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1. Introduction

The term ”robot” was coined in a play called ”RUR,” by the Czech writer K. Capek.

In this play, he named mechanical human beings ”robots.” These ”robots” stood at

workbenches instead of human beings. He derived the word robot from the Slav word

”robota,” which means work. Nowadays there are mainly two domains in robotics: in-

dustrial and mobile. Industrial robotics works with stationary robots, and its intention is

to automate industrial manufacturing processes. On the other hand, the mobile robotics

intends to provide an assistant machine to human beings. Robots should facilitate our

daily life. There are a vast amount of application areas ranging from personal assistant

robots to mobile manufacturing robots. To develop these types of machines it is neces-

sary to have capable algorithms that realize autonomous functions. The machine must

be able to make its own decisions, taking into account not violating a human being. All

of this necessitate intelligent algorithms. Even if we have good approaches to realize

intelligent behavior, we are far away from having machines which are able to make their

own decisions. Nevertheless, contemporary robots have absolutely useful abilities. For

example contemporary industrial products like autonomous vacuum cleaning robots or

mobile robots that are used for transportation in storage buildings already exist. Since

sufficient intelligent algorithms are not available most mobile robots need a large amount

of electronics and sensors. Besides it is necessary to achieve a proper functionality in all

conceivable situations of operation. Another important issue is that it is not allowed to

harm human beings. Since all these issues have to be considered, mobile robots become

very expensive and therefore it is not economical to produce them.

In the 1980s, the Department of Automatic Control at Lund University of Technology

bought a mobile robot. It was equipped with bumper sensors as well as ultra sonic sen-

sors. It was primarily built for educational reasons. In 2004 it was decided to redesign

this robot. The majority of the old components are no longer used. However, the chas-

sis with the bumper sensors and the motors are used. The core unit of the new robot

consists of an Etrax 100LX computer [1], which runs an embedded Linux system. Two

Atmel microcontroller boards are used as well. One microcontroller board is used to
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read sensory information and another one controls the motors. Additionally, a camera

should be mounted on the top of the robot. The camera is connected to a wireless LAN

which is accessible from the internet.

The first task is to implement a remote control function. One should be able to log in

on the robot. A Java-applet provides a user interface to control the robot and move it.

Commands for moving will be sent from the user host to the embedded Linux computer

on the robot. Status information, such as speed, will be sent from the robot to the user

host. A second task will be the implementation of autonomous functions with the help

of image processing. The robot has to be able to move on its own. Therefore, it uses a

given map of the environment in which it is moving. With object recognition, the robot

will recognize where it is located. Using this, it can check its actual position against a

target position predefined by the user and find its own way through the environment.

An important condition is that the environment is not too complicated.

Outline of the Report

Chapter 2 introduces the basic problems of this work. The components of the robot are

briefly described and a description is given on how the individual parts work together.

Chapter 3 deals with the robot’s individual components in detail. The functions of the

single parts are described as well as their link to peripheral components such as sensors

and motors. Most components of the robot exchange information through different

interfaces. These interfaces and how to access them as well as programming techniques

are described in Chapter 4. In the following Chapter 5, is explained how the assembly of

the individual parts is done. The Etrax computer, an embedded Linux system, will be

a crucial component. All communication between a user and the robot occurs through

the Etrax computer.

Two Atmel controller boards are connected to the Etrax computer. They are responsible

for communication and control of the sensors and motors. The Etrax computer, as

well as the network camera, are both involved in a wireless LAN network. A host

computer, which is also connected to the wireless LAN, provides enough computing

power to perform speed demanding calculations. Chapter 6 describes how the robot can

be conrolled by a user over the internet. A Java-applet provides an interface that makes

is possible to control the robot easily with the computer mouse.

Chapter 7 describes the problems concerning autonomous navigation and provides basic

approaches to achieve simple navigation in a known environment. It is pointed out how

important it is to ensure to drive straight. In connection with that, a motor control
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system consisting of PI-controllers is developed. This control system is supported by

pattern recognition. It is shown how navigation can be done by the implementation of

a simple map. To orientate, the robot uses the known position of landmarks that are

recognized by calculating of the correlation coefficient.

A conclusion and a summary of the project is provided in Chapter 8. Also, an outlook

for possible future work is given.
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2. Problem Description

At the department of automatic control at the Lund University of Technology exists an

old mobile robot called RB5X []. Since the robot was not in use for the last few years,

it was disassembled. It is necessary to assemble all these parts to get the robot to work

again. One of the robot’s core units consists of a 100Mhz Etrax RISC computer which

is responsible for the communication between the hardware components. The Etrax

computer includes a network socket to connect it to conventional computer networks. In

addition to that, a Linux system is installed on it. The network socket is used to com-

municate with a Java-applet running on a host computer connected to the internet. The

applet makes it possible to log on to the robot from all over the world. The RS232 port

on the Etrax board is used to communicate with the robot’s hardware, e.g. two Atmel

controller boards. Since the local computer power is restricted, more power demanding

operations have to be done by an external host. However, this host is not the computer

the Java applet runs on. In fact it is a computer connected to the robot’s LAN.

Also connected to the Etrax computer are two Atmel controller boards. One of the At-

mel controller boards is responsible for reading sensory data from 16 bumper-switches.

These bumper sensors are used for security reasons. When the robot is hitting an ob-

stacle the bumper-sensors should indicate the presence of an obstacle and appropriate

action to take. The second Atmel controller-board provides an interface to control the

motors. It will be connected to the Etrax-computer and receive motor-commands via

RS232 serial port. It is necessary to define these commands and the protocol for the

communication. It is of utmost importance that in every data packet, a command, the

address of the receiving hardware and a value are sent. Since all data packets will be

delivered via the Etrax computer, a program has to be launched to distribute the data

to the right device. The communication and the drive control have to be implemented.

A network camera is also involved in the wireless-LAN. This camera will be located on

the robot’s head to observe the environment. The network camera has a TCP/IP socket

to connect it to a network. The address of the image has to be linked to a webpage

located on the Etrax web server to enable a user to see the camera image when he visits
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the website.

The first task is to get all the individual parts work and implement several commu-

nication interfaces between the hardware components reaching from RS232 connection

over TWI to TCP/UDP socket connections. A serial communication interface between

the Etrax computer and one Atmel controller board has to be realized. The two At-

mel boards communicate over a TWI bus which has to be programmed. The Etrax

and the host computer transfer data via the UDP internet protocol. Since the Etrax

computer is an integral part of the communication, it has to distribute incoming data

to the appropriate hardware. The work also involves the control of the motors. When

all the hardware is working and a smooth communication between the components is

bridged, the main objective is to realize a remote-control function. The robot should

be controlled via internet. Therefore, a webpage hosted on the Etrax computer has to

be written. This webpage is downloadable from the Etrax web server and the camera

image from the robot camera can be seen on this webpage. After invoking the website

an included Java-applet will be started on the website. This applet provides a control

interface to send commands to the robot. The commands comprise instructions to con-

trol the motors of the robot as well as request commands to get status information.

Thus, the user can steer the robot from any computer connected to the internet. Status

information, for instance, the robot-speed will be sent back to the Java-applet and will

be displayed in the user’s web browser. Because of the robot’s network camera the user

is able to see the environment of the robot on his web browser. The right to access the

robot is a crucial thing and has to be treated in this work. The mobile robot with its

components can be seen in Figure 2.1. A schema of the whole robot system with its

mobile and stationary parts is given in Figure 2.2.

A second task is to realize an autonomous mode. In this context, it is necessary to

ensure that the robot is able to drive straight. Providing the motors with equal PWM

signals leads not to straight driving, rather driving along a curve since the motors are

not completely equal. Therefore, different controllers have to be developed. With the

help of image processing the robot will be able to find landmarks in the environment the

robot is operating in. This will be done with pattern recognition. Based on a simple map

the robot knows where it is located and thus can find its way to a predefined destination,

for instance, a special room. Since the computing power of the devices located on the

robot is too low, the image processing will be done on an external host computer.
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Figure 2.1.: Different views of the mobile robot.
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Figure 2.2.: Schema of the robot hardware.
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3. Physical Setup

3.1. The Etrax Computer

The Etrax computer, developed by the company Axis Communications AB, is specially

designed for embedded Linux development. It has integrated Ethernet and thus it is

possible to connect easily to a wireless LAN. The 100 MIPS 32 bit RISC CPU provides

enough speed to fulfill the required tasks. Two synchronous and four asynchronous

serial ports are available on the chip. In this work only two of the serial ports are used.

One of the Atmel controller boards is connected to one serial port. The Etrax chip is

mounted on a special developer board. Two serial ports are accessible over 9 pin SUB D

outlets. As mentioned before, one serial port is used to connect the Etrax computer to

one controller board. The other serial port is needed to connect to the host computer.

Through this port it is possible to transfer and start programs on the Etrax computer.

The Etrax computer provides 8MB of RAM and 4MB of flash memory whereby 2 to

2.5 MB are available for the applications. To write C-programs for the Etrax computer,

a special compiler is necessary. The program development is performed on a personal

computer. After writing the source code, it is necessary to use a special compiler called

Cris compiler to compile the source code. This compiled program is executable on the

Etrax system. To execute the program, it has to be transferred via FTP to the flash

memory on the Etrax computer. Now, the file must be changed to executable mode

and the program will be able to run with the Linux common command to execute a

file. On the Etrax computer, a special version of a Linux kernel is running. This Linux

is available on the producer’s homepage [3]. It has to be compiled and flashed to the

board. The boa Ethernet server is included in the Linux system, hence, a user can easily

put HTML files via FTP on the Etrax computer. These files can be reached over the

board’s internet address. On the server, a HTML file will be available which displays the

camera’s image and a Java-applet to steer the robot. Picture 3.1 illustrates the single

components of the Etrax computer which are used in this project.
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Figure 3.1.: Important components of the Etrax computer.

3.2. The Network Camera

On the robot, an Axis 210 network camera is used because it can be directly plugged on

to a network. It has a built-in web server on which single images or video streams are

accessible. To use the camera’s images, a link has to be set to the video file located on

the camera’s web server. The camera is mounted on the top of the robot. The camera

is very important for functions such as the implemented remote control of the robot and

autonomous operations which will be described later. For the remote control function, a

user invokes a HTML page located on the Etrax computer. This page includes a reference

to the video stream on the camera’s web server. Thus, the user can view the images

taken by the camera on his web browser. The camera’s images are also very important

for the autonomous operation of the robot to obtain information from the environment.

The camera’s images can be used to find special marks in the surroundings. These marks

can be used as way points to realize automatic orientation of the robot.

3.3. The Robot Platform

The platform for this work is delivered by a robot called RB5X. It is an old machine

manufactured by General Robotics [2] in 1983. This robot was produced for experimental

and educational purposes. The original version of the robot is equipped with an INS8073

microprocessor from National Semiconductor with 4MHz system frequency. It can be

programmed in Basic language and there is a number of additional teaching softwares
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available which makes it possible to teach the robot basic behaviors. It has Polaroid

Rangefinder sonar sensors to detect obstacles in its way. The detection range of these

sensors can be set from 10 inches up to 35 feet. Eight tactile sensors are mounted around

the robot. They are able to sense a contact when the robot bumps against an object.

Furthermore, a manipulator with four links and one gripper is available. Therefore, it is

possible to grab objects in the robot’s surroundings. An important aspect of the robot is

that it is modularly designed. Hence, one can have easy access to the single components

of the robot. For this project, the basic framework of the old robot is used. Only the

Motors, the chassis and the bumper switches are used. The manipulator is used as well

but its controlling and activation is done by a parallel project. Two Atmel AVRs are

added to control the motors and to read the bumper switches. An Etrax computer is

responsible for the general communication between the components. In addition, the

Etrax computer is connected to a wireless LAN which involves a host computer to carry

out demanding computational calculations. A network camera is mounted on the top of

the robot to deliver live video images.

3.4. The Atmel Controllers

The project includes two Atmel AVRs with 8 bit RISC architecture. The Atmega8 has

8 Kbytes flash and the Atmega16 has 16 Kbytes flash memory which is sufficient to

store the programs. The available peripheral components comprise among others, a pro-

grammable serial port, TWI interface and PWM channels. The Atmega8 is responsible

for receiving motor commands from the Etrax computer. These commands are inter-

preted and converted to PWM signals which are sent to the motors. The controller also

reads pulses from encoders which are mounted on the wheels. These encoders provide

information of the robot’s velocity. A simplified circuit diagram of the Atmega8 is de-

picted in Figure 3.2. Only the important pins are shown to keep the clarity. The scheme

shows a MAX202 which is responsible for driving the serial port. Mainly it converts

the 0V to 5V amplitude to a -12V to 12V amplitude which is common for serial RS232

ports. The port pin Pd0 is connected to the receiver line and the pin Pd1 is connected

to the sender line respectively. On the right side of Figure 3.2 the motor drivers can be

seen. To each driver lead five connections. To the first driver unit lead the pins Pc2,

Pc0, Pd6, Pb1 and Pb3. Pc2 determines the left motor’s direction. The current sense

output is connected to pin Pc0. The motor driver delivers at this output a current of

377A per ampere motor current. To read a voltage with the analogue-digital converter
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at Port C, the current sense output is connected to a resistor. With the break signal on

Pd6 is it possible to short the H-bridge of the motor driver. The Atmega8 is equipped

with PWM signal generators. Pin Pb1 is one PWM output and it is connected to the

left motor driver. If the motor driver becomes too hot, the thermal flag on Pb3 is

set. The flag is set at a temperature of 145C but the circuit will not be shut until the

temperature reaches 170C. The pins Pc3, Pc1, Pd7, Pb2 and Pb4 are connected to the

second motor driver. The functions and connections to the motor driver are the same

as for the previous motor. Two encoders provide a signal proportional to the wheel

speed. Each encoder delivers a phase shifted signal. The signals of encoder ”left” are

connected to the pins Pd2 and Pd4 and the signals of encoder ”right” are connected to

the pins Pd3 and Pd5 respectively. The Atmega8 provides also support for connecting

to a TWI serial bus. The pins Pc4 and Pc5 are lead through to connect to the TWI

bus; external circuitry is not shown in the simplified circuit diagram. Pc6 and Pb5 lead

to the programming connector.

The Atmega16 provides an interface to the bumper switches. The switches are read and

the data is delivered to the Etrax computer for further analysis. Another task of the

Atmega16 is to transfer information from the Atmega8 to the Etrax computer and vice

versa. The two Atmel AVRs exchange data through a TWI interface and the Atmega16

is connected via RS232 to the Etrax computer.

Pc5
Pc4
Pc3
Pc2
Pc1
Pc0

Pb5
Pb4
Pb3
Pb2
Pb1

Pc6
Pd0
Pd1
Pd2
Pd3
Pd4

Pd5
Pd6
Pd7

MAX202

Encoder1

Encoder2

RXD
TXD

Motor driver

Atmeg8

Motor driver

TWI-bus

Pb1 - PWM motor 1
Pb2 - PWM motor 2
Pb3 - Thermo flag motor 1
Pb4 - Thermo flag motor 2
Pb5 - Programming
Pc0 - C-sense motor 1
Pc1 - C-sense motor 2
Pc2 - Direction bit motor 1
Pc3 - Direction bit motor 2
Pc4 - TWI bus
Pc5 - TWI bus
Pc6 - Programming
Pd0 - TXD serial port
Pd1 - RXD serial port
Pd2 - Trace 1, encoder 1
Pd3 - Trace 1, encoder 2
Pd4 - Trace 2, encoder 1
Pd5 - Trace 2, encoder 2
Pd6 - Break motor 1
Pd7 - Break motor 2

LMD
18200

LMD
18200

Figure 3.2.: Peripheral components connected to the Atmega8 controller.
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3.5. Wireless LAN

Since the robot should be accessible via the internet, it is necessary to have a network

connection to the robot. Therefore, wireless LAN adapters are used to provide a wireless

connection from the robot to a host computer which routes requests further to the

internet. So it is feasible to log on the robot via wireless LAN from the internet. Also,

the network camera is connected to the wireless LAN adapter on the robot. The wireless

LAN adapters provide the wireless connection to realize the remote control with the

Java-applet. Adapters from type DWL-1000AP+ are used since they provide diverse

possibilities to make a connection secure. For this application it is necessary to guarantee

that only authorized users have access to the robot. Therefore, it should be impossible

for others to access the wireless network.

The wireless LAN adapters have two options to ensure security. On one hand a MAC

address selection is provided. So just authorized devices have access to the adapters.

Every adapter in the LAN has a list with authorized devices. So every single device knows

if a request of a device comes from an authorized device or not. Devices not belonging

to the network are blocked. On the other hand the adapters support a standard called

802.1X which is a standard for encrypted communication. An encryption key up to

256 bits is possible. This is an additional possibility to make the wireless network save.

Since both methods provide security enough to guarantee that only authorized users

have access to the robot, they are used in this work.
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4. Interfaces and Programming Techniques

4.1. UDP Socket Programming

There are mainly two protocols existing, which make it possible to send data across

the internet between two different computers or devices. TCP (Transmission Control

Protocol) is a connection based protocol, which means that a connection is opened and

established between two points in the net. Then, data can be sent and received with

the reliability that all data is sent and received with the right timing. To make the

data transfer reliable, the protocol includes an acknowledgement of the data which leads

to higher network traffic. In case of transmitting problems, errors indicate the loss of

information. When all data is sent and the communication is ended, the connection has

to be closed.

