
ISSN 0280-5316
ISRN LUTFD2/TFRT--5756--SE

Portable Robot Control

Ferran Carlas Ponce

Department of Automatic Control
Lund Institute of Technology

June 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289940493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Document name
MASTER THESIS
Date of issue
June 2005

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRNLUTFD2/TFRT--5756--Se
Supervisor
Anders Robertsson at Automatic Control in Lund
Klas Nilsson at Computer Science in Lund

Author(s)
Ferrran Carlas Ponce

Sponsoring organization

Title and subtitle
Portable Robot Control (Implementering av realtidsplattform för robotreglering i Java)

Abstract
The topic of this master thesis is Portable Robot Control and it has been performed jointly with the thesis Portable Robot
Programming. The robots mentioned in the title of the Master thesis are industrial robots. Industrial robots are embedded
real-time systems. In the embedded real-time systems the computer is part of the system. As all other real-time systems
they have to fulfill real-time requirements. Hence, they must be deterministic and predictable.Then, the control and
programming tasks of these industrial robots must be performed with tools providing the mechanisms to fulfill the time
requirements above-seen. The first task of the thesis is the communication of a robot system using a real-time network
protocol. The real-time protocol chosen is ThrottleSim, the Java-based simulation of ThrottleNet. To perform this
communications a real-time communications environment is designed. This environment is focused on the intermediate
layer that is the link between the chosen network protocol and the application layer.
Once the communications in robot systems are implemented, they must be integrated in that system. A robot system
consists of many different elements. These parts are the mechanical manipulator (robot) and the robot control system
which can consist of the robot server, the computers where the control parameters are generated, the simulator or the
network which is used for the communication between all the different parts.The implementation of a Java-based
infrastructure to integrate all the parts of the robot system in some experiments is the second main-task of the thesis.
Finally, the tasks described above are implemented in the Java programming language, because of its wide range of
advantages (platform independence, simplicity, security and robustness). Despite of the fact that Java has a lack of
efficiency that makes it not suitable for real-time systems, it is possible to use it as a real-time language through the Java-
to-C compilation. This solution provides the advantages of Java as a programming language and solves its main
disadvantage.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
74

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:University Library, Box 3, SE-221 00 Lund, Sweden Fax +46 46
222 42 43

 1

Contents

1 Introduction .. 5

1.1 Outline of the Report .. 5
2 Background... 7

2.1 Real-Time Systems... 7
2.2 Java in Embedded Real-Time Systems .. 7
2.3 Java to C Compiler ... 8
2.4 Portability ... 8
2.5 ThrottleNet ... 8
2.6 ThrottleSim... 9
2.7 Serialization.. 10

2.7.1 Serialization in the project... 11
3 Real-Time Communications... 12

3.1 Real-Time Communication Environment in Java .. 12
3.2 RTComm package .. 13

3.2.1 Real-Time .. 14
3.2.2 Non Real-Time .. 15
3.2.3 Real-time and non real-time parameters.. 16
3.2.4 The size parameter ... 16
3.2.5 Non-real time traffic and ThrottleSim... 17
3.2.6 Transmission Procedure .. 17

3.3 DataStructure package.. 19
3.3.1 New Java-based data structure .. 19

3.4 LabComm Package... 21
3.4.1 Detailed description of LabComm: ... 21
3.4.2 Why readThread and writeThread? ... 21

3.5 RTComm Applications... 23
3.6 Summary... 23

4 Real-Time Communications Experiment ... 25
4.1 Time tests.. 26

4.1.1 Test 1: Real and non real-time standard transmissions 26
4.1.2 Test 2: Overloaded non real-time transmissions ... 27
4.1.3: Test 3: Simultaneous transmissions ... 29

4.2 Conclusions of the experiment ... 30
5 Robot Experiments ... 31

5.1 Experimental platform.. 31
5.2 Simulation Platform.. 32
5.3 Experiments .. 32

5.3.1 Matlab trajectory generation.. 33
5.3.2 Graphical User Interface (GUI)... 35
5.3.3 Matlab – Java interface.. 36
5.3.4 Control ... 36
5.3.5 Results ... 36

6 Conclusions and Future Work .. 37
6.1 Summary... 37
6.2 Future work .. 37

 2

6.3 Conclusion.. 38
Bibliography ... 40

Complementary Bibliography: ... 41
Appendix: Implementations ... 42

A.1 DataStructure package ... 42
A.2 RTComm package ... 54
A.3 LabComm Package.. 61

 3

List of Figures

Figure 2.1: Process to convert Java files to runnable C files.. 8
Figure 2.2: ThrottleSim over UDP .. 9
Figure 3.1: Elements of a real-time communication environment 13
Figure 3.2: Structure of the RTComm package.. 14
Figure 3.3: Calls to the required methods to perform a real-time transmission 18
Figure 3.4: The implemented data structure... 20
Figure 3.5: Structure of the LabComm package .. 22
Figure 3.6: Working procedure of a standard RTComm application............................. 24
Figure 4.1: Graphical User Interface of the experiment... 26
Figure 4.2: Graphical test result ... 29
Figure 5.1: The ABB IRB6 robot ... 31
Figure 5.2: Graphical representation of the IRB6 robot... 32
Figure 5.3: Experiment layout .. 33
Figure 5.4: Example of linear trajectory defined from three points 34
Figure 5.5: Graphical User Interface .. 35

 4

List of Tables

Table 4.1: Characteristics of the experimental equipment ... 25
Table 4.2: Numeric test results ... 28
Table 4.3: Numeric test results ... 30

 5

1 Introduction

The topic of this master thesis is Portable Robot Control and it has been performed
jointly with the thesis Portable Robot Programming [1].
The work has been carried out within the Erasmus exchange program at the
Departments of Computer Science and Automatic Control, Lund Institute of
Technology, Lund University, Sweden.

Industrial robots are embedded real-time systems and, like all other real-time systems,
they have to meet time requirements. These time demands can be harder or softer
depending on the task. Thus, the tools chosen to program and control these robots have
to be chosen carefully.

Platform independence, simplicity, security and robustness are some of the Java
programming language advantages. The weak point of Java is related with the fact that
Java is not explicitly intended for real-time applications. Therefore, it has a lack of
efficiency due to the virtual machine and the automatic garbage collection. However,
research at the Department of Computer Science has been working in order to solve
these problems and to use Java as a real-time language. The solution chosen has been
compiling Java to the C language.
Seizing the advantages that the Java language provides and improving its weak spots, a
reliable base to set up a real-time communications environment it is achieved.
Furthermore, a portable infrastructure to establish real-time communications is
performed as a first task of this master thesis.

A robot system consists of many different elements. These parts are the mechanical
manipulator (robot) and the robot control system which can consist of the robot server,
the computers where the control parameters are generated, the simulator or the network
which is used for the communication between all the different parts. All the elements
listed above might work on different machines, platforms, programs and so on.
The second task of this thesis consists of integrating all the elements of a robot system
in some experiments.

All the desired experiments could not be carried out during the period of time this
master thesis took. Thus, there is place for future work within this area.

1.1 Outline of the Report

Chapter 2 – Background
In this chapter three general concepts strongly related with the development of this
thesis are defined. These concepts are Real-Time Systems, Java in Embedded Real-
Time Systems and Portability. Also, some related work used in the project is explained.
Finally, the concept of serialization is described accurately.

Chapter 3 - Real-Time Communications
This chapter deals with the design and implementation of all the Java packages built to
perform a real-time communication.

 6

Chapter 4 - Real-Time Communications Experiment
In this chapter the test experiment of the real-time communication packages,
implemented in Chapter 3, is presented. Also the differences between real-time and non
real-time transmission are studied.

Chapter 5 - Robot Experiments
This chapter introduces the experimental platforms. Different experiments performed
with the robots or the Java3D simulator are described. These experiments integrate the
real-time communications part, the trajectory generation for industrial robots and the
real-time execution and simulation.

Chapter 6 – Conclusions
In this chapter the thesis is briefly summarized and the final conclusions are presented
and discussed. Finally, the proposed future work is listed.

 7

2 Background

This thesis deals with many fields and concepts related with Automatic Control and
Computer Science. The concepts described in this chapter can be divided into two
groups. The first one includes general concepts strongly related with the thesis, i.e., the
concept of real-time systems or the concept of serialization. The other group are the
tools used to perform the work, i.e., network protocols like ThrottleNet and the Java to
C compiler.

2.1 Real-Time Systems

A real-time system is any information processing system which has to respond to
externally generated input stimuli within a finite and specified period [Burns and
Wellings, 1990].
The most important characteristic of a real-time system is that the system has timing
requirements that must be met. This leads to the statement that the systems must be
deterministic and predictable. It is important to know the time it will spend at every task
and its priority in order to schedule them and fulfil the time requirements.

The system to consider in this thesis will be an industrial robot manipulator with the
corresponding open robot control system. Industrial robots are real-time embedded
systems. They can be both hard real-time and soft real-time systems. A hard real-time
system can be defined as a system where it is absolutely imperative that the responses
occur within the required deadline. While, in soft real- time the system still functions if
the deadlines are occasionally missed.

2.2 Java in Embedded Real-Time Systems [2]

Java is an object-orientated concurrent programming language developed by Sun
Microsystems in 1995. Java is simple, robust and secure language. In order to increase
its portability, Java is an interpreted language. The byte code generated by the compiler
is interpreted by the JVM (Java Virtual Machine). Thus, Java is platform independent; it
can be executed on any computer, as long as it has a Java Runtime Environment (JRE).
Java is not the ideal real-time language; it was not explicitly intended for real-time
applications. The main problem is the lack of efficiency due to the stack-based virtual
machine and the automatic garbage collection. The automatic garbage collector makes
Java execution non deterministic.
Compiling Java to native code is the solution chosen (Department of Computer Science,
Lund Institute of Technology) in order to make Java a viable language programming for
hard real-time systems.
In order to perform this compilation, a Java to C compiler built in the Department of
Computer Science has been used [3].

 8

2.3 Java to C Compiler [3]

The Java to C compiler translates Java class files into C source code. This allows the
construction of directly executable C-programs.
The compiler was built using the JastAdd compiler construction toolkit [4].
In Figure 2.1 the process that Java files follow until the execution is explained. The first
step is the translation of the Java files to the corresponding C files (.c and .h). The
second step is the compilation and linking of the C files and the native methods jointly.
This stage is carried out by the C compiler. Once everything is compiled successfully,
the file is runnable.

Figure 2.1: Process to convert Java files to runnable C files

2.4 Portability

Portability refers to the ability to run a program on different machines. Running a given
program on different machines can require different amounts of work (for example, no
work whatsoever, recompiling, or making small changes to the source code) [5].
Java is platform independent; therefore it is possible to run Java programs in any
machine (independently of the CPU and OS).
Thus, in order to have a portable system, Java has been used as a programming
language as well as other Java-based tools like Java3D Simulator (Chapter 5) or a Java
to C compiler.

2.5 ThrottleNet [6]

ThrottleNet is a real-time network based on fast-switched Ethernet, where every node is
connected to each port of the switch using full duplex. ThrottleNet provides a good
management of the real-time data transmissions and solves some problems that standard
protocols (TCP or UDP) have.

Java2C Translator
C compiler &

linker

file.java

file.c

file.h

+
native methods

Runnable
File

 9

ThrottleNet is a real-time layer over Ethernet to fulfil real-time requirements.
ThrottleNet can run in two different modes: centralized and decentralized. In centralized
mode there is a central node, called GlobeThrottle, which controls the traffic in the
network. All the connections pass through GlobeThrottle. In the decentralized mode
there is no central node, thus, all the connections are controlled by the nodes involved in
these connections. In this thesis the centralized version will be used.

All the communication packages designed in this thesis use ThrottleNet or its Java-
simulation, ThrottleSim, as a network protocol.

2.6 ThrottleSim [7]

ThrottleSim is the Java-based simulation of ThrottleNet. To simulate the ThrottleNet
protocol, ThrottleSim uses User Datagram Protocol (UDP) due to the similarities to
ThrottleNet.
The main goal of the procedure is to avoid the network congestion so that the time
restrictions are fulfilled.
To implement our real-time communication packages we have been working with
ThrottleSim instead of ThrottleNet. Working with the simulated protocol is easier
because the appropriate device drivers and administrator access to the system are not
required. Thus, it is possible to work always in user space.

Figure 2.2: ThrottleSim over UDP

Figure 2.2 shows that ThrottleSim works upon UDP and the RTComm package (3.2)
does the same on ThrottleSim. Finallay, on top of RTComm, all the applications are
implemented.

IP

UDP TCP

ThrottleSim

RTComm

RTComm Application

 10

2.7 Serialization [8] [9]

The concept of serialization is very important in order to understand the reason of the
implementation of some packages that have been designed and, at the same time, is the
link between them.

Before talking about serialization withyin the project, the theory of serialization and
externalization is explained

Serialization is the process of reading or writing an object from or to a stream of bytes.
The goal of this process is to have the representation of this object as group of bytes.
Once the object is represented as a series of bytes it opens many possibilities of
handling these data. For instance, in this project serialization is used to store and
transmit the serialized data.

The process of serialization has two parts, we will call them serialization and
deserialization.
Serialization consists of writing the object to an ObjectOutputStream using the method
writeObject of the OutputStream class.
Deserialization is the opposite process to serialization. Deserialization reads the
serialized object from an ObjectInputStream using the method readObject of the
InputStream class.

ObjectOutputStream and ObjectInputStream must be constructed based upon another
stream like a pipe, a file or a byte array. In this project PipedStreams are used to build
the ObjectStreams because they provide good performance moving data between
threads.
Therefore, ObjectOutputStream is constructed on a PipedOutputStream and
ObjectInputStream is constructed upon a PipedInputStream.

