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1. Introduction
Rollover occurs when a car flips over, see Figure 1.1. There are two types of
rollover, tripped and untripped. Tripped rollover is the most common type,
and occurs when the car has started to skid, hits an obstacle, and finally
flips over. Untripped rollover is induced by the driver, either intentionally
during extreme maneuvers, or unintentionally in panic situations (Oden
thal et al. 1999).

Rollover is the second most dangerous car crash on American Highways.
The year 2000, 9,882 people were killed in light vehicle rollover crashes,
including 8,146 killed in single vehicle rollovers. Vehicles with high centers
of gravity (center of gravity is hereafter denoted CG), e.g., Sport Utility
Vehicles, SUVs, are becoming more and more popular. These vehicles are
more likely to rollover during extreme maneuvers compared to ordinary
cars (Forkenbrock et al. 2003). The tripped rollover is well understood, and
it is responsible for the majority of the fatalities. The untripped rollover is
not well understood, and it is only responsible for a small portion of the
fatalities (Howe et al. 2001). Still, people are getting killed by untripped
rollovers, and research on this subject is motivated. Tripped rollovers can be
avoided if a control system prevents the vehicle from uncontrolled skidding,
e.g., Electronic Stability Program, ESP (van Zanten et al. 1996). Untripped
rollovers can be avoided if a control system lets the vehicle deviate from
the nominal trajectory. The aim for this work is to find a control system
that can prevent untripped rollovers, with minimum trajectory deviation.

The controller will use the brakes and the traction system as actuators.
Controllable brakes are standard on many cars, and they are therefore
cheaper and more available compared to other actuators. Traction systems
that can distribute driving torque between the different wheels are not
that easily available, but will provide more freedom for the controller.

Vehicle control is an active research field, both in the academic world
and in the car industry, and much effort is spent on finding better and
better solutions. However, due to financial reasons, much information is
proprietary. This makes it difficult to get to know what others have done
and how they did it.

Figure 1.1 SUV in the beginning of a rollover.
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Chapter 1. Introduction

1.1 Objectives and Approach

The objectives of the thesis can be structured in the following way.

• Prevent untripped rollovers.

• Minimize the deviation from the nominal (desired) trajectory.

The problem has been divided into five smaller problems.

• Investigate the underlying physics of cars and tires.

• Construct vehicle model and implement it in Simulink.

• Find a measure that indicates a potential rollover.

• Design a controller that uses the measure above to achieve the objec
tives.

• Design a control allocator that distributes the desired control action
between the four wheels.

Scope
In order for the controller to work properly, it is essential to know the
states of the vehicle. In automatic control this is accomplished with an
observer. The observer is very important, but it is outside the scope of this
thesis. It is also necessary to know the parameters of the vehicle, but this
is also outside the scope of this thesis. Thus, it is assumed that all states
and vehicle parameters are known.

Outline
The thesis outline is as follows. First the basic concepts, terminology, and
the used mathematical models are introduced. This is followed by a chap
ter on a new rollover measure. This measure is then used in the controller
design. The rollover measure and the controller are tested in simulations,
and the results are discussed. Finally, suggestions on future work are pre
sented.

Software
Matlab1 and Simulink1 were used for simulation and model implementa
tion. This text was produced with LATEX2. The optimization was performed
with SeDuMi3, using the parser YALMIP4.

1http://www.mathworks.com/
2http://www.latex-project.org/
3http://fewcal.kub.nl/sturm/software/sedumi.html/
4http://www.control.isy.liu.se/~johanl/yalmip.html/
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2. Background
In order to prevent rollover, it is crucial to have an accurate vehicle dy
namics model. The primary source of the forces acting on the vehicle is the
road. The forces are developed in the contact patches between the tires and
the road. Thus, a good understanding is needed of how the chassis reacts
on external forces, and of the tire ground behavior (Wong 2001).

To simplify the equations of motion, a coordinate system attached to the
vehicle is used (see Figure 2.1). X and Y represent an inertial system, and
x and y represent a moving axes system that is attached to the vehicle.
The x axis is parallel with the vehicle heading. Take special note that this
differs from the standard natural coordinates, where the x axis is parallel
with the trajectory. When the equations of motion are introduced later
in the text, the yaw angle rate, r, is used as a state variable instead of
the yaw angle, Ψ, i.e., r = Ψ̇. The vehicle velocity is often divided into two
components, one parallel with the x axis, Vx = u, and the other one parallel
with the y axis, Vy = v. The vehicle acceleration is also often divided into
components as above, ax, and ay. The relationship between them is derived
by differentiation, which yields (Wong 2001):

ax = u̇ − vr
ay = v̇ + ur

(2.1)

2.1 Models

The characteristics of the tires are important. In order for the tires to
produce lateral forces, they need to slip sideways. In the simplest model,
the lateral force is considered to depend linearly on the slip angle. This
neglects the fact that the tire forces saturate. Two models will be used: a
simple linear model, and a non linear model incorporating the saturation
property.

The characteristics of the chassis are also important. The most com
mon model used in control design is the bicycle model. This is a model that
considers planar motions only, but since the goal in this work, is to mini
mize roll, it is not sufficient for simulation and design. However, the linear
model will be used to provide the nominal trajectory to the controller. A
more advanced model is needed for simulation and controller design. The
hard issue is to select a model that is simple enough to be manageable and

X

Y

x

y

Ψ

Figure 2.1 The coordinate system.

3



Chapter 2. Background

complex enough to capture the essential characteristics. Two chassis mod
els are used, the linear bicycle model mentioned and a non linear model
with roll movement.

Tires
The forces, which the driver can influence, are induced by the tires. A tire
needs to slip to produce forces. It can slip in two directions, laterally and
longitudinally. There exist two slip quantities to describe the two different
slips:

• The slip angle or tire slip angle, α , corresponding to lateral slip.

• The longitudinal slip, κ .

The slip angle is defined as:

tan(α ) = − VyTire

VxTire

� α � − VyTire

VxTire

(2.2)

where VxTire and VyTire corresponds to the longitudinal velocity and lateral
velocity in a coordinate system attached to the tire, see Figure 2.2. The
longitudinal slip is defined as:

κ = −Ω0 − Ω
Ω

(2.3)

where Ω0 is the angular speed of the freely rolling wheel, and Ω is the
angular speed of the braked or accelerated wheel.

Lateral slip occurs when the velocity of the tire is different from the
heading of the tire. This can be caused by the steering angle (�δ � > 0)
and/or the yaw rate (�r� > 0), e.g., during cornering. Longitudinal slip
occurs when a driving or braking torque is applied to the wheel, e.g., during
braking.

Another slip quantity is also needed, the vehicle side slip angle or side
slip angle, β , which is defined as:

tan(β) = − VyVehicle

VxVehicle

= − v
u

� β � − v
u

(2.4)

A normal car has four wheels, which implies that there will be four
tire slip angles, one for each tire. To simplify the analysis, it is usually
assumed that the front wheels have the same slip angle (denoted α F or
α 1), and that the rear wheels have the same slip angle (denoted α R or α 2).
Naturally, there is only one vehicle side slip angle. The tire slip angle and
the vehicle side slip angle are visualized in Figure 2.2.

In general, the longitudinal and lateral forces are dependent on three
variables, Fx = Fx(κ ,α , Fz) and Fy = Fy(κ ,α , Fz), where κ is the longi
tudinal slip, α is the slip angle, and Fz is the vertical normal force. The
tire forces do also depend on the angle between the wheel plane and the
XZ plane, the camber angle, γ . To simplify the models, this dependence has
been neglected (Pacejka 2002).

4



2.1 Models

V

V y

Vx �α � u V

v

�β �

Figure 2.2 Left The tire slip angle. The rectangle illustrates the tire. Right The
vehicle side slip angle. The rectangle illustrates the vehicle. Note the difference in
scale.
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Figure 2.3 Lateral force during cornering.

