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Sammanfattning

I detta examensarbete har ett reglersystem för en DVD-spelare mo-

difierats s̊a att det bättre lämpar sig att implementeras med begränsade

h̊ardvaruresurser. Den diskreta regulatorn finns redan implementerad med

FPGA-teknik i utvärderingssyfte, och fungerar bra. Hittills har dock inte

l̊ag resursförbrukning varit av högsta prioritet. Detta h̊aller p̊a att för-

ändras d̊a fler funktioner, som kan behöva mer resurser än vad som finns

tillgängliga i nuläget, planeras för samma h̊ardvara.

Tillvägag̊angssättet har varit att använda avancerade programvaru-

verktyg och en kraftfull generell realtidsprocessor för att skapa en ny

mjukvaruimplementation av regulatorn och använda denna för att styra

den riktiga processen. Med denna uppsättning har sedan vissa intressanta

designparametrar för potentiella h̊ardvaruimplementationer kunnat stude-

ras under verkliga förh̊allanden. En speciellt intressant s̊adan parameter,

som i hög grad p̊averkar storleken p̊a den resulterande FPGA-kretsen, är

valet av ordlängd för signaler, tillst̊and och koefficienter i regulatorn. För

att effektivt kunna minska denna parameter har designen av regulatorn

behövt ändras n̊agot för att göra den mindre känslig mot högre numerisk

osäkerhet, vilket lett till en multirateregulator.

För att analysera vilka effekter de föreslagna ändringarna skulle ha

p̊a regulatorns prestanda, har tester gjorts med olika designparametrar.

Även tester av sp̊arhopp har gjorts d̊a dessa är särskilt beroende av re-

gulatorns egenskaper. Dessa tester har gett en fingervisning om hur stora

besparingar som verkar möjliga att uppn̊a under gällande omständigheter.
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1 Introduction

This theses will address some issues involved with implementing a digital con-
troller for a regular, commercially available, home entertainment DVD player.
The reason why a custom controller is needed for this particular DVD player
is that AudioDev wants to evaluate the possibilities of using a commercially
available DVD drive in conjunction with their line of test equipment for CD
and DVD manufacturers. In order to make accurate and meaningful measure-
ments with the drive, a custom and well-understood controller is needed since
the original controller shipped with the DVD player doesn’t provide the level of
flexibility required for advanced testing.

A working prototype controller has already been designed and implemented
using FPGA-chips. It is however believed that this implementation is somewhat
sub-optimal, in the sense that it could probably be implemented using less
chip-space. This would ideally make room for other interesting features on the
same chip. Currently, the controller is implemented using 32-bit fixed point
arithmetics; enough so that surely no significant errors would be introduced
from numerical uncertainces. The calculations are executed in an ALU running
on one of the FPGA-chips. If the required wordlength of the operands could be
lowered, the ALU could then be implemented using fewer gates — in fact, the
number of gates needed to implement a multiplier increases almost quadratically
with the number of bits in the operands, so this certainly looks like a good target
for reducing the size. A positive side effect of a smaller ALU is that it can be
clocked at a higher rate, paving way for the possibility of a faster sample rate,
should the need arise.

To begin with, some background information is provided that introduces the
DVD drive and the properties of the DVD media, as well as the design and the
features of the current controller. Then the problem is formulated and analyzed
and some solutions are presented, implemented and tested. Finally, the results
are discussed and some conclusions are drawn. Also, some suggestions for further
work are made.

2 Background

2.1 Drive

A typical DVD player is built using low-cost mechanical, optical and electrical
components and is highly dependent on automatic control and advanced coding
techniques to function. A sketch of the physical parts of a DVD system can be
seen in Figure 1.

The data is recorded as so-called lands and pits of different lengths (see Figure 2)
on the disc. It is arranged in a track-spiral going from the center of the disc
all the way towards the edge, as can be seen in Figure 1. Data is extracted by
rotating the disc and sending a laser-beam towards the surface of the disc. By
studying the amount of light reflected from the track as lands and pits pass by,
the recorded data-stream can be recreated. To protect against occasional errors
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Figure 1: Sketch of the physical parts that constitute a DVD system.

in the data-stream, caused by e.g. scratches on the surface, the data contains
redundancy in the form of error-correcting codes. The lens’ position has to be
continously adjusted using automatic control in order to stay on track and in
focus.

Figure 2: Illustration of the lens while reading data from a track.

The surface of the lens is actually divided in four areas, as shown in Figure 2,
and has a separate light-sensor attached to each one of these. By studying
the relative differences in the amount of light recieved from each sensor, it is
possible to deduce all information needed to control the lens movements both
in the axial and radial directions. The signals derived from these sensors are
summarized in table 1. Note that the lens is actually astigmatic and has two
different focuses. At the optimal working point the lens should be positioned
in the axial direction such that the data-layer of the disc is located exactly in
the middle of the two different focuses of the lens, i.e. neither one is actually in
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focus. This scheme makes it possible to detect diversions in the axial direction
from the ideal working point, so that a servo can be designed to keep the lens
around that point.

Name Description

HF High frequency data carrying signal constructed as A+B+C+D.
This signal is sliced and sent to a decoder to extract the data-
stream from the disc.

TCS Track Crossing Signal, derived as HF filtered through a low-pass
filter. Used to detect track crossings when starting the radial
servo.

FE Focus Error, i.e. the offset from the center of the focus points.
Calculated as A + C − B − D, where A and C have a separate
focus point from B and D.

DPD The offset of the lens position from the center of the track. Gen-
erated by some processing (called Differential Phase Detection) of
the signals A + C and B + D. Referred to as RE (Radial Error)
from now on.

Table 1: Available output signals from the DVD drive.

The inputs available to control the DVD system is summarized in table 2.

Name Description

urad Moves the lens in the radial direction by adjusting the strength of
a magnetic field surrounding the lens.

ufoc Moves the lens in the axial direction by adjusting the strength of
another magnetic field surrounding the lens.

urot Controls the speed of the electrical rotation motor.
usledge Controls an electrical motor that can move the sledge across the

disc.

Table 2: Available input signals to the DVD drive.

2.2 Controller

The control system of the DVD player has four separate control loops, described
in short below:

Focus servo Makes the lens stay focused on a specific layer by keeping the
Focus Error signal (FE) near zero.

Radial servo Makes the lens follow a track by keeping the Radial Error signal
(RE) near zero.

