
ISSN 0280-5316
ISRN LUTFD2/TFRT--5733--SE

Controller Design for a
Direct Coupled Motor

Ola Svensson
Carl Windfeldt

Department of Automatic Control
Lund Institute of Technology

December 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289940551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Document name
MASTER THESIS
Date of issue
December 2004

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5733--SE
Supervisor
Pontus Nordfeldt and Tore Hägglund at LTH in Lund

Author(s)
Ola Svensson and Carl Windfeldt

Sponsoring organization

Title and subtitle
Controller Design for a Direct Coupled Motor (Regulatordesign för en direktkopplad elektrisk motor)

Abstract
This thesis describes an effort to enhance the control capabilities of an electric motor. It is in the interest of TetraPak that
the research on this motor is performed so that it, in the future, can be a part of their production systems. The thesis has
been separated into three main parts, where in the first part we are trying to find a model that describes the process. The
second part describes how the controllers were developed and the final part how they were implemented in real time. Our
goal was to successfully identify the motor and control it within the, from TetraPak, specified demands. And if time
allowed, do it all automatically.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
107

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
222 42 43

Controller Design for a

Direct Coupled Motor

Ola Svensson E-00
&

Carl Windfeldt M-99

Supervisor: Pontus Nordfeldt
Examiner: Tore Hägglund

Department of Automatic Control
Lund Institute of Technology

13th December 2004

Acknowledgements

We would especially like to thank our supervisor Pontus Nordfeldt at the
department of Automatic Control, Lund Institute of Technology. He has
supported us with guidance and inspiration, and has devoted a lot of time
to us.

We would also like to thank Tore Hägglund at the department of Auto-
matic Control, Lund Institute of Technology. As our examiner he has helped
us structuring this master thesis and has been very helpful.

Thanks go to Anders Sundberg, Sven Hedlund and Istvan Ulvros at Tetra-
Pak R&D for supplying us with the motor. They also gave us the opportu-
nity to visit TetraPak and see the production lines where the motor perhaps
will be used. Anders, Sven and Istvan also visited us at the department half
through the project and gave us constructive feedback.

We would like to thank B&R Automation who provided us with the
PLC and the motor drive. In particular, we would like to thank Daniel
Cederström who installed the new PLC.

Finally, we would also like to thank the proofreader Barbro Ericsson.

2

Contents

1 Introduction 6
1.1 Background . 6
1.2 Specifications . 6
1.3 Our goals . 7
1.4 Report overview . 7

2 Process description 9
2.1 Motor and load . 9
2.2 Angular sensor . 9
2.3 Motor drive and PLC . 9
2.4 Time delay and sampling period 10
2.5 Disturbances acting on the process 11
2.6 Nonlinearities in the process 12

3 System identification 13
3.1 The identification procedure 13
3.2 Modeling of a motor . 14
3.3 Identification methods . 14

3.3.1 Relay identification . 14
3.3.2 Least squares identification 15
3.3.3 Subspace identification 16
3.3.4 Recursive least squares identification 16
3.3.5 Validation . 17
3.3.6 Model reduction . 18

3.4 Model design . 19
3.4.1 Relay identification . 19
3.4.2 Least squares identification 21
3.4.3 Subspace identification 24
3.4.4 Recursive least squares identification 25

3.5 Model validations . 28
3.5.1 Relay identification model 28
3.5.2 Least squares identification model 28
3.5.3 Subspace model . 29

3.6 Problems . 29
3.7 Summary . 31

4 The control problem 33
4.1 Motivation . 33
4.2 State space model . 34

3

4.3 Controller methods . 34
4.3.1 RST controller . 34
4.3.2 State feedback control 35
4.3.3 Linear quadratic control 35
4.3.4 Linear quadratic gaussian control 36
4.3.5 Linear quadratic self-tuning regulator 37

4.4 Controller design . 37
4.4.1 RST controller . 37
4.4.2 State feedback controller 38
4.4.3 Linear quadratic controller 39
4.4.4 Linear quadratic gaussian controller 46
4.4.5 Linear quadratic self-tuning regulator 47

4.5 Problems . 51
4.6 Summary . 51

5 Reference following - The servo problem 53
5.1 Motivation . 53
5.2 Reference following methods 53

5.2.1 Prefiltering . 53
5.2.2 Iterative learning control 54

5.3 Reference following design . 54
5.3.1 Prefiltering . 54
5.3.2 Iterative learning control 55

5.4 Summary . 58

6 Programming 60
6.1 General . 60
6.2 The B&R Automation Studio environment 60
6.3 Identification methods . 61
6.4 Controllers . 61

7 Testing and evaluating 63
7.1 Changing loads . 63

7.1.1 Procedure . 63
7.1.2 Four weights attached 64
7.1.3 No weights attached 67

7.2 Increasing the current . 70
7.3 Test results . 72

8 Conclusion 74

4

9 Discussion 75

References 77

A Matlab code 78
A.1 Relay . 78
A.2 ARX-model . 78
A.3 Subspace identification . 80
A.4 Pole placement for the RST controller 81
A.5 LQ control . 81
A.6 LQG control . 82
A.7 Prefilter calculations . 83
A.8 Curve generating algorithm 84
A.9 ILC filter calculations . 84

B Programming 86
B.1 Identification methods . 86

B.1.1 Relay identification . 86
B.1.2 Least squares identification 88
B.1.3 Recursive least squares identification 92
B.1.4 Resampling and computation of LQ parameters 94

B.2 Controllers . 95
B.2.1 RST controller . 95
B.2.2 State feedback controller 95
B.2.3 Linear Quadratic controller 96
B.2.4 Linear Quadratic Gaussian controller 98
B.2.5 Iterative Learning Control 100

C Motor specifications 103

5

1 Introduction

1.1 Background

This thesis is based on efforts to enhance the control of one of TetraPak’s
motors. TetraPak is one of the biggest corporations in the world when
it comes to packaging systems. They supply hundreds of different types
of packaging, from cartons to PET bottles. They also develop their own
processing solutions.

In an advanced manufacturing system there are lots of different factors
that have to coincide. For optimal performance there is a very high demand
set on all mechanical parts of the system. That is why it is in TetraPak’s
interest to upgrade their production lines regularly.

The motor on which this thesis is based is a direct coupled, synchronous
motor. The advantages it has to its predecessor is that the old motor is not
direct coupled. A geared motor usually performs better in control applica-
tions, but is more expensive in terms of wearing damage. If it is possible
to control the new motor within the same criterium as the old motor, the
repairing costs could be reduced.

The problem with controlling a direct coupled motor is that the torque
is directly transfered from the motor to the machinery. This means that
the motor has to be very precise in its movements. If all the disturbances
and dynamics are taken into consideration, it is easily realised that this is a
difficult problem.

1.2 Specifications

Controlling a motor within certain specifications can be very difficult. Since
the purpose of the motor is already decided, the specifications given are the
same as those of the other motor, already in use. The conclusion of this
is that the desired precision can be difficult to achieve with a motor with
worse controlling capabilities.

With a load disturbance equal to the nominal torque of the motor, the
stationary error must not be greater than 0.1 mm at the peripheral of the
wheel attached to the motor. The nominal torque appears at a current of 3
A which corresponds to a pressure of about 15 kg at the peripheral of the
wheel. The wheel is attached to the motor only during the testing period.
Its purpose is to act as a symmetrical load on the system giving a simple
model of the real process.

The same criterium holds for the reference following. The position of the
wheel, at the peripheral, must not deviate from the reference signal more

6

than 0.1 mm at any point.
There is also a demand that the reference following can be performed

quickly. In other other words, the motor must turn from point A to point
B as fast as possible, but still within the specifications. The distance from
point A to point B should be about a sixth of a revolution. The time used
has no precise maximum limit but it should take about 0.2 s.

A distance as small as 0.1 mm is difficult to appreciate accurately without
any special measuring equipment. With the resolution used in this thesis,
0.1 mm will be equal to 13 units. This will be described further in section
2.2.

1.3 Our goals

Early in the project it was clear that the specifications would be hard to
reach. Since no one ever had tried to control this motor before, it might
as well be impossible. Therefore our ambition became to show if it was
possible to reach the specifications. Of course it was desirable to fulfill all
the specifications and at the end of the project duration show a controller
that did. But since it could be impossible to reach the high demands it was
as desirable to show that it was impossible. To show this would be the same
as showing that this motor perhaps was not the right choice for the specific
application and therefore could be excluded from further testing.

1.4 Report overview

To simplify the reading of this report we have tried to make it as structured
as possible. In doing so the report has been separated into six major chapters
followed by the conclusions, discussion, reference list and the appendixes.
The different chapters have been divided into a method description part
and a design part. The first part explains the basic theory, while the second
part shows the design procedure used in this thesis.

Chapter 2 describes the process and all its complications. This means
that you will get an appreciation of the conditions of the motor, the PLC, the
computer and the sensor dynamics. This section will also discuss different
disturbances like load disturbances, measurement noise and delays.

Chapter 3 covers the system identification. To be able to control the
motor in most cases you need a model of the motor to work with, both for
the simulations and the actual controller calculations.

Chapter 4 deals with the control problem. The control problem is the
effort to reduce the effects of unwanted disturbances. Different controllers
are described and implemented so it will be possible to see which of them

7

has the best characteristics.
Chapter 5 deals with the servo problem. In this section, the motor is

subject to a reference step. This means that the motor will rotate and
stabilize at a new angle. There are certain ways of doing this fast and
accurately. Some of these will be considered here.

Chapter 6 handles different tests of the chosen controllers. To get an idea
of what the controllers can and cannot do, the testing is a necessary part of
the complete evaluation.

Chapter 7 is the implementation part. Everything that is going to be
tested in the real process has to be written in the computer language C.
This means that the control theory used in the previous sections has to be
discretized. For some of the algorithms this was a tricky part and sometimes
very difficult since the memory and calculation time limitations set boundries
for how complex the formulas could be.

In the appendices, the C and Matlab codes used have been gathered.
The C code has been divided into the separate controllers and identification
methods. Every section is explained to simplify the understanding.

8

2 Process description

2.1 Motor and load

The main part of the process is of course the motor. It is a 3-phase syn-
chronous motor. The maximum torque is 311 Nm and the nominal torque
is 64.5 Nm. This corresponds to a peak current of 17 A and a continuous
current of 3 A. If these limits are exceeded there is a risk of damaging the
motor. To be sure not to damage the motor the maximum current was set to
4 A throughout the project. This of course sets a limit of how fast position
reference trajectories the motor will be able to follow.

The motor is mounted on a rig. There is a big wheel connected to the
motor axis, that is the load is direct coupled to the motor axis. On the
peripheral of the wheel up to eight steel weights can be mounted. The
purpose of these weights is to create a big moment of inertia on the load.
With all weights mounted the moment of inertia on the load is about 9 kgm2

(section C).

2.2 Angular sensor

The motor is equipped with an angular sensor. The sensor has a theoretical
resolution of 16 000 000 increments per revolution. However, the actual
resolution depends on the control system used. In this thesis, the maximum
resolution was 3 600 000 increments per revolution (section C).

There is no sensor to measure the angular velocity with. So, to get a
value of the velocity, one way is to differentiate the position. That is, to
take the difference between the actual position and the previous position
and divide by the sampling period.

In the beginning of the work the resolution was set to only 3 600 incre-
ments per revolution. This worked well during the identification. But in the
control part it did not suffice at all. So the resolution was increased to 360
000 increments per revolution. This is why some plots of the velocity are
in the range of thousands while some plots are in the range of hundreds of
thousands.

From now on in the report increments per revolution are referred to as
units and increments per revolution/s are referred to as units/s.

2.3 Motor drive and PLC

On the back of the rig there is a motor drive. The drive provides the mo-
tor with a 3-phase current. The value of that current is determined by a

9

controller. There is a PD controller implemented in the drive. But in this
project, it was neither possible to access that controller, nor to implement
another controller in the drive. To solve this problem there is a PLC con-
nected to the drive. The controllers implemented in this project run from
the PLC.

To be able to compute the new control current the controller in the PLC
needs to read the motor position from the drive. Likewise the drive needs to
read the control current from the controller in the PLC. This communication
is performed over a network. The drive and the PLC are supplied by B&R
Automation. B&R Automation is a multinational company in the industrial
automation business. TetraPak uses their control systems.

The PLC is programmed from a computer. All code is written in C. The
different controllers are implemented in a program called B&R Automation
Studio and then transferred to the PLC over a network.

Figure 1: The programming code is downloaded from the computer to the
PLC. The PLC calculates the current that the motor drive will send to the
motor.

2.4 Time delay and sampling period

The fact that the controller cannot be implemented in the drive makes the
control problem more difficult. A value of the current that is sent from the
PLC does not affect the motor instantly. Due to the network connection
between the PLC and the drive there is a time delay in the process. A
time delay decreases the phase margin and therefore deteriorates the control
performance.

10

The time delay could rather easily be measured in terms of samples by
applying a step in the current and measuring how many samples it takes
before the motor moves. This value is of course depending on the sampling
period. At the beginning of the work the sampling period was set to 1.2 ms.
Then the time delay was 6 sampling periods. But after about three months
the PLC was replaced with a newer one. This led to a shorter time delay.
But as the new PLC was faster it was possible to decrease the sampling
period. The sampling period was set to 0.4 ms which resulted in a time
delay of 6 sampling periods again. However, if TetraPak wants to use the
controller that has been designed in this project it would be implemented in
a B&R motor drive. The time delay would then disappear.

The change of PLC and sampling period may cause some confusion in
this report. The first identification was performed with a 1.2 ms sampling
period. After the change of PLC the sampling period of the control loop was
changed to 0.4 ms. But it turned out to be difficult to get good identification
results with such a short sampling period. Therefore the identification was
placed in another loop with a 4 ms sampling period. The resulting models
then had to be resampled to fit the sampling period of the control loop. This
has not been a problem though, and it works excellently.

2.5 Disturbances acting on the process

There are two main types of disturbances, load disturbances and measure-
ment noise.

It is quite difficult to foresee exactly what kind of load disturbances that
are likely to occur in the process. However, Tetra Pak usually tests their
controllers by applying a load disturbance as a step with a magnitude that
corresponds to the nominal torque of the motor. For this motor that would
be the same as adding a step load disturbance of 3 A at the input of the
process. It is this load disturbance which is used in the simulations and also
when simulating a load disturbance on the real process.

The measurement noise is a bit different. It is possible to get an idea of
the characteristics of the noise by measuring the position of the real process.
The noise does not appear to be very large when measuring the position. But
the problem is that there is no velocity sensor in the motor, so the velocity
cannot be measured but has to be differentiated from the position. And
when differentiating, the small noise component of the position gets large
in the computed velocity. As will be shown in chapter 4, the measurement
noise will affect how small the position error can be without getting a too
noisy control signal.

11

There have been made no attempts to construct a model of the mea-
surement noise. Throughout the project the measurement noise has been
considered to be white.

2.6 Nonlinearities in the process

The motor is affected by two nonlinearities. Friction is a very common
nonlinearity that is hard to avoid in any application. The static friction
in the motor sets the limit of how small currents that can make the motor
rotate. To overcome the static friction a high initial current is needed.

The other nonlinearity makes its presence known at velocities above 400
000 units/s, or 4000 units/s in the older graphs (section 2.2). Data collected
from velocities higher than this cannot be trusted.

12

3 System identification

3.1 The identification procedure

To efficiently control a device, a suitable model to describe it with has to be
chosen. There is a wide selection of models to use depending on the number
of inputs and outputs to the system and if you want to include some kind
of noise model. In this thesis, four different techniques were tried.

Identifying a system usually consists of applying some kind of action to
excite the unknown system and then interpret the response you get from
the signal. With this motor, the action required is the current that drives
the motor and the response is the position or the velocity of the wheel
attached to the motor. In the construction of a model you record these
data, the signal you send in and the response you get out, and apply it on
a computing algorithm of choice to get a model description. Step responses
and impulse responses could be used to excite the system, but they often do
not give enough accuracy. This is due to the order of persistant excitation
of the signal [4]. The higher the order, the more complex the model that can
be identified. In this thesis there are two methods used, a relay technique
based on nonlinear control [5] and identification with a PRBS signal [4].

When the data sets of the excitation signal and its response are available,
it is time to decide which calculation method to use. Of course this area has
a hoard of different approaches, but if you want a simple, reliable technique
that is easily implemented in C, you can use least squares identification. The
problem with that is that it lacks efficient noise handling and that it cannot
cope with resonance peaks in a good way. If there are resonance peaks in
the process, an alternative is to use subspace identification. This method is
better at identifying complex dynamics. If the process parameters change
with time, one option is to implement recursive least squares identification.
This method updates the process parameters regularly.

When a process is described in terms of an equation, the more complex
the description, the more precise the model can be. But a high model order
can cause trouble when designing the controller. Therefore it is desirable to
see whether it is possible to reduce the model to a lower order and still keep
a high accuracy. If this is the case, a model reduction can be performed
with, for example, the balanced realization technique [4].

The final step of the identification procedure is usually to validate the
correctness of the model. This can be done in several different ways. In this
thesis we have mostly used the cross validation simulation technique [4].

13

3.2 Modeling of a motor

When doing system identification of a motor you already have some pre-
knowledge of the structure of the process. A typical transfer function from
current to velocity of a motor consists of one pole and a gain

G(s) =
K

s + p

This would be true if the action of the motor was transferred to the load
without any dynamics in the coupling in between. But for this particular
motor this is not true due to the big forces needed to rotate the mass of
the load. Although the coupling is made of solid steel it will be flexible and
give rise to a resonance in the transfer function from current to velocity. A
resonance is the same as two complex poles, which makes it a third order
system. This can be written as

G(s) =
K

(s + p1)(s2 + p2s + p3)

The influence of this resonance is depending on the mechanics. One task of
the project was to investigate how big this influence is.

