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Chapter 1

Introduction

At the department for automatic control at “Ecole Polytechnique Fédérale

de Lausanne” a new crane structure called “Spider Crane” has been de-

signed. The “Spider Crane” is constructed so as to achieve fast movement

of the load with high precision. In a conventional crane, the mechanical

structure needs to be moved to change the position of the load. This puts

limitations on how fast the load can move. In the “Spider Crane” the me-

chanical structure is fixed. The positioning of the load is instead done by

pulling three cables which are connected to the cable that suspends the load.

This structure allows a much faster movement compared to a normal crane.

In a previous master thesis project a full dynamical model of the crane

structure (apart from the DC motors which controls the cables) was devel-

oped. In that project, a flatness based control scheme for positioning the

load (given a reference trajectory) was also developed. The controller was

designed under the assumption that the DC motors could deliver a perfect

torque. No particular care was taken in order to accurately model the DC

motor.

In this project the control of the crane and the control of the DC motors

will be separated. The main problem with the current motor is that its time

constant is very fast. This is a problem since the motion planning for the

crane load necessitate a good number of operations which imposes a slow

sampling time. The time constant of the motor is to fast with respect to

this sampling time.

The objective is to find a scheme which controls both the DC motors and

the crane, using multirate sampling technique, i.e. a fast sampling time to

handle the DC motor and a slow one for motion planning.
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Chapter 2

Crane model

The spider crane mechanical structure consists of four fixed pylons Fig. 2.1.

The three small pylons are all connected to the ring. The cable that is

connected to the tall pylon runs through the ring and suspends the load.

By adjusting the length of this cable the height of the load is controlled.

And by adjusting the length of the cables connected to the ring the position

of the load in the horizontal plane is controlled.

Every cable is connected to a DC motor, which controls the length of the

cable. By using this crane structure, it is possible to move the load without

moving the mechanical structure of the crane. A dynamical model, which

describes the whole crane structure (apart from the DC motors) has been

developed in a previous master thesis project[1]. The characteristics of this

model are

• The input to the system are the forces in the cables

• The output of the system is the position of the load (x, y, z) and the

height of the ring

• The system is flat

2.1 Simplified crane model

In order to answer the question: ”Is it possible to do localized control of

the DC motors, in order to control the crane?” it is not necessary to do

it on the whole crane structure. It is sufficient as a first step to do it on

a simplified model, with only one of the small crane pylons. Therefore a

simplified model has been developed using Lagrangian mechanics [2].

The reason for using Lagrangian mechanics instead of Newton’s mechanics

is that the flatness calculation in the next section will be easier.
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Figure 2.1: Model of the Spider Crane
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The following geometrical constraints for the cables are derived from Fig.

2.2.

(x1 − xB)2 + (y1 − yB)2 − l22 = 0 (2.1)

(x1 − xA)2 + (y1 − yA)2 − L2
1 = 0 (2.2)

(x1 − x)2 + (y1 − y)2 − l21 = 0 (2.3)

The total kinetic energy and potential energy of the system are

Ekin =
Mẋ2

2
+

Mẏ2

2
+

mẋ1
2

2
+

mẏ1
2

2
+

mLL̇1
2

2
(2.4)

Epot = gMy + gmy1 (2.5)

The Lagrangian is given by

L = Ekin − Epot (2.6)

The only external force is Tc which is applied to the cable of length L1 by

the motor.

The Lagrangian equations of motion are given by

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi
=

3
∑

j=1

λj
∂Cj

∂qi
Fext (2.7)

and qi is one of the components of q

q = (x, x1, y, y1, L1) (2.8)

Introducing (2.6),(2.1),(2.2) and (2.3) in (2.7) one get the equations of mo-

tions

Mẍ = −2λ3(x1 − x) (2.9)

mẍ1 = 2λ1(x1 − xB) + 2λ2(x1 − xA) + 2λ3(x1 − x) (2.10)

Mÿ = −gM − 2λ3(y1 − y) (2.11)

mÿ1 = −gm + 2λ1(y1 − yB) + 2λ2(y1 − yA) + 2λ2(y1 − y) (2.12)

mLL̈1 = −2λ2L1 + Tc (2.13)

The movement of the load is considered to be small in y in the experi-

mental setup, and the following assumptions are made

y ≈ ȳ which is constant ⇒ ẏ = 0, ÿ = 0. (2.14)
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Note that this assumption only makes the calculation a bit easier, and it is

possible to solve the problem without this simplification.

To get a system of differential equations that describes the behavior of

the system, one has to solve the above equations for ẍ and ẍ1. By using

2.14 together with (2.11) one gets

λ3 = −
gM

2l1
. (2.15)

Equations 2.15 and 2.9 are combined to get

ẍ =
g(x1 − x)

l1
(2.16)

Equations (2.10), (2.12) and (2.13) are combined and solved for ẍ1, λ1 andλ2.

This yields the following system













ẋ

ẍ

ẋ1

ẍ1













=













0 1 0 0
−g
l1

0 −g
l1

0

0 0 0 1

solve (2.10) (2.12) and (2.13)













·













x

ẋ

x1

ẋ1













(2.17)

2.2 Trajectory generation and flatness

The trajectory for the load is given as a position reference in cartesian

coordinates (x, y, z). This trajectory needs to be converted to corresponding

cable length and cable force, in order to have a useful reference for the control

of the DC motors. Due to the fact that the system is flat[1] it is possible to

do this.

Definition 1 A system ¯̇x = f(x̄, ū)) with k inputs ū and l states x̄ is flat

if there exists an output ȳ with the same dimension, and satisfying

• The components of y are independent

• x̄ and ū can be expressed as a function of ȳ and its n derivatives

x̄ = φ(y, . . . yn−1), ū = Γ(y, . . . yn−1) (2.18)

with φ and γ that satisfy φ̇ = f(φ, γ).

This means that given the output of the system (i.e. the position of the load

and the height of the ring), it is possible to obtain, without integrating a

differential equation, the length of cables, velocity of cables, acceleration of

cables and the corresponding forces in the cables.

9



2.2.1 Flatness calculation

Given the reference point (x, y) for the simplified model, the purpose is

to find the corresponding cable length (which will be the reference for the

position control of the motor), and the applied force in the cable. The same

assumption that y is constant as was the case for the crane model is also

made here.

Combining (2.15) with (2.10) and (2.12), one gets the following system

of equations

2(x1 − xB)λ1 + 2(x1 − xA)λ2 = mẍ1 + gM(x1 − x)/l1 (2.19)

2(y1 − yB)λ1 + 2(y1 − yA)λ2 = g(M + m) (2.20)

The unknown x1 is found if (2.15) is combined with the first equation in

(2.9).

x1 =
l1x

′′

g
+ x (2.21)

From (2.21) we also get

ẋ1 =
l1x

′′′

g
+ x′ (2.22)

ẍ1 =
l1x

′′′′

g
+ x′′ (2.23)

Now it is possible to solve the system (2.19-2.20) for λ1 and λ2.

In (2.9) one find that the input force to the system is

Tc = 2λ2L1 + mLL̈1 (2.24)

To solve this equation, an expression for L1 and L̈1 has to be found. L1

is solved using (2.2).

L1 =
√

(x1 − xA)2 + (y1 − yA)2 (2.25)

L̈1 in (2.24) is found by taking the the second derivative of (2.25) and

combining with (2.14)

L̈1 =
ẍ1

2 + (x1 − xA) − L̇1
2

L1
(2.26)

The reference position for the motor is therefore given by (2.25), and the

force in the cable is given by (2.24).
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Chapter 3

DC motor

3.1 Theoretical model

The model that describes the crane does not take the dynamics of the DC

motors into account. A way to improve the control of the crane system is

to take these dynamics into account. The model of the DC motor, which

is identified, consists of a DC motor with a pulley connected to the shaft.

This is due to the fact that one would like to control the length and velocity

of the cables, which is the same as the position and velocity of a point on

the edge of the pulley.

A simple model [3] of a DC motor that relates the applied voltage to the

velocity of the motor is illustrated in Fig. 3.1. This model is described by

the following differential equations

DC Motor

Iner-

tial 

Load J
-

+

+

-

R

L

u(t)

i(t)

Θ(t)

 

KfΘ(t)

τ(t)
torque

Viscuos friction

Figure 3.1: A simple model of a DC motor.

This system is described by the following differential equations

di

dt
= −

R

L
i(t) −

Km

L
θ̇(t) +

1

L
u(t) (3.1)

dθ̇

dt
= −

kf

J
θ̇(t) +

Km

J
i(t) (3.2)
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where R = resistance, L = inductance, Km and Kf are motor constants, θ̇

the velocity of the pulley, I = current, U = applied voltage.