Objects can be serialized if they implement the java.io.Serializable interface. It is an
empty interface, because it does not declare any method or field. It just identifies objects
that can be serialized or deserialized.

Externalizable is a subinterface of Serializable.
Sometimes it is possible or desired to control the serialization process. In these cases the
interface Externalizable is used to give the control of the process to the object itself. To
perform this control over its serialization the object must implement the methods
writeExternal and readExternal.

package java.io;
public interface Externalizable extends Serializable {
 public void writeExternal(ObjectOutput out) throws IOException;
 public void readExternal(ObjectInput in) throws IOException,
 java.lang.ClassNotFoundException;
}

 11

In the part of code written above the headers of the methods that an Externalizable
object must implement are shown.

Using the Externalizable interface the serialization process is manual. It means that the
content of the object has to be known in order to implement the writeExternal and
readExternal methods. These methods will be implemented depending on the type of
data that is serialized (primitive types, objects, strings or arrays).

The difference between the Externalizable and the Serializable interfaces is the
information contained in the output (serialized stream). In the externalization process
some type information is avoided, it leads to a more compact output.
Therefore the Externalizable stream structure will be shorter, but it will contain less
information. Thus, if the final goal of the serialization is the transmission of
information, an externalized stream will be transmitted faster than a serialized one.

2.7.1 Serialization in the project

Object serialization is very important to understand and link the different parts of this
project. Serialization is the link between the information to be sent and the network
protocol used to send this information.

If the information to be sent is an object, a matrix for instance, and the network protocol
transmits bytes, there will be something missing in between. Serialization is the
mechanism that will fill the gap in between converting objects to byte streams and vice
versa.

LabComm is a package that provides classes and threads to implement and support the
serialization process.
The other package related with serialization is the DataStructure. The different classes
belonging to this structure implement Serializable or Externalizable. The ones
implementing Externalizable provide the methods writeExternal and readExternal on its
own code. These two packages will be described in detail in Chapter 3.

 12

3 Real-Time Communications

To transmit data in real-time not only a real-time network protocol is required, but a
real-time communication environment is needed.

3.1 Real-Time Communication Environment in Java

A real-time communication environment consists of many different elements:

Starting from the lower level, the first element is the network protocol. A real-time
network must fulfil the time demands on network data transmission. As mentioned
before, ThrottleNet (ThrottleSim) is the protocol chosen in this work.

On the upper level, the application is another element belonging to the communication
environment. Dealing with real-time transmissions the application will establish
connections and send, receive and handle data. Different applications have been
implemented during the project. A general description of their structure and working
procedure is carried out in Section 3.5.

In any transmission, one of the most important parts is the transmitted data. Working in
a real-time environment the information to be transmitted might be very specific.
Therefore, this information can be organized and encapsulated in a data structure. Just
as most of the data sent in real-time is very specific, general data should be possible to
be transmitted as well. Thus, the data structure may be flexible. This master thesis
contains the suggested implementation of a data structure (DataStructure package,
Section 3.3).

To link the elements described above (network protocol, transmitted data and the
application) an intermediate layer has been created. Thus, the user (application) does
not deal with the network protocol directly. This intermediate layer called RTComm
provides the strictly necessary methods to perform either a real-time or non real-time
communication.

Within this environment other elements supporting data conversion and communication
between layers are necessary. All these methods are included in the package called
LabComm.

All the elements are implemented in the Java programming language.

 13

Figure 3.1: Elements of a real-time communication environment

In this thesis all the environment described above, except the network protocol, has
been implemented. The results are three packages (RTComm, DataStructure and
LabComm) and several applications. Everything is based on the ThrottleNet
(ThrottleSim) protocol. The implementation of theses three packages is described
below.

3.2 RTComm package

The RTComm package lays over the ThrottleNet networking protocol.
RTComm comes from real-time communication, but this package is not only made to
deal with real-time communications, it can also deal with non real-time communication.
Therefore, RT means, in this case, that this package can support both real-time and non
real-time communications.

The socket class is the root of the package. It is an abstract class that provides the
common implementations to establish a connection (socket) at this level, either in real
or non real-time.

Below the two different branches of the socket class can be distinguished; the real-time
and the non real-time branch, see Figure 3.2.

ThrottleNet

(ThrottleSim)

LabComm

RTComm

DataStruct

RTComm Application

Intermediate layer

Network protocol

Application layer

 14

Figure 3.2: Structure of the RTComm package

3.2.1 Real-Time

On the real-time side, another superclass is implemented. RTSocket is the superclass for
the real-time classes. It provides the implementations, not included in socket class, to
establish a real-time socket.
Once the superclasses are described, the real-time part of the package contains two
classes.
The RTReceive class describes an intermediate layer between the application and the
ThrottleNetReceiveSocket [7]. The class implements the following methods:

• register(). Registers the receive socket.
• receive(Externalizable). Receives an Externalizable object as a byte array and

returns it as an object in its original shape.
• receive(). Receives a Serializable object as a byte array and returns it as an object

in its original shape.
• close(). Closes the connection on the receiver side.

Socket

RTSocket

RTReceive

register()
receive(Externalizable)
receive()
close()

RTTransmit

connect()
transmit (Externalizable)
close()

Receive

register()
receive()
close()

Transmit

connect()
transmit(Serializable)
close()

REAL-TIME

NON REAL-TIME

 15

The other class of the real-time side is RTTransmit. It describes an intermediate layer
between the application and the ThrottleNetTransmitSocket [7]. The class implements
the following methods:

• connect(). Opens a specified connection in ThrottleNet.
• transmit(Externalizable). Externalizes and transmits through ThrottleNet an

Externalizable object.
• close(). Closes the connection on the transmitter side.

Only one receive and transmit method will be used depending on the type of object and
the choice of the user. An Externalizable object can be serialized or externalized, while
a Serializable object always will be treated as itself.
Comparing with Throttlenet, Socket and RTSocket would overload ThrottleNetSocket,
while RTReceive and RTTransmit would do the same with ThrottleNetReceiveSocket
and ThrottleNetTransmitSocket.
RTReceive implements almost the same methods as ThrottleNetReceiveSocket, but
ThrottleNetReceiveSocket works on a lower level than RTReceive. It means that inside
the methods of RTComm the methods of Throttlenet package are called. The same
happens with RTTransmit and ThrottleNetTransmitSocket.

3.2.2 Non Real-Time

For the non real-time side the only superclass is the Socket class. The non real-time
branch has two classes: Receive and Transmit.
The Receive class has the same methods as RTReceive, but it can only receive
Serializable objects
The Transmit class also has the same methods as RTTransmit, but it can only transmit
Serializable objects.
The others differences between the classes in real and non real-time are the parameters
required to establish the connections. This topic will be widely explained at the end of
this chapter.

For the non real-time part, Socket would overload ThrottleNetSocket [7], receive would
do the same with ThrottleNetReceiveSocket and transmit with
ThrottleNetTransmitSocket.

Why not Externalizable methods?

Because there is no guarantee that the data structure to be sent in real-time implements
Externalizable, but this data structure will always be Serializable by nature.
It could be that an Externalizable object is sent using a non real-time connection. In this
case, the object would be transmitted and received as a Serializable as well.
Externalizable is a subclass of Serializable, therefore there is the possibility of using the
same methods. The advantage of the externalization is its compactness, but in non real-
time, without temporal restriction, it becomes a characteristic rather than an advantage.

Anyway, the main reason not to use Externalizable methods in non real-time comes
from the data structure point of view.

 16

For the data structure designed and used in this project there are classes to work in real-
time (LabObject) and classes to work in non real-time (GeneralObject). The
GeneralObject class is designed to work in non real-time with java.lang.objects. This
class implements Serializable, since it is open to all kinds of objects without
specification.

3.2.3 Real-time and non real-time parameters [7]

To establish a ThrottleNet connection some parameters are requested. Some of these
parameters are different depending on the type of connection.
There are some parameters that are required in both types of connection, real-time and
non real-time:

name: uniquely identifies the specific connection between a sender and a receiver.
size: defines the maximum amount of data (bytes) allowed in each packet transmitted.
The packet size is an essential parameter, but the way to calculate this size in bytes is
different depending on the type of connection.
period: defines the minimum time in microseconds (µs) between two packets
transmitted on the network.
type: defines, if the connection will be real or non real-time.
dead_line: defines the maximum time to deliver each packet in microseconds (µs). It is
a parameter uniquely defined by the receiver in the registration process.

3.2.4 The size parameter

In the real-time transmission the packet size is the size of the largest object that can be
sent fulfilling the real-time restrictions. The largest object is built depending on the
features of the system.
For example, the system we are working on is a robot with 5 motors. To control the
motor, we need to give to the robot three values per motor. Thus, the largest object
would be the size of the structure encapsulating these 15 values (5x3) that we send to
the robot.
The size of this largest object is calculated serializing it into a stream of bytes. The
object is serialized and not externalized because it wants to know the maximum size.
The serialization process is less compact than externalization; therefore serialization is
the worst case possible (maximum size).

Non real-time connections do not have to fulfil temporal restrictions. Therefore, the
packet size will have another meaning. In this case it can be call minimum effort. It is
the minimum object that can be sent. Thus, it assures that the minimum object can be
sent and it protects the real time connection preventing the overloading of the net. The
way to obtain the size is exactly the same as in the real-time transmission.

 17

3.2.5 Non-real time traffic and ThrottleSim

ThrottleSim was not ready to handle non real-time traffic when we started our project.
The main idea to handle this non real-time traffic is to dedicate part of the bandwidth of
the connection to it.
Different solutions were possible. The implemented solution consists of
allocating the bandwidth in a static way. The main idea is to consider real and non real-
time connections belonging to the same IP address as independent connections, with
different network features.

Changes in the implementation of ThrottleSim were:

• Introducing a new connection parameter type. This parameter has to be handled
exactly like the old parameters. It means that the parameter will be saved in the
structure of GlobeThrottle where the network parameters are saved and can be
checked. It implies a modification of GlobeThrottle.

• New calculation way of the available bandwidth for the connections. Before the

calculation of available bandwidth was made according the formula:

 Available Bandwidth= Max bandwidth-busy bandwidth;

Now, a correction factor is applied to devote one part of the connection to non real-
time. The available bandwidth is calculated as follows:

Real-time Available BW= (1-book percentage)* Max BW - busy BW

Non real-time Available BW= (book percentage)* Max BW - busy BW

The book percentage has values between 0 and 1. Presently it is set to 0,1 (10%). But, it
can be modified depending on the proportion of real and non real-time connections. At
the moment, the process to allocate bandwidth is static; to change the percentage a
parameter of GlobeThrottle class has to be changed. In further implementations a
dynamical bandwidth allocation would be better.
The Maximum bandwidth is 100Mbits/s.
The busy bandwidth will be the sum of the bandwidth of all connections with the same
IP address.

Most of the parameters are influenced by the value of the available bandwidth. Thus,
this modification in the way how to calculate the bandwidth will have effect on the
values of the other parameters.

3.2.6 Transmission Procedure

The process of transmission is strongly related with the lower level of the
communication environment, ThrottleNet (ThrottleSim).

 18

These are the steps followed in a transmission:

register() - the receiving node creates a ThrottleNetReceiveSocket and the information
required to register the new connection is sent to GlobeThrottle. GlobeThrottle extracts
this information and saves it. GlobeThrottle answers by sending a temporary value of
the allowed fragment size needed to initiate the communication between two nodes.

connect() - The transmitting node creates a ThrottleNetTransmitSocket and the request
to participating in a specified connection is sent to GlobeThrottle. GlobeThrottle saves
the received information and checks the correctness of the parameters. Finally it returns
a reply with the necessary data.

Figure 3.3: Calls to the required methods to perform a real-time transmission

transmit() - the process can be summarized in two steps: conversion of object to byte[]
and sending of this byte[]. Depending on the type of connection the conversion process
will use the LabComm.ExternalComm or LabComm.SerialComm packages (3.4). After
the conversion, the data will be sent using ThrottleNetTransmitSocket.transmit(byte[]).

receive() - This process is the same as the transmit process but in the reverse direction.
Firstly, data is received using ThrottleNetReceiveSocket.receive(byte[]) and, after that,
the byte[] is converted into object again.

register()

connect()

transmit(Externalizable)

close() receive(Externalizable)

close()

RTTransmit RTReceive

transmission
completed

connection
established

 19

close() - The close procedure calls the close methods of ThrottleNetReceiveSocket and
ThrottleNetTransmitSocket. It does not matter in which order the nodes close their
socket. The nodes send the request array to GlobeThrottle, with the REMOVE
command followed by the connection name. The central node removes the connection
information from its internal network database.

3.3 DataStructure package

DataStructure is the Java based data structure used in this project. The implemented data
structure has its origin in the packages MatComm [10] and LabComm [11].
The first version of the structure was called MatComm. It provided Matlab matrices of
different types for communication. These matrices can be converted to streams in order
to be sent after that.
The second version of a Java based data structure is called LabComm. LabComm
extends the structure providing the superclass LabObject and other structures more
complex than only matrices.
LabComm already used the concept of serialization to convert Java objects to streams
due to the java.io.Serializable interface.
LabComm is the starting point for the new Java based data structure.

3.3.1 New Java-based data structure

The superclass of DataStructure is an abstract class called LabMessage. Message means
something to be sent without specifying what kind of data.
LabMessage is the superclass for LabObject and GeneralObject.
LabObject is the structure used to send a specific kind of object (like different types of
matrices or any structure whose content is known) in real-time. LabObject has two
properties:

• Non Abstract in the low level. The lowest element of any branch of the structure
has to implement Externalizable. It means that data stored in the structure is
known and methods writeExternal and readExternal are implemented in the code.