3.3 Identification methods

3.3.1 Relay identification

The relay identification method is a nonlinear technique based on the de-
scribing functions method. A describing function is a way to describe a
nonlinearity in a system. Since the relay is a well known nonlinearity, it is
an easy task to calculate its describing function. The idea is that you get the
motor to oscillate with constant amplitude and frequency. It can be done
with the help of a relay with hysteresis. This state of stable oscillations is
called a limit cycle. When the process reaches a limit cycle it means that
both the relay and the process have the same frequency in the oscillations
and this can be used to calculate the model parameters. The applicability
of this method depends on the complexity of the model you wish to identify.
Since it only uses one equation of equality it is only possible to have one
unknown pole in the linear process. If there are more than one unknown
pole you need additional techniques. The static gain will have to be deter-
mined in another way. It can, for example, be a good choice to use a step
to retrieve it [5].

14

3.3.2 Least squares identification

Least squares estimation is based upon linear regression. Linear regression
is a way to find a relationship between different variables. In this case it is
the relationship between the input (current) and the output (velocity). This
relationship can be expressed with the model

y(t) = φT θ + e(t)

where y(t) are the observations, φ are the so called regressors, θ are the
parameters to be estimated and e(t) is the error between the observations
and the linear regression model.

With a set of observations you get the matrix notation

YN = ΦNθ + e

For a certain parameter estimation θ̄ you get the error vector

ε(θ̄) =

⎛
⎜⎜⎜⎜⎝

ε1

ε1
...

εN

⎞
⎟⎟⎟⎟⎠

This is called the prediction error. It is easily understood that you want the
prediction error to be small in order to get an accurate model. One way to
achieve this is to use least squares estimation. This method minimizes the
sum of the squared errors between the model and the observations, that is

minV (θ̄) = min
1
2
εT ε = V (θ̂)

In other words, you want to find the parameter estimation θ̂ that minimizes
the above expression. The solution to this problem is given by the equation

θ̂ = (ΦT Φ)−1(ΦT Y)

An advantage with least squares estimation is that it is rather easy to com-
pute the parameter estimations. All you need to do is matrix multiplication
and inversion. This fact makes least squares estimation an attractive option.
However, there are probably other methods, like subspace identification, that
finds a model to describe a process with a resonance peak more accurately
[4].

15

3.3.3 Subspace identification

The idea with subspace identification is to create a state space model directly
from input-output data. A great advantage with subspace identification is
that you do not have to know anything about the model structure, except for
the order of it. Instead of using a Hankel matrix with Markov parameters
you use two hankel matrices, one with the input data, Uh, and the other
with the output data, Yh.

Uh =

⎛
⎜⎜⎜⎜⎝

uk uk+1 . . . uk+s−1

uk+1 uk+2 . . . uk+s
...

...
. . .

...
uk+r−1 uk+r . . . uk+s+r−2

⎞
⎟⎟⎟⎟⎠

Yh =

⎛
⎜⎜⎜⎜⎝

yk yk+1 . . . yk+s−1

yk+1 yk+2 . . . yk+s
...

...
. . .

...
yk+r−1 yk+r . . . yk+s+r−2

⎞
⎟⎟⎟⎟⎠

Then you introduce the two statevectors X1 and X2 with a relative timeshift.

X1 =
(

xk xk+1 . . . xk+s−1

)

X2 =
(

xk+j xk+j+1 . . . yk+j+s−1

)
Together with an extended observability matrix, Cr, and a lower triangular
Toeplitz matrix, Dr, the two equalities

Yh1 = CrX1 + DrUh1

Yh2 = CrX2 + DrUh2

can be formulated. Solving these two equations for X1 and X2 using singular
value decomposition you get an overdetermined system.(

xk+1 . . . xk−j−1

yk . . . yk−j−2

)
=

(
A B

C D

)(
xk . . . xk−j−2

uk . . . uk−j−2

)

From this system the A, B, C and D matrices in the state space solution
can be calculated. [4]

3.3.4 Recursive least squares identification

Recursive least squares identification has many similarities to least squares
identification. The purpose is the same, to minimize the sum of the squared

16

errors. The difference is that the computations are performed online. The
parameter values are updated in each loop. In order for the computations
to be sufficiently fast it is necessary to find a recursive update algorithm of
the parameters. By introducing the notations

P (t) = (ΦT
NΦN)−1 (covariance matrix)

K(t) = P (t)φ(t)

and rewriting the resulting equation of the least squares identification

θ̂ =

(
t∑

i=1

φ(i)φT (i)

)−1 (t∑
i=1

φ(i)y(i)

)
= P (t)

t∑
i=1

φ(i)y(i)

the parameter update could be written as

θ̂(t) = θ̂(t − 1) + K(t)(y(t) − φT (t)θ̂(t − 1))

θ̂(t) is now depending on the value of θ̂(t− 1). But K(t) and P (t) must also
be updated accordingly. By use of the Matrix inversion lemma a complete
updating algorithm for recursive least squares identification is achieved:

θ̂ = θ̂(t − 1) + K(t)(y(t) − φT (t)θ̂(t − 1))

K(t) = P (t)φ(t) = P (t − 1)φ(t)(I + φT (t)P (t − 1)φ(t))−1

P (t) = (I − K(t)φT (t))P (t − 1)

Now the whole calculation can be performed online by use of the previous
values of θ̂(t), K(t) and P (t). The recursive approach implies that initial
values of θ̂(t) and P (t) need to be set.

In the algorithm above the process parameters are assumed to be con-
stant. If the parameters change with time an alternative is to introduce the
so called forgetting factor λ. Then, data that is n time units old are weighted
by the factor λn. This implies that old data will not be taken into account as
much as newer data. Therefore the parameter estimations will adapt faster
to changes in the process. The recursive least squares identification with
forgetting factor can be implemented with small modifications of the above
algorithm [6].

3.3.5 Validation

The validation of a model is a necessary step if you want to verify that the
model is a good approximation of the process. There are a wide variety of
techniques for doing this where most of them focus on the residuals. The

17

residuals are vectors that describe the difference between the correct values
and the approximated values. This difference is usually plotted together
with some sort of restriction of how big it is allowed to be. It is a very
straightforward way of observing if the model is adequate. A simple way to
to check the residuals is to use the command resid in Matlab.

The method mainly used in this thesis is cross validation simulation. In
this method a comparison is made between the output from the process and
the output from the model. These two data sets are plotted in the same
graph so that it is easy to compare them. The output from the model is
obtained by applying the same input to a simulation of the process as to the
real process. This is done in the Matlab environment with the command
idsim. For this command to work correctly, it is necessary first to calculate
the correct initial values. For this purpose the command dac2bdx can be
used.

If the validation shows that the model is not accurate enough to describe
the process, the reason can be one of the following things: either the identi-
fication technique used does not work well with the process or the order of
the model is not the correct one. A third reason is of course that the motor
is too complex so that it is impossible to get a model good enough, but then
you have to lower your demands.

3.3.6 Model reduction

The term model reduction could have a number of different interpretations.
This section will cover model order reduction in a linear system, as this is
what is relevant for this project. Two different methods will be described.
First model reduction from a balanced realization is described, followed by
the method of dominating poles.

After having created a state space model of a certain order, it would
be interesting to see how significant the different states are with respect to
each other. One way to do this is to transform the system to the balanced
realization form. This is done by finding a transformation matrix T such
that the reachability gramian P equals the observability gramian Q [4]. The
new system is then described by

z(k + 1) = Φ′z(k) + Γ′u(k) = TΦT−1z(k) + TΓu(k)

y(k) = C ′z(k) = CT−1z(k)

When the system is on balanced realization form, it is possible to investigate
the relevance of the different states by looking at the diagonal elements of
the Gramian Σ = P = Q. A small value of an element shows that the

18

corresponding state has a low effect on the input-output behavior. It is then
natural to assume that these states could be removed without changing the
accuracy of the model very much. A rule of thumb says that a state could
be removed if the corresponding element is at least a factor 10 smaller than
another element.

When eliminating a state i in the state space representation you set xi(k+
1) = xi(k). This means that xi(k) can be written as a function of the states
that will remain and the input signal u(k). Then xi(k) is replaced in the
remaining states with the resulting expression. xi(k) should also be replaced
in the expresion of y(k). This implies that there will be a direct term D in
the state space system [4].

Another way to perform model reduction is the method of dominating
poles. The idea is to look at the transfer function and simply eliminate the
fast poles. Then the transfer function must be compensated with a factor to
get the same static gain. After this, the denominator of the transfer function
will only consist of the dominating poles. This method is not as satisfying
as the balanced realization method, but it was used in the implementation
to save time.

3.4 Model design

3.4.1 Relay identification

The equality discussed in the identification methods part (section 3.3.1),
which this method depends on, is the equation G(iω) = −1/N(A,ω), where
G(iω) is the linear model of the motor and N(A,ω) is the describing function.
The frequency, ω, was measured by counting the number of computer cycles
from the moment the motor passed its zero position in the positive direction
until it happened the next time. When a measurement differed less than
0.005 1/s from the previous one, that value was stored and the measurement
was finished. The amplitude was measured simultaneously by just saving
the highest absolute value of the position (fig. 2).

In this case the linear model of the motor is described by

G(iω) =
K

iω + a
e−iωL

where K is the gain, a is the process pole and L is the time delay of the
system. The model input is the control current and the output is a velocity.
K can be given as the qoutient between the amplitude of the step in the input
signal and the amplitude of the response in the output signal. However, it
turned out that this did not work so well. The reason was that to overcome

19

the static friction a quite large step was needed in the input signal. And a
large step led to stationary end velocity that was above the linear region,
which is velocities faster than 400 000 units/s. Therefore another method
was tried. An RST controller (section 4.3.1) was used to drive the motor
to a high velocity (but still in the linear region) and then step down to a
lower velocity. By dividing the difference in velocity with the difference in
current a value of K was achieved (fig. 3). Still it was uncertain though, if
this value was correct since it differed quite a bit from the simulated results
in Matlab.

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

cu
rr

en
t (

A
)

0 5 10 15 20 25 30 35 40 45 50
8.3

8.4

8.5

8.6

8.7

8.8

8.9
x 10

6

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 2: Identification using a relay with hysteresis.

The describing function of the relay is written as

1/N(A,ω) =
π

4d

√
A2 − ε2 − i

πε

4d
with ε as the hysteresis, A as the amplitude of the inputsignal and d as
the amplitude of the relay. These parameters are already known in the
experiment. The equality from the beginning of this section now gives

K

iω + a
e−iωL =

π

4d

√
A2 − ε2 − i

πε

4d
with a and L as the unknown parameters. These two can be aquired by
comparing the gain and the phase of the two sides.

a =
√

(K | N(A) |)2 − ω2

L = arctan
ω

a
− arctan

ε√
A2 − ε2

20

0 1 2 3 4 5 6 7 8
−4

−2

0

2

4

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8
1.5

2

2.5

3

3.5

4

4.5
x 10

5

time (s)

ve
lo

ci
ty

 (
un

its
/s

)

Figure 3: A step from a high velocity to a low velocity in order to determine
the static gain of the system.

This gives the model of the motor. If you want to control the position instead
of the velocity just add an integrator in the model.

3.4.2 Least squares identification

Least squares estimation is described in section 3.3.2. In Matlab it is per-
formed with the command arx. But when using arx you have to decide
which model order to use. Another option is to use the two commands
arxstruc and selstruc to investigate the behavior of different model or-
ders (fig. 4).

The diagram in figure 4 shows how accurate the models of different order
are when applied to this particular data set. A low column means that the
corresponding model order has high accuracy. It is seen that the accuracy
increases with increasing model order. However, the model shall not only
be able to predict this data set but all data sets from the motor. Therefore
you should not pick a model with too high an order. Instead the model that
is placed in the so called knee should be picked, where the accuracy is high
but the model order is still not too high [4]. That model corresponds to the
third column from the left, which is a model of order three. In section 3.2,
it has already been predicted that model order three would be a reasonable
choice.

A third order model of the process was created with the command arx.

21

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of parameters

%
 U

ne
xp

la
in

ed
 o

f o
ut

pu
t v

ar
ia

nc
e

Figure 4: Arcstruc and selstruc are used for the decision of model order.
The recommended model order is located in the knee.

The input-output data were collected from a loop with the sampling period
4 ms. Hence the model is also created with the sampling period 4 ms. In
polynomial form, the third order model is

A(q)y(t) = B(q)u(t) + e(t)

A(q) = 1 − 0.9458q−1 − 0.3929q−2 + 0.3391q−3

B(q) = 295.1q−1

In the bode diagram (fig. 5), the resonance peak generated by the flexible
coupling between the motor and load is visible, but not very large. It would
now be interesting to see how significant the different states are. Then
the system must be transformed to a balanced realization. This is done in
Matlab with the command dbalreal. Dbalreal automatically computes
the elements of the gramian Σ.

Σ =

⎛
⎜⎝

450828
775.2
201.7

⎞
⎟⎠

It is seen that the first state is highly dominating. The factor between state
one and two is about 581. According to the arguments presented in section
3.3.6 it would be possible to reduce the system to a first order system and still
keep a good model. The model reduction is performed with the command
dmodred. The bode diagram of the resulting first order model is shown in
figure 6 and its polynomial structure is

A(q)y(t) = B(q)u(t) + C(q)e(t)

22

10
1

10
2

10
3

10
4

10
0

10
1

10
2

A
m

pl
itu

de

10
1

10
2

10
3

10
4

−200

−150

−100

−50

0
P

ha
se

 (
de

gr
ee

s)

Frequency (rad/s)

Figure 5: Bode plot of a third order least squares model. The sampling
interval is 4 ms.

A(q) = 1 − 0.99954q−1

B(q) = 413.6q−1

C(q) = 1 − q−1

The C polynomial contains a model of the noise. But this polynomial is
discarded since the noise is considered to be white. The resonance peak

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

A
m

pl
itu

de

10
1

10
2

10
3

10
4

−200

−150

−100

−50

0

P
ha

se
 (

de
gr

ee
s)

Frequency (rad/s)

Figure 6: Bode plot of a first order least squares model. The sampling interval
is 4 ms.

is no longer visible. This was expected, since the information about the
resonance was contained in the states that were reduced.

23

In order to be able to use the model for control purposes, the model
must be resampled to a 0.4 ms sampling period. This is necessary since the
controllers are running in a 0.4 ms loop. Resampling is performed with the
Matlab command d2d. The first order model with a 0.4 ms sampling period
becomes

A(q)y(t) = B(q)u(t) + C(q)e(t)

A(q) = 1 − 0.99995q−1

B(q) = 41.36q−1

C(q) = 1 − q−1

When the least squares identfication in Matlab was working and the model
had been validated (section 3.5.2), the least squares identification was im-
plemented in the PLC. The reason for this is that it is desirable for TetraPak
to have an automatic identification procedure. Then the identification can
be performed by anyone by a single click on a button.

The automatic least squares identification estimates a third order model.
The model is then reduced to a first order model by the method of dominat-
ing poles. Finally the model is resampled to a 0.4 ms sampling period. This
means that the difference between the Matlab identification and the least
squares identification of the process model is the model reduction. However,
it was found that the two reduction methods produced very similar results.

3.4.3 Subspace identification

The procedure in this case is a lot like the approach used in least squares
identification. The data sets are retrieved by sending the PRBS signal
through the motor and recording the output from the motor. The sub-
space model (section 3.3.3) is then obtained with the command n4sid in
Matlab. N4sid gives the model on state space form.

A third order model seems like the natural choice since this was used
in the least squares estimation and using the same order here will simplify
comparing the different results. But there is also another reason for using
a model of the third order and that is that we know the process has one
real and two complex poles. The two complex poles are the cause of the
resonance peak in the bode plot of the model (fig. 7). Reducing the order
of this model is done in the same way as in LS estimation (section 3.4.2). In
Matlab, you first make sure that the model is correctly balanced with the
command dbalreal. Next step is to decide which order to reduce it to. The
gramian Σ of the model gives a good glimpse of how relevant the different

24

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

A
m

pl
itu

de

10
1

10
2

10
3

10
4

−600

−500

−400

−300

−200

−100

0
P

ha
se

 (
de

gr
ee

s)

Frequency (rad/s)

Figure 7: Bode plot of a third order subspace model.

model states are.

Σ =

⎛
⎜⎝

5354.1
140.8
140.3

⎞
⎟⎠

Since the most significant state is more than a factor ten bigger than the
other states, the other states can be eliminated (3.3.6). The factor between
state one and state two in this gramian is about 38 which is enough to
eliminate the two smaller states. This method recommends that the third
order model is reduced to a first order model. The model reduction is then
achieved with the command dmodred in Matlab.

In the bode plot of the reduced model (fig. 8) you can see that a lot of
information has been lost in the reduction.

3.4.4 Recursive least squares identification

The aim of the recursive least squares identification was to obtain a third
order model of the process. The process can be described by the difference
equation

y(k) = −a1y(k − 1) − a2y(k − 2) − a3y(k − 3) + bu(k − 1)

Then the parameter estimation vector will be

θ̂(t) =
(

a1 a2 a3 b
)′

and the regressor vector will be

φ(t) =
(

−y(k − 1) −y(k − 2) −y(k − 3) u(k − 1)
)

25

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

A
m

pl
itu

de

10
1

10
2

10
3

10
4

−200

−150

−100

−50

0

P
ha

se
 (

de
gr

ee
s)

Frequency (rad/s)

Figure 8: Bode plot of a first order subspace model.