The differential equations above corresponds to a second order transfer

function,

G(s) =
K

(s + Te)(s + Tmec)
(3.3)

which is the transfer function from applied voltage to velocity of the ”pul-

ley”/cable. K is related to the dc-gain, Te is the electrical time constant

and Tmec is the mechanical time constant.

3.2 Experiment and estimation

The inertial load on the DC motors will change when the load is moved.

This is due to the fact that the forces in the cables are dependent on the

position of the load. The two extreme cases for the inertial load on the DC

motor are

• Weight of load is not connected to the DC motor

• The whole weight of the load is connected to one DC motor.

The small inertial load corresponds to the pulley with a mass of 0.095 g. As

a coarse estimate of the inertial load when the whole weight of the load is

connected to the motor a pulley with a mass of 0.53 g is used.

A step response experiment is done for the two different cases. To avoid

non-linearity’s/artifacts, the step response experiment is done with a bias

of 1 V. Thus the step input is 1-3 V.

The mechanical time constant of the motor without the pulley mounted

is 6 ms [4]. As a rule of thumb the sampling period should be about 10-20

times faster than the dominating time constant of the system [5]. This gives

an upper bound on the sampling period at 0.6 ms. Due to limitations in

the software interface that controls the crane system, it is not possible to

sample faster than 1 ms. This means that the measurements of the motor

might be aliased.

It is desirable to have a simple model that describes the DC motor.

Therefore a first order model is also estimated apart from the expected

second order model. These two continuous time models are forced to fit the

discreet time measurement data. The first order model (3.4) is fitted to the

experimental step response data that’s been filtered through a low pass filter

with a cutoff frequency of 30 Hz to remove the measurement noise.

G(s) =
β

s + α
. (3.4)
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The coefficients α and β are estimated with the ”Least Squares Method”.

Since the experiment data are sampled, equation (3.4) is converted to a

discrete-time version. By using Tustin’s approximation on the transfer func-

tion (3.4) one gets

G(z) =
Y (z)

U(z)
=

α
2
h

z−1
z+1 + β

(3.5)

This discrete transfer-function is converted to a difference equation between

input u(k) and output y(k)

(

α
2
h

z−1
z+1 + β

)

y(k) = αu(k), (3.6)

and after some manipulations

y(k + 1) − y(k) +
hβ

2
y(k + 1) +

hβ

2
y(k) =

hα

2
u(k) +

hα

2
u(k + 1). (3.7)

introduce a = hβ
2 , b = hα

2 and

ŷ(k) = y(k + 1) − y(k) (3.8)

ū(k) = u(k + 1) + u(k) (3.9)

ȳ(k) = y(k + 1) + y(k) (3.10)

then (3.7) becomes

ŷ(k) = aȳ(k) + bū(k) (3.11)

This equation is linear and the coefficients are estimated with the least

squares method. The regressor vector R and states θ are

θ =
[

a b
]

and R =
[

ȳ(k) ū(k)
]T

(3.12)

θ̂ =
(

RT R
)

−1
RT ŷ (3.13)

Thus a and b are estimated from 3.13, and thus one gets also a estimate of

α and β.

The coefficients for the second order model are estimated from the same

step response data. Instead of doing the least squares estimation ”by hand”

(as for the first order model), Matlab System Identification Toolbox is used.

Since the model structure is known 3.3 the ”Process Model” mode in ’System

Identification Toolbox’ has been used.
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Figure 3.2: Step response for small inertia and estimated models. First

order model green, second order model red, measurement blue.

3.2.1 Estimation Results

In Fig. 3.3 and Fig. 3.2 it is seen that both the first and second order

models capture the dc-gain for the system. The second order model captures

the rise time of the system much better. A close comparison between the

characteristics of the models and the real experiment data is seen in Table.

3.2.1

The estimated transfer functions for the small inertial load are

Gsmall(s) =
29.62

s + 48.41
(3.14)

Gsmall(s) =
10240

(s2 + 280.9s + 16880)
(3.15)

(3.16)

The estimated transfer functions for the big inertial load are

Gbig(s) =
14.89

s + 23.54
(3.17)

Gbig(s) =
3153

(s2 + 174.2s + 5054)
(3.18)
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Figure 3.3: Step response for big inertia and estimated models. First order

model green, second order model red, measurement blue.

Model dcgain rise time (ms)

Small Inertia 0.61 30

first order model 0.61 45

2:e order model 0.61 0.29

Big Inertia 0.62 62

first order model 0.63 0.93

2:e order model 0.62 0.63

3.3 Discrete-time model

At the beginning of the project it was considered to be advantageous to

estimate a discrete-time model for the motor. Since this model has been used

in the ”ramp” design approach, a short description of how it was estimated

will follow.

The same step response data which have been used for the estimation

of the continuous-time model have been used here as well. The discrete-

time model was estimated from the step response with the aid of Matlab’s

System Identifications Toolbox. Different type of ARX- and state space

model structures was tried. The estimated models were chosen according to

the following criteria

15



• dcgain

• rise-time

• model is minimum-phase

• low order model preferred

The model that gave the best correspondence with the real data was an

ARX221 type structure for both the small and big inertia models.

Gsmall(z) =
0.2819

z2 − 1.113z + 0.1594
(3.19)

Gbig(z) =
0.0168

z2 − 1.09z + 0.1174
(3.20)

Model dcgain risetime (ms)

Gsmall(z) 0.61 38

Gbig(z) 0.62 70

Remark: The procedure which uses the same data for both estimation

and validation of the model structures is not the correct approach for Sys-

tem Identification. Also when one estimates the parameters of an ARX

structure, the excitation signal should preferably be a PRBS signal which,

in theory, fully excites the system. Experiments were also done with differ-

ent PRBS signals, but it was not possible to excite the system sufficiently

well at low frequencies. This meant that these models where worse than

the ”wrongfully” identified discrete-time models above. Even though the

discrete-time models are not totally correct, they can be used to show the

concepts and problems with the ”ramp” control approach.

3.4 Nominal model

The load on the DC motor changes when the load moves. Therefore a

nominal model is estimated from the two extreme cases mentioned before.

The nominal model is taken to be the mean of the two extreme cases.

The transfer function that corresponds to the nominal model is estimated

from the Bode plot. It is assumed that the nominal model has the same

transfer function structure as (3.3). This transfer function can be converted

to the frequency domain by inserting s = jω in (3.3)

G(jω) =
b0

−ω2 + a1jω + a2
=

W (jω)

U(jω)
(3.21)
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where W (jω) is the output of the system and U(jω) = 1. Given the mag-

nitude and phase in the bode plot one gets

W (jω) = magnitude · ej·phase (3.22)

By rearranging (3.21) one gets

b0 = −ω2W (jω) + a1jωW (jω) + a2W (jω). (3.23)

This equation is linear, the coefficients can be estimated with the ”Least

Squares Method” (3.13).

The nominal transfer function is

Gnom(s) =
6699

s2 + 232.6s + 1096
(3.24)

The same approach is used for the discrete-time model, and the resulting

nominal transfer function is

Gnom(z) =
0.2261z + 0.0001477

z2 − 1.103z + 0.1402
(3.25)
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Figure 3.4: Bode plot of continuous-time model of the DC motor
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18



Chapter 4

Control Strategy

The objective is to track a position reference for the cable, which is the same

as the position of the motor. This reference signal for the motor is given by

flatness conversion of the position reference of the load. It takes about 10-20

ms to do the flatness calculation for the whole crane system. This means

that it is not possible to do position control for the whole system faster than

this. One way to overcome this problem is to separate the control of the

crane and the DC motors. By doing this, it is possible to sample the DC

motors faster so as to satisfy the Shannon’s sampling theorem.

Since the reference is only updated every 20 ms, one has to interpolate

the reference in between these time instants in order to be able to use the

fast sampling period for the DC motors. By using linear interpolation, a

”smoother” acceleration of the load is obtained than what is possible for a

step. Also the risk of inducing oscillations of the load decreases compared

to ”step” interpolation. Thus the controller to be designed should fulfill the

following

• Track a ramp reference without a stationary error after 5-10 ms

• Reject load disturbances

4.1 Model match design

In order to track a ramp without any stationary error, the model Hm(z)

must fulfill Hm(1) = 1. For a ramp reference Yramp(z), the relation between
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Yramp(z) and the output of the system Y (z) is

Yramp(z)−Y (z) = Yramp(z)−Hm(z)Yc(z) = Yramp(1−Hm(z)) =
hz

(z − 1)2
(1−Hm(z))

(4.1)

This relation will only go to zero if [6]

n
∑

i=1

1

1 − pi
=

m
∑

j=1

1

1 − zj
(4.2)

where pi are the zeros and zj are the poles of Hm(z).