Sledge servo Makes the sledge follow the tracks (slowly) as the lens can only
see a few hundred tracks sideways from a given static position of the sledge.
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Rotation servo Keeps the information flow constant by continously adjusting
the rotation speed of the disc depending on the radial position of the
pickup. This mode is called CLV, Constant Linear Velocity, as opposed
to the less commonly used alternative CAV, Constant Angular Velocity,
where the disc rotates at a constant speed independent of radial position.

To begin reading from a disc, the startup of these controllers has to be synchro-
nized in the following way:

1. Begin rotating the disc at a constant speed (CAV mode) by applying a
constant voltage to the rotation motor.

2. Find the focus point by moving the lens to an end-point position, either as
close to the surface of the disc as possible or as far away from it as possible,
depending on which layer (if the disc is a dual-layer disc, otherwise it does
not matter) to focus on. Then slowly move to the center while keeping FE
under observation. When the lens is out of focus, FE will be practically
zero, but when a layer starts coming into focus FE will begin making an
S-curve as can be seen in Figure 3. When this is detected, the focus servo
can be turned on and the lens will be locked in on the layer.
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Figure 3: S-curve used to detect a focus-layer before activating the servo. The
linear area lies in between the positive and negative peaks.

3. To lock the radial servo to a track, the controller monitors the RE signal
as tracks are passing by under the lens, and waits for the particularly
favourable situation when tracks are passing by at the slowest possible
rate. See Figure 4 for an example of this. Waiting for this event gives the
highest probability of successfully catching the track when the radial servo
is turned on. This heuristic is actually not sufficient; the controller also
needs to observe the Track Crossing Signal (TCS) to make sure a track is
actually present at a slow passage.

4. When locked on to a track, the decoder can start doing meaningful in-
terpretations of the HF signal and, among other things, extract sector
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Figure 4: Appearance of RE as tracks passes by while focusing on a specific
layer. Illustrates how the disc eccentricity makes tracks appear slower or faster.

information from the data-stream. To get a constant data-rate, the rota-
tion motor can be switched to CLV mode.

2.2.1 Radial servo

A second order linear model from urad to RE exists, and the corresponding
bode plot is included in Figure 5.
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Figure 5: Bode plot of the lens process in the radial direction.

The radial servo is designed to follow the DVD specification, standard ECMA-
267. According to this specification, the bandwidth of the open loop system
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should be around 2.4 kHz. This can be accomplished by doing linear feedback
on a reconstruction of the two states of the process. A model is provided in
Figure 6.

Figure 6: Model of the system without oscillative disturbance.

The reconstruction is made with an optimal Kalman filter K (with direct action,
hence K̄ below).

x̂(k + 1|k) = Φx̂(k|k − 1) + Γu(k) + K (y(k) − Cx̂(k|k − 1))
x̂(k|k) = x̂(k|k − 1) + K̄ (y(k) − Cx̂(k|k − 1))

(1)

The Kalman filter is derived by taking the properties of the noise that is acting
on the system into account, and it is optimal in the sense that it minimizes a
criterion expressing the variance of the reconstruction error. The equations (2)
describe the process

{
x(k + 1) = Φx(k) + Γ(u(k) + v(k))

y(k) = Cx(k) + e(k)
(2)

where v and e are discrete-time Gaussian white-noise processes with zero-mean
value and variances as defined below.

E{v(k)vT (k)} = R1 (3)

E{v(k)eT (k)} = R12 (4)

E{e(k)eT (k)} = R2 (5)

The reconstruction error is defined as x̃ = x − x̂, and the expression which is
minimized by the optimal Kalman filter is

P (k) = E
{
x̃(k)x̃T (k)

}
. (6)

The design of the observer when using this method lies in specifying the relative
differences between the noise variances. In our case, the process noise v is
modelled as acting on the input of the system, and is thus one-dimensional
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and going through the same Γ matrix as the input signal. Further, since y
is one-dimensional, so is e. Assuming that the covariance between v and e is
zero (R12 = 0) left are two parameters, namely the scalar matrices R1 and R2.
However, since the variances are only relative, this is effectively one parameter
which needs to be specified. For this process, reasonable performance has been
achieved by selecting R1 an order of magnitude less than R2.

The feedback is then

u(k) = −Lx̂(k|k) (7)

where L is selected using LQG design, see e.g. [1]. Using this method, the
feedback law (7) will minimize a loss function

J =

∞∑

k=0

(
xT (k)Q1x(k) + uT (k)Q2u(k)

)
(8)

where Q1 and Q2 are design parameters. These matrices are relative weights
selected such that an element with a high value suppresses a state (or signal).
There is no practical limit on how quickly the lens can be moved and thus the
penalty of the control signal, Q2, can be very low. Furthermore, since the main
objective is to keep the radial error (= y) near zero, Q1 can rather intuitively be
chosen as CT C, which gives a controller that minimizes

∑
y2, i.e. the power of

RE. This might lead to a quite aggressive controller though. To make it behave
better, the loss function could be extended to penalize the speed of y as well.

Although this controller probably would be able to follow a track, depending on
the exact design and the condition of the disc, it would have problems with a
low frequency disturbance at the rotation frequency (10-20 Hz), originating from
the disc eccentricity of up to 100 tracks sideways. To handle this, a disturbance
model of the track offset that is driven by white noise is included in the controller,
and the Kalman filter is extended to estimate the current offset so that the
output from the radial servo can be adjusted accordingly. A model of the new
situation is provided in Figure 7.

The disturbance is modelled as a second order linear system

{
z(k + 1) = Φoz(k) + Γow(k)

y(k) = Coz(k)
(9)

where the eigenvalues of Φo is chosen as two poorly damped complex conjugate
poles at the rotation frequency of the disc (≈ 14 Hz).

The observer (1) is thus modified to estimate all the states

xe =

[
x
z

]

from the extended system
{

xe(k + 1) = Φexe(k) + Γeu(k) + Γev(k) + Γww(k)
y(k) = Cexe(k) + e(k)

(10)
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Figure 7: Model of the system with oscillative disturbance.

where

Φe =

[
Φ ΓCo

0 Φo

]

, Γe =

[
Γ
0

]

, Γw =

[
0
Γo

]

and Ce =
[

C Co

]
.

This adds a new parameter to the design of the Kalman filter, namely the
variance of the noise w driving the disc eccentricity, relative to the variances of
the process and measurement noises v and e, respectively.