The parameter estimations were then updated online, according to the al-
gorithm in section 3.3.4. The sampling period of the identification loop was
4 ms. But before the RLS identification could be used, initial values of θ̂(t)
and P(t) must be set. Since least squares estimation was already performed,
it was possible to have an idea of what the reasonable initial values of θ̂(t)
could be. The initial values were set to be of the same magnitude as the
result of the least squares identification. The initial covariance matrix was
set to 10*I.

The result of the RLS identification is highly dependent on how the
process is excited. In order to test the implementation of the RLS iden-
tification, the process was excited with a PRBS signal. This is of course not
the proper way to use RLS, but since this test should give about the same
result as the batch version of the LS estimation, it would verify the correct-
ness of the implementation. As seen in figure 9, the parameters converge
to the desired value and are very stable. In figure 10, it is seen that the
covariance matrix converges fast to low values. However, the estimation of
b (theta[3]) is a bit more uncertain than the other estmations. Although the
tests showed that the RLS identification works fine it is difficult to validate it
as a separate unit. Therefore the RLS identification will not be investigated
more until it is used in conjunction with an adaptive controller in chapter
4.

26

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

th
et

a[
0]

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2
th

et
a[

1]

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

th
et

a[
2]

0 0.5 1 1.5 2 2.5 3 3.5 4

0

500

1000

th
et

a[
3]

time (s)

Figure 9: Parameter estimations when the RLS was excited with a PRBS
signal.

0 0.05 0.1 0.15 0.2 0.25
0

5

10

P
[0

,0
]

0 0.05 0.1 0.15 0.2 0.25
0

5

10

P
[1

,1
]

0 0.05 0.1 0.15 0.2 0.25
0

5

10

P
[2

,2
]

0 0.05 0.1 0.15 0.2 0.25
0

5

10

time (s)

P
[3

,3
]

Figure 10: The value of the covariance matrix when the RLS was excited
with a PRBS signal.

27

3.5 Model validations

3.5.1 Relay identification model

The model gained with the relay identification method is a bit uncertain.
The reason for this is that the gain of the system was difficult to determine
due to nonlinearities in the system. The two graphs in figures 11 and 12
show two models validated with the same data series. The difference between
them is that the correctness of the models differs. This is a problem and
cannot be allowed in a real environment.

Figure 11: A first order relay model validated with a dataseries from the
same experiment. The sample time is 0.4 ms.

Figure 12: A first order relay model validated with the same dataseries as in
figure 11. The sample time is 0.4 ms.

3.5.2 Least squares identification model

The cross validation of the least squares model shows that it is very good
at following the process (fig. 13). There is very little difference in the cross
validation between the third order model and the first order model. This
confirms that the model reduction of the least squares estimation does not
affect the accuracy of the model significantly.

28

One thing the least squares estimation does not manage to do so well is
to model the resonances and the noise in the process. Even the third order
model becomes a straight line when looking at a small area (fig. 14).

0 0.5 1 1.5 2 2.5 3 3.5 4
−3500

−3000

−2500

−2000

−1500

−1000

−500

ve
lo

ci
ty

 (
un

its
/s

)

0 0.5 1 1.5 2 2.5 3 3.5 4
−3500

−3000

−2500

−2000

−1500

−1000

−500

ve
lo

ci
ty

 (
un

its
/s

)

time (s)

Figure 13: Cross validation between the true output from the process and
the ouput from an arx model. The upper graph is a third order model, the
lower is a first order model. The sampling period is 1.2 ms.

3.5.3 Subspace model

The cross validation shows that the the third order model and the first order
model both estimate the true values with good results (fig. 15). It can also
be seen that the third order model has a higher underlying frequency which
the first order model has not. This is due to the complex poles in the third
order model that were eliminated in the first order model.

3.6 Problems

Unknown forces are always a problem in modelling. In this project the
friction forces in the motor made the work more difficult. To get a good
estimate of the gain in the process using a step, it is important that the
step is performed in a linear region. Because of the static friction it became
unreliable to work with small currents.

Another problem was that the linear region of the motor did not stretch
up to higher velocities. Above 400 000 units/s the measurements were no

29

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58
800

900

1000

1100

1200

1300

1400

1500

ve
lo

ci
ty

 (
un

its
/s

)

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56 1.58

800

900

1000

1100

1200

1300

1400

1500

time (s)

ve
lo

ci
ty

 (
un

its
/s

)

Figure 14: The same as figure 13 but a different scale. Note the poor esti-
mation of the higher frequency oscillations.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

3000

3500

ve
lo

ci
ty

 (
un

its
/s

)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

3000

3500

ve
lo

ci
ty

 (
un

its
/s

)

time (s)

Figure 15: Crossvalidations between the true output from the process and
the output simulated with the third order model (upper) and the true output
from the process and the output simulated with the first order model (lower).

30

2.15 2.2 2.25 2.3 2.35

2600

2700

2800

2900

3000

3100

3200

ve
lo

ci
ty

 (
un

its
/s

)

2.15 2.2 2.25 2.3 2.35

2700

2800

2900

3000

3100

3200

time (s)

ve
lo

ci
ty

 (
un

its
/s

)

Figure 16: The same as figure 15 but a different scale. Note that the third
order model can estimate the underlying frequency.

longer reliable. This made the approximated gain in the relay identification
method very uncertain.

One thing rarely considered when applying a theory to a practical envi-
ronment is the time delays that appear. Between the motor and the PLC
drive there is a delay of about six sample periods, which equals 2.4 ms. This
means that in the calculations, for every input signal the corresponding out-
put signal comes six steps later. This leads to the fact that the phase margin
is lowered which can lead to stability problems.

There was also a problem in the communication between the motor drive
and the PLC. This problem first occurred when the old PLC was replaced
with a new one. The problem was that the data sometimes was delayed one
sample period more than usual. This led to that the values of the position
and velocity were corrupted, so the results of the identification became bad.
This problem was solved after consulting Tetra Pak and B&R Automation.
It turned out that the PLC needed to be synchronized with the motor drive.
This was done by setting a timer option. After that everything worked fine.

3.7 Summary

There are a couple of factors that should be considered when choosing the
identification technique. Mainly it depends on how accurate the technique
is. In this project, three of the techniques are done off line while the recursive

31

least squares is done on line. The countinuous technique has the advantage
that it can follow process variations, like wearing, during the process. This
is of course a good property but sometimes unnecessary and time consuming
if the process does not change with time.

The relay identification method gives very varying results in the step
responses why in this case it is an unreliable method. It is necessary that
the model estimations can be trusted so the controller will work correctly.

The most accurate of the techniques is the subspace identification. As
seen in the validation in figure 16, it has modelled the resonance peak more
precisely than the other methods. But since this accuracy is not kept in the
reduced model, it will still give the same results as the least squares model.

Another obstacle is that it all has to be implemented in discrete time
in the B&R Automation Studios environment. Besides the problems that
a conversion to discrete time can cause, there is also a limit of how much
memory and calculation time there is for the calculations. This can be a
problem since the subspace model is more complex than the others. And
the lesser memory space and calculation time used, the better.

RLS and LS identification are the most appropriate methods to use in
this application. The difference between the two is that RLS will adapt
to process changes during the run. This is, however, only a benefit if the
process is exposed to variations and can otherwise reduce the accuracy of the
model estimations. In this thesis, both methods have been used for control
purposes. Due to the small differences between the third order models and
their corresponding reduced order models, the reduced order models have
been used for the control design.

32

4 The control problem

4.1 Motivation

In controller design a natural approach is first to design a robust controller
and then adjust that controller to being able to follow a certain reference
trajectory. This chapter deals with the problem of designing a robust con-
troller. In particular, the aim is to make the controller insensitive to big load
disturbances. This is necessary due to the specification that the position can
deviate a maximum of 0.1 mm at the peripheral of the wheel when there
is a load disturbance of the same magnitude as the nominal torque of the
motor.

Throughout this chapter, load disturbances are simulated as a step at the
input that goes from 3 A, to zero, to -3 A and then to zero again according
to figure 17.

Figure 17: Simulated load disturbance.

Since it is the position of the motor that is to be controlled, all controllers
but the RST controller are position controllers. The reason why the RST
controller is implemented for velocity control is that it is only used as a tool
in the relay identification.

All the controllers in this chapter, except for the linear quadratic self-
tuning regulator, were first simulated in Matlab Simulink. If the results in
Matlab Simulink were promising, the controller was implemented in the real
process. As could be seen in the plots in this chapter, there is a very good
correspondence between the simulations and the real process. The linear
quadratic self-tuning regulator was implemented in C code directly.

All controllers are dependent on a good model. For the RST controller,
the state feedback controller, the linear quadratic controller and the linear
quadratic gaussian controller the model used was obtained by the batch
version of least squares identification, as described in section 3.4.2. Since
the least squares identification was implemented in the PLC, the controllers

33

acting on the real process use a model that is automatically generated in
the PLC. When simulating the controllers, a corresponding Matlab model
is used. The linear quadratic self tuning regulator on the other hand, uses
a model given by the recursive least squares algorithm described in section
3.3.4.

4.2 State space model

In order to perform position control one must have a model of the process
from current to position. However, all identification was made from current
to velocity. So first a discrete state space model of the process from current
to position had to be created. There are two equations needed to do this.
The first one is the discrete first order transfer function from current to
velocity given by the least squares identification. With the states x1 =
position and x2 = velocity, the input u as the current to the motor, B and
pole as the gain and the discrete pole from the identification, this equation
will be

x2(k + 1) = pole · x2(k) + Bu(k)

The second equation computes the velocity from the actual position and the
previous position. With h as the sampling period this equation is given by

x2(k) =
1
h

(x1(k) − x1(k − 1))

By combining these two equations the discrete second order state space
model of the process becomes

x(k + 1) =

(
1 h · pole

0 pole

)
x(k) +

(
B · h
B

)
u(k)

y(k) =
(

1 0
)

x(k)

4.3 Controller methods

4.3.1 RST controller

If you know what characteristics you want your controller to have, the RST
controller can be a good choice. When designing it you choose where you
want the poles and zeros of the closed loop system to be. The open loop
system can be descibed by

A(q)y(k) = B(q)u(k)

34

where A(q) and B(q) are polynomials. The controller is described by

R(q)u(k) = T (q)uc(k) − S(q)y(k)

where R(q), S(q) and T (q) are polynomials of the same order. Combining
these two equations and approximating will lead to the Diophantine equation

A(z)R(z) + B(z)S(z) = Acl(z)

In this equation, Acl(z) is chosen to be the closed loop characteristic equation
of choice. Solving this equation will give the controller polynomials R and
S from which you can calculate the polynomial T . The schematics for a
simple RST controller can be viewed in figure 18. [3]

Figure 18: Schematics for a RST controller

4.3.2 State feedback control

State feedback control is a well known design method (fig. 19). Assume that
the process is given on state space form

x(k + 1) = Φx(k) + Γu(k)

y = Cx(k)

The control law is u(k) = lrr − Lx(k).
The discrete closed loop characteristic polynomial is given by det(zI −

A). The idea is to determine the poles of the closed loop characteristic
polynomial and then compute L according to that. lr will then be computed
so that y = r in stationarity. [1]

4.3.3 Linear quadratic control

With the pole placement technique the poles can be placed anywhere, but
there is still a drawback with that method. It is not possible to have un-
limited control action and the different states must not grow out of control.
It is desirable to be able to adjust how much control action to use and how

35

Figure 19: Schematics for a State feedback controller

large the different states are allowed to be. The LQ controller provides this
option.

The structure of the LQ controller is the same as for the state feedback
controller in section 4.3.2. The only difference is how the feedback vector L

is computed. The LQ controller aims at minimizing the cost function

J =
∑

(x′Qx + u′Ru + 2x′Nu)

The matrices Q, R and N could be seen as tuning parameters that are
adjusted to achieve the desirable control performance. Q is a square matrix
with the same size as the number of states in the model. For the case with
one input, R is a scalar and N is a column vector with the same number
of rows as the number of states. The diagonal elements of the Q matrix
penalizes large deviations of the corresponding states. The other elements
of the Q matrix are cross terms between the different states. The scalar R

penalizes large control signals. N is usually set to 0.
For a certain choice of Q and R, L is computed by solving the Riccati

equation [3].

4.3.4 Linear quadratic gaussian control

To be able to use the LQ controller, all states must be measurable. This is
often not the case. Then one possibility is to use a Kalman filter to estimate
the states. It is then the estimated states that are fed back through the L
vector [1].

The structure of the Kalman filter is given by the equations

x̂(k + 1) = (Φ − KC)x̂(k) + Γu(k) + Ky(k)

ŷ(k) = Cx̂(k)

u(k) = lrr − Lx̂(k)

K is a vector that can be chosen in different ways. The LQG controller
determines K so that the variances of the output and the control signal are
minimized. L is determined in the same way as for the LQ controller [6].

36

4.3.5 Linear quadratic self-tuning regulator

The linear quadratic self-tuning regulator is an adaptive version of the LQ
controller. The purpose is the same as for the LQ controller: to minimize the
loss function described in section 4.3.3. Recursive least squares estimation
is used to estimate the process parameters online. In order to achieve a
self-tuning regulator the feedback vector L must also be computed online.
This is done by solving the Riccati equation in each loop [6].

With the equation from section 4.3.3, the Riccati equation can be written
as

S(k) = ΦTS(k + 1)Φ + Q − LT (k)(R + ΓTS(k + 1)Γ)L(k)

L(k) = (R + ΓT S(k + 1)Γ)−1(ΓT S(k + 1)Φ + NT)

This equation can be solved iteratively. Another way to solve the problem
is to consider the stationary case where S(k +1) = S(k). Then the equation
can be solved algebraically [3]. In this thesis the latter method will be used.

4.4 Controller design

4.4.1 RST controller

The simplest form of the RST controller was used. This means that the
controller model was of order zero and the R, S and T polynomials where
all constants. Because of the low order in the controller, there is only one
available pole that can be placed. This will naturally make it easier to find
the best choice of placement. But it will also limit the flexibility of the
controller.

A pole placed on the real axis in -3 – -5 gives the wanted qualities, a fast
response to load disturbances and stability. A too fast response affects the
robustness negatively and makes the controller unstable. This is because
the controller will try to eliminate small loads with a big gain to get a fast
response. But instead it gives a big overshoot and the gain will work in the
other direction. This eventually leads to instability.

Note that this controller controls the velocity and not the position of the
motor. The reason for this is that it is mainly used for controlling the step
sequence in relay identification (section 3.3.1). A step in velocity can be
viewed in figure 20.

A pole placed in -3 gives the following R(q), S(q) and T (q).

R = 1

S = 0.00003010395452284263

T = 0.00003090275477639738

37

The schematics for the zero order RST controller can be viewed in figure

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

time (s)

cu
rr

en
t (

A
)

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5
x 10

5

time (s)

ve
lo

ci
ty

 (
un

its
/s

)

Figure 20: A step in velocity with the RST controller in the real process.
The pole is in -3.

18.

4.4.2 State feedback controller

The aim of the state feedback controller was to perform position control.
The process model used for simulations is described in section 4.2. For the
state feedback controller the model is based on least squares identification.
A Matlab Simulink model of the controller was designed according to figure
21. In the simulations the process model was obtained in Matlab, but when
the controller was tested on the real process, the model was obtained by the
automatic least squares algorithm implemented in the PLC. As described in
figure 17, the load disturbance is simulated with a step that goes from zero
to 3 A, back to zero and then to -3 A.

The controller considers the velocity to be measurable, although it is not
measurable in the process but differentiated from the position as described
in section 2.5.

The discrete closed loop characteristic polynomial, det(zI − A), is

z2 + z(Bl2 − pole − 1 + B · h · l1) + pole − B · l2

After having determinined the poles of the closed loop polynomial, p1 and
p2, l1 and l2 can be computed by comparing the coefficients. The controller

38

Figure 21: Simulation schematics for a state feedback controller

was tested with different sets of discrete poles. In figure 22, both poles are
placed in -0.995 on the real axis. The result is very poor. Due to the bad
results from the testings, this method was abandoned rather quickly.

0 1 2 3 4 5 6 7 8
−4

−2

0

2

4

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8

−1

0

1

x 10
5

ve
lo

ci
ty

 (
un

its
/s

)

0 1 2 3 4 5 6 7 8
−2

−1

0

1

2
x 10

5

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 22: Both poles are placed in -0.995 on the real axis.

4.4.3 Linear quadratic controller

Since the tests with pole placement had failed, the LQ controller was tested
instead. All efforts were concentrated on fulfilling the specification of load
disturbance rejection, that is to keep the position within the limits of ±13
units, as described in section 1.2. For the LQ controller the model is based
on least squares identification. In the simulations the process model was ob-

39

tained in Matlab, but when the controller was tested on the real process, the
model was obtained by the automatic least squares algorithm implemented
in the PLC.

The structure of the LQ controller is the same as in the pole placement
case. But for the LQ controller the feedback vector L was computed with
the Matlab command dlqr. To use dlqr you must specify the weighting
matrices Q, R and N in the cost function as described in section 4.3.3.

The tuning of these parameters was a rather time-consuming task. Some
conclusions could be drawn at an early stage, though. The crossterms in
the Q matrix did not seem to have any effect, so they were set to zero. The
first element in the diagonal of the Q matrix would have to be bigger than
the second term since the main goal was to keep the position error small.
The R term needed to be several factors bigger than the other terms. This
is natural since the values of position and velocity are a lot bigger than the
values of the current. N was set to zero.

