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Chapter 1
Introduction

This introductory chapter will give a brief background to, and motivation of, this
thesis, together with a survey of the approach taken during the work. Also, the
outline of the thesis is presented.

1.1 Background and Motivation

In the modern world today, wireless communication is as widespread as automo-
biles. As T.S. Rappaport writes in [1], new wireless communication methods and
services are enthusiastically adopted by people every year. It is not often you meet
someone that do not own or have access to e.g., a cellular phone or a wireless local
area network (WLAN).

With the increasing availability of wireless technology, demands of higher data
rates are steadily rising. One of the main problems when trying to increase the
transfer rates is the fundamental fact of not having as much knowledge of the
wireless channel as compared with wired communication. The channel of a wireless
system can be referred to as the medium between the transmitter and receiver,
that in some way affects the sent signal. Since the vast majority of the wireless
units are mobile and there might be objects, both stationary and non-stationary,
in the vicinity disturbing the electromagnetic wave propagation, the channel of a
wireless system cannot be considered time-invariant and its quality will vary over
time. It is therefore difficult to know how much information can be sent over the
channel at a certain time instant.

A step to vanquish these fundamental properties is the usage of adaptive sys-
tems taking the changing environment into consideration when transferring data.
If the channel quality is high, a high data rate can be used contrary to the case
of low channel quality. Adaptive systems are implemented by feedback of current
system states which require additional information being exchanged. One realizes
that this solution is able to introduce undesirable effects such as processing delays
and practical constraints on modulation and coding [2]. If the delay is large com-
pared with the channel quality fluctuation, the channel information fed back is
outdated yielding a significant performance degradation compared with feedback
in a channel with slow quality variation [2].

Hence, one can acknowledge that if the channel is rapid fluctuating, it would
be advantageous to feed back future channel quality information, which will make
up for the delay. In this thesis, prediction of the time varying channel quality
will be addressed. If the prediction is feasible and accurate, the adaptivity of the
system and its performance can again be considered and perhaps increased.
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2 Introduction

The channel transfer function in the frequency intervals used by the transmit-
ter and receiver can vary in quality. If system performance is to be optimized,
frequencies with highest quality should carry most of the data. Since only quality
information about the used frequency intervals is feasible to gain from received
signals, no knowledge of the unused frequencies is available. This could be seen as
the dual to the problem above. If it were feasible to predict how the channel trans-
fer function behaves in the unused frequency intervals, a step to a fully optimized
system might be taken.

The two above stated prediction problems in the approaches of increasing sys-
tem performance are both motivations of and aims for this thesis. A more elaborate
motivation can be found in Section 3.4.

1.2 Approach

Since the author of this thesis did not have any theoretical background in either
digital or analog communication, there was a large effort put in understanding
the fundamentals of them. The main parts of, and work behind, this thesis, can
essentially be divided into the following parts,

– study and understand radio channel fundamentals, e.g., the duality of Doppler
shift and excess delay

– study and understand basics of Orthogonal Frequency Division Multiplexing

– model radio channel parameters and implement various radio channel fre-
quency responses

– derive, implement, and evaluate a prediction algorithm for the frequency
response in time direction of a Rayleigh fading channel, and

– derive, implement, and evaluate a prediction algorithm for the frequency
response in frequency direction of a time dispersive channel.

All modeling and implementation of channel frequency responses and implemen-
tations of algorithms were performed in MATLAB® 6.5, Release 13, using scripts
written in .m-files.

1.3 Outline of Thesis

The remainder of this thesis is organized as follow,

Chapter 2 describes some radio fundamentals that are prerequisites for under-
standing the problem formulation. Radio channel models will be derived and
described statistically.

Chapter 3 reviews the OFDM model used in simulations and why it would be
advantageous to perform prediction in time or frequency direction of the
time varying channel frequency response.

Chapter 4 explains the foundation of and derives the prediction algorithm. It is
appraised by single simulations and thoroughly evaluated by its mean per-
formance in time direction of a Rayleigh fading channels frequency response.
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Chapter 5 presents how the prediction algorithm performs in frequency direction
of a time dispersive channels frequency response and it is evaluated by its
mean performance. Extensions to the prediction algorithm are implemented
and evaluated.

Chapter 6 utilizes the prediction algorithm as a mean to adaptively choose cod-
ing rate and symbol sets in a frequency interval where the channel frequency
response is unknown. Results are compared with a non-predictive approach.

Chapter 7 summarizes the thesis briefly.
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Chapter 2
Radio System Fundamentals

This chapter presents some fundamentals in radio systems beginning with Sections
2.1 explaining a few physical mechanisms that influence the transmission of radio
waves. Further, in Section 2.3, mathematical models of radio channels will be
derived and characterized by statistical measures defined in Section 2.4.

2.1 Reflection, Diffraction, and Scattering

In a mobile communication system there is basically three mechanisms that de-
grade the propagation of the electromagnetic wave from being ideal [1], [3].

Reflection. When the electromagnetic wave impinges on an obstructive body
that has a very large surface compared with the wavelength λ and has differ-
ent electrical properties than the normal propagation medium, i.e., air, parts
of the wave are reflected back. How much of the wave that is reflected back
depends on the Fresnel reflection coefficient, which is a function of material,
polarization, angle of incidence and frequency of the wave.

Diffraction. If the path between transmitter and receiver is obstructed by a very
dense body, it is difficult for the electromagnetic waves to penetrate to the
other side. In spite of this, it is possible to receive a signal on the other side,
which is due to the diffraction mechanism. A simple explanation is that the
wave has the ability to bend around obstructions and can be further declared
by Huygens’ principle that states that every point on a wavefront is a source
for a secondary wave. All the secondary waves are added to make a new
wavefront.

Scattering. When an obstructive body has a surface that is rough or its area is
comparable or small in size than the wavelength λ, scattering will occur and
the electromagnetic energy is spread out in many different directions. Lamp
posts, traffic signs, and mail boxes are examples that constitute scattering
bodies.

Studying Figure 2.1, where a number of obstructive bodies are present when a
transmitter T is sending to the receiver R, one can see that the transmitted wave
can take multiple paths to R. This is referred to as multipath propagation. The
incoming radio waves to R all have different amplitude, phase, angle of arrival,
and frequency, which will be shown in the following sections. When summing
up the components vectorially one could get either constructive or destructive

5



6 Radio System Fundamentals

Building

Tree

Building

Building
Building

Transmitter T

Receiver R

Figure 2.1: Illustration of multipath in a radio communication system due to reflection, diffraction, and
scattering.

interference which will make the total received signal fluctuate rapidly when the
receiver is moving only a little bit. This is called small scale fading and some of its
parameters will be defined in Section 2.4. Also, when the receiver is moving over
a large distance, the mean received signal power might be changed. This is known
as large scale fading and will not be further discussed in this thesis, see e.g., [1]
instead.

2.2 Baseband Equivalent

There are several ways of denoting a signal in communication systems using band-
pass signals. Consider a signal with a varying envelope a(t), carrier frequency fc
and phase θ(t), thus

s(t) = a(t) cos
(

2πfct+ θ(t)
)

. (2.1)

An equivalent representation is [4]

s(t) = ℜ
{

a(t)ej(2πfct+θ(t))
}

= ℜ
{

s(t)ej2πfct
}

=
1

2
(s(t)ej2πfct + s∗(t)e−j2πfct), (2.2)

where ℜ denotes real part and s(t) = a(t)ejθ(t) is called the equivalent low-pass
or complex baseband equivalent signal to s(t) that give information about the
modulation, a(t), and the phase, θ(t), only. The last expression in Eq. (2.2) shows
how the spectrum of s(t) is coupled with the spectrum of s(t) since a multiplication
with e±j2πfct in time domain corresponds to a frequency shift by ±fc in frequency
domain.

Since s(t) usually is complex it can be written on rectangular form, i.e., s(t) =
I(t) + jQ(t), and Eq. (2.2) can be expressed as [4]

s(t) = ℜ
{(

I(t) + jQ(t)
)(

cos (2πfct) + j sin (2πfc)
)}

= I(t) cos (2πfct) −Q(t) sin (2πfct). (2.3)

I(t) and Q(t) are often referred to as in-phase and quadrature component, respec-
tively. The representations in Eq. (2.1), (2.2), and (2.3) are all equivalent.
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The main reason to express a bandpass signal with its complex baseband equiv-
alent is that filtering can be written as [4]

r(t) =

∞
∫

−∞

s(t)h(t− τ)dτ, (2.4)

where r(t) and h(t) are the complex baseband equivalent of the filtered signal and
the filter impulse response, respectively. Thus, there is no need for incorporating
the carrier frequency and it can therefore be omitted.

2.3 Small Scale Fading Channel Models

To be able to simulate fading radio channels in both time and frequency domain,
mathematical models are needed that can be implemented in e.g., MATLAB®.
In the following section, frequency selective and frequency non-selective channel
models are derived.

2.3.1 Frequency Selective Channel Model

In Figure 2.1 it was seen that the radio waves can take several paths from the
transmitter to the receiver. Each path will affect the radio signal differently and
there are essentially two physical factors that need to be modelled,

Amplitude attenuation. The signal is attenuated due to e.g., free space propa-
gation, scattering, diffraction, and reflection. Let α(t) denote the attenuation
factor of the signal path.

Propagation delay. The time it takes for the scattered component to reach the
mobile unit. The propagation delay for the signal path is denoted τ(t).

It should be noted that these parameters depend upon time t and the models will
thus be considered time-variant.

The propagation delay τ(t) depend on how far away the receiver is from the
transmitter. In Figure 2.2 only one signal path is shown together with a base
station and a moving receiver. When the receiver is at point A, the propagation
distance for the radio wave is Lo. As the receiver is moving with constant velocity
v towards point B, the path length will change with ∆l(t). Hence, the distance
between the transmitter and receiver can be expressed as L(t) = Lo + ∆l(t).
Since the velocity of the electromagnetic waves is c, i.e., the speed of light, the
propagation delay for the path is

τ(t) =
L(t)

c
=
Lo + ∆l(t)

c
= τo +

∆l(t)

c
, (2.5)

where τo = Lo/c. An approximative expression for ∆l(t) can be derived, if assum-
ing that the receiver is far away from the transmitter compared with the distance
A−B, as

∆l(t) ≈ −vt cosβ(t), (2.6)

where β(t) is the angle between the direction of receiver movement and the direc-
tion of wave propagation, see Figure 2.2. Thus, the excess delay of the path is
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Transmitter
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)(t

BA
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)(tlLo

Figure 2.2: Illustration of how the travelling distance for a radio signal changes as the receiver is moving
with the velocity v relative to the transmitter. β(t) is defined as the angle from the direction of receiver
movement and the direction of wave propagation.

time varying and can be expressed as

τ(t) = τo −
vt

c
cosβ(t). (2.7)

Consider the transmitter sending a signal that can be described by

s(t) = ℜ
{

s(t)ej2πfct
}

, (2.8)

where, as above, s(t) is the complex baseband representation and fc the carrier
frequency. By incorporating the two physical factors above into Eq. (2.8), the
received signal that have travelled a specific path can be described as

r(t) = ℜ
{

α(t)s
(

t− τ(t)
)

ej2πfc(t−τ(t))
}

= ℜ
{

α(t)s
(

t− τ(t)
)

e−j2πfcτ(t)ej2πfct
}

. (2.9)

The received complex base band signal is thus

r(t) = α(t)s
(

t− τ(t)
)

e−j2πfcτ(t)

= α(t)s
(

t− τo +
vt

c
cosβ(t)

)

e−j2πfc[τo−
vt
c

cosβ(t)]

= α(t)s
(

(1 +
v

c
cosβ(t))t− τo

)

e−j2πfcτoej2πfc
v
c

cos β(t)t. (2.10)

Hence, the received signal is, compared with the sent,

– time expanded by a factor 1 + v
c cosβ(t)
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– phase shifted by θ = −2πfcτo

– frequency shifted by fD(t) = fc
v
c cosβ(t)

– time delayed by τo, and

– attenuated by α(t).

The phase shift θ will be −2π when fc = 1/τo, and since fc usually is very high,
e.g., about 2 GHz in 3G [5], a phase lag much larger than 2π will in practice often
be introduced.

The frequency shift is termed Doppler shift and is due to the movement of the
transmitter. It can alternatively be expressed as

fD(t) = fc
v

c
cosβ(t) =

v

λ
cosβ(t) = fDmax

(t) cosβ(t), (2.11)

where the subindex D indicates Doppler, λ is the carrier wavelength, and fDmax(t)
is the maximum Doppler shift that could be introduced, i.e., when the receiver is
moving straight towards the transmitter, β(t) = 0, and thus cosβ(t) = 1. It is
important to note that the angle β(t) is able to be anywhere in the interval [0, π)
since the radio waves can come from any direction, see Figure 2.1, and thus, the
frequency shift of the signal can be both negative and positive. Theoretically, the
signal observed from the receivers point of view might have been frequency shifted
by a frequency in the interval [−fDmax

, fDmax
]. The width of this interval is named

Doppler spread, BD = 2fDmax
, and will be further discussed in Section 2.4.

If considering the transmitted signal taking several paths to the receiver, i.e.,
a multipath channel, each signal copy is modelled by its own parameter set and
the received complex base band signal is then modelled as

r(t) =
N
∑

n=1

αn(t)s(t− τn(t))e
j(2πfDn (t)t+θn), (2.12)

where the subindex n correspond to signal path n and N is the total number of
paths, i.e., signal copies.

The above equation implies that the complex baseband channel can be mod-
elled as a linear time-variant filter with the equivalent baseband impulse response

c(t, τ) =

N
∑

n=1

αn(t)e
j[2πfDn (t)t+θn]δ

(

τ − τn(t)
)

(2.13)

at time t− τ , where t is real time and τ is the time within the impulse response,
see e.g., [1].
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The time variant frequency response of the channel is obtained by taking the
Fourier transform with respect to τ , i.e.,

C(t, f) =

∞
∫

−∞

c(t, τ)e−j2πfτdτ

=

∞
∫

−∞

[

N
∑

n=1

αn(t)e
[j2πfDn (t)t+θn]δ

(

τ − τn(t)
)

]

e−j2πfτdτ

=

N
∑

n=1

αn(t)e
j[2πfDn (t)t+θn]e−j2πfτn(t)

=

N
∑

n=1

αn(t)e
j[2π(fDn (t)t−τn(t)f)+θn]. (2.14)

Note that there is dependency in both time and frequency direction, i.e., the
products fDn

(t)t and τn(t)f will yield the frequency response to change if fDn
(t) 6=

0 and τn(t) 6= 0.
Further, the spectral density function can be calculated as

∣

∣C(t, f)
∣

∣

2
= C(t, f)C∗(t, f)

=

N
∑

n=1

αn(t)e
j[2π(fDn (t)t−τn(t)f)+θn]

N
∑

m=1

αm(t)e−j[2π(fDm (t)t−τm(t)f)+θm]

=
N
∑

n=1

N
∑

m=1

αn(t)αm(t)ej[2π(fDn (t)−fDm (t))t−2π(τn(t)−τm(t))f)+θn−θm]. (2.15)

One can see that this expression is a sum of sin (·) and cos (·) with different Doppler
and excess delay differences, fDn

(t)−fDm
(t) and τn(t)−τm(t), and phases θn−θm.

Hence, the transfer function is frequency selective which gives the name of the
model. A simulation of a channel is shown in Figure 2.3, where it can be seen that
the channel fades in both time and frequency direction.

2.3.2 Frequency Non-Selective Channel Model

Consider the special case where all τn(t) are approximately the same, i.e., the
delay spread is small. If 2πfsτn(t) ≪ 1 ∀ n, where fs is the maximum frequency
of s(t), then s

(

t − τn(t)
)

≈ s(t) ∀ n. The base band signal at the receiver in Eq.
(2.12) now takes on the form

r(t) =
N
∑

n=1

αn(t)s(t)e
j(2πfDn (t)t+θn), (2.16)

and since s(t) is independent of n, it can be written outside the sum. This states
that the channel can be modelled as a linear time-variant filter with the equivalent
baseband impulse response

c(t, τ) =

N
∑

n=1

αn(t)e
j(2πfDn (t)t+θn)δ(τ) (2.17)
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Figure 2.3: Simulated channel frequency response of a frequency selective channel using the simulation
approach in Section 5.2 with the parameters τmax = 3 µs, fDmax = 200 Hz, and N = 20 scatterers.
Note that the channel changes in both time and frequency direction.

at time t − τ , where t denotes real time and τ the time within the impulse re-
sponse. Taking the Fourier transform with respect to τ , the time varying frequency
response can be expressed as

C(t, f) =

∞
∫

−∞

c(t, τ)e−j2πfτdτ

=

∞
∫

−∞

[

N
∑

n=1

αn(t)e
j(2πfDn (t)t+θn)δ(τ)

]

e−2πfτdτ

=
N
∑

n=1

αn(t)e
j[2πfDn (t)t+θn] = C(t), (2.18)

which is independent of the frequency variable f . The spectral density function of
the channel becomes

∣

∣C(t, f)
∣

∣

2
= |C(t)|2, (2.19)

and thus, it is time varying and flat in frequency direction, hence the name fre-
quency non-selective channel.

To proceed, suppose that the sent signal is unmodulated, i.e., s(t) = 1. The
received complex baseband signal is then equal to C(t), which is a complex quantity
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and can be written on rectangular form, i.e.,

C(t) =

N
∑

n=1

αn(t)e
j[2πfDn (t)t+θn] =

N
∑

n=1

αn(t) cos
(

2πfDn
(t)t+ θn

)

+ j

N
∑

n=1

αn(t) sin
(

2πfDn
(t)t+ θn

)

= ℜ{C(t)} + jℑ{C(t)}. (2.20)

The envelope of the channel transfer function is then equal to

|C(t)| = |ℜ{C(t)} + jℑ{C(t)}| =
√

ℜ{C(t)}2 + ℑ{C(t)}2. (2.21)

If αn(t), fDn
(t), and θn are considered stochastic variables, which is feasible due

to the time-varying property of the channel, and the number of scatterers N is
large, one can derive a probability density function (PDF) of the envelope due to
the Central Limit Theorem and that ℜ{C(t)} and ℑ{C(t)} are sums of stochastic
variables.

If there is Line-of-Sight (LoS) between the transmitter and receiver, which
can be found e.g., when the receiver is moving on a main way, one signal path
compared with the others can be considered having much less attenuation affect
on the signal. The received signal is thus a sum of scattered components and the
specular component [3]. The PDF of the channel envelope can then be modelled
as Ricean [1], i.e.,

pricean(x) =

{

x
σ2 e

− x2+A2

2σ2 · Io(Axσ2 ), A ≥ 0, x ≥ 0

0, x < 0,
(2.22)

where Io(·) is the modified Bessel function of first kind and zero-order and A is
the amplitude of the dominant signal.

When there is no LoS, which is the common case in e.g., a city where buildings
shadow the receiver from the base station, the received signal is a composition
of only scattered components and the PDF of the envelope can be considered
Rayleigh, i.e.,

prayleigh(x) =

{

x
σ2 e

− x2

2σ2 , 0 ≤ x <∞
0, x < 0.