The transfer function (3.5) is given between the voltage and the velocity.

Since the control is done on the position, an integrator is added to (3.5).

Gnom(z) =
0.0002261z + 1.477 · 10−7

z3 − 2.103z2 + 1.243z − 0.1402
. (4.3)

It is only possible to match H(z) = B(z)/A(z) to Hm(z) = Bm(z)/Am(z)

if the following conditions are fulfilled[7]

1. F (z) need to have all poles inside the unit circle.

2. Deg Am(z)-degBm(z) ≥ Deg Am(z)-degB(z)

3. All zeros of B(z) outside the unit circle are retained in Bm(z)

A possible Hm(z) that fulfills these conditions are

Hm(z) =
z − p1

(z − z1)(z − z2)(z − z3)
(4.4)

To find a suitable Hm(z) the poles were chosen to lie inside the unit

circle and the pole was chosen so that Hm(z) fulfills the condition (4.2) for

tracking of a ramp. Through trial and error (so as to obtain a good Hm(z)

in order to track a ramp), suitable values for the poles were found.

Hm(z) =
z − 0.8357

(z − 0.1)(z − 0.3917)(z − 0.7)
(4.5)

As can be seen in Fig. 4.1 the tracking error for Hm(s) is less than 0.1 mm

after just 20. But a drawback with Hm(z) can be seen in the bode plot Fig.

4.2. At high frequencies there is strong amplification. Another drawback is

that the tracking error will increase slowly with time (see Fig. 4.3). But

since the increase is less than 0.1 mm after 10 s, the model was considered

to be good enough to be used for a model matching design approach.

The model matching problem is solved for a second degree of freedom

control structure Fig. 4.4.
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Figure 4.4: Second degree of freedom control structure used for the model

matching problem

The algorithm [7] below is used to solve the model matching problem

The objective is to find two proper controllers C1(z) = L(z)/D(z) and

C2(z) = M(z)/D(z).

First
Hm(z)

B(z)
=

Bm(z)

Am(z)B(z)
:=

B̄m(z)

Ām(z)
(4.6)

this is transformed to

Hm(z) =
B̄m(z)B(z)

Ām(z)
=

L(z)B(z)

D(z)A(z) + M(z)B(z)
(4.7)

in order for C2(z) to be proper (4.7) rewritten to

Hm(z) =
B̄m(z)Â(z)B(z)

Ām(z)Â(z)
=

L(z)B(z)

D(z)A(z) + M(z)B(z)
(4.8)
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Figure 4.5: Left upper: Tracking of the green reference signal, Right up-

per: Tracking error, Left bottom: Control signal fed to the motor which is

saturated at pm5 V, Right bottom: Control signal without saturation

where Â(z) is a arbitrary Hurwitz polynomial such that the degree of Ā(z)Â(z)

is 2n − 1, where n is the degree of the denominator of H(z).

In this case, n = 3 and since Ā(z) has degree a degree of 4, Â(z) = (z+0.3)

is introduce to fulfill the condition above. Set L(z) = Ā(z)Â(z), D(z) and

M(z) is solved from the Diophantine equation in the denominator of (4.8)

D(z)A(z) + M(z)B(z) = Â(z)Ā(z) (4.9)

The controllers are

C1 =
4.423 ∗ 104z2 − 5.023 ∗ 104z + 1.109 ∗ 104

z2 + 0.6178z + 0.003992
(4.10)

C2 =
3.463 ∗ 104z2 − 3.37 ∗ 104z + 4155

z2 + 0.6178z + 0.003992
. (4.11)

4.1.1 Simulation

The suggested control structure is simulated in Matlab, with a ramp that

has a slope of 0.1 m per second. The effect of a load disturbance of 5 Volts

and a measurement noise of 1 mm is studied.

As can be seen in Fig. 4.5 the tracking of the reference signal is relatively

good just after 10 ms. And in the Fig. 4.6 one sees that the controller rejects
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the load disturbance (in the shape of a bump that is added between 2 and

2.5 s).

When a measurement noise of 1 mm is added, the control signal will blow

up and saturate Fig. 4.7. The reason for this behavior is that the controller

C2(z) will amplify high frequencies Fig. 4.8.

The problem with the ramp approach with the selected model (4.4) is

that high frequencies is amplified in order to track the ramp within 10-20

ms. And since the open-loop model of the DC motor does not have a high

gain at high frequencies, the controller C2(z) will have high gain for high

frequencies in order to match H(z) to Hm(z). This makes the controller

extremely sensitive to noise, as can be seen in Fig. 4.7. The control signal

blows up which makes the controller saturate (±5 Volt). Therefore this

control approach has not been implemented on the real system.
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Chapter 5

Reduced bandwidth design

The objective is to track a position reference for the cable (i.e. this is the

same as controlling the position of the motor). From the flatness calcula-

tions, one gets the reference position of the cable, but it is also possible to

get the force which is applied to the cable in order to move the load. This

means that one also knows the influence of the load on the motor at every

time instant along the trajectory. Therefore one can see the crane as a dis-

turbance which acts on the motor. If one could find a transfer function that

describes how the force in the cable influences the velocity of the motor,

it would be possible to use a feed-forward controller to compensate for the

crane.

The force in the cable will act as a torque Tcrane on the motor. If this

torque is added to the theoretical model (3.1) it is possible to get a transfer

function that describes how the crane acts on the motor.

di

dt
= −

R

L
i(t) −

Km

L
θ̇(t) +

1

L
u(t) (5.1)

dθ̇

dt
= −

kf

J
θ̇(t) +

Km

J
i(t) +

Tcrane

J
(5.2)

The Laplace transform of this is

sI(s) = −
R

L
I(s) −

Km

L
θ̇(s) +

1

L
U(s) (5.3)

sθ̇(s) = −
kf

J
θ̇(s) +

km

J
I(s) +

Tcrane

J
(5.4)

If the first equation in (5.3) is inserted in the second one

sθ̇(s) = −
kf

J
θ̇(s) +

km

J(sL + R)
(U(s) − kmθ̇(s)) +

Tcrane

J
(5.5)

In (5.5) there are two different cases U(s) = 0 and Tcrane = 0.
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U(s) = 0

sθ̇(s) +
kf

J
θ̇(s) + km

km

J(sL + R)
(θ̇(s)) =

Tcrane

J
(5.6)

This is rewritten as

θ̇(s) =
(s + R/L)

s2 +
(

R
L

+
kf

J

)

s + 1
JL

(kfR + k2
m)

Tcrane (5.7)

Tcrane = 0 is inserted in (5.5) and after some manipulations one get

θ̇(s) =
km

JL

s2 +
(

R
L

+
kf

J

)

s + 1
JL

(kfR + k2
m)

U (5.8)

This equation has the same structure as the model identified (3.3) of the

DC motor. Thus the coefficients in (5.8) are known. This means that the

coefficients of the denumerator in (5.7) are also known, since it has the same

denumerator as (5.8). And the relation R/L in the denominator of (5.7) is

also known, if one uses the values of R and L form the data sheet of the

motor (ref to data sheet here).

θ̇(s) =
6699

s2 + 232.6s + 1096
U (5.9)

θ̇(s) =
(s + 6280)

s2 + 232.6s + 1096
Tcrane (5.10)

Where the torque Tcrane = rpully · Fcrane. This means that it is possible

to use a feed-forward controller to compensate for the crane effect on the

motor, and a feedback position controller to control the length of the cables.

5.1 Position control

It is hard to do a good position controller directly on the motor in the fast

time scale (1 ms). One of the problem in doing position control directly on

the motor is that it is easy to get the motor to rattle. This reduces the life

of the motor, and in this case it would probably induce oscillations of the

load. Another problem is that it is not possible to have a position controller

which has a faster sampling time than the one needed to do the flatness

calculations. The minimum sampling period for the flatness calculation is

about 20 ms for the full crane system. The rise time of the motor is about

37 ms for the nominal model. Since one should sample the motor at about

4 -10 times the rise time [5], a sampling time of 20 ms is too large. This
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means that the motor has to be made slower. This can be done buy using

the following cascade control structure see Fig 5.7.

A way to artificially make the motor slower is to do velocity control with a

sampling period of 1 ms that reduces the bandwidth (equivalent to a longer

rise time). In order to have a sampling period of 20 ms for the position

controller, the rise time of the ’slow’ motor should be about 90-100 ms. The

velocity controller is designed with loop-shaping using the ’Siso Toolbox’

interface. The desired characteristic of the ”new” slow motor, are

• A rise time of about 90-100 ms.

• The dc-gain of the closed-loop system should be around 0.6, which is

the dc-gain of the open-loop system.

