacle handling to the algorithm does
not seem to change the convergence rate significantly. The object in the
experiment was to maneuver around an object between the starting posi-
tion at (50, 0) and the origin, see Figure 20. The object is rectangular and
stretches from (20, -20) to (40, 20). As before, the wind direction will be
0. We here use a substantially smaller state space grid, mostly because it
gives a cost-to-go function that is easier to display.

Water Currents We now add a steady water current with dx = dy = -1
m/s. This is a quite strong current, but not uncommon in some waters. We
use the same obstacle as before and the same wind direction.
If we take a look at the cost-to-go function for two situations where the

boat starts out close to the obstacle on the right side we can see in Figure
24 that the cost quickly rises to infinity when starting out facing towards
the obstacle while not so when starting out facing away from it (Figure
25). This is a sign that the boat will not be able to avoid the obstacle from
that starting situation.

27



0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

25

x (m)

y 
(m

)

Wind direction 0

Figure 21 Sailing around an obstacle, starting in (-50, 0) with the boat facing
π /2.
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Figure 22 A slice of the corresponding cost-to-go function where the boat starts
out at the angle π . The obstacle is visible in the form of a very high cost region of
the cost function

9.4 Conclusion and Remarks

The algorithm shows much promise as it can handle all the difficulties
except the stochastic wave disturbances. Calculating the cost-to-go function
can be done in advance and since the resulting data require fairly little
storage space, it can be pre-calculated for a large number of possible wind
and current conditions.
Since all the individual calculations in an iteration only depend on the
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Figure 23 The current dx = dy = −1 is used here. Also plotted with a dashed
line is the previous trajectory when we had no current.
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Figure 24 Cost-to-go function when starting out in (48,0) facing towards the
obstacle. Wind direction is 0 and currents along (-1,-1)

previous and not on each other, the algorithm is well suited for paral-
lelization if several CPUs are available. Theoretically it would scale ap-
proximately linearly until the number of threads approach the number of
discrete state space points, which seems unlikely for a ship board mounted
solution (see Chapter 10).
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Figure 25 Cost-to-go function when starting out in (48,0) facing away from the
obstacle. Wind direction is 0 and currents along (-1,-1)

10. Autopilot Design

There are several issues to address before the algorithm developed in Chap-
ter 9 can be used on a sailing boat. This chapter will not provide a finished
design for an autopilot, but will try to address a few of the problems in-
volved with such an attempt.

10.1 Hardware Considerations

Equipment that should be taken on board must be resilient to force and
water. It must not consume too much power as the batteries of the boat
must power such things as the GPS and the ignition for the on board en-
gine. At the same time, you need sufficient computing power to re-calculate
the cost-to-go function in reasonable time should the need arise.
The dynamic programming algorithm is dependent on position and

heading information which are both easily obtained from the GPS unit
commonly found on board.
A plausible solution to these requirements would be to use a laptop

computer connected to the GPS unit. If present, it could also be connected
to the rudder servo. A laptop bought today would be much faster than
the computer used for the experiments presented in this report but would
probably still need many minutes to complete a high resolution optimiza-
tion such as the first example in Chapter 9.3. There are several options for
improving performance.

Software Optimization The program as it is written today is com-
pletely unoptimized. It is still many times faster than the Matlab imple-
mentation produced to prototype the algorithm, but some optimizations are
evident. Running gprof4 gives the following output shown in Table 1.

4A profiler that comes with gcc, the c-compiler used for this thesis. See the online manual
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Table 1 The output from running gprof on the algorithm

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

17.65 12.33 12.33 88363392 0.00 0.00 vfunk3

14.71 22.61 10.28 11045424 0.00 0.00 cube_interp...