2.2.2 Focus servo
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Figure 8: Bode plot of the lens process in the axial direction.
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The servo for the focus process is designed using the same methods as described
for the radial servo in Section 2.2.1. The bode plot of the process can be seen
in Figure 8.

2.2.3 Sledge servo

The sledge is where the laser and lens (a.k.a. the pickup) are mounted, and
it can be moved by an electrical motor across the disc. The lens needs to be
positioned within about one hundred tracks of the track currently being read
from on the disc, and thus the sledge needs to slowly follow the lens as it follows
a track. This is done by using the output from the radial controller (urad) as
input to a slow PI controller that tries to make this signal equal to zero by
moving the sledge. When urad has a large low-frequency component this means
the lens is bending sideways to compensate for a non-ideal position of the sledge.

In practice, the sledge suffers from a lot of friction and will therefore move in a
very jerky fashion. As a matter of fact, feeding the sledge motor with a small
square wave overlayed onto the control signal gives a more reliable mode of
operation. This will periodically snatch the sledge out of situations where it is
temporarily stuck, preventing the controller from building up too much force.

2.2.4 Track jumping

For a DVD player to be able to quickly locate the correct video sequence, audio
track or data file on a disc, it is not sufficient just to be able to sequentially
read data from the beginning of the disc to the end. Instead, by moving the
lens sideways, perpendicular to the tracks, it is possible to very quickly jump to
a new position on the disc. This is known as Random Access, and is one of the
many advantages a DVD disc has over e.g. a VHS cassette.

The algorithm for jumps to adjacent tracks1 (short jumps), is described below:

1. The controller is switched to another one, where the speed of the lens
movements is more heavily punished so that it can handle a step in the
reference signal. The observer is also modified to better estimate the states
with less information from the input signals.

2. A new set-point is set for RE, i.e. the lens is told to move away from the
track (in the direction of the jump).

3. When the lens has moved away a bit from the track, the controller is
switched to run in open loop2, since the system has entered its non-linear
area. To successfully be able to control the lens during this period it is
important that the model sufficiently describes the state of the system
(e.g. its current eccentricity).

4. As soon as the new track starts appearing under the lens, the controller is
switched back to closed loop. At the same time, the states of the controller

1Physical tracks, not logical (e.g. audio) tracks.
2The observer is told to disregard the measurements.
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is reset so that it appears to the observer as if the new track is the same
as the old.

5. If several tracks should be jumped, goto 2.

6. Switch back to the normal controller.

To do long jumps, say over several hundred tracks or so where the lens cannot
see the new position from its current position, the sledge has to be moved. This
can be done by turning off the radial controller completely (the focus controller
can still be running, though) and moving the sledge as close to the new position
as possible, given the available accuracy of the sledge and its electrical motor.
Then the radial controller is turned back on, and the pickup’s new position on
the disc can be read from the sector information and compared to the position
we want to find. However, the sledge can only move the pickup whithin about
one hundred tracks of the target position, and some short jumping (described
above) will most likely be necessary to find the exact position.

2.3 Media

2.3.1 Disc parameters

The DVD media is an important part of the whole system and its properties can
have significant impact on the actual performance of the control system. The
discs have several physical parameters which affect how the disc performs as a
part of the complete DVD system. The DVD specification puts limits on these
parameters, and it is AudioDev’s business plan to provide disc manufacturers
with equipment to measure all these parameters so that they can achieve compli-
ance with the DVD specifications. Some important parameters are summarised
in table 3.

Name Description

Radial Noise Remaining noise in the RE-signal when following a
track using a reference servo.

Jitter Small variations in the lengths of individual lands
and pits, compared to their ideal lengths. If the
jitter gets to large, the probability of errors in the
extracted data increases.

Assymetry Differences between the average signal-level of short
lands/pits compared to long lands/pits. If this dif-
ference gets too big the data cannot be reconstructed
satisfactory.

Table 3: Examples of some disc parameters that can be measured by AudioDev’s

products.
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2.3.2 Influence on the control system

From the controller’s point of view, one important property of a specific disc is
how it affects the gain of the process, i.e. how much light that are being reflected
back to the sensors from the surface. These differences in gain can be quite large;
especially between single- and dual-layered DVD’s, where the dual-layered disc
only reflects about half of the light compared to its single-layered counterpart.
Even different areas of the same disc can have significant differences in gain. To
manage this, the gains of the radial- and focus-processes are estimated at certain
points during runtime by injecting sinus-waves with low amplitudes at sensitive
frequencies of each closed loop. Then the real gain of each control loop can be
measured and adjusted accordingly. The disc, as modelled, does not have any
dynamics of its own, so with the exception of the gain our process will be the
same irrespective of the actual media.

The processes are however exposed to disturbances and noise originating from
individual characteristics of each disc, and this highly affects how well the control
system will be able to follow a track and extract data. First and foremost, the
eccentricity of the disc as well as its tendency to wobble adds a low frequency
sinusoidal disturbance to both the radial- and focus-process which needs to be
addressed by the servos. Furthermore, the signal to noise ratio (SNR) of the
measurements used for control varies somewhat between discs, and although
a controller can be designed that works good on most available discs, it has
proven to be quite difficult to cover all cases since some discs do not follow the
specifications very well.

3 Material

3.1 Toolchain

An implementation of the controllers above, including short track jumping but
no long jumps, exists as a Simulink model. Its design is specified in a num-
ber of MATLAB scripts. This implementation can be compiled using Real
Time Workshop into a program executable in the dSPACE environment. The
dSPACE environment consists of an expansion card for an ordinary PC, con-
taining a standard PowerPC processor and several A/D- and D/A-converters,
as well as software for creating and running custom user interfaces connected to
the real-time tasks executing on the PowerPC processor.

The toolchain used for the development of the controller is explained in detail
below:

• The design of the different controllers is specified in several MATLAB
M-files, which needs to be executed prior to opening the Simulink model.

• The implementation is done as a Simulink model, with only discrete states
and using a singletasking fixed-step solver. By utilizing special dSPACE
blocks, for the A/D- and D/A-converters, the controller’s input and output
signals can be connected to the real process’ sensors and actuators.
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• Using Real Time Workshop, standard C-code can be generated from the
Simulink model, which can further be compiled into a PowerPC executable
for the dSPACE processor board. Double precision floating-point calcula-
tions are used by default in Simulink and also in the generated executable;
and it is in fact not possible to change that easily to e.g. fixed point cal-
culations instead.