The designed controller has the following transfer function

Cvel(s) =
2.6

0.14s + 1
(5.11)

This gives the following transfer function for the closed-loop system

Gslow(s) =
1.244 ∗ 105

s3 + 239.8s2 + 1262s + 2.027 ∗ 105
(5.12)

which is the new slow motor.

Parameter Value

Risetime 95 ms

dcgain 0.61

bandwidth 3.62 Hz

The design criteria for the position controller are based on the dynamics

of the crane. The time constant of the crane is about 0.9 s, this implies that

the rise time for the position control of the motor should be about 100 ms.

The controller is designed with the following criteria in mind

• The rise time for a step should be about 100 ms

• The overshoot should be small (less than 10 %)

• Reject a bump disturbance
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The position controller is designed with a combination of loop shaping

and root locus design using the ”Siso Tool” in Matlab’s control system tool-

box. The transfer function of the position controller is

Cpos(s) =
46.63s + 14142

s + 72.27
(5.13)

The step response in of the closed loop-system Fig. 5.3 is fast with a 103

ms rise time, which is close to specification, and the overshoot is smaller

then the specified 10 %. And in Fig. 5.4 one sees that the closed-loop

system has a high gain margin and phase margin, which means that the

closed loop system is robust to uncertainties in the model. The controller is

also able to reject a ’bump’ disturbance see Fig. 5.5. In Fig. 5.6 one sees

that measurement noise with a amplitude of 1 mm will be amplified in the

closed-loop system, and the tracking error will be quite big.The only good

thing is that the control signal does not blow up and saturate the motor.

5.1.1 Feed forward controller

The full control scheme Fig 5.7 consist of a flatness block that gives the

reference position of the cable/motor and the corresponding force in the

cable. The above mentioned cascade structure is used for position control,

and a feed-forward part. Since the crane acts as a disturbance on the velocity

of the motor, one realizes from Fig 5.7 that the following condition has to
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Tref

Lref

Lref u

Tcrane

L

L

Figure 5.7: Control scheme. Lref is the same as θ

be fulfilled for the feed-forward Cff (s) part to be able to compensate for

the crane disturbance.

Tref (s)Cff (s)Cvel(s)Gnom(s) + Tref (s)rpullyF (s) = 0 (5.14)
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where rpulley has been added to convert the force Tref to a torque on the

motor since the transfer function F (s) (5.10) is a transfer function from

torque to velocity.This gives

Cff (s) = −
F (s)

Cvel(s)Gnom(s)
(5.15)

Cff (s) =
−0.0035s4 − 22.83s3 − 5314s2 − 2.77 · 105s − 1.721 · 106

1.742 · 104s2 + 4.052 · 106s + 1.909 · 108
(5.16)

For the cascade position controller to track a reference signal perfectly,

one normally inverts the closed-loop system. In this case, it is not necessary

to do this, since the closed-loop system has the shape of a low-pass filter

Fig. 5.4, which means that the slow varying reference signal will just pass

through.
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Chapter 6

Simulation

The suggested control structure is set up with ”Simulink” in Matlab. The

flatness block and the model of the crane are implemented as S-Functions.

The crane model needs the force in the cable as an input. The input force

can be found by feeding the signal L̇ trough rpulley/F (s), since F (s) is the

transfer function from the torque applied on motor by the crane to the

velocity of the motor L̇. (The rpulley in the numerator is for converting the

torque of the motor to the corresponding cable force). From Fig 5.7 an

expression for the Fcable is found.

Fcable = [(1 + Cvel(s)Gnom(s) + Cpos(s)Cvel(s)Gnom(s)/s)L̇

−(Tref (s)Cff (s) + LrefCpos(s))Cvel(s)Gnom(s)]
rpulley

F (s)
(6.1)

The force that is fed to the control structure is just the output of the

crane model. Since all transfer functions in Simulink have to be causal for

the simulation to work , extra poles must be added to the feed-forward

controller. This is done by adding two poles at at −250 which are faster

than the fastest of (5.16). This gives the new feed forward controller

Cff (s) =
−0.01382s4 − 90.80s3 − 2.098 · 104s2 − 1.096 · 106s − 6.93 · 106

s4 + 757.6s3 + 2.018s2 + 2.175 · 107s + 7.536·8
(6.2)

The same is also done for 1/F (s) where an additional pole at −7000 is added.

The setup for the simulation of the crane system was according to the

simplified crane model. The initial position of the load and other physical

properties of the system are given in Table 6
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Figure 6.1: Simulation setup

Parameter value unit

xa 0.05 m

ya 0.57 m

xb 0.58 m

yb 2.62 m

ȳ1 0.61 m

y1 0.61 m

l1 0.37 m

g 9.82 m/s2

M 0.277 kg

m 0.005 kg

mL 3 · 10−6 kgm2

As a crude estimate of mL the inertia of the pulley is used.

In order to see whether the suggested control scheme works, one has to

move the load quite fast. Otherwise, it is not possible to see the effect of

the flatness part, since the pulling point and the load will follow each other.

In the experiment, the position of the load is moved 10 cm in 1 s, according

to the trajectory in Fig. 6.2.
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6.1 Results

Due to problems with the initial state of the simulation model, it has not

been possible to do a full simulation where the interaction between the motor

and the crane model works. The problem is that the transfer function that

is supposed to give the input force to the crane model does not give the

correct output when the motor and crane model are connected together,

and it is also very sensitive to the initial condition of the whole model.

Therefore the Tref given by the flatness has been used as the input to the

crane model during the simulation to simulate the effect of the crane system

on the motor.

In the right plot in Fig. 6.3, one sees that the position of the load follows

the trajectory perfectly given the corresponding input force from the flatness

calculations.

The plots in Fig. 6.4 show the reference trajectory for the cable and how

well the motor tracks this trajectory. The physical interpretation of this

trajectory is that the cable will accelerate fast at the beginning. This means

that the position of the load will fall behind the position of “pulling point”

(x1, y1) in Fig 6.4. Therefore the cable is “slowed down” which is the same

as relaxing the cable a bit, in order for the load to “catch up”. This is the

“dip” at 0.6 seconds in the figure. Then when the load has “caught up”

with the pulling point, the cable accelerates again in order to stop the load

at the desired position. Also note that the movement of cable will lag about

0.1 s behind the reference trajectory.
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Chapter 7

Implementation

The software interface, which is used to control the crane model, is a combi-

nation of a LabVeiw interface which runs a real-time kernel. In the current

setup of the LabView interface, it is only possible to have one thread for

which the sampling time can be set arbitrary above 0.5 ms. Due to this, it

is not possible to have one thread for the velocity controller with a sampling

period of 1 ms and another one for the flatness calculation and position

controller running at 20 ms. Therefore the whole control algorithm is im-

plemented in only one thread running at 1 ms. The slow sampling rate used

for the position controller is just implemented to run once for every 20 runs

of the fast 1 ms thread.

7.1 Experiment on the crane model

The experimental setup of the crane system was done according to the sim-

plified crane model. All parameters and the reference trajectory were the

same as in the simulation part.

7.1.1 Results

With the designed control scheme, it is possible to move the load along the

given trajectory. Fig. 7.1 shows the reference trajectory for the cable given

by the flatness block. Note, that the results are very similar to the results

of the simulation.

The final positioning error of the load is about 0.5 cm. This error is

probably mainly due to the fact that all parameters in the model are not

correctly identified, and that the model is too simple. But a another small

contributing fact may be the small stationary error for the cable position

also seen in Fig 7.1. When the load arrives at it is destination it will oscillate
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a bit. The main factor behind this is that the model of the system is too

simple.
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Chapter 8

Conclusion

This master thesis project has resulted in the identification of two different

models for the DC motors which are controlling the crane. This resulted in

(i) a continuous-time version that describes the dynamics of the DC motor

well, and (ii) a discrete-time version which was not that good. The main

problem with the identification of the model for the motors was that the

motors were very fast. This meant that the software interfaced connected

to the motors could not sample fast enough, without inducing aliasing of the

measurement data. This meant that the identified models were not totally

reliable, and also that it would be hard to control the motors.

Using the continuous-time model of the DC motor, it was possible to

design a control scheme based on flatness together with a cascade position

controller with feed-forward. Due to time limitations, it has not been pos-

sible to implement the localized controller with the full scale crane system.

The main difference between the full-scale system and the simple model is

that flatness calculations are more complex. In the full-crane system, one

can see that the DC motors run independently of each other. This means

that it is reasonable to assume that it is possible to use localized control

scheme for the full-crane model as well. The main difference would be that

the feed-forward term that compensates for the crane behavior on the motors

would be more complicated.

For the discrete-time model, a control approach based on ramp tracking

(within the 20 ms it takes for the flatness reference to be updated) was tried.