(2.23)

This is the reason why a frequency non-selective fading channel often is termed
a Rayleigh fading channel. Examples of the Rayleigh and Ricean PDFs can be
seen in Figure 2.4. Other distributions have been considered, e.g., Nakagami and
Weibull, when other multipath properties are assumed, see e.g., [4]. Figure 2.5
shows a simulation of a Rayleigh fading channels frequency response. Note that
the frequency axis is omitted since there is no dependency of the variable f .

2.4 Wide Sense Stationary Uncorrelated Scattering
Channels

By using the impulse response and the transfer function of a radio channel, it can
be further characterized by statistical measures. This section will briefly introduce
two correlation functions and from them define characteristic quantities following
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Figure 2.5: Simulation of a frequency non-selective fading channel using the simulation approach in
Section 4.5 with 10 scatterers and a maximum Doppler shift of approximately 170 Hz. The Doppler
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the outline and notation in [4]. The purpose is merely to give a short survey of
the correlation functions. Further theoretical exposition can be found in e.g., [4],
[3] and [6].

The first correlation function is the impulse response autocorrelation which is
defined as [4]

Φc(t1, t2, τ1, τ2) =
1

2
E{c∗(t1, τ1)c(t2, τ2)}, (2.24)

where c(t, τ) is the time varying impulse response. If the multipaths of the channel
are uncorrelated, i.e., the attenuations and phase lags of the different signal paths
are uncorrelated, then the channel is said to exhibit uncorrelated scattering (US).
The correlation will then be equal to zero when τ1 6= τ2 and hence it can be written
as

Φc(t1, t2, τ1)δ(τ2 − τ1) =
1

2
E{c∗(t1, τ1)c(t2, τ2)}. (2.25)

Further, if the channel is wide sense stationary (WSS), the autocorrelation func-
tion only depend on the difference between t1 and t2. Hence, the autocorrelation
function for a wide sense stationary uncorrelated scattering (WSSUS) channel can
be defined as [4]

Φc(∆t, τ1)δ(τ2 − τ1) =
1

2
E{c∗(t, τ1)c(t+ ∆t, τ2)}, (2.26)

where ∆t = t2 − t1 Considering the autocorrelation function in a small time inter-
val, i.e., ∆t ≈ 0, then the multipath intensity profile is defined by [4]

Φc(τ) ≡ Φc(0, τ) =
1

2
E{c∗(t, τ)c(t, τ)} (2.27)

and is the average power output of the channel for a certain time delay τ . An
example of a multipath intensity profile for a certain time t = to can be seen in
Figure 2.6. From this function, which can be estimated in practice, some important
parameters are defined.

Maximum excess delay, τmax. The time it takes for the received power to fall
below a certain threshold below the strongest component in the multipath
intensity profile. One can also see this time as the delay of the last incoming
radio wave with significant power.

Mean excess delay, τ̄ . First moment of the power delay profile, i.e., the weighted
mean value. It is calculated through

τ̄ =

√

√

√

√

√

√

√

∞
∫

0

τΦc(τ)dτ

∞
∫

0

Φc(τ)dτ

. (2.28)

RMS delay spread, τRMS . The square root of the second moment of Φc(τ). It
is defined and estimated from

τRMS =

√

√

√

√

√

√

√

∞
∫

0

τ2Φc(τ)dτ

∞
∫

0

Φc(τ)dτ

− τ̄2, (2.29)

and some typical values can be found in Table 2.1
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Environment τRMS [µs] Note

Urban 1.3 New York City
Suburban 0.2-0.31 Average typical case
Suburban 1.96-2.11 Average extreme case

Table 2.1: Typical measured values of the root mean square value τRMS of the excess delay. The
quantities are approximative and published in [1].
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Figure 2.6: Typical multipath intensity profile Φc(τ) of a radio channel. The maximum excess delay
τmax and the mean excess delay τ̄ are indicated at approximately 140 ns and 40 ns, respectively.

All three above parameters are measures on how dispersive the channel is, i.e.,
how much the signal power is spread in time by the channel. It will below be
shown that they also are measures on how frequency selective the channel is.

The second interesting correlation function is the autocorrelation of the channel
transfer function. It is defined in a similar way as the above autocorrelation
function, i.e., [4]

ΦC(∆f,∆t) =
1

2
E{C∗(t, f)C(t+ ∆t, f + ∆f)}. (2.30)

Using the property that C(t, f) is the Fourier transform of c(t, τ) with respect to
τ and considering the WSSUS channel case, one can show that the two autocor-
relation functions are related to each other through the Fourier transform with
respect to τ1 [4]

ΦC(∆f,∆t) =

∞
∫

−∞

Φc(∆t, τ1)e
−j2π∆fτ1dτ1. (2.31)

As in the former case, considering only a very short time interval, i.e., ∆t ≈ 0, the
Fourier transform of the multipath intensity profile

ΦC(∆f) ≡ ΦC(∆f, 0) =

∞
∫

−∞

Φc(τ)e
−j2π∆fτdτ (2.32)
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describes the correlation in frequency domain at a certain time instant [4]. The
property of the Fourier transform implies that the greater maximum excess delay
τmax the radio channel has, the less correlated in frequency it is. This property
can also be seen in Eq. (2.15) where sinusoids will have high frequencies for long
τmax.

If instead ∆f ≈ 0, one receives the correlation in time for the transfer function
in a single frequency bin, i.e.,

ΦC(∆t) ≡ ΦC(0,∆t). (2.33)

It can be shown that the Fourier transform of this function with respect to ∆t,
termed the Doppler power spectrum, shows the signal intensity as a function of
the Doppler frequency fD [4], i.e.,

SC(fD) =

∞
∫

−∞

ΦC(∆t)e−j2πfD∆td∆t. (2.34)

As above, the property of the Fourier transform shows that a long correlation time
corresponds to small Doppler broadening, and vice versa. The theoretical width
of SC(fD) has been defined in Section 2.3.1, i.e., the Doppler spread BD.

From ΦC(∆f,∆t), setting either ∆f or ∆t equal to zero, there are two prop-
erties that are important for this thesis.

Coherence bandwidth, BC . Using ΦC(∆f) one can define a frequency interval
where the correlation is above a certain limit. The width of the interval is
defined as the coherence bandwidth. As stated above, ΦC(∆f) is related to
Φc(τ) and hence there is a connection between e.g., BC and τRMS . A rule
of thumb is that [1]

BC ≈ 1

50τRMS
(2.35a)

BC ≈ 1

5τRMS
(2.35b)

if the coherence limit is set to 0.9 or 0.5, respectively. The coherence band-
width can be seen as a measure of how frequency selective the channel is.
Approximately one can say that two frequencies separated less than BC are
affected somewhat equally by the channel while two frequencies separated
more than BC can be considered to be affected quite differently. The bound-
aries of the coherence bandwidth are not adamant but somewhat floating
which is seen from the factor of ten in difference of the two definitions above.
As stated in [1], there is no exact relationship between τRMS and BC and
the definitions above are only estimates.

Coherence time, TC . The coherence time elucidate e.g., if two sinusoids with
the same frequencies but sent with the time separation To will be affected
approximately different or not by the channel. If To < TC , they can be
considered to be affected somewhat similarly and vice versa. This measure
is, as with the coherence bandwidth, not an absolute measure but rather an
approximation.
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The coherence time is related to ΦC(∆t) which is coupled with SC(fD)
through the Fourier transform. One can from this show that the coherence
time TC is inversely related to fDmax

[3]

TC ≈ 1

fDmax

. (2.36)

This approximation allows the channel to fluctuate considerably during TC .
A much more restrictive measure is yielded if the correlation ΦC(∆t) is
considered greater than 0.5, i.e., [1]

TC ≈ 9

16πfDmax

. (2.37)

Since this approximation often is too restrictive, a popular rule of thumb is
to use the geometric mean of the two above approximative relations [3]

TC ≈ 1

2.36fDmax

. (2.38)

Note the strong resemblance between Eq. (2.35) and (2.38) which clearly
shows a duality between τmax and fDmax

and the two coherence measures.

2.4.1 Duality of Time and Frequency Domain

The concept of duality between time domain and frequency domain is not strictly
mathematical, instead the duality is concerned about the effect of changing channel
parameters.

As noticed in Section 2.4, two coherence measurements were defined from
ΦC(∆f,∆t) by setting either ∆f or ∆t equal to 0. It was also shown that their
magnitude could be approximated from Φc(τ) and SC(fD) respectively. The du-
ality originates from that ΦC(∆f) measures correlation in frequency and ΦC(∆t)
measures correlation in time and that they are related by the Fourier transform
of Φc(τ) and SC(fD), i.e., how the channel changes the signal in time domain and
frequency domain, respectively.

Hence, the duality can also be found in Φc(τ) and SC(fD). The width of these
functions, i.e., τmax and BD, determines, in similar approximations, how strong
the channel is correlated in frequency and time domain, respectively, see Eq. (2.35)
and (2.38).
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Chapter 3
Orthogonal Frequency Division

Multiplexing Principles

Orthogonal Frequency Division Multiplexing (OFDM) was developed theoretically
in the 60’s but it was not until recently it gained in popularity due to lowered prices
in integrated circuits [7]. When data transmission over a channel is desired using
common Frequency Division Multiplexing (FDM), the idea is to divide the data
into parallel data streams and use several carrier frequencies. The FDM channels
are spread so far apart that there is no noticeable spectral overlap, i.e., there are
guard intervals between the frequency bands. This technique is not bandwidth
efficient and not economical due to the limited usable bandwidth. In OFDM,
the concept of closely spaced orthogonal subcarriers is exploited. The orthogo-
nal signals overlap spectrally but do ideally not interfere with each other. The
orthogonal property also result in easy signal separation in a correlation receiver
since it has a zero result for a signal that is orthogonal to the correlation function.
OFDM is today in commercial use in e.g., Digital Subscriber Line (DSL), Digital
Audio Broadcast (DAB), Digital Video Broadcast (DVB), and wireless local area
networks such as IEEE WLAN 802.11a and HIPERLAN/2 [8],[9].

In the following chapter, a simple OFDM system model will be reviewed. The
block diagram of the model with both transmitter and receiver is shown in Fig-
ure 3.6 and can be followed throughout the chapter.

3.1 Transmitter

In this section, it is explained how the actual data bits are transformed to the
analog radio signal in e.g., a base station or a mobile unit.

3.1.1 Encoding and Interleaving

Since coding is beyond the scope of this thesis, it will only be described from a
general point of view. The system model begins with the assumption that source
coding have been performed and data bits are available to the transmitter. If
the raw data bits are transferred sequentially through the channel it is likely that
some of them will be corrupted by noise or might not even reach the receiver. To
counteract this property, channel coding is used, i.e., the data bits are represented
by a larger number of bits obtained by certain mapping. The coding performed
by the encoder can be either block wise, where a block of bits are mapped, or
convolutional, where the bits are mapped sequentially by using linear finite-state

19
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shift registers [4]. If the number of input bits to the encoder is k and output bits
n, the coding rate is defined by [4]

R =
k

n
, (3.1)

and is always ≤ 1. Hence, there is almost always more output bits than input
bits. One can see the coding rate as the fraction of bits needed to represent the
information. The remaining fraction n−k

n , will then be the redundancy that can
be used for error detection and correction.

As the channel quality is varying, there is a potential gain in trying to change
the coding rate adaptively since it is waste of energy and time sending more bits
over the channel than needed. The channel quality at a certain time is approxi-
mated by the channel estimator in the receiver part of the system. By feeding the
encoder with information, the coding rate can be changed over the course of time.

If the encoded bits are transferred over the channel, it is still possible that
data bits will be corrupted if the noise, e.g., burst noise, cover the corresponding
encoded bits. By changing the order of the encoded bits, i.e., they are interleaved,
the probability of burst noise corrupting the transmission will be smaller. As will
be seen later, a group of encoded bits will be mapped to a symbol that will be
transferred on a subcarrier. If the encoded bits are interleaved deeper than the
number of subcarriers, the interleaving will take place in both time and frequency
domain [10]. Hence, the bits have the possibility to be interleaved in time domain
by more than the coherence time TC and interleaved in frequency domain by more
than the coherence bandwidth BC .

3.1.2 Symbol Mapping

When communicating in general, the signals need to be represented in the analog
domain since they are transferred via electromagnetic waves. The conversion be-
tween the two domains is made by the modulator, described in more detail in the
next section, which maps digital information onto analog waveforms by using I(t)
and Q(t) in Eq. (2.3) [4]. Recall that

s(t) = I(t) + jQ(t), (3.2)

where s(t) is the base band equivalent of the sent signal. s(t) is often divided into
a real valued transmitter pulse g(t) and a multiplicative variable S[i] that decides
the final shape. This variable originates from a mapping of the interleaved encoded
bits and is termed constellation point or symbol. In this work, the name symbol
will be used. Hence, the base band signal representing a quantity of interleaved
encoded bits is1

si(t) = S[i]g(t− iT ), iT ≤ t < (i+ 1)T, (3.3)

where T is the symbol duration time. Thus, if the bits are continuously mapped
to symbols, the base band signal becomes

s(t) =

∞
∑

i=−∞

S[i]g(t− iT ), −∞ < t <∞. (3.4)

1Here the transmitter pulse g(t) is assumed to have the duration T . In more complex symbol
mapping schemes the pulse is extended outside the T interval to yield for example a better
spectrum of the sent symbol. This could be achieved by e.g., by letting g(t) be the raised cosine
function.
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Figure 3.1: Left: Phase-shift keying points with M = 8 with the corresponding mapped bits indicated.
Note that the phase differs with 2π(mi −1)/M while the amplitudes of the points are constant. Right:
Quadrature amplitude modulation points with M = 16. Note that both phase and/or amplitude differ
between two points. It must be observed that the points showed above are not exclusive and can be
chosen in many different ways as long as they fulfill the requirements of PSK and QAM mapping.

The mapping between the interleaved encoded bits and the symbol can be per-
formed in many ways. Often, the set of symbols is fixed and has a size M . There-
fore, the mapping is said to be a M -ary mapping. Since the encoded bits are
binary, M different symbols corresponds to a possibility to map log2M encoded
bits per symbol. Below, the basics of two in OFDM commonly used mapping
alternatives will be described briefly. The adaptive symbol mapping and channel
prediction indicated in the box in Figure 3.6 will be comprehended in Sections 3.3
and 3.4, respectively, since some channel properties need to be elucidated prior.

M-ary Phase-Shift Keying

In phase-shift keying (PSK), the signals phase is altered between symbols. With
M different phases to choose from, the base band signal representing one symbol
can be written as [4]

si(t) = g(t− iT )ej2π(mi−1)/M , iT ≤ t < (i+ 1)T (3.5)

mi = [1,M ].

In Figure 3.1 an example of 8-PSK mapping points are shown together with the
values of the mapped bits. Observe that all the points have the same absolute
values but different phases.

M-ary Quadrature Amplitude Modulation

The name quadrature amplitude modulation (QAM) refers to the fact that the
signal is modulated by changing the amplitudes of the real and imaginary part of
si(t). Hence, the sent base band signal representing one symbol can be written as
[4]

si(t) = g(t)S[i] = g(t) |S[i]| ejβi , iT ≤ t < (i+ 1)T, (3.6)

where βi = arctan
(

ℑ{S[i]} /ℜ{S[i]}
)

, which reveals that QAM changes both
amplitude and phase of the sent signal. In Figure 3.1 an example of 16-QAM
points is shown together with the values of the mapped bits.
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3.1.3 Modulation

As mentioned above, several different frequencies can be used to transmit data in
parallel instead of serial. OFDM exploits the concept of orthogonal subcarriers.
This implies that the parallel channels use the same carrier frequency but are
modulated with different base band frequencies so that the base band signals are
orthogonal.

Assume that a total of K serial symbols, each with duration T/K, are to be
sent. Using the parallel synthesis mentioned in the introduction of this chapter,
the symbols are transformed to K parallel symbols, each with duration T . Notice
that the total transfer time is the same but the rate in each subchannel is reduced
from K/T to 1/T .

Consider the following base band signal representing one subcarrier with fre-
quency f [10]

ssc(t) = S[k]ej2πft, 0 ≤ t < T, (3.7)

where S[k] is e.g., a PSK or QAM symbol mapped from the encoded bits, T is the
symbol duration and f = 1/T . Hence, the signal has one full period. If during
the same time span, other parallel channels would send signals both mutually
orthogonal and orthogonal to ssc(t), they would have to use frequencies that are
integer numbers of f since

T
∫

0

ej2πfte−j2πf̃tdt =

T
∫

0

ej2π(f−f̃)tdt = Tδ(f − f̃) (3.8)

only if f̃ = zf , z ∈ Z. See also Figure 3.2.

With K symbols sent at the same time on orthogonal subcarriers, the base
band signal is written as

s(t) =

K−1
∑

k=0

S[k]ej2πfkt, 0 ≤ t < T (3.9)

fk =
k

T
.

One must be aware that choosing a too large symbol time T implies that the
frequencies are very close and hence, the system can be unnecessary sensitive to
inter carrier interference (ICI) when high Doppler shifts are present.

Some of the symbols that are to be sent are known to the receiver and are
termed pilot symbols. These will be used for e.g., channel estimation and equal-
ization at the receiver and will be discussed further below.

One can see s(t) in Eq. (3.9) as an infinitely long signal multiplied with a
rectangular function with value 1 in the interval 0 ≤ t < T and 0 elsewhere. In
the frequency domain this is equal to a sum of sinc-functions which are shifted fk
and modified by a multiplicative constant. In Figure 3.3, the Fourier Transform of
five orthogonal signals is shown symbolically. Notice that there are overlaps, but
when one signal has a spectral peak the other signals have spectral nulls. This
property, which comes from the orthogonality, is very important and implies that
the different subchannels will ideally not interfere with each other.
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f = 2/T
f = 5/T

T 

Figure 3.2: Three orthogonal signals. The last two signals has an integer number of the first signals
frequency. Note that the signals’ phase and amplitude do not affect the orthogonality property.
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     0  

Figure 3.3: A symbolic picture of the Fourier Transform of five orthogonal signals. Notice that there is
significant overlap but the spectral nulls of a signal coincides with spectral peaks of the other signals.
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If the signal in Eq. (3.9) is sampled at the frequency K/T , then one has

s[n] ≡ s(t)
∣

∣

∣

t=n T
K

=

K−1
∑

k=0

S[k]ej2π
k
T
n T

K

=

K−1
∑

k=0

S[k]ej2πk
n
K , 0 ≤ n ≤ K − 1. (3.10)

This is in fact the definition of the Inverse Discrete Fourier Transform (IDFT)
except for a multiplicative constant 1/K. Hence, s[n] can be generated taking the
IDFT of the symbols S[k] and multiplying with K. If K is a power of two, then
the efficient Inverse Fast Fourier Transform (IFFT) can be used. The sequence
s[n] is referred to as an OFDM symbol and is to be sent over the channel. Defin-
ing the base band signal in the discrete time domain making use of the optimal
FFT implementation is much faster than having an array of 2K sinusoidal oscil-
lators generating the subcarrier frequencies since the number of subcarriers often
is large. Observe that with this interpretation the symbols can be considered to
be defined in the frequency domain and hence decide the amplitudes and phases
of the orthogonal signals.

Comparing this technique to common serial transmission, where each symbol
is sent with a waveform of length T/K, one can see that the serial data symbols
now instead are sent as one large symbol with length T that is a superposition of
orthogonal signals. It must be noted that the transmission is equally fast since the
total length T of the sent signal is the same for both transmission types. But since
the data symbols are represented by waves with length T in the OFDM system, it
is more robust, but not totally insensitive, against inter symbol interference (ISI).