• Sized. There is a maximum size to fulfil the temporal restrictions fixed by a
LabObject. This second property comes from the first one. Since the structure is
defined until the lowest level, the user can know the largest object of that type
that it can be sent to fulfil the real-time restrictions (for instance, a matrix of
chars with 20 rows and 20 columns).

LabObject is a structure ready to work in real-time, but it can work in a non real-time
connection as well.
Below LabObject, more specific classes are defined.
LabMatrix is a package that includes matrices of chars, doubles, floats, integers and
strings.
LabStructure provides classes and methods to build more complex structures combining
the different types of LabObject.
Other classes could be created inside LabObject, for instance LabData.
LabData is a class that provides a structure to send log data like measurements from
different sensors with corresponding time stamps etc.

 20

Figure 3.4: The implemented data structure

At the same level as LabObject there is GeneralObject. GeneralObject is the abstract
class to define Java.lang.object without any other specification.
It is made to work with objects without temporal restrictions when they are transmitted.
GeneralObject is also the superclass for further more specific objects.

abstract class
LabObject

implements Serializable

abstract class
LabMatrix

implements Serializable

class
LabCharMatrix

implements Externalizable

class
LabDoubleMatrix

implements Externalizable

class
LabFloatMatrix

implements Externalizable

class
LabIntMatrix

implements Externalizable

class
LabStringMatrix

implements Externalizable

abstract class
LabMessage

implements Serializable

class
LabStruct

implements Externalizable

abstract class
GeneralObject

implements Serializable

Real-Time
Sized

Non Real-Time

class
Attribute

implements Externalizable

String type;
LabObject value;

 21

All the abstract classes implement Serializable. The abstract classes are empty and
implementing Serializable it is not necessary to implement read and write methods, the
default methods writeObject and readObject are used instead.

The non abstract classes implement Externalizable. Thus, the methods writeExternal
and readExternal are provided by the structure.

3.4 LabComm Package

The package LabComm lays between the application level and the network protocol
(ThrottleNet). It has two subpackages: SerialComm and ExternalComm.
SerialComm is the package that provides the classes, methods and threads to deal with
the Serializable objects and the serialization processes, while ExternalComm does the
same with the Externalizable interface.

3.4.1 Detailed description of LabComm:

• Declares, builds and initializes the buffers, PipedStreams and ObjectStreams
required to perform the serialization and externalization processes.

• Provides the methods to serialize and externalize objects in both directions

(object to byte array and byte array to object).

• Provides the threads to read from the corresponding pipe with the serialized or
externalized bytes at the same time as these processes are being performed.

• Provides the threads to write to the corresponding pipe the byte array to be

converted to an object (serialization or externalization) at the same time that this
process is being performed.

3.4.2 Why readThread and writeThread? [9]

When an object is serialized or externalized in whatever direction (object to byte array
or byte array to object), ObjectOutputSteram is used to write the bytes to, and
ObjectOutputStream is used to read the bytes from.
Data is written in the ObjectOutputStream in block-data records. The block factor used
for a block-data record will be 1024 bytes. This block factor produces a size limitation
of the serialized objects. The largest object to be serialized at the same time is 1024
bytes.
The size limitation of the whole process may not come from the serialization process. It
may be ThrottleNet which is the one introducing size limitation in the transmission
instead of the internal processes.

 22

Figure 3.5: Structure of the LabComm package

Therefore, to avoid this size limitation two threads are inserted in an intermediate layer.
readThread and writeThread are two intermediate threads performed before
(readThread) and after (writeThread) the transmission and outside ThrottleNet.

At the same time that the object is converted to a stream of bytes, readThread reads
these bytes and stores them in an auxiliary buffer. After performing the transmission,
the received data is written to the ObjectOutputStream by the writeThread at the same
time as the reconstruction of the objects is being done.

Without these threads the whole process could be performed, but large amount of data
could not be treated.

The only disadvantage of the inclusion of these threads is that they may consume some
extra time that sometimes could be saved without them. For instance, everything could
be performed without these threads if the data to be sent is less than 1024 bytes. But, in
this case, another thread may be used to know previously the amount of data to be sent.

However, the advantages of the inclusion of these threads are more remarkable:

• Many small objects can be sent in the same transmission.
• Large objects can be transmitted.

Package
LabComm

Package
SerialComm

Package
ExternalComm

class
UtilsSerial

class
writeThreadS

class
readThreadS

class
UtilsExternal

class
writeThread

class
readThread

 23

3.5 RTComm Applications

The last element missing to complete the description of the real-time communication
environment is the one located on the upper layer, the application. Applications of this
package will be called RTComm Applications.
The application described below is the first step to integrate the RTComm package in a
platform either simulated (Java3D simulator) or real (robot).
In Figure 3.6 there is a description of the application’s working procedure.
On the upper level the main application creates the object belonging to DataStructure.
After, it starts the TransmitterThread and the ReceiverThread. It is also possible to call
all the methods from the main application, but using separate threads is easier to divide
the transmitter side from the receiver side.
After establishing the connection, the transmitter thread calls the RTComm methods to
transmit the desired object. In the RTComm level, located between the application layer
and the networking layer, the externalization process is carried out with the support of
LabComm. When the information is encapsulated in a byte array, RTComm calls the
ThrottleNet methods to transmit the data.
On the receiver side, the data is received using the ThrottleNet methods. After,
RTComm calls the LabComm methods to perform the process of deserialization. When
the process is finished the information is encapsulated again in a DataStructure object as
the original one.

3.6 Summary

The real-time communications environment composed of three packages and based on a
real-time network protocol has been implemented. The code is attached in Appendix 1.
Creating an application to transmit real-time data is extremely easy and versatile using
RTComm.

 24

 Figure 3.6: Working procedure of a standard RTComm application

TRANSMITTER RECEIVER

ThrottleNetTransmitSocket ThrottleNetReceiveSocket

byte[]

byte[]

TransmitterThread ReceiverThread

RTApplication

THROTTLENET
(ThrottleSim)

connect();

transmit();

register();

receive();

Serialization

Object (DataStructure) Object (DataStructure)

byte[] byte[]

Deserilaization

(Pipe) (Pipe)

 25

4 Real-Time Communications Experiment

So far, several applications have been implemented and tested on the same computer.
But, the aim of the communication environment is to communicate between different
computers. Thus, this experiment performs this connection between two computers.
Before beginning to describe the experimental setup, its goals will be stated:

• Test the correct behaviour of the ThrottleSim protocol on a real platform.
• Evaluate the utility of the communications environment implemented in this

thesis project.
• Bring to the user the possibility of setting the connection properties through a

graphical interface.
• Analyze the time-differences between a real-time and a non real-time

transmission.

In the experiment two computers are connected through Ethernet. One computer
launches GlobeThrottle and the receiver thread, while the other computer launches the
transmitter thread.
In order to make the experiment more realistic, the transmitted data are joint positions
of the IRB6 or IRB2000 robots. The receiver thread is a Java3D Robots application that
will run once the data are received, see also [12].

Experimental equipment:

 Node1 Node 2

Role

Receiver Thread (Java3D
application) +
GlobeThrottle

Transmitter Thread

CPU AMD ATHLON XP 2000+
1.67GHz

Intel Pentium II
350MHz

Memory (RAM) 512MB 128MB

Hard disk 80GB 20GB

Operating System SuSE Linux Debian Linux

Table 4.1: Characteristics of the experimental equipment

The network connection used is an Ethernet connection with 100Mbps of speed.

 26

RTComm provides the possibility of setting some connection parameters. Some of these
connection parameters can be set by the user through a GUI (Graphical user interface).
The connection settings are: name of the connection, type of connection and period
time. Also, the robot simulated in the Java3D application can be selected (IRB6 or
IRB2000). The robot chosen is related with the connection name.
Once all the parameters are set, pushing the accept button the connection is established
and the application is launched.

Figure 4.1: Graphical User Interface of the experiment

This tiny interface is the easiest way to show the versatility of the RTComm package,
because it provides to the user simple and useful options and it prevents him or her to
deal with the trickiest parts of the transmission procedure.

4.1 Time tests

In the experiment different amounts of data have been transmitted either in real-time or
non real-time. The time tests have been performed without the GUI interface and the
Java3D simulator applications, because the goal of them is, obviously, measuring
transmission times in the different cases.
Several tests were performed as follows:

4.1.1 Test 1: Real and non real-time standard transmissions

The aim of this simple test was proving that a real-time connection and a non real-time
connection without bandwidth overload spend the same time transmitting the same
package at the same period.

Test conditions:

• No bandwidth overload
• Connections tested separately
• Same period and package size
• Same transmitted data

 27

The absolute value of the transmission time was not the main interest because it has
already been tested [7]. Instead of this, it was wanted to compare the magnitudes of the
transmission.

Results:

The obtained result was that both real and non real-time spend the same time
transmitting the same data, without overloads.
The difference between a real and non real-time transmission is the assigned bandwidth
percentage. If the connections do not exceed the assigned bandwidth, as for the
conditions of this experiment, there are not differences.
Thus, the result of the experiment is the expected.

4.1.2 Test 2: Overloaded non real-time transmissions

The aim of this test was to study the behaviour of an overloaded transmission and
compare it to a non-overloaded one.

Before explaining the methodology of the test, some concepts concerning this
experiment will be refreshed:
Non real-time traffic has a bandwidth percentage assigned. Normally, this percentage is
lower than the real-time one, because the main purpose is to fulfil the real-time
requirements. If the allocated percentage is low and the non real-time traffic exceeds its
bandwidth, period parameters will be recalculated and the transmission might become
slower. In Section 3.2.5 the way to deal with non real-time traffic is explained.

The maximum bandwidth of the connection is 100Mbit/s. The way to calculate the
connection bandwidth is:

BW = (1/period_us) · 106 · nPackets · (min_frag_data · 8 + Header size);

Where,

nPackets = size / min_frag_data

min_frag_data = 46 bits

Header size = 528 bits

With the formulas provided above the bandwidth can be calculated. Now, the parameter
(k) to calculate the bandwidth overload is defined:

k = requested BW / free BW;

If k > 1 overload exists

If k < 1 overload does not exist

When overload exists, the period is recalculated in order not to exceed the bandwidth
limitation.
Three cases with three non real-time bandwidth percentages are studied in the
experiment. Study cases are 1%, 10% and 50% of non real-time bandwidth. These

 28

percentages were chosen to create an overload in the non real-time connection in some
cases.

Test conditions:

• Non real-time transmissions
• Different packet sizes
• Overload exists intentionally
• Fixed period
• Three bandwidth percentage (1%, 10% and 50%)

The period is invariable for two reasons. Firstly, the experiment does not study the
relation between period and time, for more information about the influence of the period
over the transmission time, see [7]. Secondly, when overload exists, the period is
recalculated, then, it is better to vary a non recalculated parameter as the packet size.

Results:

Table 4.2 shows the results of the overload parameter and transmission time for each
packet size and for the three cases mentioned above.

Percentage: 1% 10% 50%

Size (bytes) Overload
Parameter

Transmission
Time (ms)

Overload
Parameter

Transmission
Time (ms)

Overload
Parameter

Transmission
Time (ms)

4000 77,952 79,67 7,796 9,33 1,55904 1,98

3500 68,992 69,50 6,8992 9,1 1,37984 1,67

3000 59,136 61,05 5,9136 7 1,18272 1,75

2500 49,28 50,50 4,928 6,33 0,9856 0,78

2000 39,424 40,58 3,9424 4,67 0,78848 0,83

1500 29,568 31,67 2,568 3,65 0,59136 0,78

1000 19,712 23,33 1,9712 2,8 0,39424 0,89

500 9,856 12,67 0,9856 1,28 0,19712 0,99

100 2,688 3,25 0,2688 0,93 0,05376 1,01

75 1,792 1,84 0,1792 1,15 0,03584 0,67

50 1,792 1,66 0,1792 1,33 0,03584 0,65

Table 4.2: Numeric test results

From the table, it is easy to see that the new period (recalculated when overload exists)
is obtained multiplying the old period and the overload constant (k).

 29

To have a better visualization of the results, Figure 4.2 shows the overload effect over
the transmission time.

Non Real-Time Overload Test

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000
Packet Size (bytes)

TT
 (m

s)

1%
10%
50%

Figure 4.2: Graphical test result

The graphic shows clearly the influence of the overload over the transmission time.
When the bandwidth percentage is lower (1%), the non real-time connection is
overloaded if the packet size (size booked) is higher than 50 bytes. When the percentage
is 10% the overloading shows up when the packet size is 500 bytes. With the 50%
bandwidth 2500 bytes can be sent without overloading.
Therefore there is a proportional relation between packet size and bandwidth percentage
given by the bandwidth equation written above.

The conclusion of this test is that an overload of the connection does increase the
transmission time. Thus, setting the percentage of dedicated bandwidth to each
transmission will be a key point.

4.1.3: Test 3: Simultaneous transmissions

The aim of this test was to study the case of two transmissions, one real-time and other
non real-time, at the same time. The goal is to know the influence of sharing the same
Ethernet card. The test launches two transmitter threads in one computer and two
receiver threads in the other.

 30

Test conditions:

• Not overload
• Fixed period and size reserved.
• Different size of transmitted packets.
• Transmissions at the same time.

The period and size reserved are fixed because the aim of the experiment is to observe
the behaviour when the transmissions are at the same time.

Results:

The table 4.3 shows the time to transmit different packets in real and non real-time at
the same time.