The designed controller needed to be very aggressive, in order to track the

ramp reference within 20 ms. Due to the characteristics of the model of the

motor, the controller needed to amplify high frequencies a lot. This leads

to a controller that did not work in the presence of measurement noise.
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Chapter 9

Discussion

The designed localized controller worked quite well for the simple model. No

problems with noise have been noticed in the real experiment. But, since

the simulations of the motor showed that the control structure was a bit

sensitive to noise, this might be something one can improve upon. Also,

it would be good to do a controller which is a bit faster compared to the

current one. This might reduce the time delay seen in the simulations and

in the experiment Fig. 7.1.

Since the flatness calculation also gives the reference velocity for the

cable, it might be a good idea to implement a controller which uses both

the position and the velocity as reference signals. In my view this should

give a controller which has the ability to control the cables better.

The concept of taking the nominal model of the motor as the mean of the

two extreme cases (only pulley connected or the full load connected to motor)

is not totally correct. A better approach would have been to identify one

model for the motor with only the pulley connected, since the effect of the

load is canceled by the feed forward term in the controller for the reduced

bandwidth design.

At the moment it is not possible to run two different control threads

together with the LabView interface. This is something that has to be

addressed in order to implement the proposed control scheme for the whole

crane, which has one fast velocity controller at 1 ms and then a slow position

controller.
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Appendix A

Matlab code for simulation

A.1 Simplified crane model

Listing from source file cranemodelwL.m

function [ sys , x0 , s t r , t s ] = cranemodel ( t , x , u , flag , x0 ,mL

,M,m, xa , ya , xb , yb , y1bar , l1 , y1 , g )

% Sta t e space model o f s imp l i f y e d sp iderc rane

% x = (x , dx/dt , x1 , dx1/ dt )

%Parameters

%mL,M, m, xa , ya , xb , yb , y1bar , l 1 = 0.22 , y1 = 0.61 ,

g = 9.81

switch flag ,

%%%%%%%%%%%%%%%%%%

% I n i t i a l i z a t i o n %

%%%%%%%%%%%%%%%%%%

case 0 ,

[ sys , x0 , s t r , t s ]= m d l I n i t i a l i z e S i z e s ( x0 ) ;

%%%%%%%%%%%%%%%

% Der i v a t i v e s %

%%%%%%%%%%%%%%%

case 1 ,
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sys=mdlDer ivat ives ( t , x , u ,mL,M,m, xa , ya , xb , yb , y1bar ,

l1 , y1 , g ) ;

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3 ,

sys=mdlOutputs ( t , x , u ,mL,M,m, xa , ya , xb , yb , y1bar , l1 ,

y1 , g ) ;

%%%%%%%%%%%%%%%%%%%

% Unhandled f l a g s %

%%%%%%%%%%%%%%%%%%%

case { 2 , 4 , 9 } ,

sys = [ ] ;

%%%%%%%%%%%%%%%%%%%%

% Unexpected f l a g s %

%%%%%%%%%%%%%%%%%%%%

otherwi se

error ( [ ’ Unhandled f l a g = ’ ,num2str( f lag ) ] ) ;

end

% end cs func

%

%=====================================================

% md l I n i t i a l i z e S i z e s

% Return the s i z e s , i n i t i a l cond i t ions , and sample

t imes f o r

% the S−f unc t i on .

%=====================================================

%

function [ sys , x0 , s t r , t s ]= m d l I n i t i a l i z e S i z e s ( x0 )

s i z e s = s ims i z e s ;

s i z e s . NumContStates = 6 ;

s i z e s . NumDiscStates = 0 ;

s i z e s . NumOutputs = 6 ;

s i z e s . NumInputs = 1 ;
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s i z e s . DirFeedthrough = 1 ;

s i z e s . NumSampleTimes = 1 ;

sys = s ims i z e s ( s i z e s ) ;

x0 = [ x0 0 . 3 5 2 3 ] ;

s t r = [ ] ;

t s = [ 0 0 ] ;

% end md l I n i t i a l i z e S i z e s

%

%=====================================================

% mdlDer i va t i ve s

% Return the d e r i v a t i v e s f o r the cont inuous s t a t e s .

%=====================================================

%

function sys=mdlDer ivat ives ( t , x , u ,mL,M,m, xa , ya , xb , yb ,

y1bar , l1 , y1 , g )

%s t a t e s

sx = x (1) ;

sxd = x (2) ;

sx1 = x (3) ;

sx1d = x (4) ;

L1 = sqrt ( ( sx1−xa ) ∗( sx1−xa )+(y1bar−ya ) ∗( y1bar−ya ) ) ;

L1d = ( sx1−xa ) ∗ sx1d/L1 ;

T1 = u ; %input f o r c e

A = [m −2∗(sx1−xb ) −2∗(sx1−xa ) ; . . .

0 2∗( y1−yb ) 2∗( y1−ya ) ; . . .

mL∗( sx1−xa ) /L1 0 2∗L1 ] ;

B = [−g∗M∗( sx1−sx ) / l 1 ; g∗m+g∗M; T1−mL∗( sx1d∗ sx1d−L1d∗

L1d) /L1 ] ;

%so l v e Ax=B;

par = mldiv ide (A,B) ;
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sx1dd = par (1 ) ;

lambda1 = par (2 ) ;

lambda2 = par (3 ) ;

sxdd = g ∗( sx1−sx ) / l 1 ;

sys = [ sxd sxdd sx1d sx1dd 0 0 ] ;

% end md lDer i va t i ve s

%

%===================================================

% mdlOutputs

% Return the b l o c k ou tpu t s .

%===================================================

%

function sys=mdlOutputs ( t , x , u ,mL,M,m, xa , ya , xb , yb , y1bar

, l1 , y1 , g )

sx = x (1) ;

sxd = x (2) ;

sx1 = x (3) ;

sx1d = x (4) ;

L1 = sqrt ( ( sx1−xa ) ∗( sx1−xa )+(y1bar−ya ) ∗( y1bar−ya ) ) ;

L1d = ( sx1−xa ) ∗ sx1d/L1 ;

T2 = u ;

A = [m −2∗(sx1−xb ) −2∗(sx1−xa ) ; . . .

0 2∗( y1−yb ) 2∗( y1−ya ) ; . . .

mL∗( sx1−xa ) /L1 0 2∗L1 ] ;

B = [−g∗M∗( sx1−sx ) / l 1 ; g∗m+g∗M; T2−mL∗( sx1d∗ sx1d−L1d∗

L1d) /L1 ] ;

%so l v e Ax=B;

par = mldiv ide (A,B) ;
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sx1dd = par (1 ) ;

lambda1 = par (2 ) ;

lambda2 = par (3 ) ;

sxdd = g ∗( sx1−sx ) / l 1 ;

%only used f o r s imu la t i on purpurs

%update T2motor and L1

L1d2 = (−L1d∗L1d + sx1d∗ sx1d + ( sx1−xa ) ∗ sx1dd ) /L1 ;

T2motor = mL∗L1d2 + 2∗ lambda2∗L1 ;

sys = [ sx sxd sx1 sx1d T2motor L1 ] ;

% end mdlOutputs

A.2 Flatness calculation

Listing from source file flatnesswLrefcont.m

function [ sys , x0 , s t r , t s ] = f l a t t n e s s ( t , x , u , flag , Tinit ,

mL,M,m, xa , ya , xb , . . .

yb , y1bar , l1 , y1 , g )

%S−f unc t i on f o r con t ino iu s time f l a t n e s s c a l c u l a t i o n

o f r e f e rance f o r

%s imp l i f z e d crane model

%The output i s the l e n gh t r e f e rance o f c a b l e and the

f o r c e in the ca b l e

%The input s i g n a l are u and i t ’ s four f i r s t d e r i v i t v e s

%Parameters

%mL,M, m, xa , ya , xb , yb , y1bar , l 1 = 0.22 , y1 = 0.61 ,

g = 9.81

switch flag ,

%%%%%%%%%%%%%%%%%%

% I n i t i a l i z a t i o n %

%%%%%%%%%%%%%%%%%%

case 0 ,

[ sys , x0 , s t r , t s ]= m d l I n i t i a l i z e S i z e s ( T in i t ) ;
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%%%%%%%%%%%%%%%

% Der i v a t i v e s %

%%%%%%%%%%%%%%%

case 1 ,

sys=mdlDer ivat ives ( t , x , u ,mL,M,m, xa , ya , xb , yb , y1bar ,

l1 , y1 , g ) ;

%%%%%%%%%%

% Update %

%%%%%%%%%%

case 2 ,

sys=mdlUpdate ( t , x , u ,mL,M,m, xa , ya , xb , yb , y1bar , l1 , y1

, g ) ;

%%%%%%%%%%%

% Outputs %

%%%%%%%%%%%

case 3 ,

sys=mdlOutputs ( t , x , u ,mL,M,m, xa , ya , xb , yb , y1bar , l1 ,

y1 , g ) ;

%%%%%%%%%%%%%%%%%%%%%%%

% GetTimeOfNextVarHit %

%%%%%%%%%%%%%%%%%%%%%%%

case 4 ,

sys=mdlGetTimeOfNextVarHit ( t , x , u ) ;

%%%%%%%%%%%%%

% Terminate %

%%%%%%%%%%%%%

case 9 ,

sys=mdlTerminate ( t , x , u ) ;

%%%%%%%%%%%%%%%%%%%%

% Unexpected f l a g s %

%%%%%%%%%%%%%%%%%%%%

otherwi se

error ( [ ’ Unhandled f l a g = ’ ,num2str( f lag ) ] ) ;
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end

% end s funtmpl

%

%

======================================================

% md l I n i t i a l i z e S i z e s

% Return the s i z e s , i n i t i a l cond i t ions , and sample

t imes f o r

%the S−f unc t i on .