Linear Model The most important force during cornering is the lateral
force. It is possible to use a very simple expression for this force. With κ
and Fz fixed, the typical relationship between α and Fy is illustrated in
Figure 2.3. With small slip angles, the dependence is approximately linear.
The slope of the curve in this linear region is defined as the lateral slip
stiffness or cornering stiffness. It is denoted as CFα . Thus, the lateral force
can be approximated with (Pacejka 2002):

Fy = CFα α (2.5)

Nonlinear Model A general model that accurately describes the lateral
and longitudinal forces under combined slip conditions is complicated. A
simplified model will be used. During pure lateral slip (κ = 0), the expres
sion for the lateral force can be written as Fy = Fy(α , Fz). This can be
described by the Magic Formula (Pacejka 2002, Bakker et al. 1989), which
is shown in Figure 2.4. Note that the figure shows the normalized force,
Fy
Fz

, and that Fy does not vary linearly with Fz. The formula also describes
the saturation properties of the tire forces. The parameters in the Magic
Formula is explained in Table 2.1, especially note that several parameters
depend on Fz. The expression for the formula is:

Fy = D sin(C arctan(Bα − E(Bα − arctan(Bα )))) (2.6)
Combined slip is described with Fy = Fy(α ,κ , Fz), but it is more con

venient in this work to express this as Fy = Fy(α , Fx, Fz). Fx is preferred
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Chapter 2. Background
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Resultant tire force

Friction ellipse

�µ Fz�

�µ Fz�

Fymax

Figure 2.5 The friction ellipse for a tire. Note that Fymax is given by the magic
formula.

because it has a more direct physical meaning.
The simplest model for combined slip, i.e., combined braking and cor

nering, is based on the friction ellipse. It is assumed that Fy and Fx cannot
exceed their maximum values, Fymax and Fxmax. The resultant tire force is

assumed to be on the edge of the ellipse, Fy
Fymax (α ,Fz)

2
+ Fx

Fxmax

2
= 1,where

Fymax(α , Fz) is given by the Magic Formula and Fxmax = µ Fz (Wong 2001).
The expression for the lateral force becomes:

Fy = Fymax(α , Fz)
√

1 − Fx
µ Fz

2

�Fx� ≤ µ Fz

(2.7)

The friction ellipse is illustrated in Figure 2.5. There is one ellipse for each
tire, i.e., there will be four friction ellipses for a normal vehicle. Fx is the
only force the controller can influence directly, Fy is affected by Fx through
equation (2.7).
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2.1 Models

Table 2.1 Parameters in the Magic Formula.

Parameters

B = CFα
C D Stiffness factor

C Shape factor
D = µ Fz Peak factor

E Curvature factor
CFα = c1 sin(2 arctan( Fz

c2
)) Cornering stiffness
c1 Maximum cornering stiffness
c2 Load at maximum cornering stiffness

r

ab

u

v

V

δ

α R

α F

β

x

y

FyFFyR

Figure 2.6 The bicycle model.

Chassis

Bicycle Model The bicycle model is a linear model that neglects the roll
motion, assumes that the forward speed is constant, and approximates the
four wheels with two wheels. These approximations make the model easy
to understand and simple to use. The drawback is that it lacks roll, which
is necessary for simulation and control design. The linear model will be
used by the controller as a reference model.

The equations of motion for the two degree of freedom bicycle model
(Pacejka 2002):

m(v̇ + ur) = FyF + FyR (2.8)

I ṙ = aFyF − bFyR (2.9)
The slip angles are expressed by:

α F = δ − 1
u

(v + ar),α R = −1
u

(v − br) (2.10)

For small steering angles, the tire forces can be considered to be linear:

FyF = CFα F, FyR = CRα R (2.11)
Combine the linear equations of motion with the linear tire forces equa

tions, and the result is a linear vehicle model. This can be written in state
space form, with parameters according to Table 2.2 and Figure 2.6:

7



Chapter 2. Background

Table 2.2 Bicycle model parameters.

Parameter

V Forward speed (constant)
CF Cornering stiffness, front wheels
CR Cornering stiffness, rear wheels
C C = CF + CR

s s = CFa+CRb
C

q2 q2 = CFa2+CR b2

C
m Vehicle mass
I Vehicle moment of inertia about the z axis

1L

1R

2L

2R

ϕ

x

y

z

r
u

v

Figure 2.7 The states of the nonlinear model.

ẋ = Ax + Bu
y = Cx + Du

(2.12)

ẋ =
(

v̇
ṙ

)
, u = δ , y =

(
v
r

)
(2.13)

A = −




C
mV V + Cs

mV

Cs
IV

Cq2

IV


 , B =




CF
m

CFa
I




C =
(

1 0
0 1

)
, D =

(
0
0

) (2.14)

Nonlinear Model The car body is modeled as a sprung mass according
to Figure 2.7. The mass is considered to be connected to the wheel axles
with torsional springs, i.e., the suspension is lumped together. The springs
have the combined stiffness cϕ and combined damping kϕ . The stiffness cϕ
is in reality nonlinear, since the springs only have a certain length. When

8



2.1 Models

the springs get closer to their physical limits, the stiffness increases. This
is especially important when the vehicle is close to rollover, because in
this situation the springs on one side are severely compressed, and the
roll angle cannot be assumed to be small. However, the model used here
is only valid when all wheels have ground contact, and the stiffnesses are
considered to be linear. The roll axis is considered to be fixed. The roll axis
is tilted, and there is an angle, Θr, between the roll axis and the XY plane.

The model used has 4 degrees of freedom, and for this 5 states are
needed. The motions considered are: u (longitudinal velocity), v (lateral
velocity), r (yaw), and ϕ (roll). The front wheel axle is denoted as 1, and
the rear wheel axle is denoted 2. The individual tires are denoted as com
binations of the wheel axle and the side which the tire is situated, e.g., 1L
corresponds to front axle, left side. The equations of motion are described in
Equation 2.15 , and the parameters are shown in Figure 2.8, and explained
in Table 2.3 (Pacejka 2002).

H(X ) Ẋ = F(X , U) � Ẋ = H(X )−1 F(X , U) (2.15)
Note the inverse of H(X ) in (2.15).

H(X ) =




m 0 −mh′ϕ 0 0
0 m 0 mh′ 0

−mh′ϕ 0 Iz (IzΘr − Ixz) 0
0 mh′ (IzΘr − Ixz) (Ix + mh′2) (kϕ1 + kϕ2)
0 0 0 0 1




X =




u
v
r
ϕ̇
ϕ




, U =




δ
FxTot

FyTot

MTot




F(X , U) =




FxTot + mrv + 2mh′ϕ̇ r
FyTot − mru + mh′r2ϕ

MTot − mh′vrϕ
−mh′ur + (mh′2 + Iy − Iz)r2ϕ − (cϕ1 + cϕ2 − mgh′)ϕ

ϕ̇




Vehicle Model
The nonlinear tire model (2.7) and the nonlinear chassis model (2.15)
were combined and implemented in Simulink as S functions. This Simulink
model was used for controller design and simulation. The combination is
shown in Figure 2.10.

When the car rolls, load transfer will occur. As mentioned earlier, the
roll axis is considered to be fixed. However, when wheel lift off occurs, the
roll axis changes to be the point between the tires with ground contact and
the ground. The equations of motion also change during wheel lift off. This

9



Chapter 2. Background

1L

1R

2L

2R

a

b

h′

x

y

z

c, kϕ1

c, kϕ2

Figure 2.8 The parameters of the nonlinear model.

Table 2.3 Summary of the used terminology in the nonlinear model.