3.1.4 Cyclic Prefix

To further counteract ISI, some kind of guard interval between symbols can be
used. An attempt is to zero-pad the OFDM symbol in the beginning by a length
greater than the maximum excess delay τmax of the channel [11]. The ISI will then
only be introduced where zeros are added and can be discarded by the receiver.
The problem with this approach is a more complicated receiver synchronization
and the loss of orthogonality between the received waveforms. Instead, by ex-
tending the OFDM symbol with a prefix of length TCP that is a copy of the last
part, both synchronization properties and orthogonality can be maintained [11].
The prefix is termed cyclic prefix (CP) since the signal part is repeated. In Fig-
ure 3.4 the CP is illustrated as well as ISI avoidance. The extended symbol is
denoted scyc[n] and has a length of T + TCP . Since the CP is not usable for
data transmission, there will be a degradation in transmission rate by a factor of
T/(T + TCP ).

If the channel is considered in the discrete time baseband domain, the signal at
the receiver is a linear convolution between the channel impulse response function
c[n] and scyc[n]. This corresponds to s[n] being cyclically convolved with c[n]
because of the added CP. This property will be important later on.
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Figure 3.4: Top: Extension of the OFDM symbol using a copy of the last part, i.e., the cyclic prefix.
Bottom: The symbol rows illustrate the received symbols at the receiver when using a channel with two
paths with different time delays. The ISI is only introduced in the CP of symbol i + 1 and can hence
be discarded.

3.1.5 D/A-conversion and RF Modulation

The extended OFDM symbol samples are still to this point in parallel data lines.
Sending the symbol over a channel requires it to be transformed into a serial
sequence using a parallel to serial converter. Note that the symbols S[k] are still
to be sent in parallel and it is the OFDM symbols that are to be sent serially.
For analog transmission, the samples are Digital-to-Analog converted (D/A) and
the resulting signal is used for modulating a higher frequency carrier as shown in
Section 2.2.

3.2 Receiver

The receiver can almost be considered stepping the transmitter backwards. First,
the received RF signal is down converted to the baseband resulting in the signal
r(t), 0 ≤ t < T . With the use of a Sample-and-Hold (S/H) circuit with sampling
frequency K/T , r[n], n = 0, . . . ,K − 1 is obtained. If the transmitter parameters
have been correctly implemented and the receiver has been able to resolve the
delayed multipath versions and compensated for the affects, there is virtually no
ISI or ICI. How the multipath resolving is performed is outside the scope of this
work. The signal is converted to parallel form and the cyclic prefix and postfix are
removed by using the fact that they are copied parts of the useful OFDM symbol.

OFDM uses a correlation receiver where the baseband signal is correlated with
a set of basis functions. By choosing the basis functions optimally, i.e., the time
reversed transmitted waveforms, the correlation and the resulting signal can be
written as

Re[k] =

K−1
∑

n=0

r[n]e−j2πk
n
K , 0 ≤ k ≤ K − 1. (3.11)

This equation is the definition of Discrete Fourier Transform (DFT) of the received
sampled signal r[n], which can be implemented optimally as the Fast Fourier
Transform (FFT) if K is a power of two. Note that Rne[k] can be considered
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belonging to the frequency domain and are equal to the sent symbols S[k] if the
channel has no affect on the sent waveforms.

3.2.1 Channel Frequency Response

Since the total bandwidth in an OFDM system is divided into many subbands with
narrow widths, one can assume that the channel for each subband is frequency non-
selective [12]. If the OFDM system is considered in the discrete time baseband
domain, then the received signal is r[n] and the impulse response of the channel is
c[n] which has a K point DFT of C[k], k = 0, . . . ,K−1. As mentioned above, the
linear convolution that is performed by the channel between the extended symbol
scyc[n] and c[n] appears as a cyclic convolution between s[n] and c[n]. Recall
that a cyclic convolution between two signals in time domain corresponds to a
multiplication in frequency domain of the signals’ DFTs. Since the DFT of s[n] is
the symbols S[k], the received signal in frequency domain in Eq. (3.11) is

Rne[k] = C[k]S[k], 0 ≤ k ≤ K − 1, (3.12)

where the subscript ne is an abbreviation of non-equalized. With added com-
plex AWGN ñ[n] in the discrete time representation of the channel the received
frequency domain signal is

Rne[k] = C[k]S[k] +N [k], 0 ≤ k ≤ K − 1, (3.13)

where N [k] is the K point DFT of ñ[n]. Since ñ[n] is added after the convolution
and DFT is a linear operator it can be shown that also N [k] is complex AWGN. In
the derivation of Eq. (3.13) it has been assumed that the channel is static during
the transmission of one OFDM symbol.

In a real OFDM system the OFDM symbols are sent consecutively after one
another. By introducing the OFDM symbol index m one can write the full discrete
time baseband transmitter signal as

s[n] =

∞
∑

m=−∞

sm[n−mK]

=
∞
∑

m=−∞

K−1
∑

k=0

S[m, k]ej2πk(
n−mK

K ), −∞ < n <∞, (3.14)

where the symbols S[m, k] belong to OFDM symbol m and subchannel k with sub-
carrier fk. With this notation one can express the frequency domain dependency
in k and m as

Rne[m, k] = C[m, k]S[m, k] +N [m, k], 0 ≤ k ≤ K − 1 (3.15)

−∞ < m <∞.

In summary, a simple and correct implemented OFDM channel influences each
one of the sent symbols with a different multiplicative complex quantity which is
the channels transfer function sampled in the corresponding subcarrier frequency.
How different the complex quantities are depends on how frequency selective the
channel is.
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Figure 3.5: Symbolic picture of how continual (black) and scattered (gray) pilot symbols are transmitted
on an OFDM radio channel as a function of OFDM symbol m and subchannel k. Note that one column
of squares correspond to one OFDM symbol.

3.2.2 Pilot Symbols, Channel Estimation, and Equalization

Since the channel always affects the transmission in some way, the received signal
needs to be equalized. This is done using a channel estimation technique built
around the pilot symbols mentioned earlier in Section 3.1.3. The pilot symbols,
which are known to the receiver, are inserted at the transmitter instead of the
symbols mapped from the encoded bits. There are essentially two categories of
pilots, continual and scattered. Continual pilots are sent on the same subcarrier
without any interruption while scattered pilots position in the time-frequency grid
change by a certain patter depending on what standard used. A symbolic picture
of the two types can be found in Figure 3.5. Continual pilots might be used for
e.g., frequency tracking and frequency offset estimation and the scattered pilots are
used for e.g., channel estimation [12]. Since the pilots are known, the receiver can
easily estimate the frequency response of the channel, i.e., C[m, k] will be known
for certain [m, k] pairs except for the interference from N [m, k]. By dividing with
the sent pilot symbol in Eq. (3.15) one obtains

Ĉ[m, k] =
Rne[m, k]

Spilot[m, k]
, k = k1, . . . , kN

m = m1, . . . ,mM , (3.16)

where Spilot[m, k] are the known pilot symbols and m1, . . . ,mM and k1, . . . , kN
correspond to the OFDM symbols and subcarriers the pilots were sent on, respec-
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tively.
The channel affect the transmission on all subcarriers, but the scattered pilots

are only sent on a light time-frequency pattern. By using the pilot estimated
Ĉ[m, k] together with a two-dimensional (2D) interpolation filter, C[m, k] can be
estimated for the last received OFDM symbol l and all subcarriers k. The 2D
filter can be e.g., a Wiener filter [12]. Using the knowledge of Ĉ[l, k] a simple
equalization for all subcarriers for OFDM symbol l can be performed, i.e.,

Ŝ[l, k] =
C[l, k]

Ĉ[l, k]
S[l, k] +

N [l, k]

Ĉ[l, k]
, 0 ≤ k ≤ K − 1, (3.17)

where Ŝ[l, k] are the estimates of the sent symbols. The ideal equalization is
achieved if C[l, k]/Ĉ[l, k] and N [l, k]/Ĉ[l, k] are equal to one and zero, respectively.
Note that the equalization filter is only one tap for each subchannel.

An important property is the pilot spacing in time and frequency. If high
Doppler shifts are present in the channel, i.e., the channel is fast fading in time
domain, the pilots in time direction need to be dense. If the highest Doppler shift
is denoted fDmax

then, according to the sampling theorem, the pilots cannot be
sparser than 1/(2fDmax

) seconds apart in time direction if aliasing in the sampling
process in the receiver is to be avoided [12].

Analogously, if the channel is highly dispersive, i.e., frequency selective, the
pilots need to be dense in frequency direction. If τmax is the maximum excess
delay of the channel, the sampling theorem gives a lowest pilot density in frequency
direction of 1/τm Hz to avoid aliasing [12].

After the equalization, Ŝ[l, k], 0 ≤ k ≤ K − 1, is Parallel-to-Serial (P/S)
converted and the de-mapping from symbols to encoded bits are performed. The
bits are interleaved and fed to the decoder.

3.3 Adaptive Symbol Mapping

As mentioned above, each subchannel can be considered frequency non-selective.
In Section 2.3.2 it was derived that the spectra of such a channel is time varying
and can experience deep fades. If a symbol is sent during a deep fade there is a
high possibility that it will be corrupted when received. Also, if noise is added
the possibility will be even greater. In Figure 3.1 one can see that the larger M
is used in the mapping, i.e., the more bits are mapped on a single symbol, the
less space there is between the points. Hence, intuitively, using a large M -ary
mapping when the channel is in a deep fade and much noise is added, i.e., the
channel SNR is low, can cause the received symbol to be misinterpreted. Thus, it
would be advantageous to change the set size M adaptively with respect to the
channel state information, CSI.

If the channel is assumed to be slow fading, i.e., the coherence time TC of the
channel is greater than a number of symbol times T , one might use a feedback of
the channel estimates in the receiver to calculate future prediction of the channels
SNR [13]. Note that the transmitter and receiver are considered to be located in
the same system, e.g., a base station or a mobile unit. Thus, the transmitter has
the possibility to adaptively change the symbol set size M for each subcarrier and
by that the bit rate in each subcarrier. If a subchannel is non-usable, it can be
turned off completely by not giving the modulator a symbol to use. This technique
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is known as bit-loading or adaptive modulation and helps the system keeping BER
low and/or increase bit rate even though channel quality varies. Analogously, one
can do the other way around. Use the same set size M on each subcarrier and
instead adapt the transmitted power so that subcarriers with low SNR use great
sending power while subcarriers with high SNR use less sending power. Applying
this procedure is known as power-control [13].

As described in [9] the adaptation is mainly performed by optimizing one of
the following quantities,

– high data rate

– low average transmitting energy, or

– low error probability,

and keeping the other two constant.

3.4 Motivation of Channel Prediction

There are several motives of why prediction of a radio channels frequency response
is desired. In this section, a few reasons for prediction in either time or frequency
domain are stated and explained.

3.4.1 Prediction in Time Domain

The solution to the varying channel quality stated above was developed with the
assumption that the variation was slow. If the channel is fast fading, i.e., the
coherence time TC has the same magnitude as the symbol time T or smaller, the
channel estimates used for equalization is not feasible to use when predicting future
CSI, since it will be out of date [14]. Thus, using this strategy, the transmitter
and receiver are not fully optimized to the CSI due to the rapid fluctuations of
the channel. This yields the BER and bit rate gain not to be comparable to when
a slowly varying channel is used. Note that it was assumed that the pilots were
received on frequencies sufficiently close to or on the subcarriers used for sending
data. Otherwise, the frequency selectivity properties will play an important role.
A system where sending and receiving data are performed on the same frequencies
is known as a time division duplex system (TDD). A way to still utilize the channel
fully could be to use the channel information extracted from the received pilots
to predict future CSI. This will give the transmitter time to adaptively change to
the e.g., modulation alphabet and coding rate, that will yield highest data rate.
The prediction could be made on several or every subchannel depending on the
frequency selectivity of the channel.

Another way to adaptivity should be taken if data, and thus pilots, are received
on a different frequency interval than used for sending, i.e., separate down- and
up-links are used. This is known as a frequency division duplex (FDD) system.
Here, it is not possible to use the received pilots to predict the channel for own
benefit. Instead, the predicted CSI for the receiving frequencies should be fed
back to the transmitter. This requires the prediction to be so far ahead that the
feedback delay will be considered small in comparison.

These two examples show that there is consequently a need for accurate pre-
diction in time domain for each subcarriers CSI. If succeeded, it will again bring



30 Orthogonal Frequency Division Multiplexing Principles

the opportunity of e.g., adaptive modulation and power control back to the surface
for fast fading channels. Prediction in time domain of a radio channels transfer
function will be the topic of Chapter 4.

3.4.2 Prediction in Frequency Domain

As seen in Eq. (3.17) the received data can be equalized to a certain extent de-
termined by the channel estimation and noise. Since the receiver is not able to
equalize all affected symbols perfectly, it would be of interest to use the subchan-
nels with highest quality.

Two examples will motivate prediction in frequency direction. First consider
the case where a system has been assigned a certain bandwidth W , which is used
for both receiving and sending data, i.e., a TDD system. The bandwidth W can be
divided into two coherent frequency intervals f1 and f2. If only f1 is currently used,
then a system unit has no knowledge of the channel in the interval f2, since no pilot
symbols are received here. If the channel is frequency selective and deep fades are
present in f1, it would be a good idea to instead use f2, or parts of it, if its quality
is higher. To arrive at a decision concerning interval change, information about
the unused frequency interval need to be gained. It would therefore be beneficial
if it were possible, by studying channel information in f1 gained by pilots, to
predict into f2 by some suitable method. If peaks and fades of the frequency
response is predicted with accuracy, one has the opportunity to carefully select
what modulation to use on different subcarrier frequencies. At subchannels with
predicted good condition, large modulation alphabets such as 64-QAM could be
feasible to use, whereas subchannels with predicted fades should use more robust
modulation, e.g., binary PSK, or might even not be used.

The second case is when the transmission and reception is performed on dif-
ferent frequency intervals, i.e., a FDD system. Since pilots are never received on
the frequencies used for sending data, knowledge of the CSI for this interval will
not be gained directly. Here, compared with the former case, the prediction is
not utilized to find better subchannels than those already used. Instead, it will
be explored in an effort to gain knowledge of the up-link frequency interval. This
could be compared with the second method described in the former section. In-
stead of feedback in the system, the transceiver will on its own predict the CSI at
the up-link.

Thus, prediction in frequency direction might be a possible way of increasing
data transfer rates, and it will be investigated in Chapter 5 and 6.
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Figure 3.6: Block diagram of a simplified OFDM transceiver. The parallel arrows emphasize that symbols
are sent on several subcarriers. Note that the true outgoing baseband signal from the transmitter is
serial since it is a sum of weighted FFT basis functions.
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Chapter 4
Prediction in Time Domain

One of the greatest problems in wireless communication is that the channel quality
is varying. Consider again Figure 2.5, Section 2.3.2. If the transmitter tries to send
during a deep fade the bit error rate (BER) will increase, which is not desired. Due
to the rapid fluctuations, the transmitter and receiver are not sufficiently optimized
all the time to exploit the channels properties. If it was possible to predict how
the channel will behave in the future, adaptive transmission techniques such as
adaptive power control, adaptive coding and modulation rate could be used to
reduce the degradation in BER [2].

In this chapter, channel state information (CSI) prediction for one subcarrier
in an OFDM system is investigated with the use of an autoregressive modeling
method.

4.1 Prediction Algorithm

The algorithm for prediction can be divided into three main parts, autoregressive
modeling, prediction of CSI for time instants of future pilot symbols, and interpo-
lation of predicted CSI to yield how the channel will affect future data symbols.
These three steps will be explained below.

4.1.1 Autoregressive Modeling and Prediction of CSI

The standpoint for the CSI prediction is the assumption that the channel is an
autoregressive (AR) process. From physical laws this is not accurate to assume
but if our goal is to only predict a relatively small amount of time ahead it might
be feasible. Consider the AR model of order p below that is driven by white
stationary noise v[l],

x[l] = −a[1]x[l − 1] − a[2]x[l − 2] − . . .− a[p]x[l − p] + b[0]v[l]. (4.1)

If only x[l − 1], . . . , x[l − p] are known, the best prediction of x[l] is

x̂[l] = −a[1]x[l − 1] − a[2]x[l − 2] − . . .− a[p]x[l − p], (4.2)

since the expected value of the noise is 0. Hence, by deriving an AR model of the
observed channel with white noise as input signal, it might be possible, due to the
close connection between AR modeling and prediction, to predict a future channel
sample.

33
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In Chapter 3, the channel transfer function of an OFDM system was derived as

Rne[m, l] = C[m, l]S[m, l] +N [m, l], (4.3)

where m and l are the OFDM symbol and subcarrier index, respectively. If only
one subcarrier is interesting, then l can be omitted, i.e.,

Rne[m] = C[m]S[m] +N [m]. (4.4)

As also stated in Chapter 3, a subcarrier can be considered frequency non-selective
and as was seen from Eq. (2.18), the frequency response of a frequency non-selective
channel is the same as the multiplicative affect in time domain. Hence, C[m] can
be seen as C(t) in Eq. (2.18) sampled. To emphasize that the signals are C(t) in
Eq. (2.18) sampled. To emphasize that will be concerned in this chapter, they are
written in lower case and the underlines are omitted.

Hence, if the channel model is sampled with the symbol rate fsymbol, it is
written as

r[k] = c[k]s[k] + n[k], (4.5)

where r[k] is the sampled output from the receiver, c[k] is the sampled channel,
s[k] is the sent symbols and n[k] is complex AWGN.

If the transmitter only sends known data symbols, the sampled complex base-
band channel will be known except for the uncertainty due to noise. Without loss
of generality assume that s[k] = 1, k = 1, . . . ,K. This will make the received
signal r[k] = c[k] + n[k], k = 1, . . . ,K. Denote this signal rc[k], i.e.,

rc[k] = c[k] + n[k], k = 1, . . . ,K. (4.6)

The above signal is the best knowledge of c[k], k = 1, . . . ,K, one can get. There-
fore, if an AR model is derived from rc[k], it might be used to predict a future
value of the channel, i.e., ĉ[K + 1], with the use of Eq. (4.2). If more than one
prediction step is required, Eq. (4.2) can be applied iteratively by using predicted
values to computed future estimates, thus

ĉ[K + 1] = −a[1]rc[K] − a[2]rc[K − 1] − . . .− a[p]rc[K + 1 − p]

ĉ[K + 2] = −a[1]ĉ[K + 1] − a[2]rc[K] − . . .− a[p]rc[K + 2 − p]

ĉ[K + 3] = −a[1]ĉ[K + 2] − a[2]ĉ[K + 1] − . . .− a[p]rc[K + 3 − p]

...
...

ĉ[K +m] = −a[1]ĉ[K +m− 1] − a[2]ĉ[K +m− 2] − . . .

− a[p]ĉ[K +m− p]. (4.7)

Note that by using the last measured samples to start the AR process, the different
phases of the multipath components are counted for. And also, this prediction
process do not have any white noise as input and is in the end fully driven by old
predictions.

