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Abstract

Insulin Dependant Diabetes Mellitus(IDDM) is a chronic disease charac-
terized by the inability of the pancreas to produce sufficient amounts of
insulin. To cover the deficiency 4-6 insulin injections have to be taken daily.
The aim of this insulin therapy is to maintain normoglycemia, blood glu-
cose level between 4-7 mmol/L. To determine the amount and timing of
these injections different approaches are used. Mostly qualitative and semi-
quantitative models and reasoning are used to design such a therapy. In
this Master Thesis an attempt is made to show how system identification
and automatic control perspectives may be used to estimate quantitative
models. Such models can then be used to design optimal insulin regimens.

The system was divided into three subsystems, the insulin subsystem,
the glucose subsystem and the insulin/glucose interaction. The insulin sub-
system aims to describe the absorbtion of injected insulin from the subcu-
taneous depots and the glucose subsystem the absorbtion of glucose from
the gut following a meal. These subsystems were modelled using compart-
ment models and proposed models found in the literature. Several black box
models and grey-box models describing the insulin/glucose interaction have
been developed and analysed. These models have been fitted to real data
monitored by a IDDM patient. Many difficulties were encountered, typical
of biomedical systems. Non-uniform and scarce sampling, time-varying dy-
namics and severe non-linearities were some of the difficulties encountered
during the modelling. None of the proposed models were able to describe the
system accurately. However, all the linear models shared some dynamics,
and there is ground to suspect that these dynamics are essential parts of the
true system. More research has to be undertaken, primarily to investigate
the non-linear nature of the system and to see whether other variables than
glucose flux and insulin absorbtion are important for the dynamics of the
system.

Keywords: diabetes, mathematical model, identification, glucose
dynamics, insulin dynamics.
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Sammanfattning

Diabetes Mellitus typ 1(IDDM) är en kronisk sjukdom karaktäriserad av
oförm̊agan att producera eget insulin i tillräcklig utsträckning. För att
täcka denna förlust måste 4-6 insulin injektioner tas varje dag. Syftet med en
s̊adan terapi är att bibeh̊alla normala blodglukosvärden, som ligger mellan 4-
7mmol/l. Olika ansatser används för att bestämma storleken och tidpunkten
för insulindoserna. Huvudsakligen beaktas semi-kvantitativa modeller och
resonemang för att fastställa en s̊adan insulinregim. Syftet med det här exa-
mensarbetet är att utveckla kvantitativa modeller, som ska kunna användas
i utvecklingen av optimala regleringsprinciper för insulin-injektionerna.

Systemet delas upp i tre delsystem, insulinsubsystemet, glukossubsys-
temet och glukos/insulin-interaktionssystemet(GIIM). Insulinsubsystemet
beskriver hur insulinet absorberas fr̊an de subkutana vävnaderna efter en
insulin-injektion. Glukossubsystemet syftar till att beskriva glukosflödet
fr̊an matsmältningsapparaten efter en måltid. Dessa subsystem har mod-
ellerats med compartmentmodeller, samt modeller funna i litteraturen. GIIM
har modellerats huvudsakligen med black-box-modeller, som skattats p̊a
verkligt uppmätt data fr̊an en IDDM-patient. Många sv̊arigheter, typiska
för biologiska system, döck upp. Icke-ekvidistant och l̊agfrekvent sampling,
tids-varierande dynamik och sv̊ara olinjäriteter är n̊agra av de problem som
p̊aträffades. Ingen av de föreslagna modellerna kunde beskriva systemet
särskilt väl, men samtliga linjära modeller hade vissa gemensamma drag.
Det finns därför viss grund att tro att dessa drag är essentiella för det
verkliga systemet. Mer forskning krävs, främst för att analysera systemets
olinjära natur, men även för att utröna om och hur andra variabler än glukos
och insulinintag p̊averkar systemet.

Nyckelord: diabetes, matematisk modell, identifiering, glukos dynamik,
insulin dynamik.
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linear and were found to be insufficient to describe the system. Future re-
search, especially the physiological models may hopefully better describe
the system. Such models together with some robust control algorithm may
constitute a helpful decision support tool, making life easier for millions of
people.
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Chapter 1

Introduction

1.1 Background

Diabetes Mellitus is a disease characterized by the inability of the pancreas
to produce sufficient amounts of insulin. To cover the deficiency 4-6 insulin
injections have to be taken daily. The aim of this insulin therapy is to keep
the blood glucose level as constant as possible. To determine the amount
and timing of these injections different approaches are used. Mostly quali-
tative and semi-quantitative models and reasoning are used to design such
a therapy. In this Master Thesis an attempt is made to show how system
identification and automatic control perspectives may be used to estimate
quantitative models and to develop insulin therapies. Most patient monitor
their blood glucose using personal glucose meters, and determine their own
insulin injections based on these results. Poorly controlled blood glucose
levels may result in severe complications. Hypoglycemia, low glucose levels,
may lead to brain damage[10], coma and eventually death. Hyperglycemia,
high blood glucose, on the other hand, can result in chronic damages such as
retinopathy, kidney failure and amputation. The purpose of this thesis is to
develop a model for predictions based on daily monitoring of blood glucose.
Such a model along with an algorithm for the determining of insulin doses,
an effective decision support tool can be constructed. This may hopefully
facilitate the daily life of diabetes patients and reduce the risks of severe
complications.

1.2 The Present

Diabetes therapy research can roughly be divided in two parts: Optimal
Insulin regimen control and insulin pump control. The former, which this
thesis subjects, is concerned with how to keep blood glucose levels as normal
as possible using subcutaneous injections of different insulin types. This is
the therapy form primarily used today. The latter, pump therapy, is based
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on a insulin pump which continuously feeds the patient with insulin. The
insulin pumps used today are pre-programmed to infuse insulin according
to a specified scheme. Before meals and exercise a button is pushed, al-
tering the infusions to match the new demands. But the real advantages
of a insulin pump is the possibility of a closed-loop controller, acting on
the information of the present blood glucose level directly. This is subject
to intensive research, and hopefully closed-loop pump control may be the
common treatment in a not too distant future. An other way to divide the
therapies is of course to make the distinction between open and closed loop
control. All current therapies are more or less open loop control. Each pa-
tient sets their own insulin regime with aid from their physician based on
HbA1c, personal observations and a qualitative estimate of the glucose data.
These regimes are to their nature rigid and non-flexible. They form the basis
for the therapy and patient often have, and are encouraged to, alter their
injection doses when their behavior deviate from the routine the regime was
based on. In these situations the patients have to rely on their own knowl-
edge and understanding of the disease to correct their doses. Many patient
would benefit from some sort of decision support in these situations. Today
none exists.

1.3 Purpose

The purpose of this thesis is to try different modelling approaches on Di-
abetes Mellitus. These models will be used for prediction of future blood
glucose values. To find the best model different validation criteria will be
used. Given data on present and previous blood glucose values, the aim
is to predict the glycemic behavior for the next two hours with a reason-
able accuracy. This accuracy is here defined as a standard deviation of the
prediction error less than 0.5 mmol/l.

The models will be estimated and validated using primarily one patient’s
data. It would be preferable to validate the models using other patients data
as well, but due to the scarcity of data this is not possible. This is of course
a severe limitation, which has to be regarded seriously when evaluating the
validity of the models.



Chapter 2

Physiology

Below a very brief simplified description of the glucoregulatory system will
follow. It is intended to give medically novices such as myself a short back-
ground to the following thesis. Only the carbohydrate metabolism will be
considered.

2.1 The Glucoregulatory System

Gut

Blood System
   (glucose)

IIT

IDT

Liver

Pancreas

Glucagon

Insulin

: flow

: affect

Figure 2.1: Overview of the glucoregulatory system.

The glucoregulatory system is concerned with glucose metabolism and
the insulin/glucose mechanisms needed to maintain normoglycemia. In Fig.
2.1 a simplified overview of the flow of glucose and insulin between the
most important organs relevant for this system. Below a short description
of the these organs and their role in the so called absorbative state and
the post absorbative state, the two parts that make up the metabolistic
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cycle. A brief description of insulin absorbtion from insulin injections will
also be presented. Emphasis will be put on the digestive system and insulin
absorbtion from injections.

The absorbative state is the time following a meal during which the
ingested carbohydrates are digested and absorbed. During this period excess
glucose is absorbed and stored for later use. The postabsorbative state is
the time after a meal when the gastro-intestinal tract is empty and energy
has to be provided by the body’s own storages.

2.1.1 Carbohydrate digestion and absorbtion

Food consists of a number of different nutrients, such as carbohydrates, pro-
teins and fats. Only carbohydrates can primarily be converted into glucose.
However, depending on the composition of the meal and the type of car-
bohydrates the glucose flux from the gut into the blood is altered. There
are three main types of carbohydrates; monosaccharides, disaccharides and
polysaccharides. Monosaccharides do not have to be split up, but can be
absorbed in the blood system directly. Di- and polysaccharides on the other
hand have to be split up in a number of steps before they are finally con-
verted to glucose and can be absorbed. Another factor that also alters the
absorbtion rate is the composition of the meal. The amount of fats, proteins
and fibers contribute in a complex fashion to the digestion dynamics. To
describe this phenomenon a concept called Glycemic Index has been intro-
duced. In this thesis this concept will not be used. In fact the composition
of meals regarding fat, protein or fiber will not be addressed at all. The
only information about the content of the meal that will be used is the
quality(mono-,di- or polysaccharide) and quantity(g) of carbohydrates.

The Digestive System

The digestive system consists of the so called gastrointestinal tract and the
accessory organs providing the necessary substances for digestion. The gas-
trointestinal tract is formed by four main parts; mouth, stomach, small
intestine and large intestine, all with different functions in the digestive pro-
cess. Here a short description of these parts and their functions relevant to
carbohydrate digestion and absorbtion will follow. Fig. 2.2 provides a good
overview of the flow of food through the system.

The digestion starts in the mouth. Here the main function is to partly dis-
solve the macro structure of the food by chewing. The saliva secreted by the
salivary glads moistens and lubricates the food particles before swallowing.
It also contains the enzyme amylase, which reacts with the polysaccharides,
starting the digestion to monosaccharides.

In the stomach the last structure of the food is dissolved by the high con-
centration of hydrochloric acid produced and secreted by specialized stom-
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Figure 2.2: Gastrointestinal Tract -Overview[40].

ach wall cells. The amylase in the saliva, swallowed together with the food,
continues the digestion of polysaccharides started in the mouth, until the
amylase is destroyed by the gastric acid.

The next stage in the process is the small intestine. Here the majority
of digestion and absorbtion takes place. Bile is secreted by the gallbladder
to neutralize the gastric acid from the stomach. Enzymes for digestion
are provided by the pancreas. These enzymes react with the poly- and
disaccharides, reducing them to monosaccharides. The monosaccharides are
thereafter absorbed by transporter-mediated processes into the capillaries
and thereby finally reach the portal vein.

All unabsorbed materia is further processed in the large intestine. Fiber
cannot be digested by the enzymes in the small intestine, but is here metab-
olized by bacteria. Water and salts are absorbed, solidifying the remnants,
called feces.