When these things were considered the tuning was very much a trade-
off between small errors and a well behaved control signal. It is possible
to get very small errors in the position and the velocity. But the control
signal will then be very noisy, since the control signal is penalized to little
in proportion to the position and velocity. When the control signal is not
penalized enough the measurement noise will reach through the controller
and affect the control signal. This is not acceptable since it will sound
terrible and wear out the motor. For this reason the measurement noise
in the process sets a limit for how small the position and velocity errors
can be. If the measurement noise could be reduced it would be possible to
get smaller errors. However, in this project the strategy used was to find
a tuning that gave small position and velocity errors but still kept a nice
control signal. The tuning ended with the following parameters

Q =

[
50000 0

0 5

]

R = 100000000

With these parameters, the current, velocity, and position look as in figure
23. The reference value of the position is zero, but the process is affected by
a load disturbance as described in section 4.1. A problem that has already
been discussed is that the noise has a big influence on the velocity signal.
In figure 23 it is seen that it also affects the current. This implies that the
current will switch signs all the time even though the motor is standing still,
which is unacceptable. However, it was found that by filtering the velocity

40

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8 9 10
−4000

−2000

0

2000

4000
ve

lo
ci

ty
 (

un
its

/s
)

0 1 2 3 4 5 6 7 8 9 10
−200

−100

0

100

200

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 23: Current, velocity, and position of the simulated LQ Controller.

with a low pass filter, the noise could be heavily reduced. This is shown in
figure 24.

As seen in the position graph, the lowest of the plots in figure 24, the
position does not at all stay within the limit of ±13 units. There is a peak
and then the position stabilizes at about 135 units under a load disturbance.
However, as described above it is not possible to tune the controller further
without getting a too noisy control signal. Instead a lag filter was added to
the controller that reduced the stationary error.

The purpose of a lag filter is to reduce the stationary error by increasing
the low frequency gain. The price you pay is that the phase margin decreases.

A lag filter has the structure

s + a

s + a/M

A rule of thumb says that if a is chosen to be 0.1 ·ωc, where ωc is the cut-off
frequency of the open loop system, then the phase margin will decrease with
less than 6◦. The value of M determines how much the stationary gain will
be increased [1].

To get ωc a bode diagram of the open loop system was drawn (fig. 25).
It is seen that ωc is 80.1 rad/s, and the phase margin is 20◦. The lag filter
was chosen to be

s + 8.01
s + 8.01/50

41

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8 9 10
−4000

−2000

0

2000

4000

ve
lo

ci
ty

 (
un

its
/s

)

0 1 2 3 4 5 6 7 8 9 10
−200

−100

0

100

200

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 24: The velocity is filtered with a low pass filter in the simulation.

−100

−50

0

50

100

150

200

M
ag

ni
tu

de
 (

dB
)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−1440

−1080

−720

−360

0

P
ha

se
 (

de
g)

Bode Diagram
Gm = 5.66 dB (at 125 rad/sec) , Pm = 20 deg (at 80.1 rad/sec)

Frequency (rad/sec)

Figure 25: Bode diagram without a lag filter.

42

By adding the lag filter to the controller a new bode diagram could be drawn
(fig. 26). The phase margin is now 14.4◦, thus it has decreased with 5.6◦.

−100

−50

0

50

100

150

200

M
ag

ni
tu

de
 (

dB
)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−1440

−1080

−720

−360

0

P
ha

se
 (

de
g)

Bode Diagram
Gm = 70.7 dB (at 2.42e+003 rad/sec) , Pm = 14.4 deg (at 80.3 rad/sec)

Frequency (rad/sec)

Figure 26: Bode diagram with a lag filter.

The stationary gain has increased.
With the lag filter, the current, velocity and position instead look as in

figure 27. The peak of the position error is the same as before, but the error
decreases fast to a level within the limits of the specification. It takes at
most 0.33 seconds to reach within the limits. The extended controller now
looks like in figure 28.

The LQ controller with a low pass filter and a lag filter was implemented
on the real process. Before this could be done the lag filter had to be
discretized. This was done with the command c2d in Matlab. The result
when the real process is affected by the same load disturbance as in the
simulations is seen in figure 29. The correspondence between the simulation
and the real process is in other words very good.

43

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8 9 10
−4000

−2000

0

2000

4000

ve
lo

ci
ty

 (
un

its
/s

)

0 1 2 3 4 5 6 7 8 9 10
−200

−100

0

100

200

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 27: Current, velocity and position when a lagfilter is added to the
simulation. For the position, the limits are plotted as well.

Figure 28: Schematics for the LQ controller

44

1 2 3 4 5 6 7 8 9 10

−4

−2

0

2

4

cu
rr

en
t (

A
)

1 2 3 4 5 6 7 8 9 10

−5000

0

5000

ve
lo

ci
ty

 (
un

its
/s

)

1 2 3 4 5 6 7 8 9 10

−100

−50

0

50

100

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 29: The real process affected by a load disturbance of 3 A. The LQ
controller is complemented with a lag filter.

45

4.4.4 Linear quadratic gaussian controller

To be able to tune the controller further you must somehow reduce the
effects of the measurement noise. One way to do this is to use a Kalman
filter, as described in section 4.3.4. A Kalman filter can be added to the LQ
controller as in figure 30. For the LQG controller the model is based on least
squares identification. In the simulations the process model was obtained in
Matlab, but when the controller was tested on the real process, the model
was obtained by the automatic least squares algorithm implemented in the
PLC. The K vector is computed in Matlab with the command kalman.

Figure 30: Schematics for the LQG controller

When using kalman the variance of the process noise Qn and the variance
of the measurment noise Rn must be specified. But since these values are
not given, Qn and Rn could be seen as tuning parameters.

The L vector is computed with the command dlqr, the same as for the
LQ controller. Thus, for the LQG controller there are four tuning parame-
ters, Q, R, Qn and Rn. The principle is the same as when tuning the LQ
controller: increase the parameter which corresponds to the variable you
want to penalize more.

Quite soon it was found that there was a big problem with the estima-
tions. The position estimation x̂1 worked fine, the effect of the measurement
noise was reduced. But the Kalman filter did not manage to estimate the
velocity correctly, due to the big load disturbance. Instead of the expected
peak in velocity as the load disturbance changed, the estimation kept a high
level as long as the disturbance was active. Due to this problem it was not
possible to get as good a performance with this controller as with the LQ
controller. An idea was to feed back the differentiated and filtered velocity

46

as before, and only use the Kalman filter to estimate the position (fig. 32).
But this did not enhance the performance compared to the LQ controller.
Therefore it was decided to abandon the LQG controller.

1 2 3 4 5 6 7 8 9 10

−4000

−2000

0

2000

4000
es

tim
at

ed
 v

el
oc

ity
 (

un
its

/s
)

1 2 3 4 5 6 7 8 9 10
−200

−100

0

100

200

time (s)

es
tim

at
ed

 p
os

iti
on

 (
un

its
)

Figure 31: The velocity estimation x̂2 at the top and the position estimation
x̂1 below.

4.4.5 Linear quadratic self-tuning regulator

As opposed to the other controllers in this chapter, the LQ STR was im-
plemented directly in C code. No simulations were performed. For the LQ
STR the model is based on recursive least squares identification, which is
implemented in the PLC.

The main effort of the linear quadratic self-tuning regulator was to im-
plement a Riccati equation solver. To make the problem a bit less time-
consuming the resulting model of the RLS identification was reduced to a
first order model. This was done by the method of dominating poles. The
arguments that a model reduction can be performed are the same as for the
ordinary least squares identification. When this was done the structure of
the process model from current to position was

x1(k + 1) = x1(k) + h · pole · x2(k) + B · h · u(k)

x2(k + 1) = pole · x2(k) + B · u(k)

y(k) = x1(k)

where B and pole are the reduced parameters from the RLS identification

47

1 2 3 4 5 6 7 8 9 10

−2

0

2

cu
rr

en
t (

A
)

1 2 3 4 5 6 7 8 9 10

−5000

0

5000

ve
lo

ci
ty

 (
un

its
/s

)

1 2 3 4 5 6 7 8 9 10

−200

−100

0

100

200

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 32: LQG controller with a load disturbance. The velocity is differ-
entiated from the position and the Kalman filter is only used to estimate the
position.

in section 3.4.4.
The Riccati equation to be solved is described in section 4.3.5. How-

ever, the Riccati solver implemented here presupposes some conditions to
be fulfilled. Firstly, the stationary case where S(k+1) = S(k) is considered.
Secondly, the Riccati solver can only manage models of order two. Thirdly,
the Q matrix must be symmetric. This is also the case when using dlqr in
Matlab. A symmetric Q matrix implies that also S will be symmetric. The
last condition is that N must be zero. This is the default choice of dlqr.

Assume that these conditions are fulfilled. Then S can be solved alge-
braically by inserting the expression of L into the expression of S. After that,
L can be computed by using the obtained value of S.

The implementation was verified by giving the same input to dlqr in
Matlab. Since the result was the same, the implementation was considered
to be correct. By combing the RLS identification and Riccati solver with
the LQ controller in section 4.4.3 a complete Linear Quadratic Self-Tuning
Regulator was obtained.

The next step was to use the LQ STR to control the process. Since the
RLS and Riccati equation solver operates in a 4 ms loop while the control
is performed in a 0.4 ms loop, the resulting model from the RLS first had
to be resampled to 0.4 ms before the new L was computed.

The LQ STR was tested in the same way as the ordinary LQ controller,

48

that is a load disturbance that changes from 3 to 0 to -3 A was added at
the input of the process.

First the performance of the RLS identification was investigated. The
parameter estimations are plotted in figure 33. The first load disturbance
occurs after about 1 second. After that the parameters are very stable. But
the value of the parameter estimations are different in this case compared
to the parameters obtained by ordinary least squares identification. This is
due to the different excitation of the process in the two cases. However, for
an adaptive controller the most important quality is not the actual value
of the parameter estimation, but the control performance. Figure 34 shows

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

0

2

th
et

a[
0]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

0

2

4

th
et

a[
1]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−5

0

5

th
et

a[
2]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

200

400

th
et

a[
3]

time (s)

Figure 33: Parameter estimations when the process was excited with a load
disturbance.

the diagonal elements of the covariance matrix. The values are converging
fast to a value close to zero which indicates that the parameter estimations
are accurate.

Finally, the control performance was investigated. The current, velocity,
and position of the process are plotted in figure 35. The result is very
similar to that of the ordinary LQ controller. But here, the peak of the
position error is a little bit smaller. In figure 36 it is seen that the controller
parameters, lq1 and lq2, are converging very fast and are very stable. The
reduced parameters B and pole are also plotted in figure 36.

49

0 0.05 0.1 0.15 0.2 0.25
0

5

10

P
[0

,0
]

0 0.05 0.1 0.15 0.2 0.25
0

5

10

P
[1

,1
]

0 0.05 0.1 0.15 0.2 0.25
0

5

10
P

[2
,2

]

0 0.05 0.1 0.15 0.2 0.25
0

5

10

time (s)

P
[3

,3
]

Figure 34: Covariance matrix when the process was excited with a load
disturbance.

2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

cu
rr

en
t (

A
)

2 3 4 5 6 7 8 9 10

−5000

0

5000

ve
lo

ci
ty

 (
un

its
/s

)

2 3 4 5 6 7 8 9 10

−100

0

100

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 35: Current, velocity, and position error when the process was excited
with a load disturbance.

50

0 1 2 3 4 5 6 7 8 9 10

0

50

100

150

B

0 1 2 3 4 5 6 7 8 9 10
0.8

1po
le

0 1 2 3 4 5 6 7 8 9 10

0.022

0.023

lq
1

0 1 2 3 4 5 6 7 8 9 10
−0.02

0

0.02

0.04

lq
2

time (s)

Figure 36: Reduced and resampled parameter estimations of the RLS iden-
tification, and controller parameters when the process was excited with a load
disturbance.

4.5 Problems

A problem that occurred when the LQG controller was simulated was that
the kalman filter did not manage to estimate the velocity when a load dis-
turbance was acting on the process. No solution was found to this problem,
why the efforts to control with an LQG controller were cancelled.

4.6 Summary

Four different controllers have been investigated in terms of their capability
to reject load disturbances. An RST controller for velocity control has also
been discussed, but since this controller was only used in the relay identifi-
cation it will not be investigated further.

For the state feedback controller based on pole placement, it was very
difficult to know where to place the poles to get the desired result. Therefore
no more efforts will be made to improve this controller.

There were great expectations on the LQG controller since it has the abil-
ity to reduce measurement noise. However, due to the big load disturbance
the LQG controller did not manage to estimate the velocity in a proper way.
So the LQG controller was also abandoned.

Then the LQ controller and the LQ STR remained. The two controllers
gave very similar, and good, results when being subjected to load distur-

51

bances. Therefore it was decided to go on working with both these controllers
and investigate how they managed to follow a certain reference trajectory.

52

5 Reference following - The servo problem

5.1 Motivation

In control problems, the main interest is to keep the application as stable
as possible when exposed to different disturbances. In this case the main
interest is to make the application follow a reference signal as accurately and
fast as possible. One of the main ways to approach this problem is to add a
filter at the input of the closed loop system. The purpose of this is to clean
the signal from unwanted frequencies and adapt the reference input to the
rest of the system.

There is also another approach used in this project. This is to form the
reference signal curve into a desirable shape. For example, a curve with
rounded edges will give a smoother reference following than a curve with
sharp edges. This is important since the curve with the sharp edges can
perhaps give a fast response but will probably give rise to peak currents
that will either be saturated or destroy the motor. Normally this is what is
done by the prefilter, but if you know how large the reference step is and
how fast it should be, the reference curve shaping can be a good alternative,
or a complement.

As mentioned in section 1.2, the specification is to keep the error smaller
than 13 units throughout the reference step. This specification implies that
the reference signal must be easy to follow. This is why a carefully shaped
reference curve is a good choice.

5.2 Reference following methods

5.2.1 Prefiltering

A prefilter can have different purposes. The usual one is to eliminate high
frequencies to avoid aliasing. Aliasing means that frequencies above the
Nyquist frequency will fold and become a disturbance. The Nyquist fre-
quency is half the sampling frequency. In this project, however, the main
objective of the prefilter is to act as a complement to the closed loop sys-
tem. This includes eliminating high frequencies but also to transform the
transfer function for the closed loop system. To achieve this you add and
extract poles and zeros so the bode diagram of the closed loop system gets
the desired shape. This usually means to ensure that the gain of the system
is one as high up in the frequency band as possible [3].

53

5.2.2 Iterative learning control

Iterative learning control makes the process follow a specific reference signal
as accurately as possible [8]. This is done by sending the reference signal
to the input of the closed loop system and then reading the output from
the closed loop system. The two signals are then compared and a signal uk

is added to the input signal so the output will get the same shape as the
input signal (fig. 37). To get a good following of the reference signal the

Figure 37: ILC schematics in theory.

procedure has to be repeated a couple of times so that uk gets the optimal
shape. The optimal shape is usually not acquired until after a couple of
iterations. When it is acquired, the shape (uk + ref. signal) is stored. It
can then be used in the real application.

The downside with this controller is that it is not as flexible as the pre-
filter. Since uk is optimized for a special shape of the reference signal you
need to produce a unique uk for every reference signal [8].

5.3 Reference following design

5.3.1 Prefiltering

To be able to use a fast reference signal and to have an exact and predictable
response from the motor, it is important to have a good transfer function
from the input to the output of the closed loop system. This means that any
deviation from the amplification 1 in the bode diagram should be avoided
since this will amplify or reduce the reference signal at that frequency. Look-
ing at the pole zero map for the closed loop system, a judgement can be made
of which poles and zeros that should be cancelled to achieve the wanted bode
diagram.

After the cancellations a low pass filter on the form

Flowpass =
1

s/40 + 1

was implemented. This gave a bode curve that never became larger than 1
at any point. To move the slope up in the frequency band a lead filter can

54

be used. This filter increases the gain at high frequencies without changing
the phase remarkably. The structure of a lead filter is

Flead =
s + b

s + bN

and, with the correct values, it can give the wanted shape of the curve. In
this project, however, the lead filter did not change the curve noticeably.
Because of the lack of quality results from prefiltering, the efforts were can-
celled and the focus was aimed at iterative learning control instead.

5.3.2 Iterative learning control

The basic idea schematics of ILC is shown in figure 37. To the reference sig-
nal uk is added which will give the desired output. The complete schematics
used in this thesis is found in figure 38. uk is updated in the following way

Figure 38: The ILC schematics used in this project.

uk(t) = Q(q)[uk−1(t) + L(q)ek−1(t)]

ek(t) = yk(t) − uref (t)

yk(t) = Gcl(q)(uref (t) + uk(t))

where Q(q) and L(q) are filters. Q(q) is usually a lowpass filter with a cut-off
frequency in the same area as the cut-off frequency of the process. L(q) is a
kind of compensation for the delay in the system. The idea is to eliminate

55

the error ek(t) in the output with the input signal uk. This is why it is
necessary for this method to iterate a couple of times. Otherwise uk will
not be able to foresee the error ek(t). When the iterations have led to a
satisfying result, the vector uk is stored. The optimal input to the closed
loop system is now the sum of the reference curve and uk.

This method is more or less dependent on the quality of the reference
signal. The goal is usually to have as fast a reference signal as possible.
The fastest way is just to use a step and try to get the output to follow
it. In this case however, this was not possible because of the high currents
that it would cause. Too high currents would damage the motor. To solve
this problem, that is, to have low currents but still a fast reference signal,
the input signal to the motor (not the closed loop system) was shaped so
it would resemble a squarewave period. This would give a good result with
low currents. It was achieved by sending a squarewave through the motor
in the open loop system. A difficulty with this was to match the relative
lengths between the positive and negative signals in the squarewave period.
It is necessary for the output to be stationary. The reference signal looked
for could then be recorded from the position output of the motor. The result
is that the controller will try to shape the input to the motor in the closed
loop system as a squarewave signal, so that the output from the motor will
have the same shape as the input signal to the closed loop system, which is
the reference signal.