The continuous time prediction length has to be sufficiently long for any adap-
tive transmission technique to be feasible. Due to the usually high data rate, and
thus the high sample rate, the prediction depth in samples has to be very long,
which will probably make the prediction error large due to the recycle of old pre-
dictions and perhaps not fully correct AR model. Also, with this approach, if any
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prediction should be possible, all the sent symbols would have to be known to the
receiver and no actual data will ever be sent.

Instead, by noticing that if all αn(t) in Eq. (2.18) are assumed to vary slow, the
highest frequency that C(t) ever will have is fDmax

. Thus, the channel sampling
frequency is feasible to be lowered, theoretically, to 2fDmax

as a result of the
sampling theorem [15]. Note that the receiver still samples the signal with fsymbol
for correct data reception and it is merely the prediction algorithm that uses the
lowered sampling frequency. Denote the new sampling frequency fAR, which is
slightly above 2fDmax

and thus giving some margin. The discrete time model with
the lower sampling rate can be written as

rAR[n] = cAR[n]sAR[n] + nAR[n], (4.8)

where rAR[n] is the sampled output from the receiver, cAR[n] is C(t) sampled
and nAR[n] is complex AWGN with variance E{n∗AR[n]nAR[n]} = σ2

nAR
. The time

index is changed to n and a subindex AR is added to emphasizes that the sampling
frequency has been decreased. The symbols sAR[n] can now be considered the
pilots which are only sent on a light pattern in the time-frequency grid described
in the former chapter.

In the same manner as above, sAR[n] can be set to 1 for n = 1, . . . , N without
any loss of generality, which will make cAR[n] known except for the noise nAR[n].
This operation equals the channel estimation in Eq. (3.16). Denote this signal
rcAR

[n], i.e.,
rcAR

[n] = cAR[n] + nAR[n], n = 1, . . . , N. (4.9)

As above, this is the best knowledge of cAR[n] one can get. Note that setting
sAR[n] = 1 does not mean that no real data will be transferred. Since usually
2fDmax

is much smaller that the symbol rate, only a small percentage of the sent
symbols need to be pilots. How often to send pilots is a trade off between the
maximum Doppler shift and how accurate channel estimation is required. Sending
pilots with a dense pattern on a subcarrier allows the channel estimation being
more accurate than with light pattern, since more CSI is received.

Using the signal rcAR
[n] to derive an AR model, prediction of future channel

samples with the lowered sampling frequency fAR, i.e., ĉAR[n], can be predicted
by again using Eq. (4.2) iteratively,

ĉAR[N + 1] = −a[1]rcAR
[N ] − a[2]rcAR

[N − 1] − . . .− a[p]rcAR
[N + 1 − p]

ĉAR[N + 2] = −a[1]ĉ[N + 1] − a[2]rcAR
[N ] − . . .− a[p]rcAR

[N + 2 − p]

ĉAR[N + 3] = −a[1]ĉAR[N + 2] − a[2]ĉAR[N + 1] − . . .− a[p]rcAR
[N + 3 − p]

...

ĉAR[N +m] = −a[1]ĉAR[N +m− 1] − a[2]ĉAR[N +m− 2] − . . . (4.10)

− a[p]ĉAR[N +m− p].

See also Figure 4.1 for an illustration of the first prediction step. Note that when
a much lower sampling rate is used one can consider the prediction method having
better memory of the process and therefore can predict longer in continuous time.
This is easily demonstrated by considering the continuous time autocorrelation
function of the process and realizing that with a finite number of sampling instants
one covers less of the function using high sample frequency than when using low
sampling frequency.



36 Prediction in Time Domain

?

data symbols

AR
model

][ 2

data symbols data symbols data symbols

Nr
ARc ][ˆ 1NcAR][ 1Nr

ARc ][Nr
ARc

Figure 4.1: Illustration of prediction using an AR model and pilot symbols. rcAR
[n] is defined in Eq.

4.9. Notice that the predicted channel sample only cover how a future pilot symbol will be affected by
the channel.

4.1.2 Interpolation of Predicted CSI

The downside with the above approach is that the predicted CSI only cover how
future pilot symbols will be affected by the channel, which will only give a pointer
to how the intermediate data symbols will be affected. Hence, the predicted chan-
nel samples need to be up-sampled to the symbol rate and interpolated by a filter
to yield better information about the channel affect on future data symbols.

To let the interpolation filter use samples with rate fAR symmetrically around
the sample to be interpolated, the predicted channel samples are concatenated
together with the channel samples used for deriving the AR model. This results in
that the interpolation filter can use the last channel measurements when interpo-
lating the first predictions with rate fsymbol. Thus, a signal r̃[n] is introduced as

r̃[n] =

{

rcAR
[n], n = 1, . . . , N

ĉAR[n], n = N + 1, . . . , N + Lprediction,
(4.11)

where N is the length of rcAR
[n] and Lprediction is the prediction depth, i.e., length

of ĉAR[n], both corresponding to the sampling rate fAR.

The resulting signal is up-sampled with a factor equal to the ratio between the
symbol rate and the lowered prediction sampling rate, L = fsymbol/fAR, i.e., L−1
zeros are inserted between every two samples,

rinterp[k] =

{

r̃[k/L], k = 0,±L,±2L, . . .

0, otherwise.
(4.12)

The zero-valued samples are replaced with appropriate nonzero values by filtering
with an interpolation filter w[k] with length ML+ 1, that weights M old samples
to interpolate a new sample, which results in a signal denoted ĉL[k],

ĉL[k] =

ML/2
∑

l=−ML/2

rinterp[k − l]w[l]. (4.13)

How the interpolation filter is derived and implemented will be discussed in Sec-
tion 4.6. The signal ĉL[k] now has the sampling frequency fsymbol and contain in
the first part predictions of known channel samples and in the second part predic-
tions of future channel samples. Thus, the predicted CSI at symbol rate fsymbol
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Figure 4.2: Implementation of a lattice all pole structure of order j with x[n] and y[n] as input and
output signal, respectively.

is obtained when removing the first part of ĉL[k], i.e.,

ĉ[k] = ĉL[(N − 1)
fsymbol
fAR

−K + k + 1]

k = K, . . . ,K + Lprediction · fsymbol
fAR

, (4.14)

which concludes the prediction algorithm.

4.2 Filter Structures

When implementing a filter on a Digital Signal Processor (DSP) or in a common
PC the choice of structure can be crucial. Filter coefficients can never be rep-
resented by infinite precision, i.e., quantization is preformed, which can lead to
performance degradation due to movement of poles and zeros from optimal posi-
tions. Since this thesis concerns autoregressive modeling, all-pole structures need
to be comprehended.

The simplest implementations are the Direct forms, where the transversal coef-
ficients, i.e., the a[i], i = 1, . . . , p, in Eq. (4.2) are the multipliers in the structure.
Other methods are to split up the transfer function into additive or multiplicative
pieces and then implement them in parallel or cascade, respectively. Yet another,
but slightly more complicated, is the lattice structure where filter coefficients called
reflection coefficients, Γi, needs to be derived from the filter equations. This can
be done using parts of the Levinson-Durbin recursion. See Figure 4.2 for an ex-
ample of an all-pole lattice filter. There are many advantages by using the lattice
structure. One of them is the modularity that allows a filter order increase or
decrease by simply adding or removing reflection coefficients without having to
recompute the old ones. Another is the simplicity of stability analysis without
having to derive the poles of the filter. If |Γi| < 1 for all i, then the filter is stable.
Also, it has been shown that the lattice is more robust to parameter quantization
compared with other filter structures.

4.3 Autoregressive Modeling Method Selection

In Eq. (2.18), it can be seen that C(t) is composed of N complex exponentials,
i.e., sinusoids and cosines with frequencies fDn

(t), n = 1, . . . , N . Hence, the
sampled version, i.e., cAR[n], will therefore have a spectrum consisting of N spikes.
With the added noise, as in Eq. (4.8), the spectrum will have a nonzero floor. If
the prediction in Eq. (4.10) should be If the prediction in Eq. (4.10) should AR
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Figure 4.3: Spectrum of cAR[n] when fAR = 500 Hz. Doppler frequencies are 155.5, 140.0, 70.2,
61.2, 48.18, -43.7, -135.1, and -161.8 Hz which are clearly visible as peaks. Notice that the channel
noise make the spectrum nonzero throughout all frequencies.

modeling method, i.e., the spikes in the above spectrum. Hence, one can think of
the AR modeling stage as frequency estimation of sinusoids in noise. A spectrum
of a sampled channel, i.e., cAR[n], is shown in Figure 4.3.

The choice of AR modeling method comes down to which method estimates the
frequencies of the sinusoids best from a signal like cAR[n]. There are many methods
to be considered and they all have different advantages and disadvantages. Some
of the methods are

– Maximum entropy

– Autocorrelation

– Covariance

– Modified covariance, and

– Burg’s method.

First of all, it is important that the resulting AR model is stable since instability
can cause the CSI estimation to be overly optimistic which can affect the BER
negative. Both the covariance and modified covariance method are able to produce
unstable models and hence they must be excluded while the remaining methods
are proven to always result in stable models [16].

The maximum entropy and the autocorrelation method are essentially the
same. They provide the same set of equations for the transversal filter coefficients
but are derived from totaly different perspectives of the signal. The maximum
entropy method assumes that the signal to be modelled is Gaussian while the au-
tocorrelation method assumes that the signal originates from an AR process [16].
They both perform relatively poorly when using short data records for deriving
the model, i.e., the spectrum has low resolution and true frequencies can remain
unidentified. Also, when estimating sinusoids in noise, the estimated frequencies
might have a bias, i.e., they are either over- or underestimated [16]. Burg’s method
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on the other hand, uses an extended minimization criterion, see Section 4.4, and
has a high resolution for short data records. Unfortunately, the frequency biasing
is also apparent in this method.

Consider again Figure 4.3. For this spectrum it is known that there should be
eight peaks. But if this property was unknown, one might think that the peak at
115 Hz corresponded to a Doppler frequency. If the method is allowed to use a
very high order for the modeling, i.e., an order many times larger than the number
of Doppler frequencies, the signal is said to be over-modelled. The excess poles,
i.e., the poles that are not identifying the Doppler frequencies, tries to model the
noise which is not intended. And hence, the peak at 115 Hz would have been
identified as a Doppler frequency by the excess poles. Another property that is
present when over-modeling a signal is spectral line splitting. This is when the
modeling method places two peaks, in other words poles, close to each other to
identify what really is a single peak. All the three mentioned stable methods are
subjects to this deficiency.

Another important property is the model order and the length of data that
must be used to derive it. If the order is denoted p, Burg’s method only need a
data length of p+1 while the two other guaranteed stable model methods need at
least 2p− 1 data samples.

In Section 4.8, it was commented that the channel parameters will change over
time, e.g., fDn

(t), which makes the channel non-stationary. Therefore, only short
data records should be used in the modeling stage. With this in mind and the
above mentioned properties of the AR modeling methods, it seems reasonable to
also exclude the maximum entropy and the autocorrelation method and instead
choose Burg’s method.

It must be noted that the modified covariance method is not subjected to
spectral line splitting and also only has a minor frequency bias when identifying
sinusoids in noise [16]. Yet, Burg’s method was chosen since the stability property
was considered more important than these two characteristics.

Several simulations were performed using the approach in Section 4.1 with all
five mentioned methods and Burg’s method appeared to produce the best AR
model for prediction.

4.4 Burg’s Method

Burg’s method of deriving an AR model for a signal was first part of a spectrum
estimation method and its main parts will be shown in this section following the
outline in [16]. In Eq. (4.2) an estimate of x̂[n] is calculated. Define the forward
prediction error

e+p [n] = x[n] − x̂[n] = x[n] +

p
∑

k=1

ap[k]x[n− k] =

p
∑

k=0

ap[k]x[n− k], (4.15)

where x[n] is the true value, ap[0] = 1 and p is the model order of the prediction
error filter ap[k]. In the z-domain this can be written as

E+
p (z) = Ap(z)X(z). (4.16)

The name forward prediction error corresponds to that the prediction is made
forward in time. A good way of determining the transversal coefficients is to
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minimize the following error

E+
p =

∞
∑

n=0

|e+p [n]|2 =

∞
∑

n=0







∣

∣

∣

∣

∣

p
∑

k=0

ap[k]x[n− k]

∣

∣

∣

∣

∣

2






, (4.17)

with respect to ap[k], k = 1, . . . , p, which will result in the matrix equation [16]











rx[0] r∗x[1] . . . r∗x[p]
rx[1] rx[0] . . . r∗x[p− 1]

...
...

. . .
...

rx[p] rx[p− 1] . . . rx[0]





















ap[0]
ap[1]

...
ap[p]











= ǫp











1
0
...
0











, (4.18)

where rx[k] is the autocorrelation sequence for x[n] and ǫp =
∑p
k=0 ap[k]r

∗
x[k] is

the variance of the error e+p [n]. Since the leftmost matrix is Hermitian Toeplitz the
equations can be solved by the Levinson-Durbin recursion giving a model order
update equation of

aj+1[i] = aj [i] + Γj+1a
∗
j [j − i+ 1], i = 0, 1, . . . , j + 1, (4.19)

where Γj+1 is a reflection coefficient. In z-domain this is equal to [16]

Aj+1(z) = Aj(z) + Γj+1[z
−(j+1)A∗

j (1/z
∗)]. (4.20)

Multiplying both sides with the z-transform of the input signal x[n] yields

Aj+1(z)X(z) = Aj(z)X(z) + Γj+1[z
−(j+1)A∗

j (1/z
∗)]X(z). (4.21)

Since Ap(z)X(z) = E+
p (z) it can be written as

E+
j+1(z) = E+

j (z) + z−1Γj+1E
−
j (z), (4.22)

where E−
j (z) = z−jX(z)A∗

j (1/z
∗). Thus, a recursion for the prediction error of

different model orders of the prediction error filter is found, which in time domain
is equal to [16]

e+j+1[n] = e+j [n] + Γj+1e
−
j [n− 1]. (4.23)

Notice that

e−j [n] = Z−1
{

z−jX(z)A∗
j (1/z

∗)
}

=

j
∑

k=0

a∗j [k]x[n− j + k]

= x[n− j] +

j
∑

k=1

a∗j [k]x[n− j + k] = x[n− j] − x̂[n− j] (4.24)

is the error of a prediction backwards in time. Therefore e−j [n] is named the back-
ward prediction error. By performing the same calculations for an error defined
by the backward prediction error, i.e.,

E−
p =

∞
∑

n=0

|e−p [n]|2, (4.25)
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where p is the model order, one can show that this quantity is minimized by
the same transversal coefficients as E+

p [16]. Also, a recursion for the backward
prediction error of different model orders can be derived as

e−j+1[n] = e−j [n− 1] + Γ∗
j+1e

+
j [n]. (4.26)

Now, there are recursions available for both e+j [n] and e−j [n], which are coupled to
each other and include reflection coefficients.

Burg’s method uses an extended minimization criterion, both the forward and
backward prediction errors are used,

EBj = E+
j + E−

j =
N
∑

n=j

|e+j [n]|2 +
N
∑

n=j

|e−j [n]|2, (4.27)

where N is the length of x[n] and the index n start at j in order to assure that only
existing samples are used. Assume that the prediction errors of model order j − 1
together with Γj−1, Γj−2,. . . , Γ1 are available and a higher order model should be
derived. This means that Γj should be chosen in an optimal way which could be
done using Eq. (4.27). Taking the derivative with respect to Γ∗

j , using Eq. (4.23)
and (4.26) and setting equal to zero

∂

∂(Γ∗
j )







N
∑

n=j

|e+j [n]|2 + |e−j [n]|2






=
N
∑

n=j

{e+j−1[n] + Γje
−
j−1[n− 1]}e−∗

j−1[n− 1]

+ e+j−1[n]{e+∗
j−1[n− 1] + Γje

+∗
j−1[n]} = 0, (4.28)

yields the next reflection coefficient being equal to

Γj = −
2
N
∑

n=j

e+j−1[n]e−∗
j−1[n− 1]

N
∑

n=j

{|e+j [n]|2 + |e−j [n]|2}
. (4.29)

Thus, since the next reflection coefficient only depends on lower order errors, start-
ing with e+o [n] = e−o [n] = x[n] and using Eq. (4.23), (4.26), and (4.29) iteratively,
an arbitrary high order p can be derived. Implementation of the filter can be done
using a lattice all pole structure seen in Figure 4.2 or using the Step-up recursion,
Table 4.1, resulting in the transversal coefficients ap[k]. The Step-up recursion
is a part of the Levinson-Durbin recursion which can be found in e.g., [17]. A
summary of Burg’s method with rcAR

[n] as input signal can be found in Table 4.2,
where an extra parameter Dj is used for reduction in computational load. A total
of 3Np multiplications and additions is required for this algorithm structure.

4.4.1 Prediction Parameters

Now, when a prediction algorithm is chosen, the calculation of the AR model
depends essentially on three parameters which influence the prediction length and
computational load.
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Step-up recursion

1. Initialize the recursion

(a) ao[0] = 1

2. for i = 0 : p− 1

(a) for i = 1 : j

aj+1[i] = aj [i] + ΓBj+1a
∗
j [j − i+ 1]

end

(b) aj+1[j + 1] = ΓBj+1

end

Table 4.1: Step-up recursion transforming reflection coefficients ΓB
j , j = 1, . . . , p to transversal coef-

ficients a[i], i = 1, . . . , p

Burg’s Method

1. Initialize the recursion

(a) e+o [n] = e−o [n] = rcAR
[n+ 1]

(b) D1 = 2
N
∑

n=2

{

|rcAR
[n]|2 − |rcAR

[n− 1]|2
}

2. for j = 1 : p

(a) ΓBj = 2
Dj

N
∑

n=1
e+j−1[n][e−j−1[n− 1]]∗

(b) for n = j : N

e+j [n] = e+j−1[n] + ΓBj e
−
j−1[n− 1]

e−j [n] = e−j−1[n− 1] + [ΓBj ]∗e+j−1[n− 1]

end

(c) Dj+1 = Dj

(

1 − |ΓBj |2
)

− |e+j [j]|2 − |e−j [N ]|2

(d) EBj = Dj

[

1 − |ΓBj |2
]

end

Table 4.2: Burg’s method starting with the input signal rcAR
[n] and order p resulting in the reflection

coefficients ΓB
j , j = 1, . . . , p and the error EB

p .
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Sampling frequency, fAR. As mentioned in Section 4.1 the received signal has
to be sampled with a frequency of at least 2fDmax

. In practice, the Doppler
frequencies are not known and therefore an estimation of the maximum
Doppler frequency needs to be done beforehand. The sampling frequency
is coupled with the model order, see below.

Model order, p. A higher model order will perhaps produce better estimates of
the channel and should then ideally be as high as possible. But as seen
in Section 4.4, a higher model order requires more computations. Also,
the model order is coupled with the sampling frequency. Remember that
low sampling frequency, with the constraint that it is higher than 2fDmax

,
can be compared with longer memory of the process’ behavior. A doubling
in the sampling frequency will force the model order to be doubled if the
same prediction accuracy is required. One must also be careful not to over-
model the signal as mentioned in Section 4.3 since this will lead to degraded
performance due to the channel noise. It should be noted that the model
order it tightly coupled with the number of present scatterers since a peak in
the spectrum corresponds to one pole. In practice, the number of scatterers
is unknown.