• The generated application can be loaded into the real-time system either
manually from the dSPACE Workbench3, or automatically as a part of
the build process in MATLAB.

• A custom user interface can be designed that lets the user change parame-
ters, control the flow of execution and also study signals during execution
in what can be described as virtual oscilloscopes.

4 Problem formulation

The problem is to evaluate some modifications of the current controller that
would allow it to be implemented using less chip-space. The modifications
should be such that the properties and the performance of the current design are
retained. The main approach is to target the current, overly accurate, numerical
representation of states and coefficients in the controller so that a reduction of
the ALU’s size is possible.

The controller to be used as a starting point is available in the MATLAB/dSPACE-
environment described above and it can be executed in real-time connected to
the real DVD drive via analog I/O. This setup allows for much more rapid de-
velopment iterations and much higher flexibility than i.e. reprogramming of an
FPGA would. However, some care has to be taken to make sure that the results
will be the same as when the controller is later re-implemented in an FPGA,
e.g. the dSPACE setup will add a delay of almost one full sample to the system,
which will not be present when the controller is running in an FPGA.

This work will focus on analyzing the radial-servo and how it can be implemented
more efficiently, since that is one part of the system which is known to need high
numerical accuracy in the current implementation. The reason for this will be
explained below.

5 Analysis

5.1 Prerequisites

The first thing that needs to be changed with the current model is to make it
use fixed-point calculations instead. Then the wordlength can be introduced
as a parameter; or rather, the resolution to be used for calculations in a po-
tential FPGA implementation. Resolution is defined as the smallest non-zero

3A Windows program for managing tasks on the PowerPC processor, as well as creating
and running graphical user interfaces on the host computer connected to these tasks.
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magnitude representable and it depends on the number of bits that are used
to represent the fractional part of a real number. If n fractional bits are used,
the resolution is 1/2n. The accuracy is then defined as the maximum difference
between a real value and its representation. The accuracy is always equal to the
resolution divided by two for fixed point numbers.

Figure 9: Example of a fixed point word with an integer part and a fractional
part.

Figure 9 shows an example of a 16-bit fixed-point word. The bits are divided
into one sign bit, 8 integer bits and 7 fractional bits. This gives a resolution of
1/27 = 1/128 = 0.0078125, i.e. words of this particular structure can represent
numbers that are integer multiples of 0.0078125. The range of the numbers that
can be represented is, of course, limited. In the case of signed arithmethics it
is common to use a scheme called “two’s complement” for dealing with negative
numbers. The range for the example above will then be

(
−29, 29 − 1/27

)
=

(−512, 511.9921875).

The minimum wordlength required to do the calculations of a given system
depends both on the selected resolution and on the required range to cover all
possible state values. The resolution (i.e. the number of fractional bits) is the
natural design parameter, and the required range can for example be obtained
by monitoring the maximum state values during normal operation of a system.

Unfortunately, as mentioned before, Simulink only works with floating point
arithmetics and it is therefore not possible to introduce these modifications using
standard Simulink blocks. The solution is to extend the capabilities of Simulink
using so-called S-functions. These can be implemented in C, thus presenting the
possibility of having sufficiently fine-grained control of the calculations such that
the conditions inside a custom ALU can be simulated. Keep in mind that when
doing a custom hardware implementation using e.g. FPGAs, the wordlength of
the ALU can be selected as any arbitrary integer, not just the standard lengths
of powers of two.

The implementation of these modifications are discussed in detail in Section 6.

5.2 Naive approach

The naive approach would be to use the new implementation of the original
controller, where the resolution is available as a design parameter, and study
its behaviour when operating using different resolutions. The results of this
experiment are discussed in Section 7.1.
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5.3 Multirate observer

The controller for the radial servo contains a Kalman observer for the disc
eccentricity. This is modelled as a poorly damped oscillative disturbance at the
rotation frequency (10-20 Hz), which is very low compared to the sample rate
of 60 kHz. This leads to a system with poles very near the unit circle, needing
high numerical precision for accurate representation. The reason for this is that
when a slow dynamic process is sampled with a high sample rate, the dynamics
do not change very much between occasional samples but rather on a much
longer time scale. So in practice, the states stay almost identical between fast
sample hits (the system matrix can be thought of as being approximately equal
to the identity matrix), only changing with very small relative amounts each
time. The current controller, for example, has time for about 4300 samples as
the disc makes one revolution. In the real world, this means that only the least
significant bits of these states are changing on such a fast scale, the very bits
that are the target for elimination. For our purposes this is likely to be a major
bottleneck in limiting the overall required wordlength. To tackle this, a multirate
approach is suggested. By dividing the controller into subsystems operating at
different sample rates, more in line with their individual dynamic properties, we
get a total system which hopefully can be implemented satisfactory with lower
numerical precision than before.

The observer for the slow disturbance states, z, can be isolated from the ex-
tended observer for xe outlined in Section 2.2.1 as

ẑ(k + 1) = Φoẑ(k) + K2

ε(k)
︷ ︸︸ ︷

(y(k) − Cex̂e(k)) (11)

using the notations introduced in that section, with the addition that K2 is
the part of the Kalman filter derived for (10) that updates only the disturbance
states. A model of the system where the observer is split in two parts is included
in Figure 10.

The system (11) can easily be resampled using MATLAB’s d2d command. With
the original sample rate, the system-matrix for the slow observer is

Φo =

(
0.9995 0.0015
−0.0015 0.9995

)

and it is very close to the identity matrix. If instead the system is downsampled
50 times, the system-matrix wil be

Φo =

(
0.9727 0.0714

−0.00714 0.9727

)

which has nicer numerical properties.

If the sample time for updating the slow system is chosen as a multiple of
the fast sample time, we will get a linear and time invariant system at the
common sample instances. Exactly what this multiple should be chosen as is a
tradeoff between lower accuracy in the reconstruction of the states, leading to
noisier control and perhaps difficulties when doing track jumps, and not needing
as many bits in the implementation. Intuitively, the slow system should be
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Figure 10: Model of the system with a split observer.

resampled such that its poles become equally sensitive to numerics as the faster
subsystem’s poles.

The results of experimenting with different resamplings of the slow observer,
and how it affects the possibility of lowering the number of bits to represent it,
are discussed in Section 7.2.

