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Chapter 1

Introduction

At the department for automatic control at “Ecole Polytechnique Fédérale
de Lausanne” a new crane structure called “Spider Crane” has been de-
signed. The “Spider Crane” is constructed so as to achieve fast movement
of the load with high precision. In a conventional crane, the mechanical
structure needs to be moved to change the position of the load. This puts
limitations on how fast the load can move. In the “Spider Crane” the me-
chanical structure is fixed. The positioning of the load is instead done by
pulling three cables which are connected to the cable that suspends the load.
This structure allows a much faster movement compared to a normal crane.

In a previous master thesis project a full dynamical model of the crane
structure (apart from the DC motors which controls the cables) was devel-
oped. In that project, a flatness based control scheme for positioning the
load (given a reference trajectory) was also developed. The controller was
designed under the assumption that the DC motors could deliver a perfect
torque. No particular care was taken in order to accurately model the DC
motor.

In this project the control of the crane and the control of the DC motors
will be separated. The main problem with the current motor is that its time
constant is very fast. This is a problem since the motion planning for the
crane load necessitate a good number of operations which imposes a slow
sampling time. The time constant of the motor is to fast with respect to
this sampling time.

The objective is to find a scheme which controls both the DC motors and
the crane, using multirate sampling technique, i.e. a fast sampling time to
handle the DC motor and a slow one for motion planning.



Chapter 2

Crane model

The spider crane mechanical structure consists of four fixed pylons Fig. 2.1.
The three small pylons are all connected to the ring. The cable that is
connected to the tall pylon runs through the ring and suspends the load.
By adjusting the length of this cable the height of the load is controlled.
And by adjusting the length of the cables connected to the ring the position
of the load in the horizontal plane is controlled.

Every cable is connected to a DC motor, which controls the length of the
cable. By using this crane structure, it is possible to move the load without
moving the mechanical structure of the crane. A dynamical model, which
describes the whole crane structure (apart from the DC motors) has been
developed in a previous master thesis project[1]. The characteristics of this

model are
e The input to the system are the forces in the cables

e The output of the system is the position of the load (z,y,z) and the
height of the ring

e The system is flat

2.1 Simplified crane model

In order to answer the question: ”Is it possible to do localized control of
the DC motors, in order to control the crane?” it is not necessary to do
it on the whole crane structure. It is sufficient as a first step to do it on
a simplified model, with only one of the small crane pylons. Therefore a
simplified model has been developed using Lagrangian mechanics [2].

The reason for using Lagrangian mechanics instead of Newton’s mechanics
is that the flatness calculation in the next section will be easier.



Figure 2.1: Model of the Spider Crane
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Figure 2.2: Model of the crane with only one pylon.



The following geometrical constraints for the cables are derived from Fig.
2.2.

(xl — :rB)2 + (y1 — 3)2 — 12 =0 (2.1)
(z1—24)° + (y1 —ya)* — LT =0 (2.2)
(x1 — x)2 + (y1 — y) —1?2=0 (2.3)

The total kinetic energy and potential energy of the system are

Mi2  Mi®  ma?  mg2 ompLy
B = 9.4

Epot = gMy + gmy (2.5)

The Lagrangian is given by
L= Ekm - Epot (26)

The only external force is T, which is applied to the cable of length L; by
the motor.
The Lagrangian equations of motion are given by

d (0L a0

— == Few 2.7

7)) -5 ; G o 27
and g; is one of the components of g

q= (xﬂxlvyaylaLl) (28)

Introducing (2.6),(2.1),(2.2) and (2.3) in (2.7) one get the equations of mo-
tions

Mz = —2X\3(x; — ) (2.9)
may = 2\ (z1 —xp)+ 2 (w1 — x4) + 2A3(2x1 — ) (2.10)
Mj = —gM —2X3(y1 — y) (2.11)
myr = —gm+2\(y1 —yB) + 2X2(y1 — ya) + 2Xa(y1 —y) (2.12)
mpLy = =2\l +T; (2.13)

The movement of the load is considered to be small in y in the experi-
mental setup, and the following assumptions are made

y =~ ¢ which is constant = ¢ = 0,4 = 0. (2.14)



Note that this assumption only makes the calculation a bit easier, and it is
possible to solve the problem without this simplification.

To get a system of differential equations that describes the behavior of
the system, one has to solve the above equations for & and #;. By using
2.14 together with (2.11) one gets

gM

A3 = . 2.15
STy (2.15)
Equations 2.15 and 2.9 are combined to get
5= 9(9011—33) (2.16)
1

Equations (2.10), (2.12) and (2.13) are combined and solved for 1, A\; and\s.
This yields the following system

T 0 1 0 0 T
.. —g —g .
Pl w0 o 0 T (2.17)
1 0 0 0 1 1
21 solve (2.10) (2.12) and (2.13) T

2.2 Trajectory generation and flatness

The trajectory for the load is given as a position reference in cartesian
coordinates (x,y, z). This trajectory needs to be converted to corresponding
cable length and cable force, in order to have a useful reference for the control
of the DC motors. Due to the fact that the system is flat[1] it is possible to
do this.

Definition 1 A system @ = f(z,u)) with k inputs u and | states T is flat
if there exists an output § with the same dimension, and satisfying

e The components of y are independent

e T and u can be expressed as a function of y and its n derivatives

z=0y,... vy ) u=T(y,... y" ) (2.18)

with ¢ and ~ that satisfy ¢ = f(¢,7).

This means that given the output of the system (i.e. the position of the load
and the height of the ring), it is possible to obtain, without integrating a
differential equation, the length of cables, velocity of cables, acceleration of
cables and the corresponding forces in the cables.



2.2.1 Flatness calculation

Given the reference point (x,y) for the simplified model, the purpose is
to find the corresponding cable length (which will be the reference for the
position control of the motor), and the applied force in the cable. The same
assumption that y is constant as was the case for the crane model is also
made here.

Combining (2.15) with (2.10) and (2.12), one gets the following system
of equations

21 — )\ +2(x1 —za)Xe = may+gM(zy—2x)/l1 (2.19)
2(y1 —yp)M +2(1 —ya)he = g(M+m) (2.20)
The unknown x; is found if (2.15) is combined with the first equation in

(2.9).

Lz

T = +x 2.21
p (2.21)
From (2.21) we also get
l "
g o= 4y (2.22)
g
l "
i = 1”; + 2 (2.23)

Now it is possible to solve the system (2.19-2.20) for A\; and As.
In (2.9) one find that the input force to the system is

T. =2\ Ly +mpLy (2.24)

To solve this equation, an expression for Lq and L has to be found. L;
is solved using (2.2).

Ly = /(o1 = 2 + (11— ya)? (2:25)

Ly in (2.24) is found by taking the the second derivative of (2.25) and
combining with (2.14)
.. 9 - 2
17+ (1 —xa) — Ly

L= 2.26
1 I (2.26)

The reference position for the motor is therefore given by (2.25), and the
force in the cable is given by (2.24).

10



Chapter 3

DC motor

3.1 Theoretical model

The model that describes the crane does not take the dynamics of the DC
motors into account. A way to improve the control of the crane system is
to take these dynamics into account. The model of the DC motor, which
is identified, consists of a DC motor with a pulley connected to the shaft.
This is due to the fact that one would like to control the length and velocity
of the cables, which is the same as the position and velocity of a point on
the edge of the pulley.

A simple model [3] of a DC motor that relates the applied voltage to the
velocity of the motor is illustrated in Fig. 3.1. This model is described by

the following differential equations

Viscuos friction

u(t) Kol

Iner-
DC Motor tial

]
O—— 00— / Load J

T(t)

o
torque o

Figure 3.1: A simple model of a DC motor.