Transmission time(ms)
Real Time

Transmission time (ms)
Non Real Time

Size of the transmitted packet
(bytes)

2,03 2,21 100

1,84 2,03 200

2,98 2,14 300

2,34 2,23 400

2,25 2,12 500

Table 4.3: Numeric test results

As it is appreciable in the table 4.3 when there is no overload the time does not depend
on the size reserved
Looking at the table, the values are a bit higher than when these transmissions are
independents. The reason of this fact is not clear. It can be consequence of the context
change of the threads (sharing CPU) or due to the fact of sharing the same physical
level.

4.2 Conclusions of the experiment

- The performance of ThrottleSim has been tested on a real platform.

- All the options implemented in the real-time environment (Chapter 3) have been

tested. It was very useful to test the part related to the modifications of
GlobeThrottle. Thus, the code was improved and some mistakes were found and
corrected.

- The time-differences between real and non real-time have been studied. The

results of the tests show that until the overload does not exist, both connections
have the same performance. When there is overload (normally in the non real-
time) because the allocated bandwidth percentage is not enough, the
recalculation of the period makes the transmission slower.

 31

5 Robot Experiments

The experimental platform of the thesis is introduced in this chapter, as well as the
simulator where most of the experiments have been performed.
Experiments to integrate experimental and simulation tools with the real-time
communications part and the trajectory generation for industrial robots are described.
Results of the experiments are discussed as well.

5.1 Experimental platform

The experimental part of the thesis has been performed in the RobotLab (Department of
Automatic Control, Lund Institute of Technology). In this Lab there are two ABB
robots, the IRB2000 and the IRB6.

The robot used as experimental platform in this thesis is the ABB Industrial Robot IRB6
(Figure 5.1). The original closed up system has been opened up in order to provide
entire implementation control to the user. Also parts to create general interfaces were
added. Mechanics, power electronics and safety systems were preserved.
The original ABB controller has been replaced by a VME-based computer connected to
a Sun Workstation. References on the configuration [13]
The robot has five DOF. It means that given a desired position, the robot might not be
able to reach it with also a desired orientation. It can lead to problems generating
trajectories from random points because the user might not know if those points belong
to the robot workspace. The robot has two cylindrical joints (one and five) and three
revolute joints (two, three and four).

Figure 5.1: The ABB IRB6 robot

 32

5.2 Simulation Platform [12]

The Java3D based simulation platform provides Java classes to represent the graphical
visualisation and the kinematics of the robots. The different existing prototypes
implement Java 3D robots with minimum rendering and navigation facilities created
from a CAD geometry representation of the robot.
The goal of using this simulation platform is to have a portable 3D user interface where
the movement of the robot can be simulated. Thus, we can work in userspace without
compiling the Java code to C.

Kinematics of the robots is implemented accurately, but, at the moment, the dynamics
provided in the package roblet are simple and the same for both robots.

Figure 5.2: Graphical representation of the IRB6 robot

5.3 Experiments

So far, a real-time communications environment has been implemented and tested.
Furthermore, a Java-based simulation platform and the IRB6 Robot have been
presented.
In this chapter an application to integrate all the elements above-described will be
implemented.

 33

The aim of this application is to make the robot (or simulator) move following a
trajectory generated with Matlab. The communication between the computer generating
the trajectory and the robot (or simulator) should be carried out through ThrottleSim. To
use ThrottleSim with the robot, all the packages described on the thesis (Chapter 3) and,
also, ThrottleSim should be compiled using the Java2C compiler. Unfortunately, at this
stage, it is not possible to compile all these packages. Therefore, in the first version of
the demo, communications will be performed using the Java.net Socket class.

Figure 5.3: Experiment layout

Figure 5.3 shows the original design of the experiment, where the computer that
generates the trajectory transmits data to the desired target.
All the stages of the experiment are described below:

5.3.1 Matlab trajectory generation [14] [15]

A trajectory is a path with a velocity profile and a time stamp. The path is the position
reference for each time stamp. When a robot is moving between two points, a path is
needed in order to control that all the joints are inside their working area during the
movement. To have the complete control of the movement a velocity profile is
requested as well. With these three elements the trajectory is generated.

To implement the path and trajectory generation, Matlab functions provided by the Path
Generation Toolbox [16] will be used.

 34

The first step to generate the trajectory is the path generation in Cartesian space. In the
application implemented a three point linear motion is performed, then, a zone of radius
z is defined around the intermediate point in order to make the path smooth. A
fundamental requirement when constructing the zone path is that the resulting path
should be continuous with continuous derivative. An example of a path is shown in
Figure 5.5.

Figure 5.4: Example of a linear trajectory defined from three points

The second part of the calculation is the transformation from Cartesian path to Joint
space using the kinematics model. The path in joint space is represented using cubic
splines.
Once the path is generated, the next step is the generation of an optimized trajectory. To
be optimum the path should be done in the minimum time and velocity and acceleration
should remain within the specified limits.

As it is said before, the generation of the trajectory is done in Matlab and the variables
obtained (position reference, velocity reference and time) are stored in MAT files.
Matlab functions provided by the Path Generation Toolbox give many possibilities to
generate different trajectories for different robots (kinematics functions can be
modified).
In this application only linear trajectories are performed because the aim of the
experiment is not the complexity of the trajectory, but the fact of the robot following a
suitable path.

 35

The IRB6 robot has five degrees of freedom. It means that it is not able to reach all the
points in the workspace with a certain orientation. The physical lengths of the robot
links also limit the achievable workspace. That is something to consider in the
generation of trajectories. If the selected points are out of the robot range, the trajectory
will not be created properly.
Therefore, the points have to be chosen carefully in order to get a result.

5.3.2 Graphical User Interface (GUI)

As it is said in the last section (Matlab trajectory generation), a trajectory is defined
with three points (start point , via point and end point). In the experiment these three
points are chosen by the user through a Matlab Graphical User Interface [17] (Figure
5.5).

Figure 5.5: Graphical User Interface

On the Linear Trajectory frame the user can choose the points (initial, intermediate and
end point) that define the path to follow. After entering the points, the Calculate
Trajectory button calls the Matlab file that generates a position reference, velocity
reference and time vectors.
The frame platform gives the possibility for the user to choose the platform to run the
application on. The user can choose between the Java3D simulation or real execution
with the IRB6 Robot.
The Send button calls a Matlab file that loads the trajectory parameters and sends them
to the robot server or the Java3D machine.
The Reset button sets all the parameters to their original values. The original values of
the points are not zero because the IRB6 robot is not able to reach this position. Instead,
other points that the robot can reach are chosen.

 36

5.3.3 Matlab – Java interface [17]

A Matlab-Java interface is required in order to call Java from Matlab files. These Java
calls can be referred either to a Java class created by us or to standard Java classes. The
first version of the experiment has been performed using the java.net.Socket class
instead of the RTComm classes, because the integration of the Socket to Matlab is
easier. The implementation of the Matlab-Java interface for the packages RTComm and
LabComm has not been possible due to the lack of time. Calls to the DataStructure were
completed properly.

5.3.4 Control

Position control is performed for both the real robot system and for the simulator. The
controller chosen has been a simple proportional (P) controller. This experiment is not
focused on the control part, but, of course, it is necessary in order to have a stable
behaviour.

5.3.5 Results

The Matlab trajectory generation has been tested for both robots in simulation with
satisfactory results. But, this test could not achieve experimental results over the robot
platform, because it was not possible to compile the Socket Class (java.lang.Socket).
Neither the RTComm (ThrottleSim) has been compiled. Hence, communication
between robots and the machine, where trajectory is generated, were not possible.
However, all the programs to transmit (sender and receiver sides) information to the
robots are implemented in Java.
Also, a Graphical User Interface has been designed to support the trajectory generation
and the communication for the simulator and the robots.
Finally, as it is said in the Matlab-Java interface section, Matlab calls to RTComm
methods should be improved in the future. At this stage, only the DataStructure package
can be called from Matlab.

 37

6 Conclusions and Future Work

6.1 Summary

From the beginning, the thesis was dived into two parts: Java based real-time
communications for robot systems and real-time control of industrial robots. These parts
are strongly related. The projects started with the part concerning real-time
communications.

The original goal of the thesis was to design and set up communication for a robot
system using ThrottleNet (ThrottleSim). To achieve this objective, the implementation
of a portable set of tools to support the real-time transmissions of control data was
necessary. Since all the elements above-mentioned would be implemented in Java, the
compilation of the entire communication environment, using the Java to C compiler,
was another key point.

The starting point of the thesis was the study of the ThrottleNet-ThrottleSim network
protocol [7] and the LabComm communication package [11] over TCP/UDP. To
understand the work done so far and to implement a solution for the communication
problem, the comprehension of the following concepts has been a key point:

• Real-time systems
• Real-time threading and synchronization
• Java in real-time
• Java serialization

The results of the implementations are a Java based packages laying over the
ThrottleSim network protocol. These packages cover all the range of real and non real-
time transmissions. And the sum of all of them is a real-time communication
environment.

The second part of the thesis concerns the real-time control of the robots. The starting
points of the second stage were the works related with real-time control in a Java
platform and the experiences with trajectory generation for industrial robots.

The infrastructure for a further integration of robot control and communications in real-
time is set up. Some problems related to Java to C compilation and Matlab-Java
interfaces might be solved to make further progress in this field.

6.2 Future work

The topic of this Master thesis concerns different areas within the real-time systems.
Furthermore, real-time systems have many aspects to investigate. Therefore, the future
work is wide open.
There are two sources for the future work. The first one includes all the parts of this
thesis not yet implemented because of lack of time or practical problems. The second
source to suggest for future implementations are the ideas which came up during the

 38

project. Normally these ideas are related to alternative implementations and
improvements of the topics treated.
Firstly, the tasks that were considered as a goal or could have been considered as it
during the development of the project will be described:

• Compile with the Java to C compiler all the packages implemented within the
project, as well as ThrottleSim. Compilation of all these elements was tried
during the project, but, at this stage, it is not possible to perform this translation-
compilation. Several bugs were fixed, but there are still problems with the
compiler concerning connections through sockets (java.net.Socket).

• Implement a Matlab-Java interface in order to transmit the Matlab generated

trajectory using RTComm (ThrottleSim). This interface should be able to
encapsulate the Matlab generated data in the Java-based data structure, establish
the connection and transmit data using RTComm (ThrottleSim) methods.

• Improve the Java controller for the Irb6 robot. At this stage, the synchronization

of the joints and the basic position control are done. But, more complex control
modes could be performed. This software already exists, written in Modula-2,
and should be ported to Java.

• Implement a dynamics class for the Java3D simulator in order to perform

velocity control. Presently a very simple dynamics model is implemented; the
same for both robots.

The proposals of future work explained below have come up during the development of
the thesis:

• Improve the synchronization in the serialization process. The fact that the
methods writeObject and readObject can not be controlled produces
synchronization problems. These problems can be solved, but a delay in the
process is the consequence.

• Design a method to dynamically book the percentage of bandwidth dedicated to

the connection (real or non real-time). Presently this booking is performed
statically through a constant of the GlobeThrottle class.

• Solve the packet loss problem of ThrottleNet and ThrottleSim when sending

large amount of data.

6.3 Conclusions

From the beginning the thesis was meant to be more focused on the control of the
industrial robots using compiled Java, fulfilling real-time demands. But, the time spent
developing and testing the communication system and the practical problems of
compilation changed the orientation of the thesis towards the real-time communications
area. Consequently, the main achievements of the work are related to the real-time
communications in Java. However the control part has been treated as well and a solid
basis to develop real-time robot control applications has been set up.

 39

The achievements of the thesis are the following:

A Java-based real-time communications environment. The most important features
of the environment are the simplicity, the portability and the flexibility. Now, it is
possible to perform a real-time transmission over ThrottleSim just calling a short
number of simple methods. Also, it is possible to carry out real and non real-time
transmissions separately or at the same time, allocating a percentage of the bandwidth to
each transmission type.
A Java-based data structure can cover most of the message structures to be sent in a
robot system context. And the implemented serialization mechanisms provide the
possibility of sending large structures in the same transmission.

The infrastructure to set up the communications with the robots or simulator.
Software to send and receive data over the ThrottleNet-ThrottleSim protocol has been
implemented. These programs could not be tested on the real platform (robot) due to
compiler problems.
Also, the synchronization and control structures for the ABB IRB6 robot have been
improved.

Attempts to solve practical problems, especially in the robot experiments (Chapter 5)
were done until the deadline of the project.

I hope this thesis will support a step ahead in the research in real-time communications
and control carried out at Lund Institute of Technology (LTH).

 40

Bibliography

[1] Juan Periset, Portable Robot Programming. Master’s Thesis Report,
Department of Computer Science. Lund Institute of Technology, Sweden, 2005

[2] Karl-Erik Årzén, Real-Time Control Systems. Lecture notes, 2004

[3] Anders Nilsson. Compiling Java for Real-Time Systems. Licentiate Thesis,
Department of Computer Science, Lund Institute of Technology, Sweden, May 2004.

[4] Görel Hedin, Eva Magnusson. JastAdd: an aspect-oriented compiler construction
system. Department of Computer Science, Lund University, Lund, Sweden

[5] Mark Roulo, Java’s Three Types of Portability
http://www.javaworld.com

[6] Anders Blomdell, Karl-Erik Årzén, Anders Martinson. ThrottleNet: Hard Real-Time
Communication Using Switched Ethernet. Department of Automatic Control.
Lund Institute of Technology, Sweden

[7] Daniel Nyberg, Patricia Grudziecka. Real-Time Network Communication in Java. .
Master’s Thesis Report, Department of Computer Science, Lund Institute of
Technology, Sweden, 2004.

