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1. Introduction

In today’s development of automotive systems a major field of research is how
to develop systems that assist the driver in certain driving situations, increasing
the comfort and safety of the driver. Example of such systems are controllers for
the vertical, longitudinal and lateral movements of the vehicle. ABS (Antilock
Braking system) is already standard in most vehicles whereas ABC (Active Body
Control) is taking a step from being a part of upmarket vehicles to become stan
dard in more ordinary cars. Another system that has not yet been implemented
into cars in most countries is the SBW system (Steer by Wire), where the mechan
ical components of the steering system will be replaced with electrical hardware.
The SBW system is still a topic of active research.

1.1 Background

The automotive control systems have largely been designed independently of each
other ignoring the coupling that exists between them, e.g. when controlling the
horizontal dynamics, the vertical dynamics is affected and vice versa. Therefore
more effort is put into the integration of these systems, to make overall vehicle
optimization possible. One part of optimizing the vehicle dynamics, is to reduce
the effects from disturbances such as wind gusts.
Lateral disturbances that are caused by heavy wind gusts can reduce the safety

of the driver and the passengers, particulary if the driver tend to overcompensate.
Weaker wind gusts reduce the comfort and it is therefore desirable to reduce
the effects these disturbances have on a vehicle. In earlier work, it has been
investigated how the effects from wind gusts can be attenuated with the steer
by wire system. Since this system may not be implemented for several years, the
automotive industry is looking for other solutions.

1.2 Objectives

One of the main objectives with this work has been to investigate how the vertical
and lateral dynamics influence each other. This was done by developing a vehicle
model that closely represents the dynamics of a vehicle, particulary in the aspect of
coupling the vertical dynamics with the lateral dynamics. A second main objective
has been to find out what mechanisms that makes it possible to influence the
steering behaviour using active suspension. In addition, how great is the influence
on the lateral dynamics and could it be used for side wind rejection. If so, a
controller should be designed.

1.3 Methods

The project started with finding mathematical equations that represents different
dynamical parts of a fourwheeled vehicle. This was needed for linearisation of the
model, thus being able to perform plant analysis and control design. Particulary,
the equations for horizontal and vertical dynamics were needed, since a coupling
between the models should be done. The equations were found in literature. When
these models had been coupled, simulations using Matlab/Simulink showed that
the model was insufficient. By deriving the dynamics of the steering system and
adding this to the model, the match with the nonlinear simulation package CAS
CaDE was significantly improved. Relying on simulations in CASCaDE and tests
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Chapter 1. Introduction

on the departments test vehicle, the mechanisms that contributes to the coupling
were found. Finally, the controller was designed using Matlab/SISO toolbox.

1.4 Thesis Outline

In the following chapters it will be discussed how the active suspension system, to
some extent, can be used to influence the steering behaviour of the vehicle. In the
final chapter the design of a controller is presented which attenuates the effects
of wind gusts.

Chapter 2 The Vehicle Model

For analysis of a plant, a powerful tool is to transform the plant from time domain
to frequency domain. When transforming a model to frequency domain, it is nec
essary for the model to be linear. The vehicle model which can be linearised about
certain points and used for analysis is presented in this chapter. The coupling of
the lateral and vertical models is also described. Some theory about aerodynamics
and how it influences the behaviour of the vehicle is also given. Finally a short
description of the complex and highly non linear simulation package CASCaDE
(Computer Aided Simulation of Car and Driver Environment) is presented.

Chapter 3 Validation

The vehicle model is evaluated by comparing simulation results to simulations in
CASCaDE and to tests performed using the departments test vehicle, the so called
Technoshuttle. It is also discussed, in which situations and for what manoeuvres
the linearised model can be used for analysis and simulation.

Chapter 4 Analysis of wind gust rejection

Some different possibilities in rejecting side winds are presented but the focus is
kept at the active suspension system and it’s limitations. The different mecha
nisms that contributes to the possibility of influencing the lateral dynamics with
active suspension are presented, as well as to what extent the different mecha
nisms contribute.

Chapter 5 Control Design

The existing ABC system is presented in this chapter. Some changes needs to be
done in the ABC system when implementing the new controller and this will also
be discussed here. Finally, the results of the PID controller, and what limitations
exist are presented.

Appendix

Parts of Matlab Code will be included and also a derivation of how sensor signals
can be reconstructed from center of gravity values using classical kinematics.
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2. Vehicle Model

2.1 Modelling of Vehicle Dynamics

Vehicle dynamics is concerned with the movements of vehicles on a road surface.
The behaviour is determined by the forces imposed on the vehicle from the tyres,
gravity and aerodynamics. The vehicle and it’s components behaviour are studied
under certain conditions to understand the mechanisms involved during certain
manoeuvres.
This chapter describes the modelling of the car dynamics. The modelling can

be simplified into four major submodels that can be connected. The first model
describes the dynamics behind the horizontal motions such as the longitudinal
and lateral velocities. The second model describes the vertical dynamics of the car
body and the wheels. The third model represents the tyre behavior and the fourth
model regards the dynamics of the steering system. The connections between the
models are also presented in this chapter.
In the case of horizontal dynamics, the vehicle is represented as one lumped

mass located at the center of gravity. When analysing the vertical movements of
the car the wheels and the body are modelled as separate lumped masses. Figure
2.1 shows the vehicles six degrees of freedom. The equations for the horizontal
dynamics considers three degrees of freedom, the yaw as well as the longitudinal
and lateral motions. In the vertical model, the other three degrees of freedom are
considered, the roll, pitch and lift motions.

2.2 Horizontal dynamics of a fourwheel vehicle

The vehicle motion is described with reference to two different coordinate systems,
one that is fixed to the body and one that is global[7]. The center of gravity is used
as the origin for the body fixed coordinate system and it is following the motion
of the vehicle.The earth fixed coordinate system has an arbitrarily defined origin.
The current rotation of the bodyfixed system in relation to the global coordinate
system is described by the yaw angle Ψ. Disregarding Ψ, all quantities are defined

Figure 2.1 The vehicles six degrees of freedom.
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Chapter 2. Vehicle Model

Figure 2.2 Definition of earth and bodyfixed coordinate system.

Figure 2.3 The center of gravity coordinate system and its main quantities.

in the bodyfixed coordinate system. However, only the time derivative of the of
the yaw angle Ψ̇ is of interest here. Thus, the orientation of the bodyfixed system
in the global system is not relevant.
The xaxis points forward in the longitudinal direction of the vehicle, the yaxis

in the lateral direction and the zdirection is defined positive in upward direction.
The horizontal motion of the vehicle can be described by three quantities (vx, vy,ψ̇ ),
and these are illustrated in Figure 2.3. Explanations of the symbols can be found
in table 2.1.
Figure 2.4 shows the bodyfixed coordinate system and the four corners repre

sent the respective tyre footprints 1. For given γ i and hi (i = 1, ..., 4), the geometric
system is defined by

bi = hi sinγ i (2.1)

li = hi cosγ i (2.2)

To simplify notations a generalized quartercar (see Figure 2.5) is used. The
geometric quantities in this figure relate to those in Figure 2.4 via the geometry
equations in table 2.2.

1The contact between a pneumatic tyre and the ground is actually not a point but rather a patch.
In the model derived here, the contact patch is considered as a point, about which all forces are acting.
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2.2 Horizontal dynamics of a fourwheel vehicle

Table 2.1 Coordinate system variables for the horizontal model

vx The forward velocity, in the direction of xCG
vy The lateral velocity, in the direction of yCG
ψ̇ Yaw rate (rotation about zCG)

δ i Wheel steering angle

v The resulting velocity

β Vehicle body side slip angle (angle between xCG
and vCG , the vehicle velocity)

Fyi Lateral wheel ground contact force (acting in the
direction of yWi)

Fxi Longitudinal wheel ground contact force (acting in
the direction of xWi)

γ
2 γ

γ
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γ

1
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1hhh

hh
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34

l

l
l
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Figure 2.4 Vehicle axis system and geometric definitions
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Figure 2.5 Vehicle axis system and geometric definitions
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Table 2.2 Relationship between quartercar, Figure 2.5 and the complete model Figure 2.4

θ1 = −γ 1 x1 = l1 y1 = −b1

θ2 = γ 2 x2 = l2 y2 = b2

θ3 = π + γ 3 x3 = −l3 y3 = −b3

θ4 = π − γ 4 x4 = −l4 y4 = b4

Equations of motions for the horizontal model

The force components fxi and f yi indicate the components of the forces generated
by the tyres in bodyfixed coordinates (see Figure 2.6):

fxi = Fxi cosδ i − Fyi sinδ i (2.3)

f yi = Fxi sinδ i + Fyi cosδ i (2.4)

By using Newton’s second law (
∑

F = ma), the resulting equations of motions
are:

max =

4∑

i=1

(Fxi cosδ i − Fyi sinδ i) (2.5)

may =
4∑

i=1

(Fxi sinδ i + Fyi cosδ i) (2.6)

where ax = v̇x − vyψ̇ and ay = v̇y + vxψ̇ .
The torque caused by the forces at a single wheel, mi, and acting on the center

of gravity are:
mi = hi(− fxi sinθ i + f yi cosθ i) (2.7)

The balance of torques for plane motion (around zaxis) is described by
∑
Mz =

Izzψ̈ =
∑
mi and we get

Izzψ̈ =

4∑

i=1

hi(− fxi sinθ i + f yi cosθ i) (2.8)

Equation 2.52.8 are the equations describing the horizontal dynamics assum
ing that the forces on the tyres are known.
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2.2 Horizontal dynamics of a fourwheel vehicle
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Chapter 2. Vehicle Model

2.3 Vertical dynamics of a fourwheel vehicle

In Figure 2.7 the geometry of the vehicle model is described. The body of the
car is modelled as a stiff body with three degrees of freedom (according to [6]).
The motions of the body is described by the vertical motion zB , the roll angle r
(rotational motion about the x − axis), and the pitch angle p (rotational motion
about the y − axis). The axles are modelled as weightless bars. The actuators
are acting on the springs of the suspension system and these are assumed to be
linear. On a suspension strut, a linear damper is assumed to be mounted parallel
to the spring and actuator.
The wheels are modelled as point masses with linear spring characteristics.

According to [6], the damping of the wheels are small enough to be neglected. The
wheels are assumed to move only in the vertical direction and the motion of the
wheel is described by the wheel position, zW .
Further, the axles are modelled as if they were parallel, and by doing so,

the relative longitudinal and lateral motions between the axles and the body are
not considered. The outside forces and moments that arises during acceleration,
braking, cornering etc are Mr, Mp and Fz as described in Figure 2.7.