States (dynamic)
u Longitudinal velocity
v Lateral velocity
r Yaw rate

ϕ̇ Roll rate
ϕ Roll

Inputs (dynamic)
δ Steering angle

FxTot Total longitudinal force
FyTot Total lateral force
MTot Total moment

Parameters (static)
m mass
h’ Distance from roll axis to CG
a Distance from front to CG
b Distance from rear to CG

Θr Angle between roll axis and the XY plane
Iz Moment of inertia about the z axis
Iy Moment of inertia about the y axis
Ix Moment of inertia about the x axis

Ixz Product of inertia about the x z axes
kϕ i Roll damping, axle i
cϕ i Roll stiffness, axle i

10



2.1 Models

h

ϕ

cϕ

FziR

FyiR

Fzi L

Fyi L

h′

l

Figure 2.9 Moment balance for axle i.

Tires Chassis
Car statesTire forcesδ

Figure 2.10 Combination of the tire model and chassis model.

is not modeled in the used model, i.e., wheel lift off is not included. The
moment balance equation (see Figure 2.9) and force balance equations were
used to calculate the tire forces corresponding to the two axles (i = 1, 2):




FziR + Fzi L = FziTotal,

{
Fz1Total = mgb

a+b
Fz2Total = mga

a+b

FyiR = FyiRmax(α , FziR)
√

1 − Fxi R
µ FziR

2

FyiL = Fyi Lmax(α , Fzi L)
√

1 − Fxi L
µ Fzi L

2

(FyiR + Fyi L)h + (FziR − FziL)l − ϕ̇ kϕ i − ϕ cϕ i = 0

(2.16)

This system of equations has to be solved numerically, which is done in
every integration step in Simulink.

The forces coming from the four wheels are summed up to form the
total forces and moment (see Figure 2.11). δ is assumed to be small, i.e.,
sin(δ ) = δ and cos(δ ) = 1.
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Chapter 2. Background

δ

δ

a

Fx1R
Fy1R

Fx1 L
Fy1 L

Fx2R

Fy2R
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Figure 2.11 Tire forces.

FyTot = Fy1 L + Fy1R + Fy2 L + Fy2R + (Fx1 L + Fx1 R)δ

FxTot = Fx1 L + Fx1 R + Fx2 L + Fx2 R − (Fy1 L + Fy1R)δ

MTot = (Fy1 L + Fy1R)a − (Fy2 L + Fy2R)b + (Fx1 L + Fx1R)δ a+
+(Fx1 L + Fx2 L + Fy1Rδ − Fx1 R − Fx2R − Fy1 Lδ )l

(2.17)

2.2 Vehicle Handling Characteristics

One of the controller’s objectives is to make the vehicle follow a nominal
trajectory, i.e., follow the driver’s commands. Naturally, the mechanism
behind rollover is also interesting. Thus, it is necessary to know how the
vehicle reacts to the driver’s commands, and some vehicle handling prop
erties will be discussed.

Neutral steer, Understeer, and Oversteer
A vehicle can be neutral steer, understeer and oversteer. If the vehicle
is neutral steer, then the same steering angle will give the same turning
radius during different forward speeds. If the vehicle is understeer, then
the same steering angle will give a bigger turning radius with increasing
speed. Finally, if the vehicle is oversteer, then the same steering angle will
give a smaller turning radius with increasing speed. Oversteer will also
make the vehicle unstable when the forward speed passes a critical speed,
Vcrit. When V > Vcrit, the required steering angle for any radius is zero,
and the vehicle becomes unstable. This is why most vehicle are built to be
understeer. The longitudinal placement of the CG is one of the parameters
that most affect the vehicle steering type. If the CG is placed closer to the
front wheels than to the rear wheels, the vehicle is understeer(Wong 2001).
The car that is used in the simulations in this thesis is understeer.
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Figure 2.12 Yaw rate control compared to yaw rate and side slip angle control

Lateral Movement Control
An ordinary driver expects that the vehicle will have the same behavior
regardless of the driving conditions. The trajectory desired by the driver is
denoted as the nominal trajectory. A control system should try to follow the
nominal trajectory, but there are physical limits. The adhesion between the
tires and the road is one fundamental limit, which the lateral acceleration
in steady state cannot exceed, may < µ Fz = µmg. This means that the
yaw rate is limited, since ay = ur (steady state) � r < µg

u . In order to
prevent a spin out, it is also necessary to limit the vehicle side slip angle,
β , see equation (2.4). If only the yaw rate is controlled, the vehicle can
still show some undesired properties. This is illustrated in Figure 2.12.
One of the vehicles is driving on a road with high adhesion. This vehicle’s
trajectory defines the nominal trajectory. The other two vehicles have a
controller and they are driving on a road with low adhesion. If the controller
only controls the yaw rate, then the vehicle will deviate severely from the
nominal trajectory, and it will start to skid. During skidding the tire forces
are saturated, or close to saturation, and steering angle changes do not
produce much moment. This is typical undesired behavior, because the
driver can loose control of the car. However, if the controller controls both
the yaw rate and the vehicle side slip angle a good compromise is achieved,
and the car will not start to skid (van Zanten et al. 1996).

Rollover
The simplest way to reduce the risk of rollover, is to lower the center of
gravity, or to make the vehicle wider. These solutions are efficient, but
maybe not always applicable due to consumer demands. Another approach
is to use slippery tires, which will make the available tire forces insufficient
for inducing rollover. The latter suggestion will of course yield very poor
handling characteristics, and it is not a realistic alternative (Forkenbrock
et al. 2003).

The lateral acceleration is one of the most important sources of roll.
The lateral acceleration is directly affected by the lateral force, Fy, and
therefore is Fy important to control in order to control the roll. The total
moment affects the yaw rate, which is coupled with the lateral acceleration.

13



Chapter 2. Background

R
ol

l r
at

e
St

ee
ri

ng
 a

ng
le

time

time

δ
ϕ̇

Figure 2.13 The Road Edge Recovery maneuver.

The total moment also affects the slip angle, which is the source of lateral
forces. The longitudinal force Fx affects the velocity, which is the source of
kinetic energy. With more kinetic energy the same maneuver, i.e. lateral
displacement, will require more forces, and the maneuver will induce more
roll. The different forces affects roll in the following order:

1. FyTot

2. MTot

3. FxTot

Test Maneuver
The best overall maneuver to evaluate dynamic rollover propensity is the
Road Edge Recovery maneuver, according to Forkenbrock et al. (2003).
The maneuver approximates the behavior of a startled driver that tries to
get back to the correct lane position, after the driver accidently dropped
two wheels off onto the shoulder. The maneuver starts with straight ahead
driving, then the driver starts to increase the steering angle linearly, until
the angle reaches some predefined value. The steering angle is held con
stant until the magnitude of the roll rate is zero (this implies that at this
moment, the roll angle is at a maximum point), and the steering angle is
reversed (Forkenbrock et al. 2003). This will make the the maximum roll in
the other direction even greater than the first one, especially if the steering
frequency coincides with the natural frequency of the chassis. The maneu
ver is illustrated in Figure 2.13. This maneuver will be used to evaluate
the control design.
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3. Rollover Detection

3.1 Measure

In order to prevent rollovers, it is necessary to know when a rollover is
imminent. Thus, some kind of rollover measure is needed. The approach
used is inspired by Dahlberg (2001), and is based on energy considerations.

The critical situation before rollover is when the potential energy reach
es a local maximum, typically a saddle point. In this situation a small
perturbation can make the car rollover. This is the basis of Dahlberg’s
measure. The measure is the lowest unstable local maximum point of the
potential energy. However, before this unstable position is reached, the car
will drive with only two wheels touching the ground, i.e., the other two
wheels will be in the air. During the drive on two wheels, the car’s han
dling characteristics can be assumed to be completely different compared
to driving with all wheels on the ground. The driver will probably loose
control of the car (Gillespie 1992). Therefore, the critical situation will be
when two tires lift off the ground. If wheel lift off can be prevented, then
rollover is also prevented, since wheel lift off always occurs before rollover.
In the following section it is assumed that the load transfer at the front
axle is the same as the load transfer at the rear axle.