[8] Java platform website:
http://java.sun.com

[9] Elliote Rusty Harold. Java I/O O’Reilly & Associates, 1999.

[10] MatComm. Implemented by Anders Blomdell. Department of Automatic Control.
Lund Institute of Technology, Sweden.

[11] Samuel Kasper. Distributed Real Time Robot Vision in Java. Master’s Thesis
Report, Department of Automatic Control. Lund Institute of Technology, Sweden.
Winter 2003/2004

[12] Mathias Haage. J3DSimulator: Flexible Interaction with Productive Robots in
Partly Unstructured Environments. Licentiete thesis, Department of Computer Science
Lund Institute of Technology, 2004.

[13] Rolf Braun, Lars Nielsen and Klas Nilsson. Reconfiguring an AESA IRB-6 Robot
System for Control Experiments. Department of Automatic Control. Lund Institute of
Technology, October 1990

[14] M. Nyström, M. Norrlöf: Path generation for industrial robots.
Department of Electrical Engineering. Linköping University, Sweden, 2004

[15] Chin Yuan Chong. Cooperative Robots. . Master’s Thesis Report,
Department of Automatic Control. Lund Institute of Technology, Sweden. March 2005

 41

[16] M. Nyström, M. Norrlöf: PGT - A path generation toolbox for Matlab(v0.1).
Department of Electrical Engineering, Linköping University, Sweden, 2004

[17] Mathworks Homepage:
http://www.mathworks.com

Complementary Bibliography:

Johan Rix. Deployment of embedded controllers on a Linux-based real-time Java
platform . Master’s Thesis Report. Department of Computer Science. Lund Institute of
Technology, Sweden, 2004.

Johan Rix. Controlling IRB6 with Java Instructions paper. Department of Automatic
Control, Lund Institute of Technology, Sweden, 2004.

Eclipse Project Homepage
http://www.eclipse.org

Dept. of Automatic Control, LTH, Homepage:
http://www.control.lth.se

Dept. of Computer Science, LTH, Homepage:
http://www.cs.lth.se

LTH Homepage :
http://www.lth.se

 42

Appendix: Implementations

A.1 DataStructure package

/*************************************/
 * DataStructure.LabMessage *
/************************************/

package DataStructure;

/**
 * This class is the superclass for LabObject and GeneralObject.
 * LabObject is the superclass for LabMatrix and LabStruct.
 * GeneralObject can be used as the superclass for general objects structs.
 * @version
 * @author
 */

public abstract class LabMessage implements Serializable {}

/*************************************/
 * DataStructure.GeneralObject *
/************************************/

package DataStructure;

/**
 * This class is the superclass for general objects structures.
 * @version
 * @author
 */

public abstract class GeneralObject extends LabMessage {}

/*************************************/
 * DataStructure.LabObject *
/************************************/

package DataStructure;

/**
 * This class is the superclass for LabMatrix and LabStruct.
 * A future version could also include arrays.
 * LabMatrix is the superclass for matrix classes of type double,
 * float, char, int and String.
 * LabStruct can be used as the superclass for custom structs.
 * @version
 * @author
 */

public abstract class LabObject extends LabMessage {
}

/*************************************/
 * DataStructure.LabObject *
/************************************/

package DataStructure;

/**
 * This class provides the fields and methods for a more general
 * datastructure than just matrices. Since it implements the
 * externalizable interface, it can be written to a stream and also
 * read from a stream.
 * This class is also the superclass for further even more specific
 * structs that may be used in combination with specific softwarepackages.
 * @version
 * @author
 */
public class LabStruct extends LabObject implements Externalizable {
 public static final String type_integer="int";
 public static final String type_float="float";

 43

 public static final String type_string="string";
 public static final String type_char="char";
 public static final String type_double="double”;
 private int range;
 private UtilsExternal e;

 /**
 *Mandatory no argument
 */
 public LabStruct(){}

 public LabStruct(int i){
 range=i;
 }

 Attribute[] field;
 /**
 *Set the UtilsExternal param
 *@param e
 */
 public void setUtils(UtilsExternal e){
 this.e=e;
 }
 public UtilsExternal getUtils(){
 return e;
 }

 /**
 * Gets the type of the position i .
 * @return The attribute`s type of the position i
 */
 public String getType(int i) {
 return field[i].getType();
 }

 /*
 * Gets the value field of the position i.
 * @return The attribute`s value
 */
 public LabObject getValue(int i) {
 return field[i].getValue();
 }

 /**
 * Sets the type and value of the position i.
 * @param type The type of the attribute
 * @param val The value of the attribute
 */
 public void setAttribute(String type, LabObject val,int i) {
 if(field==null){
 field=new Attribute[range];
 for (int j=0;j<range;j++)
 field[j]=new Attribute();
 }
 field[i].SetAttribute(type,val);
 }

 /**
 * This function is used to save the state of the object. Since the class
 * implements Externalizable, this method must be implemented. Only the identity
 * of the class is automatically saved by the stream.
 * @serialData Write field-array field as object
 * @param out The ObjectOutput
 * @throws IOException
 */
 public void writeExternal(ObjectOutput out) throws IOException {
 if(e!=null){
 e.writeOutInt(range);
 }
 else{
 out.writeInt(range);
 }
 for(int i=0;i<field.length;i++){
 field[i].writeExternal(out);
 }
 }

 44

 /**
 * This mandatory method reads in the data that was written out
 * in the writeExternal method. It restores its own fields. These fields
 * must be in the same order and type as they were written out.
 * @param in The ObjectInput
 * @throws IOException,ClassNotFoundException
 */
 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException
{
 range=in.readInt();
 field=new Attribute[range];
 for (int j=0;j<range;j++)
 field[j]=new Attribute();
 for(int i=0;i<field.length;i++)
 field[i].readExternal(in);
 }

 /**
 *Give the range of the Attribute array
 */
 public int getRange(){
 return field.length;
 }
 private static final long serialVersionUID = 8563170928982865348L;

 class Attribute implements Externalizable{
 private String type;
 private LabObject value;

 public Attribute(){}

 /**
 * This function is used to save the state of the object. Since the class
 * implements Externalizable, this method must be implemented. Only the identity
 * of the class is automatically saved by the stream.
 * @param out The ObjectOutput
 * @throws IOException
 */
 public void writeExternal(ObjectOutput out) throws IOException {
 if(e!=null){
 e.writeOutObject(type);
 e.writeOutObject(value);
 }
 else{
 out.writeObject(type);
 out.writeObject(value);
 }
 }

 /**
 * This mandatory method reads in the data that was written out
 * in the writeExternal method. It restores its own fields. These fields
 * must be in the same order and type as they were written out.
 * @param in The ObjectInput
 * @throws IOException,ClassNotFoundException
 */

 public void readExternal(ObjectInput in) throws IOException,
ClassNotFoundException {

 type=(String)in.readObject();
 value=(LabObject)in.readObject();
 }

 /**
 * @return the type
 */
 public String getType(){
 return type;
 }

 /**
 * @return the value
 */
 public LabObject getValue(){
 return value;
 }

 45

 /**
 *@parameter name the type of the object
 * @parameter val the value of the object
 */
 public void SetAttribute(String name, LabObject val){
 type=name;
 value=val;
 }
 }
}

/*************************************/
 *DataStructure.LabMatrix.LabMatrix *
/************************************/

package DataStructure.LabMatrix;

/**
 * This abstract class is the superclass for the following classes:
 * LabCharMatrix, LabFloatMatrix, LabDoubleMatrix,
 * LabIntMatrix and LabStringMatrix. It extends LabObject.
 * @version
 * @author
 */

public abstract class LabMatrix extends LabObject implements Serializable {
 public LabMatrix() {}

 public LabMatrix(int rows, int cols) {
 super();
 this.rows = rows;
 this.cols = cols;
 }

 /**
 * Allows access to the protected number of rows of the matrix
 * @return The number of rows
 */
 public int getRows() {
 return rows;
 }

 /**
 * Allows access to the protected number of cols of the matrix
 * @return The number of cols
 */
 public int getCols() {
 return cols;
 }

 /**
 * The print method prints a matrix to the standard output.
 */
 public void printMatrix() {}

 protected int rows = 0;
 protected int cols = 0;
}

/***************************************/
 DataStructure.LabMatrix.LabCharMatrix
/***************************************/
package DataStructure.LabMatrix;

/**
 * This class provides methods to handle the elements of a
 * 2 dimensional matrix consisting of char elements.
 * @version
 * @author
 */

public class LabCharMatrix extends LabMatrix implements Externalizable{
 /**
 * Mandatory no-arg constructor
 */
 public LabCharMatrix() {super();}

 46

 public LabCharMatrix(int rows, int cols) {
 super(rows,cols);
 matrix = new char[rows][cols];
 }

 /**
 * Allows access to all elements of the matrix.
 * @param row The row of the matrix
 * @param col The column of the matrix
 * @return The element with index row, col
 */
 public char getElement(int row, int col) {
 return matrix[row][col];
 }

 /**
 * Allows to set the elements of the matrix.
 * @param row The row of the matrix
 * @param col The column of the matrix
 * @param value The value to be set
 */
 public void setElement(int row, int col, char value) {
 matrix[row][col] = value;
 }

 /**
 * Prints the matrix to the standard output.
 */
 public void printMatrix() {
 int i=0;
 for (int r=0; r<rows; r++) {
 for (int c=0; c<cols; c++) {
 i++;
 System.out.print(getElement(r,c)+" ");
 }
 System.out.println();
 }
 }

 /**
 * Builds the matrix given a datavector.
 * @param data The datavector to be converted
 */
 public void buildMatrix(char[] data) {
 int i=0;
 for (int r=0; r<rows; r++) {
 for (int c=0; c<cols; c++) {
 setElement(r,c,data[i]);
 i++;
 }
 }
 }

 /**
 * This function is used to save the state of the object. Since the class
 * implements Externalizable, this method must be implemented. Only the identity
 * of the class is automatically saved by the stream.
 * @serialData Write rows and cols field as integer and then write
 * the matrix field as an object.
 * @param out The ObjectOutput
 * @throws IOException
 */
 public void writeExternal(ObjectOutput out) throws IOException {
 if(e!=null){
 e.writeOutInt(rows);
 e.writeOutInt(cols);
 e.writeOutObject(matrix);
 }

 else{
 out.writeInt(rows);
 out.writeInt(cols);
 out.writeObject(matrix);
 }
 }

 47

 /**
 * This mandatory method reads in the data that was written out
 * in the writeExternal method. It restores its own fields. These fields
 * must be in the same order and type as they were written out.
 * @param in The ObjectInput
 * @throws IOException,ClassNotFoundException
 */
 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException
{
 rows = (int)in.readInt();
 cols =(int)in.readInt();
 matrix = (char[][])in.readObject();
 }
 /**
 * Set the UtilsExternal
 * @param The UtilsExternal
 */
 public void setUtils(UtilsExternal e){
 this.e=e;
 }

 /**
 * get the UtilsExternal attribute e
 * @return e the UtilsExternal variable
 */
 public UtilsExternal getUtils(){
 return e;
 }

 private UtilsExternal e;

 private static final long serialVersionUID = -484641641335713325L;
 private char[][] matrix;
}

/***************************************/
 DataStructure.LabMatrix.LabDoubleMatrix
/***************************************/
package DataStructure.LabMatrix;

/**
 * This class provides methods to handle the elements of a
 * 2 dimensional matrix consisting of double elements.
 * @version
 * @author
 */

public class LabDoubleMatrix extends LabMatrix implements Externalizable {
 /**
 * Mandatory no-arg constructor
 */
 public LabDoubleMatrix() {super();}

 public LabDoubleMatrix(int rows, int cols) {
 super(rows,cols);
 matrix = new double[rows][cols];
 }

 /**
 * Allows access to all elements of the matrix.
 * @param row The row of the matrix
 * @param col The column of the matrix
 * @return The element with index row, col
 */
 public double getElement(int row, int col) {
 return matrix[row][col];
 }

 /**
 * Allows to set the elements of the matrix.
 * @param row The row of the matrix
 * @param col The column of the matrix
 * @param value The value to be set
 */
 public void setElement(int row, int col, double value) {
 matrix[row][col] = value;

 48

 }

 /**
 * Prints the matrix to the standard output.
 */
 public void printMatrix() {
 int i=0;
 for (int r=0; r<rows; r++) {
 for (int c=0; c<cols; c++) {
 i++;
 System.out.print(getElement(r,c)+" ");
 }
 System.out.println();
 }
 }

 /**
 * Builds the matrix given a datavector.
 * @param data The datavector to be converted
 */
 public void buildMatrix(double[] data) {
 int i=0;
 for (int r=0; r<rows; r++) {
 for (int c=0; c<cols; c++) {
 setElement(r,c,data[i]);
 i++;
 }
 }
 }

 /**
 * This function is used to save the state of the object. Since the class
 * implements Externalizable, this method must be implemented. Only the identity
 * of the class is automatically saved by the stream.
 * @serialData Write rows and cols field as integer and then write
 * the matrix field as an object.
 * @param out The ObjectOutput
 * @throws IOException
 */
 public void writeExternal(ObjectOutput out) throws IOException {
 if(e!=null){
 e.writeOutInt(rows);
 e.writeOutInt(cols);
 e.writeOutObject(matrix);
 }

 else{
 out.writeInt(rows);
 out.writeInt(cols);
 out.writeObject(matrix);
 }
 }

 /**
 * This mandatory method reads in the data that was written out
 * in the writeExternal method. It restores its own fields. These fields
 * must be in the same order and type as they were written out.
 * @param in The ObjectInput
 * @throws IOException,ClassNotFoundException
 */
 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException
{
 rows = in.readInt();
 cols = in.readInt();
 matrix = (double[][])in.readObject();
 }