In contrast to TCP, UDP is not connection based. The communication is not guaranteed

in regard to time or the delivery of data. Also, there is no guarantee that data packets

are delivered in the same order they were sent. Therefore, the UDP protocol belongs to

the unreliable internet protocols.

UDP transfers data by sending independent packets called datagrams. This is similar to

sending a normal letter through the postal service. Here, it is not guaranteed if a letter

is delivered or not. Additionally, every letter is independent from each other.

Both protocols have different drawbacks. TCP loads the amount of traffic on the net.

However, it guarantees a delivery of sent data in the right order.

The robot will be controlled from a Java-applet. This applet needs to exchange data with

the Etrax computer over a network protocol. Typical data, such as commands which set

the robot’s speed, are sent to the Etrax computer. But, this is not crucial information.

Since the command will be sent continuously and the next command reaches the receiver

in a few milliseconds, no role is played if a command is either received or not. Because

it does not matter if every single command is received, taking into account that it

is necessary to keep the net loading as small as possible, UDP is used for network

communication between the Java-applet and the Etrax computer. In the case that
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communication fails, it has to be recognized by the receiver and be taken care of. This

could be done with a kind of watch dog timer implemented in the receiver’s program. If

a loss of communication is not recognized, the robot will probably run into obstacles and

this could result in damage. A UDP connection is usually established using the client

server model. One process, the client, connects to the other, the server. So, the server

has to set up a connection and the client just links to the server in order to request

information. This is similar to a telephone call where one conversational partner dials

a number and waits for the other to pick up. But, the difference from a telephone call

is that the server does not need to know the client’s address. The server does not even

need to know if the client exists. A connection between a server and a client is realized

through sockets. A socket is a one end-point of a two way communication between

processes.

Java and C implement sockets with special socket classes. On the Etrax computer, a

server programmed in C waits for the Java client to request information. When the

client sets up a UDP socket connection, it can create a datagram packet. This packet

will be sent over the socket connection to the server. Since it is a two-way connection,

the server can reply with another datagram packet. The following sections describe how

to realize a server in C programming language and a client in Java.

4.1.1. C-Server

In order to initiate a connection, a socket has to be created:

sd=socket(AF_INET, SOCK_DGRAM, 0);

The command ”socket” returns an integer value which is assigned to the descriptor

of the socket. This descriptor is used to access the socket. The function ”socket”

expects three parameters. The first parameter AF INET is the domain parameter and

specifies a communication domain. It selects the protocol family. The protocol is defined

by parameter three. Since there is just one protocol available in the protocol family

this parameter is set to zero. The second parameter specifies the socket type. With

SOCK DGRAM it is determined that datagrams are supported. To assign a port to the

server socket the ”bind” command is used:

servAddr.sin_family = AF_INET;

servAddr.sin_addr.s_addr = htonl(INADDR_ANY);

servAddr.sin_port = htons(LOCAL_SERVER_PORT);
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rc = bind (sd, (struct sockaddr *)

&servAddr,sizeof(servAddr));

The first argument passed to the ”bind” function, is the socket descriptor of the server

socket. Also, ”bind” needs to get an address of a structure of the type ”socketaddr in”.

In this structure the protocol family, the server address and the port has to be defined.

AF INET is the same parameter that was passed to the ”socket” command. The func-

tion ”htonl”, defined in the header file ”<netinet/in.h>”, converts the port number to

a capable sequence which is different on different machines. On some machines this

function is defined as ”Null” macros and on other architectures it has a function. LO-

CAL SERVER PORT is user defined at the begin of the program and assigns the port for

the socket. The last parameter is the length of the structure. Now, the server socket is

ready to receive datagram packets from the client. Since a ”recvfrom” command, which

receives packets from the socket, waits endless time, the receive function is realized in a

separate thread. So other running processes are not blocked if no data is received.

void *receiveUDP(void *arg) {

cliLen = sizeof(cliAddr);

while (1) {

memset(&msg_r, 0, sizeof(msg_r));

n = recvfrom(sd, msg_r, MESSAGE_LENGTH, 0, ...

... (struct sockaddr *) &cliAddr, &cliLen);

if (strcmp(msg_r,"<<init>>")==0)

{ continue; }

else {

printf("receivedUDP: %s %d\n",msg_r,strlen(msg_r));

RS232_send(msg_r);//send it further via RS232 !!!

}

}

return NULL;

}

The array ”msg r” is an array of type char to store the received data. The ”memset”

command sets all elements of the array to zero. This is necessary since a zero indicates the

end of a string. The ”recvfrom” command expects six parameters. The socket descriptor

is necessary as well as an array to store the received data. MESSAGE LENGTH is the
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length of the array and tells the ”recvfrom” command how many bytes will be received.

With the fourth parameter it is possible to pass the function a flag but this is not done

here so it is passed zero. The fifth parameter specifies the address of a struct in which

the source address of the received massage will be stored. Basically, a UDP socket

connection is a two way connection, that is the socket and the client can receive as well

as send datagram packets. But it must be taken into account that the first message

has to be send by the client and received by the server. After the reception of that

message, a connection is established. The first message sent by the client contains the

string ”<<init>>”. It is not necessary to proceed this string cause it has no meaning. All

packets received after the first initial packet will be send further to the Atmel board via

RS232. To send data over the UDP socket connection, a function is provided as follows:

void sendUDP(char *data) {

n = sendto(sd, data, MESSAGE_LENGTH, 0, ...

... (struct sockaddr *) &cliAddr, cliLen);

}

The second argument passed to the function ”sendto” is a pointer to an array of chars

which have to be sent. The rest of the parameters are the same as it was at the ”recvfrom”

function. It needs the socket descriptor, the length of the data array, flags as well as the

address of a ”socketaddr” structure and its length. The function returns the number of

sent bytes after it completed the sending without an error. It returns -1 to indicate an

error.

4.1.2. Java Client

The client is a part of the Java-applet that the user can download from the Etrax web

server.

First, the UDP client has to be initialized. Therefore, a socket of type ”DatagramSocket”

is created. It is not necessary to assign a port number to the socket because any free

port is used automatically. Since the datagram packets contain the port addressing

information, it doesn’t matter to which port the client socket is connected. The port

will be included in the datagram to the server and the server responds to that port.

try {

socket = new DatagramSocket();

// send request
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byte[] buf = new byte[8];

InetAddress address = InetAddress.getByName(host);

String dString="<<init>>";

buf=dString.getBytes();

DatagramPacket packet = new DatagramPacket(buf, buf.length, address,1500);

socket.send(packet);

input_thread it = new input_thread(socket);

it.start();

}

catch (IOException e) {

e.printStackTrace();

}

The variable ”address” in the previous code segment contains the hostname which is

generated by the string ”host” which is e.g. ”localhost” or ”192.68.91”. To create a

packet of type datagram packet, four parameters are necessary. The first argument con-

tains an array which has to be of type ”byte”. Therefore, a conversation from ”string”

to ”byte” is necessary. The second parameter is just the length of the array intended

to send. Finally, the server’s address as well as the port number to which the server is

connected to, are passed to the constructor. Here it is arbitrarily chosen port 1500.

”Socket.send(packet)” eventually sends the packet to the server. The first packet con-

tains any string just to initiate the connection. After the first packet the server knows

the address of the client and it can send packets to the client. To receive packets from

the server, a thread is started to poll the socket connection for new incoming data. Since

the thread has to use the socket which is initialized, the socket descriptor is passed to

the thread.

A scheme of how a UDP connection works in principle, is shown in Figure 4.1.

4.2. RS232 Serial Port

The RS232 interface is a serial interface. Serial because the data sending device can

just send one bit at a time. The data transfer rate reaches up to a couple of hundred

kilo bauds. Depending on the speed and cable quality the wire length can be about

eight meter. When the cable is longer the probability increases that the signals become

unusable. Because of its popularity the RS232 port is available in many devices. In

this project the serial port is used to connect the Etrax computer to one of the Atmel
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Figure 4.1.: Schematical illustration of a UDP socket connection.

controller boards. The following describes how to initialize the serial port. Also, an

approach of how to send data as well as to receive data is presented.

4.2.1. Accessing the Serial Sort on the Etrax Computer

Since devices like the serial port are treated as files, it is necessary to use the ”open”

command to access it:

r2d2 = open(serial_port, O_RDWR);

”Serial port” is a string defining which port to open. For instance, port ”/dev/ttyS1” is

used on the Etrax computer. Given that the port has to allow write accesses as well as

read access, the O RDWR flag has to be set. When the ”open” command is executed,

the serial port is configurable towards the serial port’s file descriptor ”r2d2”. After the

port is opened the port configuration has to be loaded and modified.

tcgetattr(r2d2, &settings);

settings.c_iflag = 0;
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settings.c_oflag = 0;

settings.c_lflag = 0;

settings.c_cflag = CLOCAL | CS8 | CREAD;

settings.c_cc[VMIN] = 1;

settings.c_cc[VTIME] = 0;

cfsetispeed(&settings, B38400);

cfsetospeed(&settings, B38400);

tcsetattr(r2d2, TCSADRAIN, &settings);

The command ”tcgetattr” loads the port settings in the structure ”settings” which is

of the type ”termios”, defined in the header file <termios.h>. By including <termios.h>

the POSIX control functions can be used. The flags ”c iflag”, ”c oflag” and ”c lflag” are

set to zero. The ”c cflag” member of the terminos structure is responsible for control

options. The flag CLOCAL is set. Otherwise it is possible that the serial port cannot be

opened. With the set of CS8 it is defined that a datablock between the start and stop

bit has a length of 8 bit. CREAD enables the serial port’s receiver. The ”c cc” array

contains control character definitions as well as timeout parameters. VMIN defines the

minimum characters to read from the port and VTIME sets the time to wait for data in

tenth of seconds.

The command ”cfsetispeed” and ”cfsetospeed” set the input speed to 38400 baud and the

output speed respectively. With ”tcsetattr” the settings are written to the serial port.

The option TCSADRAIN forces the command to wait until everything is transmitted.

After the initialisation the serial port is configured with the following settings: 8 data

bits, 1 stop bit (since the CSTOP flag is not set) and no parity bit. Attention should

be paid on the fact that the serial communication partner must have the same settings.

Otherwise communication is not possible.

Now, the initialisation is complete and a receiver routine can be implemented. The

receiver is programmed in a separate thread since other parts of the program would be

blocked when no data is received. The file descriptor for the initialized serial port is

passed to the thread:

void *RS232_receive(char *fd) {

char ch;

int i;

while(1) {

memset(&serial_in, 0, sizeof(serial_in));

24



read(fd_,&serial_in,MESSAGE_LENGTH);

sendUDP(serial_in);

}}

The array ”serial in” is used to store incoming data from the serial port. The ”memset”

command fills this array with zeros since a string is terminated with a zero. To terminate

a string is necessary e.g. to print it out to the console.

The ”read” command finally reads data from the serial port in the input array. The

number of bytes which are read is defined by MESSAGE LENGTH. Eventually, the

received data is sent via the UDP socket connection to the Java-applet.

To send data to another device the write command has to be used. The write command

sends MESSAGE LENGHTH bytes of the array ”out” via the serial port to another

receiver:

void RS232_send(char* out) {

write(fd_,out,MESSAGE_LENGTH);

printf("sendRS232: %s\n",out);

}

4.2.2. Accessing the Serial Port on the Atmel Controller

In difference to the Etrax computer the serial port on the Atemga controller is not pro-

grammed through structures. In accordance with microcontroller custom it is necessary

to write bits directly in registers. When the serial port is initialized it is necessary to

ensure that the two serial ports which are communicating must have the same settings.

Otherwise, a communication will fall through. The following code fragment shows the

initialisation of the serial port:

void USART_Init()

{

_CLI();

UBRRH = 0x00; // Set baud rate

UBRRL = 23;

UCSRB = (1<<RXCIE)|(1<<RXEN)|(1<<TXEN);

UCSRC = (1<<URSEL)|(3<<UCSZ0); // 8data bit, 1stop bit

_SEI();

}
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Before the initialisation, the global interrupt flag must be cleared to avoid a call of

the interrupt routine during the initialisation. The baud rate is set by writing 23 in

the UBRRL register, [7]. Then, the baud rate is set to 38400 baud at a system clock

of 14.7456 MHz by normal transmission speed. Since the UBRRH register shares the

I/O location with the UCSRC register, some special considerations must be taken when

accessing the two registers. The most significant bit of the I/O location determines which

register is selected. If this bit is set to zero the UBRRH will be written. Otherwise, the

UCSRC register can be accessed.

To enable the receiver and transmitter unit the RXEN bit as well as the TXEN bit

are set in the UCSRB register. The character size is determined to 8bit by writing the

number three to UCSZ0. Actually, two bits are set: the UCSZ0 bit and the UCSZ1

bit. Now, the most significant bit URSEL is set to one to access the UCSRC register

instead of the UBRRH register. Eventually, the global interrupt flag can be set to enable

interrupts. This is done with SEI(). After that, the UDR register can be used to receive

and transmit data.

Subsequently, the procedure of receiving data is discussed. Since the point of time when

data is received is undetermined the receiving of data is accomplished by an interrupt

routine.

SIGNAL (SIG_UART_RECV)

{

...

while (!(UCSRA & (1<<RXC)) ) ;

temp=UDR;

...

}

Here just the two lines which are responsible for receiving data are of note. The rest of

the interrupt routine does not belong to this chapter and will be discussed later.

The while loop does nothing as long as data is not received in UDR register. Since the

interrupt is set the data must be in the UDR register. The request of the RXC bit is just

for security reasons. When the RXC bit is set the data is received and can be written

in ”temp”.

To transmit data over the RS232, two functions are necessary. The defined data pro-

tocol, explained in Section 5.1, comprises four bytes which consist of eight hexadecimal

numbers. Thus, eight characters have to be sent with every single data transfer. So the
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USART puts function calls the USART putc function 8 times:

void USART_puts(char *data, int length) {

int count;

for (count = 0; count < length; count++)

USART_putc(*(data+count));

}

”Data” is a pointer to the data which will be send and ”length” determines how many

times the sending function is called. Eventually, USART putc sends every single char-

acter via the serial port:

void USART_putc( unsigned char data )

{

/* Wait for empty transmit buffer */

while ( !( UCSRA & (1<<UDRE)) ) ;

/* Put data into buffer, sends the data */

UDR = data;

}

Before sending a character it has to be tested if the USART empty bit (UDRE) of the

data register is set. When the bit is set the register is empty and new data can be send.

Probably it is a little bit confusing that the UDR register is used to send data and to

transmit data. This results out of the fact that the receiver register and the transmit

register share the same address. Depending if it is a read or write access the hardware

decides on its own which register is used.

4.3. Two Wire Serial Interface - TWI

The Two Wire Serial Interface (TWI) allows connecting up to 128 devices. To connect

the devices only two bidirectional bus lines as well as a pull up resistor for each bus

line are necessary. One line, responsible for handshaking, is called the clock (SCL). The

other one transmits the data (SDA). Every single device connected to the bus has its

individual address. The mechanism to resolve these addresses is inherited in the TWI

protocol.

To transmit a bit via the SDA line it has to be guaranteed that the data is stable. This is

accomplished by putting the clock line ”high” when the data is stable. Figure 4.2 shows
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Figure 4.2.: Transmission of two bit.

the bus lines transmitting two bits. The following describes TWI connections related to

the Atmega controller.

The TWI communication is based on special states. The communication between master

and slave is initiated when the master issues a START condition to the bus. Then, the

master is considered busy. This state of communication is determined through the status

code in the TWSR register. After issuing the START condition as well as after each

other action taken on the bus, the TWI hardware on the Atmega issues an interrupt.

In an interrupt routine the state of the bus can be queried from the TWSR register and

the next appropriate action can be taken by the software.

4.3.1. Starting and Stopping a Data Transfer

Only the master can start a data transmission. Therefore, a START condition is issued

to the bus. Now, the bus is controlled by this master and considered busy. To terminate

a transmission, the master generates a STOP condition on the bus. Between START

and STOP a slave is addressed and data is issued to the bus. Additionally, the master

can issue a new START condition between a START and a STOP. This is called a

REPEATED START condition. A REPEATED START condition is used when the

master finished the transmission of data and does not want to loose control of the bus.

A START condition is detected when a falling edge occurs on the SDA line by ”high”

level on the SCL line. A rising edge on the SDA line by ”high” SCL line is associated

with a STOP condition. Figure 4.3 illustrates the discussed conditions.
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4.3.2. Address and Data Packet Format

After a START condition the master addresses the slave by sending a nine bit address

packet to the bus. The highest seven bits contain the slave’s address followed by a

READ/WRITE bit. This bit determines if the master wants to write data or to receive

data from a slave. If this bit is set, a read operation is performed. In case of a zero, the

master wants to send data to the slave. The last bit is an acknowledge bit. If the address

packet is successfully read by the slave, the SDA line is pulled down to acknowledge the

address transmission. In case the slave did not acknowledge the address, the master can

send a STOP condition or a REPEATED START condition to start a new transmission.

The slave’s address can be chosen freely. Excluded, however, is the address 0000 000

since this address is reserved for a general call. By issuing a general call all slaves are

asked to respond. A general call in conjunction with a WRITE bit causes that the trans-

mitted data sent by the master is received by all acknowledging slaves. Furthermore, all

addresses 1111 xxx are reserved for future purposes. An address packet is depicted in

Figure 4.4.

After the slave has acknowledged the address packet, the master sends the data packet.

The data packet consists of eight data bits followed by an acknowledge bit. The receiver

issues an acknowledge by pulling the SDA line down in the ninth clock cycle. If this is

not accomplished, a ”not acknowledge” (NACK) is issued. This should be done to signal

that the last data byte is received.