%

======================================================

%

function [ sys , x0 , s t r , t s ]= m d l I n i t i a l i z e S i z e s ( T in i t )

s i z e s = s ims i z e s ;

s i z e s . NumContStates = 0 ;

s i z e s . NumDiscStates = 0 ;

s i z e s . NumOutputs = 2 ;

s i z e s . NumInputs = 5 ;

s i z e s . DirFeedthrough = 1 ;

s i z e s . NumSampleTimes = 1 ; % at l e a s t one sample time

i s needed

sys = s ims i z e s ( s i z e s ) ;

%

% i n i t i a l i z e the i n i t i a l c ond i t i on s

%

x0 = [ ] ;%Tin i t ;

%

% s t r i s a lways an empty matrix

%

s t r = [ ] ;
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%

% i n i t i a l i z e the array o f sample t imes

%

t s = [ 0 0 ] ;

% end md l I n i t i a l i z e S i z e s

%

%====================================================

% mdlDer i va t i ve s

% Return the d e r i v a t i v e s f o r the cont inuous s t a t e s .

%====================================================

function sys=mdlDer ivat ives ( t , x , u ,mL,M,m, xa , ya , xb , yb ,

y1bar , l1 , y1 , g )

sys = [ ] ;

% end md lDer i va t i ve s

%

%===================================================

% mdlUpdate

% Handle d i s c r e t e s t a t e updates , sample time h i t s , and

major

%time s t ep requirements .

%===================================================

%

function sys=mdlUpdate ( t , x , u ,mL,M,m, xa , ya , xb , yb , y1bar ,

l1 , y1 , g )

sys = [ ] ;

% end mdlUpdate

%

%===================================================

% mdlOutputs

% Return the b l o c k ou tpu t s .

%===================================================

%
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function sys=mdlOutputs ( t , x , u ,mL,M,m, xa , ya , xb , yb , y1bar

, l1 , y1 , g )

%re f e rance t r a j e c t o r z and i t ’ s d e r i v i t i v e s

x r e f = u (1) ;

xd1 = u (2) ;

xd2 = u (3) ;

xd3 = u (4) ;

xd4 = u (5) ;

%c a l t u l a t e the x1 and i t ’ s f i r s t and second d e r i v i t i v e

x1 = l1 ∗xd2/g+xr e f ;

x1d1 = l1 ∗xd3/g+xd1 ;

x1d2 = l1 ∗xd4/g+xd2 ;

%L1 and i t ’ s d e r i v i t i v e s

L1 = sqrt ( ( x1−xa ) ∗( x1−xa )+(y1bar−ya ) ∗( y1bar−ya ) ) ;

L1d1 = (x1−xa ) ∗x1d1/L1 ;

L1d2 = (−L1d1∗L1d1 + x1d1∗x1d1 + (x1−xa ) ∗x1d2 ) /L1 ;

%Algebra i c s o u l t i o n o f Ax=B

%lambda1 = (2∗( y1bar−ya ) ∗(m∗x1d2 +g∗M∗( x1−x r e f ) / l 1 ) −

2∗( x1−xa ) ∗(m+M)∗g ) /(4∗( x1−xb ) ∗( y1bar−ya ) . . .

% −4∗(y1−yb ) ∗( x1−xa ) ) ;

%lambda2 = (−2∗( y1bar−yb ) ∗(m∗x1d2 +g∗M∗( x1−x r e f ) / l 1 ) +

2∗( x1−xb ) ∗(m+M)∗g ) /(4∗( x1−xb ) ∗( y1bar−ya ) . . .

% −4∗(y1−yb ) ∗( x1−xa ) ) ;

A = [2∗ ( x1−xb ) 2∗( x1−xa ) ; 2∗ ( y1bar−yb ) 2∗( y1bar−ya ) ] ;

B = [ (m∗x1d2+g∗M∗( x1−x r e f ) / l 1 ) g ∗(M+m) ] ’ ;

lambdas = mldiv ide (A,B) ;

lambda2 = lambdas (2 ) ;

Tc = mL∗L1d2 + 2∗ lambda2∗L1 ;
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sys = [ Tc L1 ] ;

% end mdlOutputs

%

%===============================================

% mdlGetTimeOfNextVarHit

% Return the time o f the next h i t f o r t h i s b l o c k .

Note t ha t the r e s u l t i s

% ab s o l u t e time . Note t ha t t h i s f unc t i on i s on ly used

when you s p e c i f y a

% va r i a b l e d i s c r e t e−t ime sample time [−2 0 ] in the

sample time array in

% md l I n i t i a l i z e S i z e s .

%===============================================

function sys=mdlGetTimeOfNextVarHit ( t , x , u )

sampleTime = 0 . 0 1 ; % Example , s e t the next h i t to

be one second l a t e r .

sys = t + sampleTime ;

% end mdlGetTimeOfNextVarHit

%

%===============================================

% mdlTerminate

% Perform any end o f s imu la t i on t a s k s .

%===============================================

%

function sys=mdlTerminate ( t , x , u )

sys = [ ] ;

% end mdlTerminate
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A.3 Generation of reference signal

Listing from source file LrefwInital.m

%Cac l u l a t e s the re f e rance s i g n a l f o r the s imp l i f z e d

crane model and

%s t e t s the model parmeters . I t ’ s a l s o s e t the i n t i a l

condt ions o f the crane

%model

close a l l ;

%Ca l cu l a t e r e f e rance s i g n a l

T=1.0;

Tstop = T; %only used f o r the re f e rance gerant ion in

s imu l ink

r = 0 . 3 5 ; %f i n a l va lue

x s t a r t = 0 . 4 5 5 ;

% Cons t ra ins t f o r 9 order p loynomia l

% c o e f f i c i a n t s f o r f ( t ) and d e r i v i t i v s a t time 0

f 0 = [ 0 0 0 0 0 0 0 0 0 1 ] ;

f0d1 = [0 0 0 0 0 0 0 0 1 0 ] ;

f0d2 = [0 0 0 0 0 0 0 2 0 0 ] ;

f0d3 = [0 0 0 0 0 0 3∗2 0 0 0 ] ;

f0d4 = [0 0 0 0 0 4∗3∗2 0 0 0 0 ] ;

% c o e f f i c i a n t s f o r f ( t ) and d e r i v i t i v s a t time T

fT = [ power (T, 9 ) power (T, 8 ) power (T, 7 ) power (T, 6 )

power (T, 5 ) . . .

power (T, 4 ) power (T, 3 ) power (T, 2 ) power (T, 1 ) 1 ] ;

fTd1 = [9∗ power (T, 8 ) 8∗power (T, 7 ) 7∗power (T, 6 ) 6∗power

(T, 5 ) 5∗power (T, 4 ) . . .

4∗power (T, 3 ) 3∗power (T, 2 ) 2∗power (T, 1 ) 1 0 ] ;

fTd2 = [9∗8∗ power (T, 7 ) 8∗7∗power (T, 6 ) 7∗6∗power (T, 5 )

6∗5∗power (T, 4 ) . . .
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5∗4∗power (T, 3 ) 4∗3∗power (T, 2 ) 3∗2∗power (T, 1 ) 2 0

0 ] ;

fTd3 = [9∗8∗7∗ power (T, 6 ) 8∗7∗6∗power (T, 5 ) 7∗6∗5∗power (

T, 4 ) 6∗5∗4∗power (T, 3 ) . . .

5∗4∗3∗power (T, 2 ) 4∗3∗2∗power (T, 1 ) 3∗2 0 0 0 ] ;

fTd4 = [9∗8∗7∗6∗ power (T, 5 ) 8∗7∗6∗5∗power (T, 4 ) 7∗6∗5∗4∗

power (T, 3 ) . . .