Equations of motions for the vertical model

The conditions for the linearisation of the model is that the roll and pitch angles
remains small, that all forces act perpendicular to the body and that the vertical
movement of the body is small.
If considering FB_i = Fss_ii and lB_i = lss_i, Newton’s second law (see Figure

2.8) for the vertical motion becomes:

mB z̈B = Fss_ f r + Fss_ f l + Fss_rr + Fss_rl − FL_ f r − FL_ f l − FL_rr − FL_rl + Fz (2.9)

The balance of torques equation (about x and yaxis respectively) gives us:

Jpp̈ = −l f cos(p)(Fss_ f r + Fss_ f l) + lr∗ cos(p)(Fss_rr + Fss_rl)+

+ l f cos(p)(FL_ f r + FL_ f l) − lr∗ cos(p)(FL_rr + FL_rl) + Mp
(2.10)

Jr r̈ = (Fss_ f llss_ f l + Fss_rl lss_rl) cos(r) − (Fss_ f rlss_ f r + Fss_rrlss_rr)⋅

⋅ cos(r) − (FL_ f l lL_ f l + FL_rl lL_rl) cos(r) + (FL_ f rlL_ f r + FL_rrlL_rr)⋅

⋅ cos(r) + Mr

(2.11)
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x

y
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B
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cw
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lw_rl

lw_rr
zw_fl

zw_rl

zw_rr
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� �

w

w

w
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Figure 2.7 Linear vertical vehicle model
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2.3 Vertical dynamics of a fourwheel vehicle

Table 2.3 Parameters and variables of linear vertical model

xB , yB , zB Axis for the center of gravity coordinate system

l f , lr∗ The xcomponent of the distance from CG to sus
pension systems front and rear

ll , lr The ycomponent of the distance from CG to sus
pension system

lL_i The ycomponent of the distance from CG to bear
ing mount

lW_i The ycomponent of the distance from CG to wheel

lss_i The ycomponent of the distance from CG to sus
pension strut

l f r, l f l , lrr, lrl The indices stands for Front Right .. Rear Left

zPP, zRP The vertical distance from ground level to the
pitch and roll axis respectively

zB0 The vertical distance from ground level to CG

zL The vertical distance from ground level to bearing
mount

zssB The vertical distance from ground level to upper
suspension mounting point

zssL The vertical distance from ground level to lower
suspension mounting point

r, p Roll and pitch angle respectively

Mr,Mp Roll and pitch moment respectively

Jx, Jy Roll and pitch moment of inertia respectively

Fz Disturbance force in vertical direction

mB ,mW Body and wheel mass respectively

Fss Forces in suspension strut

FL Forces in bearing mount

cB f , cBr Suspension spring constants front and rear

bB f , bBr Suspension damper constants front and rear

ui j Suspension system control signal

cW Tyre spring constant

wi j Road profile at tyre contact "point"

Moments of inertia about roll and pitch axis are calculated according to Steiner’s
theorem. It is assumed that the roll and pitch axes are parallel to the x and y
axes respectively.

Jr = Jx +mB(zB0 − zRP)
2 (2.12)

Jp = Jy +mB(zB0 − zPP)
2 (2.13)

Linearising eq 2.9eq 2.11 and introducing the matrices:

ΘB =






mB 0 0

0 Jp 0

0 0 Jr




 (2.14)
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,

FB = Fss =









Fss_ f r

Fss_ f l

Fss_rr

Fss_rl









and FL =









FL_ f r

FL_ f l

FL_rr

FL_rl









(2.15)

we get
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Figure 2.10 Bearing force determination by moment equilibrium around the point PD

ΘB






z̈B

p̈

r̈




 =






1 1 1 1

−l f −l f lr∗ lr∗

−lss_ f r lss_ f l −lss_rr lss_rl




 ⋅

⋅ Fss −






1 1 1 1

−l f −l f lr∗ lr∗

−lL_ f r lL_ f l −lL_rr lL_rl




 FL +






Fz

Mp

Mr






(2.16)

By defining the geometry Matrices as

TG_B = TG_ss =









1 −l f −lss_ f r

1 −l f lss_ f l

1 lr∗ −lss_rr

1 lr∗ lss_rl









and TG_L =









1 −l f −lL_ f r

1 −l f lL_ f l

1 lr∗ −lL_rr

1 lr∗ lL_rl









(2.17)

we arrive at the more compact equation

ΘB






z̈B

p̈

r̈




 = TTG_ssFss − TTG_LFL +






Fz

Mp

Mr




 (2.18)

If an equation of moment equilibrium is taken around the pivoted point PD in
Figure 2.10, the following relationship can be derived:

0 = (LW − Lss)Fss − (LW − LL)FL (2.19)
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with the matrices

LW = dian

[









lW_ f r

lW_ f l

lW_rr

lW_rl









]

, LL = dian

[









lL_ f r

lL_ f l

lL_rr

lL_rl









]

and Lss = dian

[









lss_ f r

lss_ f l

lss_rr

lss_rl









]

. (2.20)

we arrive at

FL = (LW − LL)−1(LW − Lss)Fss (2.21)

A simpler form of equation 2.21 occurs if (LW − LL)−1(LW − Lss) is rewritten
to:

(LW − LL)
−1(LW − Lss) = (LW − LL)

−1(LW − Lss + LL − LL) =

= (LW − LL)−1(LW − LL)
︸ ︷︷ ︸

=I4

− (LW − LL)
−1(LW − Lss)

︸ ︷︷ ︸

:=H

(2.22)

Now, the bearing force can be calculated directly from the suspension force
through FL = (I4 − H)Fss.
Equation 2.18 can now be simplified to

ΘB






z̈B

p̈

r̈




 =

(

TTG_ss − TTG_L(I4 − H)

)

Fss +






Fz

Mp

Mr




 (2.23)

and with the definition T∗T
G = TTG_ss − TTG_L(I4 − H) it is further reduced to

ΘB






z̈B

p̈

r̈




 = T∗T

G Fss +






Fz

Mp

Mr




 (2.24)

.
The suspension forces that acts on the body are determined from the suspen

sion system properties. They are dependent on the spring and damper character
istics as well as on the control signal from the control system actuator (see Figure
2.9).
The suspension system spring and damper matrices are defined in equation

2.25

A1 =









cB f 0 0 0

0 cB f 0 0

0 0 cBr 0

0 0 0 cBr









and A2 =









bB f 0 0 0

0 bB f 0 0

0 0 bBr 0

0 0 0 bBr









(2.25)

The forces can be expressed as:

Fss = A1(zssL − zP) + A2(żssL − żssB) (2.26)
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2.3 Vertical dynamics of a fourwheel vehicle

By using the theorem on intersecting lines in Figure 2.9, the following geomet
rical relationship can be derived.

zL − zw
lL − lw

=
zL − zssL
lL − lss

(2.27)

Writing equation 2.27 into vectorial form we get:

(LL − Lss)(zL − zw) = (LL − Lw)(zL − zssL) (2.28)

Solving for zssL and using the previously defined matrix H, results in:

zssL = zL − (LL − Lw)−1(LL − Lss)(zL − zw) = zL − H(zL − zw) =

= (I4 − H)zL + Hzw
(2.29)

The vertical distance from ground level to bearing mount, zL can be expressed
in the three coordinates associated with the body as in equation 2.30.

zL = TG_L






zB

p

r




 (2.30)

By inserting equation 2.30 into equation 2.29, the result is:

zssL = (I4 − H)TG_L






zB

p

r




+ Hzw (2.31)

and equation 2.26 can be written as

Fss = A1

(

(I4 − H)TG_L






zB

p

r




+ Hzw − zP

)

+

+A2

(

(I4 − H)TG_L






żB

ṗ

ṙ




+ Hżw − żssB

)

(2.32)

If one considers

zssB = TG_ss






zB

p

r




 (2.33)

and the geometric relation u = zssB − zP, the equation for the forces in the sus
pension struts can be written as:

Fss = A1

(

(
(I4 − H)TG_L − TG_ss

)






zB

p

r




+ Hzw + u

)

+

+ A2

(

(
(I4 − H)TG_L − TG_ss

)






żB

ṗ

ṙ




+ Hżw

)
(2.34)
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Figure 2.11 Bearing force determination by moment equilibrium around the point PD

If one considers the previously defined:

T∗T
G = TTG_ss − TTG_L(I4 − H) = TG_ss − (I4 − H)TG_L

2 (2.35)

and inserts this into equation 2.34 a simpler form arises:

Fss = A1Hzw + A2Hżw + A1u− A1T∗
G






zB

p

r




− A2T∗

G






żB

ṗ

ṙ




 (2.36)

The attained equations for the forces in the suspension struts, is the inserted
into the body’s differential equations, i.e. equation 2.24.

ΘB






z̈B

p̈

r̈




+ T∗T

G A2T
∗
G






żB

ṗ

ṙ




+ T∗T

G A1T
∗
G






zB

p

r






= T∗T
G A1Hzw + T∗T

G A2Hżw + T∗T
G A1u+






Fz

Mp

Mr






(2.37)

To determine the equations of motion for the wheels, a force equilibrium from
Figure 2.11 is needed. The following equation describes the force equilibrium,

Fw = Fss − FL = Fss − (I4 − H)Fss = HFss (2.38)

2(I4 − H) = (I4 − H)T since it’s a diagonal matrix
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2.3 Vertical dynamics of a fourwheel vehicle

and the vertical dynamics of the wheel is be described as

mW z̈w = −cW(zw −w) − Fw = −cW(zw −w) − HFss (2.39)

By inserting equation 2.36 into equation 2.39 we get:

mW z̈w = −cW(zw −w) − H

(

A1Hzw + A2Hżw + A1u−

− A1T∗
G






zB

p

r




− A2T∗

G






żB

ṗ

ṙ






) (2.40)

Equation 2.40 and equation 2.37 is now represented together as one state space
system, equation 2.41,
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u (2.41)

To rewrite 2.41 into the form,

ẋ = Ax + Bu∗ (2.42)

, the following submatrices are defined:

Asub =

(

−Θ−1
B T

∗T
G A1T

∗
G Θ−1

B T
∗T
G A1H . . .

1
mW
HA1T∗

G − 1
mW

(cW I4 + HAH1) . . .

. . . −Θ−1
B T

∗T
G A2T

∗
G Θ−1

B T
∗T
G A2H

. . . 1
mW
HA2T∗

G − 1
mW
HA2H

)

(2.43)

Bsub =

(

Θ−1
B T

∗T
G A1

− 1
mW
HA1

)

(2.44)
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Figure 2.12 The wheel coordinate system viewed from above.