Modeling window length, Lwindow. When deriving the AR model, the channel
needs to be observed using rcAR

[n] for a certain amount of samples, which is
called the modeling window. The model order of Burg’s method is limited
by the window size, p < Lwindow, where p is the model order and Lwindow is
the window length. There is also a constraint on Lwindow since the channel
is not a stationary process because the scatterers and the mobile receiver are
moving. If a too long window is used, the error minimization is performed
over a signal interval that contains time varying frequencies. Hence, the
identified frequencies will not agree with the instantaneous Doppler frequen-
cies that must be used in the prediction. Also, there might be a memory
constraint on how long the window could be.

4.5 Channel Implementation

The continuous flat fading channel model that was derived in Eq. (2.18) can easily
be implemented. Again, considering Figures 2.1 and 2.2 with the addition that
the transmitter and scatterers are far away from the receiver, one can assume that
αn(t) and fDn

(t) are constant and the time dependency can be omitted. Also, it
was said that the number of scatterers, N , was very large, but physical evidence
shows that only a moderate number of scatterers are present in reality and as few
as 8 scatterers can be used to model a Rayleigh fading channel [2].

MATLAB® is only able to use discrete time models, therefore the frequency
non-selective channel model in Eq. (2.18) is sampled with the OFDM symbol rate
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Figure 4.4: Doppler power spectrum SC(fD) when fDmax = 20 Hz. Notice that the spectrum is
symmetric since scatterers is assumed to be uniformly distributed around the receiver.

fsymbol = 1
Tsymbol

,

c[k] ≡
(

N
∑

l=1

αle
j(2πfDl

t+θl)

)∣

∣

∣

∣

∣

t=kTsymbol

=
N
∑

l=1

αle
j(2πfDl

kTsymbol+θl) =
N
∑

l=1

αle
j(2π

fDl
fsymbol

k+θl)
. (4.30)

Before running the simulation, values of the parameters αl, fDl
, and θl need to

be set. As stated in Section 2.3, the phase lag θl will be much larger than 2π
and depend highly on τo, see Eq. (2.10). It is therefore intuitive to model this
parameter as uniformly distributed on [0, 2π) since the phase is modulo 2π.

Modeling the Doppler frequencies is equivalent to model the angles of incidence
of the multipath signals if the maximum Doppler frequency is known. One by the
far most used models is Jake’s model which states that there is a continuum of
scatterers around the receiving unit. The received Doppler power spectrum with
this approach is given by [18]

SC(fD) =
1

πfDmax

√

1 −
(

fD

fDmax

)2
, |fD| ≤ fDmax

. (4.31)

and is normalized yielding a total power of 1. An example of the Doppler power
spectrum using Jake’s model is shown in Figure 4.4. By following the approach
in [18], fDl

has a probability density function (PDF) proportional to the Doppler
power spectrum in Eq. (4.31). By employing the Monte Carlo method, where the
parameters are calculated using uniformly distributed noise on [0, 1) as input argu-
ment to the inverse cumulative distribution function (CDF) of the corresponding
parameter, fDl

is generated by

fDl
= fDmax

cos (2πul), ul ∈ U [0, 1). (4.32)
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The SNR when using Eq. (4.6) is defined as

SNRc = 10 log

(

E{|c[k]|2}
σ2
n

)

, (4.33)

where σ2
n is the noise variance. It is convenient to normalize E{|c[k]|2} to unity

yielding the SNRc = −10 log σ2
n. If all αl are chosen equal then

E{|c[k]|2} = E{c∗[k]c[k]}

= E

{

N
∑

i=1

αie
−j(2π

fDi
fsymbol

k+θi)
N
∑

l=1

αle
j(2π

fDl
fsymbol

k+θl)

}

= E

{

N
∑

l=1

N
∑

i=1

αlαie
j(2π

fDl
−fDi

fsymbol
k+θl−θi)

}

=

N
∑

l=1

N
∑

i=1

αlαiE

{

e
j(2π

fDl
−fDi

fsymbol
k+θl−θi)

}

=
N
∑

l=1

α2
l = Nα2, (4.34)

which implies that all αl should be chosen as 1/
√
N .

The assumption of all scattered components having the same power does not
make the model lose generality because the multipath components need to have
an amplitude similar to the strongest component, otherwise they can be neglected
[15].

The complex AWGN n[k] in Eq. (4.6) can be simulated by generating two
single AWGN variables which correspond to real and imaginary part, respectively,
i.e.,

n[k] = n1[k] + jn2[k], ni[k] ∈ N(0,
σn
2

). (4.35)

The variance of n[k] is σ2
n since n1[k] and n2[k] are uncorrelated and they originate

from the same distribution.

To obtain the model with the reduced sampling frequency fAR in Eq. (4.9)
one can use the equality fsymbol = LfAR, where L is the interpolation factor used
in e.g., Eq. (4.12). Hence, the channel and noise signals corresponding to the
sampling frequency fAR are

cAR[n] = c[nL] (4.36a)

nAR[n] = n[nL]. (4.36b)

The SNR of this channel model is the same as above since the expected values
remain the same. Therefore, the SNR is

SNRAR = −10 log σ2
n. (4.37)

The model can now be implemented in MATLAB® and a simulation can be found
in Figure 2.5, Section 2.3.2.
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Figure 4.5: A conceptual picture of rinterp[k] when the interpolation factor is L = 5. M is the order
of the filter, m indicates which sample that is interpolated and no corresponds to the first used old
sample.

4.6 Optimal Wiener Interpolation Filter

The interpolation filter used as smoother of rinterp[k] can be chosen in many
different ways. One option is to use interpolation in terms of e.g., linear or cubic
interpolation. Also, splines are applicable in a variety of cases. Another option
is to use a digital filter that is convoluted with rinterp[k]. One can e.g., select
a truncated ideal low pass filter, the truncated sinc, or in some way modified
truncation, e.g., the raised cosine filter. The filter chosen in this work is the
Wiener filter, since it is optimal in a statistical sense as it minimizes the expected
value of the error.

Consider rinterp[k] in Figure 4.5 where L = 5 has been used. The derivation of
the Wiener filter begins, as always, with the definition of an error signal e[m] that
is to be minimized using the filter coefficients w[i].

e[m] =
M−1
∑

i=0

w[i]rinterp[no + iL] − ĉ[no + (
M

2
− 1)L+m]. (4.38)

Here, M is the filter order, i.e., the number of old samples that will be used for
interpolating one new sample, L is the interpolation factor, i.e., L =

fsymbol

fAR
, m

indicates which sample that is to be interpolated and the index no corresponds to
the first used old sample, see Figure 4.5. The order M is constrained to always be
even and m is constrained to the interval 1 ≤ m ≤ L−1. The interpolated sample
is ĉ[no + (M2 − 1)L+m].

Define the minimization criterion as the expected value of the error squared

E = E
{

|e[m]|2
}

. (4.39)

The minimum of this function is found by taking the partial derivative with respect
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to w∗[j], j = 0, . . . ,M − 1,

∂E
∂w∗[j]

=
∂

∂w∗[j]
E {e[m]e∗[m]} = E

{

e[m]r∗interp[no + jL]
}

= E

{[

M−1
∑

i=0

w[i]rinterp[no + iL] − ĉ[no + (
M

2
− 1)L+m]

]

r∗interp[no + jL]

}

=

M−1
∑

i=0

w[i]E
{

rinterp[no + iL]r∗interp[no + jL]
}

− E

{

ĉ[no + (
M

2
− 1)L+m]r∗interp[no + jL]

}

= 0 (4.40)

j = 0, . . . ,M − 1.

Evaluation of the expectation operator gives

M−1
∑

i=0

w[i]Φr[(j − i)L] − Φĉr

[(

j −
(

M

2
− 1

))

L−m

]

= 0 (4.41)

j = 0, . . . ,M − 1,

where Φr and Φĉr are the autocorrelation of rinterp[k] and cross correlation between
ĉ[k] and rinterp[k], respectively. This is equal to the well known Wiener-Hopf
equations

M−1
∑

i=0

w[i]Φr[(j − i)L] = Φĉr

[(

j −
(

M

2
− 1

))

L−m

]

(4.42)

j = 0, . . . ,M − 1.

By invoking the conjugate symmetric property of the autocorrelation function,
i.e., Φr[p] = Φ∗

r [−p], the matrix form of Eq. (4.42) is

Rw =











Φr[0] Φ∗
r [L] · · · Φ∗

r [(M − 1)L]
Φr[L] Φr[0] · · · Φ∗

r [(M − 2)L]
...

...
...

Φr[(M − 1)L] Φr[(M − 2)L] · · · Φr[0]











·











w[0]
w[1]

...
w[M − 1]











=











Φĉr
[(

1 − M
2

)

L−m
]

Φĉr
[(

1 −
(

M
2 − 1

))

L−m
]

...
Φĉr

[(

M − 1 −
(

M
2 − 1

))

L−m
]











= r. (4.43)

The filter coefficients are obtained by taking the inverse of R,

w = R
−1

r, (4.44)

which can be done using e.g., the Levinson-Durbin recursion.
One must be aware of that different filters need to be retrieved for m =

1, . . . , L − 1. Also, it has been assumed that 0 < m < L, which does not give
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any filter for the old samples. Incorporating the constraint that these samples
should pass the filter preserved, their optimal interpolation filter will be symmet-
ric with length M + 1 and only contain zeros except for a δ-pulse at the center
M/2 + 1. By patching all the L received filters into one large filter with length
ML+ 1, rinterp[k] can be smoothed by convolution.

One decisive question that needs to be answered prior to implementation is
what statistics to use in R and r since the statistics of both rinterp[k] and ĉ[k]
are unknown. One approximative solution, that will be used here, is that the
predictions, i.e., when rinterp[k] 6= 0, are assumed to match the true channel c[k]
except for some complex AWGN and that ĉ[k] will have the same statistics as c[k]
also with some complex AWGN added. The same AWGN statistics will be used
for both signals.

The channel model used was partially Jake’s model, that has the scatterers as
a continuum around the receiving unit. In continuous time, with complex AWGN
added to the channel, the theoretical time correlation function for this model is [4]

ΦC(∆t) = Jo(2πfDmax
∆t) + σ2

nδ(∆t), (4.45)

where Jo(·) is the zeroth-order Bessel function of first kind and σ2
n the variance

of the added noise. But the simulations performed in the later sections will use
a finite number of scatterers and not a continuum, thus using this function will
only be approximately correct in the mean. In Figure 4.6 an estimation of the
correlation function without channel noise and the Bessel function are shown.
One could see that there is a very good agreement between the functions and
hence the approximation is greatly justified. The time discrete expression of the
correlation functions is obtained when Eq. (4.45) is sampled with fsymbol and using
that fsymbol = LfAR

Φr[(j − i)L] = Jo
(

2πfDmax
(j − i)/fAR

)

+ σ2
nδ(j − i) (4.46a)

Φĉr

[(

j −
(

M

2
− 1

))

L−m

]

(4.46b)

= Jo

(

2πfDmax

(

j −
(

M

2
− 1

)

− m

L

)/

fAR

)

+ σ2
nδ

(

j −
(

M

2
− 1

)

− m

L

)

.

Two examples of the Wiener filter, with SNR = ∞ and SNR = 20 dB of
the predictions, are shown in Figure 4.7. During the simulations performed in the
evaluation of the filter it was observed that the result of the interpolation did not
differ significantly when having reasonable high SNR. Also, when having very low
SNR, the predictions were suppressed to zero because the interpolation filter acted
as a very narrow width low pass filter. With this in mind and the fact that the
SNR of the estimated samples are not known and not equal for every sample, it
was concluded that the noise σ2

n could be omitted, i.e., the case with SNR = ∞
is used. Notice that the top Wiener filter in Figure 4.7 has a sinc-shape but is not
identical to the truncated sinc function since the order M is not infinite. With
very low maximum Doppler frequencies, R is close to being singular, which creates
difficulties calculating the filter. This was solved by setting fDmax

equal to the
lowest quantity that did not yield a to low condition number.
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Figure 4.6: Normalized channel time correlation function ΦC(∆t). Solid : Zeroth-order Bessel function
with fDmax = 100 Hz. Dashed : Mean value of estimated correlation function for simulated channels
with fDmax = 100 Hz and 8 scatterers.

4.7 Error Measures

Upon developing a prediction algorithm, measures on how accurate the result is
are needed. When predictions of future CSI, i.e., ĉ[k] in Eq. (4.14), are available,
three quantities are interesting to compute.

– Predicted channel, ĉ[k] = ℜ{ĉ[k]}+jℑ{ĉ[k]}, characterizes the channels mul-
tiplicative influence on the sent signal. Gives information about amplitude
and phase distortion.

– Predicted channel power, |ĉ[k]|2. This quantity is used for prediction of the
channel SNR and thus helpful when deciding which coding/modulation will
be used.

– Predicted channel power in dB, 20 log |ĉ[k]|. When deciding how much power
to transmit, the quantization steps are most of the time made in dB, thus
making a prediction measure in dB suitable.

The prediction errors corresponding to the above quantities can for each sim-
ulation be defined as

ec[k] = |ĉ[k] − c[k]| (4.47a)

e|c|2 [k] = |ĉ[k]|2 − |c[k]|2 (4.47b)

e20 log |c|[k] = 20 log |ĉ[k]| − 20 log |c[k]|, (4.47c)
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Figure 4.7: Optimal Wiener interpolation filters impulse and frequency response. Top: Order M = 12,
interpolation factor L = 5, i.e., filter length of 61, and SNR = ∞. Bottom: As above but with
SNR = 20 dB.
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where c[k] are the true channel values. From these equations the root mean square
error (RMSE) can be defined as

ec,RMSE [k] =

√

√

√

√

1

M

M
∑

m=1

(|ĉm[k] − cm[k]|)2 (4.48a)

e|c|2,RMSE [k] =

√

√

√

√

1

M

M
∑

m=1

(|ĉm[k]|2 − |cm[k]|2)2 (4.48b)

e20 log |c|,RMSE [k] =

√

√

√

√

1

M

M
∑

m=1

(20 log |ĉm[k]| − 20 log |cm[k]|)2, (4.48c)

where the index m corresponds to the simulation number and M is number of sim-
ulations. Note that the error measures are defined from the interpolated samples
and not only from the predicted samples with sample rate fAR.

4.8 Simulations

To evaluate the prediction algorithm using Burg’s method and its parameters,
several simulations were performed. The channel implementation in Section 4.5
with MATLAB® generating the random numbers was used throughout all simula-
tions. It was assumed that during the modeling and prediction time no scatterers
were added or removed from the environment. The simulated channel used data
symbols, b[k] which were all equal to 1, thus the models were Eq. (4.6) and (4.9).

It should be noted that a question that has not yet been discussed is what signal
to use as input to the AR modeling method. It is not clear that rcAR

[n] should
be used since c[k], |c[k]|2 and 20 log |c[k]| are the quantities that are interesting to
predict. One may argue that e.g., |rcAR

[n]|2 should be used as input signal when
|c[k]|2 and 20 log |c[k]| are about to be predicted.

A number of simulations with |rcAR
[n]|2 or 20 log |rcAR

[n]| as input signal to
Burg’s method were performed but none of them came out adequate when trying
to predict |c[k]|2 or 20 log |c[k]|. The reason could be that the channel samples
received, i.e., rcAR

[n], are complex valued and when using the absolute value the
phase of the sample is ignored and only the magnitude utilized. Hence, valuable
information is essentially thrown away. Therefore, the following simulations will
be concentrated on having rcAR

[n] as input signal.
This section is divided into two parts. First, separate simulations will be

investigated which will give insight on the approach. Second, the root mean square
error of the approach as a function of different parameters will be shown and
commented.

4.8.1 Single Simulations

To appraise the algorithm, a considered easy case was first evaluated. A carrier
frequency of 2 GHz and 8 scatterers, which can be regarded as normal circum-
stances, were chosen. The velocity of the mobile was 90 km/h resulting in a
maximum Doppler frequency of fDmax

≈ 170 Hz. Choosing fAR = 500 Hz gave
enough margin to the Nyquist rate, here approximately 340 Hz. The data rate
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l fDl
[Hz] fDl

/fAR f̂Dl
/fAR

1 166.6 0.3332 0.3387
2 161.3 0.3225 0.3227
3 49.1 0.0982 0.0978
4 25.6 0.0512 0.0503
5 -21.5 -0.0431 -0.0447
6 -37.1 -0.0741 -0.0721
7 -152.1 -0.3043 -0.3018
8 -166.6 -0.3332 -0.3349

Table 4.3: Column 1: Index of generated scatterer, Column 2: Randomly generated Doppler frequencies
when using fDmax ≈ 170 Hz, Column 3: Normalized Doppler frequencies when using fAR = 500 Hz.
Column 4: Normalized frequencies of the AR models poles, i.e., estimated Doppler frequencies, indicated
with arrows in Figure 4.10. The Doppler frequencies belong to the simulation using SNRAR = ∞ and
were generated by Eq. (4.32).

was set to 25 ksymbols/s, thus there were 49 true data symbols between two pilot
symbols. The modeling window was 50 pilot samples long, i.e., 0.1 s, and the
order of Burg’s method was chosen to be 10. No noise was added to the channel
making SNRAR infinite, hence the easy case. In Figures 4.8 and 4.9, the three
predicted quantities and the prediction errors, can be seen. The errors can be
considered small until about channel sample 65 which corresponds to a reliable
prediction of approximately 5λ, or equally, 30 ms ahead. It must be pointed out
that e20 log |c|[k] is much more sensitive than the two other error measures to the
deep fades because of the logarithmic properties. This can be seen in Figure 4.9 at
approximately sample 58 and 62 where errors of roughly 8 dB are apparent only
in the lower plot.

It is also informative to study the AR model and its poles. When Burg’s
method tries to find the optimal filter coefficients it is essentially trying to identify
sinusoids and hence, some of the AR models poles should ideally be located on
the unit circle. Table 4.3 shows the Doppler frequencies generated by MATLAB®

and the frequencies of the AR models poles which tries to identify the Doppler
frequencies. In Figure 4.10 all poles of the AR model can be seen. One can observe
that Burg’s method has found all locations of the true poles approximately.

Simulations with the same parameters except for longer modeling windows
were also done. The results were longer accurate prediction depths. When using
Lwindow = 100, predictions of 15λ to 20λ could be performed. It was not explored
how far it was possible to predict by increasing the modeling window further since
having SNRAR = ∞ is not reasonable in practice.

Instead, a more interesting case is when complex AWGN is added to the true
channel. A reasonable SNRAR could be 20 dB, i.e., the noise power is equal to
0.01, see Eq. (4.33) and (4.34). Many attempts to predict using the same set
of parameters as in the former case were performed, but the performance was
degraded in sense of much shorter accurate prediction. Instead, the modeling
window and the order both had to be increased.