5.4 Extended multirate observer

When the observer for the low frequency oscillative disturbance is downsampled,
valuable information is lost from the measurements in between the slow samples,
and experiments showed that performance was not nearly as good as for the
original controller when the slow system was downsampled more than about
50 times, even when high numerical accuracy is used. A few ideas on how to
modify the observer, with the goal of reclaiming some of the performance lost
due to wasted information, is therefore presented.

With the motivation that the dynamics of the slow observer behaves almost
as I between fast samples, the following reasoning can be made. At the slow
sample instances, the recursion of the states is made with a numerically appro-
priate system matrix, as explained previously. However, instead of only using a
single measurement as input to the system at each slow sample, the sum of all
measurements since the last slow sample could be used.

ẑ(k + N) = Φoẑ(k) + K2(ε(k) + ε(k + 1) + · · · + ε(k + N − 1)) (12)

This implies that K2 should not be part of the resampling, but instead kept
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in the original version designed for the single-rate observer. The notation used
above means that the system is N times slower than the original rate, and that
at each slow sample instance, it moves forward the equivalent of N fast steps.

Initial experiments using this approach indicated that the observer gets unstable
when downsampling the slow system more than about 10 times. To verify this,
a time-invariant description of the combined observer must be obtained. This
can be done by only considering the system variables at the common sample
instances, but including the fast states one time for each fast sample in a slow
period. The state-vector at the common sample instances will then look like

x̂m(k) =










x̂(k − N + 1)
x̂(k − N + 2)

...
x̂(k)
ẑ(k)










(13)

i.e. at each slow sample [. . . , k, k+N, k+2N, . . . ], x̂m will contain the N most
recent fast updates of the states x̂, plus of course ẑ. If the fast observer for x is
described as

x̂(k + 1) = Φx̂(k) + Γu(k) + K1ε(k)

and the slow observer for z as (12), the dynamics of the combined multirate
observer can be described by the following system matrix.










0 · · · 0 (Φ − K1C) −K1Co

0 · · · 0 (Φ − K1C)2 −(Φ − K1C + I)K1Co

...
. . .

...
...

...

0 · · · 0 (Φ − K1C)N −((Φ − K1C)(N−1) + · · · + I)K1Co

−K2C · · · −K2C −K2C Φo − NK2Co










This matrix is actually stable for N up to at least several hundreds (it has not
been verified that it is stable for all N). The reason why the original experiments
showed instability is not known, but it is very likely that some programming
error caused this. It did however initiate a search for other solutions based
on applying Kalman theory directly for the multirate system instead of relying
on the approximation above. Doing so would guarantee the stability of the
observer, it was believed.

So, the question is whether it is possible to make optimal use (in the Kalman
sense) of the information available in the measurements. Intuitively, one might
suspect that measurements closer to a new slow sample are more valuable than
measurements occuring in the beginning of a period. MATLAB’s implemen-
tation of the Kalman algorithm only handles single-rate systems however, and
unfortunately it is not as easy as to just derive two seperate filters for each
subsystem independently, since the algorithm requires that all noise that acts
on the system being observed is white. Thus the filter has to be derived for the
system as a single unit.
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One approach, which unfortunately did not work as the author initially hoped,
was to use a similar state description as (13) to formulate a Kalman observer
for the system that describes the multirate equivalent of (10) at the common
sample instances. This system could look something like

{
xm(k + N) = Φmxm(k) + Γmu(k) + Γmv(k) + Γmww(k)

ym(k) = Cmxm(k) + e(k)
(14)

where u(k), v(k) and w(k) now act as multiple input signals to the system, and
ym act as multiple output signals. That is, u(k) above is really

[
u(k − N + 1) u(k − N + 2) · · · u(k)

]

and so forth for the other signals. When using MATLAB’s kalman command,
it was expected to return a matrix K, where the last row would contain the
filter to be used for updating the slow states z from all measurements (which
is exactly what is being sought for); and the other rows would describe how
to update the fast states (possibly differently) at each fast sample between two
slow samples. As the reader might suspect, the update laws for the fast states
is not possible to implement since they will not be causal. The obvious flaw is
that there is no way to tell the kalman command that we want to update the
fast states during a slow sample using only the current measurement, and alas,
the rows of K tell us to also use measurements not only from the past but also
from the future (which would, obviously, have improved on the estimates).

Instead of trying to find a completely new optimal Kalman filter for both the
fast and the slow system, it would perhaps be sufficient to find an update law
for an estimation of the slow system that uses all measurements optimally; given
that an observer for the fast system already existed. This solution would also
have the advantage of not requiring an update law for the fast observer that
varies periodically between slow samples, as the truly optimal solution suggests.
The observer for the single-rate system (10) could for instance be used to obtain
update laws for the fast states. If the Kalman algorithm could be modified to not

produce a filter for the fast system, but instead use the ones provided and only
seek a solution for the slow system, then a formulation like (14) could be used to
find a solution. This route has not been pursued further due to lack of time and
capabilities, so it is not clear whether it is possible to do such modifications of the
Kalman algorithm or not. Also, as new experiments showed that performance
was very satisfactory using only simple accumulation of measurements for the
updates, the need of other solutions diminished.

5.5 Performance

One problem that arises from the problem formulation is how to decide if a
controller is good enough. Since the overall design of the controller will not
be modified, but merely the implementation, its behaviour is expected to be
more or less the same. The ramifications of lowering the resolution of how
coefficients and states are represented, is that poles and zeros will move slightly
from their nominal positions, and also that noise will be added to the system
originating from truncation of states and signals. The downsampling in the
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multirate observers will in itself also add some noise to the system. By studying
the variance of the measurements of e.g. the RE signal, comparisons can be
made between different controllers. To get more easily comparable quantities, a
non-squared measurement may be preferred, like the standard deviation or the
absolute value of a high-pass filtered RE (to remove offsets in the signal), filtered
through a low-pass filter. The latter was used during earlier development with
the dSPACE setup, and was kept for measuring performance in the experiments
presented in this work.

It is somewhat risky to make comparisons of these performance measurements
between different experiments, or even in the same experiment if it covers more
than a small part of a single disc, since local properties of the disc will affect these
numbers. This is a major reason to introduce the resolution of calculations as
a run-time parameter that can be changed during online control, since it would
then be much easier to directly see where larger quantization steps correlate to
degradation in performance.

Another thing that needs to be verified for modified controllers is their abilities
to handle track jumps.