Esub =

(

Θ−1
B 03x4
04x3 I4

cW
mW

)

(2.45)

x =
(

zB p r zW żB ṗ ṙ żW

)T

(2.46)

u∗ =
(

u Fz Mp Mr w

)T

(2.47)

By using these notations, 2.41 is written as:

ẋ =

(

07x7 I7x7

Asub

)

x +

(

07x11
Bsub Esub

)

u∗ (2.48)

2.4 Tyre Model

An important part of the modelling process is to have a good model of the forces
acting on the tyres, since these have the biggest influence on the behaviour of
the vehicle. The tyres are said to serve three basic functions. They should sup
port vertical load while cushioning against road rocks, develop longitudinal forces
for acceleration and braking and finally they should develop lateral forces while
cornering. The forces that a tyre can develop are dependent on many different pa
rameters. Vertical load, longitudinal and lateral stiffness and maximum friction
are considered in the model used in this work. Other parameters such as tyre
pressure, camber angle and temperature are not considered in the model3.
The coordinate system of the tyre is defined in the same way as that of the

vehicle, i.e. the xaxis points in the longitudinal direction of the wheel and the y
axis in the lateral. The location of the wheel ground contact point (marked by P
in Figure 2.12) does not lie in the center of the wheels but due to caster towards
the rear. Caster is the tilting of the steering axis either forward or backward
(positive caster) from the vertical wheel axis. Positive caster provides stability to
the vehicle, since it creates a self aligning torque around the vertical wheel axis.
The wheel caster is a measure of the shift of the pressure distribution in the tyre

3An example of a more sophisticated tyre model, where more properties are considered can be found
in [2].
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Figure 2.13 Tyre side slip angle in wheel coordinate system.

contact area. The forces (Fx and Fy in Figure 2.12) that are acting on the tyre
at the contact point determine the dynamics of the vehicle. The characteristics of
these forces are nonlinear with respect to the wheel slip, which is defined as

λ xi =
ωWirWi − vWxi

vW i
(2.49)

λ yi = sinα i (2.50)

λWi =
√

λ2xi + λ2yi (2.51)

where ωWi is the angular velocity if the wheel, rWi is the dynamical radius of the
wheel and vWi is defined as:

vWxi = vx − ψ̇ hi sinθ i (2.52)

vWyi = vy + ψ̇ hi cosθ i (2.53)

vWi =
√

v2Wxi + v
2
Wyi (2.54)

where vWxi is the longitudinal velocity of the wheel and vWyi the lateral velocity
of the wheel.

The wheel slip is defined in the x and ydirections of the wheel and a presence
of the slip in ydirection λ y causes the velocity vector of the wheel to have a
direction different from xW . The resulting angle (see Figure 2.13) is called tyre
side slip angle and is defined as

α i = δ i + arctan
(

−vy − ψ̇ hi cosθ i
vx − ψ̇ hi sinθ i

)

(2.55)

The nonlinear model for stationary Lateral force Fy and stationary Longitudi
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nal force Fx is4 (see [8])

Fy =







Cyλ y
(ξ y−1)

2+C∗
yξ y

ξ y ≤ 1,
λ y
λW

µ yFz ξ y > 1
(2.56)

Fx =

{
Cxλ x

(ξ x−1)
2+C∗

xξ x
ξ x ≤ 1,

λ x
λW

µ xFz ξ x > 1
(2.57)

with the following definitions of the normalised wheel slip

ξ y =
λW

λ Fymax
ξ x =

λW
λ Fxmax

(2.58)

and normalised stiffness

C∗
y =

λ FymaxCy
µ yFz

C∗
x =

λ FxmaxCx
µ xFz

(2.59)

µ x and µ y are the friction coefficients in longitudinal and lateral direction
respectively,

µ x =

(

Mx0 − Mx1
FZ

FZN

)

µH µ y =

(

My0 − My1
FZ

FZN

)

µH (2.60)

, where µH is the friction coefficient between the road and the tyre. FZ is the wheel
load, whereas FZN is the normalising wheel load. The parameters Mx0 . . .My1 are
parameters identified to fit measurement data.
Cx and Cy are the stiffness of the tyre in longitudinal and lateral direction

respectively, whereas Cx0 and Cy0 are parameters identified to fit measurements.

Cx = Cx0
FZ

FZN
Cy = Cy0 sin

(

2 arctan
(
FZ

FZN

))

(2.61)

λ Fxmax = Lx0µH λ Fymax = sin
(

L y0 + L y1
FZ

FZN

)

µH (2.62)

The equations describing the forces of the tyre are only valid in steady state,
i.e. when the time derivatives of the wheel slip, λ̇ x = λ̇ y = 0. If fast changes in the
slip needs to be considered, the dynamics of the tyre forces have to be included
into the model [8].
In this work, only the model for the dynamic lateral force Ḟy is considered (eq

2.63).

Ḟy = a ⋅
(
F y(α ) − Fy

)
=

vWx

0.03vWx + 0.5
(Cyα − Fy) (2.63)

Cyα is the linearised tyre characteristic and a represents the initialisation tran
sient [5]. The initialisation transient is the time range, given a certain speed,
needed for the frictional force to saturate.
An important property of a tyre is its dependence on the wheel load. Although

cornering force, at a given slip angle, rises with vertical load it does not rise
proportionately with load. The maximum cornering force per unit load occurs at
the lightest loads. This can be seen in Figure 2.14 by noticing that the slope of the
curve is steeper at lighter loads, assumed a certain side slip angle. The property
of increasing side forces at increasing wheel loads is a physical property that will
be used in this work to influence the lateral dynamics of a vehicle.
4The suffixes are not included in the equations.
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2.5 Steering system

In previous section the effect of caster and its stabilising effect was mentioned.
The side force acting on a tyre creates a moment about the vertical wheel axis
which leads to a reduction in the wheel steering angle. This effect can be seen as
a feedback as illustrated in Figure 2.15. δ ∗ is the angle of the wheel.
The steering system is modelled as a mass, spring and damper system. An

illustration of this is shown in Figure 2.16. The corresponding equation is 2.64

Jδ̈ ∗ + bδ̇ ∗ + cδ ∗ = −FynL + Jδ̈ + bδ̇ + cδ (2.64)

J is the moment of inertia of the system, whereas b and c are the damp and
spring coefficients. It’s customary to neglect δ̈ as input signal, and the two input
signals to the steering system is the steering angle (after transmission ratio), δ ,
and the time derivative of the steering angle (after transmission ratio), δ̇ . It is
assumed that the driver provides enough torque to the steering wheel to create
the steering angle which is used as input. When simulating, a lowpass filter is
used to attain the time derivative of the steering angle as shown in Figure 2.17.
δu is the unfiltered input signal, and δ ∗ and δ̇ ∗ are the attained input signals for
the model.

2.6 Coupling of the models

When designing controllers for the vertical dynamics, i.e. controllers for the active
suspension, only the dynamics described in the vertical model is considered and

27



Chapter 2. Vehicle Model

c b

Fy

Wheel

Steering wheel

Transmission Ratio

δ∗

u

δ=ku

n
L

Figure 2.16 Model of Steering system

a

-

+

a

1
s

δ

δ

δu

Figure 2.17 Filter for the steering system

the roll and pitch moments that are caused by longitudinal and lateral acceleration
are inputs to this model. When designing controllers attenuating the effects of
lateral disturbances in yaw rate or side slip angle, the vertical dynamics are not
considered. Since the coupling that exists between vertical and lateral dynamics
had to be considered in this work, the models were coupled.
The longitudinal and lateral accelerations creates moments around the roll and

pitch axis respectively. These moments alters the distribution of how the vertical
forces are acting upon the vehicle. E.g. during cornering, parts of the vertical
forces acting on the tyres, will be transferred from one side of the vehicle to the
other. Since the tyres capability of producing lateral forces are dependent on the
vertical forces, the lateral forces acting on the vehicle will change. This loop effect,
is illustrated in Figure 2.18. The tyres, the steering system and the fourwheeled
vehicle models are all a part of the horizontal model.
The lateral acceleration acting on the center of gravity causes a roll motion of

the vehicle. The roll axis is moving during cornering and it is also tilting from
a higher position rear to a lower position front. In this work, the roll axis has
for simplicity been assumed to be fixed, and in a horizontal plane as shown in
Figure 2.19. The calculation of the roll moment that acts on the vertical model is
done according to equation 2.65. The changes in vertical load are calculated as an
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ordinary forcespring equation, 2.66.

Mr = may(zB0 − zRP) (2.65)

FZi = −cW(zWi −wi) (2.66)

2.7 Aerodynamics

The air surrounding a vehicle exerts on any point of its surface a force per unit
area. This force consists of one pressure force, acting perpendicular to the surface,
and one tangential force, laying in the plane tangent to the surface. The tangential
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Table 2.4 Variables and constants for Aerodynamics

ρ Air density

A Reference surface

v Absolute wind velocity

l Distance between front and rear wheels

x

y

vwind

v v

Drag force

Side force

Lift force

vehicle

β

Figure 2.20 Aerodynamic forces acting on a Vehicle

force is due to the viscosity of the fluid. All these forces are integrated over the
area and the resulting forces and moments are applied in the center of gravity.
The moments arise from the fact that the forces do not act on the center of gravity
but at the center of pressure which varies with the stream angle of the air. The
flow exert forces and moments about all three coordinate axles.
The generalised equations obtained by experimental testing are expressed as

equation 2.67 and equation 2.68. These equations arise from the assumption that
the forces and moments are proportional to the dynamic pressure of the free
current, 12ρv2, to a reference surface, A, and to a reference length, l. The non
dimensional shape factors, cF and cM are dependent on the stream angle and the
shape of the vehicle, see Figure 2.20 and they have been computed taking the
reference surface and reference length into account. When determining the shape
factors for a vehicle, they are determined about all three axes as a function of the
stream angle, cF = cF(β ) and cM = cM (β ).