This system is described by the following differential equations

di R. Ko 1

a = 0T ) (31
g kr . Ky, .

P LA 32



where R = resistance, L = inductance, K,, and K are motor constants, 0
the velocity of the pulley, I = current, U = applied voltage.

The differential equations above corresponds to a second order transfer
function,

K
G(S) - (3 + Te)(s + Tmec)

which is the transfer function from applied voltage to velocity of the ”pul-

(3.3)

ley” /cable. K is related to the dc-gain, T, is the electrical time constant
and Tj,ec is the mechanical time constant.

3.2 Experiment and estimation

The inertial load on the DC motors will change when the load is moved.
This is due to the fact that the forces in the cables are dependent on the
position of the load. The two extreme cases for the inertial load on the DC
motor are

e Weight of load is not connected to the DC motor

e The whole weight of the load is connected to one DC motor.

The small inertial load corresponds to the pulley with a mass of 0.095 g. As
a coarse estimate of the inertial load when the whole weight of the load is
connected to the motor a pulley with a mass of 0.53 g is used.

A step response experiment is done for the two different cases. To avoid
non-linearity’s/artifacts, the step response experiment is done with a bias
of 1 V. Thus the step input is 1-3 V.

The mechanical time constant of the motor without the pulley mounted
is 6 ms [4]. As a rule of thumb the sampling period should be about 10-20
times faster than the dominating time constant of the system [5]. This gives
an upper bound on the sampling period at 0.6 ms. Due to limitations in
the software interface that controls the crane system, it is not possible to
sample faster than 1 ms. This means that the measurements of the motor
might be aliased.

It is desirable to have a simple model that describes the DC motor.
Therefore a first order model is also estimated apart from the expected
second order model. These two continuous time models are forced to fit the
discreet time measurement data. The first order model (3.4) is fitted to the
experimental step response data that’s been filtered through a low pass filter
with a cutoff frequency of 30 Hz to remove the measurement noise.

G(s) = - f ~ (3.4)

12



The coefficients o and 3 are estimated with the ”Least Squares Method”.
Since the experiment data are sampled, equation (3.4) is converted to a
discrete-time version. By using Tustin’s approximation on the transfer func-

tion (3.4) one gets
Y(z) a

U(z) 221+

This discrete transfer-function is converted to a difference equation between

G(z) =

(3.5)

input u(k) and output y(k)

<W> y(k) = au(k), (3.6)

and after some manipulations

y(k+ 1) — y(k) + ?y(k 1)+ %ﬁy(k) - %‘)‘u(k) + %O‘u(k 1), (37)
introduce a = h—f, b= %O‘ and
g(k) = y(k+1) —y(k) (3.8)
u(k) = u(k+1)+u(k)
y(k) = y(k+1)+y(k) (3.10)
then (3.7) becomes
y(k) = ay(k) + bu(k) (3.11)

This equation is linear and the coefficients are estimated with the least

squares method. The regressor vector R and states 6 are
T
0=[a b|andR=]gk) a(k) | (3.12)

b= (RTR>_1 RTj (3.13)
Thus a and b are estimated from 3.13, and thus one gets also a estimate of
«a and [.

The coefficients for the second order model are estimated from the same
step response data. Instead of doing the least squares estimation ”by hand”
(as for the first order model), Matlab System Identification Toolbox is used.
Since the model structure is known 3.3 the ” Process Model” mode in ’System
Identification Toolbox’ has been used.

13



Step response for small inertia together with estimated models
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Figure 3.2: Step response for small inertia and estimated models. First
order model green, second order model red, measurement blue.

3.2.1 Estimation Results

In Fig. 3.3 and Fig. 3.2 it is seen that both the first and second order
models capture the dc-gain for the system. The second order model captures
the rise time of the system much better. A close comparison between the
characteristics of the models and the real experiment data is seen in Table.
3.2.1

The estimated transfer functions for the small inertial load are

29.62
Gsmall(s) m (314)
10240
Goma 3.15
u(s) (s2 + 280.9s + 16880) (3:15)
(3.16)
The estimated transfer functions for the big inertial load are
14.89
; _— 1
Guas) = Tosma (8.17)
3153
Gbig(s) = (3.18)

(s2+ 174.25 + 5054)

14



Step response for big inertia together with estimated models
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Figure 3.3: Step response for big inertia and estimated models. First order
model green, second order model red, measurement blue.

Model dcgain | rise time (ms)
Small Inertia 0.61 30
first order model | 0.61 45
2:e order model 0.61 0.29
Big Inertia 0.62 62
first order model | 0.63 0.93
2:e order model 0.62 0.63

3.3 Discrete-time model

At the beginning of the project it was considered to be advantageous to
estimate a discrete-time model for the motor. Since this model has been used
in the "ramp” design approach, a short description of how it was estimated
will follow.

The same step response data which have been used for the estimation
of the continuous-time model have been used here as well. The discrete-
time model was estimated from the step response with the aid of Matlab’s
System Identifications Toolbox. Different type of ARX- and state space
model structures was tried. The estimated models were chosen according to
the following criteria

15



e dcgain
e rise-time
e model is minimum-phase

e low order model preferred

The model that gave the best correspondence with the real data was an
ARX221 type structure for both the small and big inertia models.

0.2819
Goma(2) = 57713, 1 0.1504 (3.19)
0.0168
() = 2
Grig(2) = 51002 7 01174 (3.20)
Model dcgain | risetime (ms)
Gsma”(z) 0.61 38
Grig(2) 0.62 70

Remark: The procedure which uses the same data for both estimation
and validation of the model structures is not the correct approach for Sys-
tem Identification. Also when one estimates the parameters of an ARX
structure, the excitation signal should preferably be a PRBS signal which,
in theory, fully excites the system. Experiments were also done with differ-
ent PRBS signals, but it was not possible to excite the system sufficiently
well at low frequencies. This meant that these models where worse than
the ”wrongfully” identified discrete-time models above. Even though the
discrete-time models are not totally correct, they can be used to show the
concepts and problems with the "ramp” control approach.

3.4 Nominal model

The load on the DC motor changes when the load moves. Therefore a
nominal model is estimated from the two extreme cases mentioned before.
The nominal model is taken to be the mean of the two extreme cases.

The transfer function that corresponds to the nominal model is estimated
from the Bode plot. It is assumed that the nominal model has the same
transfer function structure as (3.3). This transfer function can be converted
to the frequency domain by inserting s = jw in (3.3)

bo _ W(w)
—w?+ajw+ta  U(jw)

G(jw) = (3.21)

16



where W (jw) is the output of the system and U(jw) = 1. Given the mag-
nitude and phase in the bode plot one gets

W (jw) = magnitude - ¢/ Pha% (3.22)
By rearranging (3.21) one gets
bo = —w’W (jw) + a1jwW (jw) + asW (jw). (3.23)

This equation is linear, the coefficients can be estimated with the ”Least
Squares Method” (3.13).
The nominal transfer function is

6699
s2 + 232.6s + 1096

Gnom(s) = (324)

The same approach is used for the discrete-time model, and the resulting
nominal transfer function is

_0.22612 +0.0001477

Gnom(z) = (325)
22 —1.103z + 0.1402
Bode plot
0 T
~ =20
3 G ()
o 40 big
E -60} Gsmall(s)
% mean
= -8or - nom(s)
-100
. .
10° 10 10° 10° 10*
0
) -50
(5
h2
o -100
2]
©
<
& —150f
—200 0 1 ‘2 3 4
10 10 10 10 10

Frequency (rad/s)

Figure 3.4: Bode plot of continuous-time model of the DC motor
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Bode plot
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Chapter 4

Control Strategy

The objective is to track a position reference for the cable, which is the same
as the position of the motor. This reference signal for the motor is given by
flatness conversion of the position reference of the load. It takes about 10-20
ms to do the flatness calculation for the whole crane system. This means
that it is not possible to do position control for the whole system faster than
this. One way to overcome this problem is to separate the control of the
crane and the DC motors. By doing this, it is possible to sample the DC
motors faster so as to satisfy the Shannon’s sampling theorem.