Using an order of 40 and a modeling window of length 100 gave the simulation
results in Figures 4.11 and 4.12. Fairly accurate prediction 8 samples ahead was
accomplished, which corresponds to about 2.7λ or 16 ms ahead. Using Eq. (2.38)
the coherence time of the channel can be approximated to 2.6 ms and thus the
prediction is accurate about 6 coherence times forward. Observe that the deep
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Figure 4.8: Prediction in time domain of a simulated fading channel with SNRAR = ∞. Blue crosses
mark where the channel is sampled for modeling, red crosses mark predicted channel samples with
sample rate fAR and the red line is the predicted channel samples with sample rate fsymbol. The
prediction starts at sample 50 and can be considered reliable until sample 65, i.e., 5λ, or equally, 30
ms ahead, where a peak is present and not accurately predicted. Notice that the x-axis is in channel
samples with sample rate fAR. The simulation parameters were fsymbol = 25 kHz, fAR = 500 Hz,
Lwindow = 50, N = 8, fc = 2 GHz, v = 90 km/h, and p = 10.
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Figure 4.9: The prediction errors, Eq. 4.47a-4.47c, of the system in Figure 4.8. It can be seen that
e20 log |c| is more sensitive to the deep fades than the other two error measures, see e.g., approximately
sample 58 and 62. Notice that the x-axis is in channel samples with sample rate fAR.
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Figure 4.10: Poles and zeros of the AR model derived when simulating a channel with the parameters
in Figure 4.8. Burg’s method were able to closely identify the Doppler frequencies and the arrows mark
the AR models poles, which have the frequencies found in column 4, Table 4.3.

fade at sample 107 was predicted with an error of only 0.5 dB.

As in the former simulation example, it can be instructive to view how the AR
model is represented in the z-plane. There are nine poles that are located very close
to the unit circle, see Figure 4.13. Their normalized frequencies, 0.3262, 0.3176,
0.3049, 0.2633, 0.0099, -0.0018, -0.0751, -0.2040, and -0.2054, can be compared
with the true normalized Doppler frequencies in Table 4.4. As can be seen, there
are comparatively large mismatches in the low Doppler frequencies while the higher
frequencies are identified with good precision. This is from the fundamental fact
that the scatterers with lower Doppler frequencies only have a few signal periods in
the modeling window, whereas the scatterers with high Doppler frequencies have
many signal periods. The more signal periods available for Burg’s method, the
better will the identification of the frequencies be. This will be evaluated more
thoroughly in next section.

If the order of Burg’s method was increased, the error was not suppressed while
an increase in modeling window was able to suppress the error further. This will
be illustrated in Section 4.8.2 more clearly. One property behind the increasing
error as the prediction goes further, is the reuse of old predicted channel samples
in Eq. (4.10). This will cause a cumulative error due to the not fully accurate
predictions reused. This deficiency was also commented in e.g., [15].

4.8.2 RMSE Performance of Simulations

Single simulations do not describe how the prediction algorithm is performing in
the mean. Instead, the root mean square errors (RMSE) should be calculated
and used as measure of prediction accuracy. Here they were calculated using
M = 10000 in Eq. (4.48). From the many simulations performed it has been
noted that the parameters p = 60 and Lwindow = 100 are reasonably good in
both performance and computational load when using 8 scatterers. With these
as starting point, effect of different SNR, order and modeling window size are
investigated below together with the simulation parameters fsymbol = 10 kHz,
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Figure 4.11: Prediction in time domain of a simulated fading channel with SNRAR = 20 dB. Blue
crosses mark where the channel is sampled for modeling, red crosses mark predicted channel samples
with sample rate fAR and the red line is the predicted channel samples with sample rate fsymbol.
The prediction can be considered reliable until sample 108, i.e., 2.7λ or 16 ms ahead. Notice that
the whole modeling window is not shown due to graphical constraints and that the x-axis is in channel
samples with sample rate fAR. The simulation parameters were fsymbol = 25 kHz, fAR = 500 Hz,
Lwindow = 100, N = 8, fc = 2 GHz, v = 90 km/h, and p = 40.
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l fDl
[Hz] fDl

/fAR f̂Dl
/fAR

1 163.47 0.3270 0.3262
2 158.81 0.3176 0.3176
3 152.00 0.3040 0.3049
4 131.57 0.2631 0.2633
5 5.5895 0,0112 0.0099
6 -1.2572 -0.003 -0.0018
7 -37.531 -0.0751 -0.0751
8 -102.74 -0.2055 -0.2040/-0.2054

Table 4.4: Column 1: Index of generated scatterer, Column 2: Randomly generated Doppler frequencies
when using fDmax ≈ 170 Hz, Column 3: Normalized frequencies when using fAR = 500 Hz. Column
4: Normalized frequencies of the AR models poles, i.e., estimated Doppler frequencies, indicated with
arrows in Figure 4.10. The Doppler frequencies belong to the simulation using SNRAR = 20 dB and
were generated by Eq. (4.32).
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Figure 4.13: Poles and zeros of the AR model derived when simulating a channel with SNR = 20 dB.
The normalized Doppler frequencies in the simulation were 0.3270, 0.3176, 0.3040. 0,2631, 0.0112,
-0.003, -0.0751, -0.2055. Burg’s method were able to closely identify the frequencies and the arrows
mark the AR models poles, which have the frequencies 0.3262, 0.3176, 0.3049, 0.2633, 0.0099, -0.0018,
-0.0751, -0.2040, and -0.2054. Note that one Doppler frequency, -0.2055, is identified by two poles in
the AR model. The residual poles are spread out evenly just inside the unit circle. Same simulation
parameters as in Figure 4.11.
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fAR = 500 Hz, N = 8, fc = 2 GHz, and v = 90 km/h. After that, effect of
changing velocity of the receiver, i.e., different fDmax

, will be investigated.
In Figures 4.14-4.16 the RMSEs for the different prediction quantities are shown

as functions of the prediction depth in λ and modeling window size in λ when
SNRAR = 20 dB, and p = 60. The modeling window size in λ is calculated with

Lwindow,λ =
fc
fAR

· v

3.6c
Lwindow

=
2 · 109

500
· 90

3.6 · 3 · 108
· Lwindow =

1

3
Lwindow, (4.49)

where v is the velocity of the receiver in km/h and c is the of light. Hence, a
modeling window of 100 samples corresponds to approximately 33λ. The graphs
start at a modeling window of 20.3λ because Burg’s method of order 60 need a
modeling window of at least 61 samples.

From all the three figures it can be observed that a longer modeling window
yields a better prediction. This is because more data is used when minimizing the
error EBj in Eq. (4.27) and hence, the influence of noise on the AR-model decreases
with modeling window length. One must remember that the window length cannot
be increased infinitely because of the non-stationary property of the channel, see
Section 4.4.1.

By instead setting the modeling window to 100 samples and varying the order
p of Burg’s method, the RMSE in Figures 4.17-4.19 are received. It is apparent
that the prediction error does not decrease if the order p is increased over a cer-
tain threshold. Instead, when p > 65 the error seems to increase. This can be
explained by over-modeling and the channel noise, see Section 4.3. With N = 8
and SNRAR = 20 dB, an order of 50-60 seems reasonable.

A high number of scatterers implies more frequencies to be identified. It was
observed that an order of 60 was able to produce fairly accurate predictions up to
about 40 scatterers during the mentioned circumstances.

In practice it is important that the prediction is robust against noise, hence the
prediction accuracy versus the channels SNR is interesting. This function, with
the three predicted quantities, can be seen in Figures 4.20-4.22 when using p = 60
and Lwindow = 100. In this work, an accuracy of at least 3 dB is assumed for the
prediction to be considered good. Referring to Figure 4.22, SNRAR has to be at
least 15 dB if a prediction of more than 2λ is required. Also, in these graphs, an
issue of the prediction algorithm can be found. Even though a very good model of
the non noise disturbed channel is derived using a long modeling window, the first
predicted samples will not be a perfect match to the true channel. This is because
the AR model is initially loaded with the latest channel samples, i.e., samples with
noise. Later when the interpolation filter is applied in Eq. (4.13) it uses the latest
measured noisy channel samples together with the first predicted samples when
interpolating the beginning of the prediction. This will result in that the RMSE
of the first interpolated samples will be the standard deviation of the noise in the
channel and not 0 as desired.

All the above RMSEs were evaluated using a maximum Doppler frequency
of approximately 170 Hz and fAR = 500 Hz. Note that the same performance
will not be achieved when these parameters are changed. With higher sample
rate, a longer prediction in samples in needed for the same prediction depth in
continuous time, which will give decreased performance. The effect of different
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maximum Doppler shifts, i.e., fDmax
, will be shown below. In Figures 4.23-4.25

the RMSEs as functions of prediction depth t in ms and fDmax
are shown. The

prediction depth in λ can be calculated as

Lprediction,λ = tfDmax
. (4.50)

The predictions were made using an order of p = 60, modeling window length
of Lwindow = 100, and the same channel modeling parameters as above except
for the velocity. These graphs differ from the others since the improvements of
the RMSEs are not monotonically. This is an effect combined by the modeling
window, the channels SNR and the maximum Doppler frequency, which will be
explained below.

First, when the velocity of the receiver is very low, the maximum Doppler
shift is also very low. This will correspond to a nearly flat signal in the modeling
window. Thus, Burg’s method almost exclusively model the noise in the channel.
The predictions will therefore also have a noisy appearance and since the true
channel is almost the same in the prediction interval as in the modeling interval, the
predictions will be fairly good. This phenomenon is observed when e.g., fDmax

.

10 Hz.
Then, when fDmax

is approximately in the interval [10 Hz, 30 Hz], the true
channel dominate over the noise. But since the signal with the highest Doppler
frequency only has a small number of periods in the modeling window, Burg’s
method is not able to identify the true frequencies with good accuracy. The model
derived will not match the true channel and hence the prediction will not be proper.

The number of periods in the modeling window grows when fDmax
is in the

interval [30, 80], and thus, the model becomes more accurate the more fading it is.
This effect is clearly shown in the figures.

Finally, when the maximum Doppler frequency is higher than fAR/2, i.e., there
might be some frequencies that are aliased, Burg’s method identifies the aliased
frequencies instead of the true ones. One must notice that ĉAR[n] has the same
accuracy even though aliasing is present. This is due to the property of equidistant
sampling. The aliased version of the signal will have the same value as the non
aliased version if they are considered at the sampling points corresponding to
fAR. But since the sampling theorem is not fulfilled, the interpolation will not be
accurate and hence, ĉ[k] is not proper.

4.9 Prediction of Doppler Varying Channels

In the sections above the channel model used were derived with the assumption of
having the scatterers far away from the receiver. This resulted in time-invariant
Doppler frequencies in the channel at both the AR modeling and prediction stage.

In this section, instead, a simplistic time-variant channel model will be imple-
mented and used for giving a pointer of how the prediction algorithm performs in
a non-stationary environment.

4.9.1 Channel Implementation

It is not easy to model a time-variant channel since there are many factors that
have to be taken into consideration and several assumptions have to be made.
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Figure 4.14: ec,RMSE as a function of prediction depth in λ and modeling window length in λ. The
prediction error decreases with increasing modeling window. The simulation parameters were fsymbol =
10 kHz, fAR = 500 Hz, N = 8, fc = 2 GHz, v = 90 km/h, SNRAR = 20 dB, and p = 60.
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Figure 4.15: e|c|2,RMSE as a function of prediction depth in λ and modeling window length in

λ. The prediction error decreases with increasing modeling window. The simulation parameters were
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Figure 4.16: e20 log |c|,RMSE as a function of prediction depth in λ and modeling window length in
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p = 60.
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Figure 4.17: ec,RMSE as a function of prediction depth in λ and order p of Burg’s method. The
prediction error decrease when the order is increased to a certain threshold but increases again when the
threshold is passed. The threshold is p = 50 − 60 when simulation parameters fsymbol = 10 kHz,
fAR = 500 Hz, N = 8, fc = 2 GHz, v = 90 km/h, SNRAR = 20 dB, and Lwindow = 100 ≈ 33λ
is used.
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Figure 4.18: e|c|2,RMSE as a function of prediction depth in λ and order p of Burg’s method. The

prediction error decrease when the order is increased to a certain threshold but increases again when the
threshold is passed. The threshold is p = 50 − 60 when simulation parameters fsymbol = 10 kHz,
fAR = 500 Hz, N = 8, fc = 2 GHz, v = 90 km/h, SNRAR = 20 dB, and Lwindow = 100 ≈ 33λ
is used.
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Figure 4.19: e20 log |c|,RMSE as a function of prediction depth in λ and order p of Burg’s method.
The prediction error decrease when the order is increased to a certain threshold but increases again when
the threshold is passed. The threshold is p = 50− 60 when simulation parameters fsymbol = 10 kHz,
fAR = 500 Hz, N = 8, fc = 2 GHz, v = 90 km/h, SNRAR = 20 dB, and Lwindow = 100 ≈ 33λ
is used.
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Figure 4.20: ec,RMSE as a function of prediction depth in λ and SNRAR. The prediction error
decreases with increasing SNRAR. The simulation parameters were fsymbol = 10 kHz, fAR =
500 Hz, N = 8, fc = 2 GHz, v = 90 km/h, Lwindow = 100 ≈ 33λ, and p = 60.
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Figure 4.21: e|c|2,RMSE as a function of prediction depth in λ and SNRAR. The prediction error

decreases with increasing SNRAR. The simulation parameters were fsymbol = 10 kHz, fAR =
500 Hz, N = 8, fc = 2 GHz, v = 90 km/h, Lwindow = 100 ≈ 33λ, and p = 60.
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Figure 4.22: e20 log |c|,RMSE as a function of prediction depth in λ and SNRAR. The prediction
error decreases with increasing SNRAR. The simulation parameters were fsymbol = 10 kHz, fAR =
500 Hz, N = 8, fc = 2 GHz, v = 90 km/h, Lwindow = 100 ≈ 33λ, and p = 60.
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Figure 4.23: ec,RMSE as a function of prediction depth in ms and maximum Doppler frequency fDmax

when using the simulation parameters fsymbol = 10 kHz, fAR = 500 Hz, N = 8, fc = 2 GHz,
SNRAR = 20 dB, Lwindow = 100 samples = 0.2 s, and p = 60. The improvement of the RMSE is
not only in one direction. This is an effect combined by the modeling window, the channels noise and
the maximum Doppler frequency.
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Figure 4.24: e|c|2,RMSE as a function of prediction depth in ms and maximum Doppler frequency

fDmax when using the simulation parameters fsymbol = 10 kHz, fAR = 500 Hz, N = 8, fc =
2 GHz, SNRAR = 20 dB, Lwindow = 100 samples = 0.2 s, and p = 60. The improvement of the
RMSE is not only in one direction. This is an effect combined by the modeling window, the channels
noise and the maximum Doppler frequency.
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Figure 4.25: e20 log |c|,RMSE as a function of prediction depth in ms and maximum Doppler frequency
fDmax when using the simulation parameters fsymbol = 10 kHz, fAR = 500 Hz, N = 8, fc =
2 GHz, SNRAR = 20 dB, Lwindow = 100 samples = 0.2 s, and p = 60. The improvement of the
RMSE is not only in one direction. This is an effect combined by the modeling window, the channels
noise and the maximum Doppler frequency.
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Figure 4.26: Example of the receivers and the N=8 scatterers’ placements in the channel model. The
scatterers are placed randomly on a circle with radius Lo = 40 m. The thick black line illustrates the
receivers movement from (−5, 0) to (5, 0). Arrows indicate wave propagation direction.

Since this model should only give a pointer to how the algorithm performs in a
non-stationary environment, some of the main assumptions are,

– no new scatterers will appear during the simulation

– no scatterers will disappear during the simulation

– all scatterers will have equal and non-varying power

– the scatterers are uniformly distributed around the receiver, and

– the receiver will have constant velocity and follow a straight path.

With these assumptions, the flat fading model to implement is as before, except
the extension of time varying Doppler frequencies,

C(t) =

N
∑

n=1

αne
j(2πfDn (t)t+θn). (4.51)

The structure of the channel is begun with the receiver placed at the origin of
a system of co-ordinates. The scatterers’ placements are uniformly distritbuted on
a circle with radius Lo and center at the origin. The co-ordinates of the different
scatterers can therefore be calculated by

(xn, yn) = Lo(cos (2πun), sin (2πun)), un ∈ [0, 1), (4.52)

where the index n indicate scatterer n. A placement example with 8 scatterers
and Lo = 40 m can be seen in Figure 4.26.

The non-stationarity of the channel is obtained if the receiver moves relative
to the scatterers. It was decided that the movement should be along the x-axis
on the path between the co-ordinates (−mo, 0) and (mo, 0). In this way, the AR
model can be derived at the negative part of the x-axis and prediction made at
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Figure 4.27: An example of how the different Doppler frequencies change when the scatterers are placed
as in Figure 4.26. The maximum Doppler shift is approximately 170 Hz since the velocity of the receiver
and carrier frequency are 90 km/h and 2 GHz, respectively.

the positive part of the x-axis. In Figure 4.26, the movement with mo = 5 m is
shown as a thick black line.

The time varying Doppler frequencies depends on the angles βn(t) between the
direction of receiver movement and the incoming waves from the scatterers. If the
time dependent co-ordinates of the receiver is denoted (x(t), 0), the N different
Doppler frequencies can be calculated by

fDn
(t) = fDmax

cosβn(t) = fDmax

xn − x(t)
√

(xn − x(t))
2

+ y2
n

, (4.53)

where fDmax
is defined as before. An example of how the Doppler frequencies

varies is shown in Figure 4.27. They correspond to the scatterers’ position in Fig-
ure 4.26, when a receiver velocity and carrier frequency of 90 km/h and 2 GHz,
respectively, are used. The maximum Doppler shift is thus approximately 170 Hz.
Note that all Doppler frequencies decreases with time since the angles βn(t) in-
creases monotonically towards π.

The random phases θn are modelled as before, i.e., uniformly distributed on
[0, 2π), which concludes the parameter modeling and the channel model can be
sampled and implemented in MATLAB®.

4.9.2 Simulation Results

The purpose of the these simulations is to show how the prediction algorithm per-
forms with time varying Doppler frequencies. For comparison with static Doppler
frequencies, the same simulation parameters as in Section 4.8.2 will be used. These
are found in Table 4.5, where three different values of the velocity, maximum
Doppler shift, and modeling window in meters are given. These three cases, to-
gether with different distances Lo between the receiver and scatterers, will be
studied below using the RMSE in dB.

First, considering a fairly low velocity, 10 km/h, and different distances Lo
between the receiver and the scatterers, the RMSEs of the prediction as shown in
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Parameter Notation Value

Prediction sampling frequency [kHz] fAR 90
Interpolation factor L 30
Carrier frequency [GHz] fc 2
Velocity of receiver [km/h] v 10, 50, 90
Maximum Doppler shift [Hz] fDmax

20, 90, 170
Symbol rate [kHz] fsymbol 15
Number of scatterers N 8
Order of Burg’s method p 60
SNR in channel [dB] SNRAR 20
Modeling window length [samples] Lwindow 100
Modeling window length [m] mo 0.56, 2.78, 5
Scatterers distance from receiver [m] Lo 20, 50, 100, 200,

500, 1000,∞

Table 4.5: Simulation parameters used in Section 4.9.2. The Doppler frequencies corresponding to the
velocities are approximative.