 /**
 * Set a UtilsExternal param
 * @param e
 */
 public void setUtils(UtilsExternal e){
 this.e=e;
 }

 49

 /**
 * Get the UtilsExternal
 * @return e the UtilsExternal attribute
 */
 public UtilsExternal getUtils(){
 return e;
 }

 private UtilsExternal e;
 private static final long serialVersionUID = 3924761579548860791L;
 private double[][] matrix;
}
/***************************************/
 *DataStructure.LabMatrix.LabFloatMatrix *
/***************************************/
package DataStructure.LabMatrix;

/**
 * This class provides methods to handle the elements of a
 * 2 dimensional matrix consisting of float elements.
 * @version
 * @author
 */

public class LabFloatMatrix extends LabMatrix implements Externalizable {
 /**
 * Mandatory no-arg constructor
 */
 public LabFloatMatrix() {super();}

 public LabFloatMatrix(int rows, int cols) {
 super(rows,cols);
 matrix = new float[rows][cols];
 }

 /**
 * Allows access to all elements of the matrix.
 * @param row The row of the matrix
 * @param col The column of the matrix
 * @return The element with index row, col
 */
 public float getElement(int row, int col) {
 return matrix[row][col];
 }

 /**
 * Allows to set the elements of the matrix.
 * @param row The row of the matrix
 * @param col The column of the matrix
 * @param value The value to be set
 */
 public void setElement(int row, int col, float value) {
 matrix[row][col] = value;
 }

 /**
 * Prints the matrix to the standard output.
 */
 public void printMatrix() {
 int i=0;
 for (int r=0; r<rows; r++) {
 for (int c=0; c<cols; c++) {
 i++;
 System.out.print(getElement(r,c)+" ");
 }
 System.out.println();
 }
 }

 /**
 * Builds the matrix given a datavector.
 * @param data The datavector to be converted
 */
 public void buildMatrix(float[] data) {
 int i=0;
 for (int r=0; r<rows; r++) {

 50

 for (int c=0; c<cols; c++) {
 setElement(r,c,data[i]);
 i++;
 }
 }
 }

 /**
 * This function is used to save the state of the object. Since the class
 * implements Externalizable, this method must be implemented. Only the identity
 * of the class is automatically saved by the stream.
 * @serialData Write rows and cols field as integer and then write
 * the matrix field as an object.
 * @param out The ObjectOutput
 * @throws IOException
 */
 public void writeExternal(ObjectOutput out) throws IOException {
 if(e!=null){
 e.writeOutInt(rows);
 e.writeOutInt(cols);
 e.writeOutObject(matrix);
 }
 else{
 out.writeInt(rows);
 out.writeInt(cols);
 out.writeObject(matrix);
 }
 }

 /**
 * This mandatory method reads in the data that was written out
 * in the writeExternal method. It restores its own fields. These fields
 * must be in the same order and type as they were written out.
 * @param in The ObjectInput
 * @throws IOException,ClassNotFoundException
 */
 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException
{
 rows = in.readInt();
 cols = in.readInt();
 matrix = (float[][])in.readObject();
 }

 /**
 * Set a UtilsExternal param
 * @param e
 */
 public void setUtils(UtilsExternal e){
 this.e=e;
 }

 /**
 * Get the UtilsExternal
 * @return e the UtilsExternal attribute
 */
 public UtilsExternal getUtils(){
 return e;
 }
 private UtilsExternal e;
 private static final long serialVersionUID = 1480412143908926824L;
 private float[][] matrix;
}

/***************************************/
 *DataStructure.LabMatrix.LabIntMatrix *
/***************************************/
package DataStructure.LabMatrix;

/**
 * This class provides methods to handle the elements of a
 * 2 dimensional matrix consisting of integer elements.
 * @version
 * @author
 */
public class LabIntMatrix extends LabMatrix implements Externalizable {

 51

 /**
 * Mandatory no-arg constructor
 */
 public LabIntMatrix() {super();}

 public LabIntMatrix(int rows, int cols) {
 super(rows,cols);
 matrix = new int[rows][cols];
 }

 /**
 * Allows access to all elements of the matrix.
 * @param row The row of the matrix
 * @param col The column of the matrix
 * @return The element with index row, col
 */
 public int getElement(int row, int col) {
 return matrix[row][col];
 }

 /**
 * Allows to set the elements of the matrix.
 * @param row The row of the matrix
 * @param col The column of the matrix
 * @param value The value to be set
 */
 public void setElement(int row, int col, int value) {
 matrix[row][col] = value;
 }

 /**
 * Prints the matrix to the standard output.
 */
 public void printMatrix() {
 int i=0;
 for (int r=0; r<rows; r++) {
 for (int c=0; c<cols; c++) {
 i++;
 System.out.print(getElement(r,c)+" ");
 }
 System.out.println();
 }
 }

 /**
 * Builds the matrix given a datavector.
 * @param data The datavector to be converted
 */
 public void buildMatrix(int[] data) {
 int i=0;
 for (int r=0; r<rows; r++) {
 for (int c=0; c<cols; c++) {
 setElement(r,c,data[i]);
 i++;
 }
 }
 }

 /**
 * This function is used to save the state of the object. Since the class
 * implements Externalizable, this method must be implemented. Only the identity
 * of the class is automatically saved by the stream.
 * @serialData Write rows and cols field as integer and then write
 * the matrix field as an object.
 * @param out The ObjectOutput
 * @throws IOException
 */
 public void writeExternal(ObjectOutput out) throws IOException {
 if(e!=null){
 e.writeOutInt(rows);
 e.writeOutInt(cols);
 e.writeOutObject(matrix);
 }
 else{
 out.writeInt(rows);
 out.writeInt(cols);

 52

 out.writeObject(matrix);
 }
 }

 /**
 * This mandatory method reads in the data that was written out
 * in the writeExternal method. It restores its own fields. These fields
 * must be in the same order and type as they were written out.
 * @param in The ObjectInput
 * @throws IOException,ClassNotFoundException
 */
 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException
{
 rows = in.readInt();
 cols = in.readInt();
 matrix = (int[][])in.readObject();
 }

 /**
 * Set a UtilsExternal param
 * @param e
 */
 public void setUtils(UtilsExternal e){
 this.e=e;
 }

 /**
 * Get the UtilsExternal
 * @return e the UtilsExternal attribute
 */
 public UtilsExternal getUtils(){
 return e;
 }
 private UtilsExternal e;
 private static final long serialVersionUID = -955999251175728919L;
 private int[][] matrix;
}
/**/
 *DataStructure.LabMatrix.LabStringMatrix *
/***/
package DataStructure.LabMatrix;

/**
 * This class provides methods to handle the elements of a
 * 2 dimensional matrix consisting of integer elements.
 * @version
 * @author
 */

public class LabStringMatrix extends LabMatrix implements Externalizable {
 /**
 * Mandatory no-arg constructor
 */
 public LabStringMatrix() {super();}

 public LabStringMatrix(int rows, int cols) {
 super(rows,cols);
 matrix = new String[rows][cols];
 }

 /**
 * Allows access to all elements of the matrix.
 * @param row The row of the matrix
 * @param col The column of the matrix
 * @return The element with index row, col
 */
 public String getElement(int row, int col) {
 return matrix[row][col];
 }

 /**
 * Allows to set the elements of the matrix.
 * @param row The row of the matrix
 * @param col The column of the matrix
 * @param value The value to be set
 */
 public void setElement(int row, int col, String value) {

 53

 matrix[row][col] = value;
 }

 /**
 * Prints the matrix to the standard output.
 */
 public void printMatrix() {
 int i=0;
 for (int r=0; r<rows; r++) {
 for (int c=0; c<cols; c++) {
 i++;
 System.out.print(getElement(r,c)+" ");
 }
 System.out.println();
 }
 }

 /**
 * Builds the matrix given a datavector.
 * @param data The datavector to be converted
 */
 public void buildMatrix(String[] data) {
 int i=0;
 for (int r=0; r<rows; r++) {
 for (int c=0; c<cols; c++) {
 setElement(r,c,data[i]);
 i++;
 }
 }
 }

 /**
 * This function is used to save the state of the object. Since the class
 * implements Externalizable, this method must be implemented. Only the identity
 * of the class is automatically saved by the stream.
 * @serialData Write rows and cols field as integer and then write
 * the matrix field as an object.
 * @param out The ObjectOutput
 * @throws IOException
 */
 public void writeExternal(ObjectOutput out) throws IOException {
 if(e!=null){
 e.writeOutInt(rows);
 e.writeOutInt(cols);
 e.writeOutObject(matrix);
 }
 else{
 out.writeInt(rows);
 out.writeInt(cols);
 out.writeObject(matrix);
 }
 }

 /**
 * This mandatory method reads in the data that was written out
 * in the writeExternal method. It restores its own fields. These fields
 * must be in the same order and type as they were written out.
 * @param in The ObjectInput
 * @throws IOException,ClassNotFoundException
 */
 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException
{
 rows = in.readInt();
 cols = in.readInt();
 matrix = (String[][])in.readObject();
 }

 /**
 * Set a UtilsExternal param
 * @param e
 */
 public void setUtils(UtilsExternal e){
 this.e=e;
 }

 54

 /**
 * Get the UtilsExternal
 * @return e the UtilsExternal attribute
 */
 public UtilsExternal getUtils(){
 return e;
 }
 private UtilsExternal e;
 private static final long serialVersionUID = -2112330479511158998L;
 private String[][] matrix;
}

A.2 RTComm package

/***************************/
 * RTComm.Socket *
/**************************/
package RTComm;

/**
 * The <code>Socket</code> class implements a socket used
 * to send objects through ThrottleNet. Socket is used in both, real and non-real time
transmissions.
 * @author
 * @version
 * @see ThrottleNetSocket
 */
abstract class Socket {
 /**
 * The utility needed for converting serialized objects to
 * arrays of bytes and vice versa.
 * utilsS is used to calculate the size of the largest object that can be sent
 * fulfilling real time restrictions.
 */
 protected UtilsSerial utilsS;

 /**
 * The utility needed for converting serialized objects to
 * arrays of bytes and vice versa.
 * utilsC is used to send and receive serializable objects.
 */

 protected UtilsSerial utilsC;

 /**
 * The name of the connection between two nodes.
 */
 protected String name;

 /**
 * The amount of data to be sent in bytes.
 */
 protected int size;

 /**
 * The object whose size it will the minimum that it can be send it.
 */
 protected Object besteffort;

 /**
 * The time between two packets in microseconds.
 *
 */
 protected long period_us;

 /**
 * Constructs a Socket.
 * @param name the name of the connection.
 * @param period_us the time between two packets in microseconds.
 */

 55

 public Socket(String name,int period_us)throws IOException {
 this.name = name;
 utilsS=new UtilsSerial();
 utilsC=new UtilsSerial();
 this.period_us = period_us;
 }

 /**
 * Constructs a Socket.
 * @param name the name of the connection.
 * @param besteffort the smaller object which can be send.
 * @param period_us the time between two packets in microseconds.
 */

public Socket(String name, Object besteffort, int period_us)throws IOException{
 this.name = name;
 utilsS=new UtilsSerial();
 this.size=utilsS.getObjectSize((Serializable) besteffort);
 this.period_us = period_us;
 }
}

/***************************/
 * RTComm.RTSocke *
/**************************/

package RTComm;

/**
 * The <code>RTSocket</code> class implements a socket used
 * to send objects through ThrottleNet, fulfilling temporal restrictions.
 * @author
 * @version
 * @see ThrottleNetSocket
 */
abstract class RTSocket extends Socket{

 /**
 * The utility needed for converting externalized objects to
 * arrays of bytes and vice versa.
 */
 protected UtilsExternal utilsE;

 /**
 * The amount of data to be sent in bytes. Calculated from the largest object that
can
 * be sent fulfilling real time restrictions.
 *
 */
 protected int size

 /**
 * Constructs a RTsocket.
 * @param name the name of the connection.
 * @param objsize the larget object (LabObject) that can be sent fulfilling
temporal restrictions.
 * @param period_us the time between two packets in microseconds.
 *
 */
 public RTSocket(String name, LabObject objsize,int period_us)
 throws IOException {
 super(name,period_us);
 utilsE = new UtilsExternal();
 this.size=utilsS.getObjectSize(objsize);
 }
}

/***************************/
 * RTComm.RTTransmit *
/**************************/

package RTComm;

/**
* The <code>RTTransmit</code> class describes an intermediate layer, between the
application and ThrottleNet, for
* transmiting LabObject. The class implements methods to connect to GlobeThrottle and

 56

* transmit the externalized or serialized data structure.
* It uses an external package, LabComm, to avoid the size limitation of ObjectInput and
ObjectOutput.
* @author
*/

public class RTTransmit extends RTSocket{
 private int dead_line;
 private byte[] b;
 private LabStruct labstr;
 private ThrottleNetTransmitSocket tts;

 /**
 * Constructs and initializes a RTTransmit .
 * @param name the name of the connection.
 * @param size the largest object (LabObject) that can be sent to fulfill the
real time restrictions.
 * @param period_us the time between two packets in microseconds.
 * @exception IOException if an I/O error occurs.
 */
 public RTTransmit(String name, LabObject size,int period_us)throws IOException {
 this(name,size, period_us,Integer.MAX_VALUE);
 }