Since the reference is only updated every 20 ms, one has to interpolate
the reference in between these time instants in order to be able to use the
fast sampling period for the DC motors. By using linear interpolation, a
”smoother” acceleration of the load is obtained than what is possible for a
step. Also the risk of inducing oscillations of the load decreases compared
to 7step” interpolation. Thus the controller to be designed should fulfill the
following

e Track a ramp reference without a stationary error after 5-10 ms

e Reject load disturbances

4.1 Model match design

In order to track a ramp without any stationary error, the model H,,(z)
must fulfill H,,(1) = 1. For a ramp reference Y;4mp(2), the relation between

19



Yramp(z) and the output of the system Y'(z) is

Yeamp(2)=Y (2) = Yramp(2) = Hm(2)Ye(2) = Yramp(1=Hm(2)) = 1)
(4.1)
This relation will only go to zero if [6]
- 1 UL |
> => (4.2)
ol-n Hl-z

where p; are the zeros and z; are the poles of H,,(2).
The transfer function (3.5) is given between the voltage and the velocity.
Since the control is done on the position, an integrator is added to (3.5).

0.0002261z + 1.477 - 10~ 7
23 —2.10322 + 1.2432 — 0.1402°

It is only possible to match H(z) = B(z)/A(2) to Hy,(2) = B (2)/Am(2)
if the following conditions are fulfilled|[7]

Gnom (Z) =

(4.3)

1. F(z) need to have all poles inside the unit circle.
2. Deg Ay, (z)-degBp(2) > Deg Ay, (2)-degB(2)
3. All zeros of B(z) outside the unit circle are retained in By, (z)

A possible H,,(z) that fulfills these conditions are

_ - D
Hm(2) = (z —21)(2 — 22)(2 — 23) (4:4)

To find a suitable H,,(z) the poles were chosen to lie inside the unit
circle and the pole was chosen so that H,,(z) fulfills the condition (4.2) for
tracking of a ramp. Through trial and error (so as to obtain a good H,,(z)
in order to track a ramp), suitable values for the poles were found.

z — 0.8357

Hyp(2) = (z—0.1)(z — 0.3917)(z — 0.7)

(4.5)

As can be seen in Fig. 4.1 the tracking error for H,,(s) is less than 0.1 mm
after just 20. But a drawback with H,,(z) can be seen in the bode plot Fig.
4.2. At high frequencies there is strong amplification. Another drawback is
that the tracking error will increase slowly with time (see Fig. 4.3). But
since the increase is less than 0.1 mm after 10 s, the model was considered
to be good enough to be used for a model matching design approach.

The model matching problem is solved for a second degree of freedom
control structure Fig. 4.4.

20
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Figure 4.1: Tracking error for a ramp reference
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Figure 4.2: Bode plot of H,,(2)
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X107 Tracking error
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Figure 4.3: Tracking error for a ramp reference after 10 s

Lre u
- G 4 Gnom(2)

G

Figure 4.4: Second degree of freedom control structure used for the model

matching problem

The algorithm [7] below is used to solve the model matching problem
The objective is to find two proper controllers C(z) = L(z)/D(z) and

Cy(z) = M(2)/D(z).
First

B Bm_(z)B(z) B L(2)B(z)
An(-) ~ D()AG)+ M()B()

Bmfz)A(,zi)B(z) L(z)B(z)

An(2)A(2) D(2)A(2) + M(2)B(z)

22

(4.6)

(4.7)

(4.8)



ref and output x107 error
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0.008

N
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Figure 4.5: Left upper: Tracking of the green reference signal, Right up-
per: Tracking error, Left bottom: Control signal fed to the motor which is
saturated at pmb V, Right bottom: Control signal without saturation

where A(z) is a arbitrary Hurwitz polynomial such that the degree of A(z)A(z)
is 2n — 1, where n is the degree of the denominator of H(z).

In this case, n = 3 and since A(z) has degree a degree of 4, A(z) = (2+0.3)
is introduce to fulfill the condition above. Set L(z) = A(z)A(z), D(z) and
M (z) is solved from the Diophantine equation in the denominator of (4.8)

D(2)A(z) + M (2)B(z) = A(2)A(2) (4.9)

The controllers are

4.423 x 10%22 — 5.023 x 102 + 1.109 * 10*
o, — *10°2 * 102+ L9 (4.10)
22 4+ 0.61782 + 0.003992

3.463 * 1022 — 3.37 % 10*2 4+ 4155
o, = *10°2 * 10 2+ 2l (4.11)
22 4+ 0.61782z + 0.003992

4.1.1 Simulation

The suggested control structure is simulated in Matlab, with a ramp that
has a slope of 0.1 m per second. The effect of a load disturbance of 5 Volts
and a measurement noise of 1 mm is studied.

As can be seen in Fig. 4.5 the tracking of the reference signal is relatively
good just after 10 ms. And in the Fig. 4.6 one sees that the controller rejects
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ref and output x107° error
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Figure 4.6: Left upper: Tracking of the green reference signal, Right upper:
Tracking error, Left bottom: Control signal fed to the motor which is satu-
rated at +5 V,Right bottom: Control signal without saturation
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Figure 4.7: Tracking behavior when measurement noise of 1 mm is added.
Left upper: Tracking of the green reference signal, Right upper: Tracking
error, Left bottom: Control signal fed to motor which is saturated at +5 V,
Right bottom: Control signal without saturation
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Bode Diagram
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Figure 4.8: Bode plot of the transfer function N2C(z) = %N(z) from

noise to command signal

the load disturbance (in the shape of a bump that is added between 2 and
2.5 s).

When a measurement noise of 1 mm is added, the control signal will blow
up and saturate Fig. 4.7. The reason for this behavior is that the controller
Cy(z) will amplify high frequencies Fig. 4.8.

The problem with the ramp approach with the selected model (4.4) is
that high frequencies is amplified in order to track the ramp within 10-20
ms. And since the open-loop model of the DC motor does not have a high
gain at high frequencies, the controller Cy(z) will have high gain for high
frequencies in order to match H(z) to H,,(z). This makes the controller
extremely sensitive to noise, as can be seen in Fig. 4.7. The control signal
blows up which makes the controller saturate (£5 Volt). Therefore this
control approach has not been implemented on the real system.
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Chapter 5

Reduced bandwidth design

The objective is to track a position reference for the cable (i.e. this is the
same as controlling the position of the motor). From the flatness calcula-
tions, one gets the reference position of the cable, but it is also possible to
get the force which is applied to the cable in order to move the load. This
means that one also knows the influence of the load on the motor at every
time instant along the trajectory. Therefore one can see the crane as a dis-
turbance which acts on the motor. If one could find a transfer function that
describes how the force in the cable influences the velocity of the motor,
it would be possible to use a feed-forward controller to compensate for the
crane.