2.1.2 The Liver

During the absorbative stage glucose is converted and stored as the polysac-
charide glycogen. This process is stimulated by insulin. During the post-
absorbative stage the glycogen storage is broken down to glucose and re-
leased into the blood stream providing energy for the body cells. This
process is stimulated by glucagon and inhibited by insulin. Apart from
converting glycogen to glucose, new glucose can be formed from protein and
fat in the so called glucogeneogenesis. The metabolism of consumed alcohol
inhibits this process, which may result in severe hypoglycemia in diabetics.
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2.1.3 The Pancreas

In the pancreas two important hormones relevant to the glucoregulatory sys-
tem are synthesized, namely insulin and glucagon. Insulin release is mainly
stimulated by elevated blood glucose concentration. Therefore substantial
amounts are released in the absorbative stage, when the glucose level is
raised due to the absorbtion from the gut. Glugacon, which has an opposite
effect on the liver is accordingly released when blood glucose concentration
falls. These two hormones are thus in a feedback arrangement with the
blood glucose concentration, controlling the glucose metabolism.

2.1.4 Insulin Dependant Tissue(IDT)

Insulin dependant tissue is dependant on insulin to take up glucose. This
mechanism is discussed in the insulin section. Much of the insulin dependant
tissue is made up of skeletal muscles. In the absorbative state, skeletal
muscle cells not only consume the glucose directly, but also converts some
to glycogen providing a energy storage for later use.

2.1.5 Insulin Independent Tissue(IIT)

Insulin independent tissue such as the brain and the central nervous system
do not need insulin to utilize glucose.

2.1.6 Insulin

Insulin is the major hormone controlling glucose metabolism. It is a protein
consisting of three peptide parts; a A-, B- and C-chain. In healthy subjects it
is produced in the beta-cells in the pancreas whereas diabetics depend mostly
on artificially produced insulin analogs. Previously animal insulin has been
used, but due to, among other things, development of insulin antibodies in
patients treated with these insulins, most insulin is today produced using
bacterial or yeast processes[39]. All insulins, artificial or not, will hereafter
be referred to as simply insulins.

Insulin Absorbtion

Insulin is injected subcutaneously in a number of different spots. Rapid
acting insulin is injected in the abdominal fat layer, whereas long-lasting in-
sulin is usually taken in the upper side of the thigh. From these depots the
insulin is transferred to the blood system via the capillaries. The absorbtion
rate depends on a series of factors[25]. One contributing factor is the cap-
illary density. A higher density results in a greater diffusion area between
the depots and the capillaries. The abdominal region has the highest cap-
illary density and the thigh the lowest[25]. This explains why rapid acting
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Figure 2.3: Molecular structure of insulin[13].

insulin is preferably infused in the stomach and long-lasting in the thigh.
The size of the insulin molecules is a dominant rate limiter. Large molecules
will have difficulties passing through the capillary pores. The structure of
the insulin molecules are either monomer, dimer or hexamer. Insulin will
spontaneously form hexamers if the concentration is sufficiently high. This
so called self-association can be catalyzed by zinc ions. Therefore zinc is
added to the insulin solution in slow acting insulins, thereby considerably
reducing the absorbtion rate[25]. In the rapid acting insulins the insulin
molecules are mainly monomeric or dimeric. They have been modified so
that hexamer formation is avoided altogether[39]. Therefore they are also
called monomeric insulins. Another major factor affecting the absorbtion
rate is the size of the injection dose. A large dose reduces the ratio between
the absorbtion area and the depot volume, thus reducing the absorbtion. A
number of studies have been undertaken, all indicating a linear relationship
between insulin dose and absorbtion halftime[8, 4] as can be seen in Fig.
2.4.

These studies have been undertaken on slow acting or intermediate act-
ing insulins. However, recent studies indicate both theoretically and exper-
imentally that the linear relationship is not valid for monomeric insulin[11].
Finally, blood flow and temperature of the injected site have a significant
contribution to absorbtion rate. Raised temperature enhances the disassoci-
ation of hexameric insulin and accelerates insulin diffusion. Increased blood
flow raises absorbtion rate. Thus exercise plays a key role for absorbtion,
since it raises both body temperature and blood flow.

After the absorbtion from the depots the insulin is circulated in the blood
system and finally interacts with a insulin receptor at the cell surface.
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Figure 2.4: Dose-dependant Absorbtion Time[4].

Insulin Receptors

The insulin receptors are so called tetramers consisting of two α- and two
β-subunits. The α-subunits are entirely extracellular and serves as a bind-
ing site for the insulin molecule. When the insulin has attached to the α-
subunits a signal process is initiated via the β-subunits, resulting in increased
glucose transporter activity. The glucose transporters facilitate glucose cell
membrane crossing, thereby reducing blood glucose concentration. The re-
ceptor/transporter cycle can be seen in Fig. 2.5. There are different types
of glucose transporters and, so far, five different types have been found[41].
Not all of these types require insulin to become active. Therefore the glu-
cose utilization is divided into insulin dependant and insulin independent
utilization.

It is a well known fact that exercise enhances insulin sensitivity and is
therefore one part of common Type 2 therapy. What actually causes the
increased insulin sensitivity is however still not well understood. Studies
indicate that the GLUT4 transporter activity is stimulated, thus resulting
in increased insulin dependant glucose utilization[29].

Insulin Therapy

Type 1 diabetics are treated with a therapy called basal/bolus regime. The
intention is to mimic the normal behavior in a healthy person. The basal
injection is a slow-acting insulin taken once or twice a day. It serves to
preserve a basal level of insulin required to maintain normal activity. The
basal injections are rapid acting insulin injections taken to counteract the
massive glucose flux following a meal. The slow-acting insulin used here is
Insulatard and the rapid-acting insulin is Humalog.
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Figure 2.5: Insulin Receptor and Glucose Transporter Cycle[38].

Insulatard

Insulatard is an intermediate/long-lasting insulin of NPH-type. The approx-
imate time action profile provided by the manufacturer can be seen in Fig.
2.6.

Figure 2.6: Time action profile of Insulatard[2].

Humalog

Humalog is rapid action monomeric insulin. According to the manufacturer
the time action profile looks like this:
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Figure 2.7: Time action profile of Humalog[1].

2.2 Insulin Dependant Diabetes Mellitus(IDDM)

In Insulin Dependant Diabetes Mellitus, or as it also is called Diabetes Type
1, the insulin production is completely or severely reduced. This is due to
the destruction of the insulin-producing β-cells in the pancreas by the body’s
own immune system. To cover the loss, several insulin injections have to be
taken daily.

Unregulated or poorly regulated IDDM leads to constant hyperglycemia,
high blood glucose concentration. This state can have serious both short
term and long term consequences. Severe hyperglycemia can result in coma
and death, as a result of ketoacidosis or severe dehydration. The later is the
result of that the renal function of reabsorbing glucose is saturated, which
also has the effect that large quantities of water is also extracted together
with the glucose, by the so called osmatic diuresis phenomenon.

Hypoglycemia, low blood glucose concentration, may be the result of
for example too large doses of insulin or physical activity without reduced
insulin doses. Hypoglycemia has most consequences for the brain, which is
almost entirely dependant on glucose as fuel. The symptoms range from
headache, confusion and aggressive behavior to coma and finally death de-
pending on the severity of the hypoglycemia.

2.2.1 The Honey-moon Period

After the diagnosis of IDDM a period of shifting disease patterns follow. This
is the result of the β-cells recovering somewhat, when the insulin, coming
from the insulin injections, assist them. This period lasts a couple of months.

2.2.2 Dawn phenomenon

There is evidence that the insulin sensitivity is reduced in the morning. This
is called the dawn phenomenon.
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2.3 Partitioning the System
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Figure 2.8: The partitioning of the system.

For modelling purposes the system will be considered to consist of three
main parts; the Glucose Sub-Model(GSM), the Insulin Sub-Model(ISM) and
the Glucose/Insulin interaction Model(GIIM). The GSM describes the ab-
sorbtion of glucose from meal, the ISM the absorbtion of insulin from insulin
injections and the GIIM the interaction of glucose and insulin in the blood
system and organs. These three parts will be modelled separately using
mainly compartment models and linear black-box models.



Chapter 3

Methods

In this chapter a brief description of the methods used in this thesis will be
presented. For explanation of terms used, and a more thorough description
of the methods, please refer to the references.

3.1 Linear Regression[28, 33]

The general linear regression model is:

y(k) = ϕ(k)T · θ + e(k) (3.1)

where y(k) is the variable of interest, θ is the parameter vector and ϕ(k)
is the so called regression vector. To estimate the parameters the following
data matrices are formed:

YN =




y(1)
y(2)

...
y(N)


 , ΦN =




ϕ(1)T

ϕ(2)T

...
ϕ(N)T


 (3.2)

The least squares criteria is to minimize the sum of the squared errors be-
tween the model and the observations:

V (θ) =
1
2
· (YN − ΦNθ)T · (YN − ΦNθ) (3.3)

Minimize w.r.t θ:

∂V (θ)
∂θ

= −YT
N · ΦN + θT · (ΦT

NΦN ) = 0 (3.4)

The minimum is obtained for:

θ̂ = (ΦT
NΦN )−1ΦT

NYN (3.5)
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3.1.1 Recursive Least Squares Estimation

For time-varying systems the parameters have to be updated as they change.
This is done using the recursive least squares estimation routine with expo-
nential forgetting:

θ̂(t) = θ̂(t − 1) + K(t)(y(t) − ϕT θ̂(t − 1)) (3.6)
K(t) = P (t)ϕ(t) (3.7)
P (t) = (I − K(t)ϕT )P (t − 1)/λ (3.8)

where P (t) is an estimate of the covariance matrix of the parameters at time
t and λ is the so called forgetting factor determining how fast the parameters
can be changed. P (0) is often set to a unit matrix multiplied with i.e. 1000,
to allow a fast approach to the correct initial parameter values. The best
value of the forgetting factor,λ has to be found by trial and error if no prior
knowledge is available.

3.2 ARMAX Models[28, 33]

The ARMAX models all have the following structure:

A(z−1)y(k) = z−k1B1(z−1)u1(k) + . . . + z−knBn(z−1)un(k) + C(z−1)ω(k)
(3.9)

where y(k) is the output of interest,u1 . . . un are the inputs and k1 . . . kn

are the time delays for each input. The polynomials A(z−1), Bi(z−1) and
C(z−1) are:

A(z−1) = 1 + a1z
−1 + . . . + anAz−nA (3.10)

Bi(z−1) = b0,i + b1,iz
−1 + bnBi

,iz
−nBi (3.11)

C(z−1) = 1 + c1z
−1 + . . . + cnCz−nC (3.12)

Thus the parameter vector is:

θ =
(

a1 . . . anA b0,1 . . . bnB1
,1 . . . b0,l . . . bnBl

,l c1 . . . cnC σ2
ω

)
(3.13)

3.3 Subspace Models[28, 23]

The subspace approach differs from the previous in that instead of looking at
the transfer function of the system the state space equations are considered:

x(k + 1) = Ax(k) + Bu(k) + ω(k) (3.14)
y(k) = Cx(k) + Du(k) + υ(k) (3.15)
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This system is equivalent to the innovations model:

x(k + 1) = Ax(k) + Bu(k) + Ke(k) (3.16)
y(k) = Cx(k) + Du(k) + e(k) (3.17)

The following relation holds if no noise is considered:




y(0) . . . y(N − 1)
...

. . .
...

y(i − 1) y(N + i − 2)


 =




C
CA
...

CAi−1


 ·

(
x(0) . . . x(N − 1)

)
+

+




D 0 . . . 0
CD D

...
CAi−2B CAi−3B . . . D


 ·




u(0) u(1) . . . u(N − 1)
u(1) u(2) u(N)

...
. . .

u(i − 1) u(N + i − 2)


 (3.18)

Using a more compact notation:

Yi,N = ΓiXN + HiUi,N (3.19)

Now modelling the noise properties as well calls for two more terms:

Yi,N = ΓiXN + HiUi,N + GiWi,N + Vi,N (3.20)

The matrix Gi looks like this:

Gi =




0 0 . . . 0
C 0

CA C
. . .