What should be considered is that the output from the closed loop will not
follow the input immediately. So the current will not have the squarewave
shape until after a couple of iterations. So if the device is sensitive of high
currents some kind of limitation, like a saturation, should be implemented.
The motor in this project already has a saturation for safety reasons and
because of the damage that high currents can cause.

There are two graphs that show the function of the ILC combined with
the LQ controller from section 4.4.3. The first one, figure 39, illustrates many
iterations done with a small step. Notice how the error becomes smaller after
a couple of iterations and that the current resembles a squarewave. The
second graph, figure 40, shows the error and current after several iterations.
The error is not at any point more than 7 units. This is a good result since
the specifications in section 1.2 hold that it must not be over 13 units. Also
notice that the current clearly has the squarewave shape that was desired.

Graph 41 shows ILC combined with LQSTR. This combination did not
work so well because the two methods both update regularly and ILC de-
pends on the fact that the conditions are the same throughout the iteration
process.

56

2 4 6 8 10 12

−4

−2

0

2

4

cu
rr

en
t (

A
)

2 4 6 8 10 12
−600

−400

−200

0

200

po
s.

 e
rr

or
 (

un
its

)

0 2 4 6 8 10 12
0

1000

2000

3000

time (s)

po
s.

 r
ef

. (
un

its
)

Figure 39: Several ILC iterations of a reference step of 3 000 units in 0.2 s.
ILC is combined with an LQ controller. The top graph shows the current, the
middle graph shows the error and the lower graph shows the reference signal.

7.8 8 8.2 8.4 8.6 8.8 9 9.2 9.4
−4

−2

0

2

4

cu
rr

en
t (

A
)

7.8 8 8.2 8.4 8.6 8.8 9 9.2 9.4

−5

0

5

po
s.

 e
rr

or
 (

un
its

)

7.8 8 8.2 8.4 8.6 8.8 9 9.2 9.4
0

2

4

6

x 10
4

time (s)

po
s.

 r
ef

. (
un

its
)

Figure 40: The 38th iteration after a step of 60 000 units (1/6 revolution) in
1 s. ILC is combined with an LQ controller. The top graph shows the current,
the middle graph shows the error and the lower graph shows the reference
signal.

57

3.2 3.4 3.6 3.8 4 4.2 4.4
−4

−2

0

2

4

cu
rr

en
t (

A
)

3.2 3.4 3.6 3.8 4 4.2 4.4
−20

−10

0

10

20

po
s.

 e
rr

or
 (

un
its

)

3.2 3.4 3.6 3.8 4 4.2 4.4
0

2

4

6

x 10
4

time (s)

po
s.

 r
ef

. (
un

its
)

Figure 41: A step of 60 000 units (1/6 revolution) in 1 s. ILC is combined
with an LQ STR. The top graph shows the current, the middle graph shows
the error and the lower graph shows the reference signal.

5.4 Summary

Looking at the facts from the servo problem results, it is easy to draw
the conclusion that ILC can improve the reference following considerably.
Compare the two figures 42 and 43. The error is reduced from about 240
units (∼ 1.8mm) to 7 units (∼ 0.05mm) when doing a step of 60000 units
(1/6 revolution). It must be remembered though that ILC optimizes one
movement and that this means that different ILC optimizations have to be
iterated and stored if you want a more flexible application.

The prefiltering did not achieve the same results as ILC but can, in
another application, be the better method. The motor used in this project
will, in its environment, have a uniform movement scheme which is why ILC
will prove to be the better method to use in this application. But if the
motor had to be more flexible, a prefilter would probably be a better choice.

58

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7
x 10

4

time (s)

po
s.

 r
ef

. (
un

its
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−250

−200

−150

−100

−50

0

50

100

time (s)

po
s.

 e
rr

or
 (

un
its

)

Figure 42: A step of 60 000 units using an LQ controller. The upper graph
shows the reference step, the lower shows the position error.

8.2 8.4 8.6 8.8 9 9.2
−8

−6

−4

−2

0

2

4

6

time (s)

po
s.

 e
rr

or
 (

un
its

)

8.2 8.4 8.6 8.8 9 9.2
0

1

2

3

4

5

6
x 10

4

po
s.

 r
ef

. (
un

its
)

Figure 43: A step of 60 000 units using an LQ controller with an ILC opti-
mized reference signal. The upper graph shows the reference step, the lower
shows the position error.

59

6 Programming

6.1 General

All the identification methods and controllers described in the previous sec-
tions had to be rewritten to work in the computer. The programming lan-
guage used, C, is a very common programming language in machine appli-
cations. Transforming the algorithms into C means that they have to be
discretized. This is the same as to prepare them to work in a discrete en-
vironment where all tasks are performed only once every sampling period
instead of continuously.

Every separate controller or identification method is implemented as a
case. This structures the code and makes it simple to choose what method
you want to use. You can choose a case by setting one of the flags ident_mode
and ctrl_mode. The program is executed by setting one of the boolean vari-
ables identon or ctrlon to true.

Every case is divided into two major parts, Calculate output and Update
states. In Calculate output, all the tasks that have to be done before the
control signal is sent are done. Update states handles all the other tasks.

At the start of every Calculate output, there is an initiating sequence
called init_ The purpose of this is to set certain parameters that are
only to be set once every time a case is used, but need to be reset if you
want to apply the case again without doing a warm startup (section 6.2).

The time delay also has to be taken into account. An example of this can
be seen in the LS case (section B.1.2). The variables are stored the same
number of cycles as the delay. This way the input can be compared with its
coherent output.

6.2 The B&R Automation Studio environment

B&R Automation Studio is a PC program that provides an interface to the
PLC from where the controllers and the identification are run. B&R Au-
tomation Studios supports several programming languages, such as Struc-
tured Text, Ladder and C. In this thesis, all code is written in C.

In B&R Automation Studios the program of the PLC connected to the
computer is visualized as a tree structure, with the CPU on top. It is possible
to add so called cyclic objects to the program. The cyclic objects are divided
into two parts. The first part is an initialization part, which only runs once
when the program is started. The second part is a cyclic part which runs as
a loop with a specified sampling period.

Several cyclic objects can be added to the program. Then the object

60

with the highest sampling rate will get the highest priority. So called data
objects can also be added to the program. The purpose of the data objects
is simply to store data.

There is a watch window for each cyclic object where the current value
of the variables used can be shown. Another option is to trace variables.
Then the values of the variables chosen are stored in each loop. The trace
program then displays the variables as a graph over time. This is how the
plots of the real process are obtained in this project.

The trace can be performed in two different ways. Either you trace
from the PLC, or you trace directly from the motor drive. But since the
controllers are placed in the PLC it is natural to trace from the same place.
When tracing from the motor drive the data will not match the process that
is to be controlled, since there is a time delay.

To reset the program parameters, the measuring equipment and the mo-
tor, a warm or a cold restart is required. It is easily initiated from the
program but is an undesirable, time-consuming process.

6.3 Identification methods

The identification is done with a sampling period of 4 ms. This is fast enough
to perform the identification satisfyingly. The flag ident_mode chooses
which identification technique to use. There are three different identifi-
cation techniques implemented: relay identification, LS identification and
RLS identification.

#define IDENT 1 (LS)

#define IDENTIFY 2 (Relay)

#define RLS 3

The first two are only done once but RLS identification runs at the same
time as the controller, updating the process and controller parameters. The
implementations can be found in appendix B.1.

6.4 Controllers

All controllers implemented in this project are placed in a cyclic object called
control loop. The sampling period of the control loop is 0.4 ms. What
controller to be used is determined by the flag ctrl_mode through a switch
statement. The possible choices are

#define STEP_SEQUENCE 1

#define RST_CTRL 2

61

#define STATE_FEEDBACK 3

#define LQ_CONTROL 4

#define ILC 5

#define LQG_CONTROL 6

The functionality of the different controllers is described in section B.2.

62

7 Testing and evaluating

7.1 Changing loads

7.1.1 Procedure

The object of these tests was to test the ability of the controllers to adapt to
different process conditions. From the original eight weights attached to the
motor, first four weights were removed and then all weights were removed.

Both the load disturbance rejection and the reference following have been
tested. The load disturbance rejection was tested with the same load dis-
turbance as in chapter 4 in all the cases. When the reference following was
tested, a reference signal with a step of 60 000 units in 1 s was used (chapter
5).

ILC has also been tested for the different loads, but only combined with
the LQ controller. When the LQ controller was used and the load was
changed a new identification had to be performed before the LQ controller
would work properly. The LQ STR on the other hand, was used without an
initial identification of the process.

When the LQ controller was used and the load was changed, it was found
that the tuning of the LQ parameters was no longer correct. The control
signal was noisier and there were big overshoots in the position. This showed
that the tuning of the weighting matrices in section 4.3.3 depended on the
present load. To solve this problem the weighting of the input signal, R,
was adapted to the new circumstances according to the following formula

Rnew load = R8 weights ·
(

Bnew load

B8 weights

)2

This conversion works since the input signal enters the process through the
B matrix. When B is changing, R has to be changed as well to maintain the
same relation. Q does not need to be changed since the pole does not move
noticeably. However, this is a very process-dependent solution and should be
used carefully. For example, if an adaptive controller like LQ STR is used,
R should not be updated regularly. This is because an adaptive controller
adapts the process model to load disturbances, which would result in big
changes in R.

63

7.1.2 Four weights attached

The identification of this process resulted in a different process model. The
new model from current to velocity became

H(z) =
69.94

z − 0.999928

It can be compared to the original reduced order model from section 3.4.2.

H(z) =
41.36

z − 0.99995

Figures 44 to 53 show the test results:

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2
x 10

4

ve
lo

ci
ty

 (
un

its
/s

)

0 1 2 3 4 5 6 7 8 9 10

−200

−100

0

100

200

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 44: The load is decreased, only 4 weights are attached to the wheel.
The process is excited with a load disturbance and the LQ controller is used.
The upper graph shows the current, the middle graph shows the velocity and
the lower one shows the position.

64

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1
x 10

4
ve

lo
ci

ty
 (

un
its

/s
)

0 1 2 3 4 5 6 7 8 9 10

−200

−100

0

100

200

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 45: The load is decreased, only 4 weights are attached to the wheel.
The process is excited with a load disturbance and the LQ STR is used. The
upper graph shows the current, the middle graph shows the velocity and the
lower one shows the position.

3.2 3.4 3.6 3.8 4 4.2 4.4
−4

−2

0

2

4

cu
rr

en
t (

A
)

3.2 3.4 3.6 3.8 4 4.2 4.4
−200

−100

0

100

200

po
s.

 e
rr

or
 (

un
its

)

3.2 3.4 3.6 3.8 4 4.2 4.4
0

2

4

6

x 10
4

time (s)

po
s.

 r
ef

. (
un

its
)

Figure 46: 4 weights are attached to the wheel. A step of 60 000 units is
taken in 1 s with the LQ controller. The upper graph shows the current, the
middle graph shows the position error and the lower one shows the position
reference.

65

3.2 3.4 3.6 3.8 4 4.2 4.4
−4

−2

0

2

4

cu
rr

en
t (

A
)

3.2 3.4 3.6 3.8 4 4.2 4.4
−100

0

100

200

po
s.

 e
rr

or
 (

un
its

)

3.2 3.4 3.6 3.8 4 4.2 4.4
0

2

4

6

x 10
4

time (s)

po
s.

 r
ef

. (
un

its
)

Figure 47: 4 weights are attached to the wheel. A step of 60 000 units is
taken in 1 s with the LQ STR. The upper graph shows the current, the middle
graph shows the position error and the lower one shows the position reference.

3.2 3.4 3.6 3.8 4 4.2 4.4
−2

−1

0

1

2

cu
rr

en
t (

A
)

3.2 3.4 3.6 3.8 4 4.2 4.4
−10

−5

0

5

10

po
s.

 e
rr

or
 (

un
its

)

3.2 3.4 3.6 3.8 4 4.2 4.4
0

2

4

6

x 10
4

time (s)

po
s.

 r
ef

. (
un

its
)

Figure 48: 4 weights are attached to the wheel. A step of 60 000 units is
taken in 1 s with the LQ controller combined with ILC. The upper graph shows
the current, the middle graph shows the position error and the lower one shows
the position reference.

66

7.1.3 No weights attached

The new model from current to velocity became

H(z) =
296.12

z − 0.999763

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8 9 10
−5

0

5
x 10

4

ve
lo

ci
ty

 (
un

its
/s

)

0 1 2 3 4 5 6 7 8 9 10
−2000

−1000

0

1000

2000

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 49: No weights are attached to the wheel. The process is excited
with a load disturbance and the LQ controller is used. The upper graph shows
the current, the middle graph shows the velocity and the lower one shows the
position.

67

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

x 10
4

ve
lo

ci
ty

 (
un

its
/s

)

0 1 2 3 4 5 6 7 8 9 10
−2000

−1000

0

1000

2000

time (s)

po
si

tio
n

(u
ni

ts
)

Figure 50: No weights are attached to the wheel. The process is excited
with a load disturbance and the LQ STR is used. The upper graph shows
the current, the middle graph shows the velocity and the lower one shows the
position.

3.2 3.4 3.6 3.8 4 4.2 4.4
−1

−0.5

0

0.5

1

cu
rr

en
t (

A
)

3.2 3.4 3.6 3.8 4 4.2 4.4
−200

−100

0

100

200

po
s.

 e
rr

or
 (

un
its

)

3.2 3.4 3.6 3.8 4 4.2 4.4
0

2

4

6

x 10
4

time (s)

po
s.

 r
ef

. (
un

its
)

Figure 51: No weights are attached to the wheel. A step of 60 000 units is
taken in 1 s with the LQ controller. The upper graph shows the current, the
middle graph shows the position error and the lower one shows the position
reference.

68

3.2 3.4 3.6 3.8 4 4.2 4.4
−1

−0.5

0

0.5

1

cu
rr

en
t (

A
)

3.2 3.4 3.6 3.8 4 4.2 4.4
−200

−100

0

100

200

po
s.

 e
rr

or
 (

un
its

)

3.2 3.4 3.6 3.8 4 4.2 4.4
0

2

4

6

x 10
4

time (s)

po
s.

 r
ef

. (
un

its
)

Figure 52: No weights are attached to the wheel. A step of 60 000 units is
taken in 1 s with the LQ STR. The upper graph shows the current, the middle
graph shows the position error and the lower one shows the position reference.

3.2 3.4 3.6 3.8 4 4.2 4.4
−0.5

0

0.5

1

cu
rr

en
t (

A
)

3.2 3.4 3.6 3.8 4 4.2 4.4
−20

−10

0

10

20

po
s.

 e
rr

or
 (

un
its

)

3.2 3.4 3.6 3.8 4 4.2 4.4
0

2

4

6

x 10
4

time (s)

po
s.

 r
ef

. (
un

its
)

Figure 53: No weights are attached to the wheel. A step of 60 000 units
is taken in 1 s with the LQ controller combined with ILC. The upper graph
shows the current, the middle graph shows the position error and the lower
one shows the position reference.

69

7.2 Increasing the current

Tests were also performed with higher currents. The saturation limit was set
to 8 A instead of 4 A. The benefits with this is that the reference step can be
made faster and larger and the control application can control bigger load
disturbances. It is also a way to show that even if the specifications were
not reached to its full extent in the previous chapters, it can be reached with
the controller in this project as long as it is supplied with enough power.

All these tests were performed with full load, that is, all weights attached
to the wheel.

There were two tests with a reference step performed in the real process,
one with as a large step as possible in 0.5 s (fig. 54), and the second with a
three times larger step in 1 s (fig. 55).

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8 9

−1000

−500

0

500

po
s.

 e
rr

or
 (

un
its

)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

x 10
4

po
s.

 r
ef

. (
un

its
)

time (s)

Figure 54: A step of a 1/9:th revolution in 0.5 s with the LQ controller
combined with ILC. The upper graph shows the current, the middle graph
shows the position error and the lower one shows the position reference.

In section 2.1 it is mentioned that the highest peak current allowed in
the motor is 17 A. Therefore, a test was performed of how fast the reference
step of 1/6:th of a revolution could be made. Figure 56 shows a simulation
of the fastest successful attempt with the reference step in 0.42 s.

In the load disturbance test, the LQ controller was excited with a load
disturbance twice as big as in the previous tests, that is 6 A. The load
disturbance graph in figure 57 shows that the stationary error of the position
is doubled as the load disturbance is doubled. This was expected and is not

70

0 1 2 3 4 5 6 7 8 9
−10

−5

0

5

10

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8 9
−4000

−2000

0

2000

po
s.

 e
rr

or
 (

un
its

)

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2
x 10

5

po
s.

 r
ef

. (
un

its
)

time (s)

Figure 55: A step of a half revolution in 1 s with the LQ controller combined
with ILC. The upper graph shows the current, the middle graph shows the
position error and the lower one shows the position reference.

0 0.5 1 1.5
−20

−10

0

10

20

cu
rr

en
t (

A
)

0 0.5 1 1.5
−20

−10

0

10

po
s.

 e
rr

or
 (

un
its

)

0 0.5 1 1.5
0

2

4

6

x 10
4

time (s)

po
s.

 r
ef

. (
un

its
)

Figure 56: Simulation of a step of 1/6:th revolution (60 000 units) in 0.42 s
with the LQ controller combined with ILC. The current limit is set to 17 A.
The upper graph shows the current, the middle graph shows the position error
and the lower one shows the position reference.

71

a big problem.

0 1 2 3 4 5 6 7 8 9
−10

−5

0

5

10

cu
rr

en
t (

A
)

0 1 2 3 4 5 6 7 8 9
−2

−1

0

1

2
x 10

4

ve
lo

ci
ty

 (
un

its
/s

)

0 1 2 3 4 5 6 7 8 9

−200

0

200

po
si

tio
n

(u
ni

ts
)

time (s)

Figure 57: The process is excited with a load disturbance of 6 A. The upper
graph shows the current, the middle graph shows the velocity and the lower
one shows the position.