The force in the cable will act as a torque T,rqne on the motor. If this
torque is added to the theoretical model (3.1) it is possible to get a transfer
function that describes how the crane acts on the motor.

di R Ky, - 1
Y 16 A il - 1
D= i) - T + pul) (1)
d9 kf A Km . Tcrane
The Laplace transform of this is
R Ky, - 1
G k;f A km Tcrcme

If the first equation in (5.3) is inserted in the second one

Ky _ Fm
J J(sL + R)

(U(s) — kmfi(s)) + 229 (5.5)

sO(s) = 7

9(5) +
In (5.5) there are two different cases U(s) = 0 and T¢rane = 0.
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A kf A km Tcrcme
$B(5) + F0(8) + b 7 (003)) = = (5.6)
This is rewritten as
(9(8) = (S i R/L) Tcrzme (57)

24 (B+ M) s+ (bpR+E2)

Terane = 0 is inserted in (5.5) and after some manipulations one get

o
O(s) = JL U (5.8)
24 (F4+Y) s+ (bR +k2)

This equation has the same structure as the model identified (3.3) of the
DC motor. Thus the coefficients in (5.8) are known. This means that the
coefficients of the denumerator in (5.7) are also known, since it has the same
denumerator as (5.8). And the relation R/L in the denominator of (5.7) is
also known, if one uses the values of R and L form the data sheet of the
motor (ref to data sheet here).

. 6699
0(s) = 77932.65 + 10067 (5.9)
. 2
0(s) = (s +6280) . (5.10)

s2 4+ 232.6s + 1096 "¢

Where the torque Terane = Tpully * Ferane- This means that it is possible
to use a feed-forward controller to compensate for the crane effect on the
motor, and a feedback position controller to control the length of the cables.

5.1 Position control

It is hard to do a good position controller directly on the motor in the fast
time scale (1 ms). One of the problem in doing position control directly on
the motor is that it is easy to get the motor to rattle. This reduces the life
of the motor, and in this case it would probably induce oscillations of the
load. Another problem is that it is not possible to have a position controller
which has a faster sampling time than the one needed to do the flatness
calculations. The minimum sampling period for the flatness calculation is
about 20 ms for the full crane system. The rise time of the motor is about
37 ms for the nominal model. Since one should sample the motor at about
4 -10 times the rise time [5], a sampling time of 20 ms is too large. This
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means that the motor has to be made slower. This can be done buy using
the following cascade control structure see Fig 5.7.

A way to artificially make the motor slower is to do velocity control with a
sampling period of 1 ms that reduces the bandwidth (equivalent to a longer
rise time). In order to have a sampling period of 20 ms for the position
controller, the rise time of the ’slow’ motor should be about 90-100 ms. The
velocity controller is designed with loop-shaping using the ’Siso Toolbox’
interface. The desired characteristic of the "new” slow motor, are

e A rise time of about 90-100 ms.

e The dc-gain of the closed-loop system should be around 0.6, which is
the dc-gain of the open-loop system.

The designed controller has the following transfer function

2.6

CUEZ(S) = 0148+1

(5.11)

This gives the following transfer function for the closed-loop system

B 1.244 % 10°
834 239.852 4+ 12625 + 2.027 % 105

Gslow(s) (512)

which is the new slow motor.

Parameter Value

Risetime 95 ms
dcgain 0.61
bandwidth | 3.62 Hz

The design criteria for the position controller are based on the dynamics
of the crane. The time constant of the crane is about 0.9 s, this implies that
the rise time for the position control of the motor should be about 100 ms.
The controller is designed with the following criteria in mind

e The rise time for a step should be about 100 ms

e The overshoot should be small (less than 10 %)

e Reject a bump disturbance
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Bode Diagram
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Figure 5.1: Bode plot of Ggjow(s) (blue)

Step Response
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Figure 5.2: Step plot of Gom(s) (green) and closed loop velocity feedback
(blue)
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Figure 5.3: Step-response of closed loop system with position control

The position controller is designed with a combination of loop shaping
and root locus design using the ”Siso Tool” in Matlab’s control system tool-
box. The transfer function of the position controller is

46635 + 14142

Cpos(s) = — 207 (5.13)

The step response in of the closed loop-system Fig. 5.3 is fast with a 103
ms rise time, which is close to specification, and the overshoot is smaller
then the specified 10 %. And in Fig. 5.4 one sees that the closed-loop
system has a high gain margin and phase margin, which means that the
closed loop system is robust to uncertainties in the model. The controller is
also able to reject a "bump’ disturbance see Fig. 5.5. In Fig. 5.6 one sees
that measurement noise with a amplitude of 1 mm will be amplified in the
closed-loop system, and the tracking error will be quite big.The only good
thing is that the control signal does not blow up and saturate the motor.

5.1.1 Feed forward controller

The full control scheme Fig 5.7 consist of a flatness block that gives the
reference position of the cable/motor and the corresponding force in the
cable. The above mentioned cascade structure is used for position control,
and a feed-forward part. Since the crane acts as a disturbance on the velocity
of the motor, one realizes from Fig 5.7 that the following condition has to
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Figure 5.4:

Posistion (m)

Figure 5.5: Left upper: Tracking performance for the closed loop system
and rejection of a bump disturbance of amplitude 0.5 that enters the system
between 1-1.5 s, Right Upper: Tracking error, Left Lower: Control signal
feed to the motor
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Tracking of referance signal
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Figure 5.6: Left upper: Tracking performance for the closed loop system
with 1 mm measurement noise added, Right Upper: Tracking error, Left
Lower: Control signal feed to the motor

Tcrane
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Cvel(s) b= Gnom(s)

(xy) L
] Flatness Tgf()— Cpos(s) @ 'ef

Figure 5.7: Control scheme. L,.f is the same as 0

be fulfilled for the feed-forward Cy(s) part to be able to compensate for
the crane disturbance.

Trep(5)Cr1(8)Cuet(8)Grom(s) + Tref (8)rpuyF'(s) = 0 (5.14)
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where 7p5¢y has been added to convert the force T)..; to a torque on the
motor since the transfer function F'(s) (5.10) is a transfer function from
torque to velocity.This gives

F(s)
Cre(s) = — 5.15
ff( ) Cvel(S)Gnom(S) ( )
—0.0035s* — 22.83s% — 531452 — 2.77 - 10°s — 1.721 - 106
Crs(s) = (5.16)

1.742 - 10452 + 4.052 - 1065 + 1.909 - 108

For the cascade position controller to track a reference signal perfectly,
one normally inverts the closed-loop system. In this case, it is not necessary
to do this, since the closed-loop system has the shape of a low-pass filter
Fig. 5.4, which means that the slow varying reference signal will just pass
through.
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Chapter 6

Simulation

The suggested control structure is set up with ”Simulink” in Matlab. The
flatness block and the model of the crane are implemented as S-Functions.
The crane model needs the force in the cable as an input. The input force
can be found by feeding the signal L trough 7pyiey/F(s), since F(s) is the
transfer function from the torque applied on motor by the crane to the
velocity of the motor L. (The Tpulley 0 the numerator is for converting the
torque of the motor to the corresponding cable force). From Fig 5.7 an
expression for the F,, . is found.

Fcable = [(1 + Cvel(S)Gnom(s) + Cpos(s)cvel(S)Gnom(s)/S)L

~(Tyeg()C7(5) + Lres Cpos()) o (5) Grom (5)] "B (6.1

The force that is fed to the control structure is just the output of the
crane model. Since all transfer functions in Simulink have to be causal for
the simulation to work , extra poles must be added to the feed-forward
controller. This is done by adding two poles at at —250 which are faster
than the fastest of (5.16). This gives the new feed forward controller

—0.01382s* — 90.80s% — 2.098 - 10%s2 — 1.096 - 1055 — 6.93 - 106
s4 4+ 757.683 + 2.018s2 4+ 2.175 - 107s + 7.536-8

Cys(s) =

(6.2)

The same is also done for 1/F(s) where an additional pole at —7000 is added.