...
CAi−2 CAi−3 . . . 0




(3.21)

while Wi,N and Vi,N are the Hankel matrices of υ(k) and ω(k).
Given Yi,N and Ui,N the B,D, K and x0 can be estimated using singular

value decomposition following the PO-MOESP-algorithm. For details see
[23].

3.4 Kalman Filter[28, 5]

Consider the state space model:

x(k + 1) = Φx(k) + Γu(k) + υ(k) (3.22)
y(k) = Cx(k) + Du(k) + e(k) (3.23)
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with E(υ(k)) = 0 and E(e(k)) = 0 and

E(υυT ) = R1 (3.24)
E(eeT ) = R2 (3.25)
P ((0) = E(x(0)x(0)T ) = R0 (3.26)

Then the states can be predicted by:

x̂(k + 1) = Φx̂(k) + Γu(k) + K(k)(y(k) − Cx̂(k)) (3.27)

where

K(k) = ΦP (k)CT (R2 + CP (k)CT )−1 (3.28)
P (k + 1) = ΦP (k)ΦT + R1 − ΦP (k)CT (R2 + CP (k)CT )−1CP (k)ΦT (3.29)

3.5 Compartment Models[19]

1

2 3

c21

c23

c32 c30
c20

c13

c31c12

c10

u(t)

y(t)

Figure 3.1: Three-compartment model.

A compartment model is a model where the structure of the system is
postulated, a so called grey-box model. The system is divided into sep-
arate entities, called compartments. Between these compartments energy
and material flow with different rate constants, cij . In Fig. 3.1 a three-
compartment model is sketched. This will serve as an example of how a
compartment model works. The system equations are:

ẋ =


 −∑3

i�=1 c1i c21 c31

c12 −∑3
i �=2 c2i c32

c13 c23 −∑3
i�=3 c3i


 x +


 1

0
0


 u(t) (3.30)

y(t) =
(

0 0 1
)

x(t) (3.31)
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3.6 Model Validation[28]

A number of criteria are used to decide which the best model is, given a set
of different models.

3.6.1 Loss Function

The loss function is the simplest criteria to evaluate the model’s accuracy.

V =
1
2
· (YN − ŶN )T · (YN − ŶN ) (3.32)

3.6.2 Akaike Cost Criteria(AIC)

The loss function do not take the model’s complexity into consideration.
There is a point in penalizing large models to avoid over-parametrization.
This can be done by the AIC:

AIC = log(V ) +
2p

N
(3.33)

where p is the number of parameters and N the length of the data vector.

3.6.3 Final Prediction Error(FPE)

The AIC has been found to overestimate the number of parameters moti-
vating alternative criteria. One such is the FPE:

FPE =
2
N

· N + p

N − p
· V (3.34)

3.6.4 Variance Accounted For(VAF)

Once a model has been selected next is to evaluate the performance of the
model. One way to get a quantitative measure of this is the VAF:

V AF = (1 − (YN − ŶN )T (YN − ŶN )
YT

N ŶN

) · 100 (3.35)

3.6.5 Root Mean Square Error(RMS)

Another measure to evaluate the similarity between two signals is the RMS:

RMS =

√∑N
k=1(yk − ŷk)

N
(3.36)



Chapter 4

Data

4.1 Blood Glucose

4.1.1 Data Collection

The data primarily used in this thesis was collected during the first six
months of a newly diagnosed type 1 patient. The glucose testing was un-
dertaken using a personal blood glucose tester, Accu-check Compact, Roche
Diagnostics. Meals, insulin injections and glucose samples were noted and
registered in a dairy. In Fig. 4.1 a typical day can be seen, with the sched-
uled samplings as well as some unscheduled samplings.
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Figure 4.1: A typical day.
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Figure 4.2: Comparison between the spectrograms of MiniMod data, re-
sampled and interpolated MiniMod data and interpolated home-monitored
data.

4.1.2 Sampling Frequency

The glucose sampling was based on a sampling schedule following the daily
routine. To capture the rapid dynamics caused by the intake of carbohy-
drates, samples were taken before and 1.5 hours after each meal. Sampling
was also scheduled at the late Insulatard injection. Additional to these
measurements further unscheduled samples were collected, making the av-
erage sampling frequency 9.3 samples/day. Is this sufficient to capture the
dynamics of the underlying physiological system? According to Shannon’s
sampling theorem:

fs ≥ 2fmax (4.1)

where fmax is the highest frequency of interest. According to [43] at least
8 samples per day are needed to get the lowest essential dynamics of the
system, namely the rise and fall of the blood glucose level due to the carbo-
hydrate intake. This relies on the assumption that the meal related period
is about 6 hours. This assumption is supported by the periodic behavior of
the blood glucose change plotted in Fig. 4.10. So sampling every third hour
is needed to capture the basic meal related dynamics, but what sampling
frequency is needed to reconstruct the blood glucose curve reliably? To find
the highest frequency of interest records of 56 patients monitored by Min-
iMed were analyzed1. This data was sampled at 5 min intervals, well below
the fastest dynamics of the system. The data was resampled at a lower rate
and splined using the reconstructing method used for the home-monitored
data. In Fig. 4.2 the spectrogram of the average MiniMod measurements

1Provided by Novo Nordisk
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Figure 4.3: Comparison between the reconstructed data and the original
data for some different resampling frequencies.

together with the spectrograms of the resampled and interpolated MiniMod
data and the spectrogram of the interpolated curve for the home monitored
data. The interpolated home monitored data seems to have a similar spec-
tral composition as the 120 min resampled MiniMod data, at least for the
lower frequencies. The interesting question is: Does these measurements
contain sufficient information to make a reconstruction of the original signal
possible? And if so, is the proposed method of interpolation an efficient and
reliable way to do so?

The MiniMod data was resampled at a number of lower frequencies than
the original and interpolated using the spline method used for the home-
monitored data. In Fig. 4.3 a comparison between the original MiniMod
data the resampled and interpolated data of a representative patient can
be seen. The patient data used here for visualization of the correspondence
between the resampled, interpolated data and the original data incorporate
some typical and important features of blood glucose data. Rapid and large
fluctuations within the normal range of a diabetic makes it suitable as a
reference.

In the upper plots the data has been resampled to a sampling interval
of 30 min and 60 min. The interpolated curves follow the MiniMod data
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Figure 4.4: RMS of the reconstructed resampled data(left) and maximum
error(right) compared to original data.

without complications, smoothing the noisy original. In the lower plots the
interpolated curves have more trouble keeping up with the original. The
rapid oscillations at the start are missed altogether, the tops and bottoms
are not filled out correctly and here and there smaller, more rapid varia-
tions are ignored. However, most of the larger variations are present in the
interpolation and the total impression is that the splined curves follow the
original quite well, but for some few quick ups and downs. This viewpoint
is also backed up by the mean root mean square(RMS) between the orig-
inal signal and the splines seen in Fig. 4.4. The RMS is quite reasonable
over the entire range. Looking at the maximum error in Fig. 4.4 gives an-
other impression. This plot shows the worst case for every sampling rate.
The low RMS and the high maximum error indicates that some few rapid
changes in the blood glucose of large magnitude are not correctly manifested
in the interpolated curve. However, glucose self-monitoring does not follow
a strict sampling schedule. Rapid changes in the blood glucose are often
experienced as hypoglycemia, changes into hypoglycemia or hyperglycemia
are often recognized and these circumstances calls for unscheduled mea-
surement to establish glycemic status. Therefore this problem is somewhat
self-regulated in a diabetic subject. Assuming that 8 hours is spent sleeping
a day, the average sampling period becomes about 100 min. Therefore the
interpolated data can perhaps be regarded as having a data reconstruction
potential close to the 90min resampled data. This signal misses some of the
fast oscillations, but can still be considered to make good estimates of the
original data.
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Figure 4.5: Data segmentation using ”SEGMENT”.

4.1.3 Data Segmentation

The data is collected in the so called honey-moon period during which the
pancreatic β-cells recovers somewhat, resulting in considerably varying in-
sulin doses and glycemic response. Mathematically this translates into vary-
ing model parameters. In order to estimate and validate different models,
data segments with constant parameter values are needed. To find such
segments the data was investigated using the Matlab command ”segment”,
a recursive linear model of ARMAX-type. In Fig. 4.5 the parameter varia-
tions over the time period can be seen. A number of more steady segments
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can be identified. Of these the last segment is the most interesting because
of a number of factors. Firstly, the patient has had the disease long enough
to make up his own regimen, making insulin inputs more varying thereby in-
creasing the excitation from this signal. Secondly, enough time has elapsed
since diagnosis to make it plausible that the honey-moon period is over.
Thirdly, the daily sum of insulin doses is most even for this period as can
be seen in Fig. 4.6, indicating as well that the dynamics are more steady.

From this data segment a smaller segment was extracted corresponding
to two weeks of data. The first week will be used for parameter estimation
and the second week for validation. In Fig. 4.7 the selected period can be
seen.

4.1.4 Measurement Noise

According to typical test series the reproducibility of this tester has a coeffi-
cient of variance of 1.7 %[18]. With an average of 8.25 mmol/l for the series
this corresponds to a standard deviation of 0.14 mmol/l.

4.2 Carbohydrates

Intake of food was noted semi-quantitatively using predefined meals2. Each
meal was quantified using three levels; small, normal and large.

Example:

2See Appendix A
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Time Food Type
08.45 Breakfast Normal
12.30 Lunch Large
16.00 Snack Small
18.15 Dinner Normal

The predefined meals were determined by estimating the composition
and size of some standard meals, using [32] and a balance. Carbohydrate
content was the only quantity of interest since it is the only ingredient that
can be converted to glucose directly. The carbohydrates were divided into
two different main types; fast and slow. Mono- and disaccharides were
considered fast carbohydrates and the rest were considered slow.

All meals are considered to be ingested within 15 minutes. Thereby the
carbohydrate intake can be mathematically expressed as:

Slow Carbohydrate Intake:

uslow(t) =
∑
k

Cslow,k · δ(t − tk) (4.2)

Fast Carbohydrate Intake:

ufast(t) =
∑
k

Cfast,k · δ(t − tk) (4.3)

where Cslow,k and Cfast,k are the amounts(g) of slow and fast carbohydrates
ingested at time tk.

4.3 Insulin

The timing and dose size of each injection was noted. The injections are
considered to take place instantaneously:

Insulatard Injections:

uIT (t) =
∑
k

DIT,k · δ(t − tk) (4.4)

and Humalog Injections:

uHum(t) =
∑
k

DHum,k · δ(t − tk) (4.5)

where DIT,k and DHum,k are the Insulatard and Humalog doses(U) at time
tk.
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4.4 Data Preprocessing

4.4.1 Detrending

The glucose data was reduced by the average over the two weeks.

4.4.2 Outliers

No obvious outliers could be identified.

4.4.3 Splining

The data was scarce and infrequently sampled. The identification methods
used here require uniformed samples. To fulfill this demand the data was
interpolated using splines. To avoid under- and overshoots caused by the
splines linearly interpolated help spots were added to the original data, a
concept used in [7] as well. In order for these spots not to influence the
spline in a negative way, different weights were assigned the true data and
the help spots during the spline interpolation. The time frame to use was
chosen to the 15 min intervals. The reason for this was mainly to use the
accuracy concerning the timing of meal intake and insulin injections noted
in the diary.