7.3 Test results

A big disappointment with the tests described in this chapter was that the
LQ STR did not manage to adapt to changing loads. This is due to the fact
that the weighting matrices in the controller have to be changed when the
load is changed. But the weighting matrices cannot be updated in the LQ
STR, because then the weightings would change when a load disturbance
occurs and destroys the control performance.

Because of this problem the LQ STR is no advantage to the ordinary LQ
controller. The fact that ILC, which is needed to keep the position error
small enough, works best in combination with the LQ controller also makes
the choice easier.

The attempts with different currents showed that it is possible to get a
faster step. The limitation for this is the motor. The highest allowed peak
current, according to the specifications sheet C, is 17 A. The simulations
showed that using a current limit of 17 A instead of 4 A could reduce the
step time from 1 s to 0.42 s.

The tests with higher currents also showed that the position error when
ILC was performed was equally small for different currents. The position

72

error will stay small for fast reference trajectories as long as the current is
not saturated.

The final result of these tests was that the LQ controller combined with
ILC would be the best choice of the different controllers implemented in this
project. It was also realized that it is not the controller that limits the time
it takes to make a reference step, but the limits in power.

73

8 Conclusion

Several different identification methods and controllers have been investi-
gated during the project. This chapter presents the identification method
and controller that have the best performance and that will fulfill TetraPak’s
needs.

For the identification the batch version of the LS identification has been
chosen. The LS identification is described in detail in sections 3.3.2 and
3.4.2. A third order model from current to velocity is estimated. The process
is excited by a PRBS signal during the identification. The model is then
reduced to a first order model by use of the method of dominating poles.

Since it is the position that is to be controlled, a second order state space
model is created with x1 as the position and x2 as the velocity. This is
described in section 4.2. The whole identification procedure is performed
automatically, and takes about 30 seconds.

For the control of the process the LQ controller combined with ILC has
been chosen. The LQ controller is described in sections 4.3.3 and 4.4.3, and
ILC is described in sections 5.2.2 and 5.3.2.

The LQ controller manages to keep the stationary error within the lim-
its of ± 0.1 mm when the process is affected by a load disturbance that
corresponds to the nominal torque of the motor. Since a Ricatti solver is
implemented, the LQ controller is ready to be used directly after the iden-
tification.

ILC is needed since the position error must not be bigger than ± 0.1 mm
at any point during a reference step. For a reference step of 1/6:th revolution
in 1 second ILC fulfills the specification. When using ILC the desired motion
must be iterated several times. The procedure takes about 30 seconds. But
once that is done the resulting signal can be stored and used over and over
again. It is also possible to store signals for several different motions and
then just switch between these when the process setup is changed.

We think that this is a good solution for TetraPak. The solution works
very well when the same motion is performed several times, and when major
changes in the process, like change of load, is known by the operator. The
operator can then adjust the controller to cope with the new circumstances
by a single click of a button. Other unknown process changes could be
handled as load disturbances by the LQ controller.

74

9 Discussion

In this project, the most common identification methods and controllers
have been used. The reason for this is that there has been no previous
work done on this very process before. Concentrating on many controller
solutions gives an idea of what controllers that might be preferable. But
it does not give a more developed description of the specific controller of
choice and how to benefit from it.

During this project, controllers that were considered to be less fitting
were discarded so that efforts could be concentrated elsewhere. This has led
to the fact that the LS model and the LQ controller combined with ILC have
been more developed than for example the relay identification technique.

Before implementing the solutions given in this thesis, the following must
be considered:

• If it is possible to measure the velocity directly, this should be done.
The measuring disturbances of the motor are amplified by the differen-
tiation of the position. If these could be reduced, it would be possible,
for example, to reduce the effect of load disturbances by tuning the
weighting matrices in the LQ controller differently (section 4.3.3).

• The time delay used in this project has been estimated to 6 sample
periods. If this implementation of identification method and controller
would be used, the time delay should be reinvestigated. The best thing
to do would be to implement it all in the motor drive and in that way
eliminate the time delay completely.

• No model of the measurement noise has been identified in this project.
The noise has been considered to be white. If further work on this
motor will be done, a suggestion would be to create a model of the
noise, and then try to reduce the effects of it. This would probably
lead to the fact that the LQ controller could be tuned to smaller errors.

There are a few things that should be considered especially when imple-
menting the least squares identification, namely:

• The sampling time for the identification, 4 ms, could be optimized.
The sampling time was changed from 1.2 ms to 4 ms because of syn-
chronization disturbances that corrupted the process model. These
disturbances were later eliminated. However, as opposed to the con-
troller, the identification does not have to be as fast as possible to
perform its best.

75

• The reduction algorithm used, the method of dominating poles, is not
one of the most accepted technique. But considering the characteristics
of the poles in the third order model, this technique is very satisfying.
Combining this with the fact that the amount of C code required for
dominating poles is a lot less than for the other techniques, it is realized
that for this specific process, the method of dominating poles is a good
choice.

When implementing the LQ controller for industrial use, there are also a
couple of things that should be considered. First, the possibility of measuring
the velocity mentioned above must be regarded. This would mean that
the feedback could consist of two states instead of one real state and one
differentiated one. Then, the lowpass filter on the velocity could perhaps be
removed, which would increase the performance.

The other thing is the tuning of the weighting matrices (section 4.3.3).
Whether or not the velocity could be measured, an improved identification
of Q and R could result in a reduction of the effects of load disturbances.
However, the investigations behind this thesis imply that the reduction of
the effects would only be in the region of a few percent.

The L and Q filters used with ILC might perhaps also need an update if
ILC would be used. If the time delay changes, the L used here will no longer
be valid. Also if the process is changed, or a filter is replaced or removed, L

would need to be updated. The same holds for Q. If the cut-off frequency
for the closed loop system is changed, Q should be updated according to
section 5.2.2.

If further work will be done on this motor, this thesis will hopefully
be consulted. The choices of identification technique and controller made
here are only to be considered a recommendation as to what solution that
should be implemented. However, if another technique should be used, the
information in this thesis can still be of help.

76

References

[1] Tore Hägglund
Reglerteknik AK, Föreläsningar, Department of Automatic Control,
Lund University, Lund, Sweden, 2000.

[2] Karl J. Åström, Tore Hägglund
Automatic Tuning of PID Controllers, Instrument Society of America,
1988.

[3] Karl J. Åström, Björn Wittenmark
Computer Controlled Systems, third edition. Prentice Hall Inc., New
Jersey, 1997.

[4] Rolf Johansson
System Modeling and Identification. Prentice Hall Inc., Engelwood
Cliffs, New Jersey, 1993.

[5] Jean-Jaques E. Slotine, Weiping Li
Applied Nonlinear Control. Prentice Hall Inc., Upper Saddle River, New
Jersey, 1991.

[6] Karl J. Åström, Björn Wittenmark
Adaptive Control, second edition. Addison Wesley Publication Com-
pany, 1995.

[7] Pontus Nordfeldt
Regulator Design for a Flexible Servo, Master Thesis, ISSN 0280-5316,
Department of Automatic Control, Lund University, Lund, Sweden,
2003.

[8] H. Hjalmarsson, S. Gunnarsson, M. Gevers, O. Lequin
Iterative Feedback Tuning: Theory and Applications, ISSN 0272-1708,
IEEE Control Systems, pp. 26-41, 1998.

77

A Matlab code

A.1 Relay

G = tf([32000],[1/0.0309 1]);

G.outputdelay=0.04;

H = c2d(G,0.0012,’tustin’);

sys=ss(H);

A=sys.a;

B=sys.b;

C=sys.c;

D=sys.d;

sys=idss(sys);

%%%%%%%%%%%%%%%%%%% Data series for validation %%%%%%%%%%%%%%%%

dirtrace2

u50_3=matrix2(:,4);

y50_3=matrix2(:,2);

zv_3=[y50_3 u50_3];

uv_3 = zv_3(:,2);

yv_3 = zv_3(:,1);

% Estimating initial values

[ye3,x03,B3,D3] = dac2bdx(A,C,uv_3,yv_3);

B=0;

D=0;

ye3=0;

% Cross validation

ye3=idsim(uv_3,sys,x03);

figure(3)

plot(time50_3,[ye3,zv_3(:,1)])

xlabel(’time (s)’)

ylabel(’velocity (units/s)’)

A.2 ARX-model

data50

u50=matrix50(:,2);

y50=matrix50(:,4);

y50=y50/1000;

time50=matrix50(:,1);

zi=[y50 u50];

th=arx(zi,[3 1 1],[],0.0012);

% Creating a third order model

[den num]=th2poly(th);

78

[A,B,C,D]=tf2ss(num,den);

sys=ss(A,B,C,D,0.0012);

sys=idss(sys);

% Creating a reduced order model

[Ab,Bb,Cb,M,T] = dbalreal(A,B,C);

Db = 0;

[Ared,Bred,Cred,Dred] = dmodred(Ab,Bb,Cb,Db,2:3);

Dred = 0;

sys2=ss(Ared,Bred,Cred,Dred,0.0012);

sys2=idss(sys2);

threduced = idpoly(sys2);

figure(1)

bodeplot(th,’red’)

figure(9)

bodeplot(threduced,’blue’)

%%%%%%%%%%%%%%%%%% Data series for validation %%%%%%%%%%%%%%%%

data50_3

u50_3=matrix50_3(:,2);

y50_3=matrix50_3(:,4);

y50_3=y50_3/1000;

time50_3=matrix50_3(:,1);

zv_3=[y50_3 u50_3];

th2=arx(zv_3,[3 1 1],[],0.0012);

NN = [1 1 1;2 1 1;2 2 1;3 1 1;3 2 1;3 3 1;4 3 1;4 4 1;5 4 1];

V = arxstruc(zi,zv_3,NN);

selstruc(V);

uv_3 = zv_3(:,2);

yv_3 = zv_3(:,1);

% Estimating initial values

[ye3,x03,B3,D3] = dac2bdx(A,C,uv_3,yv_3);

B=0;

D=0;

ye3=0;

% Cross validation

ye3=idsim(uv_3,sys,x03);

% Estimating initial values for the reduced model

[ye3red,x03red,B3red,D3red] = dac2bdx(Ared,Cred,uv_3,yv_3);

B3red=0;

D3red=0;

ye3red=0;

% Cross validation with the reduced model

79

ye3red=idsim(uv_3,sys2,x03red);

figure(13)

subplot(2,1,1); plot(time50_3,[ye3,zv_3(:,1)])

subplot(2,1,2); plot(time50_3,[ye3red,zv_3(:,1)])

A.3 Subspace identification

data50

u50=matrix50(:,2);

y50=matrix50(:,4);

y50=y50/1000;

time50=matrix50(:,1);

zi=[y50 u50];

G = n4sid([y50 u50],3,’Focus’,’Stability’);

[num,den] = tfdata(G,0.0012);

[A,B,C,D]=tf2ss(num,den);

sys = ss(A,B,C,D,0.0012);

sys = idss(sys);

% Creating a reduced order model

[Ab,Bb,Cb,M,T] = dbalreal(A,B,C);

Db = 0;

[Ared,Bred,Cred,Dred] = dmodred(Ab,Bb,Cb,Db,2:3);

Dred = 0;

sys2=ss(Ared,Bred,Cred,Dred,0.0012);

sys2=idss(sys2);

threduced = idpoly(sys2);

figure(1)

bodeplot(sys,’red’)

figure(9)

bodeplot(threduced,’blue’)

%%%%%%%%%%%%%%%% Data series for validation %%%%%%%%%%%%%%%

data50_3

u50_3=matrix50_3(:,2);

y50_3=matrix50_3(:,4);

y50_3=y50_3/1000;

time50_3=matrix50_3(:,1);

zv_3=[y50_3 u50_3];

uv_3 = zv_3(:,2);

yv_3 = zv_3(:,1);

% Estimating initial values

[ye3,x03,B3,D3] = dac2bdx(A,C,uv_3,yv_3);

B=0;

D=0;

ye3=0;

80

% Cross validation

ye3=idsim(uv_3,sys,x03);

% Estimating initial values for the reduced model

[ye3red,x03red,B3red,D3red] = dac2bdx(Ared,Cred,uv_3,yv_3);

B3red=0;

D3red=0;

ye3red=0;

% Cross validation with the reduced model

ye3red=idsim(uv_3,sys2,x03red);

figure(3)

subplot(2,1,1); plot(time50_3,[ye3,zv_3(:,1)])

subplot(2,1,2); plot(time50_3,[ye3red,zv_3(:,1)])

A.4 Pole placement for the RST controller

pol = 0.999878;

gfB = 372.165;

h = 0.004;

s = tf(’s’);

G = tf(1/(1+s/3));

H = tf(c2d(G,h))

[num den] = tfdata(H,h)

p1 = -den(2)

z = tf(’z’);

[R,S,T] = rstd(1,gfB,[1 -pol],1,[1 -p1],1)

A.5 LQ control

gfB = 38.8082;

pole = 0.999969;

h = 0.0004;

G = tf(gfB,[1 -pole],h);

sysc=d2c(G,’matched’);

Gc = d2c(G);

Ad = [1 h*pole ; 0 pole];

Bd = [gfB*h ; gfB];

Cd = [1 0];

Dd = 0;

sys=ss(Ad,Bd,Cd,Dd,h);

Qd = [50000 0;0 5];

Rd = 100000000;

[Ld,Sd,Ed] = dlqr(Ad,Bd,Qd,Rd,0);

81

s = tf(’s’);

D = tf([1 -1],[h 0],h);

F_delay = tf([1],[1 0 0 0 0 0 0],h)

sys = sys*F_delay

F=1/(s/200+1)^2;

F=c2d(F,h);

sys2 = (Ld(1)+Ld(2)*F*D)

figure(10)

bode(sys*sys2/(1+sys*sys2))

figure(1)

margin((sys2*sys));

[Gm,Pm,Wcg,Wcp]=margin((sys2*sys));

a = 0.1*Wcp;

M = 50;

Fret = tf([1 a],[1 a/M])

Fretd = c2d(Fret,h);

Fretdss = ss(Fretd);

sys2 = Fretd*sys2;

figure(2)

bode((sys*sys2)/(1+sys*sys2))

grid on

figure(11)

margin(sys*sys2)

A.6 LQG control

gfB = 38.8082;

pole = 0.999969;

h = 0.0004;

G = tf(gfB,[1 -pole],h);

Gc = d2c(G);

Ad = [1 h*pole ; 0 pole];

Bd = [gfB*h ; gfB];

Cd = [1 0];

Dd = 0;

sys=ss(Ad,Bd,Cd,Dd,h);

Qd = [50000 0;0 5];

Rd = 100000000;

[Ld,Sd,Ed] = dlqr(Ad,Bd,Qd,Rd,0);

Qn = 0.001;

Rn = 0.002;

Nn = 0;

82

[KEST,K,P] = kalman(sys,Qn,Rn,Nn);

kest = ss(Ad-K*Cd,[Bd K],eye(2),zeros(2,2),h);

s = tf(’s’);

D = tf([1 -1],[h 0],h);

AA = Ad-Bd*Ld-K*Cd;

sys2 = ss(AA,K,-Ld,0,h);

figure(6)

[Gm,Pm,Wcg,Wcp]=margin((-sys2*sys));

a = 0.1*Wcp;

M = 50;

Fret = tf([1 a],[1 a/M])

Fretd = c2d(Fret,h);

Fretdss = ss(Fretd)

A.7 Prefilter calculations

Flowpass = tf(1,[1/40 1])

Flowpass = c2d(Flowpass,h);

Flowpass = ss(Flowpass);

Flead = tf([1/a 1],[1/b 1]);

Flead = c2d(Flead,h);

Flead = ss(Flead);

Gc = sys*sys2/(1+sys*sys2);

figure(1)

bode(Gc)

grid on

figure(3)

pzmap(Gc)

ff = 1/(s/b+1);

ffs = c2d(ff,h)

ffs=ffs*ffs;

[a,b]=tfdata(ffs,’s’)

qpart = 0.99383680248198*0.99383680248198

+ 0.03380477264556*0.03380477264556;

ppart = -sqrt(qpart)*2*cos(atan(0.03380477264556/0.99383680248198));

notch = tf(a(3)*[1 ppart qpart],b,h);

notch = (1/freqresp(notch,0))*notch;

notch = ss(notch);

PrefF = Flowpass*Flead*notch;

figure(5)

pzmap(PrefF*Gc)

83

figure(15)

bode(PrefF*Gc)

grid on

A.8 Curve generating algorithm

load ’C:\CarlOla_exjobb\ref_lowpass.mat’ ref_lowpass;

reft = ref_lowpass;

h=0.0004;

ampfactor = 45000/3654;

timefactor = 1.5;

simtime = timefactor;

reft21 = (0.2004:h:1)’;

reft22 = ones(1,2000)’*reft(500,2);

reft2 = [reft ; reft21 reft22];

reft2 = [reft2(:,1)*timefactor reft2(:,2)*ampfactor];

s = tf(’s’);

lowp = tf([1],[1/200 1]);

lowp = c2d(lowp,h);

[num,den] = tfdata(lowp,h);

reft2 = filter(num,den,reft2);

A.9 ILC filter calculations

simtime = 1.2;

reft_2;

sinefreq = 3;

nl=42;

Tf=131;

s=tf(’s’);

h=0.0004;

z=tf(’z’,h);

slutfelet=300;

nli=40:1:44;

Tfi=logspace(1,2,5);

%for ii=1:length(nli)

%nl=nli(ii);

nl=55;

% for kk=1:length(Tfi)

%Tf=Tfi(kk);

Tf=300;

%Tf=1000;

Q=1/(s/Tf+1)^4;

Q=c2d(Q,h);

L=z^nl*0.1;

84

[aL,bL]=tfdata(L,’z’);

[aQ,bQ]=tfdata(Q,’z’);

n = 0;

uk=0;

time = 0;

for i=1:(simtime/h+2)

uk(i) = 0;

time(i) = n;

n=n+h;

end

uk = [time’, uk’];

clear e

for i=1:20

rn=round(100*rand(1));

sim(’newLQmodeldisbackup’)

felet=max(abs(e(:,3)));

uk = [uk(:,1) uk(:,3)];

figure(1)

plot(e)

grid on

title(’e’)

figure(2)

plot(uk,’+’)

grid on

title(’uk’)

nn=length(e(:,3));

e(1:nn-nl+1,3)=e(nl:nn,3);

e(nn-nl+1:nn,3)=e(nn-nl,3)*ones(nl,1);

er=e(:,3);

uk(:,2) = uk(:,2)+0.2*er;

end

felet;

if felet<slutfelet

slutfelet=felet

finalTf=Tf;

finalnl=nl

end

85

B Programming

B.1 Identification methods

B.1.1 Relay identification

The relay technique is written so the relay identification is directly fol-
lowed by the step sequence. The relay part is active as long as the pe-
riod length is trying to find its equilibrium. In the script this is as long as
(oldomega-omega)>0.005). When this is no longer true the boolean vari-
able done changes to true so the step sequence can be initiated. The relay
hysteresis is called eps and when the position variable crosses it, the vari-
able relaysign changes the direction of the current. The RST controller
is written as current = (vref*T-S*y)/R and is used to control the step
sequence. The simplicity of the controller is due to the low order of the
model (section 4.3.1). 24 005 cycles after the initiation of the step sequence,
the identification procedure is done.