It should be mentioned that a master as well as the slave can be both receiver or trans-

mitter. Figure 4.5 shows the format of a data packet.

In general a transmission begins with a START condition followed by the address packet.

Then the data packet is issued with an arbitrary number of data bytes. The transmission

is ended with a STOP condition generated by the master. Figure 4.6 shows a scheme of

a typical data transmission.

All clock lines of the devices connected to the bus are wired-AND. This has the advan-

tage that the slave can extend the ”low” period of the SLC line. For instance, if the

master’s clock is too fast, the slave extends the ”low” period of the clock to have time

enough to read the data line. The clock period which is determined by the master is not

affected by this.

It is possible to have more than one master connected to the bus. Since this is not used

in this work, refer to [6] or [7] to obtain deeper information about this topic.
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Figure 4.5.: Data packet format
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Figure 4.6.: Typical data transmission

4.3.3. Transmission Modes

Four major modes are available in which a device can operate: Master Transmitter,

Master Receiver, Slave Transmitter and Slave Receiver. These modes can be chosen by

the software and the user has to take care that a capable mode is selected to achieve a

smooth data transfer.

4.3.4. Master Transmitter and Slave Receiver

The Atmega16 controller receives motor commands from the Etrax computer. These

commands must be forwarded to the Atmega8 via the TWI bus. To accomplish a

data transfer, the Atmega16 operates in master mode and the Atmega8 in slave mode,

respectively. In the case of this application, the master sends four bytes to the slave.

These four bytes e.g. contain values to set the motor speed of the robot drives. The

protocol used to exchange information between the robot’s components is explained in

Section 5.1.

The procedure of accomplishing a data transmission from master to slave is depicted

in Figure 4.7 and 4.8. First, the master issues a START condition by writing the

TWINT and TWEA bit. Thus, an interrupt occurs in the master and the status code

$08 is written to the TWSR register. By setting the TWINT bit, the next action taken

by the TWI hardware is transmitting the slave address and waiting for ”acknowledge”

or ”not acknowledge”. When the slave successfully received its address, it transmits

”acknowledge” to the bus which results in an interrupt and the slave status code $60.

Setting bit TWINT and TWEA forces the slave to wait for data. At the same time but

after the slave sent ”acknowledge”, the master jumps into the interrupt routine and the

status code $18 is written to the TWSR register. By setting the TWINT bit, the master

transmits the data and waits for ”acknowledge”. Now, the slave receives the sent data

which results in sending ”acknowledge” to the bus and the status code $80 appears in
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Figure 4.7.: Interaction of master and slave to send a data packet of four byte - part 1
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the TWSR register on the slave. After setting the bits TWINT and TWEA, the slave

waits for data again. Meanwhile, the master receives ”acknowledge”. The status code is

now $28. Since the master has to transmit the data and to wait for ”acknowledge”, the

TWINT bit is set. After receiving the data, the slave jumps into the interrupt routine

again. The status code is $80. Now, this procedure repeats until the fourth byte is

transmitted by the master. Then, the slave issues a ”not acknowledge” to the bus which

results in the slave status code $88. Now, the slave switches into not addressed mode.

The master transmits a stop condition to the bus. Thus, the transmission of four bytes

is finished and a new packet of four bytes can be sent by issuing a new START condition.

Remark: It has to be taken into account that every time the TWCR register is written,

the TWEN bit has to be set to enable the TWI interrupt. Another illustration of the

states which are the master and the slave are in as well as the action which has to be

taken in the interrupt routine, is given in [6] or [7].

Atmega16 - Master Transmits

The following describes the implementation of the Master Transmition mode on the

Atmega16 controller.

First, it is necessary to initialize the TWI hardware. The value in the TWBR selects the

division factor for the bit rate generator. TWSR is responsible for the prescaler of the

bit rate generator. A table of possible values is given in [6] or [7]. The following code

segment shows the initialization method:

void TWI_Init() {

_CLI();

TWBR = 0x0a;

TWSR = (0<<TWPS1) | (0<<TWPS0);

_SEI();

}

The four bytes which will be sent by the master have to be available in the array ”dataT”.

To write the data to the array, the method TWI transmi 4Byte is used. It splits a four

byte integer value into four single bytes and writes it to the array ”dataT”’. Having

done this, the ”read” flag is set to zero and the START condition is issued in the last

line of the following code segment. The ”read” flag determines if the master sends data

to the slave or requests information from the slave.
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void TWI_transmit_4Byte(uint32_t hex)

{

int i=0;

for (i=3;i>-1;i--) {

dataT[i]=hex;

hex = hex >> 8;

}

read = 0;

TWCR = (1<<TWSTA) | (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

}

When the bus changes its state, an interrupt occurs in the Atmega controller and a

status code is written to the TWSR register. To get the status code, the lowest two bits

have to be masked since they contain the value of the prescaler for the bit rate generator.

SIGNAL(SIG_2WIRE_SERIAL) {

switch (TWSR & 0xf8)

{

...

Status code 0x08 in the status register indicates that START condition has been trans-

mitted. Therefore, the address is written to the TWDR register. Since the ”read” flag

is zero the lowest bit is set to zero the mode. This results in entering the Master Trans-

mission mode. Now, the next action is accomplished by setting the appropriate bits in

the TWCR register.

case 0x08:

{

if (read==0)

TWDR = 0x44;

else

TWDR = 0x45; // read from slave

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

flagT=0;

flagR=0;

break;

} ...
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If the slave receives its address successfully, ”acknowledge” is issued. This results in the

status code 0x18. Then the first data byte can be sent. TWCR is written to send the

data in TWDR and wait for the slave acknowledging the data.

case 0x18:

{

TWDR = dataT[flagT];

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

break;

}

...

When the slave acknowledged the reception of the data, TWSR contains the status code

0x28. Then, the next byte can be sent and the master waits for acknowledgement.

case 0x28:

{

flagT++;

TWDR = dataT[flagT];

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

break;

...

}

This procedure is repeated until the slave quits with sending ”not acknowledge”. Then,

the status register contains 0x30. That indicates that the transmission of four bytes has

finished. Accordingly, a STOP condition has to be issued:

case 0x30:

{

TWCR = (1<<TWSTO) | (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

break;

}

}

}
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Atmega8 - Slave Receives

Before it is possible to communicate over the TWI bus, the slave has to be initialized.

In the address register TWAR, the slave address is set. This address must be identical

with the address assumed in the master. If it is not the same address, the slave will not

recognize its own address on the bus. The macro CLI() disables the global interrupt

flag and SEI() sets it again. To initialise the slave, the following method is used:

void TWI_init() {

_CLI();

TWAR = 0x44;

TWBR = 0x0a;

TWSR = (0<<TWPS1) | (0<<TWPS0);

TWCR = (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

_SEI();

}

If the state changes on the bus, also an interrupt routine is invoked in the slave controller.

But the status codes are different to the master’s codes. After the master has transmitted

the slave’s address and the address has been received by the slave, the status code saved

in the TWSR register is 0x60. In this case, the TWI hardware has to wait for the first

data byte. Therefore, TWINT and TWEA has to be set in the control register TWCR:

SIGNAL(SIG_2WIRE_SERIAL) {

switch (TWSR & 0xf8)

{

case 0x60:

{

flagR=0;

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

break;

}

...

When the first data byte is received, the status code 0x80 appears in the status register

TWSR. Now, the first received data byte is stored in the array ”dataR”. After this, the

counter ”flagR” is increased. As long as all four data bytes are not received, the TWI
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hardware waits for another data byte. If ”flagR” reaches the value of three, the fourth

data byte is receipt of putting a ”not acknowledge” out of the bus:

case 0x80:

{

dataR[flagR] = TWDR;

flagR++;

if (flagR<3) {

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

} else {

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

}

break;

}

...

When the last data byte is eventually received and ”not acknowledge” has been returned,

the status register contains the value 0x88. Then, the last byte is stored in the array

”dataR”. The next code lines write the four bytes from the array into a four byte integer

number. After that, the selection of the channel follows which is described in the section

5.2. At the end it is switched to the ”not addressed” mode by setting the bits TWINT

and TWEA in the TWCR register.

case 0x88:

{

dataR[flagR]=TWDR;

uint32_t hx=0;

int i=0;

for (i = 0 ; i < 4 ; i++) {

hx = hx << 8;

hx |= dataR[i];

}

...

// described in another section

...
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TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

break;

}

}

}

4.3.5. Master Receives and Slave Transmits

To ensure a bidirectional data transfer, the master also has to be able to receive data.

Then, the master operates as the receiver and the slave as the transmitter. In this

operation mode the transmission is also initiated by the master. Thus, the master can

retrieve information from the slave but the slave cannot start a data transmission.

Atmega16 - Master, Receiver

To retrieve information from the slave, the master has to issue a START condition to

the bus:

read = 1;

TWCR = (1<<TWSTA) | (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

When the START condition is successfully issued, the status register contains the value

$08. Since the ”read” flag was set to one, the LSB bit in the address packet is now set

to induce a data request from the slave:

...

case 0x08:

{

if (read==0)

TWDR = 0x44;

else

TWDR = 0x45; // read from slave

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

flagT=0; flagR=0;

break;

}

...
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After the slave has acknowledged the reception of the address packet, the status register

TWSR contains the status code $40. To wait for data, the bits TWINT and TWEA are

set in the control register:

...

case 0x40:

{

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

break;

}

...

When the first data byte is received, the switch instruction jumps to case $50 and saves

the received byte to the array ”dataR”. Simultaneously, the master acknowledges the

reception of the byte. Since three data bytes are received, the switch instruction jumps

three times to this case. The fourth time the ”if” instruction is entered, ”flagR” is equal

to three and thus the ”else” branch of the ”if” instruction is entered:

...

case 0x50:

{

dataR[flagR]=TWDR;

flagR++;

if (flagR<3) {

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

} else {

TWCR = (1f<TWINT) | (1<<TWEN) | (1<<TWIE);

}

break;

}

...

In the ”else” branch a ”not acknowledge” is issued to the bus. After the reception of

the last data byte, the status register contains the status code $58. Now, the last byte

is stored and a STOP condition issued to the bus:
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...

case 0x58:

{

dataR[flagR]=TWDR;

TWCR = (1<<TWSTO) | (1<<TWINT)| (1<<TWEN) | (1<<TWIE); // stop

break;

}

}

Atmega8 - Slave Transmits

The LSB of the address packet indicates that the slave is asked to send data to the

master. That results in the status code $A8. To transmit the first data byte and wait

for the acknowledgement of the master, TWINT and TWEA is written to the control

register TWCR:

...

case 0xA8:

{

flagT=0;

TWDR=dataT[flagT];

flagT++;

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

break;

} ...

When the ”acknowledge” is received (status register contains 0xB8), a further byte is

transmitted. After the acknowledgement, this ”case” is entered again. This is repeated

until three data bytes are send. Then, the ”else” branch of the ”if” instruction induces

the reception of a ”not acknowledge”:

...

case 0xB8:

{

TWDR=dataT[flagT];

flagT++;

if (flagT<4) {

41



TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

} else {

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

}

break;

} ...

Is the ”not acknowledge” received, the status register contains the status code $C0. In

this case, the slave switches to ”not addressed” mode:

...

case 0xC0:

{

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

break;

}

}

4.4. Multithreaded Programming

Here multithreaded programming or concurrent programming refers to multiprogram-

ming parallelism. That means that threads are executed on a single processor so that the

parallelism is achieved by multiplexing the threads. Therefore, true parallelism where

every thread runs on its own processor is not possible. But in case of this work the

logical pseudo parallelism is sufficient.

On the Etrax computer the ”pthread” library has to be installed in order to be able to

multi-threading. Otherwise, a multithreaded program will not run on the Etrax com-

puter.

Since the Java-applet and the C-program running on the Etrax computer uses threads,

it is explained in the following sections how to implement threads in C as well as in Java.

4.4.1. Threads Implemented in C

Threads in C are created by using the ”pthread create” function. The prototype of the

function ”pthread create” can be stated as follows:
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int pthread_create(pthread_t *threadp, const pthread_attr_t ...

... *attr, void* (*start_routine)(void *), arg *arg);

The function needs an address of the ”pthread” object which has to be declared before.

The second parameter can be used to modify the threads attributes. By passing a

NULL to the function the standard settings are used. ”Start routine” is the name of the

thread function which contains the threads program code. The last parameter to pass

to ”pthread create” is an argument e.g. an address of a variable or array which is used

in the thread. When the thread is successfully completed a null is returned. In the case

of an error the function returns any other value. To wait for the termination of a thread

the ”pthread join” function has to be used:

int pthread_join(thread_t threadp, void **status);

This function forces the calling unit, in our case the main program, to wait for termina-

tion of the running thread. The name of the ”pthread” object which the calling program

has to wait for has to be passed. The second argument points to a location that is set to

the exit status of the terminated thread but here this argument will always be NULL.

As mentioned the ”pthread create” function needs the address of a ”start routine” which

is the name of the actual thread function. This thread function is declared as follows:

void *<name of the thread>(type *<variablename>) {

}

If in the thread function an endless loop is implemented the thread never ends and so

the ”pthread join” command waits endlessly for the thread termination.

The explanations in this section comprises by far not everything what is possible with

threads in C but it is enough for the work at hand.

4.4.2. Threads Implemented in Java

There are two different ways to create a thread in Java. One possibility is to extend

a class from the ”thread” class. Another way is to implement the class as ”runnable”.

This is advantageous when the class needs also to extend another class than a thread.

Since the extension of another class is not necessary the first way of creating a thread

class is used. For further information about the second way refer to [5].

Creating a thread by extending the from the ”thread” class works as shown below:
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public class MyThread extends Thread {

public void run() {

// Code to be executed

}

}

To start the thread an instance of the class ”MyThread” has to be created and the start

method has to be invoked:

MyThread m = new MyThread();

m.start();

Now, a problem consists in passing parameters to the thread. One solution would be

to define the ”MyThread” class as an inner class of the main program. But this is not

possible in Java-applets. Another way is to pass parameters with the constructor to the

thread. For instance, an integer is passed to the thread:

public class MyThread extends Thread {

int number;

MyThread(int number) {

this.number=number;

}

public void run() {

// Code to be executed

}

}

Then the main program creates and starts the thread as follows:

...

int number;

number=10;

MyThread m = new MyThread(number);

m.start();

...
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5. System Assembly

In the previous chapters all single components of the robot have been described. In

this chapter the objective is to point out how the components work together. Figure

5.1 shows the block diagram of the whole system. The host computer on the right

side connects the internet to the local area network which belongs to the robot. All

components left from the host belong to this local network. In the center two wireless

LAN adapters can be seen. They form the connection between the mobile parts on the

left side-the components which are mounted on the robot- and the stationary parts on

the right side.

The network camera is connected to the left wireless LAN adapter. Also connected to

this wireless LAN adapter is the Etrax computer. The Etrax computer communicates

over its RS232 serial port to the Atmega16 controller. This controller is responsible for

reading sensory data from the bumper switches. Also, it is responsible for forwarding

data between the Etrax computer and the Atmega8 controller. The Atmega8 controller

implements all necessary functions to control the robot’s motors. The communication

between the two Atmega controllers is accomplished by the serial TWI bus. To this bus

are also connected the controllers of the robot’s arm. But this is not part of this thesis.

The following describes how information is exchanged between the robot components.

Therefore, it is necessary to define a protocol.

5.1. Communication Protocol between the Components

If the Atmega16 controller recognizes a collision between the robot and an obstacle the

Atmega16 AVR has to forward this ”event” to the Atmega8 controller. Then, the At-

mega8 controller can stop or control the motors to avoid harm. Since most components

have to work together like the two Atmega controllers, it must be possible to exchange

data. This is accomplished with data packets send from one device to another. The

packet contains an address to which device the package has to be sent. Further, a com-

mand is contained to specify an action to be performed. The last component of a packet
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Etrax
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Atmega16
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User host

Camera

Motor Motor

Figure 5.1.: This diagram illustrates how the robot’s components are put together and

how these components work together with external devices.
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Cmd Channel Value

Figure 5.2.: Format of the message packet used for information exchange between the

components.

is a value.

The mentioned three components of the packet have to be put in a protocol which has

to be defined. This protocol determines in which manner data can be transferred and

interpreted. It is assumed that a device needs to have the capability to set values and

read values of other devices. To define these commands, four bits are reserved. This

makes it possible to define 16 different commands. Because of these commands a device

knows how the data to proceed but it is not determined yet to which device the command

should be delivered. To define the device to which the packet is addressed to, eight bits

are reserved in the packet. By setting these eight bits a channel is determined to which

the command belongs to. A channel is not necessarily a hardware device. More than

one channel can be inherited in one hardware component. E.g. the motor controlling

Atmega8 controller has at least two channels: One channel for the left motor and one

channel for the right motor. The value takes 20 bits in a packet. So the whole message

packet comprises four byte. The first four bit are used for the command, the next eight

bit determine the channel to which the packet has to be sent and the last 20 bits repre-

sent the value. Figure 5.2 illustrates the defined message packet.

Remark: Even if a packet contains four byte of information, eight byte are send. This re-

sults from the fact that the interfaces just can send characters. One character represents

one hex number and four byte consist of eight hexadecimal numbers.