4.5 Statistical Analysis

Here we will consider the statistical properties of the data. Thereby interest-
ing properties of the system can be retrieved. In Fig. 4.8 the autocorrelation
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Figure 4.9: Autocorrelation Input Signals.

of the output can be seen. Clearly the data is strongly periodic. This ten-
dency can also be noted by looking at the autocorrelation for the inputs in
Fig. 4.9. The insulin doses and the slow carbohydrate intake have a 24-
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Figure 4.10: Autocorrelation Blood Glucose Change.
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Figure 4.11: Impulse Response Estimates.

hour distinct period. The fast carbohydrates however do not show such a
clear periodic behavior, probably due to many snacks at irregular hours. In
Fig. 4.10 the autocorrelation of the blood glucose change can be seen. Here
the 5-6 hour periodicity of the glucose flux following a meal referred to by
Worthington is quite obvious.

In Fig. 4.11 the impulse response estimates(IRE) of the different inputs
to the blood glucose change can be seen. These plots highlights one of the
major problems in identifying this system under these circumstances, inputs
act simultaneously and with opposite effect on the output. Look at the first
plot, the impulse response estimate of the rapid-acting insulin. Insulin has a
blood glucose lowering effect and thus the IRE ought to be negative. Instead
the response is initially positive. This is due to that the rapid-acting insulin
almost always is injected when food is ingested. Thus the first positive
correlation is the effect of the carbohydrates. After some time the insulin
gains the upper hand explaining the negative correlation after about three
hours. In the same way the IRE’s of the carbohydrates are distorted. This
is a serious difficulty obscuring the identification of the system.
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4.5.1 Log-Normality

The glucose measurements are not normally distributed. The samples fluc-
tuate around an average of about 6-8 mmol/l, but the deviations are not
normally scattered around this mean as can be seen in Fig. 4.12. This phe-
nomenon has been noted in [14] as well. In Fig. 4.13 the natural logarithm of
the data has been plotted on a so called normal paper. The data is following
the normal curve quite well. Another test of normality is the Bera-Jarque
test. The normality hypothesis was not rejected(p < 0.01). Thus is seems
reasonable to say that the measurements are log-normally distributed.
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Figure 4.13: Test of log-normality.



Chapter 5

Modelling and Estimating
the Sub-Models

In this chapter the insulin absorbtion from insulin injections and the diges-
tive system will be modelled and estimated. First the mathematical models
are developed and then these models are estimated using the measured data.

5.1 Modelling the Sub-Models

GIIM

GSM

ISM

Gin

IsubInsulin

Carbohydrates

Blood Glucose

Feedback

Figure 5.1: Partitioning of the system.

5.1.1 The Insulin Subsystem

Insulin injections form the basis for conventional type 1 therapy. The dy-
namics of insulin is one of the most important factors affecting the outfall
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Figure 5.2: The Insulin Sub-Model(ISM).

of the therapy. Much research is targeted at developing new insulin analogs,
both long-lasting and rapid-acting ones. However, the mathematical mod-
elling of the insulin action is still quite poorly developed. Most models are
either compartment models or highly sophisticated non-linear physiological
models[36, 22]. The compartment models are linear and thereby do not
include the important non-linearity of dose size dependant dynamics. The
non-linear models, on the other hand, are often too complex to be feasible
for routinely use. However, there is one model that has been proposed, that
both enhances the simplicity of the compartment models as well as featur-
ing the important non-linearity of dose dependant dynamics. It is the model
proposed by Berger and Rodbard[8]. It will be used here to represent insulin
absorbtion of the slow-acting insulin. As previously has been mentioned, the
linear relationship between peak time and insulin dose size does not exist
for rapid acting insulin. Glucose clamp studies show that the absorbtion
rate is independent of insulin dose size in the range 0.05 to 0.4 U/kg[11] for
these insulins. Therefore these injections will be modelled using a classi-
cal compartment model. Together the long-lasting and rapid-acting insulin
absorbtions form the total insulin flux:

Isub(t) = IsubIT
(t) + IsubHum

(t) (5.1)

Below a brief description of the modelling of the two insulins will follow.
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Insulatard, IsubIT
(t)

Insulatard will be modelled using the Berger model. According to this model
the amount of remaining insulin in the depot is[8]:

A(t) = 100 − 100 · ts
T s

50 + ts
(5.2)

T50 is the time when half of the dose has been absorbed. The linear depen-
dency between the absorbtion halftime and dose size is expressed as:

T50 = a50 · uIT (t) + b50 (5.3)

Taking the time-derivative of the A gives the rate of absorbtion:

dA

dt
=

s · ts · T s
50

t · (T s
50 + ts)2

· uIT (t) (5.4)

Dividing dA/dt with the distributive volume, V yields the insulin absorbtion
rate in mmol/(liter · time).

IsubIT
(t) =

s · ts · T s
50

t · (T s
50 + ts)2

· uIT (t) (5.5)

fsub(uIT (t), t) · uIT (t) (5.6)

Humalog, IsubHum
(t)

The monomeric insulin is modelled according to the compartment model
seen in Fig. 5.3. Taking mass balance for each compartment the following
system of equations is given:

Subcutan Tissue

Blood System1 2

IabsHum

u
Hum

Figure 5.3: Compartment model, Monomeric Insulin.

˙xHum(t) =

(
−c1 0
c12 −c2

)
· xHum(t) +

(
1
0

)
· uHum(t) (5.7)

IsubHum
(t) =

(
0 1/V

)
· x(t) (5.8)
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The transfer function becomes:

HsubHum
(s) = CHum · (s · I − AHum)−1 · BHum (5.9)

=
c12 · 1/V

(s + c1) · (s + c2)
(5.10)

Discretization yields:

xHum(k + 1) =

(
d11 0
d21 d22

)
· xHum(k) +

(
b1

b2

)
· uHum(k) (5.11)

IsubHum
(k) =

(
0 1/V

)
· xHum(k) (5.12)

Expressed in discrete transfer function terms:

IsubHum
(k) = CHum · (zI − ΦHum)−1 · ΓHum (5.13)

=
BHum(z−1)
AHum(z−1)

· uHum(k) (5.14)

5.1.2 The Glucose Sub-Model

Comp. Model(2)

Comp. Model(4)

+

GSM

Fast Carbohydrates

Slow Carbohydrates

Gin

Figure 5.4: The Glucose Sub-Model.

Not much attention has been given to the mathematical modelling of
the digestive system. In[22] a complex physiological model is derived where
the composition of the meal regarding carbohydrates, proteins and fats are
considered. In this thesis, the model will be kept simple, by only looking
at the amount of carbohydrates in each meal. The digestive system will be
modelled by a compartment model similar to the model developed in [42].
The gastrointestinal tract is considered consisting of a number of compart-
ments. Each compartment interacts with the neighboring compartments.
The flow is one-directional, finally reaching the blood compartment. These
compartment can be given various physiological interpretations, but such
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considerations are not addressed here. Taking mass balance for each com-
partment the following system of equations is given:

ẋ(t) =




−c1 0 . . .
c1,2 −c2 0 . .
. . . . .
. 0 cn−2,n−1 −cn−1 0
. . 0 cn−1,n −cn


 · x(t) +




1
.
.
.
0


 · u(t) (5.15)

y =
(

0 . . . 1/V
) · x (5.16)

The transfer function for such a system looks like this:

H(s) = C · (s · I − A)−1 · B (5.17)

=
c1,2 · ... · cn−1,n · 1/V

(s + c1) · ... · (s + cn)
(5.18)

The off-diagonal elements are lumped together in the numerator. Thus they
can not be separated and will therefore here be set to: c0 = c1,2 = ck−1,k =
cn−1,n = n−1

√
c1,2 · ... · cn−1,n. Values for V are taken from the literature[34].

As previously mentioned the carbohydrate intake has been divided in
two parts, fast and slow carbohydrates. The total absorbtion is the sum
of these two different absorptions, each modelled as a compartment model
with individual order and parameter values.

Gin(t) = Ginfast
(t) + Ginslow

(t) (5.19)

How many compartments should be used? According to the initial value
theorem[5]:

lim
t→0

Gin(t) = lim
s→∞ s · Hin(s) (5.20)

The slow carbohydrate must first be digested and splitted into monosac-
charides before they can be absorbed. Therefore the absorbtion of slow
carbohydrates is very slow in the beginning. At ingestion the flux is thus
first at rest implying that G′

in is zero as well. At the start of the ingestion
the G′

in is not changing either, implying that G′′
in also is zero. Laplace trans-

formation of G′′
in is s2 ·Hin(s). The initial value theorem thus indicates that

the relative degree between the numerator and denominator in the Hin(s)
should be at least of fourth order for this to be fulfilled. Therefore the
slow carbohydrates are modelled using a fourth order compartment model.
The fast carbohydrates however are modelled with a second order system
representing the very fast absorbtion occurring when no splitting has to be
undertaken.

Fast carbohydrates, Ginfast
(t)

Following the discussion above the fast carbohydrates are modelled as:

ẋfast(t) =

(
−c1 0
c12 −c2

)
· xfast(t) +

(
1
0

)
· ufast(t) (5.21)
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Ginfast
(t) =

(
0 1/V

)
· xfast(t) (5.22)

The transfer function becomes:

Hinfast
(s) = Cfast · (s · I − Afast)−1 · Bfast (5.23)

=
c12 · 1/V

(s + c1) · (s + c2)
(5.24)

Discretization yields:

xfast(k + 1) =

(
d11 0
d21 d22

)
· xfast(k) +

(
b1

b2

)
· ufast(k) (5.25)

Ginfast
(k) =

(
0 1/V

)
· xfast(k) (5.26)

Written in transfer function mode:

Ginfast
(k) = Cfast · (zI − Φfast)−1 · Γfast (5.27)

=
Bfast(z−1)
Afast(z−1)

· ufast(k) (5.28)

Slow carbohydrates, Ginslow
(t)

The slow carbohydrates are here modelled with a fourth order compartment
model:

ẋslow(t) =




−c1 0 0 0
c12 −c2 0 0
0 c23 −c3 0
0 0 c34 −c4


 · xslow(t) +




1
0
0
0


 · uslow(t) (5.29)

Ginslow
(t) =

(
0 0 0 1/V

) · xslow(t) (5.30)

The transfer function becomes:

Hslow(s) = Cslow · (s · I − Aslow)−1 · Bslow (5.31)

=
c12 · c23 · c34 · 1/V

(s + c1) · (s + c2) · (s + c3) · (s + c4)
(5.32)

Discretization yields:

xslow(k + 1) =




d11 0 0 0
d21 d22 0 0
d31 d32 d33 0
d41 d42 d43 d44


 · xslow(k) +




b1

b2

b3

b4


 · uslow(k) (5.33)

Ginslow
(k) =

(
0 1/V

) · xslow(k) (5.34)

The discrete transfer function becomes:

Ginslow
(k) = Cslow · (zI − Φslow)−1 · Γslow (5.35)

=
Bslow(z−1)
Aslow(z−1)

· uslow(k) (5.36)
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5.2 Estimating the Sub-Models

Both the glucose and the insulin subsystem dynamics vary significantly be-
tween different individuals. Up to 30 percent of interpersonal variation in
the insulin absorbtion profiles has been reported[24]. Therefore it is very im-
portant to estimate these systems individually. In this section, an attempt
is made to find the parameter values for this specific patient using the PEM
software in the Identification Toolbox for Matlab.

5.2.1 Initial Estimates

This algorithm needs initial estimates of the parameter values in the sub-
models. Below some hopefully good suggestions found in the literature are
presented.