The setup for the simulation of the crane system was according to the

simplified crane model. The initial position of the load and other physical
properties of the system are given in Table 6
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Figure 6.1: Simulation setup

Parameter | value unit
Tq 0.05 m
Ya 0.57 m
Ty 0.58 m
UYb 2.62 m
U1 0.61 m
Y1 0.61 m
g 9.82 | m/s?
M 0.277 kg
m 0.005 kg
mr, 3-1076 | kgm?

As a crude estimate of mj, the inertia of the pulley is used.

Feable

In order to see whether the suggested control scheme works, one has to

move the load quite fast. Otherwise, it is not possible to see the effect of

the flatness part, since the pulling point and the load will follow each other.

In the experiment, the position of the load is moved 10 ¢m in 1 s, according

to the trajectory in Fig. 6.2.
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Referace trajectory for the load
0.46 T T

0.441
0.421

0.4

Position (m)

0.381

0.36

0.34
0

. . . .
0.2 0.4 0.6 0.8 1
Time (s)

Figure 6.2: Reference trajectory for the load.

6.1 Results

Due to problems with the initial state of the simulation model, it has not
been possible to do a full simulation where the interaction between the motor
and the crane model works. The problem is that the transfer function that
is supposed to give the input force to the crane model does not give the
correct output when the motor and crane model are connected together,
and it is also very sensitive to the initial condition of the whole model.
Therefore the T,y given by the flatness has been used as the input to the
crane model during the simulation to simulate the effect of the crane system
on the motor.

In the right plot in Fig. 6.3, one sees that the position of the load follows
the trajectory perfectly given the corresponding input force from the flatness
calculations.

The plots in Fig. 6.4 show the reference trajectory for the cable and how
well the motor tracks this trajectory. The physical interpretation of this
trajectory is that the cable will accelerate fast at the beginning. This means
that the position of the load will fall behind the position of “pulling point”
(z1,y1) in Fig 6.4. Therefore the cable is “slowed down” which is the same
as relaxing the cable a bit, in order for the load to “catch up”. This is the
“dip” at 0.6 seconds in the figure. Then when the load has “caught up”
with the pulling point, the cable accelerates again in order to stop the load
at the desired position. Also note that the movement of cable will lag about
0.1 s behind the reference trajectory.
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Figure 6.3: Right: The movement of load along the reference trajectory. Left:
The movement of the load (blue) and pulling point (green)

Position of motor and the referance Velocity of motor
0.1
-0.02 \
\\ 0
£ 004 \ z
c < N\ g
S -0.06 A\ 2 -0.1
Z \ g
<] \ o
a -0.08 \ <
\ -0.2
-0.1 A
-0.12 -0.3
0 0.5 1 15 0 0.5 1 15
Time (s) Time (s)
Applied voltage x107° Feed forward signal
0.1 6
0 4
_ 01
S 2
-0.2
-0.3 0
~04 -2
0.5 1 15 [¢] 0.5 1 15
Time (s) Time (s)

Figure 6.4: The behavior of the motor given the reference trajectory for
moving the load.
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Chapter 7

Implementation

The software interface, which is used to control the crane model, is a combi-
nation of a LabVeiw interface which runs a real-time kernel. In the current
setup of the LabView interface, it is only possible to have one thread for
which the sampling time can be set arbitrary above 0.5 ms. Due to this, it
is not possible to have one thread for the velocity controller with a sampling
period of 1 ms and another one for the flatness calculation and position
controller running at 20 ms. Therefore the whole control algorithm is im-
plemented in only one thread running at 1 ms. The slow sampling rate used
for the position controller is just implemented to run once for every 20 runs
of the fast 1 ms thread.

7.1 Experiment on the crane model

The experimental setup of the crane system was done according to the sim-
plified crane model. All parameters and the reference trajectory were the
same as in the simulation part.

7.1.1 Results

With the designed control scheme, it is possible to move the load along the
given trajectory. Fig. 7.1 shows the reference trajectory for the cable given
by the flatness block. Note, that the results are very similar to the results
of the simulation.

The final positioning error of the load is about 0.5 c¢cm. This error is
probably mainly due to the fact that all parameters in the model are not
correctly identified, and that the model is too simple. But a another small
contributing fact may be the small stationary error for the cable position
also seen in Fig 7.1. When the load arrives at it is destination it will oscillate
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Movement of the cable/motor
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Figure 7.1: Movement of the cable/position of motor for the given reference
trajectory
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Figure 7.2: Control signal.

a bit. The main factor behind this is that the model of the system is too
simple.
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Chapter 8

Conclusion

This master thesis project has resulted in the identification of two different
models for the DC motors which are controlling the crane. This resulted in
(i) a continuous-time version that describes the dynamics of the DC motor
well, and (ii) a discrete-time version which was not that good. The main
problem with the identification of the model for the motors was that the
motors were very fast. This meant that the software interfaced connected
to the motors could not sample fast enough, without inducing aliasing of the
measurement data. This meant that the identified models were not totally
reliable, and also that it would be hard to control the motors.

Using the continuous-time model of the DC motor, it was possible to
design a control scheme based on flatness together with a cascade position
controller with feed-forward. Due to time limitations, it has not been pos-
sible to implement the localized controller with the full scale crane system.
The main difference between the full-scale system and the simple model is
that flatness calculations are more complex. In the full-crane system, one
can see that the DC motors run independently of each other. This means
that it is reasonable to assume that it is possible to use localized control
scheme for the full-crane model as well. The main difference would be that
the feed-forward term that compensates for the crane behavior on the motors
would be more complicated.

For the discrete-time model, a control approach based on ramp tracking
(within the 20 ms it takes for the flatness reference to be updated) was tried.
The designed controller needed to be very aggressive, in order to track the
ramp reference within 20 ms. Due to the characteristics of the model of the
motor, the controller needed to amplify high frequencies a lot. This leads
to a controller that did not work in the presence of measurement noise.
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Chapter 9

Discussion

The designed localized controller worked quite well for the simple model. No
problems with noise have been noticed in the real experiment. But, since
the simulations of the motor showed that the control structure was a bit
sensitive to noise, this might be something one can improve upon. Also,
it would be good to do a controller which is a bit faster compared to the
current one. This might reduce the time delay seen in the simulations and
in the experiment Fig. 7.1.

Since the flatness calculation also gives the reference velocity for the
cable, it might be a good idea to implement a controller which uses both
the position and the velocity as reference signals. In my view this should
give a controller which has the ability to control the cables better.

The concept of taking the nominal model of the motor as the mean of the
two extreme cases (only pulley connected or the full load connected to motor)
is not totally correct. A better approach would have been to identify one
model for the motor with only the pulley connected, since the effect of the
load is canceled by the feed forward term in the controller for the reduced
bandwidth design.

At the moment it is not possible to run two different control threads
together with the LabView interface. This is something that has to be
addressed in order to implement the proposed control scheme for the whole
crane, which has one fast velocity controller at 1 ms and then a slow position
controller.
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Appendix A

Matlab code for simulation

A.1 Simplified crane model

Listing from source file cranemodelwL.m

function [sys,x0,str,ts] = cranemodel (t,x,u, flag 6 x0,mL
,Mm, xa,ya,xb,yb,ylbar,11 ,yl,g)

% Statespace model of simplifyed spidercrane

% x = (x,dz/dt,zl,dz1/dt)

%Parameters
%nL,M, m, za, ya, zb, yb, ylbar, 11 = 0.22, yl = 0.61,
g = 9.81

switch flag,

0006060606 %
% Initialization %
0000660606 %
case 0,
[sys,x0,str ,ts]=mdlInitializeSizes (x0);

YT TR T %% %% % %%
% Derivatives %
IR T T %% % %% %% %

case 1,
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sys=mdlDerivatives (t,x,u,mL,M,m,xa,ya,xb,yb,ylbar,
11,y1,8);

W00 %% %6 %6%6%6%
% Outputs %
6% %76 %6%6%6%
case 3,
sys=mdlOutputs(t,x,u,mL,Mm, xa,ya,xb,yb,ylbar 11,
vl,8);

SN0 e 66060006 0606%

% Unhandled flags %

ST 60606007606 06%

case { 2, 4, 9 },
sys = [];

6080 e e e e e 6606 06%
% Unexpected flags %
6060600 e e e T8 0606%

otherwise
error ([ ’Unhandled_flag. _=_’ ,num2str(flag)]) ;

end

%

end csfunc

X R N N

%

%

mdllnitializeSizes

Return the sizes, initial conditions, and sample
times for

the S—function .