F =
1
2

ρcFAv
2 (2.67)

M =
1
2

ρcMAv
2l (2.68)

Heavy side winds alters the behaviour of the vehicle. If the strength of a wind
gust is very high the results can be severe if the driver is not alert. Weaker side
winds are more of an annoying factor than a critical one.
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2.8 Linearisation

2.8 Linearisation

Since the vertical model described in an earlier section is already linearised the
equations to be linearised are the ones describing the lateral dynamics and the
tyres.

m(v̇x − vyψ̇ ) =
4∑

i=1

(Fxi cosδ i − Fyi sinδ i) (2.69)

m(v̇y + vxψ̇ ) =

4∑

i=1

(Fxi sinδ i + Fyi cosδ i) (2.70)

Izzψ̈ =

4∑

i=1

hi(− fxi sinθ i + f yi cosθ i) (2.71)

Ḟyi =
vxi

0.03vxi + 0.5
(Cyα i − Fyi) (2.72)

When linearising the equations above, the longitudinal acceleration is assumed
to be zero and this equation isn’t used. The equations of the steering system is
included in the lateral state space model and the state and input vectors used in
the linearisation (ẋ = Ax + Bu) are:

x =
(

δ ∗
1 δ̇ ∗

1 δ ∗
2 δ̇ ∗

2 vy ψ ψ̇ Fy1 Fy2 Fy3 Fy4

)T

and (2.73)

u =
(

δ 1 δ̇ 1 δ 2 δ̇ 2 δ 3 δ 4 FZ1 FZ2 FZ3 FZ4

)T

(2.74)

and we arrive at a state space representation for the tyres, the steering system
and the lateral dynamics with eleven states and ten inputs.
Eq.2.70 and eq.2.71 are linearised together with eq.2.72

ẋ1 = δ̇ ∗
1 (2.75)

ẋ2 = δ̈ ∗
1 = −

c

J
δ ∗
1 −

c

J
δ̇ ∗
1 −
nL

J
Fy1 +

c

J
δ 1 +

b

J
δ̇ 1 (2.76)

ẋ3 = δ̇ ∗
2 (2.77)

ẋ4 = δ̈ ∗
2 = −

c

J
δ ∗
2 −

c

J
δ̇ ∗
2 −
nL

J
Fy2 +

c

J
δ 2 +

b

J
δ̇ 2 (2.78)

ẋ5 = v̇y = −vxψ̇ +
1
m

4∑

i=1

(Fxi sinδ i + Fyi cosδ i) +
1
m
Fdy (2.79)

ẋ6 = ψ̇ (2.80)

ẋ7 = ψ̈ =
1
Izz

4∑

i=1

hi(− fxi sinθ i + f yi cosθ i) +
1
Izz
Mdz (2.81)

ẋi = Ḟy(i−7) =
vx(i−7)

0.03vx(i−7) + 0.5

(
Cyα (i−7) − Fy(i−7)

)
, i = (8, ..., 11) (2.82)

For simulation purposes, disturbances (e.g. wind disturbances) are added to
the lateral model. In equation 2.79 and equation 2.81, Fdy and M

d
z have been

included. The lateral and vertical models are coupled as shown in Figure 2.18
and integrated into one state space model where the external disturbances Fz, Mr
and Mp were removed. By doing this, it is assumed that the disturbances caused
by the wind in these degrees of freedom can be neglected. The total state and
input vectors are:
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Figure 2.21 Driverenvironment control loop

x =
(

δ ∗
1 δ̇ ∗

1 δ ∗
2 δ̇ ∗

2 vy ψ ψ̇ Fy1 Fy2 Fy3 Fy4 zB . . .

(

. . . p r zW żB ṗ ṙ żW

)T

(2.83)

u =
(

δ 1 δ̇ 1 δ 2 δ̇ 2 δ 3 δ 4 u w Fdy Mdz

)T

(2.84)

The system was linearised numerically in Matlab, and the system is simulated
in Simulink. To determine the matrices of the linearised system the point about
which the system is to be linearised must be given. The linearisation program
takes the four wheel angles (δ 1, ...,δ 4) as input, as well as the yaw rate, ψ̇ and
the longitudinal and lateral velocities, vx and vy. The tyre forces can be calculated
knowing these values5. When linearising about a point which gives a longitudi
nal acceleration that differ from zero this fact has to be compensated for (since
we’ve assumed constant velocity). In the linearisation program a routine has been
written that minimises the absolute value of the resulting longitudinal force (us
ing NewtonRaphsons method) changing the rear wheel angular velocities. This
routine increases the angular velocities at the rear wheels thus creating larger
longitudinal forces6.

2.9 Nonlinear simulation model

Today’s development of automotive vehicles strongly rely on the use of computer
simulations in the design of new vehicles. The aim of computer models is to re
veal, as early as possible in the design phase, the effect of new components on the
vehicle dynamics when operating together with the existing systems. At Daimler
Chrysler AG, a simulation package called CASCaDE (Computer Aided Simulation
of Car, Driver and Environment) has been developed. This package includes a
number of different vehicle models and also models of drivers and environments
(see Figure 2.21). Data files describing the characteristics of different components
of the vehicle are collected in this package and these are put together with dy
namical equations which may be linear or nonlinear. This package has been used
extensively throughout this work as a reference for parameters, as a validation
tool for the vehicle model that can be linearised and as a tool for evaluating the
designed controller.

5See Appendix A
6Assumed that the slip won’t grow large enough for the forces to start decrease again.
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3. Validation

3.1 Introduction

Once the model is constructed, it should be verified with information from the real
system, that the model is acceptable. Since the construction of a model involves
many simplifications, there are deviations in model outputs compared to tests
performed on a real plant. A common method of model validation is to compare
simulation results to actual measurements.
Because of the highly nonlinear nature of a vehicle, the vehicle model derived

in previous chapter cannot be used for certain manoeuvres. The main reason for
this is due to the nonlinearities of the tyres. The kinds of manoeuvres for which the
model is valid will be discussed in this chapter. Further, a comparison between
simulation results from the linearised model where the parameters have been
have been adjusted and CASCaDE will be shown. Also tests performed on the
Technoshuttle will be compared to simulations from the vehicle model which was
linearised.

3.2 Validation of Vehicle Model

Many of the parameters used in the vehicle model have been taken from CAS
CaDE. These values gives an idea about in what range the parameters should be
in the model that can be linearised. By adjusting the values of the parameters
for the linearised model, a better model match can be attained. The tuning of the
parameters where done with a bit of apriori knowledge.1

Figure 3.1, 3.2, 3.3 and 3.4 shows simulation results from a saturated ramp
(almost a step) in the steering wheel angle. The slope of the input signal is 500
degrees per second and the saturation point is 30 degrees (turning left), driving at
a speed of 80 km/h. In this simulation, the ABC system was switched off, hence the
oscillations in wheel load and roll rate. The steady state gains are fairly accurate
but there are clearly deviations in the comparison.
Figure 3.5 and 3.6 displays a similar manoeuvre but with a saturation point

of 45 degrees and having the ABC controller activated. The similarity decreases
with increasing saturation point and at about 60 degrees, the deviations start to
become even more significant.
One of the main objectives of this work was to analyse how the active sus

pension could be used to influence the lateral dynamics. This will be described
more thoroughly in following chapter. However, a simulated step in warp will be
compared to a test performed with the Technoshuttle. When applying warp to a
vehicle, vertical forces are applied on a pair of diagonal wheels as illustrated in
Figure 3.7. The change in vertical forces on the wheels are made possible due
to the suspension actuators. The vertical wheel forces causes the vehicle to turn
since a yaw moment is created.
It’s not possible to use the position of the pistons as inputs to the test vehicle

and therefore the dynamics of the actuators are necessary for the vehicle model.
In [6] and in CASCaDE, the dynamics of the suspension systems actuators are
modelled as in equation 3.1, where Ta and Ka are diagonal matrices and i is a
vector containing the currents to the actuators.

1It may be possible to attain a better model using an identification program which optimizes pa
rameters.
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Figure 3.3 Yaw Rate at a 30 degrees saturation point
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3.2 Validation of Vehicle Model
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Figure 3.4 Roll Rate at a 30 degrees saturation point
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Figure 3.5 Yaw Rate at a 45 degrees saturation point

4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time [s]

L
a

te
ra

l 
A

c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

CASCaDE
Linear

Figure 3.6 Lateral acceleration at a 45 degrees saturation point
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Figure 3.7 Warp effect
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Figure 3.8 Yaw rate due to warp at test without ABC

Tau̇+ u = Ka

∫ tend

t=0
idt (3.1)

If transformed into frequency domain we get:

u = (Tas+ I4)Ka
1
s
i (3.2)

Figure 3.8 shows the resulting yaw rate that is achieved driving at 100 km/h
and applying an input signal to the actuators of 1000 mA for 0.15 seconds2. There
are quite heavy oscillations in this test since the ABC system wasn’t activated. In
Figure 3.9 a comparison between the linearised model and CASCaDE is shown.
Warp has been applied having the ABC system activated. The applied forces to
the suspension struts were ±5400 N front and ∓3000 N rear.

2The toe in angle on the front wheels are approximately 0.2 degrees and 1.0 degrees on the rear
wheels.
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3.3 Limitations of Linearised model
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Figure 3.9 Yaw rate due to warp at simulation with ABC

3.3 Limitations of Linearised model

As can be seen in the comparisons in previous section there are deviations com
pared to tests on the vehicle and to simulations performed in CASCaDE. The
steady state values are fairly accurate but the main deviations are in the phase.
Particulary in comparisons between cornering manoeuvres, it can be seen that
the frequency of the oscillations in the linearised model tend to be lower than
in CASCaDE simulations. The most important manoeuvre to be as accurate as
possible is when warp is applied. Figure 3.9 displays a satisfactory accuracy for
being able to continue with control design and analysis.
Certain simulation manoeuvres will not display a good match to real mea

surements. One standard manoeuvre when evaluating a lateral vehicle model, is
to drive straight ahead and apply a ramp signal to the steering wheel up to a
specified limit where it will saturate. If this limit is set too high, the linear tyre
model will not be valid and the simulation results will not be acceptable. Since
the vehicle model assumes constant velocity, manoeuvres involving big changes
in velocity such as braking and acceleration, will not display acceptable results.
Another evaluation manoeuvre is to apply a sine wave to the steering wheel.
This manoeuvre showed acceptable similarities to CASCaDE provided that the
amplitude of the input signal wasn’t too big.
The main objectives of the model is for analysis and control design purposes.

The possibility of retuning a controller in CASCaDE exists and the model will at
least give a reasonable indication of, what direction to take when designing the
controller.
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4. Analysis of Vehicle side wind

compensation

4.1 Introduction

In this chapter some different possibilities of rejecting wind gusts will be presented
with the focus kept on using the active suspension system. The mechanisms that
makes steering by warping possible will also be presented, as well as to what
extent the effects from warp can be used for attenuating wind gusts.

4.2 Possibilities of side wind compensating

There may be a number of different solutions when it comes to rejecting side wind.
Below, a few are mentioned:

• The steer by wire system (SBW), has been evaluated in earlier work, (see
i.e.[3]), and tests were performed with the Technoshuttle. The results of the
tests can be seen in Figure 4.1. Both the yaw rate and side slip angle where
reduced1.