5.2.2 Insulin Absorbtion

The absorbtion profiles provided by the manufacturers of the insulins, seen
in Fig. 2.6 and Fig. 2.7, are not very accurate and should be considered
with some scepticism. Instead, profiles provided by the research literature
will be looked upon. In Fig. 5.5 two estimates of the absorbtion profile of
a monomeric insulin can be seen. Fitting the compartment model to the
M4-profile yielded the following dynamical parameters; c11 = c22 = 0.3.

Figure 5.5: Absorbtion profiles of monomeric insulin[36].

The NPH insulin will be modelled using the parameter values found in
[36].
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5.2.3 Gut Absorbtion

For testing of various models an initial estimate of the gut absorbtion has
to be available. Here, absorbtion profiles from the literature will be used as
references for the initial estimates.

Fast Carbohydrates

In an oral glucose tolerance test Cobelli has estimated the absorbtion rate
from the gut for glucose[34]. Three different models were fitted to the data,
and in the picture below the spline model can be seen.

Figure 5.6: Gut Absorbtion, Cobelli’s splined data[34].

This corresponds to the fastest carbohydrates here modelled as a second
order compartment model. Since no data from the experiment is available
no regression can be undertaken, but the following dynamical parameters
approximately represents the profile; c11 = 0.3, c22 = 0.9.

Slow Carbohydrates

The rate of absorbtion of a mixed meal peaks at 70-90 minutes[26]. A
normal meal consists of 10-15 % fast carbohydrates and 85-90 % slow car-
bohydrates1. Bearing this in mind, it seems plausible to argue that the
absorbtion peak for slow carbohydrate absorbtion peaks at approximately
1.5 hours. The following set of parameters give a plausible absorbtion profile;
c11 = c22 = 0.6 and c33 = c44 = 0.5.

1See Appendix A
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To find the parameter c0, which determines the gain of the system, the
following relation is considered:

V ·
∞∫
0

Gin dt = η · C (5.37)

Here C is the amount of ingested carbohydrates and η is the efficiency of
absorbtion. This relation states that the sum of absorbed carbohydrates
equals the sum of ingested carbohydrates minus the loss in the intestine.
According to [34] the absorbtion efficiency, η is approximately 86 %.

Given these parameters the absorbtion profiles look like this:
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Figure 5.7: Gut Absorbtion, Simulating digestion of 10g fast and 10g slow
carbohydrates at t=0.

Another way to get a first estimate of the sub-models is to have a closer
look at the correlation between the inputs and the blood glucose change. In
Fig. 5.8 the correlation for the slow and fast carbohydrates and the blood
glucose change can be seen. Here, the slow carbohydrates seem to act sig-
nificantly faster than proposed above. The correlation curve for the fast
carbohydrates however corresponds quite nicely. This may be explained by
the fact that the slow carbohydrates are almost always ingested simulta-
neously with the fast. The fast carbohydrates, which have a significantly
higher gain, thus affect the slow carbohydrates correlation curve making it
look faster than it really is.

5.2.4 Glucose/Insulin Interaction Model(GIIM)

To estimate the subsystems a model for the glucose /insulin interaction is
needed as well. The simplest model with a physiological interpretation is
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Figure 5.8: Correlation carbohydrate inputs and blood glucose change.

the model proposed by Ackerman[3]:

dG

dt
= aG(t) + bI(t) + Gin(t) (5.38)

dI

dt
= cG(t) + dI(t) + Isub(t) (5.39)

where G(t) is the blood glucose concentration and I(t) is the plasma
insulin level. Additional states can be added, with or without physiological
interpretation, thereby the general linear model is given:

ẋGIIM = AxGIIM + Bu (5.40)
y = CxGIIM (5.41)

where xGIIM are the different states of the system, and

u(t) =
(

Ginfast
Ginslow

IsubHum
IsubIT

)T
(5.42)

and
B =

(
B1 B2 B3 B4

)
(5.43)

The order of the system was set to 6, based on the discussion in the following
chapter, Models and Results.
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5.2.5 The Grey-box Total Model

The grey-box estimation method requires that the glucose flux, insulin ab-
sorbtion and glucose-insulin interaction is put together into one model. Thus
the state space vector is extended:

ξ =
(

xHum xfast xslow xGIIM

)T
(5.44)

ξ(k + 1) =




Φfast 0 0 0
0 Φslow 0 0
0 0 ΦHum 0

Cfast · B1 Cslow · B2 CHum · B3 A


 ξ(k) + Bu(k) (5.45)

y(k) = C · ξ(k) (5.46)

where

B =




Γfast 0 0 0
0 Γslow 0 0
0 0 ΓHum 0
0 0 0 B4


 (5.47)

and

u(k) =
(

ufast(k) uslow(k) uHum(k) IsubIT
(k)

)T
(5.48)

This structure is inserted into the PEM-algorithm. All places in the ma-
trices with initial parameter values are considered as parameters and can
be changed by the algorithm. The model is compared with the estimation
data and the parameters are changed to find the minimum of the sum of the
residuals. Different search algorithm are used to find the global minimum,
but of course there is no certainty that the solution is not a local minimum.
When looking at the new system, it is apparent that the submodels can
not be extracted. However, this is not a major difficulty. The essential
parameters affecting the dynamics of the sub-models can still be retrieved.
These are the diagonal terms in Φfast, Φslow and ΦHum. The terms in Cfast,
Cslow and CHum can not be extracted since they are multiplied with the B-
matrices of the GIIM. These parameters, together with the non-diagonal
terms in the Φ-matrices, determine the gain of the subsystems. Instead
these parameters are estimated by considering relation 5.37. This approach
may of course result in poor estimates of the gain of the sub-models, but
the important relative degree of gain between the parts of the submodels is
preserved. The poor estimate of the gains can later be absorbed in the gain
of the estimated GIIM. The parameters of the slow acting insulin will not
be individually parameterized. The rapid acting insulin is much more im-
portant for the dynamics of the system. This, together with the non-linear
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Figure 5.9: Gut Absorbtion.

nature of the slow acting dynamics and the inherent difficulties of identifying
such systems, leads to this conclusion. Instead the initial estimate presented
above will be used for the characterization of the Insulatard absorbtion.

5.2.6 Results

Estimating the parameters under these conditions gave the set of parameters
seen in table 5.1.

Parameters c11 c22 c33 c44

Humalog 0.2674 0.364 - -
Fast Carb. 1.175 0.2728 - -
Slow Carb. 0.5336 0.5164 0.4526 0.4096

Table 5.1: Estimated dynamical parameters.

Simulating the digestion of 10g fast and 10 gram of slow carbohydrates
resulted in the absorbtion profiles seen in Fig. 5.9. In Fig. 5.10 The sim-
ulation of injecting 10 U Humalog and 10 U Insulatard can be seen. The
spectrum of the impulse response from these sub-models can be seen in Fig.
5.11. Incorporating these parameter values in the sub-models the insulin
and glucose input can be calculated:

Isub(t) = IsubIT
(t) + IsubHum

(t) (5.49)

Gin(t) = Ginfast
(t) + Ginslow

(t) (5.50)

Isub and Gin will also be referred to as u1 and u2 below. To get an
indication of the possibility to use these inputs to explain the behavior in



40 Modelling and Estimating the Sub-Models

0 5 10 15 20
0

10

20

30

40

50

60

Insulin Absorbtion

time (hours)

Ins
uli

n C
on

ce
ntr

ati
on

 (u
U/

ml
)

Humalog
Insulatard

Figure 5.10: Insulin Absorbtion.

the blood glucose the coherence is calculated. In Fig. 5.12 the plain and
windowed coherence plots can be seen. The windowed plots indicates that
it may be difficult to use these inputs to explain the glucose output. This
may be due to a number of factors; high levels of disturbance affecting the
system, non-represented inputs and non-linearities in the dynamics.

These parameter values are very close to the initial estimates. This of
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Figure 5.11: Spectrum of submodel parts.
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Figure 5.12: In the upper plots the unwindowed coherence plot of the be-
tween insulin and glucose inputs and the glucose output and in the lower a
Hanning window(L=128) has been used.

course raises the question whether the optimal parameter values have been
found. The search for the global minimum might well have ended in a local
minimum. Therefore these results should be considered with some scepti-
cism. An other major difficulty already pointed out earlier is that the inputs
act simultaneously. This makes it very difficult to extract the influence of
each input. This problem is however hard to avoid. Conducting simple ex-
periments where the inputs are separated in time imply unacceptable risks
and consequences for the subjects. Good, reliable estimates require clinical
experiments such as tracer methods[17] or glucose clamps technics. These
are somewhat cumbersome and need medical supervision and are thus not
suitable for wider application. Finally the complexity of the models must
be considered. Here the glucose subsystem is divided into two models, rep-
resenting fast and slow carbohydrates. It is a well known fact that the
composition of the meal affects the absorbtion. Since this aspect is not
represented in the models the ability to describe the absorbtion of different
meals may be inadequate.
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Figure 6.1: The partitioning of the system.

The glucose/insulin dynamic system has been identified to consist of
three different main parts; the glucose subsystem, the insulin subsystem
and the glucose/insulin interaction. In this chapter the models for the two
subsystems and the different black box models used for the glucose/insulin
interaction will be presented. After each model the results are reviewed
and analyzed. Each model has been estimated using the estimation data
and validated with the validation data. The validation has been based on
different fitting criteria, such as the Akaike information criteria(AIC) and
the final prediction criteria(FPE). The correlation of the residual is also
reviewed. Each model has been analyzed with respect to Bode diagrams and
pole zero plots to investigate possible pole zero cancellations. The predictive
capability of the models is looked upon by comparing the 8-step prediction
with the splined data. The Variance Accounted For Criteria(VAF) will serve
as a comparative tool. The best model according to this criteria is then
subjected to an non-linear transformation, using a simple Wiener model.
First, however, the ARMA-model is reviewed. It will serve as a reference
for the other models, giving an indication of the benefit of the use of the
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sub-models and the different glucose/insulin interaction models.

6.1 ARMA

In the ARMA-model only previous values of the variable of interest is used
for the modelling. Attempts to predict future blood glucose values given
past and present values have previously been subjected in [12, 6].

A(q−1) · y(t) = C(q−1) · e(t) (6.1)

This model may help to get an estimate of the approximate degree of the
dynamics. First the AR-model is estimated, and thereafter different orders
of the C-polynomial are tested.

Here the cost function for the AR-model has been calculated and the
Akaike criteria and MDL criteria been evaluated. As can be seen in the Fig.
6.2 all criteria yields the same result; the order of the dynamics is of sixth
order.
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Figure 6.2: Model fit of AR.

Now, to make the prediction error white the C-polynomial is estimated
as well. This yields the following model:

A(q−1) = 1 − 3.041q−1 + 3.71q−2 − 2.238q−3 (6.2)
+0.5845q−4 + 0.01778q−5 − 0.02505q−6 (6.3)

C(q−1) = 1 + 0.453q−1 (6.4)

The correlation function of the residuals can be seen in Fig. 6.3. The
correlation function now looks fairly white.
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Figure 6.3: Correlation Analysis, ARMA.

In Fig. 6.4, the one step ahead prediction can be seen. The prediction
follows the true data almost perfectly. This is however not very surprising
considering the high correlation between neighboring glucose values as seen
in Fig. 4.8.
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Figure 6.4: 1-step ahead prediction, ARMA.

In Fig. 6.5, a 8-step ahead prediction on the validation data using this
model can be seen.
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Figure 6.5: 8-step ahead prediction, ARMA.

6.2 Linear Models

6.2.1 ARMAX

ARMAX is a general linear model. Any possible input believed to affect the
system can be used. Here, the insulin absorbtion and the glucose flux will
be used as inputs.