5.2. Channel and Command Selection

When a message packet reaches the Atmega16 it has to make a decision to which device

it sends the packet or if the packet is determined for itself. The following code segment

is located in the USART interrupt routine. When a data packet is received and stored in

the array ”ch”, then it is converted to a 32 bit long integer named ”hex”. The function

”convertStringToHex” is described in Section 5.5.
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...

hex=convertStringToHex(ch);

...

Now, the channel, the command as well as the value with its sign are extracted out of

the variable ”hex”:

...

cmd = (hex & 0xf0000000)>>28;

chan = (hex & 0x0ff00000)>>20;

sign = (hex & 0x000f0000)>>16;

value = hex & 0x0000ffff;

switch (chan)

{

case 8: Ch8selectCmdAndSendData(cmd,sign,value);

default: TWI_transmit_4Byte(hex); break;

}

...

The function ”Ch8selectCmdAndSendData” takes received data and selects the com-

mand to be executed. This function assumes that the selected channel is situated

on the current device. If the message packet contains data for the other channels,

the message packet is send further to another Atmega controller by using the function

TWI transmit 4Byte in the ”default” case condition.

5.3. Information Exchange between the Java-Applet and the

Etrax Computer

5.3.1. Sending data from the Java-applet to the Etrax-computer

The Java-applet sends its commands via UDP socket connection to the Etrax computer.

The Etrax computer does not have to process the received data. It just has to forward

it. To send a message packet the command number, the channel number and the value

are put together in a string containing four bytes of information. To achieve this, a

function is written which puts the three components together to a message packet. The

function provides the possibility to pass a sign which represents the sign of the value.
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If the sign is one, the value is negative. Otherwise, it is positive. The first lines of the

function are as follows:

public void SendMessageViaUdp(String Cmd, String Channel, ...

...int Value, int sign) {

String CmdChannelValue=Cmd;

String strValue;

CmdChannelValue = CmdChannelValue.concat(Channel);

...

The variable ”CmdChannelValue” represents the string which contains the whole mes-

sage packet. One advantage that makes the handling of strings easy is that strings in

Java do not have to have fixed lengths. With the declaration of ”CmdChannelValue” the

command is copied to the string. The last line of the above code segment concatenates

the channel-number to the message packet. Now, the packet contains the command

number followed by the channel number. Since the value is an integer number, it has to

be converted to a string:

...

strValue = Integer.toString(Value,16);

...

The string ”strValue” contains the string representing the value. The number ”16”

specifies the enumerative system to which the value is converted to. Since it is necessary

to send hexadecimal numbers, the ”16” specifies the hexadecimal number system.

Depending on the length of the hex string, zeros have to be padded to the message

packet to have always a packet length of eight hexadecimal numbers:

...

if (sign==1) {

switch (strValue.length())

{

case 1: CmdChannelValue=CmdChannelValue.concat("8000"); break;

case 2: CmdChannelValue=CmdChannelValue.concat("800"); break;

case 3: CmdChannelValue=CmdChannelValue.concat("80"); break;

case 4: CmdChannelValue=CmdChannelValue.concat("8"); break;

49



}

}

else

{

switch (strValue.length())

{

case 1: CmdChannelValue=CmdChannelValue.concat("0000"); break;

case 2: CmdChannelValue=CmdChannelValue.concat("000"); break;

case 3: CmdChannelValue=CmdChannelValue.concat("00"); break;

case 4: CmdChannelValue=CmdChannelValue.concat("0"); break;

}

}

...

When the ”sign” parameter indicates that the value is negative, the first bit of the 20

bit long value is set to one. This bit is used as the sign bit. After the message packet is

padded with zeros and the sign bit is added, the value can be concatenated:

...

CmdChannelValue = CmdChannelValue.concat(strValue);

...

Now, the string ”CmdChannelValue” contains the whole message packet. It can be sent

via the UDP socket connection to the Etrax computer:

...

byte[] buf = new byte[8];

buf = CmdChannelValue.getBytes();

try {

InetAddress address = InetAddress.getByName(host);

DatagramPacket packet = new DatagramPacket(buf, ...

... buf.length, address, 1500);

socket.send(packet);

}

catch (IOException e) {

e.printStackTrace();

}}
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For explanations to the last code segment it is referred to Chapter 4.1.2 where the UDP

socket connection is described.

The sent data has to be received from the C-server running on the Etrax-computer.

Therefore, the thread ”receiveUDP”, described in Section 4.1.1, is used.

5.3.2. Sending Data from The Etrax Computer to the Java-Applet

To send data to the Java-applet, the function ”sendUDP” is used:

void sendUDP(char *data) {

n = sendto(sd, data, MESSAGE_LENGTH, 0, ...

... (struct sockaddr *) &cliAddr, cliLen);

}

For explanations to this function refer to Section 4.1.1. To receive the data that is sent

from the Etrax computer, a thread is used.

5.4. Information Exchange between the Etrax Computer and

the Atmega16 Controller

5.4.1. Sending Data from the Etrax to the Atmega16

The Etrax computer and the Atmega16 controller exchange data via the RS232 serial

port. The C-server on the Etrax computer uses the method ”RS232 send” (Section

4.2.1) to send the four byte message packet to the Atmega16:

void RS232_send(char* out) {

write(fd_,out,MESSAGE_LENGTH);

...

}

The Atmega16 receives the sent data with the help of an interrupt routine handling

incoming data from the serial port, Section 4.2.2.

5.4.2. Sending Data from the Atmega16 to the Etrax

The function on the Atmega microcontroller board used to make a string out of numbers

accomplishes the same as the Java function discussed before. The function is passed a
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32 bit value. Since the message packet contains a value of 20 bits, the user has to take

care that this value is not longer than 20 bit. Otherwise, the higher bits will be cut off

and not transmitted:

char* makeString(char *cmd, char *channel, uint32_t value)

{

static char sendData[8];

char hex[8];

sprintf(hex,"%lx",value);

...

The array ”sendData” of datatype char, contains the message packet which is composed

of the command number, the channel number and the value. ”Sprintf” copies the hex-

adecimal numbers in ”value” to the array ”hex”. Thus, ”value” is now accessible as a

string through the array ”hex”. The first sequence the message packet contains is the

command. So it has to be copied in the packet. Furthermore, the channel number is

concatenated:

...

strcpy(sendData,cmd);

strcat(sendData,channel);

...

Since the message packet contains eight hexadecimal numbers, the packet has to be

padded with zeros depending on the size of the ”value”:

...

if (value < 17)

{ strcat(sendData,"0000"); }

if (value > 16 && value < 256)

{ strcat(sendData,"000"); }

if (value > 255 && value < 4096)

strcat(sendData,"00");

if (value > 4095)

{ strcat(sendData,"0"); }

strcat(sendData,hex);

return sendData;

}

52



Eventually, the value is added to the packet and the message packet is given back as a

string. Then, the function ”USART puts”, decribed in Section 4.2.2, is used to send the

data.

To receive data on the Etrax computer, the thread ”RS232 receive” is used - see Section

4.2.1.

Remark: Later in this work it turned out that this function had to be replaced by an

more storage saving algorithm.

5.5. Information Exchange between the Atmega16 and the

Atmega8

5.5.1. Sending Data from the Atmega16 to the Atmega8

After receiving the data from the Etrax computer, the channel is selected to which con-

troller the data is determined for (refer to Section 5.2).

If the data is determined for the Atmega8 controller, the data is passed via the TWI

bus. Therefore, the function ”TWI transmit 4Byte” is used. This function is described

in Section 4.3.4. The Atmega16 operates as the master and its task is to retrieve infor-

mation from the Atmega8 controller since the Atmega8 cannot initiate a data transfer

by itself.

The Atmega8 which operates in slave mode, receives the data by handling the interrupt

and the status codes. This is explained in Section 4.3.4. Since the received data packet

is a string of eight characters, it is necessary to convert this string to a four byte number.

This is accomplished by the function ”convertStringToHex”. It expects a pointer to the

string and returns a four byte integer number:

uint32_t convertStringToHex(char *string) {

uint32_t i=0,fourbytes=0,value=0;

...

A loop treats every single character and converts it to the appropriate number:

...

for (i=0;i<MESSAGE_LENGTH;i++)

{

if (’0’ <= *(string+i) && *(string+i) <=’9’) {

value = *(string+i) - ’0’;
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}

else if ((’A’ <= *(string+i) && *(string+i) <= ’F’)) {

value = *(string+i) - ’A’ + 10;

}

else if ((’a’ <= *(string+i) && *(string+i) <= ’f’)) {

value = *(string+i) - ’a’ + 10;

}

...

After converting a character, the value of the character is added to a four byte number:

...

fourbytes = fourbytes << 4;

fourbytes |= value;

}

return fourbytes;

}

After the loop has finished, the number ”fourbytes” contains the converted string. For

instance, if the string contained the characters AF65B8FC, the number ”fourbytes” has

the value 0xAF65B8FC after the conversation.

5.5.2. Sending Data from the Atmega8 to the Atmega16

If for instance status information is retrieved by the Atmega16 controller, a TWI data

transfer is initiated by the Atmega16. The Atmega8 controller operates as the slave and

sends the data packets by using the interrupt routine described in Section 4.3.5. To

compose the data packet out of numbers the function ”makeString” is available. It is

the same function as on the Atmega16 controller.

The data is received by the Atmega16 also with an interrupt routine. That routine is

described in Section 4.3.5.

5.6. Pulse Width Modulation to Drive the Motors

The Atmega8 drives the robot motors. In order to realize different speeds, pulse width

modulation is used. On the Atmega8 two PWM modes are available. Here the ”Phase

and Frequency Correct PWM Mode” is used. This mode provides a phase and frequency
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Figure 5.3.: Timing diagram of the Phase and Frequency Correct PWM mode. The

timer value is shown as a histogram. The TOP value is assumed constant.

If the OCR1x registers are written, they are updatet when the timer reached

the BOTTOM value.

correct waveform generation and is based on dual-slope operation.

The counter TCNT1 counts from the BOTTOM (0x0000) to the TOP value. Since

”non inverting output compare mode” is used the output pins are cleared every time

the OCR1X registers matches the timer TCNT1 while up counting and set while down

counting. Figure 5.3 shows the timing diagram. Before a usage of the PWM unit is

possible, it has to be initialized.

To clear the output pins while up counting and set while down counting, the bits

COM1A1 and COM1B1 have to be set in the TCCR1A register. The WGM13 bit

in the TCCC1B register is set to select the PWM Phase and Frequency Correct mode.

To set the prescaler for the timer speed, the bits CS10 to CS12 are set which means no

prescaling. The TOIE1 bit in the TIMSK register is set to enable the interrupt on timer

overflow. In the selected PWM Phase and Frequency Correct mode, the ICR1 register

is used to determine the TOP value of the counter.

void PWM_Init()

{

_CLI();

ICR1=0x04FF;

TCCR1A = 0xa0; // (1<< COM1A1)|(1<< COM1B1)

TCCR1B = 0x11; // (1<<WGM13)|(1<<CS10)

TIMSK = 0x04;
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_SEI();

}

When the PWM unit is initialized, the motor speed can be set by changing the value of

the OCR1A and the OCR1B register respectively. This is done in the USART interrupt

routine by calling the functions ”Ch0selectCmdAndSendData” and ”Ch1selectCmdAnd

SendData” when new motor control commands are received.

The motors are designed for 6V. Since the output of the motor drivers deliver 12V,

it should concidered that the pulse-duty factor of the PWM is not higher than 50 per-

cent. In case this value is exceeded, the motor current will be too high so that the motor

drivers will switch off the motors.
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6. Remote Control - Teleoperation

To realise a remote control of the mobile robot, a Java-applet is written. This applet

connects to the server socket running on the Etrax computer. The Java-applet as well

as an html file are located on the Etrax’ web server. It is possible to download the html

file from any computer which has access to the internet. The Java-applet is started by

the html file and through the appearing control panel the robot can be steered. For

orientation issues, a video stream taken by the network camera can be seen above the

control panel.

In the following, the Java-applet’s functions are described.

6.1. Generating Motor Commands from the Java Control Panel

On top of the web site, an image of the network camera can be seen and below the Java

control panel is started. The control panel involves a simple field to steer the robot -

Figure 6.1. The robot’s velocity and alignment are determined by the mouse pointer.

When pointing the mouse to the origin of the field, the velocity is set to zero and no

direction is determined. If the mouse moves in the upper half, the robot moves forward.

The lower half is responsible for backward movement. The further the mouse moves

away from the origin, the faster the robot moves. The Java-applet sends one packet of

information containing the direction and the speed to each motor. The packets are sent

in the ”MouseMotionListener” method ”mouseDragged”. That is, packets are only sent

when the mouse moves.

To extract the directions and velocities a simple coordinate transformation is made.

First, the width and the height of the panel are saved. The panel’s coordinate system

has its origin in the low left corner. To get the coordinates of the mouse position the

functions ”getX” and ”getY” are used. Then, the coordinates are transformed to a

coordinate system in the middle of the panel. This is illustrated in Figure 6.2.

public void mouseDragged(MouseEvent e) {

double height = MouseNavigator.getSize().height;
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Figure 6.1.: The Java-applets appearance on the robots web site.
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Figure 6.2.: Shift of the coordinate system from the lower left corner to the middel of

the panel.
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Figure 6.3.: Rotation of the coordinate system and mirroring of the s2 axis at the s1

axis.

double width = MouseNavigator.getSize().width;

double x = (e.getX() - width / 2);

double y = (e.getY() - height / 2);

...

The objective of the coordinate transformation is to store the coordinates directly as a

proportional value to the speed. Therefore, the x-coordinate and the y-coordinate must

be equal in the absolute value when the mouse points straight ahead. But since the

robot’s motors are arranged to a differential drive, the motors have to move in different

directions to move the robot straight ahead. Thus, a further coordinate transformation

is necessary, Figure 6.3. The following code realizes that transformation:

...

double s1 = Math.sqrt(0.5) * x + Math.sqrt(0.5) * y;

double s2 = Math.sqrt(0.5) * x - Math.sqrt(0.5) * y;

...

Now, the coordinates s1 and s2 are directly proportional to the motor speeds.

The next problem to solve is that the defined protocol 5.1 of information transfer does

not allow to send values of datatype ”double”. It only allows sending numbers that are
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not longer than 20 bit. Furthermore, it is necessary to set the speed between 0x000 and

0x17F. Thus, the obtained ”double” values have to be scaled:

...

int IntCast1;

int IntCast2;

int sign1=0,sign2=0;

IntCast1=(int)(s1*7);

IntCast2=(int)(s2*7);

if (IntCast1>383)

IntCast1 =383;

if (IntCast2>383)

IntCast2 =383;

if (IntCast1<-383)

IntCast1 =-383;

if (IntCast2<-383)

IntCast2 =-383;

...

First, the s1-coordinate and the s2-coordinate are cast to integer numbers and at the

same time the values are multiplied by seven. This multiplication is done to get the

value of 383 (383 represents the speed maximum) when the mouse points to the highest

position in the middle of the panel. Since locations of equal speed form a circle around

the panel’s origin the values of the casted numbers are too large in the corners of the

panel. Therefore, the already casted values have to be set to a maximum value of 383

(0x17F).

Now, the sign has to be treated. If value of the casted numbers ”IntCast1” and ”Int-

Cast2” are negative, the flag ”sign1” or ”sign2” is set:

...

if (IntCast1<0) {

sign1=1;

IntCast1 =Math.abs(IntCast1);

}

if (IntCast2<0) {

sign2=1;
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IntCast2 =Math.abs(IntCast2);

}

...

Hence, a capable value to send to the PWM unit is available in the variables ”IntCast1”

and ”IntCast2”.

The motor commands can be sent via UDP socket connection from the Java-applet to

the Etrax computer. For this, the method ”SendMessageViaUdp” is used. The function

expects four parameters. The first parameter specifies the command to execute in the

receiving device. The second parameter defines the channel to which the data has to be

sent. ”IntCast1” and ”IntCast2” are the values itself and the last parameter specifies

the sign of the values:

...

SendMessageViaUdp("1","00",IntCast1, sign1);

SendMessageViaUdp("1","01",IntCast2, sign2);

}

After the reception of the motor commands, the Etrax computer forwards them to the

Atmega16 controller. The Atmega16 sends the data packet over the TWI bus to the

Atmega8 controller. Hence, the channel and command selection method causes the

speed values to be written in the PWM registers OCR1A and OCR1B.

6.2. Results

The sections above describe the components as well as the used programming techniques

to set up the mobile robot. All components of the robot work well. Indeed, a problem is

the robot speed. It takes too much time to transfer the camera images to the Java-applet.

Thus, the frame rate is very slow and if the robot moves too fast a fluent video-stream is

impossible to guarantee. Therefore, the robot has to move very slowly so that the user

can see all changes in the robot’s environment with an acceptable delay. To increase the

frame rate, a fast image delivery has to be guaranteed.
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7. Autonomous Navigation

Navigation is a quite new area in mobile robotics. Thus, plenty of different approaches

have been developed during the last years. The approaches differ concerning the inherited

knowledge of the robot.

One approach assumes no knowledge of the environment which the robot is moving in.

The robot is given a trajectory that it follows. As a reference, only encoder information

of the wheels is used. If obstacles appear, the robot plans its way around them and tries

to get back on the trajectory.

Another approach supplies the robot with information about the environment. That is

accomplished by using a map in the robot software. This map gives the robot information

where unmoveable objects are located. Hence, it is possible to use external information

such as locations of fixed objects to orientate in the environment.

A third method commonly used is an approach to build a map during the operation of

the robot. This means that the robot does not know anything about its surroundings.