Figure 4.28 is yielded. Note that when Lo tends to infinity, the former channel
model with static Doppler frequencies is received. The low velocity yields the 100
samples long modeling window to be approximatively mo = 0.56 m, i.e., 3.7λ. This
gives only a few periods of the highest Doppler frequency in the signal to model,
which was noted in the former RMSE performance section. Since the velocity is
low and the movement of the receiver is very small, the Doppler frequencies do not
change much during the simulation time, even if the scatterers are as close as 20
m. A scatterer that is found at the y-axis as close as possible to the origin will give
the largest change of the Doppler frequencies with time during the simulation. If
a scatterer is placed at (0,20), the Doppler will change from approximately 0.5 to
-0.05 Hz, if considering the beginning of the modeling window and at the end of
the prediction, i.e., 20 ms prediction time or 5.6 cm ahead. The change is not large
and the poles of the system corresponding to the Doppler frequencies do not move
considerably. This shift can be considered inside the error limit for Burg’s method
of finding the true frequencies when there are few Doppler periods in the modeling
signal. Thus, with this low velocity and different distances between the transmitter
and scatterers, the performance of the prediction algorithm is approximately the
same as when the scatterers were assumed very far away.

As the velocity of the receiver is increased to 50 km/h, the modeling window
and prediction in meters are extended to approximately mo = 2.78 m, i.e, 18.5λ,
and 0.28 m, respectively. By again calculating how the Doppler changes over
time during the simulation for a scatterer placed at (0, 20), one obtains a change
of approximately 14 Hz. As a result, during the minimization of EBj by Burg’s
method, the signals spectrum alters considerably. This variation cannot be seen
lying inside the error limit of Burg’s method when locating Doppler frequencies.
With single simulations using considerable velocities on the receiver, it has been
observed that Burg’s method places several poles very close to the unit circle in
an interval corresponding to the change of a true pole. This will create an error in
the prediction. Also, one must realize that the Doppler frequencies continuous to
change after the AR model have been derived, which automatically creates an even
larger error. In Figure 4.29, the RMSE error of simulations with v = 50 km/h is
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Figure 4.28: e20 log |c|,RMSE of prediction in time domain of a channel with time varying Doppler
frequencies. The velocity of the receiver is 10 km/h and the carrier frequency is 2 GHz, which yields a
maximum Doppler shift of approximately 20 Hz. The prediction performance do not change with the
scatterers distance Lo since the receivers velocity is very low.

shown. It clearly indicates that with scatterers only 20 m away from the receiver,
the Doppler change is too large for a reasonable prediction. Even with 50 and 100
m, changes are noted compared with Lo infinitely large. At larger distances, the
performance is approximately the same as with static Doppler shifts.

Finally, with an even greater velocity, 90 km/h, the prediction is further de-
graded. The modeling window and prediction is now 5 m, i.e., 33.3λ, and 0.5 m,
respectively, which causes a maximum Doppler change of 45 Hz for a scatterer
at the co-ordinates (0,20) during the simulation. This is a very large change and
the prediction is therefore not reliable with this distance to the scatterers. In Fig-
ure 4.30, the simulation results with v = 90 km/h are shown. It is clearly indicated
that the prediction performance is degraded with fast time-varying Doppler fre-
quencies and that the scatterers have to be at least 200 m away from the receiver
for the stationary channel model to be fairly accurate.

4.10 Summary

In this chapter, a prediction algorithm for future CSI of flat fading channels has
been derived. It exploits a deterministic autoregressive modeling approach of the
channel using Burg’s method. The prediction was able to be performed due to the
close connection between prediction and autoregressive modeling.

Two single simulations were performed and appraised and the root mean square
error of different prediction depths as function of model order, modeling window
length or SNR were evaluated and commented.

It was shown that accurate prediction for at least 2λ or several coherence times
ahead could be made on a fairly stationary channel when using reasonably many
scatterers with realistic Doppler frequencies, SNR above 15 dB, and a model order
greater than 40.
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Figure 4.29: e20 log |c|,RMSE of prediction in time domain of a channel with time varying Doppler
frequencies. The velocity of the receiver is 50 km/h and the carrier frequency is 2 GHz, which yields a
maximum Doppler shift of approximately 90 Hz.

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

9

R
M

S
E

 [d
B

]

Prediction length [ms]

L
o
= ∞

L
o
=1000

L
o
=500

L
o
=200

L
o
=100

L
o
=50

L
o
=20

Figure 4.30: e20 log |c|,RMSE of prediction in time domain of a channel with time varying Doppler
frequencies. The velocity of the receiver is 90 km/h and the carrier frequency is 2 GHz, which yields a
maximum Doppler shift of approximately 170 Hz.
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Chapter 5
Prediction in Frequency Domain

This chapter will concern the prediction in frequency direction with the assumption
that a certain interval of the channel frequency response is known. The prediction
algorithm used will explore the duality between time and frequency domain of the
radio channel and it will be appraised by the same error measures as in Chapter 4.
An extended approach, compared to Chapter 4, using several OFDM symbols will
be suggested and evaluated.

5.1 Prediction Algorithm

Since there is a duality between the time domain and the frequency domain of a
radio channel it would be of great interest to use the prediction algorithm derived
earlier for prediction in frequency direction. If the channel frequency response
is observed over a certain frequency interval, an AR model might be possible to
derive and the prediction will hence be the dual of the model in the previous
chapter. Again, by proceeding from the OFDM transfer function

Rne[m, k] = C[m, k]S[m, k] +N [m, k], (5.1)

the prediction approach in frequency domain will be explained.
The symbols constituting one OFDM symbol are sent in parallel in the fre-

quency domain, i.e., only the frequency index k above is varying while the time
index m remains constant. If only considering one OFDM symbol, the model can
be reduced by omitting the time index m, i.e.,

Rne[k] = C[k]S[k] +N [k]. (5.2)

The channel C[k] is the frequency response in Eq. (2.14) sampled with the period
∆fsc, which is the subcarrier spacing of the OFDM system, at a certain time to.

As in Chapter 3, if the symbols are known to the receiver, i.e., they are pilot
symbols, then the frequency response of the channel is at certain frequencies except
for additional noise. Assuming the pilots are equal to 1 yields

Rne[k] = C[k] +N [k], (5.3)

which is a good approximation of the frequency response if the noise is not too
large.

The prediction algorithm in Chapter 4 was based on the property that the
channel was highly over sampled compared with the channel variation, i.e., Doppler

73
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frequencies. Here, the duality explained in Section 2.4 can be explored by realizing
that the selectivity of the channel comes from the multipath delays τn(t). This is
seen from the product fτn(t) in the derived frequency response of the frequency
selective channel.

Hence, the largest sampling period that can be used if the channel should be
represented in the digital domain without aliasing is 1/τmax due to the sampling
theorem. The sampling period is not chosen to be on the limit, rater it can be
decreased to achieve a certain margin.

As before, the new sampling period is notated with the subindex AR, i.e.,
∆fAR, and the re-sampled channel model is written as

RCAR
[n] = CAR[n]SAR[n] +NAR[n], (5.4)

where SAR[n] are considered pilot symbols. Without any loss of generality, they
can be assumed to be equal to 1, yielding the model

RCAR
[n] = CAR[n] +NAR[n]. (5.5)

The assumption of pilots equal to 1 is equivalent to performing the channel equal-
ization in Eq. (3.16). The above equation has the same structure as the dual in
Eq. (4.9) which implies that the exact same prediction technique might be fea-
sible to use. Hence, an AR model is derived by Burg’s method using RCAR

[n].
The predictions is calculated by starting the process with the last measured pilot
based channel samples and the interpolation is performed to retrieve the channel
prediction with the subcarrier spacing ∆fsc.

Since all the signals used for prediction are dual to the signals used for predic-
tion in the former chapter, the notations will be the same except that they will be
written in capitals to emphasize that the prediction is performed in the frequency
domain.

5.2 Channel Implementation

The prediction algorithm explained in the previous section only makes use of one
OFDM symbol when predicting in the frequency domain. In a later section, several
OFDM symbols will be used in an attempt to improve the prediction accuracy.
Hence, it is not enough to implement a channel model only for a certain time to.
Instead, a 2-dimensional (2D) model with the channel frequency response as a
function of time t and frequency f is needed.

The continuous time model was derived in Section 2.3.1 and is repeated here
for convenience

C(t, f) =

N
∑

n=1

αn(t)e
j[2π(fDn (t)t−τn(t)f)+θn]. (5.6)

The channel frequency response is constituted of how the different paths in the
channel affect the signal and is modelled by the N multipath delays τn(t), atten-
uations αn(t), Doppler frequencies fDn

(t), and the random phases θn. Therefore,
the modeling of these are critical.

As in the former chapter, if the different scatterers are assumed to be far away
and moving with an approximately constant velocity, and if the simulations will
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only range over a small time interval, the time dependencies in τn(t), αn(t), and
fDn

(t) are feasible to omit, yielding

C(t, f) =
N
∑

n=1

αne
j[2π(fDn t−τnf)+θn]. (5.7)

Note that the model still is time dependent due to the product fDn
t.

Due to the discrete time nature of MATLAB®, the model needs to be sampled.
In time direction, the sampling frequency is the symbol rate fsymbol, or equally,
the sampling period is the symbol time Tsymbol = 1/fsymbol, and in the frequency
direction the model is sampled with the subcarrier spacing ∆fsc. If m and k are
indices for time and frequency, respectively, one obtains

C[m, k] ≡
N
∑

n=1

αn(t)e
j[2π(fDn t−τnf)+θn]

∣

∣

∣

∣

∣

t=mTsymbol

f=k∆fsc

=
N
∑

n=1

αne
j[2π(fDnmTsymbol−τnk∆fsc)+θn]. (5.8)

The first parameters to model are the random phases θn and the Doppler
frequencies fDn

, which are implemented in the same manner as in Chapter 4, i.e.,

fDn
= fDmax

cos (2πun), un ∈ U [0, 1) (5.9a)

θn ∈ [0, 2π). (5.9b)

How τn and αn should be distributed can be derived from a multipath intensity
profile. In Figure 2.6 a typical multipath intensity profile, i.e., power output of the
channel as a function of delay τ , was shown. A good characterization of this shape
is an exponentially decaying function. This is intuitive since a multipath signal
having a large excess delay has travelled a large distance and possibly impinged on
many obstructive objects, which implies that the signal typically should be more
attenuated than multipath signals with small excess delays.

The modeling of αn and τn was chosen to originate from a continuous multipath
intensity profile function p(τ)

p(τ) = e−τ/Γ, τ ≥ 0, (5.10)

where Γ could be used to decide how dispersive the channel should be. Since
this function never reaches zero, it was truncated at a certain function value po,
yielding the delay profile being finite in excess delay. Hence, the τ where p(τ) = po
is by definition τmax in the simulations, i.e.,

p(τ) =

{

e−τ/Γ, 0 ≤ τ ≤ τmax

0, elsewhere.
(5.11a)

τmax = −Γ ln po, 0 < po < 1 (5.11b)

This yields that the N multipath excess delays should consequently be in the
interval [0,−Γ ln po]. A straightforward model, that is used in this work, is to
assume that they are uniformly distributed which yields

τn = −Γun ln po, un ∈ U [0, 1). (5.12)
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From the channel model it can be seen that the power of a channel from one single
scatterer to the receiver can be expressed as

pi =
∣

∣

∣αie
j[2π(fDi

mTsymbol−τik∆fsc)+θi]
∣

∣

∣

2

= α2
i . (5.13)

With the assumption of an exponentially decaying power delay function, α2
i should

thus decay with corresponding excess delay.
A first attempt to assign values to αi is to use Eq. (5.11a) straight forwardly1,

α̃2
n = p(τn) = e−τn/Γ, n = 1, . . . , N, (5.14)

yielding
α̃n = e−

1
2
τn/Γ, n = 1, . . . , N. (5.15)

Analogously to the channel implementation in Chapter 4, it is convenient if the
channel is normalized to 1, yielding the SNR defined from Eq. (5.3) as2

SNRC = 10 log

(

E{|C[m, k]|2}
σ2
N

)

= −10 log σ2
N , (5.16)

where σ2
N is the noise variance. This requires that

E{|C[m, k]|2} = E{C∗[m, k]C[m, k]}

= E

{

N
∑

n=1

αne
−j[2π(fDnmTsymbol−τnk∆fsc)+θn]·

N
∑

l=1

αne
j[2π(fDl

mTsymbol−τlk∆fsc)+θl]

}

=

N
∑

n=1

N
∑

l=1

E{αnαl}E{e−jψnejψl} = E

{

N
∑

n=1

α2
n

}

= 1, (5.17)

where ψi = 2π(fDi
mTsymbol − τik∆fsc) + θi and hence, the α̃n in Eq. (5.15) must

be normalized which yields the implementable αn according to

αn =
e−

1
2
τn/Γ

√

N
∑

n=1
α̃2
n

, n = 1, . . . , N. (5.18)

The third equality in Eq. (5.17) comes from the fact that, even though the atten-
uation factors are functions of the time delays, the phases are uncorrelated with
αnαl because of the random Doppler frequencies.

To conclude, the resulting power delay function will not be continuous as in
Figure 2.6, it will instead be a discrete time function, i.e.,

p(τ) =
N
∑

n=1

α2
nδ[τ − τn], (5.19)

1Here αn will be denoted α̃n since they will be normalized further ahead.
2The time index m is appended compared with Eq. (5.3), yielding the model valid in both

time and frequency direction of the channel frequency response.
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where δ[τ −τi] is the Kronecker Delta function and each tap corresponds to a path
in the channel. In Figure 5.3, Section 5.5.1, an example of a simulated power delay
function is shown.

The complex AWGN is generated as in the previous chapter using two inde-
pendent AWGN variables, i.e.,

N [m, k] = N1[m, k] + jN2[m, k], Ni[m, k] ∈ N(0,
σN
2

), (5.20)

and has therefore the variance σ2
N since N1[m, k] and N2[m, k] are uncorrelated.

The channel model with the increased sampling period ∆fAR in frequency
direction is obtained, as in Chapter 4, by using the interpolation factor L =
∆fAR/∆fsc,

CAR[m,n] = C[m,nL] (5.21a)

NAR[m,n] = N [m,nL]. (5.21b)

The model can now be implemented in MATLAB® and an example of a channel
realization is found in Figure 2.3, Section 2.3.1.

5.3 Optimal Wiener Interpolation Filter

The Wiener interpolation filter will not be derived once again since the calcula-
tions will be exactly the same except from the fundamental difference that the
correlation function will be in frequency instead of time. Hence, the result can
directly be written as

M−1
∑

i=0

w[i]ΦR[(j − i)L] = ΦĈR

[(

j −
(

M

2
− 1

))

L−m

]

(5.22)

j = 0, . . . ,M − 1,

where ΦR[l] and ΦĈR[l] are the autocorrelation function of Rinterp[k] and autocor-

relation function between Ĉ[k] and Rinterp[k], respectively, and L = ∆fAR/∆fsc.

With the same approximations as in Section 4.6 except for the noise, i.e., the
predictions are so good that they match the true channel, the filter equations
become

M−1
∑

i=0

w[i]ΦC [(j − i)L] = ΦC

[(

j −
(

M

2
− 1

))

L−m

]

(5.23)

j = 0, . . . ,M − 1,

that only include the channel autocorrelation in frequency.

The statistics to use in ΦC [k] could theoretically be taken directly from each
simulation in principle, but instead, to be less dependent on the random nature of
each simulation, a correlation function that is approximately correct in the mean
will be used.

Following [19], the autocorrelation function can be derived using the continuous



78 Prediction in Frequency Domain

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

ℜ
{Φ

C
(∆

 f)
}

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

∆ f [MHz]

ℑ
{Φ

C
(∆

 f)
}

Figure 5.1: Real and imaginary part of the normalized channel frequency correlation function ΦC(∆f)
with the parameters τmax = 5 µs and po = 0.01. Solid : Autocorrelation function derived in Eq. (5.24)
that will be used in the simulations. Dashed : Mean value of the autocorrelation function estimated from
the simulated channel.

power delay profile p(τ)

ΦC(∆f) =

∞
∫

−∞

p(τ)e−j2π∆fτdτ =

τmax
∫

0

e−(j2π∆f+ 1
Γ
)τdτ

=
1

j2π∆f + 1
Γ

(

1 − e−j2π∆fτmaxpo
)

≈ Γ

1 + j2π∆fΓ
. (5.24)

The approximation is feasible if po is small compared to 1. In all the simulations
performed later on, po is chosen to be 0.01 which can be considered sufficiently
small. In Figure 5.1 the normalized approximated correlation function and the
normalized mean correlation function obtained from simulations with po = 0.01
and τmax = 5 µs, i.e., Γ = τmax/ ln po ≈ 1.09 µs, are shown and justifies the ap-
proximation. It can be noted that using p(τ), the power normalization required for
the SNR definition is over ridden, but do not have an impact on the resulting filter
since the normalization factor will be reduced in the Wiener equations. Further,
an interpolation filter’s impulse and frequency response can be seen in Figure 5.2.
As in Chapter 4, if Γ is very small, then the correlation matrix R is close to being
singular. This was solved as with the former interpolation filter, i.e., if Γ is to
low it was in the filter equations set to the lowest value that did not give a to low
condition number.

5.4 Error Measures

To illustrate the possible similarities and differences between prediction in the
time and frequency domain, the error measures will be defined in a similar way
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Figure 5.2: Interpolation filter with τmax = 5 µs, order M = 8 and interpolation factor L = 6. Top
and middle: Real and imaginary part of the filter impulse response. Bottom: Filter frequency response.
Notice that the filter is asymmetric in the frequency domain since all τn will correspond to a peak on
the negative side of the spectrum.
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as before. Since the channel in this chapter is predicted only in the frequency
direction, the time index m is omitted in the definitions of the errors. The three
considered quantities are the same as in Section 4.7, i.e.,

– predicted channel, Ĉ[k] = ℜ{Ĉ[k]} + jℑ{Ĉ[k]}

– predicted channel power, |Ĉ[k]|2, and

– predicted channel power in dB, 20 log |Ĉ[k]|.
Following the outline in Chapter 4, the prediction errors are defined as

EC [k] = |Ĉ[k] − C[k]| (5.25a)

E|C|2 [k] = |Ĉ[k]|2 − |C[k]|2 (5.25b)

E20 log |C|[k] = 20 log |Ĉ[k]| − 20 log |C[k]|, (5.25c)

and from these, the RMSEs are calculated through

EC,RMSE [k] =

√

√

√

√

1

I

I
∑

i=1

(|Ĉi[k] − Ci[k]|)2 (5.26a)

E|C|2,RMSE [k] =

√

√

√

√

1

I

I
∑

i=1

(|Ĉi[k]|2 − |Ci[k]|2)2 (5.26b)

E20 log |C|,RMSE [k] =

√

√

√

√

1

I

I
∑

i=1

(20 log |Ĉi[k]| − 20 log |Ci[k]|)2, (5.26c)

where Cn[k] are the true channel values, i is the simulation number and I is the
number of simulations.

5.5 Simulations

This section is divided into two parts. First, a single simulation of the prediction
in frequency domain will be shown together with the error measures and how the
poles of the AR model are placed by Burg’s method. Second, the RMSEs of the
prediction will be shown as functions of order, modeling window, SNR, τmax, and
prediction length. The section is analogous to the simulations section in Chapter 4.

5.5.1 Single Simulation

A simulation with an infinite SNR will not be shown as in Section 4.8.1 since its
purpose was to appraise the algorithm. Instead, a prediction of a channel with 20
dB SNR will be explored.

The channel was modelled with the truncation factor3 po = 0.01 and a τmax of
5 µs was required making Γ = 5 µs/ ln 100 ≈ 1.09 µs. A total of N = 20 incoming
radio waves was used, i.e., the number of scatterers was set to 20. This will result
in a τRMS of approximately 1 µs, which is comparable to the measurements given
in Table 2.1. The simulated delay profile can be seen in Figure 5.3 and the random
excess delays τn are found in the second column in Table 5.1.