• Rear Wheel Steering

• Steering wheel assistant, is to be implemented into some of the newer Mer
cedes models and the main idea, is to assist the driver in steering, by apply
ing a torque to the steering wheel axle, leaving the option for the driver to
maintain the steering angle.

1The side wind is coming from the right and since the center of pressure is located in front of the
center of gravity, a positive yaw moment is created.
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Figure 4.1 Side wind rejection using SBW.
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4.3 Steering by warping

Air channels

Figure 4.2 Side wind rejection using Air channels.

• Aerodynamic effects, similar to what is used in aircrafts, may be possible
to use to reduce the effect of a wind gust. If a number of air channels (see
Figure 4.2), which can be opened and closed, are mounted onto the body, the
channels can be used for creating aerodynamic pressure forces which gives
rise to a yaw moment. If the forces are big enough, the channels can be used
for side wind rejection.

• Sensotronic Brake Control, (SBC) includes control systems such as ESP
(Electronic Stability Program) and ABS (Antilock Braking System). The
SBC can be used for creating longitudinal forces on the tyres, thus stabilising
the vehicle in case of a wind gust as in Figure 4.3. By using the SBC the
driver may experience a reduction in comfort, but this has to be further
analysed.

4.3 Steering by warping

With the active suspension system, it is possible to influence the roll, the pitch
and the lift of the chassis as was shown in the modelling chapter. Since the ve
hicle has four wheels and sofar only three properties have been considered, it is
overdetermined. This makes it possible to introduce a fourth property, the warp.
Warp is defined as Ω = Fz1 − Fz2 − Fz3 + Fz4, i.e. the difference in wheel load on
the front axle minus the difference in wheel load on the rear axle.
Different mechanisms are contributing to the effect warp has on the steering

behaviour of a vehicle. Two different mechanisms that have influence will be de
scribed here. Firstly, the change in steering angle due to roll on an axle which is
induced by the actuators in the suspension struts. Secondly, the influence from
the preset toe in.
Firstly, when roll is applied to an axle by the active suspension system, a

change in the wheels steering angle occurs due to the mechanics of the wheels
bearing system and due to the forces acting on the tyres. The roll angle on an
axle can be set within certain limits corresponding to the saturation points of the
suspension systems actuators. Tests have been performed on the Technoshuttle
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Figure 4.3 Side wind rejection using SBC.
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Figure 4.4 Change in steering angle in relation to suspension spring displacement.

and these show the relation between suspension spring displacement and change
in steering angle on an axle. These tests have shown that the relationship between
the roll angle and the change in the steering angle of the wheels are fairly linear
and an illustrating curve is shown in Figure 4.4.
If applying warp to a vehicle, there is a roll motion in one direction on the front

axle and a roll motion in opposite direction on the rear axle. These roll motions
causes the angles of the wheels to change. Since there is a change in wheel angle,
the wheel slip also changes thus creating side forces on the tyres. Since there is no
longer symmetry in the side forces, a yaw moment is creates. The maximum roll
angle corresponds to the limits on the spring displacements, and this roll angle
corresponds to the maximum change in steer angle.
As previously mentioned, the lateral force a tyre can produce is dependent on

the vertical load on the wheel. If forces are applied to the suspension struts, as
shown in Figure 4.6, the lateral force on a wheel initially increases with increasing
wheel load, provided that the angle of the wheel is different from zero. These
lateral forces creates a yaw moment. Simulations showed that the greatest effect
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4.4 Simulations and tests of warp effects
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Figure 4.6 Toe in on a vehicle.

comes from the preset toe in angles. This is shown in Figure 4.7 where a step
in warp has been applied. The values of the toe ins are 0.4 degrees on the front
wheels and 1.0 degrees on the rear wheels. These values are greater than the
values set on the usual vehicle, but since the toe in angles on the rear axle easily
can be set to 1.0 degrees they are reasonable to work with. The influence on the
yaw rate coming from the roll motion on the axles, counteracts the contributing
effect from the toe in. Because of this, the yaw rate initially goes in opposite
direction.

4.4 Simulations and tests of warp effects

Tests performed on the Technoshuttle and simulations done in CASCaDE show
that the greatest influence on the yaw moment is due to the toe in angle on
the rear axle. The values shown in Figure 4.8 are the maximum yaw moment
values created during warp and varying the toe in angles on front and rear axle
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Chapter 4. Analysis of Vehicle side wind compensation
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respectively. When simulating warp with the toe in on the front axle with 0.4
degrees and on the rear axle with 1.0 degrees and varying the velocity as in
Figure 4.9, we can see that the generated yaw moment increases with velocity.
The reasons for this have yet to be identified.
In Figure 4.10 warp 2 has been applied and a yaw moment was created, but

2In this case negative warp, driving at 80 km/h with a front toe in of 0.4 degrees and 1.0 degrees
rear. The forces on the front suspension struts were ±5400 N and on the rear suspension struts ∓3000
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4.4 Simulations and tests of warp effects
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Figure 4.10 Yaw Moment during warping.

only for a short period of time. The effect warp has on the yaw moment is only
instantaneous. The main reason for this is the increasing tyre side slip angle on
the rear left tyre and the decreasing tyre side slip angle on the rear right tyre.
The lateral forces on the rear left tire increases due to the increasing tyre side
slip angle. This can be seen in Figure 4.11. The corresponding side forces on front
axle, Fy1+ Fy2 and rear axle,Fy3+ Fy4 are illustrated in Figure 4.12, and that the
rear axle produce the desired force only for a quarter of a second.
The phenomenon can be explained with the help from Figure 4.13. By increas

ing the forces on the suspension struts, point 2 should be reached. But since there
is a change in the tyre side slip angles we actually end up in point 3, thus creating
side forces on the rear tyres that stabilises the yaw motion. The increasing tyre
side slip angle on the rear left tyre is due to the toe out motion that occurs at this
wheel (extended spring), and due to the increasing lateral velocity on the rear
axle which arises when a negative yaw motion is present.

N.
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Figure 4.11 Tyre side slip angles during warp.
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Figure 4.12 Side forces on the axles during warp.
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Figure 4.14 Tyre side slip angles at a wind gust applying warp.
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Figure 4.15 Side forces on the axles during warp and wind.

The same simulations were performed, but applying a wind gust of 20 m/s
in positive lateral direction at the same instant as warp is applied. In Figure
4.14 it can be seen that the side slip angles of the tyres (which counteract the
yaw moment) are less than when just applying the warp. Figure 4.15 shows the
corresponding side forces on front and rear axle.
It can then be concluded that the yaw moment produced by the tyres remains,

as long as the wind is present. The moment is greater at first, but is slightly
reduced when the tyre side slip angles on the rear wheels have been built up, and
the main contribution comes from the front axle. The positive lateral force on the
rear tyres remains during a part of the wind gust but it never decreases to the
corresponding value without side wind.
Consequently, the use of warp for steering the vehicle without lateral distur

bances, is limited, but for attenuating wind gust effects, warping the vehicle can
be used to some extent, provided the toe in angles are big enough. Further, tests
performed using the Technoshuttle, showed that the vehicle during braking is
undriveable, since the vehicle then becomes unstable. This means that warp can
only be applied for a short period of time and that it can only be used for side wind
compensation when driving without braking and when the angle of the steering

45



Chapter 4. Analysis of Vehicle side wind compensation

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Piston Position FL
Piston Position RR
Piston Position FR
Piston Position  RL

Figure 4.16 The actuator response to a 0.15 s 1.0 A impulse on every actuator

wheel is close to zero.

4.5 Actuator performance

If using the ABC system for controlling lateral disturbances, it is required that the
actuators of the suspension system are sufficiently fast. Therefore, the actuators
were tested and the responses of a current impulse on every actuator can be seen
in Figure 4.16.
It is concluded that the actuators are fast enough by first comparing the real

measurements with simulation results, and then simulate a step in warp at the
same instant as a wind gust is applied. It is then the task of the controller to
make certain that the appropriate action is taken fast enough.
When applying warp to the vehicle, it is not desirable to reach the limits of the

actuators. When wind is acting on the vehicle there is a change in roll angle, thus
generating forces to the suspension struts from the comfort controller in the ABC
system3. Therefore, it’s not possible to fully use the actuators during side wind
compensation, since the comfort controller needs space to work. However, during
the simulations in this chapter this was taken into account.

4.6 Evaluation of Side Wind Compensation using warp

Simulations have shown, that when applying the maximum step in roll angle,
a greater yaw rate can be generated than when applying the maximum step in
warp (this will not be shown here). However, by using a roll motion, the comfort
the driver experiences is decreased. The roll angle is applied very quickly and the
resulting roll angle is between three and four degrees. By using warp, a lesser
effect is achieved, but without causing a significant increase in roll, pitch or lift
motion.
The maximum warp that can be applied, doesn’t fully compensate for the yaw

rate that is caused by a heavy wind gust. Wind gusts that are slower than 14

3See Chapter 5
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4.6 Evaluation of Side Wind Compensation using warp

m/s are possible to compensate for, assumed that the toe in angles are set to 0.4
degrees front and 1.0 degrees rear when driving at a speed of 80 km/h.
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5. Control Design

5.1 Introduction

To implement a warp controller into the existing ABC system, some changes had to
be made. In this chapter, the existing ABC system will be described. The transfer
function from warp to yaw rate that has been extracted from the linearised vehicle
model will be analysed. With this transfer function a PID controller is designed.
The PID controller was then evaluated with respect to wind gusts in CASCaDE.
Throughout this chapter it is assumed that the wind can be observed and as

previously mentioned the controller can only be used when driving straight ahead
without accelerating or braking. The analysis will be carried out for a velocity of
80 km/h.