During the operation, sensory data is used to build a map gradually. Thus, the robot

gets more and more knowledge during the period of operation and accordingly navigation

is easier. This method is called ”Simultaneous localisation and Map building” - in short:

SLAM, [4].

In this thesis a form of the second approach is used. A simple map is available consisting

of locations in the corridor the robot is moving in. To navigate, data from motor encoders

as well as visual information from the network camera is used. An algorithm detects the

lamps on the ceiling. The robot knows where these lamps are located and therefore it

knows its own position.

The following section describes the environment of the robot as well as the necessary

tasks which have to be done to accomplish smooth navigation.
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7.1. The Robots Abilities and the Environment it is Moving in

The robot operates in a corridor with several doors on both sides. A schema of this

corridor is shown in Figure 7.1. It is crucial that the robot is able to find a room

and turn itself, so that the user can look into the room with the help of the robot’s

camera. Therefore, the Java-applet which had been described before is extended with

some buttons. Through the applet the user can switch to automatic mode which means

that the robot takes control of itself. Via the applet, a room can also be chosen to which

the robot is supposed to move. The automatic mode can be interrupted by just clicking

on the control panel. By doing this, the robot switches to ”remote control mode” what

means that from now on the user can steer the robot with the mouse. In the current

stage of development, the robot has to start at the beginning of the corridor to guarantee

correct navigation.

To achieve accurate operation, different problems have to be solved. The largest

challenge is that the robot does not drive straight when both motors are provided with

the same PWM signal. Hence, controllers for the both motors are necessary. Using a PI-

controller for each motor makes the robot drive reasonably straight. The behaviour when

moving straight can be further enhanced by adding a third controller, which compensates

for the speed difference between the two wheels. However, the encoders which supply

the PI-controllers with speed information, cannot measure a difference concerning the

wheel diameter. Also, different friction of the wheels will be not noticed. These errors

result from the fact that the encoders just measure the turning rate of the wheels and

not the real distance which is covered. These errors are integrated over time and result

in a drift movement of the robot. Since these errors are too big when moving through

the whole corridor, the aid of visual information is necessary to achieve straight driving.

Image processing recognizes the lamps on the ceiling. Since these lamps are centred in

the corridor, they represent a capable reference for the robot. When the image processing

algorithm recognises a lamp, the robot checks whether the lamp is centred in the image

Figure 7.1.: Schema of the corridor - the vertical bars symbolizes the Lamps on the

ceiling.
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or not. If it is centred, the robot is also centred in the corridor. If the image is not

centred, a PID-controller adjusts and turns the robot until the lamp is in the middle of

the image. Through this, the integrated error of the motor controllers can be corrected

by using the lamps as landmarks.

Furthermore, the robot should not only be able to go straight through the corridor. It

should also be possible to head for a special room. In this context a difficulty occurs

when a room is found. Then the robot heads towards the door to look in the room. To

move further, the robot is supposed to turn back on the corridor. Since the track is lost

by turning towards the room, all references are lost as well, so just encoder information

can be used to adjust the right heading of the robot and consequently to carry on with

the straight movement in the corridor.

The next section, 7.2, presents the basic mathematical theory of the pattern recognition

algorithm. In Section 7.3 this mathematical method is used to support the robot in its

moving. Section 7.4 exposes how simple navigation can be done by recognizing so called

”landmarks” in the robot’s surroundings.

7.2. Correlation Coefficient - Mathematical Basics

In this work, pattern recognition is done with the mathematical method of calculating the

correlation coefficient. This section explains the mathematical basics and characteristics

of this method.

The correlation coefficient indicates the degree of linear dependence of two statistic

variables X and Y . All points (X, Y ) lie with the probability 1 on a straight line if the

correlation coefficient is equal to 1. The variables X and Y are statistically independent

if the correlation coefficient equals to 0.

The correlation coefficient is defined by:

̺
XY

=
σ

XY

σ
X
σ

Y

(7.1)

X and Y are only independent if σ
XY

= 0. Additional, X as well as Y have to be

normally distributed for the independency of X and Y , [8]. Here it is remarked that

in case of X and Y being images, this condition is only fulfilled if the image is rich in

contrast.

The nominator of Equation 7.1 represents the covariance of X and Y :
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σ
XY

= E((X − µ
X
)(Y − µ

Y
)) (7.2)

The covariance also provides a measure for the dependence of X and Y but without

standardisation. Only using the covariance leads to a certain problem concerning pattern

recognition. If a pattern has to be found within an image that has large areas of white,

the covariance will often have a maximum in these regions even if the pattern is contained

in the image on another position. This results from the fact that a white pixel has the

highest value in an image. And if the highest value is multiplied with any pixel of a

pattern, the result will often be a higher value than the value of a multiplication from a

pixel with itself. Because of this, it is necessary that the covariance is standardised. This

is done by dividing the covariance with the multiplication of the standard deviations of

X and Y :

σ
X

=
√

E((X − µ
X
)2)

σ
Y

=
√

E((Y − µ
Y
)2)

The expressions under the square root in the equations above can be estimated in the

discrete case when having a finite number k of samples:

σ
X
≈

√

∑

k

(xk − µ
X
)2px,k

σ
Y
≈

√

∑

k

(yk − µ
Y
)2px,k

Also, the covariance of Equation 7.2 can be approximated:

σ
XY

≈

∑

k

(xk − µ
X
)px,k(yk − µ

Y
)py,k

Here, px,k is the probability of appearence of the element xk and py,k is the probability
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of appearence of the element yy,k respective.

If a static stochastic process is assumed, the standard deviation turns into the auto cor-

relation and the covariance turns into the cross correlation:

Autocorrelation functions:

∑

k

(xk − µ
X
)2pk =

1

N

∑

k

(xk − x̄)2

∑

k

(yk − µ
Y
)2pk =

1

N

∑

k

(yk − ȳ)2

Crosscorrelation function:

∑

k

(xk − µ
X
)px,k(yk − µ

Y
)py,k =

1

N2

∑

k

(xk − x̄)(yk − ȳ)

Since a concrete number of N samples are assumed, the expected value µ
X

is exchanged

by the average value xk. Setting these expressions in the original Equation 7.1, leads to:

̺
XZ

≈ rxy =

∑

k

(xk − x̄)(yk − ȳ)

√

∑

k

(xk − x̄)2
∑

k

(yk − ȳ)2
(7.3)

To compare two images of the same size, rxy can be calculated which gives a measure of

how similar two images are.

7.3. Motor Controllers - Straight Movement

Even if two drive motors of the same type are used, they do not have the same speed.

Because of tolerances, the two motors differ minimally concerning the motor character-

istics including the speed. These minimal differences are enough to let the robot drive

along a curve when providing both motors with the same voltage. Since a wheel en-

coder is available for both motors, it is possible to compensate these differences with a

controller. Figure 7.2 shows the control loop for one motor. Since a microcontroller is

used to implement the controller, the control system is a sampled data control system.

The reference input is formed by the desired angular speed of the motor. Since the
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Figure 7.2.: Control loop of one motor

computation power in a microcontroller is restricted a PI-controller is used. The output

of the discrete controller is fed to the PWM unit which generates the actuating variable

u(t). The motor, a second order lag element, represents the plant of the control loop

system and its output is the controlled variable - the motor’s speed. The angular speed

is measured by the encoder. The output of the encoder is available to the software and

the controller algorithm.

7.3.1. Recursive Control Algorithm

The function of a continuous PI-controller is given by the following equation:

y(t) = K

[

e(t) +
1

TI

∫

e(t)dt

]

The corresponding discrete control equation is:

yk = K

[

ek +
1

TI

k
∑

i=1

eiT

]

In these and the following equations T refers to the sampling time and TI is the inte-

gration constant. The input of the controller is the control error e and the output is

represented by y.

To implement a discrete PI-controller, the form of the recursive PI-control algorithm is

necessary. To obtain the recursive form, the equation for the control signal at sample

time k − 1 is subtracted from the equation for yk:
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yk−1 = K

[

ek−1 +
1

TI

k−1
∑

i=1

eiT

]

yk − yk−1 = K

[

ek − ek−1 +
T

TI

ek

]

Bringing yk to the front, results in the recursive equation:

yk = yk−1 + K

[(

1 +
T

TI

)

ek − ek−1

]

(7.4)

7.3.2. The Motor Control System

Implementing the above algorithm to control the velocity of each motor gives rise to good

results concerning the lateral shift when driving straight. The control accuracy can be

further enhanced by adding another control loop which connects the two separate control

loops of the motors. This middle control loop corrects the speed difference between the

two separate control loops. Hence, if for some reason one motor gets stuck, the other

motor’s speed will be reduced.

The whole motor control system is shown in Figure 7.3. Since the robot is supposed

to move straight, the reference inputs for both motors are equal. To compensate the

difference of the motor speeds, an I-controller is used. Its input consists of the measured

velocities of both motors.

Added to the input of the I-controller is a ”bias” that can be used to add an artificial

disturbance that results in driving a curve. Also, this input can be used to compensate

differences in the wheel circumference. The recursive, discrete I-controller is given by:

yi,k = yi,k−1 +
T

Ti

ei,k

7.3.3. Implementation on the Atmega8

To ensure a constant sampling time, the controller is realized in an interrupt routine. As

the interrupt source is chosen the overflow interrupt of timer 2. Since the prescaler of

timer 2 is chosen as 1024, an interrupt occurs with the frequency of 56,25 Hz. However,
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Figure 7.3.: The motor control system realized on the Atmega8 controller.
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just every fourth time an interrupt occurs, the control algorithm is executed. Therefore,

the control frequency will be 14,06 Hz.

The following code segment shows the implemented interrupt routine. The variables

”speed l” and ”speed r” contain the reference input. These values are converted to

encoder ticks. The factor the speed is multiplied with means that every time the control

algorithm is executed, 0x29 encoder ticks are counted at a speed of 0x1ff. Here, speed

refers to a value in the PWM register. The converted speeds are contained in the

variables ”des r” for the right motor and ”des” for the left motor:

SIGNAL (SIG_OVERFLOW2)

{

cou++;

if (cou==4)

{

cou=0;

des_r=speed_r*0x29/0x1ff;

des=speed_l*0x29/0x1ff;

...

}

The encoder ticks counted during one period are contained in the variables ”pos1” for the

right motor and ”pos2” for the left motor respectively. With the help of these variables

which form the controlled variables, the control error ei of the middle control refeeding

can be calculated. Having ei, the output of the middle I-controller yi can be computed

as well:

...

e_i = pos2-pos1+bias;

y_i= y_i_old + h1*e_i; // h1=T/Ti

y_i_old = y_i;

...

Here, the auxiliary number h1 is brought in. This number represents the I-controller’s

time constant which is pre computed. All time constants in the control algorithm are

pre computed when the variables are initialized. This is done to avoid floating point

operations in the interrupt routine.
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Next, the control errors of the control loops directly controlling the motor speeds are

computed:

...

e_r=des_r-pos1+y_i;

e=des-pos2-y_i;

...

Now, the encoder variables have to be reset and the control signals are computed ac-

cording to Equation 7.4. h3 is also a pre computed constant:

...

pos1=0;

pos2=0;

u_r=u_old_r+h3*e_r+e_r_old; //h3=Kr*(1+T/(Tn*2))

u=u_old+h3*e+e_old;

...

Since the actuating variables as well as the control errors from the last iteration are

necessary to compute the actuating variable, they will be saved. To set the motor

direction flag the function ”SetMotorDirection” is invoked. Also, the speed has to be

limited which is done with the function ”LimitSpeed”:

...

e_old=e;

e_r_old=e_r;

u_old_r=u_r;

u_old=u;

SetMotorDirection(u_r,u);

LimitSpeed(u_r,u);

...

The last step is to write the actuating values to the PWM registers:

...

u_r1=abs(u_r);
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u1=abs(u);

OCR1A=(uint16_t)u_r1;

OCR1B=(uint16_t)u1;

}

}

7.3.4. Track Correction at Regular Intervals Using Pattern Recognition

The described motor control system works rather well when the distance that the robot

has to move is short enough. However, the corridor where the robot is moving in is

about twenty meters long so the integrated error is not negligible.

To support the motor control system, image processing can be used. Lamps are situated

on the ceiling in the middle of the corridor. The camera of the robot continuously takes

images of the corridor. If the robot moves straight, the lamps will be in the middle of

the images but if it drives in a curve, the lamps will be shifted to the outer regions of

the image. Thus, it is possible to detect when the robot goes off the straight line.

As the robot moves through the corridor the lamps grow larger the nearer they come.

When a lamp reaches the upper border of the image, it will be recognized by the corre-

lation algorithm. After the lamp’s position is determined, the robot corrects its position

by using a PID-controller until the lamp is centred in the middle of the image.

After correcting the position, the robot moves only with the support of the motor control

system from section 7.3.3. When another lamp is found, the robot corrects its position

again. Due to this control behaviour, the robot moves as shown in Figure 7.4.

In Subsection 7.3.1 the recursive equation for the PI-controller is derived. Deriving the

recursive equation for the PID controller leads to the following Equation:

yk = yk−1 + K

[(

1 +
TD

T

)

ek −

(

1 −

T

TI

+ 2
TD

T

)

ek−1 +
TD

T
ek−2

]

(7.5)

This PID-equation is realized in Matlab. The control algorithm always is executed when

a lamp is detected but not centred in the middle concerning horizontal displacements.

Next, the most important parts of the PID-controller implemented in Matlab are de-

scribed.

First, the control error is computed. The number ”52” denotes the reference input and
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Figure 7.4.: Track of the robot - The vertical bars indicate the recognition of a lamp.

It means not that a lamp is located on this position. A recognized lamp is

always a couple of meters in front of the robot.

”ind” is the index concerning the column where the lamp is found in the image. Having

the control error, the actuating variable can be calculated:

...

e = 52 - ind;

u = u_old + Kr*(1+Tv/T)*e - Kr*(1-T/Tn+2*Tv/T)*e_1 + Kr*Tv/T*e_2;

...

If the actuating variable u is too small because of the static friction the robot won’t

move. To get an immediate reaction, this dead zone is compensated by assigning a

minimum value to the actuating variable:

...

if (e<0)

if u>=-90

u=-90;

end

else

if u<90

u=90;

end

end

...
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Figure 7.5.: System behaviour without controlling the motor speed.
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Figure 7.6.: Track of the robot with controlled motor speeds

After this, the old values of the control error and the actuating variable are saved for

later use in the next iteration. Then the actuating variable is limited and sent via UDP

to the C-program running on the Etrax which forwards it to the Atmega controller

board.

7.3.5. Results

The uncontrolled system is compared with the controlled System. To compare both

systems, the robot is supposed to drive straight a distance of 4 meters.

First, the uncontrolled system is considered. To drive straight the values 0xbf are

written to the PWM registers OCR1A and ORC1B. Figure 7.5 shows the covered track.

It is aim to drive straight and hence to keep the distance of 170 cm from the wall. It is

obvious that both motors have different speeds. The left motor is much faster than the

right one and therefore the robot drives in a curve.
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Figure 7.6 shows the moved track by using two independent controllers of both motors.

The reference variable is set to the same value. It can be seen that the controller action

is much better than without controller. The offset at the end of the 4 meter track is just

10 centimeters. Since the robot is adjusted with the help of pattern recognition and the

distance between two Lamps is just 2,4 meters, this is an acceptable value.

Using the middle I-controller loop does not lead to better results. The results just would

be better if one wheel would be blocked and the controller could not compensate the

control error.

7.4. Navigation in the Corridor

As mentioned the robot uses a simple map to navigate in the corridor. When the robot

starts moving at the beginning of the corridor it assumes that the first recognized light

is the second light in the corridor. The rooms are represented by distances from the

lights. For instance, if the user gives an orders to the robot to look in the first door,

the robot knows that after recognizing the first door it still has to move 0x3300 encoder

ticks forward to reach the first door.

7.4.1. Recognition of a Lamp

To perform the image processing, Matlab is utilized. The computer on which the im-

age processing is conducted possesses a 350 MHz Pentium processor. Image processing

demands a significant amount of computing power, and hence the pattern recognition

algorithm can only be applied to very small segments of the images.

The lamps on the ceiling are chosen as reference patterns for several reasons. As men-

tioned in Section 7.2 the correlation can just be used for pattern recognition if the images

are normally distributed. Thus, the pattern which has to be found has to be rich in con-

trast. This is obviously the case when a lamp with a frame around the lamp is used as

a pattern.

Furthermore, a pattern must be located in the middle of the corridor since the location

of the pattern is also used to support the motor control system by steering the robot

straight in the middle of the corridor.

A third reason to choose the lamps is that the lamps always leave the image at the upper

image edge when the robot is driving through the corridor. Thus, the image processing

has just to be done in the upper part of the image which saves computing power.

Since the aperture angle of the camera is small, the first lamp seen in the image is the

75



Figure 7.7.: Recognition of a lamp.

second lamp counting the lamps from the robot, see Figure 7.7.

To save additional compute power, only 160×120 images are used instead of the 320×240

images. The pattern which has to be recognized is taken out of the middle of a sample

image and has the size of 51 × 8 pixels.

7.4.2. Windowing the Image and Finding the Pattern

The Equation 7.3 to calculate the correlation coefficient can be applied to two images

of the same size. Hence, the image taken from the network camera has to be windowed.

This is accomplished by moving a window over the part of the image the pattern has to

be searched in. It is started in the left upper corner of the image and after calculating

the correlation coefficient, the window is moved one pixel further. Then, the correlation

coefficient is computed again and so on. For every position of the window one correlation

coefficient is obtained. All correlation coefficients are stored in the correlation matrix.