G

%

function [sys,x0,str,ts]=mdlInitializeSizes (x0)

sizes = simsizes;

sizes .NumContStates =

6
sizes . NumDiscStates = 0;
sizes . NumOutputs =6

1

sizes . Numlnputs =
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sizes .DirFeedthrough = 1;

sizes . NumSampleTimes = 1;
sys = simsizes (sizes);

x0 = [x0 0.3523];

str = [];

ts = [0 0];

% end mdllnitializeSizes

%

%

G

% mdlDerivatives
% Return the derivatives for the continuous states.

%

%
function sys=mdlDerivatives (t,x,u,mL,Mm,xa,ya,xb,yb,
ylbar,11,y1,g)

Jstates

sx = x(1);
sxd = x(2);
sx1 = x(3);
sxld = x(4);

L1 = sqrt ((sxl—xa)*(sxl—xa)+(ylbar—ya)x(ylbar—ya));
L1ld = (sxl—xa)xsx1d/L1;
T1 = u; %input force
A= [m —2x(sxl-—xb) —2x(sxl-xa);...
0 2x(yl—yb) 2x%(yl-ya);...

mLx*(sx1—xa) /L1 0 2xL1];

B = [—gMx(sx1—sx)/11; gsmtgsM; Tl-mLk(sxld*sx1ld—L1dx
L1d)/L1];

%solve Ar=B;
par = mldivide (A,B);
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sxldd = par(1);
lambdal = par(2);
lambda2 = par(3);
sxdd = gx(sxl—sx)/11;

sys = [sxd sxdd sxld sxldd 0 0];

5 end mdlDerivatives

N RN N XN

mdlOQutputs

% Return the block outputs.
[/74

T
(%

%
function sys=mdlOutputs(t,x,u,mL,M,m,xa,ya,xb,yb,ylbar
A1yl g)

L1 = sqrt ((sxl—xa)x*(sxl—xa)+(ylbar—ya)x(ylbar—ya));
L1ld = (sxl—xa)*sx1d/L1;
T2 = u;

A= [m —2%(sxl-—xb) —2x(sxl-xa);...

0 2%(yl—yb) 2x(yl—ya) ;...
mLx(sx1—xa) /L1 0 2xL1];

B = [—gsMx(sx1—sx)/11; gxmtgsM; T2—mL*(sx1ld*sx1ld—L1dx
L1d)/L1];

%solve Ax=B;

par = mldivide (A,B);
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sxldd = par(1);
lambdal = par(2);
lambda2 = par(3);
sxdd = gx(sxl-sx)/11;

%only used for simulation purpurs

%update T2motor and L1

L1d2 = (—L1dxL1d + sxldxsxld + (sxl—xa)xsxldd)/L1;
T2motor = mLxL1d2 + 2xlambda2xL1;

sys = [sx sxd sxl sxld T2motor L1];

% end mdlOutputs

A.2 Flatness calculation

Listing from source file flatnesswLrefcont.m

function [sys,x0,str,ts] = flattness(t,x,u,flag, Tinit,
mL,M,m,xa,ya,xb,...
yb,ylbar 11 ,yl,g)

%S—function for continoius time flatness calculation
of referance for

%simplifzed crane model

%The output is the lenght referance of cable and the
force in the cable

%The input signal are uw and it ’s four first derivitves

%Parameters

%mL,M, m, wa, ya, zb, yb, ylbar, 11 = 0.22, yl = 0.61,
g = 9.81

switch flag,

TR0 76776906926 % %%
% Initialization %
TR0 %60 76879069626 % %6 %

case 0,
[sys,x0,str ,ts]=mdlInitializeSizes ( Tinit);
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T600 00 00606060606 %
% Derivatives %
0060606060 %
case 1,
sys=mdlDerivatives (t,x,u,mL,M,m,xa,ya,xb,yb,ylbar,
11 ,y1,8);

T%6%6%%606%6%6%
% Update %
SR T6%6%%6%6%%
case 2,
sys=mdlUpdate (t,x,u,mL,M,m,xa,ya,xb,yb,ylbar 11 5yl
1 8)

W06060606%60606%
% Outputs %
SR T80 %6 %6%%
case 3,
sys=mdlOutputs(t,x,u,mL,Mm, xa,ya,xb,yb,ylbar 11,
yl,g);

ST 60 e e e 66 e e e 6060606 %
% GetTimeOfNextVarHit %
T80 e e e 66 e e e 66060 %
case 4,
sys=mdlGetTimeOfNextVarHit (t,x,u);

K060 %6067 %6%6%0 %%
% Terminate %
SR T 6067 % 0606060 %
case 9,
sys=mdlTerminate (t,x,u) ;

000 e e e e e e e 6660606
% Unexpected flags %
060600 e e e e 606 0606%
otherwise

Y

error ([ ’Unhandled_flag.=_" ,num2str(flag)]) ;
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end

% end sfuntmpl

%
%

% mdllnitializeSizes

% Return the sizes, initial conditions, and sample
times for

%the S—function .

%

%

function [sys,x0,str,ts]=mdlInitializeSizes (Tinit)

sizes = simsizes;

sizes . NumContStates =
sizes . NumDiscStates =

0
0
sizes . NumOutputs = 2;
sizes . NumlInputs =5
sizes .DirFeedthrough = 1
1

sizes . NumSampleTimes = 1; % at least one sample time

is needed
sys = simsizes(sizes);

%
% initialize the initial conditions

%
x0 = [];%Tinit;

%
% str is always an empty matriz

%
str = [];
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%
% initialize the array of sample times

%
ts = [0 0];

% end mdlInitializeSizes

R

% mdlDerivatives

% Return the derivatives for the continuous states.
o7

o
G

function sys=mdlDerivatives (t,x,u,mL,M,m,xa,ya,xb,yb,
ylbar,11 ,yl,g)
sys = [];

% end mdlDerivatives

%

%

% mdlUpdate
% Handle discrete state updates, sample time hits, and

major
%time step requirements.
%
%

function sys=mdlUpdate(t,x,u,mL,M,m,xa,ya,xb,yb,ylbar,
11,y1,g)

sys = [];
% end mdlUpdate

%

%

% mdlOutputs

% Return the block outputs.
VA

(&)
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function sys=mdlOutputs(t,x,u,mL,M,m, xa,ya,xb,yb,ylbar
7]‘]‘ ’yl 7g)

%referance trajectorz and it ’s derivitives

xref = u(l);
xdl = u(2);
xd2 = u(3);
xd3 = u(4);
xd4 = u(b);

%caltulate the zl1 and it ’s first and second derivitive

x1 = 11%xd2/g+xref;
x1dl = 11%xd3/g+xdl;
x1d2 = 11%xd4/g+xd2;

%L1 and it ’s derivitives
L1 = sqrt ((xl—xa)*(xl—xa)+(ylbar—ya)«(ylbar—ya));
L1dl = (xl—xa)=xx1dl/L1;
L1d2 = (—-L1d1xL1d1 + x1dlxx1dl + (xl1—xa)=*x1d2)/L1;

%Algebraic soultion of Az=B

J%lambdal = (2% (ylbar—ya)*(mxxld2 +gxMx(xzl—xref)/l1) —
2% (xl—xa ) (mM)xg) /(4% (xl1—xb)* (ylbar—ya) . ..