DEFINITION 3.1
Critical situation � two wheel lift off.

Just before wheel lift off, all the load has been transfered to one side,
see Figure 3.1. In this situation, the lateral force is assumed to be the
maximum possible force, given the vertical force, i.e., Fy = µ Fz. When the
car is approaching the critical situation, the potential energy is increasing.
The total energy at the critical situation is denoted Ecrit. If the sum of the
potential energy (U) and the roll kinetic energy (Troll), at any point, is
above the critical total energy, then the critical position can be reached.

U + Troll � Eroll ≥ Ecrit � Wheel lift off can occur

{
Troll = 1

2(Ixx + mh′2)ϕ̇ 2

U = 1
2ϕ 2cϕ − mgh′(1 − cos(ϕ )) �

Eroll = 1
2

ϕ 2cϕ − mgh′(1 − cos(ϕ )) + 1
2

(Ixx + mh′2)ϕ̇ 2 (3.1)
First Ecrit is calculated. The critical situation, or critical position, is

shown in Figure 3.1. The moment equation about the roll axis:

Fzl − Fyh = (l − µh)mg ≤ ϕ cϕ + ϕ̇ kϕ (3.2)
The goal is to find the minimum Ecrit that can induce wheel lift off. Two

cases exist: the general transient case and the simpler steady state case.
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Figure 3.1 Critical situation.

• Transient case: The moment equation (3.2) is changed (≤ is replaced
by =) to Fzl − Fyh = (l − µh)mg = ϕ cϕ + ϕ̇ kϕ , in order to get the
minimum Ecrit. The critical energy is the minimum Eroll(ϕ,ϕ̇ ) for
which Fzl − Fyh = ϕ cϕ + ϕ̇ kϕ is fulfilled.

• Steady state case: In the steady state case ϕ̇ = 0 and the moment
balance (3.2) is changed (≤ is replaced by =) to Fzl − Fyh = (l −
µh)mg = ϕ cϕ , i.e., a position in equilibrium. This condition and (3.1)
� ϕ crit � Ecrit.

To get nice values a normalized measure is defined:

DEFINITION 3.2
WW LO � Ecrit − Eroll

Ecrit

WW LO, Warning: Wheel Lift Off .
If WW LO < 0 then the car can reach the critical situation, i.e., wheel

lift off. This measure do not take into account energy dissipation and driver
input. However, it can give a warning when a wheel lift off can occur.

3.2 Results

Three scenarios were tested using the Road Edge Recovery maneuver:

• High CG (CG 0.4m above roll axis), high friction (µ = 1.0)
• Low CG (CG 0.2m above roll axis), high friction (µ = 1.0)
• High CG (CG 0.4m above roll axis), low friction (µ = 0.1)

The parameters of the vehicle are given in section A.1. The Road Edge
Recovery maneuver was performed in the following way:

• The steering angle was increased linearly with 5 rad/s.
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3.2 Results

Table 3.1 The calculated critical energies for the two vehicles.

High CG Low CG

Transient case [J] 526 548
Steady state case [J] 542 573

• When the steering angle reached 0.3 rad it was kept constant until
the roll angle reached a maximum.

• The steering angle was now reversed linearly with 5 rad/s.

• When the steering angle reached 0.3 it was kept constant.

The calculated energies for the two different vehicle cases, high CG and low
CG, are shown in Table 3.1. As can be seen, there is not much difference
between the transient case and the steady state case. The transient case
energy will be used in WW LO. The transient case energy is chosen, because
it is lower and therefore more conservative. Since the application is to
provide safety, conservative is considered to be good.

In the following section, the three different test scenarios will be ex
amined. For each scenario there is a plot. The plot visualizes the steering
angle, WW LO signal, and the four vertical tire forces. If the wheel lift off
warning signal is below zero, then wheel lift off could happen. If one of the
four vertical tire forces is below zero, then wheel lift off has occurred.

The first scenario is shown in Figure 3.2. The vertical lines in the figure
mark the section were WW LO is below zero, i.e., wheel lift off could be
imminent. The arrows in the figure show were the vertical tire forces are
below zero, and wheel lift off is a fact. The WW LO measure seems to be
working.

The second scenario is shown in Figure 3.3. In this scenario, the CG is
situated lower than in the previous scenario, and the possibility for rollover
or wheel lift off should be significantly reduced. There is no wheel lift off,
and WW LO is above zero at all times. The WW LO measure seems to be
working.

The third scenario is shown in Figure 3.4. In this case, the friction is
low (µ = 0.1), which means that the lateral forces are small, and it should
not be possible to induce rollover or wheel lift off. There is no wheel lift
off, and WW LO is above zero at all times. The WW LO measure seems to be
working.

The different terms of the WW LO during the Road Edge Recovery ma
neuver, are visualized in Figure 3.5. The dominant term is the spring part
of the potential energy. It can be seen that the kinetic energy is pumped
into the potential energy during the second turn. Note that the potential
energy does not have to be roll kinetic energy before it enters the mass
spring system.
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Figure 3.2 The first test scenario.
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Figure 3.3 The second test scenario.
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Figure 3.4 The third test scenario.
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4. Rollover Prevention
A gain scheduled discrete LQ (linear quadratic) controller following a lin
ear reference model will be used. The LQ controller outputs the desired
tire forces changes, ∆ Fy, ∆ Fx, and ∆M . These are then allocated to the
four wheels by a control allocator. The total controller is shown in Figure
4.1.

The control problem has been divided into two subproblems, to design a
controller, and to design a control allocator. The benefit is that the actuator
constraints, i.e., tire force saturation, can be taken into account. The sep
aration can essentially be done in the case where the same control action
can be achieved with different actuator combinations (Härkegård 2003).

The controller is supposed to be implemented in a computer, therefore,
discrete theory will be used. The sampling rate was chosen to be fast,
f = 100Hz, in order to minimize the influence that the sampling rate has
on the performance of the system. Furthermore, the estimation problem is
not considered, and noise is neglected.

4.1 LQ Controller

The LQ (linear quadratic) controller is a state feedback controller, i.e.,
U(k) = −L(k)X (k), that minimizes a cost function, J. The cost function
consists of linear quadratic terms of the states and of the control signal,
hence the name linear quadratic. The structure of the cost function is essen
tially J = ∫ �U(t)�2 +�X (t)�2dt. The more formal and general discrete time
cost function is:

J = E
∑N−1

k=0 (X T (kh)Q1 X (kh) + 2X T(kh)Q12 U(kh)
+U T(kh)Q2 U(kh)) + X T(Nh)Q0 X (Nh)

(4.1)

The Q matrices in (4.1) are called weighting matrices or penalty matri
ces. The penalty matrices make it possible to put different penalty on the
control signal and the states. The penalties are selected in manner that
gives the close system the desired behavior. The penalties must also be set
in a way that the controller signal is feasible and achievable. This is an
iterative process, the penalties are changed, and simulations are done to
see what effect the changes had. If the changes did not give the desired
properties, then adjust them again and so forth. The used penalty matrices
for the controller design are given in section A.2.

-1 LQ controllerReference model +

Control Allocator
Fx1L, Fx1R, Fx2L, Fx2R

δ , u, v, r, ϕ̇ ,ϕ

Figure 4.1 The total controller.
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4.2 Gain Scheduling

The use of a quadratic loss function can be justified by the quadratic
wheel lift off warning measure, WW LO. The WW LO measure should be as
low as possible. However, if the roll angle rate is penalized, then it is more
expensive to minimize the roll angle. A small penalty on the roll angle rate
avoids this.

One good property of the LQ controller is that it gives a stable closed
loop system. However, this is only true for feedback loop with a linear
system, and while the control signal does not saturate. With the nonlinear
vehicle model and possible saturation in the tires, stability is not guaran
teed.