/******************** Calculate output *********************/

case IDENTIFY:

if(init_identify == true)

{

i = 0;

oldcurrent = 0;

zeroposition=position;

omega = 2;

oldomega = 3;

init_identify = false;

}

if((oldomega-omega)>0.005 && (done == false))

{

if(position<(zeroposition-eps) && relaysign==-1)

relaysign=1;

if(position>(zeroposition+eps) && relaysign==1)

relaysign=-1;

current = relaysign*d;

}

else

{

done = true;

current = (vref*T-S*y)/R;

if (i>24005)

{

current = 0;

identify_done=true;

}

}

86

break;

The amplitude of the relay oscillations is described in the variable deviation.
This value is stored in maxdev every time it is larger than its previous value.
The omega used in the Calculate output is calculated from period which is
given by stepnbr*h. stepnbr is the number of cycles from the previous sign
shift of deviation from negative to positive and h is the sampling time.

/********************* Update states ***********************/

case IDENTIFY:

/********************* Relay ********************/

if(done == false)

{

deviation = position-zeroposition;

if(deviation<0)

deviation = -1*deviation;

if(deviation>maxdev)

maxdev=deviation;

stepnbr = stepnbr + 1;

if((oldposition-zeroposition)*(position-zeroposition)<0

&& (position-zeroposition)>0)

{

period = stepnbr*h;

stepnbr = 0;

if(period>maxperiod){

maxperiod = period;

oldomega = omega;

omega = 2*Pi/maxperiod;

}

}

}

/******************* Step response ***************/

else

{

i++;

if (i>12000)

vref = 0.5*speed;

if(i>=8000 && i<=10000)

temp1 = temp1 + current;

if(i>=22000 && i<=24000)

temp2 = temp2 + current;

}

oldcurrent = current;

/****************** Calculations ***************/

if(identify_done)

87

{

K = vref/(temp1/(10000-8000+1)-temp2/(24000-22000+1));

q = sqrt((-Pi/(4*d)*sqrt(maxdev*maxdev-eps*eps))*(-Pi/(4*d)

*sqrt(maxdev*maxdev-eps*eps))+((Pi*eps)/(4*d))*((Pi*eps)/(4*d)));

phase = Pi+atan(((Pi*eps)/(4*d))/((4*d)*sqrt(maxdev*maxdev-eps*eps)));

if(phase<0)

phase=phase+2*Pi;

T1 = omega/sqrt((K/(q*omega))*(K/(q*omega))-1);

L=(phase-(Pi+atan(T/omega)))/omega;

identify_done = false;

done = false;

ctrlon = false;

}

break;

In the calculations part, the model is obtained with formulas that can be
found in [5].

B.1.2 Least squares identification

The least squares identification has been divided into three parts. The Cal-
culate output part and Update states part are the same as for the rest,
whereas the third part, final calculations, takes place after the system has
been excited. This is because it needs the gathered sums from the Update
state part to do its calculations.

The first part, if(init_ident == true), is just for setting the variable
to zero at the beginning of the identification procedure. The excitation
signal, a PRBS signal, is set at the end of this part.

/******************** Calculate output *********************/

case IDENT:

if(init_ident == true)

{

y1y1 = 0;

y1y2 = 0;

y1y3 = 0;

y1u7 = 0;

y2y2 = 0;

y2y3 = 0;

y2u7 = 0;

y3y3 = 0;

y3u7 = 0;

u7u7 = 0;

y1y = 0;

y2y = 0;

y3y = 0;

yu7 = 0;

yone=0;

88

ytwo=0;

ythree=0;

uone=0;

ident4ms = false;

i = 0;

zeroposition=position;

oldposition=zeroposition;

init_ident = false;

}

current = 2*prbs_ampl*(prbs_reg[15] - 0.5);

break;

In the Update states section, the PRBS signal is updated. After that,
sums of the different multiplications used in the least squares are gathered.
Finally, the two boolean variables, ident4ms and alldone, are set to true.
Ident4ms tells the final calculations part that the identification has been
performed with a sampling period of 4 ms. This is because the controllers
work with a sampling period of 0.4 ms so the calculated model has to be
resampled to work with the controllers.

Alldone declares that the excitation part is over and all that remains is
to calculate the model.

/********************* Update states ***********************/

case IDENT:

prbs_c = prbs_c + 1;

if (prbs_c >= prbs_period)

{

prbs_c = 0;

tmpi = prbs_reg[15] + prbs_reg[14] + prbs_reg[12] + prbs_reg[3];

for(lp1 = 14; lp1 >= 0; lp1--)

prbs_reg[lp1 + 1] = prbs_reg[lp1];

prbs_reg[0] = tmpi % 2;

}

ydiv = y/100;

i++;

if((i>200) && (i<=2500))

{

y3y3 = y3y3 + ythree*ythree;

y2y2 = y2y2 + ytwo*ytwo;

y2y3 = y2y3 + ytwo*ythree;

y1y1 = y1y1 + yone*yone;

y1y2 = y1y2 + yone*ytwo;

y1y3 = y1y3 + yone*ythree;

y1u7 = y1u7 + yone*uone;

y2u7 = y2u7 + ytwo*uone;

y3u7 = y3u7 + ythree*uone;

u7u7 = u7u7 + uone*uone;

y1y = y1y + yone*ydiv;

89

y2y = y2y + ytwo*ydiv;

y3y = y3y + ythree*ydiv;

yu7 = yu7 + uone*ydiv;

}

if(i==2701)

{

ident4ms = true;

alldone = true;

}

ythree=ytwo;

ytwo=yone;

yone=ydiv;

uone=current;

break;

When alldone is set to true, this part is initiated. The variables A1, A2,
A3 and B are the model parameters in the third order model. The next step is
to reduce the model order. This is done by iterations to find the dominating
pole (section 3.3.6). Dividing the denominator of the third order model
with its derivative will give a negative or a positive value depending on its
relationship to the pole. Using this, you can find the pole by iterating. The
code lines after the if-algorithm are necessary to keep the stationary gain of
the process after the reduction.

The next part is for putting the model on state space form. Some of the
controllers need it to be on this form.

/******************** Final calculations *********************/

if(alldone){

j++;

if(j==1)

A1 = -(y1y*y2y2*y3y3*u7u7-y1y*y2y2*y3u7*y3u7-y1y*y2y3*y2y3*u7u7+2*y1y*y2y3

*y2u7*y3u7-y1y*y2u7*y2u7*y3y3-y2y*y1y2*y3y3*u7u7+y2y*y1y2*y3u7*y3u7+y2y*y2y3

*y1y3*u7u7-y2y*y2y3*y1u7*y3u7-y2y*y2u7*y1y3*y3u7+y2y*y2u7*y1u7*y3y3+y3y*y1y2

*y2y3*u7u7-y3y*y1y2*y2u7*y3u7-y3y*y2y2*y1y3*u7u7+y3y*y2y2*y1u7*y3u7+y3y*y1y3

*y2u7*y2u7-y3y*y2u7*y1u7*y2y3-yu7*y1y2*y2y3*y3u7+yu7*y1y2*y2u7*y3y3+yu7*y2y2

*y1y3*y3u7-yu7*y2y2*y1u7*y3y3-yu7*y2y3*y1y3*y2u7+yu7*y1u7*y2y3*y2y3)

/(y1y1*y2y2*y3y3*u7u7-y1y1*y2y2*y3u7*y3u7-y1y1*y2y3*y2y3*u7u7+2*y1y1*y2y3

*y2u7*y3u7-y1y1*y2u7*y2u7*y3y3-y1y2*y1y2*y3y3*u7u7+y1y2*y1y2*y3u7*y3u7+2

*y1y2*y2y3*y1y3*u7u7-2*y1y2*y2y3*y1u7*y3u7-2*y1y2*y2u7*y1y3*y3u7+2*y1y2*y2u7

*y1u7*y3y3-y2y2*y1y3*y1y3*u7u7+2*y1y3*y2y2*y1u7*y3u7+y1y3*y1y3*y2u7*y2u7-2

*y1y3*y1u7*y2u7*y2y3-y1u7*y1u7*y2y2*y3y3+y1u7*y1u7*y2y3*y2y3);

else if(j==3)

A2 = (y1y*y1y2*y3y3*u7u7-y1y*y1y2*y3u7*y3u7-y1y*y2y3*y1y3*u7u7+y1y*y2y3

*y1u7*y3u7+y1y*y2u7*y1y3*y3u7-y1y*y2u7*y1u7*y3y3-y2y*y1y1*y3y3*u7u7+y2y*y1y1

*y3u7*y3u7+y2y*y1y3*y1y3*u7u7-2*y2y*y1y3*y1u7*y3u7+y2y*y1u7*y1u7*y3y3+y3y

*y1y1*y2y3*u7u7-y3y*y1y1*y2u7*y3u7-y3y*y1y3*y1y2*u7u7+y3y*y1y3*y1u7*y2u7+y3y

*y1u7*y1y2*y3u7-y3y*y1u7*y1u7*y2y3-yu7*y1y1*y2y3*y3u7+yu7*y1y1*y2u7*y3y3+yu7

*y1y3*y1y2*y3u7-yu7*y1y3*y1y3*y2u7-yu7*y1u7*y1y2*y3y3+yu7*y1u7*y1y3*y2y3)

90

/(y1y1*y2y2*y3y3*u7u7-y1y1*y2y2*y3u7*y3u7-y1y1*y2y3*y2y3*u7u7+2*y1y1*y2y3

*y2u7*y3u7-y1y1*y2u7*y2u7*y3y3-y1y2*y1y2*y3y3*u7u7+y1y2*y1y2*y3u7*y3u7+2

*y1y2*y2y3*y1y3*u7u7-2*y1y2*y2y3*y1u7*y3u7-2*y1y2*y2u7*y1y3*y3u7+2*y1y2*y2u7

*y1u7*y3y3-y2y2*y1y3*y1y3*u7u7+2*y1y3*y2y2*y1u7*y3u7+y1y3*y1y3*y2u7*y2u7-2

*y1y3*y1u7*y2u7*y2y3-y1u7*y1u7*y2y2*y3y3+y1u7*y1u7*y2y3*y2y3);

else if(j==5)

A3 =-(y1y*y1y2*y2y3*u7u7-y1y*y1y2*y2u7*y3u7-y1y*y2y2*y1y3*u7u7+y1y*y2y2

*y1u7*y3u7+y1y*y1y3*y2u7*y2u7-y1y*y2u7*y1u7*y2y3-y2y*y1y1*y2y3*u7u7+y2y*y1y1

*y2u7*y3u7+y2y*y1y3*y1y2*u7u7-y2y*y1y3*y1u7*y2u7-y2y*y1u7*y1y2*y3u7+y2y*y1u7

*y1u7*y2y3+y3y*y1y1*y2y2*u7u7-y3y*y1y1*y2u7*y2u7-y3y*y1y2*y1y2*u7u7+2*y3y

*y1y2*y1u7*y2u7-y3y*y1u7*y1u7*y2y2-yu7*y1y1*y2y2*y3u7+yu7*y1y1*y2u7*y2y3+yu7

*y1y2*y1y2*y3u7-yu7*y1y2*y1y3*y2u7-yu7*y1u7*y1y2*y2y3+yu7*y1u7*y1y3*y2y2)

/(y1y1*y2y2*y3y3*u7u7-y1y1*y2y2*y3u7*y3u7-y1y1*y2y3*y2y3*u7u7+2*y1y1*y2y3

*y2u7*y3u7-y1y1*y2u7*y2u7*y3y3-y1y2*y1y2*y3y3*u7u7+y1y2*y1y2*y3u7*y3u7+2

*y1y2*y2y3*y1y3*u7u7-2*y1y2*y2y3*y1u7*y3u7-2*y1y2*y2u7*y1y3*y3u7+2*y1y2*y2u7

*y1u7*y3y3-y2y2*y1y3*y1y3*u7u7+2*y1y3*y2y2*y1u7*y3u7+y1y3*y1y3*y2u7*y2u7-2

*y1y3*y1u7*y2u7*y2y3-y1u7*y1u7*y2y2*y3y3+y1u7*y1u7*y2y3*y2y3);

else if(j==7)

{

B = (-y1y*y1y2*y2y3*y3u7+y1y*y1y2*y2u7*y3y3+y1y*y2y2*y1y3*y3u7-y1y*y2y2

*y1u7*y3y3-y1y*y2y3*y1y3*y2u7+y1y*y1u7*y2y3*y2y3+y2y*y1y1*y2y3*y3u7-y2y*y1y1

*y2u7*y3y3-y2y*y1y3*y1y2*y3u7+y2y*y1y3*y1y3*y2u7+y2y*y1u7*y1y2*y3y3-y2y*y1u7

*y1y3*y2y3-y3y*y1y1*y2y2*y3u7+y3y*y1y1*y2u7*y2y3+y3y*y1y2*y1y2*y3u7-y3y*y1y2

*y1y3*y2u7-y3y*y1u7*y1y2*y2y3+y3y*y1u7*y1y3*y2y2+yu7*y1y1*y2y2*y3y3-yu7*y1y1

*y2y3*y2y3-yu7*y1y2*y1y2*y3y3+2*yu7*y1y2*y1y3*y2y3-yu7*y1y3*y1y3*y2y2)/(y1y1

*y2y2*y3y3*u7u7-y1y1*y2y2*y3u7*y3u7-y1y1*y2y3*y2y3*u7u7+2*y1y1*y2y3*y2u7

*y3u7-y1y1*y2u7*y2u7*y3y3-y1y2*y1y2*y3y3*u7u7+y1y2*y1y2*y3u7*y3u7+2*y1y2

*y2y3*y1y3*u7u7-2*y1y2*y2y3*y1u7*y3u7-2*y1y2*y2u7*y1y3*y3u7+2*y1y2*y2u7*y1u7

*y3y3-y2y2*y1y3*y1y3*u7u7+2*y1y3*y2y2*y1u7*y3u7+y1y3*y1y3*y2u7*y2u7-2*y1y3

*y2u7*y1u7*y2y3-y2y2*y1u7*y1u7*y3y3+y1u7*y1u7*y2y3*y2y3);

B = B*100;

}

else if(j==9)

{

z = 1;

for (i=1;i<100;i++)

{

a = z*z*z + A1*z*z + A2*z + A3;

deriv = 3*z*z + 2*A1*z + A2;

diff = a/deriv;

if (diff > 0.01)

diff = 0.01;

if (diff < -0.01)

diff = -0.01;

z = z - diff;

}

pole = z;

gainfactor = (1-pole)/(1 + A1 + A2 + A3);

gfB = gainfactor*B;

91

Ad11 = 1.0;

Ad12 = h*pole;

Ad21 = 0.0;

Ad22 = pole;

Bd1 = gfB*h;

Bd2 = gfB;

Cd1 = 1;

Cd2 = 0;

Dd = 0;

}

else if(j==11)

{

alldone = false;

identon = false;

j=0;

}

}

B.1.3 Recursive least squares identification

The RLS identification computes theta, P_rls and K_rls according to the
algorithm in section 3.3.4. For some reason, the B&R Automation Studio
does not handle multidimensional arrays in the standard way. Therefore a
4×4 matrix is expressed as a 16×1 vector. In Calculate ouput, initial values
of theta and P_rls are being set. This is done by the flag init_rls which
is only true in the first loop.

/******************** Calculate output *********************/

case RLS:

if(init_rls)

{

theta[0] = -0.917926;

theta[1] = -0.002529517;

theta[2] = -0.871672;

theta[3] = 29.2793;

lambda = 1;

/*Covariance matrix*/

for(row=0; row<=15; row++)

P_rls[row] = 0;

for(rls_cnt=0; rls_cnt<=15; rls_cnt=rls_cnt+5)

P_rls[rls_cnt] = 10;

zeroposition=position;

init_rls = false;

}

break;

In the Update states part, first all values that are computed by accu-
mulation must be set to zero. After that K_rls and theta are computed.
P_rls is computed last, since the Covariance matrix used in K_rls shall be
delayed one step.