5.2 Existing ABC system

There are a number of sensors in the vehicle. Two of the sensors measure the
longitudinal and lateral accelerations of the body and three sensors measure the
vertical accelerations in three points of the body. There are also sensors for the
suspension spring displacements and for the positions of the pistons. With these
signals it’s possible to calculate the roll and pitch angles as well as lift and their
accelerations using kinematical relations. The forces in the suspension struts are
also calculated. This is done in the Adapting Signals block in Figure 5.1. In the
second block, Filter and Comfort Controller, the signals are first filtered and then
the comfort controller, which consists of different feedback controllers, generates
force reference values to the force controller. The task of the Force Controller is to
generate currents to the actuators corresponding to the reference values in force
set by the comfort controller.
The structure of the comfort controller is illustrated in Figure 5.2.
It is desirable to control the roll and pitch angles as well as the vertical po

sition of the body and their corresponding accelerations. Since it’s not possible
to control two states with one input independently of each other, a decoupling is
made in frequency domain [7]. E.g. the vertical position of the chassis is controlled
up to frequency of about 1 Hz, whereas the vertical acceleration is controlled in
the range between 2 and 10 Hz and the small coupling that exists can be ne

Force Controller

Sensor Signals

Adapting signals

Filter and
Comfort
Controller

VehicleActuators

Center of Gravity Values of 
roll and pitch angles as well
as vertical position and their
corresponding accelerations

Forces in the suspension
struts

Reference values in
Forces to Suspension
Struts

Current to
Actuators Position of

Pistons

ABC system

Figure 5.1 ABC system.
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5.3 Warp to yaw rate transfer function
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Figure 5.2 Skyhook, Aktakon, Warp controller and Feedforward.

glected. Aktakon, consists of three different feedback controllers with low band
width. It compensates for disturbances in roll and pitch angles as well as to lift
disturbances. Skyhook, being the high bandwidth compensator, is controlling the
corresponding accelerations in roll, pitch and lift.
The input signals to the feedforward, are the longitudinal and lateral accel

erations. It acts during manoeuvres where high accelerations are acting on the
vehicle, assisting the feedback controllers in keeping the body horizontal.
The warp controller is keeping the warp at zero except when the feedforward is

working. It is desirable with zero warp due to its influence on the lateral dynamics.
The output of the feedforward generates a warp that differ from zero, and therefore
a reference signal is sent to the warp controller to prevent a conflict between the
them.
If implementing the designed yaw rate controller into the ABC system, a con

flict arises with the existing warp controller which cannot be used because of its
low bandwidth. This means that the existing warp controller has to be switched
off when the lateral controller is active. In addition, the yaw rate had to be added
as input signal to the ABC system.
The dynamics from the force controller input, to the position of the piston in

the suspension strut is modelled as a first order system. The amplification is equal

to the inverse of the spring constant in the suspension strut, GFCu =
1
cW
s
b
+1 .

The above described ABC system, was implemented into the vehicle model for
simulation purposes, and for comparison, the sensor signals were generated from
center of gravity values. A derivation of how this is done is presented in Appendix.

5.3 Warp to yaw rate transfer function

It’s theoretically possible to apply warp to the vehicle without causing pitch, roll
or lift motion1. To do this, a more complex model is needed which regards the tor
sional stiffness and other properties of the chassis. This wasn’t considered in this
work, but the coupling with roll, pitch and lift was reduced relying on simulations
and a bit of analysis. Relying on the equations from the linearised vertical model,
there is no coupling between warp and lift or pitch, provided that the warp is

1Without having the ABC system activated.
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Figure 5.3 Block diagram illustrating the transfer function from the input signal warp to
roll angle

applied in such a way that FFC1 = −FFC2, FFC4 = −FFC3 and that FFC1 = kFFC4
for k > 0. In this work the warp is applied in such a way that the roll angle is
equal to zero in steady state when a step signal is applied. Since there are satu
rations on the actuators and step signals causes the greatest oscillations, this is
the case that was analysed. When applying ramp signals as input, there will be
a small roll angle that differ from zero, but as soon as the saturation limits are
reached or when the pistons aren’t moving, the roll angle will return to zero. The
transfer functions from the four positions of the pistons (ui) to the roll angle can
be extracted from the linearised model (5.1).

R(s) =
4∑

i=1

GuRi(s)ui(s) (5.1)

As previously mentioned, simulations showed that first order systems can be
used as transfer functions from force controller input, to piston position output.
By including the transfer functions from the force controller to the positions of
the pistons, equation 5.2 is attained.

R(s) =

4∑

i=1

GuRi(s)GFCu(s)FFCi(s) (5.2)

It is assumed that warp is applied in such a way that FFC1(s) = −FFC2(s),
FFC3(s) = −FFC4(s) and that the input forces to the force controller front and
rear, relate to each other through a weighting factor, i.e. FFC1(s) = kWFFC4(s). By
doing this, the input signal warp, can be defined as the convenient scalar, Ω∗, as
illustrated in Figure 5.3.

lim
t→∞
r(t) = lim

s→0
sR(s) = lim

s→0
s(kWGFCu1(s)GuR1(s) − kWGFCu2(s)⋅

⋅ GuR2(s) − GFCu3(s)GuR3(s) + GFCu4(s)GuR4(s))Ω∗(s) = 0
(5.3)

By applying the final value theorem, requiring that the roll angle is zero in
steady state when a step signal is used as input Ω∗(s) = 1

s
, it’s possible to solve

for the weighting factor kW . The weighting factor is dependent on velocity and
is assigned the sign so that positive warp generates positive yaw rate in steady
state. The weighting factors differed slightly between the linearised model and
CASCaDE, approximately one percent at 80 km/h. In Figure 5.4, the stars cor
responds to weighting factors tuned in CASCaDE and the curve is a linear least
square fit of these values (equation 5.4, where v is in km/h).

kW(v) = 0.005334v+ 1.369 (5.4)

By applying the warp in this manner, the maximum step in warp corresponds
to a peak in roll angle of 0.45 degrees with a maximum angular velocity of 3
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Figure 5.5 Block diagram illustrating the transfer function from warp to yaw rate

degrees per second driving at 80 km/h. The time it takes for the roll angle to return
to 0 is around half a second. By doing this, the conflict with other control loops in
the ABC system is kept to a minimum, and it can be assumed that the coupling
between the warp and roll, pitch or lift is small enough to be neglected. Since the
coupling can be neglected, the controller can be designed without considering the
existing control loops for the comfort controller.
The block diagram of the transfer function from warp to yaw rate is shown in

Figure 5.5 and the corresponding equation is:

G∗(s) = kWGFCu1(s)GuYr1(s) − kWGFCu2(s)GuYr2(s) − GFCu3(s)⋅

⋅ GuYr3(s) + GFCu4(s)GuYr4(s)
(5.5)

In previous chapter it was mentioned that the response in yaw rate from a step
in warp as input, initially goes in the wrong direction, due to the influence roll
on an axle has on the steering angle. This means that there is a zero located in
the right complex half plane leading to a nonminimum phase problem. However,
this zero is very fast, meaning that it is located far into the right half plane and
can therefore be neglected in the design of the controller. The bode plot of the
plant2 without taking into consideration the nonminimum phase effect, is shown
in Figure 5.6.

2Driving straight ahead at 80 km/h and with a 0.4 degrees toe in front and 1.0 degrees rear.
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Figure 5.6 Warp to yaw rate transfer function

5.4 Design of PID controller

The design of the PID controller was carried out in Matlab SISO toolbox. The
standard form of a PID controller in frequency domain, can be rewritten into
rational form in which the design is done. The design of a PID controller is equal
to placing a complex zero pair, a pole and then adding an integrator and a gain.

C(s) = Kc

(

1+
1
sTi

+
sTd
sTd
N

+ 1

)

=

= Kc
s2
(
TiTd
N

+ TiTd

)

+ s
(

Ti +
Td
N

)

+ 1

sTi

(

sTd
N

+ 1
) =

= Kc

Td
N

+ Td
Td
N

⋅

s2 + s
Ti+

Td
N

Ti

(
Td
N

+Td

) + 1
Ti

(
Td
N

+Td

)

s
(

s+ N
Td

) =

= K
(s− z)(s− z)

s(s− p)
= K

s2 − 2Rezs+ zz

s(s− p)

(5.6)

The parameters of the PID controller can then be expressed in terms of the
gain, the pole and the zeros used in Matlab SISO toolbox:

Td

N
= −

1
p

(5.7)

Ti =
1
p

−
2Rez
zz

(5.8)

Td =
1
Ti

1
zz

+
1
p

(5.9)

Kc = K
1

1− Tdp
(5.10)
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The design was carried out by tuning the gain and placing the zeros and the
pole until a satisfactory disturbance rejection was attained (see Figure 5.7). The
open loop bode diagram is shown in Figure 5.9.
The PID controller was discretised (according to [1]) and implemented in CAS

CaDE. Because of the constraints on the actuators, i.e. saturating limits on the
suspension struts, using an integrator can result in windup of the controller. The
front actuators have a saturation limit of approximately 43 mm and the rear ac
tuators of about 63 mm. As mentioned in previous chapter, it is not possible to
use the full limits of the actuators, because the other controllers need to be given
space to work. Therefore an actuator model with reduced limits, (also used for
antiwindup) was introduced, making certain that the limits aren’t fully reached
during a heavy wind gust. The limits corresponds to a front position of the piston
of 35 mm and to a rear position of 50 mm. The antiwindup was implemented
according to [1] and it will not be presented here.
The controller was designed for a velocity of 80 km/h. To maintain the same

closed loop characteristics for all speeds, gain scheduling has to be implemented
into the controller. This has not been carried out in this work.

5.5 Results and limitations of the controller

The PID controller that was designed in previous section was implemented into
the more realistic CASCaDE. It turned out to be possible to achieve better results
of side wind rejection by doing small adjustments of the PID parameters in the
controller that was implemented in CASCaDE. The limits of the actuators aren’t
enough to fully compensate for large disturbances in yaw rate. When heavy wind

53



Chapter 5. Control Design

−250

−200

−150

−100

−50

0

50

M
a
g
n
it
u
d
e
 (

d
B

)

10
−1

10
0

10
1

10
2

10
3

−450

−360

−270

−180

−90

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram
Gm = 14.4 dB (at 5.33 Hz) ,  Pm = 64.6 deg (at 1.5 Hz)

Frequency  (Hz)

Figure 5.9 Bode plot of open loop.

gusts are acting on the vehicle, the saturation limits of the actuators are reached
very fast, making the controller to be more of a bangbang control character than
a PID controller. Figure 5.105.13 shows the behavior of the vehicle with and
without the controller driving at a speed of 80 km/h and exposing the vehicle to
a wind gust of 20 m/s.
In Figure 5.10 it can be seen that there is a large overshoot when the wind

disappears. This effect is due to the integral action of the controller. A PD con
troller was also evaluated leading to a smaller overshoot but then the yaw rate
during wind couldn’t be reduced to the same level as when using integral action.
In Figure 5.12, it is illustrated how the side slip angle increases with control of
the yaw rate and since it is not possible to control the side slip angle of the vehicle
at the same time as the yaw rate with only one input, another input has to be
used for control of the side slip angle.
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Figure 5.13 Position when the yaw rate is controlled and uncontrolled at a wind gust
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6. Conclusions and future work

6.1 Conclusions

The main concept of this work has been to investigate how the interaction be
tween lateral and vertical dynamics for a fourwheeled vehicle can be used for
attenuating effects of wind gusts. How well the rejection of wind gusts turns out
to be, mainly depends on how the toe in angles have been set on the vehicle.
With greater toe in angles, greater side forces can be produced on the tyres, thus
leading to a larger yaw moment when warp is applied. The toe in angles used in
this work, i.e. 0.4 degrees front and 1.0 degrees rear, are greater than the toe in
angles set on an ordinary model. By working with these values it is possible to
reduce the effects wind gusts have on the yaw rate using feedback control with
warp as input to the vehicle. But by controlling the yaw rate, the side slip angle
is increased.