In the general case L(k) is time varying. For simplicity the stationary
controller will be used. The stationary controller is obtained by solving the
algebraic Riccati equation. A more in depth discussion on LQ controllers is
provided by Åström & Wittenmark (1997).

4.2 Gain Scheduling

Gain scheduling is based on knowledge about how the process dynamics
changes under different operating conditions. The operating condition is
measured, and the controller parameters are changed with the operating
conditions. The plant is linearized in several operating points, and a con
troller is designed for each point. The total controller output is then a
weighted sum of the different controllers. The controller corresponding to
the linearization point closest to the actual states will have the biggest con
tribution to the control signal. A thorough presentation of gain scheduling
is given in Åström & Wittenmark (1995).

Using linearization in different points is useful in the vehicle case, be
cause the system dynamics radically changes with the yaw rate, r. Lateral
acceleration is the primary cause of roll, and ay = v̇ + ur. A linearization
yields: ay � ay0 + v̇ + u0∆r + r0∆u. The coefficient, r0, will have different
signs depending on if the vehicle is turning left or turning right. If the
system is linearized in straight ahead driving, r = 0, then ay will only
depend on r. The yaw rate is therefore one of the variables which is crucial
for the operating point. The vehicle forward speed, u, is the main source
of kinetic energy, and higher speed will give bigger lateral forces during
a specific maneuver. The forward speed is therefore also crucial for the
operating point.

For each linearization point there is a state feedback vector, L, and
a weighting function, θ . The weighting function assumes the value one
when the operating conditions coincides with the corresponding lineariza
tion point. The sum of all weighting functions is always one. Nine lineariza
tion points were chosen in the ur plane, according to Figure 4.2. The total
state feedback law becomes:

U =
9∑

i=1

−θ i(X )Li∆ X (4.2)

The stationary points were found using the Matlab command trim, the
points are shown in section A.3. The system was linearized at the sta
tionary points with the Matlab command linmod. For each point a state
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Figure 4.2 The linearization points.

feedback vector was created with the Matlab command dlqr, using the
penalty matrices in A.2. See Matlab on line documentation (n.d.) for more
details regarding the used commands.

4.3 Reference Values and Controller Activation

The linear bicycle model (2.14) is used as a reference model, and it provides
the reference values for the lateral velocity and the yaw rate, vref and rref .
rref is limited in order to not exceed the available amount of friction (see
section 2.2). The limited yaw rate is denoted r′

ref , and it is defined as
follows:

r′
ref =

{
µg
u , rref > µg

u

rref , rref ≤ µg
u

This will make the controller try to maintain this linear behavior during
all operating conditions.

The controller is only activated when WW LO, is below a threshold. The
threshold has to be found by simulation and testing. The WW LO threshold
was chosen to be 0.3. Thus, the controller is activated if W LOW < 0.3.

The reference values for v and r are taken from the linear reference
model. The reference values for u, ϕ̇ , and ϕ are set to be zero. The forward
velocity should go to zero in a dangerous situation (W LOW < threshold),
this will prevent to large forces to be induced. The roll and roll rate should
also go to zero in a dangerous situation (W LOW < threshold), this will
prevent the roll to become to large, i.e., prevent wheel lift off.

The controller should be turned on and off in a smooth way, therefore
a weighting function ψ is introduced. ψ is zero when WW LO is above 0.3,
and increases quadratically to one, when WW LO is between 0.3 and zero.

ψ =




0, W LOW > 0.3
(0.3−W LOW )2

0.32 , 0 ≤ W LOW ≤ 0.3
1, W LOW < 0

All the reference values are multiplied withψ , to make the on off transition
continuous.

∆u = ψ (uactual − 0)
∆v = ψ (vactual − vref )
∆r = ψ (ractual − r′

ref )
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∆ϕ̇ = ψ (ϕ̇ actual − 0)
∆ϕ = ψ (ϕ actual − 0)

∆ X = (∆u ∆v ∆r ∆ϕ̇ ∆ϕ )T

4.4 Control Allocation

The benefit of using a separate control allocator is that actuator saturation
can be taken into account to some extent. The control actuator’s purpose is
to solve an under determined system of equations under constraints. The
control allocator is given the desired total control action, virtual control
input, in this thesis denoted U(t) ∈ � k. The control allocator outputs the
true control output, in this thesis denoted T(t) ∈ � m, m > k. The general
relationship between those two quantities is, g(T(t)) = U(t). But in the
literature, almost only the linear case is studied, GT(t) = U(t), where
G is a k 	 m matrix with rank k. For the linear case there exists many
algorithms. Solving the nonlinear problem is done with constrained non
linear programming, but this can be time consuming and it is probably not
suitable for real time applications (Härkegård 2003).

The brakes are chosen as actuators, because they are cheaper than other
actuators, and they are often already in the car. However, there are other
actuators that provides more freedom and less possibility of saturation of
the control action, e.g., active steering (Ackermann et al. 1999). If only the
brakes are used as actuators then the following constraints apply:

µ Fzi < Fxi < 0, i = 1L, 1R, 2L, 2R (4.3)
If it is also can be assumed that it is possible to apply a driving torque

to the wheels, i.e., a forward force, then the constraints will be:

�Fxi� ≤ µ Fzi, i = 1L, 1R, 2L, 2R (4.4)
In this work it is assumed that the actuators can give both forward and

backward forces (4.4). Note that the actuator constraints depends on the
lateral load transfer, i.e., Fz. Therefore, will the size of the available half
ellipses be non uniform. An example of the available forces configuration
is shown in Figure 4.3.

The control allocation problem is to find T(t) = (Fx1L Fx1R Fx2L Fx2R)T

that will give the desired control action U(t). The relationship between T
and U is (given by equations (2.7) and (2.17)):

U = g(X , T) = A

(
h(X , T)

T

)

U = (FyTot FxTot MTot)T

A =




1 1 1 1 δ δ 0 0
−δ −δ 0 0 1 1 1 1

(a − δ l) (a + δ l) −b −b (δ a + l) (δ a − l) l −l
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Figure 4.3 An example of a configuration of available forces for each tire, under
the condition, �Fx� ≤ µ Fz, and lateral load transfer.

T(t) = (Fx1L Fx1R Fx2L Fx2R)T

h(X , T) =




Fymax(α 1, Fz1L)
√

1 − Fx1L
µ Fz1L

2

Fymax(α 1, Fz1R)
√

1 − Fx1R
µ Fz1R

2

Fymax(α 2, Fz2L)
√

1 − Fx2L
µ Fz2L

2

Fymax(α 2, Fz2R)
√

1 − Fx2R
µ Fz2R

2




This can also be expressed as:

x = (Fy1L Fy1R Fy2L Fy2R Fx1L Fx1R Fx2L Fx2R)T

Fyi = Fymax(α i, Fzi)
√

1 − Fxi

µ Fzi

2

, i = 1L, 1R, 2L, 2R (4.5)

U = (FyTot FxTot MTot)T

A =




1 1 1 1 δ δ 0 0
−δ −δ 0 0 1 1 1 1

(a − δ l) (a + δ l) −b −b (δ a + l) (δ a − l) l −l




Ax = U (4.6)
The control allocator should solve the equation (4.6) in the best possible

way under the constraints (4.4). Thus, the forces (Fx1L Fx1R Fx2L Fx2R) = T
have to be found. How to define the best possible way is non trivial, but a
simple candidate is, x∗ = arg min

x
��Ax − U ��2. arg min

x
f (x) gives the x that

minimizes f (x), and �� ⋅ ��2 is the standard two norm, i.e., ��x��2 =√∑
i x2

i .
Three different approaches were tested:

• Nonconvex Nonlinear Optimization

• Linear Approximation
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4.4 Control Allocation

Figure 4.4 Left Convex set. Right Nonconvex set.