6 Implementation

6.1 S-functions

S-functions can be included seamlessly into Simulink models and are linked
to the target executables generated by Real Time Workshop during the build
process. S-functions have the following basic features:

• They can have an arbitrary number of input parameters that can be used
for passing system matrices, sample times etc to the S-function.

• They can run at multiple sample rates, so that a single S-function can be
used to update a multirate system.

• They can have an arbitrary number of input and output signals.

When using dSPACE one can also take advantage of the possibility of directly
accessing global variables declared in the S-functions from whithin the dSPACE
Workbench at run-time. This can for example be used to control the flow of
execution in the system.

6.2 Fixed-point arithmetics

The current ALU uses 32-bit operands and has a 64-bit internal accumulator.
This means that the ALU stores intermediate results with double precision com-
pared to the operands during, for example, a calculation of a scalar product.
When accessing the final result, only one truncation is made to 32 bits instead of
one truncation per multiplication, yielding some gain in precision. It would be
desirable that the new implementation could simulate the current behaviour for
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verification purposes, so 32 bits defines the upper limit of what the new imple-
mentation should be able to handle. To imitate these conditions in C, we would
actually need to work with 64-bit integers, since there is no way to access the
high word of the result when multiplying two integers (it is not possible to detect
overflows either). Even if the target processor has a 32-bit architecture (like the
PowerPC on the dSPACE board), the compiler sometime provides primitives
for 64-bit integers (often called long long int on 32-bit architectures). This,
unfortunately, is not the case with the compiler that is bundled with dSPACE
(the compiler for the host system can manage it however, which lead to some
confusion during development). Instead, the following alternatives are possible:

• Write a custom multiply-and-accumulate routine in assembler for the tar-
get processer. When doing calculations on this low level, the high word is,
of course, available after a multiplication has executed. The advantages
of this solution are:

– This is the only solution that could cover all cases exactly as the
FPGA does today, since 64-bit integers are not provided by the C
compiler.

– A pure integer implementation would probably be faster than the
MATLAB-generated floating point code.

And the disadvatages:

– Would require that the author learned PowerPC assembler.

– Decreased flexibility, e.g. the code would not any longer be compil-
able for the host (i386) computer in debugging purposes.

– Increased complexity, i.e. it would probably be harder to understand
and maintain the code.

• Only use standard (32-bit) integers, and truncate at each multiplication.
Pros:

– Very easy to implement.

– Fast (see above).

Cons:

– Truncation errors would be different (and larger) than in the FPGA,
counteracting the whole purpose of doing a custom implementation
to resemble the operations of the FPGA. Although this difference
would arguably be quite insignificant, it would be nice to have an
implementation that works exactly as the one being simulated.

• Use standard (32-bit) integers, but only allow the maximum of 16 bits for
the representation of states and coefficients etc., and reserve the other half
of the word for storing intermediate results as explained above. The pros
are:

– Easy to implement.

– Fast.

– Works as intended, but only up to 16 bits.
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Cons:

– Even though the goal is to reduce the wordlength of the variables
in the controller, it is perhaps a bit optimistic to expect that such a
large reduction would be possible without difficulties. And even if it
were, it would certainly be nice to be able to compare the behaviour
with that of a controller using additional bits.

• Use 64-bit floating point (IEEE) variables and make sure they are trun-
cated at the right positions during the flow of execution to perfectly sim-
ulate the behaviour of integers. Actually, since the exponent would not
be of any use, but only the mantissa, only 53 bits would be available to
simulate integers. However, even if this solution were to be used to calcu-
late the scalar product of 32-bit integers, a large number of terms would
be needed before the difference between a 53-bit and a 64-bit accumulator
would have any impact on the final result. The pros of this solution is:

– Has the correct behaviour for integers up to 32 bits wide, if the num-
ber of terms in scalar products is limited.

And the cons:

– Slow, even slower than regular floating point calculations since ex-
plicit truncations are needed frequently. Also, since the shift opera-
tions, << and >>, are not valid for floating point variables, these must
be replaced with expensive multiplications and divisions.

To mimic the current behaviour of the ALU, either the first or the last solution
must be used. Since the assembler alternative is not very appealing, the last
approach was the first attempt. The implementation of that solution consists
of the three macros

#define L(x,fb) ((real_T)((int)((x)*(1<<(fb)))))

#define U(x,fb) ((real_T)((int)((x)/(1<<(fb)))))

#define O(x,fb) ((real_T)(x)/(1<<(fb)))

and they are used to perform calculations in the following way:

• A real signal x is truncated to the requested resolution of fb bits by using
the macro L(x,fb). This function multiplies the real number x so that
the requested resolution of fb fractional bits is contained in the integer
part of the real number. Then it is truncated by casting the real number
to an integer. After that, the now truncated integer is casted back to a
real number, which will be the type of the expression.

• When doing multiplications, the product is truncated by using the macro
U(x,fb). This macro cancels the fb least significant bits by means of a
division, a cast to an integer, and then back to a real number again.

• A properly scaled real value can be obtained by using O(x,fb).

When calculating a scalar product, the sum of several multiplications can be
truncated by single call to the U macro, in accordance with how accumulations
are done in the real ALU.
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6.3 Design

Two different approaches are available for introducing the concept of fixed-point
arithmetics into the existing Simulink controller:

• Create a very general Simulink block that works like the ordinary LTI-
system block available in the control systems toolbox, but having the
resolution of the calculations as an additional parameter. It would then be
fairly straightforward to replace parts of the current model with instances
of this new block.

• Create a highly specialized block which encapsulates all parts of e.g. the
radial controller as a single S-function, also with the resolution as a pa-
rameter, and then connect it directly to the inputs and outputs of the
process through the A/D- and D/A-blocks of the model.

The first alternative certainly looks appealing as it potentially allows us to
keep the current model as is, and only replace the various LTI systems in the
controller with instances of this new block. This was actually the first approach
for a new implementation, but it had some problems that led to the need of
a specialized implementation of the whole radial controller instead. The main
problem is that the arithmetic operations inside the S-functions take longer time
to execute than ordinary floating point operations (for implementation reasons
discussed in the previous subsection) and experiments showed that it would not
be possible to meet the deadlines at the current sample rate by using such small
blocks throughout the controller. In fact, the original controller was already
pushing the limits by using almost the whole sample period for calculations, so
there were not much margins to begin with.