6.2 Future Work

The design of the controller was carried out under the assumption that the wind
could be observed. Therefore an observer could be designed that extracts informa
tion on how the wind is influencing the dynamics of the vehicle. The simulations
carried out in CASCaDE should also be verified with real tests on the Technoshut
tle. The controller was designed for a velocity of 80 km/h and to maintain the same
closed loop characteristics for all velocities gain scheduling has to be implemented.
Further, the PID controller causes a large overshoot when the wind disappears

and it could be investigated how this overshoot can be reduced. In addition to this,
it should be investigated what appropriate actions that needs to be taken against
the increasing body side slip angle that can’t be controlled with the same input.
Since the toe in angles that have been used aren’t the same ones as on the real
vehicle, it could be motivated to construct a switch that sets the toe in angles on
the rear wheels to a certain value, preferably as large as possible when wind is
present.
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Notation

Variables and parameters

vx The forward velocity, in the direction of xCG
vy The lateral velocity, in the direction of yCG
ψ̇ Yaw rate (rotation about zCG)

δ i Wheel steering angle

v The resulting velocity

β Vehicle body side slip angle (angle between xCG
and vCG , the vehicle velocity)

Fyi Lateral wheel ground contact force (acting in the
direction of yWi)

Fxi Longitudinal wheel ground contact force (acting in
the direction of xWi)

γ i Geometry parameter

hi Geometry parameter

θ1 Geometry parameter

fxi, f yi tyres forces in bodyfixed coordinates

ax, ay Longitudinal and lateral acceleration

mi Torque caused by single wheel

ψ̈ Yaw angular acceleration

Izz Moment of inertia about vertical axis

xB , yB , zB Axis for the center of gravity coordinate system

l f , lr∗ The xcomponent of the distance from CG to sus
pension systems front and rear

ll , lr The ycomponent of the distance from CG to sus
pension system

lL_i The ycomponent of the distance from CG to bear
ing mount

lW_i The ycomponent of the distance from CG to wheel

lss_i The ycomponent of the distance from CG to sus
pension strut

l f r, l f l , lrr, lrl The indices stands for Front Right .. Rear Left
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Notation

zPP, zRP The vertical distance from ground level to the
pitch and roll axis respectively

zB0 The vertical distance from ground level to CG

zL The vertical distance from ground level to bearing
mount

zssB The vertical distance from ground level to upper
suspension mounting point

zssL The vertical distance from ground level to lower
suspension mounting point

r, p Roll and pitch angle respectively

Mr,Mp Roll and pitch moment respectively

Jx, Jy Roll and pitch moment of inertia respectively

Fz Disturbance force in vertical direction

mB ,mW Body and wheel mass respectively

Fss Forces in suspension strut

FL Forces in bearing mount

cB f , cBr Suspension spring constants front and rear

bB f , bBr Suspension damper constants front and rear

ui j Suspension system control signal

cW Tyre spring constant

wi j Road profile at tyre contact "point"

Fi_B Force acting on upper suspension mounting point

Jr, Jp Moment of inertia of body about roll and pitch axis
respectively

TG_i Geometry matrices for vertical model

H Matrix containing road to suspension forces trans
mission ratios

A1, A2 Matrices containing spring and damper constants

λ i Slip of the wheel

ω i Angular velocity of wheel

vWi Absolute velocity of wheel

α i Tyre side slip angle

rWi Dynamical radius of wheel

ξ i Normalised wheel slip

C∗
i Normalised stiffness

µ i Friction coefficient

FZ Wheel load

nL Caster coefficient
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Notation

J Moment of inertia for steering system

b, c Damping and spring coefficients for steering sys
tem

β Aerodynamic stream angle

ρ Density of air

cF , cM Shape factors

v Absolute velocity of air flow

A Reference surface

l Distance between front and rear wheels

Ta Actuator time constant

Ka Actuator gain

i Currents to actuators.

Ω Warp

GuRi(s) Transfer function from position of piston to roll
angle

GFCui(s) Transfer function from Force controller input to
position of piston.

FFCi(s) Reference value to force controller

kW Weighting factor

Ω∗ The input signal warp

G∗(s) Transfer function from warp to yaw rate

GuYr1(s) Transfer function from piston position to yaw rate

C(s) Controller Transfer function

Kc,Ti,Td, N PID parameters
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Appendix A.

A.1 Sensor signals

Below follows the derivation of how sensor signals can be constructed with center
of gravity values. These signals were derived for comparison to sensor signals
in CASCaDE. There are five sensors in the vehicle that were compared. Three
are pointing in the vertical direction of the body and they don’t consider the
gravitational constant. The other two are pointing in the lateral and the vertical
directions of the body respectively and they consider the gravitational constant.
Equation A.1 computes the accelerations in the position of a specific sensor in the
global coordinate system (see [4]).

aSP = aCG + ω̇ � r+ ω � (ω � r) + 2ω � vrel + arel (A.1)

In the equation above, r is the vector containing the distances to the position
of the sensor, ω is the vector containing the angular velocities. Since the chassis is
modelled as infinitely stiff there is no relative motion between the center of gravity
and the sensor positions. This means that the two last terms are not considered.
For the sensors with gravitation considered, the constant of gravitation is added
in the vertical direction.
To transform the three accelerations in a given sensor point corresponding to

the signal of the sensor (which is positioned in the moving coordinate system),
the direction of the sensor needs to be known as well as the angles of the chassis,
i.e. the roll and pitch angles. The accelerations in equation A.1 are computed so
that the directions are the same as in the global coordinate system and not the
same as in the body fixed coordinate system. This means that a transformation
from the body directions to the global directions needs to be carried out. Below
follows how the transformation was carried out by considering the roll and pitch
angles of the body.

DRotX =






1 0 0

0 cos(r) − sin(r)

0 sin(r) cos(r)




 (A.2)

DRotY =






cos(p) 0 sin(p)

0 1 0

− sin(p) 0 cos(p)




 (A.3)

The full transformation, DRotYX is attained by multiplying DRotY with DRotX
and we arrive at:

n =






cos(p) sin(p) sin(r) sin(p) cos(r)

0 cos(r) − sin(r)

− sin(p) cos(p) sin(r) cos(p) cos(r)






︸ ︷︷ ︸

DRotYX

n
′′

(A.4)

If the direction of a specific sensor in the body coordinate system is given
by the vector n

′′

= (n
′′

x, n
′′

y, n
′′

z)
T , the sensor signal is attained by projecting the

accelerations computed in A.1, on the vector that contains the direction of the
sensor in the global coordinate system, i.e. n = DRotYXn

′′

. This leads to equation
A.5.
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A.1 Sensor signals

aSS = (DRotYXn
′′

)TaSP (A.5)

For the longitudinal (n
′′

xdir = (1, 0, 0)T), lateral (n
′′

ydir = (0, 1, 0)T) and vertical
(n

′′

zdir = (0, 0, 1)T) sensors the following equations are attained.

aSSx =
(

cos(p) sin(r) sin(p) cos(r) sin(p)
)(

aSPx aSPy aSPz

)T

(A.6)

aSSy =
(

0 cos(r) − sin(r)
)(

aSPx aSPy aSPz

)T

(A.7)

aSSz =
(

− sin(p) sin(r) cos(p) cos(r) cos(p)
)(

aSPx aSPy aSPz

)T

(A.8)
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A.2 Simulink Model
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A.3 Main Matlab file

A.3 Main Matlab file

The file below is the main file that builds up the matrices for the state space
representation and it also calls other subfiles but these aren’t included here.

clear all;

%Car Mass

m=2364;

%Moment of Inertia about z-axis

J=4488; %Moment of Inertia around z-axis

%Initial conditions

Vx0=80/3.6; Vy0=0; psidot=0;

%-----------------Steering angle -------------------------

toe_In=zeros(4); toe_In(1,1)=0.5*pi/180;

toe_In(2,1)=-0.5*pi/180;

toe_In(3,1)=1.0*pi/180; toe_In(4,1)=-1.0*pi/180;

delta=zeros(4,1);% Determine point which about

%the car is to be linearized

delta(1,1)=0; delta(2,1)=0; delta(3,1)=0; delta(4,1)=0;

delta(1,1)=delta(1,1)+toe_In(1,1);

delta(2,1)=delta(2,1)+toe_In(2,1);

delta(3,1)=delta(3,1)+toe_In(3,1);

delta(4,1)=delta(4,1)+toe_In(4,1);

%Settings for Tires

FzN=8000; rdyn=0.328; Angvel=zeros(4,1);

Angvel(1:2,1)=Vx0/rdyn;

Angvel(3:4,1)=Vx0/rdyn;

muh=ones(4,1);% Friction Coefficients

%Car Geometry

LV=1.67; LH=1.41; SPBL=0.787; SPBR=0.787;

length=zeros(4,1); length(1,1)=sqrt(SPBR*SPBR+LV*LV);

length(2,1)=sqrt(SPBL*SPBL+LV*LV);

length(3,1)=sqrt(SPBR*SPBR+LH*LH);

length(4,1)=sqrt(SPBL*SPBL+LH*LH);

teta=zeros(4,1); teta(1,1)=-atan(SPBR/LV);

teta(2,1)=atan(SPBL/LV); teta(3,1)=pi+atan(SPBR/LH);

teta(4,1)=pi-atan(SPBL/LH);

% Static vertical forces on Vehicle. Moment equation about

% the Tires.

Fz=zeros(4,1); Fz(1,1)=5308; Fz(2,1)=5308; Fz(3,1)=6287;

Fz(4,1)=6287;

%------Compute Angular Velocity to achieve Fx_CoG=0----

Angvel=CompensateLongitudinalForce(Vx0,Vy0,psidot,teta,...

.....length,Angvel,delta,Fz,FzN,muh);

% Computing derivatives of the dynamic tyre model
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EinlaufDer=ComputeEinlaufDerivatives(Vx0,Vy0,psidot,teta,..

.......length,Angvel,delta,Fz,FzN,muh);

%-----------------------------A-MATRIX---------------------

A=zeros(7); forward=1e-6; Fy=zeros(4,1); Fx_CoG=0; Fy_CoG=0;

for i=1:4

[Fx,Fy(i,1)]=ComputeTireForces(Vx0,Vy0,psidot,...