 /**
 * Constructs and initializes a RTTransmit .
 * @param name the name of the connection.
 * @param size the largest object (LabObject) that can be sent to fulfill the
real time restrictions.
 * @param period_us the time between two packets in microseconds.
 * @param dead_line time to deliver each packet in microseconds.
 * @exception IOException if an I/O error occurs.
 */
 public RTTransmit(String name, LabObject size,int period_us,int dead_line) throws
IOException{
 super(name,size,period_us);
 this.dead_line=dead_line;
 this.tts= new ThrottleNetTransmitSocket();
 }

 /**
 * Opens a connection with the specified properites.
 * @exception IOException if an I/O error occurs.
 */
 public void connect ()throws IOException{

// connects to GlobeThrottle, if the connection is not available, waits and tries
again.

 tts.connect(name,size,(int)period_us,Utils.type_realtime);
 }

 /**
 * Transmits an externalized object over ThrottleNet.
 * @param exter The externalizable object which is transmited
 */

 public void transmit(Externalizable exter){
 //Reads from the PipedInputStream and save all the information in a byte array,
 //At the same time PipedOutputStream is filled up using externalize method.
 try{
 ReadThread rt;
 UtilsExternal utilsE=new UtilsExternal();
 rt=new ReadThread(utilsE);
 LabStruct l=(LabStruct)exter;
 l.setUtils(utilsE);
 rt.start();
 utilsE.externalize(l);
 l.getUtils().automaticwakeup();
 // Writes in the byte[] b the array which has been created in ReadThread
 boolean data =true;
 while(data){
 if(utilsE.available()==0)
 data=false;
 }
 byte[]b1=utilsE.read();
 //Transmits the byte array with all the data

 57

 tts.transmit(b1);
 }catch(IOException e){System.out.println(e);}
 catch(InterruptedException ei){System.out.println(ei);}
 }

 /**
 * Transmits a Serializable object over ThrottleNet.
 * @param serial the Serializable object which is transmited
 */
 public void transmit(Serializable serial){
 //Reads from the PipedInputStream and save all the information in a byte array,
 //At the same time PipedOutputStream is filled up using convert method.
 try{
 ReadThreadS rts;
 UtilsSerial utilsC=new UtilsSerial();
 rts=new ReadThreadS(utilsC);
 rts.start();
 utilsC.convert(serial);

// When there is not more data to be read, the ReadThreadS thread is
interrupted

 boolean data=true;
 while(data){
 if(utilsC.available()!=0)
 data=true;
 else{
 data=false;
 rts.interrupt();
 }
 }
 // Writes in the byte[] b the array which has been created in ReadThreadS
 byte[] b=utilsC.read();
 //Transmits the byte array with all the data
 tts.transmit(b);
 }catch(IOException e){System.out.println(e);}
 catch(InterruptedException ei){System.out.println(ei);}
 }

 /**
 * Closes the connection
 *
 */
 public void close(){
 tts.close();
 }
}

/***************************/
 * RTComm.RTReceive *
/**************************/

package RTComm;

/**
* The <code>RTReceive</code> class describes an intermediate layer, between the
*application and ThrottleNet, for receiving objects. The class implements methods to
*register the ThrottleNet socket and receive the information.
* It uses an external package, LabComm, to avoid the size limitation of ObjectInput and
*ObjectOutput.

 * @author Juan Periset & Ferran Carlas
 */
public class RTReceive extends RTSocket{
 private int dead_line;
 private ThrottleNetReceiveSocket trs;
 private byte[] b=new byte[UtilsExternal.BUFFERSIZE];

 /**
 * Constructs and initializes a RTReceive .
 * @param name the name of the connection.
 * @param size the larget object(LabObject)that can be sent fulfilling temporal
restrictions.
 * @param period_usthe time between two packets in microseconds.
 * @exception IOException if an I/O error occurs.
 */
 public RTReceive(String name, LabObject size ,int period_us)throws IOException {
 this(name, size,period_us,Integer.MAX_VALUE);
 }

 58

 /**
 * Constructs and initializes a RTReceive .
 * @param name the name of the connection.
 * @param size the larget object (LabObject) that can be sent fulfilling
temporal restrictions.
 * @param period_us the time between two packets in microseconds.
 * @param dead_line time to deliver each packet in microseconds.
 * @exception IOException if an I/O error occurs.
 */
 public RTReceive(String name, LabObject size,int period_us,int dead_line) throws
IOException{
 super(name,size,period_us);
 this.dead_line=dead_line;
 this.trs=new ThrottleNetReceiveSocket();
 }

 /**
 * Registers the ThrottleNet receive socket.
 * @exception IOException if an I/O error occurs.
 */
 public void register()throws IOException {
 //Registers the connection
 trs.register(name,size,(int)period_us,dead_line,Utils.type_realtime);
 }

 /**
 * Receives an externalizable object as byte array.
 * @exception IOException if an I/O error occurs.
 * @exception PacketLossException if a packet is lost.
 * @exception ClassNotFoundException if no definition for the class could be
 * found.
 * @return LabStruct received
 */
 public Externalizable receive(Externalizable object)throws
PacketLossException,IOException,ClassNotFoundException{ // Receives data in a
byte array
 b=trs.receive();
 WriteThread wt;
 UtilsExternal utilsE=new UtilsExternal();
 wt=new WriteThread(b,utilsE);
 wt.start();
 utilsE.externalizeRead(object);
 //Interrupts WriteThread when there is no more data available
 boolean data=true;
 while(data){
 if(utilsE.available()!=0)
 data=true;
 else{
 data=false;
 wt.interrupt();
 }
 }
 return object;
 }

 /**
 * Receives a Serializable object reconstructed from a byte array.
 * @exception IOException if an I/O error occurs.
 * @exception PacketLossException if a packet is lost.
 * @exception ClassNotFoundException if no definition for the class could be
 * found.
 * @return Serializable received
 */
 public Serializable receive()throws PacketLossException,
IOException,ClassNotFoundException{
 // Receives data in a byte array
 Serializable obj=null;
 b=trs.receive();
 //Closes the ThrottleNetReceiveSocket
 trs.close();
 //Writes the buffer using utils and externallizes at the same time this buffer
 // storeing the buffer in a serializable object.
 WriteThreadS wts;
 UtilsSerial utilsC=new UtilsSerial();
 wts=new WriteThreadS(b,utilsC);
 wts.start();
 obj=utilsC.convertS();

 59

 //Interrupts WriteThreadS when there is no more data available
 boolean data=true;
 while(data){
 if(utilsC.available()!=0)
 data=true;
 else{
 data=false;
 wts.interrupt();
 }
 }
 return obj;
 }

 /**
 * Close the connection
 */
 public void close(){
 trs.close();
 }
}

/***************************/
 * RTComm.Transit *
/**************************/
package RTComm;

/**
* The <code>Transmit</code> class describes an intermediate layer, between the
application and ThrottleNet, for
* transmiting data in not real time. The class implements methods to connect to
GlobeThrottle and
* transmit the date.
* It uses an Labcomm serial package, LabComm.Serial, to avoid the size limitation of
ObjectInput and ObjectOutput.
* @author
*/

public class Transmit extends Socket{
 private int dead_line;
 private byte[] b;
 private LabStruct labstr;
 private ThrottleNetTransmitSocket tts;

 /**
 * Constructs and initializes a Transmit .
 * @exception IOException if an I/O error occurs.
 */

 public Transmit(String name, Object besteffort,int period_us)throws IOException {
 this(name, besteffort, period_us, Integer.MAX_VALUE);
 }

 /**
 * Constructs and initializes a Transmit .
 * @param name the name of the connection.
 * @param size the amount of data in the ThrottleNet packet.
 * @param period_us the time between two packets in microseconds.
 * @param dead_line time to deliver each packet in microseconds.
 * @exception IOException if an I/O error occurs.
 */
 public Transmit(String name, Object besteffort,int period_us,int dead_line) throws
IOException{
 super(name,besteffort, period_us);
 this.dead_line=dead_line;
 this.tts= new ThrottleNetTransmitSocket();
 }
 /**
 * Opens a connection with the specified properites.
 * @exception IOException if an I/O error occurs.
 */
 public void connect ()throws IOException{

//connects to GlobeThrottle, if the connection is not available, waits and tries
again.

 tts.connect(name,size,(int)period_us,Utils.type_nrealtime);
 }

 60

 /**
 * Transmits a serializable object over ThrottleNet.
 *@param serial Serializable object
 */
 public void transmit(Serializable serial){
 try{
 ReadThreadS rts;
 UtilsSerial utilsC=new UtilsSerial();
 rts=new ReadThreadS(utilsC);
 rts.start();
 utilsC.convert(serial);
 // When there is not more data to be read, the ReadThreadS is interrupted
 boolean data=true;
 while(data){
 if(utilsC.available()!=0)
 data=true;
 else{
 data=false;
 rts.interrupt();
 rts.join();
 }
 }
 // Writes in the byte[] b the array which has been created in ReadThreadS
 b=utilsC.read();
 tts.transmit(b);

 }catch(IOException e){System.out.println(e);}
 catch(InterruptedException ei){ System.out.println(ei);}
 }

 /**
 * Closes the connection
 *
 */
 public void close(){
 tts.close();
 }
}

/***************************/
 * RTComm.Receive *
/**************************/
package RTComm;

/**
* The <code>Receive</code> class describes an intermediate layer, between the
*application and ThrottleNet, for receiving serializable objects.The class implements *
*methods to register

 * the ThrottleNet socket and receive the information.
 * It uses an external package, LabComm, to avoid the size limitation of ObjectInput and
 * ObjectOutput
 * @author
 */
public class Receive extends Socket{
 private int dead_line;
 private ThrottleNetReceiveSocket trs;
 private byte[] b=new byte[UtilsSerial.BUFFERSIZE];

 /**
 * Constructs and initializes a Receive .
 * @exception IOException if an I/O error occurs.
 */
 public Receive(String name,Object besteffort,int period_us)throws IOException {
 this(name, besteffort, period_us, Integer.MAX_VALUE);
 }

 /**
 * Constructs and initializes a Receive .
 * @param name the name of the connection.
 * @param size the amount of data to be received in the packet.
 * @param period_us the time between two packets in microseconds.
 * @param dead_line time to deliver each packet in microseconds.
 * @exception IOException if an I/O error occurs.
 */

public Receive(String name,Object besteffort,int period_us,int dead_line) throws
IOException{
 super(name,besteffort, period_us);

 61

 this.dead_line=dead_line;
 this.trs=new ThrottleNetReceiveSocket();
 }

 /**
 * Registers the ThrottleNet receive socket.
 * @exception IOException if an I/O error occurs.
 */
 public void register()throws IOException {
 //Registers the connection
 trs.register(name,size,(int)period_us,dead_line,Utils.type_nrealtime);
 }

 /**
 * Receives an serializable object reconstructed from a byte array.
 * @exception IOException if an I/O error occurs.
 * @exception PacketLossException if a packet is lost.
 * @exception ClassNotFoundException if no definition for the class could be
 * found.
 * @return serializable object received
 */

public Serializable receive()throws PacketLossException,
IOException,ClassNotFoundException{
 b=trs.receive();
 WriteThreadS wts;
 UtilsSerial utilsC=new UtilsSerial();
 wts=new WriteThreadS(b,utilsC);
 wts.start();
 Serializable object=utilsC.convertS();
 //Interrupts WriteThreadS when there is no more data available
 boolean data=true;
 while(data){
 if(utilsC.available()!=0)
 data=true;
 else{
 data=false;
 wts.interrupt();
 }
 }
 return object;
 }

 /**
 * Close the connection
 */
 public void close(){
 trs.close();
 }
}

A.3 LabComm Package

/**********************************/
 * LabComm.External.UtilsExternal *
/*********************************/
package LabComm.External;

/**
 * The <code>UtilsExternal</code> class is a util class that contains methods
 * for converting externalized objects to arrays of bytes
 * and vice versa.
 * It works using the interface Externalizable and let every externalizable object to
convert its content
 * into array of bytes. While reading, the object is reconstructed from this content.
 * @author
 */
public final class UtilsExternal {
 /**
 * Private buffer to store data.
 */

 62

 private byte[] b=new byte[BUFFERSIZE];
 /**
 *Boolean used to syncronize methodes write and read of this class.
 */
 private boolean availableRead;
 /**
 *Boolean used to syncronize methodes writeOut and readPin.
 */
 private boolean wakeup=false;
 /**
 *Boolean used to indicate the end of the externalization process.
 */
 private boolean exterover=false;
 /**
 * int used to store the number of bytes readed in the readPin method.
 */
 private int length=0;
 /**
 * Piped output stream used for conversion.
 */
 private PipedOutputStream pout;
 /**
 * Piped input stream used for conversion.
 */
 private PipedInputStream pin;
 /**
 * Object output stream used for conversion of objects to byte arrays.
 */
 private ObjectOutputStream out;
 /**
 * Object input stream used for conversion of byte arrays to objects.
 */
 private ObjectInputStream in;
 /**
 * Size of the PipedBuffer
 */
 static final int PIPESIZE=1024;
 /**
 *Sized of the auxiliar buffer it can be modified if it is necessary
 */
 public static final int BUFFERSIZE=128000;
 /**
 * Constructs an utility object and initializes all streams.
 *
 * @exception IOException if an I/O error occurs.
 */
 public UtilsExternal() throws IOException {
 initialize()
 }

 /**
 * Initializes the streams.
 * @exception IOException if an I/O error occurs.
 */
 private void initialize() throws IOException {
 pout = new PipedOutputStream();
 pin = new PipedInputStream(pout);
 out = new ObjectOutputStream(pout);
 out.flush();
 in = new ObjectInputStream(pin);
 }