92

/********************* Update states ***********************/

case RLS:

phi[0] = -yone;

phi[1] = -ytwo;

phi[2] = -ythree;

phi[3] = uone;

/************ Setting variables to zero ***************/

for(rls_cnt=0; rls_cnt<=3; rls_cnt++){

K_rls[rls_cnt] = 0;

K_rls_temp[rls_cnt] = 0;

}

theta_temp = 0;

K_rls_temp2 = 0;

/************** Computation of K_rls ******************/

for(col=0; col<=3; col++){

for(rls_cnt=0; rls_cnt<=3; rls_cnt++){

K_rls_temp[col] = K_rls_temp[col] + phi[rls_cnt]*P_rls[col + 4*rls_cnt];

}

}

for(rls_cnt=0; rls_cnt<=3; rls_cnt++)

K_rls_temp2 = K_rls_temp2 + K_rls_temp[rls_cnt]*phi[rls_cnt];

for(row=0; row<=3; row++){

for(col=0; col<=3; col++){

K_rls[row] = K_rls[row] + P_rls[row*4 + col]*phi[col];

}

K_rls[row] = K_rls[row]/(lambda + K_rls_temp2);

}

/************** Computation of theta *****************/

for(rls_cnt=0; rls_cnt<=3; rls_cnt++)

theta_temp = theta_temp + phi[rls_cnt]*theta[rls_cnt];

for(row=0; row<=3; row++)

theta[row] = theta[row] + K_rls[row]*(y-theta_temp);

/************** Computation of P_rls ******************/

for(row=0; row<=3; row++){

for(col=0; col<=3; col++){

P_rls_temp[row*4 + col] = eye[row*4 + col]-K_rls[row]*phi[col];

oldP_rls[row*4 + col] = P_rls[row*4 + col];

P_rls[row*4 + col] = 0;

}

}

for(row=0; row<=3; row++){

for(col=0; col<=3; col++){

for(rls_cnt=0; rls_cnt<=3; rls_cnt++){

P_rls[row*4 + col] = P_rls[row*4 + col] + P_rls_temp[row*4 + rls_cnt]

*oldP_rls[col + rls_cnt*4];

93

}

P_rls[row*4 + col] = P_rls[row*4 + col]/lambda;

}

}

ythree=ytwo;

ytwo=yone;

yone=y;

uone=current;

break;

B.1.4 Resampling and computation of LQ parameters

This piece of code is needed since the identification is performed in a 4
ms loop, while the control is performed in a 0.4 ms loop. The algorithm
resamples a first order model from sampling period h_ident to sampling
period h. gfB is the new numerator of the model and the denominator will
be z - pole.

gfB4ms = gfB;

pole4ms = pole;

pole = exp(log(pole4ms)*(h/h_ident));

gfB = gfB*((1-pole)/(1-pole4ms));

The code below computes the L vector for a second order model of the
process from current to position. It is presupposed that the model is given
as described in section 4.4.2. The Q and R matrices must be given, and Q
must be symmetric. First s12, s11 and s22 are computed by use of some
temporary variables. After that the L vector lq1 and lq2 can be computed.

gfB_2 = gfB*gfB;

pole_2 = pole*pole;

h_2 = h*h;

temp_sqrt = sqrt(q11*(4*q22*gfB_2+4*gfB_2*h*q12+ 4*Ru+4*Ru*pole_2

+ 8*Ru*pole+gfB_2*q11*h_2));

s12_temp2 = 4*gfB_2*gfB*q11*h*q22+4*gfB_2*gfB*q12*q11*h_2+ 4*gfB

*q11*h*Ru + 4*gfB*q11*h*pole_2*Ru +8*gfB*q11*h*pole*Ru +gfB_2*gfB

*q11*q11*h_2*h;

s12_temp1 = gfB_2*q11*h_2*temp_sqrt+2*gfB_2*h*q12*temp_sqrt + 2

*q22*gfB_2*temp_sqrt+2*Ru*temp_sqrt+2*pole_2*Ru*temp_sqrt-4*pole

*Ru*temp_sqrt+s12_temp2;

s12 = 0.25*(gfB*q11*h+4*gfB*q12+temp_sqrt-1.41421356237310

*sqrt(q11*s12_temp1/temp_sqrt))/gfB;

s11 = ((q12*gfB_2*s12-gfB_2*s12*s12+pole*q11*Ru))

/(gfB_2*h*(s12-q12));

s22 = (-q11*Ru-q11*gfB_2*h_2*s11-2*q11*gfB_2*h*s12+gfB_2*h_2*s11

*s11 + 2*gfB_2*h*s11*s12+gfB_2*s12*s12)/(q11*gfB_2);

94

den = 1/(Ru + gfB_2*(h_2*s11 +h*(s12 +s12) +s22));

lq1 = (gfB*(h*s11+s12))*den;

lq2 = (gfB*pole*(h_2*s11 +2*h*s12 +s22))*den;

B.2 Controllers

B.2.1 RST controller

This is the simplest type of controller used in this project. It is also used in
the relay identification for controlling the step sequence.

The Calculate output only consists of the control formula for the RST
controller (section 4.3.1). In Update states the reference speed (vref) is set.

/******************** Calculate output *********************/

case RST_CTRL:

current = (vref*T-S*y)/R;

break;

/********************* Update states ***********************/

case RST_CTRL:

i++;

if (i>=0 && i<1000)

vref = 0;

if (i>=1000 && i<6000)

vref = 0.5*speed;

if (i>=6000 && i<12000)

vref = 1*speed;

if (i>12000)

i=0;

break;

B.2.2 State feedback controller

In the Calculate output part of state feedback control the current can be
computed directly by use of the known variables posref, which is the posi-
tion reference and relpos, which is the position relative to the value of the
position when the program started and the velocity y.

/******************** Calculate output *********************/

case STATE_FEEDBACK:

if(init_sf == true)

{

zeroposition=position;

posref = 0;

refcounter = 0;

}

relpos = position-zeroposition;

current = l1*posref - l1*relpos - l2*y;

break;

95

In the first loop the L vector is determined by use of the specified discrete
poles of the closed loop characteristic polynomial, pole1 and pole2. The
position reference is also updated.

/********************* Update states ***********************/

case STATE_FEEDBACK:

if(init_sf == true)

{

if (pole1[0]==pole2[0])

{

part1 = pole1[0];

part2 = pole1[1];

l1 = (part1*part1-2*part1+1+part2*part2)/(gfB*h);

l2 = (pole+1-2*part1)/(gfB)-h*l1;

}

if ((pole1[1]==pole2[1]) && (pole1[0] != pole2[0]))

{

part1 = (pole1[0]+pole2[0])/2;

part2 = pole1[0]-(pole1[0]+pole2[0])/2;

l1 = (part1*part1-2*part1+1-part2*part2)/(gfB*h);

l2 = (pole+1-2*part1)/(gfB)-h*l1;

}

init_sf = false;

}

/********** Reference generator ***********/

refcounter++;

if(refcounter==10000)

posref = 120000;

if(refcounter==20000)

{

posref = 0;

refcounter = 0;

}

break;

B.2.3 Linear Quadratic controller

First the position error poserror and the velocity error yerror are com-
puted. Then the velocity error is filtered through a low pass filter. The
current is computed by use of these values and the values of lq1 and lq2.
Either the L vector is given once, or if the flag rls_on is set to true, the L
vector will be updated online. Then this code will instead be an LQ STR.
The current is filtered either by a low pass filter or by lag filter. The reason
why the lag filter cannot be used at all times is that it will drive the system
unstable if the position error or the velocity error are too big. Bumpless
transfer of the switching is implemented.

/******************** Calculate output *********************/

96

case LQ_CONTROL:

if(init_lq == true)

{

zeroposition=position;

load = 0;

loadcounter = 0;

refcounter = 0;

init_lq = false;

}

poserror = position - zeroposition - 0;

yerror = (poserror - oldposerror)/h;

/********** Filtered velocity **********/

yf = 0.92311634638664*yfold + 0.07688365361336*yf1;

yf1 = 0.92311634638664*yf1 + 0.07688365361336*yerrorold;

/********* Control application *********/

current = - lq1*poserror - lq2*yf;

/*********** Low Pass filter ***********/

fcurrent = (70*h*current+oldfcurrent)/(70*h+1);

/************* Lag filter **************/

fretcurrent = oldfretcurrent*0.99995038011943+ current -

oldcurrent*0.99751900597172;

oldcurrent = current;

/**** Choosing Lag filter or Low passs filter ****/

if(abs(poserror)<5000 && abs(yerror)<20000)

{

fcurrent = fretcurrent; /* Bumpless transfer */

current = fretcurrent + load;

}

else

{

fretcurrent = fcurrent; /* Bumpless transfer */

current = fcurrent + load;

}

break;

The only things done in the Update states part is to generate a load
disturbance and to update some parameters.

/********************* Update states ***********************/

case LQ_CONTROL:

/********** Disturbance generator ***********/

loadcounter++;

if(loadcounter==5000)

t’ load = 3;

if(loadcounter==10000)

97

load = 0;

if(loadcounter==15000)

load = -3;

if(loadcounter==20000){

load = 0;

loadcounter = 0;

}

relpos = position-zeroposition;

oldfcurrent = fcurrent;

oldfretcurrent = fretcurrent;

yold = y;

yfold = yf;

yerrorold = yerror;

oldposerror = poserror;

if(rls_on)

{

ident_mode = 3;

identon = true;

}

else

identon = false;

break;

B.2.4 Linear Quadratic Gaussian controller

The structure of the LQG controller is very similar to the LQ controller.
But now the current is computed by use of the error state estimations. The
current must also be saturated in order for the Kalman filter to get the same
information as the real process (except for the load disturbance).

/******************** Calculate output *********************/

case LQG_CONTROL:

if(init_lqg == true)

{

zeroposition=position;

xhat1 = 0;

xhat2 = y;

load = 0;

loadcounter = 0;

refcounter = 0;

goingup = true;

sintime = 0;

init_lqg = false;

}

/********** poserror, yerror **************/

poserror = position - zeroposition -0;

yerror = (poserror - oldposerror)/h;

yf = 0.92311634638664*yfold + 0.07688365361336*yf1;

98

yf1 = 0.92311634638664*yf1 + 0.07688365361336*yerrorold;

current = - Ld1*xhat1 - Ld2*xhat2;

fcurrent = (70*h*current+oldfcurrent)/(70*h+1);

if(abs(poserror)<5000 && abs(yerror)<20000)

{

fcurrent = fretcurrent; /* Bumpless transfer */

satfcurrent = current;

if (satfcurrent >= safelimit)

satfcurrent=safelimit;

if (satfcurrent <= -safelimit)

satfcurrent=-safelimit;

current = current + load;

}

else

{

fretcurrent = fcurrent; /* Bumpless transfer */

satfcurrent = fcurrent;

if (satfcurrent >= safelimit)

satfcurrent=safelimit;

if (satfcurrent <= -safelimit)

satfcurrent=-safelimit;

current = fcurrent + load;

}

break;

A load disturbance is generated and the error state estimations are up-
dated according to the equations in section 4.3.4.

/********************* Update states ***********************/

case LQG_CONTROL:

/********** Disturbance generator ***********/

loadcounter++;

if(loadcounter==5000)

load = 3;

if(loadcounter==10000)

load = 0;

if(loadcounter==15000)

load = -3;

if(loadcounter==20000){

load = 0;

loadcounter = 0;

}

relpos = position-zeroposition;

oldxhat1 = xhat1;

oldxhat2 = xhat2;

/********** Kalman filter update ************/

xhat1 = (Ad11-Kalmanvector1*Cd1)*oldxhat1 + (Ad12-Kalmanvector1*Cd2)

*oldxhat2 + Bd1*satfcurrent + Kalmanvector1*poserror;

99

xhat2 = (Ad21-Kalmanvector2*Cd1)*oldxhat1 + (Ad22-Kalmanvector2*Cd2)

*oldxhat2 + Bd2*satfcurrent + Kalmanvector2*poserror;

oldfcurrent = fcurrent;

oldfretcurrent = fretcurrent;

yold = y;

yfold = yf;

yerrorold = yerror;

oldposerror = poserror;

break;

B.2.5 Iterative Learning Control

In ILC the first task was to obtain a good reference signal. This signal was
found with the step sequence code below.

/******************** Calculate output *********************/

case STEP_SEQUENCE:

if(init_step == true)

{

zeroposition=position;

init_step = false;

}

i++;

relpos = position-zeroposition;

if (i>=0 && i<1300)

current = 4;

if (i>=1300 && i<2530)

current = -4;

if (i>=2500)

current = 0;

break;

When a suitable reference step had been found, the ILC algorithm below
returns a fitting uk after a couple of iterations.

In the reference generator, the reference signal obtained above is re-
trieved from the vector refvector which is stored in another file. It can
then be chosen how big the step will be by multiplying it with the term
step/stepfactor, where step is the wanted amplitude and stepfactor is
the reference amplitude. The error between the reference signal and the
output from the motor (poserror) is then calculated as well as the error
velocity (yerror). These two signals are used in the feedback connection.
The filtered poserror is used in the update law for uk in Update states.

In the control application, aa LQ controller is used (section 4.3.3). Con-
sideration is taken to the saturation limit of the system. Also notice that
yerror is low pass filtered.

/******************** Calculate output *********************/

case ILC:

100

if(init_ilc == true)

{

zeroposition=position;

oldposition=zeroposition;

nbrofsamples = 0;

init_ilc = false;

}

relpos = position-zeroposition;

/***************** Reference Generator *****************/

if(nbrofsamples<=(2500/steptimefactor-1))

{

reference = refvector[nbrofsamples*steptimefactor];

reference = (reference*step)/(stepfactor);

}

reference_uk = reference + uk[nbrofsamples];

realposerror = reference - relpos;

poserror = 0.81873075307798*oldposerror + 0.18126924692202*realposerror;

yerror = (relpos-reference_uk - (oldrelpos-oldreference_uk))/h;

/***************** Control application *****************/

yf = 0.92311634638664*yfold + 0.07688365361336*yf1;

yf1 = 0.92311634638664*yf1 + 0.07688365361336*yerrorold;

current = - lq1*(relpos-reference_uk) - lq2*yf;

satfcurrent = fretcurrent;

if (satfcurrent >= safelimit)

satfcurrent = safelimit;

if (satfcurrent <= -safelimit)

satfcurrent = -safelimit;

current = fretcurrent;

break;

In Update states, uk is updated only if a new step sequence is initiated.
The second if-algorithm is for filling the remaining positions in uk with the
final value of the step. When the number of ILC iterations, nbrofilc, is
greater than the predetermined number of iterations, ilc_cycles, the uk

vector is stored and the loop ends.

/********************* Update states ***********************/

case ILC:

if(nbrofsamples<=length_uk && nbrofsamples>=timeshift)

{

uk[nbrofsamples-timeshift] = (uk[nbrofsamples-timeshift] + 0.2*poserror);

}

oldfretcurrent = fretcurrent;

yold = y;

yfold = yf;

yerrorold = yerror;

101

oldrelpos = relpos;

oldreference_uk = reference_uk;

oldposerror = poserror;

nbrofsamples++;

if((nbrofsamples >= (2500/steptimefactor+1500)) && (nbrofilc <= ilc_cycles))

{

for (i=1;i<timeshift;i++)

{

uk[nbrofsamples-timeshift+i]=uk[nbrofsamples-timeshift];

}

init_ilc = true;

nbrofilc++;

}

if(nbrofilc>ilc_cycles)

ctrlon = 0;

/***************** LQSTR implementation ***************/

if(rls_on)

{

ident_mode = 3;

identon = true;

}

else

identon = false;

break;

The last part, RLS implementation, is if you want to use the recursive
update law for LQ parameters. This alternative is chosen by setting the
boolean variable rls_on to true.

102

C Motor specifications

ETEL Torque motor TMA 0210 100 3TA

DESIGN CONSTANT UNIT VALUE water cooling

Tp Peak torque Nm 311

Tu Ultimate torque Nm 362

Tc130 Continuous torque (coil at 130) Nm 85.3 203

Tc80 Continuous torque (coil at 80) Nm 64.5

Pp Peak power dissipation (at 20) W 4899

Pc130 Cont. power dissipation (coil at 130) W 406 2078

Pc80 Cont. power dissipation (coil at 80) W 191

Km Constant motor (at 20OC) Nm/ W 5.38

Te Electrical time constant ms 3.53

Rth130 Thermal resistance (coil at 130) K/W 0.271 0.053

Rth80 Thermal resistance (coil at 80) K/W 0.315

2p Number of poles 44

J Rotor inertia kgm2 3.09E-2

m Motor weight kg 16.8

Th Hysteresis torque Nm 1.23

Td Detent torque Nm 5.0

n Maximum recommended speed rpm 270

Water cooling:

Tw Water temperature difference C 5

Fw Water flow 1/min 6.0

Pi Input pressure bar 0.6

WINDING CONSTANT UNIT VALUE

Kt Torque constant Nm/Arms 22.2

Ku Back EMF constant [peak value] V/rad/s 18.0

R130 Electrical resistance at 130 (*) Ohm 16.2

R80 Electrical resistance at 80 (*) Ohm 14.0

R20 Electrical resistance at 20 (*) Ohm 11.3

L1 Electrical inductance mH 40.0

Ip Peak current Arms 17.0

Iu Ultimate current Arms 21.2

Ic130 Continuous current at 130 Arms 4.08

Ic80 Continuous current at 80 Arms 3.01

lcw130 Continuous current with water cooling Arms 18 .5

Note: All data ±10 %(*) : Terminal to terminal

103