How the correlation coefficients are stored is illustrated in Figure 7.8.

The pattern, in this case a lamp, is found when the maximum of the elements of the

correlation matrix is above a pre defined value. The location of the pattern is determined

by the indices of the maximum in the correlation matrix.

The following describes the most important parts of the Matlab program responsible for

the pattern recognition. The program is executed in a loop. Before the loop starts, some

variables are initialized for later use. Also, the pattern which is an image of a lamp is

loaded in an array.

Line two of the following code segment extracts just a gray image and since some func-

tions of the Matlab Image Processing Toolbox [9] needs ”double” values, the pattern is

converted to ”double”:
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Figure 7.8.: Obtaining the correlation matrix by calculating the correlation coefficient of

the pattern and the windowed image.

...

pattern=imread(’/local/jens/scene6/light2’,’jpg’);

pattern=pattern(:,:,1);

pattern=double(pattern);

...

The loop, in which the pattern recognition is done, starts with downloading an image

from the network camera:

...

while (1)

I=imread(’http://192.168.0.91/axis-cgi/...

...jpg/image.cgi?resolution=160x120’,’jpg’);

I=I(:,:,1);

I=double(I);

...

Now, two ”for” loops are started. They move the window through the parts of the image

in which the pattern is searched. The matrix ”I w” contains the windowed part of the
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image and has the same size as the pattern.

The windowed image as well as the pattern is passed to the function ”corrco”. Since

Matlab interprets the commands, which is slow concerning the execution speed, the

calculation of the correlation coefficient is implemented in a ”mex” file that contains

C-code. This file can be compiled and is much faster than the interpreted commands

in Matlab. The function ”corrco” calculates the correlation coefficient of the windowed

image and the pattern and gives the value back to the correlation coefficient matrix

”CorrCoeff”:

...

[Rows,Cols] = size(pattern);

CorrCoeff = zeros(120-Rows+1,160-Cols+1);

for i=1:3

for j=10:160-Cols-10

I_w = I(i:i+Rows-1,j:j+Cols-1);

CorrCoeff(i,j) = corrco(I_w,pattern);

if CorrCoeff(i,j)>0.94

if (CorrCoeff(i,j)>maxim)

maxim=CorrCoeff(i,j);

ind=j;

end

end

end

end

...

Some experiments showed that a correlation coefficient of 0,94 is a reliable sign that a

lamp is found. Therefore, only values above 0,94 are saved and at the same time the

maximum of the correlation matrix is searched.

After a lamp is found the maximum will be higher than 0,94 and thus the ”if” condition

in the following code segment is fulfilled. If now the pattern’s position is between pixel

50 and 54, the robot is assumed to be centred. The variable ”c2” is increased when a

pattern is found more than one times in a row. And if a pattern is found 4 times in a

row between the pixel 50 and 54, the lamp and so the robot is assumed to be stable in

the center. Then, the message ”<light>>”, which indicates that a light is found, can be

sent via the UDP connection to the Etrax computer:
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...

if (maxim>0.94)

if ((ind>=50) & (ind<=54))

c2=c2+1;

if c2>=4

c2=0;

dat=’<light>>’;

try, % Failsafe

pnet(udp,’write’,dat);

pnet(udp,’writepacket’,host,port); % Send buffer as UDP packet

end

end

...

How the Etrax computer deals with this message, is described in the following subsection.

If the light is found but not centered in the image, the PID-controller described in Section

7.3.4 compensates the offset.

Remark: The ”mex” file which implements the function ”corrco” is described in the

Attachment A.

7.4.3. Simple Navigation - Counting the Lamps

If a lamp is properly recognized, the message ”<light>>” will be sent via a UDP socket

connection to the Etrax computer. The C-program on the Etrax computer distinguishes

between mainly two kinds of messages. A message starting with the character ”<”,

indicates that a part of the data processing has to be done on the Etrax computer. If

not such a character is the first in the message, the message is directly forwarded to the

Atmega controller.

Since the message contains the string ”<light>>”, the following code segment is executed:

...

else if (strcmp(msg_r,"<light>>")==0)

{

light=light+1;

if (NoRoom!=light)

{

RS232_send("107000ff");
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waitAmom(400);

sendUDP_2("<<goon>>");

}

}

...

The variable ”light” is increased. Because of the value of ”light”, the Etrax computer

knows where the robot is located in the corridor. Another variable ”NoRoom” denotes

the room in which the robot is supposed to look in. If the room number and the number

of lights are not equal, the robot will move further and with the command ”sendUDP 2”

Matlab is directed to go on with finding lights.

In case the variables ”NoRoom” and ”light” are equal, the robot knows that the next

door is the addressed door at which the robot has to stop. Therefore, no drive command

is sent to the Atmega controller. In this case another thread of the C-program on the

Etrax computer takes control.

The thread ”GoToRoom” waits in the background until the variables ”NoRoom” and

”light” are equal. For instance if the first room is addressed and the two variables are

equal, the first ”case” of the switch structure in the following code segment is executed.

First, a command is sent to the Atmega to drive straight with the velocity 0xff . The

second message sent via the serial port to the Atmega controller is a command on which

the Atmga controller reacts by sending the up to date value of the encoder. This value

of the encoder is received by the Etrax computer and saved to the variable ”position”.

Now, the Etrax asks for new encoder data as long as the value is smaller than 0x3300

because 0x3300 encoder ticks have to be waited until the robot moves from the position

where the light is found to the door. After reaching this value, the robot stops:

...

void *GoToRoom(int *ii) {

while (1) {

switch (NoRoom)

{

case 0: break;

case 1:

{

if (light==1)

{
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RS232_send("107000ff");

RS232_send("10400000");

while (position<0x3300)

{ waitAmom(10); RS232_send("00400000"); }

waitAmom(10);

RS232_send("10700000");

...

In order to look into the room, the robot has to turn towards the door. This is done

by driving the left motor with the speed 0xAf while keeping the right motor turned

off. Now, constantly encoder information is asked until the value of the encoder reaches

0x750. Then, the robot looks direct in direction of the room:

...

// turn towards the door

RS232_send("10400000");

RS232_send("101000af");

position=0;

while (position<0x750)

{ waitAmom(5); RS232_send("00400000"); }

waitAmom(5);

RS232_send("10700000");

NoRoom=0;

}

break;

}

...

Remark: The function ”waitAmom” contains ”for” loops to wait some time until the

next action is done.
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8. Conclusion and Outlook

In this thesis, the assembly of a mobile robot is described. In the first part, the single

components are explained and how they work together. The robot’s hardware consists

mainly of the chassis of an old robot, two Atmega microcontrollers, an Etrax computer,

a network camera as well as an external personal computer.

The Atmega controller boards form an interface to all hardware devices. The Atmega8

controller provides an interface to the motors. The motors are driven by using the PWM

unit of the controller. Also, data from the wheel encoders is read. The data provides

the programs, running on the different systems of the robot, with crucial information

about the robots velocity and covered distances. The Atmega16 controller represents an

interface to read sensory data from the bumper switches. However, even if the physical

connection between the controller board and the switches exists, these bumper switches

were not used in this project.

Since a central part of this project concerns interfaces, the Etrax computer is a crucial

part of the robot. All sent data is received by the Etrax computer and distributed to the

different components of the robot. Also, it is used to do some higher level controlling of

the robot.

The mobile components are connected over wireless LAN to a host computer where

calculations demanding higher computing power are accomplished. Mainly, the pattern

recognition which is used for navigational reasons is done on this host. Therefore, the

network camera mounted on the robot provides the pattern recognition algorithm with

images.

One part of this thesis discusses the used interfaces and their functions in the robot

system. The Atmega controllers communicate by using the TWI serial bus. The At-

mega and the Etrax computer uses the RS232 serial port to exchange information. All

communication to the external host as well as to the Java-applet is done with a UDP

socket connection.

After all basic software implementations are made, a remote control of the robot is real-

ized. To control the robot via internet, a user can download an html web page from the
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web server located on the Etrax computer. Thus, the user can see an image taken by

the network camera on the robot in his browser. Also, an Java-applet is started which

provides an interface to steer the robot via the computer mouse.

The last part of this project deals with the implementation of an autonomous function.

The objective is that the robot navigates in a known environment and finds rooms on

its own. In this context, it is a challenge to guarantee that the robot drives straight

while operating autonomous. To drive straight, it is not sufficient to provide the motors

with equal voltages. Since the motors are not completely identical in construction, they

will have different speeds. To compensate this speed difference, a motor control system

consisting of PI-controllers is designed.

To support the motor control system, pattern recognition is used. Lamps on the ceiling

which are used as landmarks provide the robot with reference points to orientate in the

corridor. These landmarks are also used to accomplish simple navigation. By counting

the landmarks, the robot knows where it is located in the corridor and thus it can find

a room itself.

The robot system can be extended in further projects by improving its capability to

orientate. This can be done for instance by using an artificial landmark at the end of

the corridor. Then, the size has to be estimated by an algorithm and so a continuous

estimation of the robot’s position is possible. However, to implement such an algorithm

more computing power is necessary to do the more computationally demanding calcula-

tions.

Further, it can be examined if other pattern recognition methods lead to better results.

For example, modern approaches like Neural Networks and Vector Support Machines

provide reliable classification properties.

Another feature that could be added is the ability to plan the robots movement with

trajectories. Thus, the robot could drive along curves just by commanding to drive a

special radius with a certain velocity.

Since a robot arm is available, further projects could involve assembling this arm to the

robot.

83



9. Acknowledgement

I want to thank all people who helped me in any way to complete this thesis. I especially

want to thank my supervisors Anders Blomdell and Karl-Erik Årzén. During the project,
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A. The Matlab Function ”corrco”

The ”mex” function is responsible for the most computing power consuming calculations.

Both auto correlation functions as well as the cross correlation of the windowed image

and the pattern are computed in the ”mex” file.

The ”mex” function has a determined number of arguments in its gateway function

”mexFunction”. The number of left hand arguments is contained in the integer variable

”nlhs” and the number of right hand side arguments is contained in ”nrhs”. The pointer

”plhs” is a pointer to an array that contains all input data passed to the ”mex” function.

The data which is returned can be accessed with the pointer ”prhs”:

#include "mex.h"

#include "math.h"

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, ...

... const mxArray *prhs[])

{

...

Now, the declarations of all used variables have to be made. Then, it is checked if the

right number of arguments are passed to the function:

...

double *I, *P, *y, acf_p, acf_i, ccf;

int i, rows_i, cols_i, rows_p, cols_p;

/* Check for proper number of arguments. */

if (nrhs != 2) {

mexErrMsgTxt("Two inputs required."); }

...

In the following, for later use, the sizes of the input arrays are saved. In a ”mex” file,

all arrays only can be accessed by pointes. Therefore, the pointers to the matrices are

assigned. Also, the output matrix which is a scalar has to be created:
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...

/* The input must be a noncomplex scalar double.*/

rows_i = mxGetM(prhs[0]);

cols_i = mxGetN(prhs[0]);

rows_p = mxGetM(prhs[1]);

cols_p = mxGetN(prhs[1]);

/* Create matrix for the return argument. */

plhs[0] = mxCreateDoubleMatrix(1,1, mxREAL);

/* Assign pointers to each input and output. */

I = mxGetPr(prhs[0]);

P = mxGetPr(prhs[1]);

y = mxGetPr(plhs[0]);

...

The last part of the ”mex” function is the actual implementation for calculating the

correlation coefficient. The correlation coefficient calculated in accordance to equation

7.3 is contained in ”y[0]”:

...

ccf=0;

acf_p=0;

acf_i=0;

for (i=0;i<rows_p*cols_p;i++) {

acf_p = acf_p + P[i]*P[i];

acf_i = acf_i + I[i]*I[i];

ccf = ccf + P[i]*I[i];

}

y[0] = ccf/sqrt(acf_p*acf_i);

}

The scalar which is returned to Matlab is ”y[0]”.
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B. Source Code of the Atmega8 Program
//#include <avr/io.h>

#include <string.h>

#include <avr/ina90.h>

//#include <inttypes.h>

#include <stdio.h>

#include <stdlib.h>

#include <avr/interrupt.h>

#include <avr/signal.h>

// speed control

volatile int speed_r=0;

volatile int speed_l=0;

volatile int bias=0;

volatile int straight=0;

// TWI

volatile int flagT=0;

volatile int flagR=0;

volatile unsigned char dataT[4];

volatile unsigned char dataR[4];

#define MESSAGE_LENGTH 8

volatile unsigned char encoder1, encoder2;

volatile int pos1=0;

volatile int pos2=0;

volatile long pos1sum=0;

volatile long pos2sum=0;

char* makeString(char *cmd, char *channel, uint32_t value);

void motorControlresRight();

void motorControlresLeft();

void Ch7selectCmdAndSendData(uint8_t cmd, uint8_t sign, uint16_t value);

// INITIALISATION-ROUTINES----------------------------------------------------------------

void PORT_init()

{

PORTB = 0x39; // Port B, pull up PB0, PB3, PB4 & PB5

DDRB = 0x06; // PortB, PB1 & PB2 outputs

PORTD = 0x00; // no pull up

DDRD = 0xc0; // PortD, PD6 & PD7 outputs

PORTC = 0x00; // no pull up

DDRC = 0x0c; // PortC, PC2 & PC3 outputs

}

void USART_Init()

{

_CLI();

// Set baud rate

UBRRH = 0x00;

UBRRL = 23;

// Enable receiver and transmitter

UCSRB = (1<<RXCIE)|(1<<RXEN)|(1<<TXEN);

// Set frame format: 8data, 1stop bit

UCSRC = (1<<URSEL)|(3<<UCSZ0);
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_SEI();

}

void TWI_init() {

_CLI();

TWAR = 0x44; // own slave addr

TWBR = 0x0a;

TWSR = (0<<TWPS1) | (0<<TWPS0);

TWCR = (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

_SEI();

}

void PWM_Init()

{

_CLI();

ICR1=0x04FF;

TCCR1A = 0xa0;

TCCR1B = 0x11;

TIMSK = 0x00;//04 //interrupt 0x04 - timer1 only

TCCR2= (1<<CS22) | (1<<CS21) | (1<<CS20);

OCR1A=0x0;

OCR1B=0x0;

_SEI();

}

// ---------------------------------------------------------------------------------

void USART_putc( unsigned char data )

{

// Wait for empty transmit buffer

while ( !( UCSRA & (1<<UDRE)) ) ;

// Put data into buffer, sends the data

UDR = data;

}

void USART_puts(char *data, int lenth) {

int count;

for (count = 0; count < lenth; count++)

USART_putc(*(data+count));

}

uint32_t convertStringToHex(char *string) {

uint32_t i=0,fourbytes=0,value=0;

for (i=0;i<MESSAGE_LENGTH;i++)

{

if (’0’ <= *(string+i) && *(string+i) <=’9’) {

value = *(string+i) - ’0’;

}

else if ((’A’ <= *(string+i) && *(string+i) <= ’F’)) {

value = *(string+i) - ’A’ + 10;

}

else if ((’a’ <= *(string+i) && *(string+i) <= ’f’)) {

value = *(string+i) - ’a’ + 10;

}

fourbytes = fourbytes << 4;

fourbytes |= value;

}

return fourbytes;

}

char* makeString(char *cmd, char *channel, uint32_t value)

{

uint8_t i;

uint32_t mask=0x000f0000;

static char sendData[8];

char hex[5];

for (i=0;i<5;i++) {
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int v = (value & mask)>>(16-(i*4));

if (0 <= v && v <= 9) {

hex[i] = ’0’ + v;

} else {

hex[i] = ’A’ + v - 10;

}

mask = mask >> 4;

}

sendData[0]=*(cmd+0);

sendData[1]=*(channel+0);

sendData[2]=*(channel+1);

sendData[3]=*(hex+0);

sendData[4]=*(hex+1);

sendData[5]=*(hex+2);

sendData[6]=*(hex+3);

sendData[7]=*(hex+4);

return sendData;

}

// Channelhandling for channels on this AVR ----------------------------------------------

void Ch0selectCmdAndSendData(uint8_t cmd, uint8_t sign, uint16_t value) {

switch (cmd)

{

case 0: { break; } // GetValue

case 1:

{

straight=0;

speed_r=0;

speed_l=0;

pos1=0;

pos2=0;

OCR1A = value;

if (sign==0)

PORTC = PORTC & 0xfb;

else

PORTC = PORTC | 0x04;

break; // SetValue

}

case 2: { break;} // further commands

}

}

// left motor - PB2, dir: PC3

void Ch1selectCmdAndSendData(uint8_t cmd, uint8_t sign, uint16_t value) {

switch (cmd)

{

case 0: { break; } // GetValue

case 1:

{

speed_r=0;

pos1=0;

pos2=0;

speed_l=0;

straight=0;

OCR1B = value;

if (sign==0)

PORTC = PORTC & 0xf7;

else

PORTC = PORTC | 0x08;

break; // SetValue

}

case 2: { break;} // further commands

}

}
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/*

// Bumper - currently PORTD switches

void Ch2selectCmdAndSendData(long ReceivedRS232Hex) {

switch ((ReceivedRS232Hex & 0xf0000000)>>28)

{

case 0: break; // GetValue

}

}

//right encoder

void Ch3selectCmdAndSendData(long hex) {

switch ((hex & 0xf0000000)>>28)

{

case 0: break; // GetValue

}

}

*/

//left encoder

void Ch4selectCmdAndSendData(uint8_t cmd, uint8_t sign, uint16_t value) {

switch (cmd)