6∗5∗4∗3∗power (T, 2 ) 5∗4∗3∗2∗power (T, 1 ) 4∗3∗2 0 0 0

0 ] ;

A = [ f0 ; f0d1 ; f0d2 ; f0d3 ; f0d4 ; fT ; fTd1 ; fTd2 ; fTd3 ; fTd4 ] ;

B = [ x s t a r t 0 0 0 0 r 0 0 0 0 ] ’ ;

%Ploynomial c o e f f c i a n t s

y c o e f f = mldiv ide (A,B) ;

y c o e f f = ycoe f f ’ ;

%ca l c u l a t e c o e f f i c i a n t f o r d e r i v i t i v e s

yd1coe f f = [ 9 8 7 6 5 4 3 2 1 0 ] . ∗ y c o e f f ;

yd1coe f f = yd1coe f f ( 1 :end−1) ; %one order l e s s a f t e r

taken d e r i v i t i v e

yd2coe f f = [9∗8 8∗7 7∗6 6∗5 5∗4 4∗3 3∗2 2 0 0 ] . ∗ y c o e f f

;

yd2coe f f = yd2coe f f ( 1 :end−2) ;

yd3coe f f = [9∗8∗7 8∗7∗6 7∗6∗5 6∗5∗4 5∗4∗3 4∗3∗2 3∗2 0

0 0 ] . ∗ y c o e f f ;

yd3coe f f = yd3coe f f ( 1 :end−3) ;

yd4coe f f = [9∗8∗7∗6 8∗7∗6∗5 7∗6∗5∗4 6∗5∗4∗3 5∗4∗3∗2

4∗3∗2 0 0 0 0 ] . ∗ y c o e f f ;

yd4coe f f = yd4coe f f ( 1 :end−4) ;

hslow = 0 . 0 0 1 ;

t = 0 : hslow :T;

y = polyval ( ycoe f f , t ) ;

% d e r i v i t i v e s o f y
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yd1 = polyval ( yd1coe f f , t ) ;

yd2 = polyval ( yd2coe f f , t ) ;

yd3 = polyval ( yd3coe f f , t ) ;

yd4 = polyval ( yd4coe f f , t ) ;

%f i n a l va lue

y f i n a l = y (end) ;

yd1 f i n a l = yd1 (end) ;

yd2 f i n a l = yd2 (end) ;

yd3 f i n a l = yd3 (end) ;

yd4 f i n a l = yd4 (end) ;

%p l o t the d e r i v i t i v e s o f y

f igure (1 ) ;

subplot ( 2 , 2 , 1 ) ;

plot ( t , yd1 ) ;

t i t l e ( ’ yd1 ’ ) ;

subplot ( 2 , 2 , 2 ) ;

plot ( t , yd2 ) ;

t i t l e ( ’ yd2 ’ ) ;

subplot ( 2 , 2 , 3 ) ;

plot ( t , yd3 ) ;

t i t l e ( ’ yd3 ’ ) ;

subplot ( 2 , 2 , 4 ) ;

plot ( t , yd4 ) ;

t i t l e ( ’ yd4 ’ ) ;

%System cons tan t s

mL = 0 .00003 ;

M = 0 . 2 7 7 ;

m = 0 . 0 0 5 ;

xa = 0 . 0 5 ;

ya = 0 . 5 7 ;

xb = 0 . 5 8 ;

yb = 2 . 6 2 ;

y1bar = 0 . 6 1 ;

l 1 = 0 . 3 7 ; %old 0 . 22 ;
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y1 = 0 . 6 1 ;

g = 9 . 8 1 ;

% System v a r i b a l e s

x = 0 ;

xd1 = 0 ;

xd1 = 0 ;

xd2 = 0 ;

xd3 = 0 ;

xd4 = 0 ;

%x1 = 0 .455 ;

x1d1 = 0 ; %x1 dot

x1d2 = 0 ; %x1 dot dot

lamda1 = 0 ;

lamda2 = 0 ;

L1 = 0 ;

L1d1 = 0 ; %l1 dot

L1d2 = 0 ; %l2 dot dot

T1 = zeros (1 , length ( y ) ) ;

%Fla tne s s c a l c u l a t i o n

for i =1: length ( y )

x = y( i ) ;

%ca l u l a t e d e r i v i t i v e s

xd1 = yd1 ( i ) ;

xd2 = yd2 ( i ) ;

xd3 = yd3 ( i ) ;

xd4 = yd4 ( i ) ;

%c a l t u l a t e the x1

x1 = l1 ∗xd2/g+x ;
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x1d1 = l1 ∗xd3/g+xd1 ;

x1d2 = l1 ∗xd4/g+xd2 ;

L1 = sqrt ( ( x1−xa ) ∗( x1−xa )+(y1bar−ya ) ∗( y1bar−ya ) ) ;

L1d1 = (x1−xa ) ∗x1d1/L1 ;

L1d2 = (−L1d1∗L1d1 + x1d1∗x1d1 + (x1−xa ) ∗x1d2 ) /L1 ;

A = [ 2∗ ( x1−xb ) 2∗( x1−xa ) ; 2∗ ( y1bar−yb ) 2∗( y1bar−ya

) ] ;

B = [ (m∗x1d2+g∗M∗( x1−x ) / l 1 ) g ∗(M+m) ] ’ ;

lambdas = mldiv ide (A,B) ;

lambda2 = lambdas (2 ) ;

lambdaEq ( i , : ) = lambdas ’ ;

lambda1 = (2∗ ( y1bar−ya ) ∗(m∗x1d2 +g∗M∗( x1−x ) / l 1 ) −

2∗( x1−xa ) ∗(m+M) ∗g ) /(4∗ ( x1−xb ) ∗( y1bar−ya ) . . .

−4∗(y1−yb ) ∗( x1−xa ) ) ;

lambda2c = (−2∗( y1bar−yb ) ∗(m∗x1d2 +g∗M∗( x1−x ) / l 1 )

+ 2∗( x1−xb ) ∗(m+M) ∗g ) /(4∗ ( x1−xb ) ∗( y1bar−ya ) . . .

−4∗(y1−yb ) ∗( x1−xa ) ) ;

lambdaCode ( i , : ) = [ lambda1 lambda2c ] ;

T1(1 , i ) = mL∗L1d2 + 2∗ lambda2∗L1 ;

%save i n i t a l c ond i t i on s f o r f l a t n e s s

i f i==1

F l a t I n i t = [T1(1 , 1 ) L1 ]

x0 = [ x s t a r t 0 x s t a r t 0 T1(1 , 1 ) ] ; %i n i t i a l

c ond i t i on s f o r crane

L01 = L1 ;

end

end
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Tin i t = T1(1 , 1 ) ; %i n t i a l va lue o f the f o r c e in the

model

%p l o t the f o r c e and re fance t r a j e c t o r y g iven from

f l a t n e s s

f igure (2 ) ;

subplot ( 2 , 1 , 1 ) ;

plot ( t ,T1) ;

t i t l e ( ’T ’ ) ;

subplot ( 2 , 1 , 2 ) ;

plot ( t , y ) ;

t i t l e ( ’ r e f ’ ) ;

%to compare d i f f e r e n t c a l c u l a t i o n method o f the

lambdas

f igure (3 ) ;

subplot ( 2 , 1 , 1 ) ;

plot ( t ’ , lambdaEq ( : , 1 ) , t ’ , lambdaCode ( : , 1 ) ) ;

t i t l e ( ’ lambda 1 ’ ) ;

subplot ( 2 , 1 , 2 ) ;

plot ( t ’ , lambdaEq ( : , 2 ) , t ’ , lambdaCode ( : , 2 ) ) ;

t i t l e ( ’ lambda 2 ’ ) ;
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Appendix B

Source code of implemented

controller

B.1 Control algorithm

Listing of the control algorithm in source file CommandChris.c

// Fu l l c o n t r o l l s t r u c t u r e wi th f e ed forward

counter++; // update counter every time the thread runs

Consigne3=counter ; // only used f o r p l o t t i n g purpose

// run po s i t i o n and f eed forward c o n t r o l l e r a t every

20 ms

i f ( counter%20==0){

time = counter ∗h ;

i f ( counter >1000) // re f e r ence t r a j e c t o r y only

de f ined f o r 1 s

time = 1 . 0 ;

u r e f = −(Lre f ( time ) − L01 ) ; // ge t l e n g t h

r e f e r ence o f c a b l e a t time h∗ counter

// time s h i f t u r e f

u r e f 4 = u r e f 3 ;

u r e f 3 = u r e f 2 ;

u r e f 2 = u r e f 1 ;

u r e f 1 = ur e f ;
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f o r c eRe f = Fre f ( time ) ; // ge t the r e f e r ence

f o r c e in ca b l e

// update o ld forceRe f

f o r c eRe f 4 = fo r c eRe f 3 ;

f o r c eRe f 3 = fo r c eRe f 2 ;

f o r c eRe f 2 = fo r c eRe f 1 ;

f o r c eRe f 1 = fo r c eRe f ;