A(q−1) · y(t) = B1(q−1) · Gin(t) + B2(q−1) · Isub(t) + C(q−1) · e(t) (6.5)

Validation

As previously with the AR model different sets of orders of the A- and
B-polynomials were tested and evaluated with the validation data. The
following sets of system orders and time delays will be tested:

Parameter Range
nA 5-10
nB1 0-3
nB2 0-3
k1 0-3
k2 0-3

The different models are evaluated using the Akaike, MDL and the unmodi-
fied cost criteria. In table 6.1 the proposed model structures of the different
criteria can be seen.

Noteworthy is that the MDL-criteria indicates that the inputs are not
contributing enough to compensate for the added complexity of the model.
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Parameter Loss MDL AIC
nA 6 6 6
nB1 2 0 1
nB2 2 0 2
k1 0 0 2
k2 3 0 0

Table 6.1: Chosen model structure, ARMAX

Here the model structure selected by the Akaike criteria is chosen. The
correlation curve of the residuals can be seen in Fig. 6.6. Apparently the
residuals are not white, and thus a noise model has to be estimated. Different
orders of the C-polynomial are tested and evaluated according to best fit.
This yields the following model:

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Correlation function of residuals. Output y1

lag

Figure 6.6: Correlation Analysis, ARX.

A(q−1) = 1 − 2.817q−1 + 3.119q−2 − 1.587q−3

+0.1871q−4 + 0.1539q−5 − 0.04495q−6

B1(q−1) = −0.2095q−2

B2(q−1) = 2.917 − 2.569q−1

C(q−1) = 1 + 0.6069q−1

The correlation function of the residuals can now be seen in Fig. 6.7.
The residuals are still correlated but the autocorrelation decays more rapidly.
The correlation may indicate that the noise dynamics differ from the other
system dynamics.
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Figure 6.7: Correlation Analysis, ARMAX.

Analysis

In Fig. 6.8 the Bode plot of the system can be seen. Both the Bode plots
resemble low pass systems. The cut-off frequency for the insulin input is at
approximately 3.2e-5Hz, just above the peak in the Insulatard input spec-
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Figure 6.8: Bode Plots, ARMAX.
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Figure 6.9: Pole/Zero Plot, ARMAX.

trum, which can be seen by looking at Fig. 5.11. However, the magnitude
falls relatively slowly implying that the main frequencies of the Humalog
input also contribute heavily to the output. The transfer function from
glucose input to output also looks somewhat like a low pass system, with
a cut-off frequency almost at the spectrum maximum of the fast carbohy-
drates. The close resemblance between the two transfer functions is due to
the low number of zeros. As can be seen from Fig. 6.9 the only difference
between the two transfer functions is the zero close to the real one in the
glucose/GIIM zero/pole plot.

Prediction
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Figure 6.10: 8-step ahead prediction, ARMAX.
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In Fig. 6.10 the 8-step ahead prediction using this model can be seen.
The improvement from the ARMA-model is quite small.

6.2.2 Weighted Least Squares
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Figure 6.11: Loss function versus Weight.

The data used is very scarce. Most of the blood glucose values used dur-
ing the estimation and validation are interpolated from a few measurements.
By interpolation there is a risk of introducing false dynamics resulting in in-
valid parameter estimates. Therefore, it may be an idea to valuate the
measured blood glucose values higher than the interpolated values during
the estimation process. This is done by introducing a weighting matrix into
the parameter calculations. Different weighting values are tested to investi-
gate whether the model improves when the real measurements are given a
higher weight. The evaluation criteria used is the loss function. In Fig. 6.11
the loss function versus the ratio between the weight of the sampled data
and the weight of the interpolations can be seen. The loss function increases
as the ration increases. Thus, no improvement can be seen by weighting the
real measurements heavier than the interpolated values.

6.2.3 Subspace Model

Validation

To find the best model different model orders and different orders of s were
tested and evaluated using the cost function, the AIC and the FPE Criteria.
The result can be seen in table 6.2.
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Table 6.2: Comparison SMI-models; best, second best, third best

n 4 5 6 7
s Loss AIC FPE Loss AIC FPE Loss AIC FPE Loss AIC FPE
6 4.025 1.405 4.074 0 0 0 0 0 0 0 0 0
7 5.506 1.718 5.572 6.705 1.918 6.805 0 0 0 0 0 0
8 7.331 2.004 7.419 8.038 2.099 8.159 2.754 1.031 2.804 0 0 0
9 10.33 2.347 10.45 9.095 2.223 9.231 4.259 1.467 4.336 17.59 2.888 17.96
10 13.58 2.62 13.74 13.16 2.592 13.36 6.39 1.873 6.505 26.85 3.311 27.42
11 16.35 2.806 16.55 15.81 2.776 16.05 8.965 2.211 9.126 11.06 2.424 11.29
12 22.51 3.126 22.78 17.36 2.869 17.62 14.07 2.662 14.32 19.82 3.007 20.23
13 0 0 0 18.74 2.946 19.02 20.01 3.014 20.37 31.29 3.464 31.95
14 0 0 0 21.26 3.072 21.58 22.38 3.126 22.79 31.54 3.472 32.21
15 0 0 0 23.79 3.184 24.15 18.31 2.925 18.64 29.22 3.396 29.83
16 0 0 0 0 0 0 14.23 2.673 14.49 25.13 3.245 25.66
17 0 0 0 0 0 0 15.42 2.754 15.7 23.55 3.18 24.05
18 0 0 0 0 0 0 24.39 3.212 24.83 21.07 3.069 21.52
19 0 0 0 0 0 0 0 0 0 22.22 3.122 22.69
20 0 0 0 0 0 0 0 0 0 23.22 3.166 23.7
21 0 0 0 0 0 0 0 0 0 24.35 3.213 24.86

Table 6.3: Comparison SMI-models, cont.

n 8 9 10
s Loss AIC FPE Loss AIC FPE Loss AIC FPE
10 25.134 3.248 25.74 0 0 0 0 0 0
11 23.196 3.1678 23.755 95.252 4.5833 97.838 0 0 0
12 18.559 2.9448 19.007 70.457 4.2818 72.37 199.19 5.324 205.21
13 23.192 3.1676 23.751 51.55 3.9693 52.949 137.39 4.9526 141.54
14 19.519 2.9952 19.989 77.897 4.3822 80.011 68.625 4.2584 70.698
15 18.725 2.9536 19.176 61.098 4.1393 62.757 51.555 3.9724 53.113
16 17.75 2.9002 18.178 32.624 3.5118 33.51 25.703 3.2764 26.48
17 18.122 2.9209 18.559 36.917 3.6355 37.919 25.185 3.256 25.946
18 19.92 3.0155 20.4 50.396 3.9467 51.764 32.141 3.4999 33.112
19 18.94 2.9651 19.397 38.752 3.684 39.804 19.591 3.0048 20.182
20 16.973 2.8554 17.382 31.636 3.4811 32.494 20.97 3.0729 21.604
21 16.913 2.8519 17.321 27.568 3.3434 28.317 21.064 3.0773 21.701
22 21.079 3.0721 21.587 22.546 3.1423 23.158 22.302 3.1344 22.975
23 25.108 3.247 25.713 17.82 2.9071 18.304 22.032 3.1222 22.697
24 27.213 3.3275 27.869 15.713 2.7813 16.14 20.834 3.0664 21.464
25 0 0 0 16.474 2.8286 16.921 19.923 3.0217 20.525
26 0 0 0 18.502 2.9446 19.004 22.195 3.1296 22.865
27 0 0 0 21.435 3.0918 22.017 23.925 3.2047 24.648
28 0 0 0 0 0 0 21.143 3.0811 21.782
29 0 0 0 0 0 0 21.479 3.0969 22.128
30 0 0 0 0 0 0 24.579 3.2317 25.322
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Analysis
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Figure 6.12: Bode Plots, Subspace Model(n=6, s=9).

The best model according to the criteria is n=6 with s=8. However,
this model is unstable with a pole-pair outside the unit circle. The third
best model is also of sixth order, but stable. The Bode plot can be seen in
Fig. 6.12. Looking at the insulin/GIIM Bode diagram three peaks can be
identified. The first peak is the product of the pole pair close to the real one.
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Figure 6.13: Pole/Zero Plot, Subspace Model(n=6, s=9).
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The second small peak and the following fall in amplitude is due to the near
pole/zero cancellation seen in the right plot of Fig. 6.13. The last sharp
peak at 100 followed by the drastic fall in amplitude can be explained by
the pole/zero pair lying very close to each other at 0.5± 0.8i. In the second
Bode plot the resonance peak at the low frequency has been eliminated by
the zero at 0.8. Instead, the middle frequency peak is more distinct followed
by the drop in amplitude. In this case the poles and zeros are not cancelling
each other but lie quite close to each other. The poles at 0.5± 0.8i are now
left alone resulting in a distinct resonance peak at 100.

The second best model, n=4, s=6, is also the smallest model. Here the
pole/zero pairs that caused the peaks at 100 in the transfer functions are
excluded as can be seen in Fig. 6.14 and Fig. 6.15. Only the most essential
dynamics are left. The insulin transfer function is now totally dominated by
the pole pair close to the real one. The small peak at 0.6-0.7 is due to the
near cancellation of the poles at 0.7± 0.6i. The glucose transfer function on
the other hand has a distinct peak at 0.6-0.7 rad/15min, caused by the this
pole pair. This peak is somewhat of a average between the two peaks seen
in the higher order model.
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Figure 6.14: Bode Plots, Subspace Model(n=4, s=6).
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Figure 6.15: Pole/Zero Plot, Subspace Model(n=4, s=6).

Prediction

The predictive capability of the subspace models are not very impressive.
In Fig. 6.16, the 8-step prediction of the n=6,s=9 can be seen. The VAF is
significantly lower than for the ARMAX-model.
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Figure 6.16: 8-step ahead prediction, Subspace.

6.2.4 The General Transfer Function Model(GTFM)

Considering the suspected pole/zero cancellations and the high level of corre-
lation in the residuals in the previous models it may be an idea to consider
separating the dynamics in the system. By the general transfer function
model the different inputs and the noise model all have different dynamics:

A(q−1) · y(t) =
B1(q−1)
F1(q−1)

· u1 +
B2(q−1)
F2(q−1)

· u2 +
C(q−1)
D(q−1)

· e(t) (6.6)
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Validation

The model was estimated for the sets of orders in table 6.4. The validation

nA nB1 nB2 nF1 nF2 nC nD k1 k2

3-6 2-3 2-3 2-3 2-3 0-3 0-3 0-2 0-2

Table 6.4: Sets of system orders to evaluate

criteria all selected the model structure seen in table 6.5.

nA nB1 nB2 nF1 nF2 nC nD k1 k2

5 2 3 1 1 3 2 0 0

Table 6.5: Chosen model structure, GTFM.

Estimating the parameters gave this model:

A(q−1) = 1 − 3.209q−1 + 4.257q−2 − 2.966q−3 + 1.087q−4 − 0.1613q−5

B1(q−1) = −0.03211 + 0.01213q−1

B2(q−1) = 0.9626 − 1.414q−1 + 0.5386q−2

F1(q−1) = 1 − 0.01277q−1 + 0.5702q−2 − 0.6425q−3

F2(q−1) = 1 + 0.4967q−1 − 0.06102q−2

C(q−1) = 1 + 0.4572q−1

D(q−1) = 1 + 0.1633q−1

The residuals are now almost uncorrelated as can be seen in Fig. 6.17.
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Figure 6.17: Correlation Analysis, General Transfer Function Model.
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Figure 6.18: Bode diagrams, GTFM.