10.96 30.27 7.66 682657041 0.00 0.00 dynassert

10.76 37.79 7.52 99944832 0.00 0.00 cyclemod

9.76 44.61 6.82 104 65.58 671.35 dynitteration3

9.53 51.27 6.66 24610560 0.00 0.00 linterpol

8.92 57.50 6.23 24610560 0.00 0.00 findindex

4.67 60.76 3.26 12305280 0.00 0.00 findcube

4.02 63.57 2.81 12305280 0.00 0.00 findcyclicindex

3.33 65.90 2.33 12305280 0.00 0.00 step3

2.93 67.95 2.05 24610560 0.00 0.00 speed

0.70 68.44 0.49 24610560 0.00 0.00 fcyclemod

0.62 68.87 0.43 24610560 0.00 0.00 fmin

0.53 69.24 0.37 14004328 0.00 0.00 in_obstacle3

0.47 69.57 0.33 12215944 0.00 0.00 xyoutside_cube

0.36 69.82 0.25 1538160 0.00 0.00 vectormin

0.07 69.87 0.05 905 0.06 0.06 MatrixWrite

0.00 69.87 0.00 105 0.00 0.00 set_xycost

0.00 69.87 0.00 53 0.00 0.94 CubeWrite

0.00 69.87 0.00 4 0.00 0.00 makedvector

0.00 69.87 0.00 2 0.00 0.00 MatrixRead

0.00 69.87 0.00 2 0.00 0.00 makedcube

0.00 69.87 0.00 1 0.00 0.00 save_cube

0.00 69.87 0.00 1 0.00 0.00 set_defaultcost

This means we can reduce the computation time by 10% by removing
the dynassert calls (only meaningful during development). vfunk3 is fairly
unoptimized as it is implemented and could perhaps be speeded up by
choosing a smarter data structure for handling the cube that holds the
values of V̂k(z). A speed gain could possibly result from better use of the
CPU cache. cyclemod is a function created to handle the circular nature of
the θ state and could possibly be optimized with in-line assembler. All in
all, a speed gain of more than 20-30% is unlikely and large optimizations
would still be problematic to handle in real time.

Algorithm Optimization Given knowledge of how the algorithm works,
there are several possibilities for improving the performance.

• Given how the approximation “grows” from the origin a possible op-
timization would be to just do the calculations on the area to which
the approximation has spread. Since the growth speed is constant
this would reduce the execution time by roughly 50%.

• If the wind and currents are constant for all state space points, the
resulting relative step would be the same for all (x, y). It can then

pages for gprof for a detailed description
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be shown that the resulting cost for a step in a given direction can
be computed for all states at the same time using a 3-dimensional
convolution. Present day hardware has good functions for computing
convolutions rapidly which could be exploited in this case.

Specialized Hardware It was mentioned earlier that the algorithm is
well suited for parallelization. Few laptops are fitted with multiple CPUs
so custom hardware would have to be developed. This option clearly of-
fers the largest performance improvement, but also the one that would be
the most expensive. CPUs are cheap but require a motherboard to work.
Motherboards for more than 2 CPUs are typically expensive and probably
not an option for the amateur this thesis is aimed at. If implemented, the
algorithm would scale linearly for each CPU, a property that comes from
that each calculation only depends on already finished results.

10.2 Following a Course

Having computed an optimal route we are immediately faced with the
problem of following it. The wave disturbances are routinely handled by
the sailor but practical experience has shown that autopilots have trouble
keeping the boat on course as they can’t see the waves and as such won’t
discover the disturbance until it has already caused an error.

Kalman filter Estimation of Wave Disturbances We modeled the
turning dynamics together with the noise caused by the waves as an
ARMAX-model

θ(k+ 1) = θ(k) + u(k) + C(z−1)e(k) (36)
The polynomial C(z−1) would have to be obtained from studying the

wave dynamics. In Figure 26 we see wave data collected from an oil plat-
form in the North Sea. The majority of the frequency content is concen-
trated between 0.1 and 0.4 Hz (shown in Figure 27), implying that if we
continue to sample the process at 1 Hz, the FIR-filter would need to be at
least of length 10, possibly much higher to obtain sufficient dampening.
The sample rate cannot be made much slower since me must keep above

the Nyquist frequency. Instead, I suggest a state space representation.
Introduce the state vector

v =
(
v1 v2 . . . vn

)T
(37)

and the two systems

θ(k+ 1) = θ(k) + u(k) + w(k) (38)

v(k+ 1) = Φvv(k) + Γve(k) (39)
w(k) = Cvv(k) (40)

This can be written in block form like

(
θ(k+ 1)
v(k+ 1)

)
=

(
1 Cv

0 Φv

) (
θ(k)
v(k)

)
+

(
1 0

0 Γv

)(
u(k)
e(k)

)
(41)
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Figure 26 The wave data was measured on December 24th 1989 at the Gullfaks
C platform in the North Sea from 17.00 to 21.20. The data was graciously provided
by Jesper Ryden from the Department of Mathematical Statistics at Lund Institute
of Technology
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Figure 27 A power spectrum estimation using Welch’s method
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Figure 28 Comparing the estimated model with the data. The two spectrums
are reasonably alike with the smoother line representing the model spectrum. The
estimated spectrum from the wave data has been estimated after downsampling
to 1 Hz

yθ (k) =
(
1 0

) (
θ(k)
v(k)

)
(42)

Now we can use system identification methods to obtain the matrices
Φv, Γv and Cv. Applying first idresamp to down sample the wave data to 1
Hz and then using n4sid to identify a 2nd order model.