By observing that Simulink always performes all calculations at all times, even
if a certain code path is inactive, it was obvious that the S-functions needed to
cover larger parts of the system so that the logic involved in e.g. trackjumping
could be taken into account during execution, to not do more work than nec-
essary at each sample. The trackjumping algorithm is a good example, since
that involves a switch to another controller during track jumps. In Simulink,
calculations involving both controllers are made at all times, but of course only
the output from one controller is used at any one time. This can be explicitly
coded in an S-function so that unnecessary expensive operations can be avoided.

Another advantage of reimplementing the whole radial-controller in C is that
the original Simulink model contains several bulky workarounds for dealing with
various sequencial actions (mostly involving the trackjumping algorithm) which
would be much easier to implement using a standard procedural language.

Since the experiments presented in this theses only cover the radial-servo, the
other blocks of the total system is kept in their original versions to not compli-
cate the implementation. The structure of the overall controller can be seen in
Figure 11. The S-function for the radial-controller can be seen in the middle of
the diagram.

The reimplemented radial-controller has the following features:

• All system matrices as well as the sample time and the ratio between the
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Figure 11: Simulink model of the control system.

slow and the fast observer are input parameters to the S-function.

• Track jumps are controlled through global variables.

• The resolution to use can be changed at run-time through a global vari-
able. All system matrices are truncated to all possible resolutions during
startup, so online changes of resolution takes almost no extra time.

• The maximum value of the states can be monitored through a global
variable.

• When in multirate mode, the controller can be switched between accumu-
lating and not accumulating measurements for updating the slow observer.
This is also controlled through a global variable.

7 Results

7.1 Naive approach

By looking at the performance of RE while varying the numerical accuracy
during online control, the data presented in Figure 12 has been aquired. In the
top subplot, the performance measurement discussed in Section 5.5 is plotted
as a function of time. In the middle subplot is the number of fractional bits
used. This is the parameter that is changed manually during the simulation to
see how lower numerical accuracy affects the performance. To get an idea of the
total wordlength actually required, the maximum number of integer bits used
up to a given time is plotted in the last subplot. Note that these parameters
(i.e. the number of fractional and integer bits) are global to the whole radial
servo, and are thus used for all coefficients and states in that part of the system.

As can be seen, the performance seems to stay rather steady as the number of
fractional bits drop to about 12 or 13 (see the arrow in the top subplot). At 11
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Figure 12: Performance of original radial servo with varying numerical accuracy.

bits and lower, noticable degradation of the performance can be seen, however
the radial servo stays on track even when going as low as 6 fractional bits. At
this point however, the number of integer bits required to hold the state values
are dramatically increased as can be seen in the last subplot.

To sum up, it seems as if a wordlength of about 20 bits would be enough for
this particular experiment, and further numerical accuracy does not seem to
add any extra gain in performance. However, this experiment only covers about
three minutes of track-following of a single disc, and it is likely that more bits
is needed to get acceptable performance when e.g. doing track-jumps or trying
to catch a track. Discs with other properties, i.e. more noise, large scratches
etc., may also need more accuracy.

7.2 Multirate observer

The experiment performed for the original controller has been repeated for when
the slow observer is downsampled different multiples of the original sample rate.
Figures 13-17 shows the behaviour for some different cases. The plots are struc-
tured in the same way as described in the previous subsection. The arrows
indicate where the author thinks is the lowest resolution before quantization
effects can be seen in the performance.

It is a bit difficult to detect exactly where a decrease in numerical accuracy
correlates to a degradation in performance, but it seems to hover around 11-12
fractional bits for all cases actually. Also the number of integer bits required
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Figure 13: Performance of the radial servo when the slow observer is downsam-
pled 10 times, with varying numerical accuracy.
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Figure 14: Performance of the radial servo when the slow observer is downsam-
pled 20 times, with varying numerical accuracy.
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Figure 15: Performance of the radial servo when the slow observer is downsam-
pled 30 times, with varying numerical accuracy.
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Figure 16: Performance of the radial servo when the slow observer is downsam-
pled 40 times, with varying numerical accuracy.
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Figure 17: Performance of the radial servo when the slow observer is downsam-
pled 50 times, with varying numerical accuracy.

seems to stay at around 7 or 8. Note that although these different experiments
has been conducted on the same disc at approximately the same position, it is
probably dangerous to assume that the physical conditions are the same in all
cases, and thus the performance measurement should not be considered absolute
between different plots. Even considering this, it is obvious that the performance
has degraded as the slow observer gets further and further downsampled (most
noticable in the last experiment), even if high numerical accuracy is retained.
This is of course not acceptable for a candidate to a replacement controller, since
it is basically a requirement that it does not have noticably poorer performance.

The degraded performance when trying to use larger downsamplings can proba-
bly be blamed at a too poor reconstruction of the oscillative disturbance states.
To verify this, plots of these states during actual control has been included for
some different cases. When doing these experiments, the numerical accuracy
was locked at a relatively high level of 16 fractional bits, to isolate effects from
the downsampling itself. Figures 18, 19 and 20 show how the states of the
slow observer varies over time when following a track, for some different cases.
The state in the top subplot of each figure corresponds to the position of the
disturbance and the bottom subplot show its velocity.

As expected, these states are very poorly reconstructed when downsampling
this much, and it certainly shows in the overall performance. This behaviour
is a bit unfortunate, since it would actually seem quite reasonable to use a
downsampling of about 100-200 times; this would mean the observer updated
about 15-30 times during a full period of the oscillation. The reason why the
reconstruction does not work better at these rates is that the downsampled
observer only uses the current measurement for updating its states, discarding all
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Figure 18: Reconstruction of the oscillative disturbance states, when the ob-
server is downsampled 50 times. Uses 16 fractional bits.
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Figure 19: Reconstruction of the oscillative disturbance states, when the ob-
server is downsampled 100 times. Uses 16 fractional bits.
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Figure 20: Reconstruction of the oscillative disturbance states, when the ob-
server is downsampled 200 times. Uses 16 fractional bits.

measurements since the last slow sample. Since the measurements are sampled
at a faster rate than the observer for the disturbance in these cases, aliasing will
occur that distorts the information, hence the distortion of the reconstructed
states. As can be seen in the next section, it is possible to achieve much better
performance, even at large downsamplings, if all measurements are used instead.