% —4x(yl—yb ) * (z1—za));

%lambda2 = (=2« (ylbar—yb)*(mxx1d?2 +gxMx(zl—xref)/11) +
2% (x1—xb ) (mtM)xg) /(4* (x1—2b)* (ylbar—ya) ...

% —4x(yl—yb)*(xl—za));

A = [2%(x1l—xb) 2x(xl—xa);2*(ylbar—yb) 2x(ylbar—ya)];
B = [(m#x1d24+g«Mx*(x1l—xref)/11) g*(Mtm) ] ’;

lambdas = mldivide (A,B);

lambda2 = lambdas(2);

Tc = mLxL1d2 + 2xlambda2x*L1;

o1



sys = [Tc L1];

A

end mdlOutputs

%

%

% mdlGetTimeOfNextVarHit

% Return the time of the mnext hit for this
Note that the result is

% absolute time. Note that this function

when you specify a

block .

18

only wused

% variable discrete—time sample time [—2 0] in the

sample time array in
% mdllnitializeSizes.

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 0.01; % Ezxzample, set the next hit to

be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

mdlTerminate

Perform any end of simulation tasks.

R N N X X

=)

function sys=mdlTerminate(t,x,u)

sys = [];

% end mdlTerminate
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A.3 Generation of reference signal

Listing from source file LrefwInital.m

%Caclulates the referance signal for the simplifzed
crane model and

%stets the model parmeters. It ’s also set the intial
condtions of the crane

%model

close all;

%Calculate referance signal

T=1.0;

Tstop = T; %only used for the referance gerantion in
stmulink

r = 0.35; %final value

xstart = 0.455;

% Constrainst for 9 order ploynomial

% coefficiants for f(t) and derivitivs at time 0

f0=[000000000 1];
f0d1 = [0 00000001 0];
f0d2 = [0 00000020 0];
f0d3 = [0 0 00 0 0 3%«2 0 0 0];
f0d4 = [0 0 0 0 0 4%3%«2 0 0 0 0];

% coefficiants for f(t) and derivitivs at time T
fT = [power(T,9) power(T,8) power(T,7) power(T,6)
power (T,5) ...
power (T,4) power(T,3) power(T,2) power(T,1) 1];

fTdl = [9xpower(T,8) 8xpower(T,7) T7xpower(T,6) 6xpower
(T,5) 5xpower(T,4) ...
4xpower (T,3) 3xpower(T,2) 2xpower(T,1) 1 0];

fTd2 = [9*8*«power (T,7) 8xTs«power(T,6) T7x6xpower(T,5)
6x5xpower (T,4) ...
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Sk4dsxpower (T,3) 4x3xpower(T,2) 3*2xpower(T,1) 2 0
0

fTd3 = [9x8*Txpower (T,6) 8x7x6xpower(T,5) 7x6x5*xpower (
T,4) 6«5x4xpower(T,3) ...
5x4x3xpower (T,2) 4x3*x2xpower(T,1) 3%x2 0 0 0];

fTd4 = [9+8*Tx6xpower (T,5) 8xTx6xbxpower(T,4) T+6x5x4x%
power (T,3) ...
6x5x4x3xpower (T,2) 5x4x3x2xpower (T,1) 4%3%x2 0 0 0
0

A = [f0;f0d1;f0d2;f0d3;f0d4;{T;{fTdl;{Td2;{Td3;{Td4];
B = [xstart 0 000 r 0000 ]7;

%Ploynomial coeffciants
ycoeff = mldivide (A,B);
ycoeff = ycoeff ’;

%calculate coefficiant for derivitives

ydlcoeff = [9 8 76 5 4 3 2 1 0].xycoeff;

ydlcoeff = ydlcoeff(l:end—1); %one order less after
taken derivitive

yd2coeff = [9%8 8%7 76 6«5 5x4 4%3 3%2 2 0 0].xycoeff

yd2coeff = yd2coeff(1:end—2);

yd3coeff = [9%8%7 8x7%6 Tx6x5 6x5x4 5x4%x3 4%3%2 3x2 0
0 0].xycoeff;

yd3coeff = yd3coeff(1l:end—3);

yddcoeff = [9x8x7*6 8xTx6x5 T+6+5x4 6x5x4%3 Hx4x3%2
4%3%x2 0 0 0 0].*xycoeff;

yddcoeff = yd4coeff (1:end—4);

hslow = 0.001;

t = 0:hslow:T;

y = polyval(ycoeff t);
% derivitives of vy
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ydl = polyval(ydlcoeff t);
yd2 = polyval(yd2coeff  t);
yd3 = polyval(yd3coeff  t);
yd4 = polyval(yd4coeff  t);

%final wvalue
yfinal = y(end)
yd1lfinal = ydl(end);
yd2final = yd2(end);
yd3final = yd3(end)
yd4final = yd4(end);

%plot the derivitives of y
figure (1) ;
subplot (2,2 ,1);
plot (t,ydl);
title(’ydl’);
subplot (2,2,2);
plot (t,yd2);
title (’yd27);
subplot (2,2,3);
plot (t,yd3);
title (’yd37);
subplot (2,2 ,4);
plot (t,yd4);
title(’yd4’);

%System constants

mL = 0.00003;

M= 0.277;
m= 0.005;
xa = 0.05;
va = 0.57;
xb = 0.58;
yb = 2.62;

ylbar = 0.61;
11 = 0.37; %old 0.22;



vyl = 0.61;
g = 9.81;

% System wvaribales
x = 0;

xdl =
xdl =
xd?2
xd3
xd4 =

Il
o oo oo

Gzl = 0.455;
x1dl = 0; %z1 dot
x1d2 = 0; %zl dot dot

lamdal = 0;

lamda2 = 0;

L1 = 0;

L1d1l = 0; %l1 dot
L1d2 = 0; %12 dot dot

T1 = zeros(1,length(y));

%Flatness calculation
for i=1:length(y)
x = y(i);

%calulate derivitives

xdl = yd1(i);
xd2 = yd2(i);
xd3 = yd3(i);
xd4 = yd4(i);

%caltulate the z1

x1 = 11%xxd2/g+x;



x1dl = 11%xd3/g+xdl;
x1d2 = 11xxd4/g+xd2;

L1 = sqrt((xl—xa)*(xl—xa)+(ylbar—ya)«(ylbar—ya));
L1dl = (xl—xa)*x1d1l/L1;
L1d2 = (—-L1d1xL1d1 + x1dl1xx1dl + (xl—xa)xx1d2)/L1;

A = [2x(x1l—xb) 2x(xl-xa);2%(ylbar—yb) 2x(ylbar—ya
)15
= [(m*xx1d24+g+Mx(x1—x)/11) g*(Mtm) ] ’;

lambdas mldivide (A,B);
lambda2 = lambdas (2) ;

lambdaEq(i,:) = lambdas’

lambdal = (2x%(ylbar—ya)*(m«x1d2 +g«Mx(x1-—x)/11) —
2% (x1—xa) *(mM) xg) /(4% (x1—xb) *x(ylbar—ya) ...
—4x(yl—yb)*(x1—xa));
lambda2c = (—2x(ylbar—yb)*(m*x1d2 +g+Mx*(x1—x)/11)
+ 2% (x1—xb) *(mM) xg) /(4% (x1—xb) *(ylbar—ya) ...
—4x(yl—yb) *(x1—xa));

lambdaCode(i,:) = [lambdal lambda2c];
T1(1,i) = mLxL1d2 + 2xlambda2xL1;