// Pos i t i on con t r o l

epos = ure f−Posit ionMoteur4 ;

uvre f = 0.2357∗ uvr e f 1 + 46.63∗ epos −31.68∗

epos 1 ;

// f eed forward par t

u v r e f f f = −a 3 f f ∗ f f 1 −a 2 f f ∗ f f 2 −a 1 f f ∗ f f 3 −

a 0 f f ∗ f f 4 +b4 f f ∗ f o r c eRe f +b3 f f ∗ f o r c eRe f 1 +

b2 f f ∗ f o r c eRe f 2 + b1 f f ∗ f o r c eRe f 3 +b0 f f ∗

f o r c eRe f 4 ;

// update o ld f e ed forward output

f f 4 = f f 3 ;

f f 3 = f f 2 ;

f f 2 = f f 1 ;

f f 1 = u v r e f f f ;

// add output o f f e ed forward and po s i t i o n

con t r o l

uvre f = uvre f +u v r e f f f ;

epos 1 = epos ;

uv r e f 1 = uvre f ;

}

Consigne2 = fo r c eRe f ; // only used f o r p l o t t i n g

purpose

Consigne3 = ure f ; // only used f o r p l o t t i n g purpose
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// v e l o c i t y c on t r o l ;

ev e l = uvref−VitesseMoteur4 ;

u = 0.9929∗ u 1 +0.01851∗ e v e l 1 ;

u 1 = u ;

e v e l 1 = eve l ;

// Sa tura t ion

i f (u > 5 . 0 ) {

u = 5 . 0 ;

}

else i f (u<−5.0){

u = −5.0;

}

Consigne4 = u ; // Consigne4 i s f e ed to motor

B.2 Flatness and reference generation

Listing from source file LrefwInital.m

#include <math . h>

#include ” fp . h”

// c o e f f i c i e n t s f o r r e f e rance t r a j e c t o r y and i t ’ s

d e r i v i t i v e s

stat ic double x c o e f f [ 1 0 ] =

{0 .455 ,0 ,0 ,0 ,0 , −13 .23 ,44 .1 , −56 .7 ,33 .075 , −7 .35} ;

stat ic double xd1coe f f [ 9 ] =

{0 ,0 ,0 ,0 , −66 .15 ,264 .6 , −396 .9 ,264 .6 , −66 .15} ;

stat ic double xd2coe f f [ 8 ] =

{0 ,0 ,0 , −264.6 ,1323 , −2381.4 ,1852.2 , −529.2} ;

stat ic double xd3coe f f [ 7 ] =

{0 ,0 ,−793.8 ,5292 ,−11907 ,11113 ,−3704.4} ;

stat ic double xd4coe f f [ 6 ] =

{0 ,−1587.6 ,15876 ,−47628 ,55566 ,−22226} ;
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// model parameters

stat ic double mL = 0 .00001 ;

stat ic double M = 0 . 5 ;

stat ic double m = 0 . 0 0 5 ;

stat ic double xa = 0 . 0 5 ;

stat ic double ya = 0 . 5 7 ;

stat ic double xb = 0 . 5 8 ;

stat ic double yb = 2 . 6 2 ;

stat ic double y1bar = 0 . 6 1 ;

stat ic double l 1 = 0 . 3 7 ; // 0 . 22 ;

stat ic double y1 = 0 . 6 1 ;

stat ic double g = 9 . 8 1 ;

// s t a t i c doub le L01 = 0 . 4 ; // cab l e l engh a i n i t i a l

p o s i s t i o n

// model v a r i a b l e s

// g i v e s the re f e rance l en gh t o f c a b l e as a d i v a t i o n s

from i n i t i a l p o s i s t i o n to motor

double Lre f (double time ) ;

double Lre f (double time )

{

double x = 0 . 0 ;

double xd1 = 0 . 0 ; // f i r s t d e r i v i t i v e

double xd2 = 0 . 0 ;

double xd3 = 0 . 0 ;

double xd4 = 0 . 0 ;

double x1 = 0 . 0 ;

double x1d1 = 0 . 0 ;

double x1d2 = 0 . 0 ;

double lambda1 = 0 . 0 ;

double lambda2 = 0 . 0 ;
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double L1 = 0 . 0 ; // l en gh t o f c a b e l con tec t ed

to motor

double L1d1 = 0 . 0 ;

double L1d2 = 0 . 0 ;

int i ;

// c a l c u l a t e current va lue o f x and i t ’ s

d e r i v i t i v e s

for ( i =0; i <=9; i++)

x = x + xco e f f [ i ]∗pow( time , i ) ;

for ( i =0; i <=8; i++)

xd1 = xd1 + xd1coe f f [ i ]∗pow( time , i ) ;

for ( i =0; i <=7; i++)

xd2 = xd2 + xd2coe f f [ i ]∗pow( time , i ) ;

for ( i =0; i <=6; i++)

xd3 = xd3 + xd3coe f f [ i ]∗pow( time , i ) ;

for ( i =0; i <=5; i++)

xd4 = xd4 + xd4coe f f [ i ]∗pow( time , i ) ;

// c a l c u l a t e x1 and i t ’ s d e r i v i t i v e s

x1 = l1 ∗xd2/g + x ;

x1d1 = l1 ∗xd3/g + xd1 ;

x1d2 = l1 ∗xd4/g + xd2 ;

// c a l c u l a t e L1

L1 = sq r t ( ( x1−xa ) ∗( x1−xa ) + ( y1bar−ya ) ∗( y1bar−

ya ) ) ;

return L1 ;

}

// g i v e s the expec ted f o r c e in ca b l e a t the g iven

re f e rance p o s i s t i o n
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double Fre f (double time ) ;

double Fre f (double time ) {

double x = 0 . 0 ;

double xd1 = 0 . 0 ; // f i r s t d e r i v i t i v e

double xd2 = 0 . 0 ;

double xd3 = 0 . 0 ;

double xd4 = 0 . 0 ;

double x1 = 0 . 0 ;

double x1d1 = 0 . 0 ;

double x1d2 = 0 . 0 ;

// doub le lambda1 = 0 . 0 ;

double lambda2 = 0 . 0 ;

double L1 = 0 . 0 ; // l en gh t o f c a b e l con tec t ed

to motor

double L1d1 = 0 . 0 ;

double L1d2 = 0 . 0 ;

int i ;

// c a l c u l a t e current va lue o f x and i t ’ s

d e r i v i t i v e s

for ( i =0; i <=9; i++)

x = x + xco e f f [ i ]∗pow( time , i ) ;

for ( i =0; i <=8; i++)

xd1 = xd1 + xd1coe f f [ i ]∗pow( time , i ) ;

for ( i =0; i <=7; i++)

xd2 = xd2 + xd2coe f f [ i ]∗pow( time , i ) ;

for ( i =0; i <=6; i++)

xd3 = xd3 + xd3coe f f [ i ]∗pow( time , i ) ;

for ( i =0; i <=5; i++)

xd4 = xd4 + xd4coe f f [ i ]∗pow( time , i ) ;

64



// c a l c u l a t e x1 and i t ’ s d e r i v i t i v e s

x1 = l1 ∗xd2/g + x ;

x1d1 = l1 ∗xd3/g + xd1 ;

x1d2 = l1 ∗xd4/g + xd2 ;

// c a l c u l a t e L1

L1 = sq r t ( ( x1−xa ) ∗( x1−xa ) + ( y1bar−ya ) ∗( y1bar−

ya ) ) ;

L1d1 = (x1−xa ) ∗x1d1/L1 ;

L1d2 = (−L1d1∗L1d1 + x1d1∗x1d1 + (x1−xa ) ∗x1d2 )

/L1 ;

// lambda1 = (2∗( y1bar−ya ) ∗(m∗x1d2 + g∗M∗( x1−x )

/ l 1 ) − 2∗( x1−xa ) ∗(m+M)∗g ) /(4∗( x1−xb ) ∗( y1bar

−ya ) − 4∗( y1−yb ) ∗( x1−xa ) ) ;

lambda2 = (−2∗( y1bar−yb ) ∗(m∗x1d2 + g∗M∗( x1−x ) /

l 1 ) + 2∗( x1−xb ) ∗(m+M) ∗g ) /(4∗ ( x1−xb ) ∗( y1bar−

ya ) − 4∗( y1−yb ) ∗( x1−xa ) ) ;

return (mL∗L1d2 + 2∗ lambda2∗L1) ;

}
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