7.3 Extended multirate observer

As explained in Section 5.4, the measurements between slow samples can be
saved, and the slow observer can use the sum of these measurements to update
its states through the original Kalman filter. This is effectively a low-pass filter
on the measurements and the simplicity of this approach compared to other
possible low-pass filters, is of course appealing (it does not impose any extra
requirements on the need of numerical accuracy, for example). Experiments
have been made under similar conditions as the ones in the previous section,
displaying the reconstruction of the two oscillative disturbance states for some
different downsamplings.

By direct comparsion of Figures 19 and 21, and Figures 20 and 22, it is obvious
that using the latter approach yields significantly better reconstructions. Even
when going as far as downsampling 300 times (Figure 23) the states look at
least as good as when downsampling only 50 times using the original multirate
approach (Figure 18).

To see how the quality of the reconstruction of the slow states depends on nu-
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Figure 21: Reconstruction of the oscillative disturbance states, when the ob-
server is downsampled 100 times and using accumulated measurements. Uses
16 fractional bits.
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Figure 22: Reconstruction of the oscillative disturbance states, when the ob-
server is downsampled 200 times and using accumulated measurements. Uses
16 fractional bits.
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Figure 23: Reconstruction of the oscillative disturbance states, when the ob-
server is downsampled 300 times and using accumulated measurements. Uses
16 fractional bits.

merical accuracy when using the extended multirate observer, some experiments
were made with different parameters.

The reconstructions get worse as resolution decreases, as can be seen in Fig-
ures 24-27 when comparing 10- and 12-bit resolutions. However, these plots are
not enough to draw any further conclusions on what is enough to get reasonable
performance from the controller, so new performance tests are made with the
extended multirate observer.

Figures 28 and 29 show the performance for two different cases while varying
the resolution during three minutes of track-following. The performance starts
dropping at 12 fractional bits and lower. As can be seen in the plots for the
number of integer bits used, the large downsampling that have been made pos-
sible with the extended multirate observer has paid off. The controller seems to
manage with only one integer bit, which results in a total wordlength of as low
as 13. It is not easy to deduce from these experiments if the controller where
the slow observer is downsampled 200 times performs worse than when it is only
downsampled 100 times.

7.4 Track-jumping

Another thing that has been used to check if the reconstruction of the oscillative
disturbance states is good enough, is to do track jumps. During track jumps,
the states of the observer (both the slow and the fast) are particularly important
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Figure 24: Reconstruction of the oscillative disturbance states, when the ob-
server is downsampled 100 times and using accumulated measurements. Uses
12 fractional bits.
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Figure 25: Reconstruction of the oscillative disturbance states, when the ob-
server is downsampled 100 times and using accumulated measurements. Uses
10 fractional bits.
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Figure 26: Reconstruction of the oscillative disturbance states, when the ob-
server is downsampled 200 times and using accumulated measurements. Uses
12 fractional bits.
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Figure 27: Reconstruction of the oscillative disturbance states, when the ob-
server is downsampled 200 times and using accumulated measurements. Uses
10 fractional bits.
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Figure 28: Performance of the radial servo when the slow observer is downsam-
pled 100 times and using accumulated measurements, with varying numerical
accuracy.
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Figure 29: Performance of the radial servo when the slow observer is downsam-
pled 200 times and using accumulated measurements, with varying numerical
accuracy.

since they contain the only information available to the controller when it runs
in open loop between the tracks.

The plots in Figure 30 show the typical appearance of a reconstructed radial
error y = Cex̂e and the real radial error in the same diagram during a jump over
20 tracks. These signals are of course supposed to be very similar, but when
entering the non-linear area between two tracks, the reconstructed signal will
be different from the real.

−2 −1 0 1 2 3 4 5 6 7
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0

Figure 30: RE (red) and its reconstruction (green) during a trackjump, using
200 times downsampling for the slow observer and 16 fractional bits.

To see how many integer bits that are needed for the observer states when doing
track-jumps, as opposed to just following a track when as low as one bit was
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enough in some cases, multiple repeated track-jumps have been made in both
directions. These experiments showed that at least 4 integer bits were required
to do the jumps, both when using a downsampling of 100 and 200 times for the
slow observer. The number of fractional bits used for these experiments was in
the range of 11-13.

These non-exhaustive tests seem to indicate that track-jumps work just as good
as with the original controller when the slow observer is downsampled up to
200 times, and when the controller uses a total wordlength of as low as 16.
Occasionally jumps fail though, both with the original controller and with the
newer ones discussed here. This could very well depend on missing fine-tuning
of the track-jumping algorithm. It has not been shown that the success-rate for
jumps is lower (or higher) than previously for any controller discussed here.

8 Conclusions

The radial-servo has been reimplemented to facilitate experiments where parts
of the controller are running at different rates, using fixed point calculations
to simulate the conditions of a custom ALU. Experiments have shown that the
observer for the slow dynamic process can be run at a much lower rate, and
using a smaller wordlength than before, with retained overall performance of
the controller.

A good choice seems to be to downsample the observer for the slow oscillative
disturbance about 100 times, and use accumulation of the measurements for
updating the estimates. This makes the slow observer run about 30 times faster
than the frequency of the disturbance, which is much more appropriate than be-
fore. Using this design, the controller has been shown to work indistinguishable
from the original controller at wordlengths going as low as 16 bits. However, the
tests are not at all very exhaustive, and the experiments that have been made
only show the behaviour for some very specific cases, and does not guarantee
anything for the general case. Some margins must most likely be present in a
real product, so aiming at a wordlength lower than 20 bits for the ALU might
be too unrealistic.

9 Suggestions for further work

The ideas used to optimize the radial-servo are expected to be easily appliable
on the focus-servo as well, since the processes have many similarities. Also
every other calculation currently performed in the control system of the drive
must be verified to work with a lower wordlength before the hardware can be
changed. This should not be too troublesome, since the major bottleneck has
been removed with the multirate controller.

Also worth noting is that the controller, as implemented here, expects that all
signals and states have about the same dynamic range in the controller to fully
utilize the selected wordlength. This design decision was made to not introduce
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a lot of degrees of freedom (i.e. not having to tune the dynamic range on a per-
variable basis), and instead rely on that the choice of gains are made such that
states and signals will end up in approximately the same range. The current
design do indeed put signals and states in roughly the same area (i.e. there
will not be any states that are several orders of magnitude larger than others)
but the gains are by no means fine-tuned to make optimal use of the selected
wordlength, so it is possible that the required minimum wordlength can be
trimmed further by looking into this matter.
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