%save inital conditions for flatness

if i==1
FlatInit = [T1(1,1) L1]
x0 = [xstart 0 xstart 0 T1(1,1)]; %initial
conditions for crane
L01 = L1
end

end
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Tinit = T1(1,1); %intial value of the force in the
model

%plot the force and refance trajectory given from
flatness

figure (2);

subplot (2,1,1);

plot (t,T1);

title ('T’);

subplot (2,1,2);

plot (t,y);
title(’'ref’);

%to compare different calculation method of the
lambdas

figure (3) ;

subplot (2,1,1);

plot (t’ ,lambdaEq(:,1) ,t’,lambdaCode(:,1));

title (’lambda.1’);

subplot (2,1,2);

plot (t’,lambdaEq(:,2) ,t’,lambdaCode(:,2));

title (’lambda.2’);
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Appendix B

Source code of implemented
controller

B.1 Control algorithm

Listing of the control algorithm in source file CommandChris.c

// Full controll structure with feed forward

counter++; //update counter every time the thread runs
Consigne3=counter; // only used for plotting purpose

// run position and feed forward controller at every
20 ms

if (counter%20==0){

time = counterxh;

if (counter >1000) // reference trajectory only
defined for 1 s
time = 1.0;

uref = —(Lref(time) — LO1); // get length
reference of cable at time hxcounter

// time shift uref

uref_4 = uref_3;
uref_3 = uref_2;
uref_2 = uref_1;
uref_1 = uref;
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forceRef = Fref(time); // get the reference
force in cable

// update old forceRef
forceRef_4 = forceRef_3;
forceRef_3 = forceRef_2;
forceRef_2 = forceRef_1;
forceRef_1 = forceRef;

// Position control

epos = uref—PositionMoteur4;
uvref = 0.2357«xuvref_1 + 46.63xepos —31.68x%
epos_1;

//feed forward part

uvref_ff = —a3ffxff_1 —a2ff«ff_2 —alffxff_3 —
aOffxff_4 +b4ffxforceRef +b3ffxforceRef_1 +
b2ffxforceRef_2 4+ blffxforceRef_3 +bO0ffx
forceRef_4;

// update old feed forward output

ff 4 = ff_3;
ff 3 = ff_2;
ff2 = ff_1;

ff_1 = uvref_ff;

// add output of feed forward and position

control
uvref = uvref +uvref_ff;
epos_1 = epos;
uvref_1 = uvref;

Consigne2 = forceRef; // only used for plotting
purpose
Consigne3 = uref;// only used for plotting purpose
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//velocity control;

evel = uvref—VitesseMoteur4;
u = 0.9929%xu_1+0.01851xevel_1;
u_l = u;
evel_1 = evel;
//Saturation
if(u> 5.0){
u= 5.0;
}
else if (u<-5.0){
u = —5.0;
}

Consigned = u; // Consignej is feed to motor

B.2 Flatness and reference generation

Listing from source file LrefwInital.m

#include <math.h>
#include " fp.h”

// coefficients for referance trajectory and it’s

derivitives
static double xcoeff[10] =
{0.455,0,0,0,0,-13.23,44.1, -56.7,33.075, —7.35};
static double xdlcoeff[9] =
{0,0,0,0,-66.15,264.6, —396.9,264.6, —66.15};
static double xd2coeff[8] =
{0,0,0,—-264.6,1323,—-2381.4,1852.2,—-529.2};
static double xd3coeff[7] =
{0,0,-793.8,5292,—-11907,11113,—-3704.4};
static double xd4coeff[6] =
{0,—-1587.6,15876,—47628,55566,—22226};

61



// model parameters

static double mL = 0.00001;
static double M = 0.5;
static double m = 0.005;
static double xa = 0.05;
static double ya = 0.57;
static double xb = 0.58;
static double yb = 2.62;
static double ylbar = 0.61;
static double 11 = 0.37; //0.22;
static double yl = 0.61;
static double g = 9.81;

//static double LO1 = 0.4; //cable lengh a initial
posistion
// model variables

// gives the referance lenght of cable as a divations
from initial posistion to motor

double Lref(double time);

double Lref(double time)

{

double x = 0.
double xd1
double xd2
double xd3 =
double xd4 =

i // first derivitive

Il
o oo oo

double x1 = 0.0;
double x1d1 = 0.0;
double x1d2 = 0.0;

double lambdal =
double lambda2 =

o O
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double L1 = 0.0; // lenght of cabel contected
to motor

double L1d1 = 0.0;

double L1d2 = 0.0;

int i;

// calculate current value of z and it’s
derivitives
for (i=0;i<=9;i++)
x = x + xcoeff[i]*xpow(time, i);

for (i=0;i<=8;i++)
xdl = xd1 + xdlcoeff[i]*pow(time,i);

for (i=0;i<=T;i++)
xd2 = xd2 + xd2coeff[i]|*pow(time, i);

for (1=0;i<=6;i++)
xd3 = xd3 + xd3coeff[i]*xpow(time,i);

for (1=0;i<=b;i++)
xd4 = xd4 + xd4coeff[i]*pow(time,1);

//calculate z1 and it’s derivitives
xl = 11xxd2/g + x;

x1dl = 11%xd3/g + xd1;

x1d2 = 11%xd4/g + xd2;

//calculate L1
Ll = sqrt ((xl—xa)*(xl—xa) + (ylbar—ya)x(ylbar—
va));

return L1;

// gives the expected force in cable at the given

referance posistion
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double Fref(double time);
double Fref(double time){

double x = 0.0
double xd1 = 0.0; // first derivitive
double xd2 = 0.
double xd3 = 0

0

double xd4 =

double x1 = 0.0;
double x1d1 = 0.0;
double x1d2 = 0.0;

// double lambdal = 0.0;
double lambda2 = 0.0;

double L1 = 0.0; // lenght of cabel contected
to motor

double L1d1 = 0.0;

double L1d2 = 0.0;

int i;
// calculate current value of x and it’s
derivitives
for (i=0;i<=9;i++)
x = x + xcoeff[i]*pow(time,i);

for (i=0;i<=8;i++)
xdl = xd1 + xdlcoeff[i]|*pow(time, i);

for (1=0;i<=T7;i++)
xd2 = xd2 + xd2coeff[i]*pow(time,i);

for (i=0;i<=6;i++)
xd3 = xd3 + xd3coeff[i]*xpow(time,i);

for (i=0;i<=5;i++)
xd4 = xd4 + xd4coeff[i]|*pow(time, i);
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//calculate z1 and it’s derivitives
xl = 11%xd2/g + x;

x1dl = 11%xd3/g + xdl;

x1d2 = 11xxd4/g + xd2;

//calculate L1

Ll = sqrt ((xl—xa)*(xl—xa) + (ylbar—ya)=x(ylbar—
ya));

L1dl = (xl—xa)=*x1d1/L1;

L1d2 = (—L1d1xL1dl + x1dlxx1dl 4+ (xl-xa)*x1d2)
/L1

//lambdal = (2x(ylbar—ya)x(mxx1d2 + g+Mx(zl—1)
J11) — 2% (xl—za)x(mM)xg) /(4 (x1—zb)*(ylbar
—ya) — 4% (yl—yb)x(vl-za));

lambda2 = (—2x(ylbar—yb)x(mxx1d2 + g«Mx(xl—x)/
11) + 2x(x1—xb)*(mM)*g) /(4 (x1—xb) *(ylbar—
va) — 4x(yl-yb)*(xl—xa));

return (mLxL1d2 + 2xlambda2xL1);
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