{

case 0: USART_puts(makeString("0","04",pos2sum),8); break; // GetValue

case 1:

{

pos2sum=0;

/* while (pos2sum<value+10) {}

Ch7selectCmdAndSendData(1,0,0);

USART_puts(makeString("4","44",pos1sum),8);

pos1sum=0;*/

break;

}

}

}

//right

void Ch5selectCmdAndSendData(uint8_t cmd, uint8_t sign, uint16_t value) {

switch (cmd)

{

case 1:

{

straight=0;

pos1=0;

pos2=0;

TIMSK = TIMSK & 0xbf;

if (sign)

speed_r = value;

else

speed_r = -value;

motorControlresRight(); motorControlresLeft();

TIMSK = TIMSK | 0x40;

break;

}

}

}

//left

void Ch6selectCmdAndSendData(uint8_t cmd, uint8_t sign, uint16_t value) {

switch (cmd)

{

case 1:

{

straight=0;

pos2=0;

pos1=0;

91



TIMSK = TIMSK & 0xbf;

if (sign)

speed_l = value;

else

speed_l = -value;

motorControlresLeft(); motorControlresRight();

TIMSK = TIMSK | 0x40;

break;

}

}

}

// straight

void Ch7selectCmdAndSendData(uint8_t cmd, uint8_t sign, uint16_t value) {

switch (cmd)

{

case 1:

{

pos1=0;

pos2=0;

TIMSK = TIMSK & 0xbf;

if (sign == 0) {

speed_l = value;//(hex & 0x00000fff);

speed_r = value;//(hex & 0x00000fff);

}

else {

speed_l = -value;

speed_r = -value;//-(hex & 0x00000fff);

}

straight=1;

if (value == 0) {

straight = 0; // middel control off, otherwise ueberschwingen

speed_l = 0;

speed_r = 0;

}

//bias = (hex & 0x000ff000);

motorControlresLeft();

motorControlresRight();

TIMSK = TIMSK | 0x40;

break;

}

}

}

// --------------------------------------------------------------------------------------

volatile uint32_t hex=0;

uint8_t j=0,chan=0,sign=0,cmd=0;

uint16_t value=0;

char ch[MESSAGE_LENGTH];

SIGNAL (SIG_UART_RECV)

{

ch[j]=UDR;

j++;

if (j==8) {

j=0;

hex=convertStringToHex(ch);

//memset(&ch, 0, sizeof(ch));

cmd = (hex & 0xf0000000)>>28;

chan = (hex & 0x0ff00000)>>20;

sign = hex & 0x000f0000;

value = hex & 0x0000ffff;

switch (chan)
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{

case 0: TIMSK = TIMSK & 0xbf; Ch0selectCmdAndSendData(cmd,sign,value); break; // this AVR - right motor

case 1: TIMSK = TIMSK & 0xbf; Ch1selectCmdAndSendData(cmd,sign,value); break; // this AVR - left motor

case 2: //Ch2selectCmdAndSendData(hex); break; // this AVR - free

case 3: //Ch3selectCmdAndSendData(hex); break; // this AVR - right encoder

case 4: Ch4selectCmdAndSendData(cmd,sign,value); break; // this AVR - left encoder

case 5: Ch5selectCmdAndSendData(cmd,sign,value); break;

case 6: Ch6selectCmdAndSendData(cmd,sign,value); break;

case 7: Ch7selectCmdAndSendData(cmd,sign,value); break; // straight=1

case 8: break;

}

}

}

int cou=0;

volatile int e=0;

volatile int e_old=0;

volatile int u=0;

volatile int u_c=0;

volatile int u_old=0;

volatile int des=0;

volatile int e_r=0;

volatile int e_r_old=0;

volatile int u_r=0;

volatile int u_r_c=0;

volatile int u_old_r=0;

volatile int des_r=0;

volatile int ee=0;

volatile int e_i=0;

volatile int e_i_old=0;

volatile int u1=0;

volatile int u_r1=0;

void motorControlresLeft() {

e=u=0;

u_c=0;

u_old=0;

ee=0;

e_i=0;

e_i_old=0;

}

void motorControlresRight() {

e_r=0;

u_r=0;

u_r_c=0;

u_old_r=0;

ee=0;

e_i=0;

e_i_old=0;

}

int h1=0.0711/0.1; // T/(2*Ti)

int h3=1*(1+0.0711/0.2); // Kr*(1+T/(Tn*2)

SIGNAL (SIG_OVERFLOW2)

{

cou++;

if (cou==4)

{

cou=0;

des_r=speed_r*0x29/0x1ff;

des=speed_l*0x29/0x1ff;

ee = pos2-pos1+bias;

e_i= e_i_old + h1*ee;//T/(2*Ti)*ee;
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e_i_old = e_i;

if (straight==1) {

e_r=des_r-pos1+e_i; //USART_puts(makeString("0","00",(uint16_t)pos1),8);

e=des-pos2-e_i;

}

else {

e_r=des_r-pos1;//+(-u_r+u_r_c)*0.7; //USART_puts(makeString("0","00",(uint16_t)pos1),8);

e=des-pos2;//+(-u+u_c)*0.7;

}

pos1=0;

pos2=0;

e_old=e;

e_r_old=e_r;

u_r=u_old_r+h3*e_r+e_r_old; //Kr*(1+T/(Tn*2))*e_r; //PI controller

u=u_old+h3*e+e_old; //Kr*(1+T/(Tn*2))*e; //PI controller

u_old_r=u_r;

u_old=u;

if (u_r<0)

PORTC = PORTC & 0xfb;

else

PORTC = PORTC | 0x04;

if (u<0)

PORTC = PORTC | 0x08;

else

PORTC = PORTC & 0xf7;

if (u_r>0x17f)

u_r=0x17f;

if (u_r<-0x17f)

u_r=-0x17f;

if (u>0x17f)

u=0x17f;

if (u<-0x17f)

u=-0x17f;

u_r1=abs(u_r);

u1=abs(u);

OCR1A=(uint16_t)u_r1;

OCR1B=(uint16_t)u1;

}

}

SIGNAL (SIG_OVERFLOW1)

{

// 14.7456MHz/1/1024 -> 14400Hz

// This should be often enough to get the encoders right

unsigned char portd, e1, e2;

portd = PIND;

e1 = portd & 0x14;

e2 = portd & 0x28;

switch ((encoder1) | (e1 >> 1)) {

case 0x0:

case 0x3:

case 0xc:

case 0xf: {

// No change

} break;

case 0x1:

case 0x7:
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case 0xe:

case 0x8: {

pos1--;

pos1sum--;

} break;

case 0x4:

case 0xd:

case 0xb:

case 0x2: {

pos1++;

pos1sum++;

} break;

default: {

// error = 1;

}

}

switch ((encoder2) | (e2 >> 2)) {

case 0x0:

case 0x3:

case 0xc:

case 0xf: {

// No change

} break;

case 0x1:

case 0x7:

case 0xe:

case 0x8: {

pos2++;

pos2sum++;

} break;

case 0x4:

case 0xd:

case 0xb:

case 0x2: {

pos2--;

pos2sum--;

} break;

default: {

}

}

encoder1 = e1 >> 2;

encoder2 = e2 >> 3;

}

SIGNAL(SIG_2WIRE_SERIAL) {

switch (TWSR & 0xf8)

{

case 0x60:

{

flagR=0;

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

break;

}

case 0x80:

{

dataR[flagR] = TWDR;

flagR++;

if (flagR<3) {

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

} else {

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

}

break;

}

case 0x88:

{
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dataR[flagR]=TWDR;

// uint32_t hex=0;

int i=0;

for (i = 0 ; i < 4 ; i++) {

hex = hex << 8;

hex |= dataR[i];

}

cmd = (hex & 0xf0000000)>>28;

chan = (hex & 0x0ff00000)>>20;

sign = (hex & 0x000f0000)>>16;

value = hex & 0x0000ffff;

switch (chan)

{

case 0: TIMSK = TIMSK & 0xbf; Ch0selectCmdAndSendData(cmd,sign,value); break; // this AVR - right motor

case 1: TIMSK = TIMSK & 0xbf; Ch1selectCmdAndSendData(cmd,sign,value); break; // this AVR - left motor

case 2: //Ch2selectCmdAndSendData(hex); break; // this AVR - free

case 3: //Ch3selectCmdAndSendData(hex); break; // this AVR - right encoder

case 4: //Ch4selectCmdAndSendData(cmd,sign,value); break; // this AVR - left encoder

case 5: Ch5selectCmdAndSendData(cmd,sign,value); break;

case 6: Ch6selectCmdAndSendData(cmd,sign,value); break;

case 7: {Ch7selectCmdAndSendData(cmd,sign,value); } break; // straight=1

case 8: break;

}

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE); // Stop

} break;

// ------------ Slave transmit mode -------------------------------

case 0xA8:

{

flagT=0;

TWDR=dataT[flagT];

flagT++;

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

break;

}

case 0xB8:

{

TWDR=dataT[flagT];

flagT++;

if (flagT<4) {

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

} else {

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

}

break;

}

case 0xC0:

{

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

break;

}

}

}

int main()

{

PORT_init();

USART_Init();

PWM_Init();

TWI_init();

while (1) {

}

}
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C. Source Code of the Atmega16 Program
#include <stdio.h>

//#include <stdlib.h>

#include <avr/io.h>

#include <avr/signal.h>

#include <string.h>

#include <avr/ina90.h>

#include <inttypes.h>

//#include <avr/interrupt.h>

#define MESSAGE_LENGTH 8

volatile unsigned char read=0;

volatile unsigned char flagR=0;

volatile unsigned char flagT=0;

volatile unsigned char dataR[4];

volatile unsigned char dataT[4];

volatile long pos1, pos2;

void TWI_transmit_4Byte(uint32_t hex);

char* makeString(char *cmd, char *channel, uint32_t value);

// INITIALISATION-ROUTINES----------------------------------------------------------------

void PORT_init()

{

DDRB = 0xff; // PortB, PB1 & PB2 outputs

PORTB=0xff;

}

void USART_Init()

{

_CLI();

// Set baud rate

UBRRH = 0x00;

UBRRL = 23;

// Enable receiver and transmitter

UCSRB = (1<<RXCIE)|(1<<RXEN)|(1<<TXEN);

// Set frame format: 8data, 1stop bit

UCSRC = (1<<URSEL)|(3<<UCSZ0);

_SEI();

}

void TWI_Init() { // this AVR is master

DDRB = 0xff;

PORTB=0xff;

_CLI();

TWBR = 0x0a;

TWSR = (0<<TWPS1) | (0<<TWPS0);

_SEI();

}

// ---------------------------------------------------------------------------------

void USART_putc( unsigned char data )

{

// Wait for empty transmit buffer
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while ( !( UCSRA & (1<<UDRE)) ) ;

// Put data into buffer, sends the data

UDR = data;

}

void USART_puts(char *data, int lenth) {

int count;

for (count = 0; count < lenth; count++)

USART_putc(*(data+count));

}

uint32_t convertStringToHex(char *string) {

uint32_t i=0,fourbytes=0,value=0;

for (i=0;i<MESSAGE_LENGTH;i++)

{

if (’0’ <= *(string+i) && *(string+i) <=’9’) {

value = *(string+i) - ’0’;

}

else if ((’A’ <= *(string+i) && *(string+i) <= ’F’)) {

value = *(string+i) - ’A’ + 10;

}

else if ((’a’ <= *(string+i) && *(string+i) <= ’f’)) {

value = *(string+i) - ’a’ + 10;

}

fourbytes = fourbytes << 4;

fourbytes |= value;

}

return fourbytes;

}

char* makeString(char *cmd, char *channel, uint32_t value)

{

static char sendData[8];

char hex[8];

sprintf(hex,"%lx",value);

strcpy(sendData,cmd);

strcat(sendData,channel);

if (value < 17)

{ strcat(sendData,"0000"); }

if (value > 16 && value < 256)

{ strcat(sendData,"000"); }

if (value > 255 && value < 4096)

strcat(sendData,"00");

if (value > 4095)

{ strcat(sendData,"0"); }

strcat(sendData,hex);

return sendData;

}

// --------------------------------------------------------------------------------------

SIGNAL(SIG_2WIRE_SERIAL){

switch (TWSR & 0xf8)

{

case 0x08:

{

if (read==0)

TWDR = 0x44;//44

else

TWDR = 0x45; // read from slave

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

flagT=0;

flagR=0;

98



break;

}

case 0x18:

{

TWDR = dataT[flagT];

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

break;

}

case 0x28:

{

flagT++;

TWDR = dataT[flagT];

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

break;

}

case 0x30:

{

TWCR = (1<<TWSTO) | (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

break;

}

// --------- Master receiver mode --------------------------

case 0x40:

{

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

break;

}

case 0x50:

{

dataR[flagR]=TWDR;

flagR++;

if (flagR<3) {

TWCR = (1<<TWINT) | (1<<TWEA) | (1<<TWEN) | (1<<TWIE);

} else {

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

}

break;

}

case 0x58:

{

dataR[flagR]=TWDR;

TWCR = (1<<TWSTO) | (1<<TWINT)| (1<<TWEN) | (1<<TWIE);

break;

}

default: break;

}

}

volatile uint32_t hex=0;

uint8_t j=0,chan=0,sign=0,cmd=0;

uint16_t value=0;

char ch[MESSAGE_LENGTH];

SIGNAL (SIG_UART_RECV)//(USART_RXC)

{

ch[j]=UDR;

j++;

if (j==8) {

j=0;

hex=convertStringToHex(ch);

cmd = (hex & 0xf0000000)>>28;

chan = (hex & 0x0ff00000)>>20;

sign = (hex & 0x000f0000)>>16;

value = hex & 0x0000ffff;

switch (chan)
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{

default: TWI_transmit_4Byte(hex); break;

}

}

}

void TWI_transmit_4Byte(uint32_t hex)

{

int i=0;

for (i=3;i>-1;i--) {

dataT[i]=hex;

hex = hex >> 8;

}

read = 0;

TWCR = (1<<TWSTA) | (1<<TWINT) | (1<<TWEN) | (1<<TWIE);

}

int main(void){

USART_Init();

TWI_Init();

while (1)

{

}

}
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D. Source Code of the Etrax Program
#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <pthread.h>

//RS232

#include <fcntl.h> /* File control definitions */

#include <errno.h> /* Error number definitions */

#include <termios.h> /* POSIX terminal control definitions */

pthread_t p1,p2,p4;

//common

#define MESSAGE_LENGTH 8

char msg[MESSAGE_LENGTH+1];

char msg_r[MESSAGE_LENGTH+1];

//RS232

char serial_in[MESSAGE_LENGTH+1];// one byte more!!

int sd, sd_2, n_2;

//UDP

#define LOCAL_SERVER_PORT 1500

int cliLen,n,fd_;

struct sockaddr_in cliAddr, servAddr, remoteServAddr, cliAddr_2;

int rc_2,servLen;

#define REMOTE_SERVER_PORT 1501

int NoRoom=0;

int light=0;

uint32_t temp=0,position=0;

void sendUDP(char *data);

void sendUDP_2(char *data);

waitAmom(int count) {

int i=0,j=0;

for (i=0;i<count;i++) {

for (j=0;j<0xffff;j++)

{}

}

}

uint32_t convertStringToHex(char *string) {

uint32_t i=0,fourbytes=0,value=0;

for (i=0;i<MESSAGE_LENGTH;i++)

{

if (’0’ <= *(string+i) && *(string+i) <=’9’) {

value = *(string+i) - ’0’;

}

else if ((’A’ <= *(string+i) && *(string+i) <= ’F’)) {

value = *(string+i) - ’A’ + 10;

}

else if ((’a’ <= *(string+i) && *(string+i) <= ’f’)) {

value = *(string+i) - ’a’ + 10;
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}

fourbytes = fourbytes << 4;

fourbytes |= value;

}

return fourbytes;

}

char* makeString(char *cmd, char *channel, uint32_t value)

{

uint8_t i;

uint32_t mask=0x000f0000;

static char sendData[9];

char hex[5];

memset(&sendData, 0, sizeof(sendData));//important!!

for (i=0;i<5;i++) {

int v = (value & mask)>>(16-(i*4));

if (0 <= v && v <= 9) {

hex[i] = ’0’ + v;

} else {

hex[i] = ’A’ + v - 10;

}

mask = mask >> 4;

}

sendData[0]=*(cmd+0);

sendData[1]=*(channel+0);

sendData[2]=*(channel+1);

sendData[3]=*(hex+0);

sendData[4]=*(hex+1);

sendData[5]=*(hex+2);

sendData[6]=*(hex+3);

sendData[7]=*(hex+4);

return sendData;

}

void RS232_send(char* out) {

write(fd_,out,MESSAGE_LENGTH);

printf("sendRS232: %s\n",out);

}

void *RS232_receive(char *fd) {

char ch;

int i, temp;

while(1) {

memset(&serial_in, 0, sizeof(serial_in));//important!!

read(fd_,&serial_in,MESSAGE_LENGTH);

i=strlen(serial_in);

if (i<8)

continue;

printf("receivedSR232 %s %d\n",serial_in,i);

// sendUDP(serial_in);

temp=convertStringToHex(serial_in);

if ((temp & 0xfff00000)==0x00400000)

position=temp & 0x000fffff;

}

}

void *receiveUDP(int *ii) {

cliLen = sizeof(cliAddr);

while (1) {

memset(&msg_r, 0, sizeof(msg_r));

n = recvfrom(sd, msg_r, MESSAGE_LENGTH, 0,

(struct sockaddr *) &cliAddr, &cliLen);

if (msg_r[0]==’<’) {
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if (strcmp(msg_r,"<<auto>>")==0) {

sendUDP_2("ready...");

}

else if (strcmp(msg_r,"<<init>>")==0)

{ continue; }

else if (strcmp(msg_r,"<room02>")==0)

{

NoRoom=2;

}

else if (strcmp(msg_r,"<<stop>>")==0)

{

light=0;

NoRoom=0;

RS232_send("10700000");

}

else if (strcmp(msg_r,"<<move>>")==0)

{

sendUDP_2("<<goon>>");

RS232_send("107000ff");

}

else if (strcmp(msg_r,"<room01>")==0)//strncmp(msg_r,"107",3)==0)

{

NoRoom=1;

}

else if (strcmp(msg_r,"<light>>")==0)

{

light=light+1;

if (NoRoom!=light)

{

RS232_send("107000ff");

waitAmom(400);

sendUDP_2("<<goon>>");

}

}

else if (strcmp(msg_r,"<<back>>")==0)

{

RS232_send("101800af");

RS232_send("10400000");

position=0;

while (position-5>(0xFFFFF-0x750-5))

{ waitAmom(5); RS232_send("00400000"); }

waitAmom(5);

sendUDP_2("<<goon>>");

RS232_send("107000ff");

}

else if (strcmp(msg_r,"<<resL>>")==0)

{

light=0;

}

}

else {

printf("receivedUDP: %s %d\n",msg_r,strlen(msg_r));

RS232_send(msg_r);//send it further via RS232 !!!