The one thing that remains is determining how the surface elevation
affects the boat heading. It seems reasonable that it is the slope of the
wave, not the actual hight, that will cause the disturbance. Exactly how
much deviation this slope then causes is dependent on the hull (size and
shape) but also from which direction the wave hits the hull. Intuitively,
one would guess that a wave hitting the boat in the stern wouldn’t affect
the heading while one hitting it from the side would.

We introduce a differentiating filter and a scaling factor kw

34






θ(k+ 1)
v(k)
v(k+ 1)


 =



1 −1 kwCv

0 0 kwCv

0 0 Φv







θ(k)
v(k− 1)
v(k)


 +



1 0

0 0

0 Γv




(
u(k)
e(k)

)

yθ (k) =
(
1 0 0

) 


θ(k)
v(k− 1)
v(k)




(43)

From here it is a straight forward task to compute a minimum-variance
controller by using e.g. the dkalman, dlgr and lqgreg. As validating the
results from such a construction requires a “true” model of the wave to
θ dynamics or an actual boat, this will not be covered in this thesis. An
explanation of the calculations required to obtain the estimator can be
found in [6].

10.3 Estimating Wind and Currents

The GPS unit makes it relatively simple to estimate the wind and currents.
The boat is typically fitted with both some kind of wind indicator and a
speed meter. The wind indicator will tell the wind direction relative to
the boat and a recent model might even tell the wind speed. In order to
get a usable estimate, the indicator signal must be low-pass filtered and
compensated for the velocity of the boat (given by the GPS). Similarly, the
speed meter will tell the boat speed relative to the water in the direction
the boat is heading. Subtracting this from the absolute speed (given by the
GPS) will yield a local estimate of the water currents.

11. Conclusions

We have seen that it is possible to compute routes around obstacles taking
into account the specific wind properties of the boat as well as currents.
This has been done on hardware sufficiently cheap and low on power con-
sumption to be used on board an ordinary sailing boat. Stochastic wave
disturbances has not been solved, but a strategy that seem likely to work
has been prototyped.
Although able to handle many different problems, it is important to note

that the mathematical properties of the linear approximation based version
has not been examined. The fact that it gives the same solution as the
static optimization approach from Chapter 6 for unconstrained problems
gives some indication of its validity.

12. Further work

An important step in continuing to investigate the iterative dynamic algo-
rithm using the linear interpolation approximation would be to construct
a valid proof of its correctness.
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The algorithm can easily be expanded to handle any number of states,
control signals and obstacles, making it useful for many other optimal
control problems. Handling such things as generic trajectory constraints
can be introduced by explicit manipulation of the value function as well as
by introducing checks while deciding on the best control signal similar to
those used now for obstacle avoidance.
Additionally, introducing stochastic properties into the dynamics would

also be desirable and would possibly allow for inclusion of wave disturbance
handing into the main algorithm.

13. References

[1] Sven Hedlund. Computational Methods for Optimal Control of Hybrid
Systems. PhD thesis, Department of Automatic Control, Lund Institute
of Technology, Sweden, May 2003.

[2] J C Kimball and Harold Story. Fermat’s principle, Huygens’ principle,
Hamilton’s optics and sailing strategy. 1997.

[3] Andy Philpott and Andrew Mason. Optimizing yacht routes under
uncertainty. 2000.

[4] A. Schwartz and E. Polak. RIOTS Manual. Department of Electrical
Engineering and Computer Sciences, University of California, 1996.

[5] Gunnar Sparr and Annika Sparr. Kontinuerliga system. Studentlitter-
atur, 2000.

[6] Karl Johan Åström and Björn Wittenmark. Computer Controlled
Systems. Prentice Hall, 1997.

A. Source Code and Downloads

Refer to the webpage

http://www.control.lth.se/articles/article.pike?artkey=5717

for an electronic copy of the latest version of this thesis as well as a down-
loadable copy of the source code used for producing the results. Note that
this software is provided “as is” and is not supported by neither the author
nor the Department of Automatic Control.
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