• Convex Optimization

The approaches will be explained in detail, but first some basics in opti
mization theory.

Optimization
This section follows Boyd & Vandenberghe (2004), where also more details
can be found regarding convex optimization. A general formulation of an
optimization problem is:

minimize
x

f0(x)
subject to f i(x) ≤ bi, i = 1, ..., m

The general optimization problem is hard, but if the functions, f i, i =
0, ..., m, are convex, efficient methods exist. A set is convex if the line,
between two points in the set, is in the set, see Figure 4.4. A function, f ,
is convex if f is defined for a convex set, and f (θ x + (1 − θ)y) ≤ θ f (x) +
(1 − θ) f (y), 0 ≤ θ ≤ 1.

Two specific optimization problems will be especially useful, the least
squares problem and the second order cone program.

Least Squares Problem The least squares problem:

minimize
x

��Ax − b��22 (� minimize
x

��Ax − b��2) (4.7)

The weighted least squares problem has an analytical solution, which ma
kes it fast to solve. The general solution is given by the pseudo inverse, A†.
Let A ∈ � m�n, with rank(A) = r, have the singular value decomposition

A = U
Σr 0
0 0

V T

then the pseudo inverse is defined as

A† = V T Σ−1
r 0
0 0

U

Then the problem
minimize

x∈Ω
��x��2

Ω = arg min
x

��Ax − b��2
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where arg min gives the set of minimizing solutions, has the solution x =
A†b. This solution can be modified to be used with a weighted 2 norm,
��x��W = ��Wx��2, where W is assumed to be non singular. The new problem

minimize
x∈Ω

��Wx��2
Ω = arg min

x
��Ax − b��2

can be solved with the transformation Wx = e � x = W−1 e. The solution
is x = W−1e = W−1(AW−1)†b (Boyd & Vandenberghe 2004).

Second Order Cone Program Another type of problem, that will be
useful, is the second order cone program, SOCP:

minimize f T x

subject to

{
��Aix + bi��2 ≤ cT

i x + di, i = 1, ..., m
Fx = g

(4.8)

This type of problem can be solved efficiently with interior point methods
(Boyd & Vandenberghe 2004).

The three approaches will be presented first, then the results of these
approaches will be given.

Nonconvex Nonlinear Optimization
The allocation problem is nonconvex, and nonconvex problems are hard
to solve (Boyd & Vandenberghe 2004). The advantage with trying to solve
the original problem, is that no transformation of the problem is necessary.
The major disadvantage is that no efficient algorithm is available.

The command fgoalattain, from the optimization toolbox in Matlab,
was used to solve the nonlinear problem. The command makes it possible
to solve a weighted multidimensional nonlinear constrained optimization
problem, see Matlab on line documentation (n.d.) for more details.

Linear Approximation
The most straightforward way to make the problem easier, is to linearize
around the last used point, i.e., Fx1L0, Fx1R0, Fx2L0, Fx2R0. The linearized
version of the problem is illustrated in Figure 4.5. The linearized version
can then be solved using pseudo inverse methods mentioned before. The
constraints are neglected, but an effort to compensate for them is made
with the weights in the norm used. The weights are chosen to be the inverse
of the corresponding available amount of force (Härkegård 2003):

W =




1
µ Fz1L0

0 0 0

0 1
µ Fz1R0

0 0

0 0 1
µ Fz2L0

0

0 0 0 1
µ Fz2R0




Forces that are less constrained (µ Fz large) are less penalized than forces
which are more constrained (µ Fz small). This will take the constraints into
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4.4 Control Allocation

Figure 4.5 Available forces with the linear approximation. The dotted ellipses is
the original available forces. The dotted arrows are the last used point.

account to some extent, but nothing is guaranteed. If the calculated forces
violates the constraints, they are simply cut at the boundary.

If the changes are small, then the approximation is very good. How
ever, the approximation can also be extremely bad. When Fx is close to
zero, then a change in Fx will give a small change in Fy, which is a bad
approximation if the change in Fx is large. When Fx is close to its maxi
mum, µ Fz, then a small change in Fx will give a large change in Fy. This
is a bad approximation if the change in Fx is large.

The linearization:

U = g(X , T) = A1T + A2h(X , T)

With T = (Fx1L Fx1R Fx2L Fx2R)T and X = (u v r ϕ̇ ϕ )T , and A1, A2, and
h(X , T) are given by

A1 =




1 1 1 1
−δ −δ 0 0

(a − δ l) (a + δ l) −b −b




A2 =




δ δ 0 0
1 1 1 1

(δ a + l) (δ a − l) l −l




h(X , T) =




Fymax(α 1, Fz1L)
√

1 − Fx1L
µ Fz1L

2

Fymax(α 1, Fz1R)
√

1 − Fx1R
µ Fz1R

2

Fymax(α 2, Fz2L)
√

1 − Fx2L
µ Fz2L

2

Fymax(α 2, Fz2R)
√

1 − Fx2R
µ Fz2R

2




Truncated Taylor expansion gives

h(X , T) � ho(X , T0) + �h(X , T0)
�T

(T − T0)
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� A2h(X , T) � A2(h0(X , T0) + �h(X , T0)
�T

(T − T0))

� U � A1T + A2(h0(X , T0) + �h(X , T0)
�T

(T − T0))

� U + A2(�h(X , T0)
�T

T0 − h0(X , T0)) � (A1 + A2
�h(X , T0)

�T
)T

Which is linear in T, and can be written on the form

U ′ = A′
linT

h0 and �h(X ,T0)
�T are given by

h0(X , T) =




Fymax(α 1, Fz1L)
√

1 − Fx1L0
µ Fz1L

2

Fymax(α 1, Fz1R)
√

1 − Fx1R0
µ Fz1R

2

Fymax(α 2, Fz2L)
√

1 − Fx2L0
µ Fz2L

2

Fymax(α 2, Fz2R)
√

1 − Fx2R0
µ Fz2R

2




�h(X , T0)
�T

=




−Fx1L0 Fymax(α 1 ,Fz1L)
(µ Fz1L)2

√
1− Fx1L0

µ Fz1L

2

−Fx1R0 Fymax(α 1 ,Fz1R)
(µ Fz1R)2

√
1− Fx1R0

µ Fz1R

2

−Fx2L0 Fymax(α 2 ,Fz2L)
(µ Fz2L)2

√
1− Fx2L0

µ Fz2L

2

−Fx2R0 Fymax(α 2 ,Fz2R)
(µ Fz2R)2

√
1− Fx2R0

µ Fz2R

2




The problem to be solved is

minimize
x∈Ω

��WT��2
Ω = arg min

T
��A′

linT − U ′��2

The solution is T = W−1(A′
linW−1)†U ′.

Convex Optimization
If the equalities (4.5) are relaxed to be inequalities instead (4.9), then the
new set will be convex, see Figure 4.6.

Fyi

Fymax(α i, Fzi)
2

+ Fxi

µ Fzi

2

≤ 1 (4.9)

i = 1L, 1R, 2L, 2R

30



4.4 Control Allocation

Figure 4.6 Available forces with the convex approximation.

FyiFymax(α i, Fzi) ≥ 0

The last inequality demands that Fyi will have the same sign as Fymax.
Without this condition, (4.9) gives an ellipse, not the desired half ellipse.

The new relaxed problem can be posed as a second order cone program,
SOCP. There exist methods for solving these types of problems too, as
mentioned earlier.