Analysis

In Fig. 6.18 the Bode diagrams can be seen. The first Bode plot looks like a
low pass system except for the interruption of the sharp resonance peak at
a high frequency. This resonance is due to the odd, almost undamped pole
pair at −0.3 ± 0.9i, see Fig. 6.19. The second Bode plot also resembles a
low pass system. From the pole/zero map the different poles associates with
each input can be seen quite clearly. The poles not relevant for the input
are nicely cancelled.
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Figure 6.19: Zero/Pole Plot, GTFM.
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Figure 6.20: 8-step ahead prediction, General Transfer Function Model.

Prediction

The predictive capability, Fig. 6.20 is improved somewhat compared to the
ARMAX-model.

6.2.5 Comparison

In this section the previous models will be compared, looking at Bode plots,
zero/pole plots and predictive capability.

Analysis

In Fig. 6.21 and Fig. 6.22 a comparison between the Bode plots of the
previous models can be seen. The transfer functions fall into two separate
categories; the subspace models and the ARMAX and GTFM models. The
subspace models put more emphasis at the higher frequencies, while the
ARMAX and GTFM have a typical low pass performance. Since these
models have the best predictive capability, they probably also best resemble
the true system. Therefore focus will be on these two models. There are
some important differences between the models. There is a resonance peak in
the insulin/GIIM transfer function in the GTFM not present in the ARMAX
model. An other difference is the noise dynamics. In the ARMAX model
the residuals are still correlated, while in the GTFM they are practically
uncorrelated. This may in part be explained by the GTFM:s general better
ability to explain the system using the inputs, but also by having a slightly
different noise model as can be seen in Fig. 6.24 and Fig. 6.25.

In all the models of the insulin/GIIM dynamics the pole pair close to the
real one is present. Likewise all models agree that the glucose/GIIM transfer
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Figure 6.21: Comparison Bode plot, ISM/GIIM.

function has a pole pair somewhere in the vicinity of 0.5 − 0.6 ± 0.5 − 0.8i.
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Figure 6.22: Comparison Bode plot, GSM/GIIM.
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Figure 6.23: Comparison zeros and poles, ARMAX, Subspace(n=4,s=6),
Subspace(n=6,s=9) and GTFM

This may indicate that these dynamics are essential parts of the system.

Prediction

The best model according to VAF for the 8-step prediction is the GTFM.
In Fig. 6.26 the models’ prediction error standard deviation can be seen for
predictions between 1 and 10 steps forward. Apparently, the GTFM is the
best model in the whole range. The result is however not very impressive;
the best linear model is obviously not capable of describing the system very
well. By looking closely at the prediction and and comparing it with the
real signal a lag can be seen. This lagging of the prediction can also be seen
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Figure 6.24: Bode plot, Noise Dynamics.
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Figure 6.25: Zeros and poles of the noise models, ARMAX, Sub-
space(n=4,s=6), Subspace(n=6,s=9) and GTFM.

by studying the correlation between the prediction and the real signal. In
Fig. 6.27 the correlation can be seen. Looking at the correlation it can be
determined that the lag is about 75 min.

The predictive capacity degrades very fast as seen in Fig. 6.26. This
can be seen even clearer by looking at the plots in Fig. 6.28. After already
4 steps the model has difficulties with under- and overshoots. After 8 steps
these problems have escalated making the predictions very poor. In the last
plot the pure simulation can be seen. In Fig. 6.29 the simulation can be
seen clearer. In the upper plot the simulated data and the splined data can
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Figure 6.26: The prediction standard deviation vs prediction horizon.



60 Models and Results

1 2 3 4 5 6 7 8 9 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

lag (15min)

Co
rre

lat
ion

Correlation bG and 8−step ARMAX prediction

Figure 6.27: The prediction lags the real data

be seen again. The model has obvious problems with the magnitude. In the
lower plot the output of the model has simply been scaled with a factor of
2.5. Now it is easier to see where the model reacts totally wrong and where
it is more on track. At many instances the model reacts qualitatively right
but with too small magnitude. At other times the model deviates seriously
qualitatively wrong. The reasons for this are several:

• The system is highly non-linear in its responses to inputs. Already
for the 8-step prediction the model has severe difficulties coping with
the high peaks and the deep bottoms.

• there may be and probably are unrepresented inputs having a se-
rious impact on the output. Such inputs may be exercise and alcohol
intake.

• The data used may be incomplete and flawed. The data was collected
during 6 months in a diabetes diary. The size and timing of each meal
sometimes had to be noted afterwards. Many meals, especially snacks
are thus not represented correctly.

• The interpretation of the data is quite arbitrary. The predefined
meals1 are very coarse estimates and do not span the range of intake
sufficiently.

• The interpolation of the glucose measurements. The interpolation
routine used may be a poor method to reconstruct the data and thus
introduce false dynamics in the time series.

1See Appendix A
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Figure 6.28: Illustration of the degradation of predictive capacity, GTFM.

• The system may have time dependant dynamics. That this is the
case in a longer time frame was seen in the Data chapter, but there is
also evidence that the dynamics differ over the time of the day.

• The sub-models are very simplistic and may be inappropriate to
fully characterize the glucose and insulin flux. Especially the GSM is
far to simplified to accurately describe the digestion and absorbtion of
food.

• The is a considerable intrapersonal variability in the absorbtion of
insulin. This is probably true to some extent for the glucose absorbtion
as well. This constitutes an uncertainty that can not be modelled.

These factors not only cause anomalies in the pure simulation case, but
also severely hampers the estimation and validation processes.

Finally let’s take a look at the simulated data once more. In Fig. 6.30
the simulated data has been simulated by using varied inputs; ui,sim =
(1 ± 0.25)ui. This is supposed to represent the natural uncertainty in the
absorbtion processes.
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Figure 6.29: The upper plot: Simulated Data(GTFM) and real data; Lower
plot: Scaled Simulated Data and real data.

6.3 Non-linear Models

Since the linear models proved insufficient to represent the system non-
linear models must be considered. Here a number of possible opportunities
for making the models non-linear are considered. First of all the data can be
transformed before the linear models are applied. Two different transforma-
tions of the blood glucose data are looked upon below. An other possibility
is the Hammerstein and Wiener models. A Hammerstein model is basically
a non-linear transformation of the inputs thereafter the normal linear mod-
els are used. Some simple transformations are considered in the NARMAX
section below. The Wiener model consists of making a non-linear trans-
formation of the output of the linear model. In the GTFM-Wiener model
section below Chebychev polynomials are considered for such a non-linear
function of the output.

6.3.1 Data Transformations

In the data chapter the log-normal character of the blood glucose samples
was investigated. A test of log-normality was undertaken, and passed for
p¡0.01. Thus a natural non-linear transformation is to take the natural
logarithm of the glucose data.

ylog = log(y) (6.7)

This concept has been tested for all the models discussed above, but without
improvement. An other transformation proposed by Kovatchev in [30] is:

ykov = 1.794(log(y)1.026 − 1.861) (6.8)
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Figure 6.30: Simulated data using inputs varied ±25%.

This transformation was also used in these models, but without success.

6.3.2 NARMAX

Looking at the coherence plots in Fig. 5.12 there seems to be a poor linear
relation between the inputs and the output. To overcome this it is possible
to apart from using the ordinary glucose and insulin inputs take non-linear
transformations of them and use as regressors. Systematically this is done
using for example neural networks or radial basis functions. It is also pos-
sible to use other variables which lack obvious physiological explanation as
regressors. One such variable is the time of the day. As mentioned in the
physiology chapter the dynamics of the system is believed to vary over the
day. Basically any variable believed to affect or correlate with the output
may be used to try to explain the behavior of the output. Except from
transforming the inputs by non-linear functions they may be for example
multiplied creating new bilinear variables to use as input.

For the models presented above the following simple non-linear functions
have been tried to create new inputs:

ui,j = ui
1u

j
2 i, j = {0 . . . 3} (6.9)

The time of the day was also tried as an input. None or insignificant im-
provement could be seen.
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Figure 6.31: Chebychev Non-linearity and ARMAX 8-step ahead prediction.

6.3.3 GTFM-Wiener

The linear model can be extended by a non-linear function on the output.
Such a model is called a Wiener model:

A(q−1) · y(t) =
B1(q−1)
F1(q−1)

· u1 +
B2(q−1)
F2(q−1)

· u2 +
C(q−1)
D(q−1)

· e(t) (6.10)

z(t) = h(y(t)) (6.11)

where h(y(t)) is a non-linear function. Here Chebychev polynomials have
been used to represent the this function. Polynomials of order 1-25 have
been tested and evaluated using the Akaike criteria. The best polynomial
according to Akaike is of 12:th order and can be seen in Fig. 6.31 together
with the a plot of the GTFM 8-step predictions versus the splined data.

Prediction

Using this polynomial the prediction now improves somewhat as can be seen
in Fig.6.32.
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Chapter 7

Discussion

The problem of modelling diabetes has many difficulties. In this chapter a
discussion of the difficulties encountered during this thesis will follow.

7.1 Validity

The data used in this thesis was collected from a newly diagnosed IDDM
patient. The fact that only data from one patient was used raises the ques-
tion of validity for the application of the results in other patients. Many of
the problems and properties with the studied system are however general
and relevant for modelling of other diabetics as well.

7.2 Data

First the issue of interpolating the scarce data was subjected. The data
was sampled at an average of 9.3 samples/day. Assuming that 8 hours a
day is spent sleeping when no sampling is undertaken, this corresponds to a
sampling period of approximately 100 min. These samples were interpolated
using a least squares splining method to get a sampling rate of 15 min.
The spectrum of the sampled and interpolated signal was compared with
the spectrum of an average of patients monitored by MiniMod, a sampling
device collecting samples every fifth minute. The MiniMod samples were also
resampled at different rates up to every third hour and interpolated using
the same method as for the meter monitored data to get samples every 15
min. The spectra of these new signals were also compared to the interpolated
data. The spectrum of the interpolated data falls between the spectra of
the signal sampled at 60 min and the signal resampled at every 120 min.
These signals were compared to the original signal and evaluated according
to their ability to resemble the original signal. The 60 min signal has little
trouble following the original signal. The 120min signal on the other hand
misses the most rapid oscillations and has a significantly higher maximum
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error. The interpolated data has an average sampling rate of every 100 min.
The rapid changes in blood glucose concentration are often experienced as
hypoglycemia and thus calls for sampling to establish glycemic status. Thus
the rapid changes are often captured in these extra, unscheduled samples.
Considering these aspects it may not be totally inadequate to say that these
interpolated data are fair representations of the true data. This of course
has to be subjected to further research where MiniMod samples are collected
and compared to interpolated glucose meter samples for a large population.
Thus an optimal sampling schedule and a robust and correct interpolation
technique can be constructed.

7.3 Identifiability Issues

The only quantity of the system accessible to measurements is the blood
glucose concentration. Glucose flux from the absorbtion of meals and the
insulin absorbtion from the subcutaneous depots are not possible to measure
directly. This poses a severe difficulty in the estimation of the sub-models
and theirs outputs impact on the GIIM. The absorbtion of rapid-acting
insulin and the glucose flux from carbohydrate intake are almost always
present at the same time, making it difficult to access the influence of each
input. A meal consists of both fast and slow carbohydrates obstructing the
possibility/frsk to separate the dynamics of the two sources. This problem
is difficult to avoid, since separating the insulin injections and carbohydrate
intake creates unacceptable risks for the patient. This is undoubtly one of
the major problems with trying to model and estimate the system under
these conditions. The only possibility to get reliable estimates of these sub-
models is to conduct clinical experiments such as glucose clamp techniques
or tracer methods. Such experiments are cumbersome and not appropriate
for routinely use.