 /**
 * Externalizes an object.It writes the object in a PipedOutputStream.
 * The object must implement externalizable.
 * @exception IOException if an I/O error occurs.
 */
 public void externalize(Externalizable ext) throws IOException {
 out.reset();
 ext.writeExternal(out);
 out.flush();
 }

 /**
 * Externalizes the object.It reads the data from the PipedInputStream and converts

 63

 * it to an object with the structure it had before. The object must implement
 * externalizable.
 * @exception IOException if an I/O error occurs and ClassNotFoundException when
 * the class does't match with the class of the expected data.
 */
 public void externalizeRead(Externalizable obj)
 throws IOException, ClassNotFoundException {
 pout.flush();
 obj.readExternal(in);
 }

 /**
 * Writes the parameter buff ina private buffer.
 * @param buff The buffer from whom we take the information.
 */
 public synchronized void write(byte[] buff){
 b=buff;
 }

 /**
 * Writes length number of bytes of the buffer starting from offset in
 * PipedOutputStream.
 * @param buff It is the buffer from whom we take the information.
 * @param offset
 * @param length
 * @exception IOException if an I/O error occurs.
 */
 public synchronized int writePout(byte[] buff,int offset,int length){
 try{
 pout.write(buff,offset,length);

 }catch(IOException e){System.out.println("Inside utils writePout"+e);}
 return length;
 }

 /**
 * Returns private buffer b.
 * @return a byte[].
 */
 public synchronized byte[] read(){
 byte[] buff=new byte[length];
 for(int i=0;i<length;i++)
 buff[i]=b[i];
 return buff;
 }

 /**
 * Reads from PipedInputStream and stores the bytes in the buffer b.
 * @return the number of bytes read.
 * @exception IOException if an I/O error occurs.
 */
 public synchronized int readPin(int offset){
 int bytesread=-1;
 try {
 while(!wakeup){
 try{
 wait();
 }catch(InterruptedException e1){e1.printStackTrace();}
 }
 bytesread=pin.read(b,offset,available());
 offset+=bytesread;
 length=offset;
 wakeup=false;
 notifyAll();
 }catch(IOException e){System.out.println("Inside utils readPin"+e);}
 return offset;
 }

 /**
 * Returns the number of bytes that can be read from PipedInputStream.
 * @return the number of bytes that can be read from PipedInputStream.
 * @exception IOException if an I/O error occurs.
 */
 public int available(){
 int bytes=-1;
 try{
 bytes=pin.available();

 64

 }catch(IOException e){System.out.println(e);}
 return bytes;
 }

 /**
 * Wakes up the readPin when the extarnalization process over
 */
 public synchronized void automaticwakeup(){
 exterover=true;
 wakeup=true;
 notifyAll();
 }

 /**
 * Checks if the externalization process has ended
 */
 public synchronized boolean IsOver(){
 return exterover;
 }

 /**
 * Writes an integer in the ObjectOutpuStream and notifies it.
 *@param value
 */
 public synchronized void writeOutInt(int value){
 try{
 while(pin.available()>4){
 try{
 wakeup=true;
 notifyAll();
 wait();
 }catch(InterruptedException e1){e1.printStackTrace();}
 }
 out.writeInt(value);
 notifyAll();
 }catch(IOException e){e.printStackTrace();}
 wakeup=true;
 notifyAll();
 }

 /**
 * Writes an object in ObjectOutputStream and notifies it.
 *@param value
 */
 public synchronized void writeOutObject(Object value){
 try{
 while(pin.available()>900){
 try{
 wakeup=true;
 notifyAll();
 wait();
 }catch(InterruptedException e1){e1.printStackTrace();}
 }
 out.writeObject(value);
 notifyAll();
 }catch(IOException e){e.printStackTrace();}
 wakeup=true;
 notifyAll();
 }

 /**
 *Returns the size of the object after externalizing it.
 *@param exter
 *@return
 */
 public int getObjectSize(Externalizable exter) {
 byte[] b1=null;
 try{
 ReadThread rt;
 UtilsExternal utilsE=new UtilsExternal();
 rt=new ReadThread(utilsE);
 LabStruct l=(LabStruct)exter;
 l.setUtils(utilsE);
 rt.start();
 utilsE.externalize(l);
 l.getUtils().automaticwakeup();
 boolean data =true;

 65

 while(data){
 if(utilsE.available()==0)
 data=false;
 }
 b1=utilsE.read();
 }catch(IOException e){e.printStackTrace();}
 return b1.length;
 }
}

/**********************************/
* LabComm.External.ReadThread *
/*********************************/

package LabComm.External;

/**
 *This thread reads from the PipedInputStream and save all the information in a byte
array,
 *All data is stored in a private buffer utils.java,
 *TransmiterThread will read this buffer and it will send its content.
 *@author
 */

public class ReadThread extends RTThread{
 private byte[] b=new byte [UtilsExternal.BUFFERSIZE];
 private UtilsExternal u;
 /**
 * Constructor
 * @param ut
 */
 public ReadThread(UtilsExternal ut){
 u = ut;
 }

 public void run(){
 int offset=0;
 int bytesread;
 // Read while there the externalization process does not finish or there ara data
 while(!u.IsOver()|| u.available()!=0){
 offset=u.readPin(offset);
 }
 }
}

/**********************************/
 * LabComm.External.WriteThread *
/*********************************/
package LabComm.External;

/**
 * This thread writes the received byte array in a PipedOutputStream.
 * The information is written in blocks of 1024bytes, except for the last block that has
the bytes left.
 * @author
 */
public class WriteThread extends RTThread{
 byte[] bout=new byte[UtilsExternal.BUFFERSIZE];
 UtilsExternal u;
 /**
 *Constructor
 *@param b byte buffer
 *@param ut UtilsExternal
 */
 public WriteThread(byte[] b,UtilsExternal ut){
 bout=ab;
 u=ut;a
 }a
 puablic void run(){
 int offset=0;

 66

 int count=0;
 //it is interrupted by the receiver thread when this finishes externalize method.
 while(!isInterrupted()){
 if(offset<bout.length){
 if((bout.length-offset)>=UtilsExternal.PIPESIZE){
 count=u.writePout(bout,offset,UtilsExternal.PIPESIZE);
 offset+=count;
 }
 else if((bout.length-offset)<UtilsExternal.PIPESIZE){
 u.writePout(bout,offset,bout.length-offset);
 offset=bout.length;
 }
 }
 }
 }
}

/**********************************/
 * LabComm.Serial.UtilsSerial *
/*********************************/
package LabComm.Serial;

/**
 * The <code>UtilsSerial</code> class is a util class that contains methods
 * for converting serialized objects to arrays of bytes
 * and vice versa.
 * It works using the interface Serializable and let every serializable object to
convert its content
 * into array of bytes. While reading, the object is reconstructed from this content.
 * @author
 */

public final class UtilsSerial {
 /**
 * Private buffer to store data.
 */
 private byte[] b=new byte[BUFFERSIZE];
 /**
 *Boolean used to syncronize methodes write and read of this class.
 */
 private boolean availableRead;
 /**
 * Piped output stream used for conversion.
 */
 private PipedOutputStream pout;
 /**
 * Piped input stream used for conversion.
 */
 private PipedInputStream pin;
 /**
 * Object output stream used for conversion of objects to byte arrays.
 */
 private ObjectOutputStream out;
 /**
 * Object input stream used for conversion of byte arrays to objects.
 */
 private ObjectInputStream in;
 /**
 * The Size of the piped
 */
 static final int PIPESIZE=1024;
 /**
 *The size of the auxiliar buffer, it has been modified if it is necessary.
 */
 public static final int BUFFERSIZE=128000;
 /**
 * Constructs an utility object and initializes all streams.
 * @exception IOException if an I/O error occurs.
 */
 public UtilsSerial() throws IOException {
 initialize();
 }

 /**
 * Initializes the streams.
 * @exception IOException if an I/O error occurs.
 */

 67

 private void initialize() throws IOException {
 pout = new PipedOutputStream();
 pin = new PipedInputStream(pout);
 out = new ObjectOutputStream(pout);
 out.flush();
 in = new ObjectInputStream(pin);
 }

 /**
 * Writes the buffer in the auxiliar and notifies it.
 *@parameter buff
 */
 public synchronized void write(byte[] buff){
 b=buff;
 availableRead=true;
 notifyAll();
 }

 /**
 * Writes length number of bytes of the buffer starting from offset in
 * PipedOutputStream.
 * @param buff It is the buffer from whom we take the information.
 * @param offset
 * @param length
 * @exception IOException if an I/O error occurs.
 */
 public synchronized int writePout(byte[] buff,int offset,int length){
 try{
 pout.write(buff,offset,length);
 }catch(IOException e){System.out.println("Inside utils writePout"+e);}
 return length;
 }

 /**
 * Returns private buffer b.
 * @return a byte[].
 */
 public synchronized byte[] read(){
 try {
 while(!availableRead) wait();
 }catch(InterruptedException e){System.out.println(e);}
 return b;
 }

 /**
 * Reads from PipedInputStream and stores the bytes in the buffer b.
 * @return the number of bytes read.
 * @exception IOException if an I/O error occurs.
 */
 public int readPin(byte[] b,int offset,int length){
 int bytes=-1;
 try {
 bytes=pin.read(b,offset,length);

 }catch(IOException e){System.out.println("Inside utils readPin"+e);}
 return bytes;
 }

 /**
 * Converts an object to an array of bytes using piped streams.
 * @param s the serialized object to convert.
 * @return the array of bytes that represents the serialized object.
 * @exception IOException if an I/O error occurs.
 */
 public void convert(Serializable s) throws {
 out.reset();
 out.writeObject(s);
 out.flush();
 }

 /**
 * Returns a buffer of bytes where the object already serialized is stored.
 * This method uses ReadThreadS to avoid the size limitation of ObjectInput and
 * ObjectOutput. The object must implement serializable.
 * @param s
 * @return byte[]
 * @throws IOException

 68

 */
 public byte[] convertE(Serializable s) throws IOException {
 byte[] b;
 ReadThreadS rt;

 rt=new ReadThreadS(this);
 rt.start();
 convert(s);
 // When there is not more data to be read, the readT thread is interrupted
 boolean data=true;
 while(data){
 if(this.available()!=0)
 data=true;
 else{
 data=false;
 rt.interrupt();
 }
 }
 // Writes in the byte[] b the array which has been created in readThread
 b=read();
 return b;
 }
 /**
 * Calculates the size of an serialized object, in bytes.
 * @param o the serialized object.
 * @return the size of the serialized object.
 * @exception IOException if an I/O error occurs.
 */
 public int getObjectSize(Serializable o) throws IOException {
 return convertE(o).length;
 }

 /**
 * Returns the number of bytes that can be read from PipedInputStream.
 * @return the number of bytes that can be read from PipedInputStream.
 * @exception IOException if an I/O error occurs.
 */
 public int available(){
 int bytes=-1;
 try{
 bytes=pin.available();
 }catch(IOException e){System.out.println(e);}
 return bytes;
 }
}

/**********************************/
 * LabComm.Serial.ReadThreadS *
/*********************************/

package LabComm.Serial;

/**
 *This thread reads from the PipedInputStream and save all the information in a byte
array,
 *All data is stored in a private buffer utils.java,
 *TransmiterThread will read this buffer and it will send its content.
*@author
*/

public class ReadThreadS extends RTThread{
 private byte[] b=new byte [UtilsSerial.BUFFERSIZE];
 private UtilsSerial u;
 private byte[] pack;
 /**
 * Constructor
 * @param ut
 */
 public ReadThreadS(UtilsSerial ut){
 u = ut;
 }

 69

 public void run(){
 int offset=0;
 int bytesread;

//It is interrupted by the TransmiterThread, when there are not more data in the
pipeInputStream
//and TransmiterThread has finished to extarnalize dates(writes dates in the
pipeOutputStream).

 while(!isInterrupted()){
 //Reads only when there are data in the PipedInputStream
 if(u.available()!=0){
 bytesread=u.readPin(b,offset,UtilsSerial.PIPESIZE);
 offset+=bytesread;
 }
 }
 //pack array is used to send only the significatives bytes,
 //since b has a long size many times it is not full
 //and there are many zero values in the last positions of the array.
 pack=new byte[offset];
 for(int i=0;i<offset;i++){
 pack[i]=b[i];
 }
 //Writes pack array so that TransmiterThread can read it and transmit it after.
 u.write(pack);
 }
}
/**********************************/
 * LabComm.Serial.WriteThreadS *
/*********************************/
package LabComm.Serial;

/**
 * This thread writes the received byte array in a PipedOutputStream.
 * The information is written in blocks of 1024bytes, except for the last block that has
 * the bytes left.
 * @author
 */
public class WriteThreadS extends RTThread{
 byte[] bout=new byte[UtilsSerial.BUFFERSIZE];
 UtilsSerial u;
 /**
 *Constructor
 *@param b byte buffer
 *@param ut UtilsExternal
 */
 public WriteThreadS(byte[] b,UtilsSerial ut){
 bout=b;
 u=ut;
 }
 public void run(){
 int offset=0;
 int count=0;
 //it is interrupted by the receiver thread when this finishes externalize method.
 while(!isInterrupted()){
 if(offset<bout.length){
 if((bout.length-offset)>=UtilsSerial.PIPESIZE){
 count=u.writePout(bout,offset,UtilsSerial.PIPESIZE);
 offset+=count;
 }
 else if((bout.length-offset)<UtilsSerial.PIPESIZE){
 u.writePout(bout,offset,bout.length-offset);
 offset=bout.length;
 }
 }
 }
 }
}

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