The optimization variables are:
x = (Fy1L Fy1R Fy2L Fy2R Fx1L Fx1R Fx2L Fx2R)T and γ , where γ is a

slack variable. The inequalities (4.9), can easily be written on the form
��Aix�� < 1, e.g.,

Fy1L

Fymax(α 1, Fz1L)
2

+ Fx1L

µ Fz1L

2

≤ 1

�

��A1Lx��2 =




1
Fymax1L

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1

µ Fz1L
0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0







Fy1L

Fy1R

Fy2L

Fy2R

Fx1L

Fx1R

Fx2L

Fx2R




2

≤ 1

and so forth.
In order to try to force the solution to be on the boundary of the ellipse,

i.e., the unrelaxed constraints (4.5) should be fulfilled, it is necessary to
include this condition in the expression that will be minimized. If the lat
eral forces are chosen to be as close to the maximal lateral force available
as possible, then the solution will be on the ellipse. One way to formalize
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this in pseudo code is:

While equation (4.5) not fulfilled
{

minimize
∑

i=1L,1R,2L,2R

(�Fymaxi� − �Fyi�) + ζ γ

subject to




FyiFzi ≥ 0, i = 1L, 1R, 2L, 2R
��Ax − U ��2 < γ
��Aix��2 < 1, i = 1L, 1R, 2L, 2R

ζ := ζ
2

}

(4.10)

After the optimization is completed, the constraint condition (4.5) is
tested. If it is not valid, then the weight ζ is lowered to half of the original
value, ζ := ζ

2 , and the optimization is redone. This time, the objective to
minimize ��Ax − U ��2, has lower priority, and the new solution is hopefully
on the ellipse. If the new solution does not fulfill equation (4.5), repeat the
procedure again. In this way a solution fulfilling the original constraints
will be found.

The optimizations were done with SeDuMi using the parser YALMIP.

4.5 Results

Control Allocation
Without a working control allocator, the total control system cannot be
tested. Therefore, the results of the testing of the three different control
allocation approaches are presented first. The test maneuver is the Road
Edge Recovery maneuver, which was used in the detection part as well.

Initial test showed that the demand that all three, FyTot, FxTot, MTot
quantities should be adjustable by the control allocator, degraded the al
locators performance. Often the result was a bad compromise. Since FyTot
and MTot are the two most important quantities to control for good perfor
mance (see section 2.2), FxTot was removed from U .

U = (FyTot MTot)T

The system is still controllable, and the performance increases, since no
bad compromises have to be made.

The three different solutions need different amounts of execution time
to accomplish their task. Mean values of the different execution times are
presented in Table 4.1. The linear approximation is clearly the fastest one,
and there is not much difference between the nonlinear nonconvex and the
convex approach. However, the execution time of the nonlinear nonconvex
approach varied greatly, which is not desired in a real time application.
Both of them are too slow, but this is run in Matlab. With proper tweaking
and implementation of the code, it could be considerably faster.
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4.5 Results

Table 4.1 Mean execution times.

Nonlinear Linear Convex

Mean execution time [s] 1.80 0.0044 1.42

Nonlinear nonconvex Approach
The desired tire forces compared with the actual tire forces are shown in
Figure 4.7. The control signals are shown in Figure 4.8.
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Figure 4.7 The desired and actual tire forces for the nonlinear nonconvex ap
proach control allocator.

Linear Approximation
The desired tire forces compared with the actual tire forces are shown
in Figure 4.9. The control signals are shown in Figure 4.10. The linear
approximation is considerably faster than the other two. But there is no
guarantee that the solution found is within the given constraints nor op
timal. The approach can also give oscillations in the control signals, see
Fx2R in Figure 4.10.

Convex Approximation
The desired tire forces compared with the actual tire forces are shown in
Figure 4.11. The control signals are shown in Figure 4.12. The solution
to the optimization problem was always on the ellipse in the cases tested.
Thus, there was no need to adjust ζ , and only one run of the algorithm
was necessary. This is interesting, and maybe it is possible to find some
theoretical results that explains why.
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Figure 4.8 The control signals (Fx1L, Fx1R, Fx2L, Fx2R) for the nonlinear approach
control allocator.
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Figure 4.9 The desired and actual tire forces for the linear approximation control
allocator.
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Figure 4.10 The control signals (Fx1L, Fx1R, Fx2L, Fx2R) for the linear approxi
mation control allocator.
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Figure 4.11 The desired and actual tire forces for the convex approximation
control allocator.
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Figure 4.12 The control signals (Fx1L, Fx1R, Fx2L, Fx2R) for the convex approxi
mation control allocator.
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4.6 Total Controller

The convex approximation is considered to be the most reliable of the three
control allocators, and it was used to evaluate the performance of the to
tal controller. The Road Edge Recovery maneuver were tested with and
without the controller activated, and the results with the controller active
are presented in Figure 4.13 and Figure 4.14. When the controller was
active, no wheel lift off occurred. Compare this with the results without
the controller active, Figure 4.15 and Figure 4.16. When the controller is
not active, it can clearly be seen that wheel lift off takes place. The control
signals when the controller is active are shown in Figure 4.12, and the
desired and actual tire forces are shown in Figure 4.11.
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Figure 4.13 The normal forces of the car, the wheel lift off warning signal, and
the steering angle during the Road Edge Recovery maneuver with the controller
active.

The trajectories of the car without controller and the car with controller
are shown in Figure 4.17. The car with the controller do not skid as much as
the car without the controller. The difference between the two trajectories
are not that large.
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Figure 4.14 The states of the car during the Road Edge Recovery maneuver with
the controller active.

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

S
te

er
in

g 
an

gl
e 

[r
ad

]

Time [s]

0 0.5 1 1.5 2 2.5 3
-1

0

1

Time [s]

0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

8000

F
1z

L [N
]

Time [s]

0 0.5 1 1.5 2 2.5 3

2000

4000

6000

8000

F
1z

R
 [N

]

Time [s]

0 0.5 1 1.5 2 2.5 3
0

2000

4000

6000

F
2z

L [N
]

Time [s]

0 0.5 1 1.5 2 2.5 3

2000

4000

6000

F
2z

R
 [N

]

Time [s]

W
W

L
O

Figure 4.15 The normal forces of the car, the wheel lift off warning signal, and
the steering angle during the Road Edge Recovery maneuver without the controller
active.
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Figure 4.16 The states of the car during the Road Edge Recovery maneuver
without the controller active.
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5. Discussion
The simulations show that the control system can prevent rollover. Thus,
the most important objective has been accomplished.

5.1 Rollover Detection

The simulations made, show that the wheel lift off warning signal, WW LO,
can be used as a warning signal for wheel lift off. The difference between
the transient case and the steady state case is small. The steady state
case is easier to calculate, and if simplicity is a factor, then the steady
state measure should be used. However, the difference depend on the used
vehicle parameters, and the difference can be larger than in the example
vehicle used.

The wheel lift off warning signal worked well for transient maneuvers,
but simulations have shown that quasi steady state maneuvers can induce
wheel lift off without giving a clear and early warning signal. This is a
drawback, but it can be compensated with a lower threshold for WW LO,
i.e., the controller is more sensitive.

The calculated energies for WW LO are small compared to the energies
needed for a complete rollover. This is expected since the WW LO is designed
to give a warning signal when wheel lift off is imminent. The WW LO energy
is also small compared to the total kinetic energy of the vehicle. But the
forward kinetic energy has to be converted into roll kinetic energy before
the vehicle perform a rollover. Tripped rollovers are therefore much more
likely to occur, since in that case large amounts of kinetic energy can be
transformed into roll kinetic energy when the vehicle hits an obstacle.

The force needed to charge the mass spring system with the somewhat
small critical energy is quite large. This amount of force is only induced
during extreme maneuvers. The critical energy is on the same scale as the
kinetic roll energy available during the Road Edge Recovery maneuver, see
Table 3.1 and Figure 3.5. These arguments support the plausibility of the
measure, despite the fact that the critical energy is small.

5.2 Rollover Prevention

As mentioned before, the most important objective is accomplished. The
Road Edge Recovery maneuver does not give a wheel lift off with the con
troller activated. This is of course no guarantee that other maneuvers will
not induce wheel lift off or rollover.