}

}

return NULL;

}

void *GoToRoom(int *ii) {

while (1) {

switch (NoRoom)

{

case 0: break;

case 1:

{

if (light==1)
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{

RS232_send("107000ff"); // necessary??????

RS232_send("10400000");

while (position<0x3300)

{ waitAmom(10); RS232_send("00400000"); }

waitAmom(10);

RS232_send("10700000");

waitAmom(10);

// turn to door

RS232_send("10400000");

RS232_send("101000af");

position=0;

while (position<0x750)

{ waitAmom(5); RS232_send("00400000"); }

waitAmom(5);

RS232_send("10700000");

NoRoom=0;

}

break;

}

case 2:

{

if (light==2)

{

RS232_send("107000ff"); // necessary???????

RS232_send("10400000");

position=0;

while (position<0x4050)

{ waitAmom(10); RS232_send("00400000");}

waitAmom(10);

RS232_send("10700000");

NoRoom=0;

}

break;

}

case 3: break; //nothing, cause no door

case 4: break;

}

}

}

void sendUDP(char *data) {

printf("sendUDP: %s\n", data);

n = sendto(sd, data, MESSAGE_LENGTH, 0,

(struct sockaddr *) &cliAddr, cliLen);

}

void sendUDP_2(char *data) {

printf("sendUDP_2: %s\n", data);

n_2 = sendto(sd_2, data, MESSAGE_LENGTH, 0,

(struct sockaddr *) &remoteServAddr, sizeof(remoteServAddr));

}

int init_serial(char serial_port[]) {

struct termios settings;

int r2d2 = open(serial_port, O_RDWR);

tcgetattr(r2d2, &settings);

settings.c_iflag = 0;

settings.c_oflag = 0;

settings.c_lflag = 0;

settings.c_cflag = CLOCAL | CS8 | CREAD;

settings.c_cc[VMIN] = 1;

settings.c_cc[VTIME] = 0;

cfsetispeed(&settings, B38400);

cfsetospeed(&settings, B38400);
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tcsetattr(r2d2, TCSADRAIN, &settings);

return r2d2;

}

int main(int argc, char *argv[]) {

int rc,rc_2;

struct hostent *h;

// socket creation

sd=socket(AF_INET, SOCK_DGRAM, 0);

if(sd<0) {

printf("%s: cannot open socket \n",argv[0]);

exit(1);

}

// bind local server port

servAddr.sin_family = AF_INET;

servAddr.sin_addr.s_addr = htonl(INADDR_ANY);

servAddr.sin_port = htons(LOCAL_SERVER_PORT);

rc = bind (sd, (struct sockaddr *) &servAddr,sizeof(servAddr));

if(rc<0) {

printf("%s: cannot bind port number %d \n",

argv[0], LOCAL_SERVER_PORT);

exit(1);

}

printf("%s: waiting for data on port UDP %u\n",

argv[0],LOCAL_SERVER_PORT);

// ------------------

/* get server IP address (no check if input is IP address or DNS name */

h = gethostbyname("192.168.0.1");//localhost");

if(h==NULL) {

printf("%s: unknown host ’%s’ \n", argv[0], argv[1]);

exit(1);

}

printf("%s: sending data to ’%s’ (IP : %s) \n", argv[0], h->h_name,

inet_ntoa(*(struct in_addr *)h->h_addr_list[0]));

remoteServAddr.sin_family = h->h_addrtype;

memcpy((char *) &remoteServAddr.sin_addr.s_addr,

h->h_addr_list[0], h->h_length);

remoteServAddr.sin_port = htons(REMOTE_SERVER_PORT);

/* socket creation */

sd_2 = socket(AF_INET,SOCK_DGRAM,0);

if(sd_2<0) {

printf("%s: cannot open socket \n",argv[0]);

exit(1);

}

/*

// bind any port

cliAddr.sin_family = AF_INET;

cliAddr.sin_addr.s_addr = htonl(INADDR_ANY);

cliAddr.sin_port = htons(0);

rc_2 = bind(sd_2, (struct sockaddr *) &cliAddr, sizeof(cliAddr));

if(rc_2<0) {

printf("%s: cannot bind port\n", argv[0]);

exit(1);

}*/
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//-----------------------------

fd_=init_serial("/dev/ttyS0"); // init serial port

pthread_create(&p4, NULL, RS232_receive, &fd_);

pthread_create (&p1, NULL, receiveUDP, &sd);

pthread_create (&p2, NULL, GoToRoom, &sd);

while (1)

{

}

pthread_join (p4, NULL);

pthread_join (p1, NULL);

pthread_join (p2, NULL);

return 0;

}
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E. Source Code of the Matlab Program
clear all;

clc

host=’192.168.0.90’;

port=’1500’;

udp=pnet(’udpsocket’,1501);

format short;

dat=’ ’;

while dat ~= ’ready...’

try,

% Wait/Read udp packet to reed buffer

len=pnet(udp,’readpacket’);

if len>0,

dat=pnet(udp,’read’,1000,’string’)

end

end

end

%-------------------------------

patter=imread(’/local/jens/scene6/init3’,’jpg’);

pattern=patter(:,:,1);

pattern=double(pattern);

c2=0;

ind_sav=0;

T=0.7;

Tn=4;

Tv=0.1;

Kr=1;

u_old=0;

u=0;

e=0;

e_1=0;

e_2=0;

ind=0;

u_sav=0;

init_end=0;

while (init_end==0)

clear I;

I=imread(’http://192.168.0.91/axis-cgi/jpg/image.cgi?resolution=160x120’,’jpg’);

I=I(:,:,1);

I=double(I);%I=I-sum(sum(I))./19200;

maxim=0;

sav = 0;

[Rows,Cols] = size(pattern);

CorrCoeff = zeros(120-Rows+1,160-Cols+1);

for i=1:3

for j=10:160-Cols-1-10

I_w = I(i:i+Rows-1,j:j+Cols-1);
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CorrCoeff(i,j) = corrco(I_w,pattern);

if CorrCoeff(i,j)>0.995

if (CorrCoeff(i,j)>maxim)

maxim=CorrCoeff(i,j);

ind=j;

end

end

end

end

if (maxim>0.995)

ind_sav=[ind_sav ind];

if ((ind>=49) & (ind<=50))

c2=c2+1;

if c2>=4

c2=0;

disp(’YEAHHHHHHHHH THE ROBOT IS CENTERED’);

dat=’10700000’;

sendUDP(host,port,dat);

init_end=1;

for kkk=1:1:9000000

hj=1+ind;

end

else

dat=’10000000’;

sendUDP(host,port,dat);

end

else

c2=0;

e = 48 - ind;

u = u_old + Kr*(1+Tv/T)*e - Kr*(1-T/Tn+2*Tv/T)*e_1 + Kr*Tv/T*e_2;

if (e<0)

if u>=-100

u=-100;

end

else

if u<100

u=100;

end

end

e_2=e_1;

e_1=e;

u_old = u;

if u<0

sign=0;

else

sign=8;

end

u=abs(u);

u = round(u);

if u>383;

u=383;

end

if u<hex2dec(’10’)

dat=[’100’,num2str(sign),’000’,num2str(dec2hex(u))];

elseif u<hex2dec(’100’)

dat=[’100’,num2str(sign),’00’,num2str(dec2hex(u))];

else

dat=[’100’,num2str(sign),’0’,num2str(dec2hex(u))];

end
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sendUDP(host,port,dat);

dat=’10100000’;

sendUDP(host,port,dat);

end

else

dat=’10000070’;

sendUDP(host,port,dat);

dat=’10100070’;

sendUDP(host,port,dat);

end

end

%----------------------------

clear all;

host=’192.168.0.90’;

port=’1500’;

udp=pnet(’udpsocket’,1501);

format short;

command=’ ’;

dat=’ ’;

patter=imread(’/local/jens/scene6/light2’,’jpg’);%’/local/jens/160x120_spec_1’,’jpg’);

pattern=patter(:,:,1);

pattern=double(pattern);

c2=0;

ind_sav=0;

T=0.8;

Tn=1;%1.0

Tv=0.1;%0.1

Kr=1;%1.0

u_old=0;

u=0;

e=0;

e_1=0;

e_2=0;

ind=0;

u_sav=0;

for c=0:2000

clear I;

I=imread(’http://192.168.0.91/axis-cgi/jpg/image.cgi?resolution=160x120’,’jpg’);

I=I(:,:,1);

I=double(I);%I=I-sum(sum(I))/19200;

maxim=0;

[Rows,Cols] = size(pattern);

CorrCoeff = zeros(120-Rows+1,160-Cols+1);

for i=1:3

for j=10:160-Cols-1-10

I_w = I(i:i+Rows-1,j:j+Cols-1);

CorrCoeff(i,j) = corrco(I_w,pattern);

if CorrCoeff(i,j)>0.94

if (CorrCoeff(i,j)>maxim)

maxim=CorrCoeff(i,j);
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ind=j;

end

end

end

end

if (maxim>0.94)

ind_sav=[ind_sav ind];

if ((ind>=50) & (ind<=54))

c2=c2+1;

if c2>=4

c2=0;

disp(’YEAHHHHHHHHH THE ROBOT IS CENTERED’);

dat=’<light>>’;

sendUDP(host,port,dat);

command==’<<wait>>’;

try

len=pnet(udp,’readpacket’);

if len>0,

command=pnet(udp,’read’,8,’string’);

end

end

command

if command==’<<goon>>’

continue;

end

if command==’<<exit>>’

return;

end

else

dat=’10000000’;

sendUDP(host,port,dat);

end

else

c2=0;

e = 52 - ind;

u = u_old + Kr*(1+Tv/T)*e - Kr*(1-T/Tn+2*Tv/T)*e_1 + Kr*Tv/T*e_2;

if (e<0)

if u>=-90

u=-90;

end

else

if u<90

u=90;

end

end

e_2=e_1;

e_1=e;

u_old = u;

if u<0

sign=0;

else

sign=8;

end

u=abs(u);

u = round(u);

if u>383;
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u=383;

end

if u<hex2dec(’10’)

dat=[’100’,num2str(sign),’000’,num2str(dec2hex(u))];

elseif u<hex2dec(’100’)

dat=[’100’,num2str(sign),’00’,num2str(dec2hex(u))];

else

dat=[’100’,num2str(sign),’0’,num2str(dec2hex(u))];

end

sendUDP(host,port,dat);

dat=’10100000’;

sendUDP(host,port,dat);

end

else

if dat~=’107000bf’

dat=’107000bf’;

sendUDP(host,port,dat);

end

end

end

function sendUDP(host, port, data)

if udp~=-1,

try, % Failsafe

pnet(udp,’write’,data); % Write to write buffer

pnet(udp,’writepacket’,host,port); % Send buffer as UDP packet

end

end

end
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F. Source Code of the Java-applet
import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import javax.swing.*;

import java.io.IOException;

import java.net.URL;

//Socket

import java.net.*;

import java.io.*;

import java.lang.String;

public class r2d2 extends JApplet implements ActionListener,MouseListener,

MouseMotionListener {

DatagramSocket socket=null;

String host ="192.168.0.90"; // Adress Etrax

final static boolean shouldFill = true;

Navigator MouseNavigator;

// invoked after the visible components are displayed

public void init() {

try {

javax.swing.SwingUtilities.invokeAndWait(new Runnable() {

public void run() {

createGUI(getContentPane());

}

});

} catch (Exception e) {

System.err.println("createGUI didn’t successfully complete");

e.printStackTrace();

}

initUdp();

}

private void createGUI(Container pane) {

pane.setLayout(new GridBagLayout());

GridBagConstraints c = new GridBagConstraints();

c.insets = new Insets(1,1,1, 1);

if (shouldFill) {

// natural height, maximum width

c.fill = GridBagConstraints.HORIZONTAL;

}

MouseNavigator = new Navigator();

MouseNavigator.setPreferredSize(new Dimension(200, 200));

MouseNavigator.setBorder(BorderFactory.createLineBorder(Color.black));

c.gridx=1;

c.gridy=0;

c.gridheight = 3;

pane.add(MouseNavigator,c);c.gridheight = 1;

MouseNavigator.addMouseListener(this);

MouseNavigator.addMouseMotionListener(this);

}

public void actionPerformed(ActionEvent event) {

}
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public void initUdp() {

try {

socket = new DatagramSocket();

// send request

byte[] buf = new byte[8];

InetAddress address = InetAddress.getByName(host);

String dString="<<init>>";

buf=dString.getBytes();

DatagramPacket packet = new DatagramPacket(buf, buf.length, address, 1500);

socket.send(packet);

// thread waits for incomming udp packets

input_thread it = new input_thread(socket);

it.start();

}

catch (IOException e) {

e.printStackTrace();

}

}

public void SendMessageViaUdp(String Cmd, String Channel, int Value, int sign) {

String CmdChannelValue=Cmd;

String strValue;

CmdChannelValue = CmdChannelValue.concat(Channel);

strValue = Integer.toString(Value,16);

if (sign==1) {

switch (strValue.length())

{

case 1: CmdChannelValue=CmdChannelValue.concat("8000"); break;

case 2: CmdChannelValue=CmdChannelValue.concat("800"); break;

case 3: CmdChannelValue=CmdChannelValue.concat("80"); break;

case 4: CmdChannelValue=CmdChannelValue.concat("8"); break;

}

}

else {

switch (strValue.length())

{

case 1: CmdChannelValue=CmdChannelValue.concat("0000"); break;

case 2: CmdChannelValue=CmdChannelValue.concat("000"); break;

case 3: CmdChannelValue=CmdChannelValue.concat("00"); break;

case 4: CmdChannelValue=CmdChannelValue.concat("0"); break;

}

}

CmdChannelValue = CmdChannelValue.concat(strValue);

int MESSAGE_LENGTH=8;

byte[] buf = new byte[MESSAGE_LENGTH];

buf = CmdChannelValue.getBytes();

try {

InetAddress address = InetAddress.getByName(host);

DatagramPacket packet = new DatagramPacket(buf, buf.length, address, 1500);

socket.send(packet);

}

catch (IOException e) {

e.printStackTrace();

}

}

public void mousePressed(MouseEvent e) {

}

// A method from the MouseMotionListener interface. Invoked when the

// user drags the mouse with a button pressed.

public void mouseDragged(MouseEvent e) {

double height = MouseNavigator.getSize().height;
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double width = MouseNavigator.getSize().width;

double x = (e.getX() - width / 2);// / width * 200;

double y = (e.getY() - height / 2);// / height * 200;

double s1 = Math.sqrt(0.5) * x + Math.sqrt(0.5) * y;

double s2 = Math.sqrt(0.5) * x - Math.sqrt(0.5) * y;

int IntCast1;

int IntCast2;

int sign1=0,sign2=0;

IntCast1=(int)(s1*7 );

IntCast2=(int)(s2*7 );

if (IntCast1>511 )

IntCast1 =511 ;

if (IntCast2>511 )

IntCast2 =511;

if (IntCast1<-511 )

IntCast1 =-511 ;

if (IntCast2<-511 )

IntCast2 =-511 ;

if (IntCast1<0) {

sign1=1;

IntCast1 =Math.abs(IntCast1);

}

if (IntCast2<0) {

sign2=1;

IntCast2 =Math.abs(IntCast2);

}

SendMessageViaUdp("1","00",IntCast1, sign1);

for (int u=0;u<699999;u++) { int k=0;}

SendMessageViaUdp("1","01",IntCast2, sign2);

for (int u=0;u<6999999;u++) { }

}

public void mouseReleased(MouseEvent e) {

// stop

SendMessageViaUdp("1","00",0,0);

SendMessageViaUdp("1","01",0,0);

}

// The other, unused methods of the MouseListener interface.

public void mouseClicked(MouseEvent e) {;}

public void mouseEntered(MouseEvent e) {;}

public void mouseExited(MouseEvent e) {;}

// The other method of the MouseMotionListener interface.

public void mouseMoved(MouseEvent e) {;}

}
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