...teta(i,1),length(i,1),Angvel(i,1),delta(i,1),....

....Fz(i,1),FzN,muh(i,1));

Fx_CoG=Fx_CoG-Fy(i,1)*sin(delta(i,1))+Fx*cos(delta(i,1));

Fy_CoG=Fy_CoG+Fy(i,1)*cos(delta(i,1))+Fx*sin(delta(i,1));

end;

%------------Row 1 in A- Matrix------------

pointTerm1=Computef1(Vx0,Vy0,psidot,teta,length,Angvel,...

...delta,Fz,FzN,Fy,m,muh);

df1_dVy=(Computef1(Vx0,Vy0+forward,psidot,teta,length,...

....Angvel,delta,Fz,FzN,Fy,m,muh)-pointTerm1)/forward;

df1_dpsidot=(Computef1(Vx0,Vy0,psidot+forward,teta,length,.

...Angvel,delta,Fz,FzN,Fy,m,muh)-pointTerm1)/forward;

for i=1:4

Fy(i,1)=Fy(i,1)+forward;

df1_dFyi=(Computef1(Vx0,Vy0,psidot,teta,length,Angvel,.

.......delta,Fz,FzN,Fy,m,muh)-pointTerm1)/forward;

A(1,i+3)=df1_dFyi;

Fy(i,1)=Fy(i,1)-forward;

end;

A(1,1)=df1_dVy; A(1,3)=df1_dpsidot;

%------------Row 2 in A- Matrix------------

A(2,3)=1;

%------------Row 3 in A- Matrix------------

pointTerm2=Computef3(Vx0,Vy0,psidot,teta,length,Angvel,...

...delta,Fz,FzN,Fy,J,muh);

df3_dVy=(Computef3(Vx0,Vy0+forward,psidot,teta,length,.....

...Angvel,delta,Fz,FzN,Fy,J,muh)-pointTerm2)/forward;

df3_dpsidot=(Computef3(Vx0,Vy0,psidot+forward,teta,length,.

......Angvel,delta,Fz,FzN,Fy,J,muh)-pointTerm2)/forward;

A(3,1)=df3_dVy; A(3,3)=df3_dpsidot;

for i=1:4

Fy(i,1)=Fy(i,1)+forward;

df3_dFyi=(Computef3(Vx0,Vy0,psidot,teta,length,Angvel,.

...delta,Fz,FzN,Fy,J,muh)-pointTerm2)/forward;

A(3,i+3)=df3_dFyi;
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Fy(i,1)=Fy(i,1)-forward;

end;

%-------------Row 4-7 in A-Matrix-------------

for i=1:4

A(i+3,1)=EinlaufDer(i,2);

A(i+3,3)=EinlaufDer(i,3);

A(i+3,i+3)=EinlaufDer(i,4);

end;

%-----------------------------B-MATRIX--------------------

B=zeros(7,8); % Eight input signals. Four Tire angles and

% four Wheel Loads

pointTerm1=Computef1(Vx0,Vy0,psidot,teta,length,Angvel,....

....delta,Fz,FzN,Fy,m,muh);

for i=1:4

delta(i,1)=delta(i,1)+forward;

df1_dDelta=(Computef1(Vx0,Vy0,psidot,teta,length,....

.....Angvel,delta,Fz,FzN,Fy,m,muh)-pointTerm1)/forward;

B(1,i)=df1_dDelta;

delta(i,1)=delta(i,1)-forward;

end;

pointTerm1=Computef1(Vx0,Vy0,psidot,teta,length,Angvel,...

...delta,Fz,FzN,Fy,m,muh);

for i=1:4

Fz(i,1)=Fz(i,1)+forward;

df1_dFz=(Computef1(Vx0,Vy0,psidot,teta,length,Angvel,..

......delta,Fz,FzN,Fy,m,muh)-pointTerm1)/forward;

B(1,i+4)=df1_dFz;

Fz(i,1)=Fz(i,1)-forward;

end;

pointTerm2=Computef3(Vx0,Vy0,psidot,teta,length,....

.....Angvel,delta,Fz,FzN,Fy,J,muh);

for i=1:4

delta(i,1)=delta(i,1)+forward;

df3_dDelta=(Computef3(Vx0,Vy0,psidot,teta,length,...

....Angvel,delta,Fz,FzN,Fy,J,muh)-pointTerm2)/forward;

B(3,i)=df3_dDelta;

delta(i,1)=delta(i,1)-forward;

end;

pointTerm2=Computef3(Vx0,Vy0,psidot,teta,length,Angvel,...

...delta,Fz,FzN,Fy,J,muh);

for i=1:4

Fz(i,1)=Fz(i,1)+forward;

df3_dFz=(Computef3(Vx0,Vy0,psidot,teta,length,Angvel,..

.......delta,Fz,FzN,Fy,J,muh)-pointTerm2)/forward;

B(3,i+4)=df3_dFz;

Fz(i,1)=Fz(i,1)-forward;

end;

for i=1:4

B(i+3,i)=EinlaufDer(i,1);

B(i+3,i+4)=EinlaufDer(i,5);
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end;

C=eye(7); D=zeros(7,8);

VerticalModel;% Calling the model for the vertical dynamics

%-------Distance Roll Axis to CoG-----------

dist1=-0.2; % Roll axis 0.2 m below ground level

hCoG=0.286; rstat=0.308;

CoG_Rollaxis=rstat+hCoG-dist1;

%--------------------------------------------

A21State=zeros(21); B21State=zeros(21,14);

%---------------------New A-Matrix---------------

% Values from Lateral equations

A21State(1:7,1:7)=A; A21State(1:7,11:14)=-cR*B(1:7,5:8);

% Values from Vertical equations

A21State(8:21,8:21)=Asim;

% Mx is no longer considered an input signal but rather a

% combination of states

A21State(17,3)=Vx0/Jw*mA*CoG_Rollaxis;

for i=1:7

A21State(17,i)=1/Jw*mA*CoG_Rollaxis*A(1,i)+...

...+A21State(17,i);

end;

for i=1:4

A21State(17,i+10)=A21State(17,i+10)-cR*B(1,i+4)*1/....

.../Jw*mA*CoG_Rollaxis;

end;

%---------------------------------------------------------

%---------------------New B-Matrix------------------------

% Values from Lateral equations

B21State(1:7,1:4)=B(:,1:4);% Equations for the angle of the

% wheel

B21State(1:7,11:14)=cR*B(1:7,5:8);

% Values from Vertical equations

Btemp=Bsim; clear Bsim; Bsim=[Btemp(:,1:6) Btemp(:,8:11)];

B21State(8:21,5:14)=Bsim;

for i=1:4

B21State(17,i)=B21State(17,i)+B(1,i)/Jw*mA*CoG_Rollaxis;

B21State(17,i+10)=B21State(17,i+10)+B(1,i+4)*cR/Jw*mA*..

...*CoG_Rollaxis;

end;
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A.3 Main Matlab file

%------------Building up new State Space model where------

%-------------steering system dynamics are included.------

%------------Arrive at a 25 states State space Model.-----

%--------The first 4 states are the dynamics describing---

%-----------------the steering system---------------------

A25State=zeros(25); B25State=zeros(25);

% The new states, i.e. the angle and the angular velocities

% about the z-axis for the front wheels are introduced as

% the first 4 states of the expanded state space model

% Steerangle at wheels were previously inputs but when

% introducing dynamics for the steering system

% the earlier sensitivities with respect to the inputs are

% now instead sensitivities with respect to the states x1

% and x3, i.e. the two steerangles at the wheels.

A25State(5:25,5:25)=A21State;

A25State(5:25,1)=B21State(:,1);

A25State(5:25,3)=B21State(:,2);

B21State(:,1)=zeros(21,1); B21State(:,2)=zeros(21,1);

% When including the dynamics of the steering system

% the input vector increases in size since the derivative

% of the steering angle is now also used as input, i.e. two

% extra inputs!

B25State=[zeros(4,16);zeros(21,2) B21State];

InvSteerStiff=1/210000; NaturalFreq=sqrt(100); Damping=0.9;

A25State(1,2)=1; A25State(2,1)=-NaturalFreq*NaturalFreq;

A25State(2,2)=-2*NaturalFreq*Damping;

A25State(2,8)=-InvSteerStiff*NaturalFreq*NaturalFreq;

B25State(2,1)=NaturalFreq*NaturalFreq;

B25State(2,2)=2*NaturalFreq*Damping;

A25State(3,4)=1; A25State(4,3)=-NaturalFreq*NaturalFreq;

A25State(4,4)=-2*NaturalFreq*Damping;

A25State(4,9)=-InvSteerStiff*NaturalFreq*NaturalFreq;

B25State(4,3)=NaturalFreq*NaturalFreq;

B25State(4,4)=2*NaturalFreq*Damping;

%==========================================================

%==========================================================

% Model including the disturbances

% caused by the wind

%==========================================================

%==========================================================
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A_Fini=A25State;

B_Fini=

=[B25State(1:25,1:10) B25State(1:25,13:16) zeros(25,2)];

B_Fini(7,15)=1/m; B_Fini(9,16)=1/J;

C_Fini=zeros(34,25); C_Fini(1:25,1:25)=eye(25);

D_Fini=zeros(34,16);

for i=1:4 % Wheel loads

C_Fini(26+i,14+i)=-cW;

D_Fini(26+i,10+i)=cW;

end;

%Outputs: Lateral Acceleration, wheel loads, Vertical

% acceleration, etc

% Lateral Acceleration

C_Fini(26,:)=A_Fini(5,:); C_Fini(26,7)=C_Fini(26,7)+Vx0;

D_Fini(26,:)=B_Fini(5,:);

%Vertical Acceleration

C_Fini(31,:)=A_Fini(19,:); D_Fini(31,:)=B_Fini(19,:);

%Pitch Acceleration

C_Fini(32,:)=A_Fini(20,:); D_Fini(32,:)=B_Fini(20,:);

%Roll Acceleration

C_Fini(33,:)=A_Fini(21,:); D_Fini(33,:)=B_Fini(21,:);

%Yaw Acceleration

C_Fini(34,:)=A_Fini(7,:); D_Fini(34,:)=B_Fini(7,:);

% Fz is Moved to the new input vector! Dist_Vec=[F_y M_z]

SideWindSpeed=72/3.6;

[Fx_Wind,Fy_Wind,Fz_Wind,Mx_Wind,My_Wind,Mz_Wind]=

=Windmodel(Vx0,SideWindSpeed);

sensor_lengths;
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