7.4 The Sub-Models

The energy intake has been considered to consist of solely slow and fast
carbohydrates. This is of course not true. Food consists two other major
sources of energy, fat and protein. These can not be converted to glucose
directly, but can be metabolized into glucose and FFA1 in for example the
liver in the post-absorbative stage. Therefore they also have an impact
on the metabolism of the body, and thereby directly and indirectly on the
GIIM. Regarding carbohydrates there is a vast spectra of different mono-,
di- and polysaccharides and to simply divide their absorbtion dynamics in
two categories is probably an over-simplification.

1Free Fatty Acids; can be used by some cells as fuel
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The fast carbohydrates were modelled using a second order compart-
ment model. Looking at the absorbtion profile from[34], this seems to be a
plausible model to represent the absorbtion. The slow carbohydrates were
modelled using a fourth order compartment model. Slow carbohydrates first
have to be digested into glucose before absorbed and therefore have a delay
between intake and absorbtion. The fourth order compartment model cre-
ates such a delay in the absorbtion. As mentioned above, fat and protein
have not been regarded. Apart from providing energy they influence the
absorbtion dynamics.

The GSM used in this thesis has been kept very simple for a number
of reasons. Firstly this thesis is about the entire glycemic system and a
thorough modelling would simply take too much effort. Secondly the infor-
mation about the contents of the meals is rather scarce in the diabetes diary.
Meals are simply noted as breakfast, lunch, dinner and an estimate of their
size; small,normal or large. Thirdly the accuracy in the model has to stand
in proportion to the accuracy of the inputs. Notes on the exact amounts of
carbohydrates, protein and fat in the diary is simply not realistic.

Whether these simple models are too simplified to describe the absorb-
tion in a acceptable way remains to be investigated. Most likely research
has to be targeted at physiological modelling and understanding of how the
digestive and absorbative processes are influenced by the composition of the
meals. However it has to be borne in mind that the data available can not
be assumed to very accurate. For this effort also has to be put on developing
simple and accurate ways to estimate the content of a meal. In Australia
food producers can now have their products measured with the glycemic in-
dex analysis and labelled with the glycemic index on the package. Thereby
the consumers can easily get an estimate of the glycemic effect of the prod-
uct. Glycemic Index is a debated issue, and has some serious shortcomings
in describing the absorbtion profile of meal. For a review of glycemic index
and its pro’s and con’s see [26, 35, 21, 37, 27, 20, 42].

The ISM has been modelled using a second order compartment model
for the rapid-acting insulin and the Berger model for the slow-acting in-
sulin. The rapid-acting insulin has a very fast onset, which the second order
model is able to represent. The dynamics of the slow-acting insulin is widely
considered to be dose-dependant. This makes compartment model unsuit-
able, since they are linear. Instead the Berger model was used to represent
the dynamics. The non-linear nature of the Berger model makes it diffi-
cult to estimate and therefore parameter values found in the literature were
used. This is of course not optimal since these average parameter values
likely differ from those representing this specific patient. The absorbtion of
the slow-acting insulin is however too slow to seriously affect the essential
dynamics of the system following a meal.

The sub-models were estimated using the Matlab tool PEM, found in the
system identification toolbox. The result of this estimation process ended
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with parameter values lying quite close to the initial values. Considering this
and taking the identification difficulties mentioned above into consideration
these results should be viewed with some scepticism.

7.5 Unrepresented Inputs

The modelling has been based on measurements and estimates of blood glu-
cose, size and timing insulin injection doses and meals. There may however
be other inputs that have an important influence on the dynamics of the
system. One such input may be physical exercise. Apart from having a
blood glucose lowering effect due to the utilization of glucose in the muscle
cells, exercise also has a positive effect on insulin sensitivity. Thus the effect
of insulin is also enhanced. This variable has not been considered mainly
due to difficulties in quantifying it properly. An other variable of interest is
the time of the day. The dynamics of the system is believed to vary over the
day, especially during the morning compared to the rest of the day. In this
thesis this variable has simply been tried as a regressor, but without much
success. An alternative would be to divide the day in different segments and
have multiple sets of parameters, one set for each segment. Finally alcohol
intake also has to be considered as a specific input. The metabolism of al-
cohol disturbs the endogenous glucose production, and thus has a glucose
lowering effect. This variable has not been subjected either. This is mainly
due to that such consumption has not been noted in the diary.

7.6 The Linear Models of GIIM

Three different types of models were investigated, an ARMAX-model, sub-
space models and the GTFM. Of these the GTFM proved to best repre-
sent the system. The ARMAX model and the GTFM were quite similar
both with regards to prediction and their Bode plots. THe subspace mod-
els differed significantly from the two others with resonance peaks in the
GSM/GIIM transfer function at high frequencies. All models shared some
features though. For the ISM/GIIM transfer function all models had a pole
pair close to 0.85±0.1i. Likewise they all agree that the GSM/GIIM transfer
function has a pole pair in the area 0.5− 0.8± 0.5− 0.7i. This may indicate
that these dynamics are essential parts of the system.

The 8-step prediction was quite poor for all the models. The models
had difficulty with the high peaks and the low bottoms of the data. This
is probably an artefact of non-linearities in the system, but can also be due
to that the gains of the GIIM are underestimated due to that the inputs
cancel each other as discussed above. This problem can be seen even clearer
in the simulation of the GTFM. By simply scaling the output the simulated
output resembles the true data at some periods. In other segments of the
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data the model is completely out of track. The poor simulation result can
be explained by a number of factors. Firstly that the interpolated data
that the model tries to represent is flawed. Secondly that the inputs used
for simulation may be flawed. Thirdly and finally that the model is poorly
estimated and/or that the model structure is inadequate to represent the
system. Most likely it is a sum of all these factors. Most of these problems
have been discussed above, except the question of whether the linear models
are adequate enough to represent the system. This will be subjected next.

7.7 Non-linearity

Looking at the coherency plots between the insulin and glucose input to
the GIIM and the glucose output it seems to be a poor linear relationship
between these variables. This may in part be explained by that there are
unrepresented inputs that have a significant impact on the glucose concen-
tration. Even if so the coherence ought to be higher if the GSM/GIIM-
and ISM/GIIM-relation could be modelled linearly, since these variables
undoubtedly are the most important inputs.

A simple way to make the system non-linear is to transform the data.
In the data chapter the log-normal nature of the blood glucose samples was
reviewed. Looking at the log-normal plot in Fig. it seems very plausible
to say that the blood glucose data is log-normally distributed. Therefore
a natural transformation would be to take the natural logarithm of the
data. This transform and the transform suggested by Kovatchev were tested
on the linear model without improvement. The coherence plots did not
improve either. Instead some simple Hammerstein and Wiener models were
considered to extend the GTFM. The Hammerstein models used did not
improve the model performance. The Wiener model used was a Chebychev
polynomial. The accuracy of the prediction improved somewhat with this
model.

7.8 Time-Varying Dynamics

The dynamics of the system vary not only over the time of the day, as dis-
cussed above, but also in a longer time span. This is especially evident in the
studied data period. In Fig. the parameter values of the Matlab algorithm
SEGMENT can be seen. SEGMENT estimates a recursive ARMAX-model
for the entire data period and in the plot the variation of these parameters
over the period can be seen. The parameters fluctuate very much and then
stabilize in the end. The fact that the parameters seem to stabilize may
indicate the end of the honey-moon period. The variations in the system
dynamics are normally not as rapid and violent as this data, but there are
variations due to continuous β-cell destruction, variations in body mass,
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level of exercise etc. It is therefore important to remember that no model is
valid forever, but has to be recursively estimated, so that it corresponds to
the present dynamics.
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Conclusion

The purpose of this thesis was to develop and evaluate different models of
IDDM, based on one patient’s data. The aim was to be able to predict
blood glucose values two hours ahead with an prediction error smaller than
1 mmol/l in 95 % of the cases. The best model, the GTFM-Wiener model
did not meet this goal. The reasons for this are several:

• The number of measurements may be too few and the interpolation
method not optimal, resulting in a poor reconstruction of the blood
glucose curve.

• The system was hard to identify using this data. The inputs act si-
multaneously, making it difficult to estimate the sub-models and to
extract the specific impact of each input on the output.

• The system is non-linear and can thus not be represented by the linear
models.

• The sub-models used to describe the glucose flux and the insulin ab-
sorbtion are probably too simple to accurately describe these processes.

• The estimates of the size and timing of the meals and insulin injections
are not very accurate.

• Unrepresented variables are probably relevant to describe the system.
Such inputs may be exercise and alcohol intake.

Apart from these difficulties some other interesting properties of the
system are:

• The system dynamics are time-varying especially during the honey-
moon phase.

• The glucose measurements are log-normally distributed.
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• All the linear models had some common dynamics. This may indicate
that these dynamics are essential to the system.

This thesis did not meet the goals set, but hopefully revealed some inter-
esting features and some of the inherent difficulties of modelling this system.
Much effort has to be put at analyzing these issues. A brief survey of possible
further research can be found in the next chapter.



Chapter 9

Further Research

In this chapter some ideas for further research are briefly presented.

• Optimal Sampling Schedule: Blood glucose sampling conducted
with a glucose meter is costly and constitutes a annoyance for the
patients. For these reasons the sampling has to be effective. Thus,
one research object is to evaluate how many samples, and when these
are to be taken, to be able to reliably reconstruct the blood glucose
curve.

• Reconstructing the blood glucose curve: Given these samples, an
effective interpolation algorithm and predictive filter has to be avail-
able to reconstruct the blood glucose curve.

• Modelling the Subsystems: As seen in this thesis the sub-models
are very important to accurately describe the system. Flaws in the
sub-models can not be corrected in the GIIM. Especially the GSM is
difficult to model, and must be analyzed with regards to the influ-
ence of fat, protein and fiber on the dynamics of the digestive and
absorbative processes.

• Hammerstein-Wiener models using EKF: The system is non-
linear, and thus calls for non-linear models. One such concept that
may be tested is the Hammerstein-Wiener approach, identified using
the extended Kalman filter[31].

• Physiological Modelling For a deeper understanding of the dynam-
ics of this system, a physiological model is indispensable. C. Cobelli
is currently working on such a model[16], based on previous modelling
efforts[15, 9].

• Exercise: Exercise probably has an important effect on the dynamics
of the system, directly in terms of disposal of glucose, but also indi-
rectly through the effects on the insulin sensitivity. These mechanisms
must be subjected both theoretically and experimentally.
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• Time-varying dynamics: The time variations over the elapse of the
day has to be considered carefully. If the dynamics shift over the day,
different parameter sets of the model has to be considered, one for
each segment of the day, for which the parameters can be considered
fixed.



Appendix A

Predefined Meals

In the diary the meals were noted using the semantic expressions small,
normal and large. Below follows a definition of these standard meals in
terms of fast and slow carbohydrate content. These definitions have been
based on the patient’s estimate of the amount ingested, the weighing of some
groceries and by the use of [32].

Food Fast(g) Slow(g) Total(g)
Breakfast, normal 10 45 55
Breakfast, small 10 25 35

Lunch, small 5 40 45
Lunch, normal 5 85 90
Dinner, normal 5 85 90
Dinner, large 10 120 130
Snack, small 0 10 10

Snack, normal 0 20 20
Dextrosol, 1 piece 3.5 0 3.5

Sweets, 10g 8 0 8
Apple 3 20 23
Pear 3 12 15

Banana 11 18 29
Peach 1 9 10

Potato Chips, 100g 0 47 47
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