The validity of the simulation can of course be discussed. The tire model
is valid in steady state situations, and the scenarios tested are clearly
transient. Furthermore, the tires do not produce forces directly, there is a
lag effect that was not included in the used model.

The assumption that the vehicle can apply both forward and backward
forces can also be discussed. A more realistic assumption is that only the
brakes can be used as fast actuators. Driving torque can also be controlled,
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5.2 Rollover Prevention

but it is much slower than the brakes. A control allocation approach for
braking only is presented in the Future Work section.

Control Allocation
The nonlinear nonconvex control allocation approach does not have to give
a globally optimal1 solution. The method’s execution time is also quite
unpredictable. This make it a less viable option.

The linear control allocation approach does not have to give an optimal
solution either. The execution time is very fast, which is important in real
time applications. The method exhibits oscillations, which is undesired. The
effect on the chassis will approximately be the same, but there will be much
strain and tear on the actuators. It was possible to reduce the oscillations by
restricting the control signal more than actually needed, in order to avoid
the areas where the derivatives are large. However, oscillations could still
be observed.

The convex optimization approach will give an optimal solution, but
fixed bounds for the execution time are not available. Since the controller
will be used in a real time environment, timing is crucial. The lack of fixed
execution time bounds is therefore a drawback, but the method is still
considered to be the best solution.

Fine Tuning
The system can probably be more fine tuned to increase the performance.
There are a lot of parameters to change. This is both a strength and a
weakness. The complexity of the controller makes it capable of performing
complicated tasks, and it can be extended to do more. The complexity also
makes it possible to adapt the controller to work well on very different
vehicle types. The drawback is that complex system usually have a lot of
bugs, and it is time consuming to design and maintain. Highly complex
systems are usually also less robust than simple systems.

1Optimal in the sense that the solution minimizes the used goal function. If this goal
function will give the optimal solution in a wider sense is naturally a slightly trickier
question
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6. Future Work
As mentioned in the introduction, it is essential to have a working observer.
To find an observer is the most important future work.

The model used in the simulation has a great drawback, wheel lift off
and rollover is not correctly modeled. A better model incorporating this
effect is needed. The chassis equations can quite easily be modified to take
the changed roll axis into account. It is probably more difficult to find
a valid tire model, since not much testing have been performed in these
extreme situations.

The testing was only performed with open loop steering angle changes,
i.e., the steering angle was controlled according to a fixed program. The
controller performance can radically change when there is a closed loop
driver controlling the steering angle. More testing with a driver model is
needed. The difficulty is to find a simple and accurate driver model.

If simulations with a better vehicle model and driver model are satis
factory, then real testing should be done with real SUVs. This is needed in
order to validate the results.

The proposed convex approximation for the control allocator does not
have a fixed execution time, and it is rather slow. This has to be changed if
the algorithm is going to be used in a real time system. Thus, fixed bounds
for the amount of needed iterations are needed, and the algorithm/code
need to be fine tuned to be faster. It would also be interesting to know
under what conditions a solution can be found on the ellipse when Ax = U .

If only the brakes are used as actuators, then it is possible to make a
convex approximation that is on the ellipse in the best case, and a linear
approximation in the worst case. The constraints should be

Fyi

Fymax(α i, Fzi)
2

+ Fxi

µ Fzi

2

≤ 1

FyiFymax(α i, Fzi) ≥ 0

Fxi ≤ −µ Fzi + Fyi
Fyimax

µ Fzi

i = 1L, 1R, 2L, 2R

The first two conditions are used in the already evaluated convex approx
imation approach, but the third condition is new. This extra condition will
force the solution to be close to the boundary. The new convex set is visu
alized in Figure 6.1.

The controller could be extended to perform ESP tasks, when a rollover
is out of reach. This should be possible since the proposed controller frame
work is flexible, and the control allocator could be used to allocate the forces
required by the ESP functions.

If the vehicle have a steer by wire system then the control system can
control the steering angle. Then, the influence panic steering maneuvers
have on the vehicle dynamics, could maybe be reduced with some sort of
low pass filtering of the steering signal.
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Figure 6.1 Available forces with a limited convex approximation, only using brak
ing action.
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A. Appendices

A.1 Vehicle Parameters

Table A.1 The vehicle parameters.

Name Explanation Value

m mass (kg) 1600
h’ Distance from roll axis to CG [m] 0.4 & 0.2
a Distance from front to CG [m] 1.4
b Distance from rear to CG [m] 1.6
Θr Angle between roll axis and the XY plane

[rad]
0.1

Iz Moment of inertia about the z axis [kgm2] 2300
Iy Moment of inertia about the y axis [kgm2] 500
Ix Moment of inertia about the x axis [kgm2] 500
Ixz Product of inertia about the x z axes [kgm2] 100
kϕ i Roll damping, axle i, i=1,2 [Ns/rad] 800
cϕ i Roll stiffness, axle i, i=1,2 [N/rad] 37000
V Initial forward velocity in the test cases [m/s] 25
l Half length of the wheel axle [m] 1
h Height from the ground to the roll axis [m] 0.4

The vehicle parameters were extrapolated using Best & Gordon (1998) and
Heydinger et al. (1999). The tire parameters were found in Pacejka (2002).

Table A.2 The tire parameters.

Name Explanation Value

B = CFα
C D Stiffness factor Dynamic

C Shape factor 1.3
D = µ Fz Peak factor Dynamic
E Curvature factor 3
CFα =
c1 sin(2 arctan( Fz

c2
)) Cornering stiffness Dynamic

c1 Maximum cornering stiffness 60000
c2 Load at max. cornering stiffness 4000
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A.2 Penalty Matrices

A.2 Penalty Matrices

Q and R are used in the cost function as follows

J = E
N−1∑
k=0

(X T (kh)QX (kh) + U T(kh)RU(kh)

Q =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1
10000 0

0 0 0 0 10000000




Where X = (uvrϕ̇ ϕ )T and U = (Fy Fx M)T . There is a big scale difference
between the elements in Q. This make sense since roll is on another scale
than u and v. The scaling factor is typically 100, which means 10000 when
squared. The penalty on ϕ̇ is chosen to be really small, in order to make ϕ
more movable.

R =




1
1000 0 0

0 1
10000 0

0 0 1
1000




A.3 Linearization Points

Table A.3 Linearization points, u = 25 m/s

u = 25 m/s Left Turn Straight Ahead Right Turn

u 25.0 25.0 25.0
v 2.3 0 −2.3
r −0.37 0 0.37
ϕ̇ −6.9 	 10−22 0 2.7 	 10−25

ϕ 0.087 0 −0.087
δ −0.20 0 0.20
FyTot −2.5 	 10−29 0 8.4 	 10−24

FxTot 3000.0 0 3000.0
MTot −2.5 	 10−29 0 −8.4 	 10−24
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Appendix A. Appendices

Table A.4 Linearization points, u = 17.5 m/s

u = 17.5 m/s Left Turn Straight Ahead Right Turn

u 17.5 17.5 17.5
v 1.19 0 −1.19
r −0.523 0 0.523
ϕ̇ 1.80 	 10−22 0 −1.26 	 10−23

ϕ 0.0860 0 −0.0860
δ −0.200 0 0.200
FyTot −2.58 	 10−26 0 −7.70 	 10−34

FxTot 2650.0 0 2650.0
MTot −3.76 	 10−37 0 7.70 	 10−34

Table A.5 Linearization points, u = 10 m/s

u = 10 m/s Left Turn Straight Ahead Right Turn

u 10.0 10.0 10.0
v −0.487 0 0.487
r −0.629 0 0.629
ϕ̇ −1.7 	 10−22 0 −1.75 	 10−24

ϕ 0.0589 0 −0.0589
δ −0.200 0 0.200
FyTot 0 0 −7.44 	 10−21

FxTot 604.0 0 604.0
MTot −3.1 	 10−36 0 3.31 	 10−24
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