3All future simulations will use po = 0.01 if nothing else is stated.
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Figure 5.3: Simulated delay profile with τmax = 5 µs, po = 0.01, and Γ ≈ 1.09 µs using the channel
implementation in Section 5.2.

It was assumed that the channel had a subcarrier spacing of ∆fsc = 15 kHz
and that pilots were sent on every 6th subcarrier making the prediction sampling
period ∆fAR = 90 kHz, which is approximately twice as large as the sampling
rate needed. Thus, the interpolation factor L used in the Wiener filter is 6. The
by ∆fAR normalized excess delays are shown in the third column in Table 5.1.

The prediction was performed from the negative frequencies in the baseband
into the positive frequencies. The index of the signals will be negative on the
negative side and positive on the positive side. The negative frequency interval
was chosen to be 10 MHz wide, making the modeling window Lwindow = ⌊10 ·
106/9 · 104⌋ = 111 samples long4. The order of Burg’s method was chosen to be
p = 60.

It can also be commented that the maximum Doppler frequency was set to
200 Hz and the sampling rate fsymbol = 15 kHz in time domain is a consequence
from the subcarrier spacing. Note that this is an approximation since the CP is
not taken into consideration. In reality, the sampling frequency in time direction
could be smaller, depending on the CP size. Finally, the carrier frequency was
chosen to be 2 GHz. These parameters create the random phases of each different
scattered signal, see e.g., Eq. (5.8).

The prediction begins, as always, by estimating an AR model of the signal. The
by Burg’s method identified normalized excess delays are calculate by the angle of
the resulting AR models poles that were close to the unit circle. They can be seen
in the fourth column in Table 5.1 and are also indicated by arrows in Figure 5.4,
where the rest of the AR model’s poles can be observed. Note that some of the
excess delays are accurately identified while others, especially those who are close
to each other, cannot be resolved by Burg’s method. Instead of identifying every
delay, some are clustered together and represented by one pole, see e.g., scatterers
7-9 and 14-16. Observe that a few of the excess delays are identified by two poles,

4y = ⌊x⌋ is the floor-function, i.e., y is the largest integer less than or equal to x.
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n τn [µs] τn∆fAR τ̂n∆fAR

1 0.4153 0.0374 0.0373
2 0.6903 0.0621 0.0616/0.0640
3 1.1061 0.0996 0.0974
4 1.1979 0.1078 0.1071
5 1.7961 0.1616 0.1621
6 2.0704 0.1863 0.1861
7 2.4133 0.2172 0.2185
8 2.4242 0.2182 :
9 2.4507 0.2206 :
10 3.0714 0.2764 0.2770
11 3.1373 0.2824 0.2876
12 3.1785 0.2861 :
13 3.8603 0.3474 0.3445
14 3.8863 0.3498 0.3505
15 3.9048 0.3514 :
16 3.9453 0.3551 :
17 4.0299 0.3627 0.3650
18 4.0619 0.3656 :
19 4.2418 0.3818 0.3804
20 4.6359 0.4172 0.4182

Table 5.1: Excess delays and estimated excess delays of scatterers in the simulated channel using
po = 0.01 and τmax = 5 µs. Column 1: Index of generated scatterer. Column 2: Excess delay of
scatterer. Column 3: Excess delay of scatterer normalized with the sampling period ∆fAR = 90 kHz.
Column 4: Excess delays of the AR model’s poles normalized with the sampling period ∆fAR = 90 kHz,
that tries to identify the normalized excess delays in column 2. Ideally, column 3 and column 4 are
identical. It can be seen that the excess delays are not to the fullest correctly identified and that some
excess delays are clustered together and are identified with one single pole, see e.g., scatterers 7-9 and
14-16. The colon indicates same value as in the cell above.

one closer to the unit circle than the other, see arrows 5 and 6 counted clockwise
in the fourth quadrant in Figure 5.4. The AR model’s poles that do not try to
identify the excess delays are scattered evenly nearby the unit circle in an effort
to model the complex AWGN added to the channel.

The resulting prediction can be seen in Figure 5.5 and the error measures are
shown in Figure 5.6. If an error limit of 3 dB is used, a prediction of 11 samples is
feasible, which correspond to a prediction length of approximately 1 MHz. But as
can be seen from the error plots, the errors stay rather small also between samples
15-25. Once again, it is noted that the logarithmic nature of E20 log |C|[k] renders
large errors at deep fades of the channel. This gives a somewhat unfair description
of the error since the prediction in fact has a large correlation with the true channel
all the way until sample 25. Hence, this is a good reason not to only focus on the
performance of the prediction by exploring E20 log |C|[k]. Also, one can argue that
if a prediction error of 5 dB is located at a deep fade of 25 dB, the prediction still
gives good indication that the channel is so bad that it should not be used in that
particular frequency interval. Hence, the error limit can in this case be increased.
On the other hand, if the prediction error is 5 dB when the true channel is about
0 dB, then the error must be considered large.

The dual of the coherence time TC in Chapter 4 is the coherence bandwidth BC ,
which is closely related to τRMS . Theoretically, the τRMS value can be calculated
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Figure 5.4: Poles and zeros of the AR model derived by Burg’s method for the prediction in frequency
domain of the simulated channel. The poles identifying the excess delays are indicated by the arrows
and their normalized excess delays can be found in Table 5.1, column 4.

using the definition in Eq. (2.29) where the integrals are transformed to sums as
a result of the discrete time nature of the simulation, i.e.,

τRMS =

√

√

√

√

20
∑

n=1

α2
nτ

2
n −

(

20
∑

n=1

α2
nτn

)2

≈ 1.053 µs. (5.27)

And thus, the simulated channels coherence bandwidth can be approximated by
using Eq. (2.35b),

BC ≈ 1

5 · 1.053 µs
≈ 190 kHz, (5.28)

which yields that the prediction is accurate about 1 MHz/190 kHz ≈ 5 coherence
bandwidths.

This single simulation has proven the prediction algorithm being capable of
giving good prediction of an OFDM channel in frequency domain for several co-
herence bandwidths, and its performance will be further explored in the following
sections.

5.5.2 RMSE Performance of Simulations

As before, it is better to observe the RMSE of the prediction instead of individ-
ual simulations when evaluating the performance of the prediction method. The
influence of four different parameters,

– modeling window length, Lwindow

– order of Burg’s method, p

– signal-to-noise ratio in channel, SNRAR, and

– maximum excess delay, τmax
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Figure 5.5: Prediction in frequency domain of a simulated channel with SNRAR = 20 dB. Blue crosses
mark samples where the channel is observed and the red crosses mark the predicted samples, both with
the sampling period ∆fAR. The red line corresponds to the prediction with sampling period ∆fsc. The
prediction can be considered reliable until sample 11 where a large fade present is, which corresponds to
a prediction of approximately 1 MHz ahead. Note that the x-axis is in channel samples with sampling
period ∆fAR. The simulation parameters were τmax = 5 µs, ∆fAR = 90 kHz, ∆fsc = 15 kHz,
p = 60, N = 20, and Lwindow = 111.
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Parameter Notation Value

Prediction sampling period [kHz] ∆fAR 90
Subcarrier spacing [kHz] ∆fsc 15
Interpolation factor L 6
Carrier frequency [GHz] fc 2
Maximum Doppler shift [Hz] fDmax

300
Symbol rate [kHz] fsymbol 15
Number of scatterers N 20
Truncation factor po 0.01
Decay factor [µs] Γ τmax/ ln 100
Maximum excess delay† [µs] τmax 5
Order of Burg’s method† p 60
SNR in channel† [dB] SNRAR 20
Modeling window length† Lwindow 111
Number of simulations I 10000

Table 5.2: Simulation parameters used in the simulations in Section 5.5.2. The parameter, whose
influence on the RMSE will be explored, are indicated by the †-symbol.

on the RMSEs will here be presented and commented, starting with the modelling
window.

The channel used for all simulations had a maximum excess delay of τmax =
5 µs making Γ ≈ 1.09 µs. By assuming 20 different scatterers, a mean τRMS

of about 1 µs is obtained. This can be compared with the measured values in
Table 2.1, Section 2.4. The subcarrier spacing ∆fsc was set to 15 kHz with the
assumption of pilots on every 6th symbol. And thus, the prediction sampling
period ∆fAR = 90 kHz and the interpolation factor is L = 6. The SNR of the
channel was set to 20 dB giving σ2

N the value 0.01. The random phases of the taps
in the delay profile were created by a maximum Doppler shift of 200 Hz, a carrier
frequency of 2 GHz, and a corresponding symbol rate fsymbol = 15 kHz. The
modeling window length was at first set to 111 samples and the order of Burg’s
method was 60. The parameters for the simulations are summarized in Table 5.2.
By performing a total of I = 10000 simulations per parameter value, the RMSEs
could be calculated with low variance.

In Figures 5.7-5.9, the RMSEs, as functions of modeling window length and
prediction length, both in MHz, are found. The metric can be transformed to
number of samples with sampling period ∆fAR by

Lwindow = ⌊Lwindow,MHz/∆fAR⌋ (5.29a)

Lprediction = ⌊Lprediction,MHz/∆fAR⌋, (5.29b)

where Lwindow,MHz and Lprediction,MHz is the modeling window and prediction
length in MHz, respectively. Thus, Lwindow belongs to the interval [66, 111] in
the figure. The error has the same dependency on the modeling window as for
prediction in time direction, compare e.g., Figure 4.16. This is explained by the
fact that the longer modeling window, the more data Burg’s method has to work
with and hence, the AR model’s poles can be approximated closer to the true ones.

The next variable to study is the order of Burg’s method, which is shown in
Figures 5.10-5.12. as a parameter that, together with the prediction length, gives
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the RMSE errors. Also here, the appearance is the same as for prediction in time
and an order of approximately 70 seems feasible to use for best performance. With
a too low order, Burg’s method cannot find the excess delays since it is also trying
to model the noise. On the contrary, with a too high order, the signal is over
modelled, i.e., over parameterized. This has been discussed in Chapter 4.

Considering the influence of the SNR on the channel, Figures 5.13-5.15 shows
a rather expected behavior. The higher the SNR, the longer accurate prediction
is possible. As before, this is explained by the fact that the derived model is a
better approximation of the true channel and that the cumulative error is less when
having high SNR compared with low SNR. But the function does not have exactly
the same characteristic appearance as before. In the time domain prediction case,
the error level curves had a 90 ◦ angle towards the y-axis, see e.g., Figure 4.22,
while here, the angle of incidence is much steeper. This could be a result from the
fact that the simulations in Chapter 4 used equally strong scatterers, i.e., they had
an amplitude of 1/

√
N , while here, their energy is exponentially decaying with the

excess delays τn. If considering one scatterer at the time, the SNR per scatterer
differs significantly within one simulation. Thus, it is easier for Burg’s method
to identify the short excess delays since they have larger amplitude. When the
prediction begins, the error in the identification of the large excess delays is seen
by that a significant prediction error is found after only a number of samples.

In Chapter 4, a measure of how fast the signal to be identified fades was the
maximum Doppler frequency, while here it is the dual, i.e., the maximum excess
delay τmax, that determines how fast the signal fades. Studying Figures 5.16-
5.18 one can see that the RMSE has the same dependency on τmax as it had
on fDmax

for the prediction in time, see e.g., Figure 4.25. As before, this is an
effect of the sampling period, modeling window size, SNR, and order of Burg’s
method. With very small excess delays, almost solely noise is modelled due to
the constant nature of the true channel, while with large excess delays, Burg’s
method operates on many periods of the different scatterers, implying that a more
accurate model will be obtained. In both cases, an accurate prediction can be
made further compared with intermediate excess delays where only a few periods
of the different scatterer’s signals are available, which has been explained earlier.

This sections results are similar to those in Chapter 4 and confirms that the
duality between time and frequency domain of a channel explained in Section 2.4.1
gives dual prediction problems.

5.6 Extended Prediction Algorithm

As have been seen from the RMSE performance of the prediction, there are several
influencing factors, i.e., model order and modelling window length. If a prediction
in frequency domain should be performed, one would like understand the trade off
when assigning them values.

From the RMSE results, the modeling window should be as long as possible.
Pilots are only received in the frequency interval data is received on, which limits
the knowledge of the frequency response to that specific interval and thus, there
is no possibility to extend the window size beyond these limits. Since there is
no upper limit due to stationarity constraint as in the former chapter, the whole
available frequency interval should be used if computational complexity allows it.

The phenomenon of over modeling is present when high orders of Burg’s
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Figure 5.7: EC,RMSE as a function of prediction depth in MHz and modeling window in MHz when
using the simulation parameters in Table 5.2 with varying modeling window length Lwindow . The
prediction error decreases with increasing modeling window length.
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Figure 5.8: E|C|2,RMSE as a function of prediction depth in MHz and modeling window in MHz when

using the simulation parameters in Table 5.2 with varying modeling window length Lwindow . The
prediction error decreases with increasing modeling window length.
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Figure 5.9: E20 log |C|,RMSE as a function of prediction depth in MHz and modeling window in MHz
when using the simulation parameters in Table 5.2 with varying modeling window length Lwindow . The
prediction error decreases with increasing modeling window length.
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Figure 5.10: EC,RMSE as a function of prediction depth in MHz and model order p of Burg’s metod
when using the simulation parameters in Table 5.2 with varying order p of Burg’s method. The optimal
order of Burg’s method is approximately 70.
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Figure 5.11: E|C|2,RMSE as a function of prediction depth in MHz and model order p of Burg’s metod

when using the simulation parameters in Table 5.2 with varying order p of Burg’s method. The optimal
order of Burg’s method is approximately 70.
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Figure 5.12: E20 log |C|,RMSE as a function of prediction depth in MHz and model order p of Burg’s
metod when using the simulation parameters in Table 5.2 with varying order p of Burg’s method. The
optimal order of Burg’s method is approximately 70.
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Figure 5.13: EC,RMSE as a function of prediction depth in MHz and SNRAR of the channel when
using the simulation parameters in Table 5.2 with varying SNRAR. The prediction error decreases with
increasing SNRAR.
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Figure 5.14: E|C|2,RMSE as a function of prediction depth in MHz and SNRAR of the channel when

using the simulation parameters in Table 5.2 with varying SNRAR. The prediction error decreases with
increasing SNRAR.
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Figure 5.15: E20 log |C|,RMSE as a function of prediction depth in MHz and SNRAR of the channel
when using the simulation parameters in Table 5.2 with varying SNRAR. The prediction error decreases
with increasing SNRAR.
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Figure 5.16: EC,RMSE as a function of prediction depth in MHz and maximum excess delay τmax

when using the simulation parameters in Table 5.2 with varying τmax. The improvement of the RMSE
is not only in one direction. This is a combined effect of the modeling window, the channels noise and
the maximum Doppler frequency.
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Figure 5.17: E|C|2,RMSE as a function of prediction depth in MHz and maximum excess delay τmax

when using the simulation parameters in Table 5.2 with varying τmax. The improvement of the RMSE
is not only in one direction. This is a combined effect of the modeling window, the channels noise and
the maximum Doppler frequency.
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Figure 5.18: E20 log |C|,RMSE as a function of prediction depth in MHz and maximum excess delay
τmax when using the simulation parameters in Table 5.2 with varying τmax. The improvement of the
RMSE is not only in one direction. This is a combined effect of the modeling window, the channels
noise and the maximum Doppler frequency.
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method have been used. The prediction accuracy was not increased if the or-
der was raised above a certain limit. On the contrary, the order had to be above
a lower limit to have the capability to predict as far as possible with high accu-
racy. Hence, there is an optimal order for each individual channel simulation. How
the order should be chosen is a rather complex problem since it depends on the
number of scatterers and how close the different excess delays are. Also, the SNR
might play a role in the decision since the noise is also modelled and creates a
cumulative error due to the feedback of predictions into the AR model. There are
consequently many parameters that need to be known in practice when making a
decision about model order.

Another parameter is the SNR of the channel, which might be changed indi-
rectly. Until now, the prediction algorithm has only considered the channel in
sampling points where the pilot symbols have been sent. But there are additional
information that might be helpful. As explained in Section 3.2.2, the channel is
estimated for every sample in the time-frequency grid by the use of e.g., a 2D
Wiener interpolation filter. The interpolated samples have enough quality to be
used for channel equalization. The fact that there are several estimated channel
samples between every pilot gives a reason to investigate if it is possible to use
these as a mean to enhance the prediction performance.

Essentially, one can think of the estimated channel samples with sampling
period ∆fsc and sampling frequency fsymbol in frequency and time direction, re-
spectively, as the true channel with added noise. By using the channel samples
adjacent to the pilots, an averaging might be possible to perform to increase the
SNR. In this work, only simple one-dimensional finite impulse response (FIR)
filters in either frequency or time direction will be explored.

5.6.1 RMSE Gain due to Filtering in Frequency Domain

The first approach of trying to increase the SNR of the channel samples used for
deriving the AR model is by filtering, in frequency direction, the channel response
estimated at the equalizer in the receiver. One possibility is that the filter has a
frequency response as

|H(ejω)| =

{

1, −2πτmax∆fsc ≤ ω ≤ 0

0, elsewhere,
(5.30)

and at the same time have a linear phase so that all the excess delays are affected
equally. These requirements give the only solution of using a symmetric or anti-
symmetric FIR filter with infinite length, that in practice is not realizable. The
property that needs to be relaxed is the infinitely steep edges of the frequency
response. Since the delay profile of the channel was exponentially decreasing,
most energy will be in the paths with small excess delay. This means that the
right edge of the filter’s frequency should not attenuate the excess delays.

The left edge of the filter’s frequency response should preferable change adap-
tively with the maximum excess delay τmax for optimal noise reduction. This
would require knowledge of the momentarily true channel property and perhaps a
large filter bank with pre-calculated filters. This might not be feasible in practice
and that is one reason why in this work only very simple averaging linear phase
FIR filters will be investigated.
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Figure 5.19: Frequency response of the non weighted averaging filters with length M = 3 (solid),
M = 7 (dashed), and M = 11 (dash-dotted). The group delays of the filters are (M − 1)/2.

One can argue that since the multipath signals with large excess delays are
considerably weaker than the signals with small excess delays, the prediction might
be mostly dependent on finding the small excess delays. Therefore, one approach
is to let the filter have additional zeros which yields its frequency response to
attenuate the larger excess delays, giving more freedom of choice of the filter
coefficients. This will also give the filter the opportunity to be more aggressive
towards the noise outside the interval −2πτmax∆fsc ≤ ω ≤ 0, since the additional
zeros can be placed outside this interval. In this work, simple filters that fulfill
these requirements will be evaluated. In Figure 5.19, three frequency responses
of non weighted averaging filters with length M = 3, M = 7, and M = 11 are
shown. They all have filter coefficients equal to 1/M and hence the phase response
is linear.

One issue with symmetric filters is that their group delay is (M − 1)/2. In the
prediction approach, the AR model is derived using a certain interval of samples
where the last sample was assumed to be a pilot sample. Since there is a delay in
the filter, at least (M −1)/2 more samples outside the interval is needed if the last
pilot sample should be noise reduced. It is here assumed that the interpolation
factor L, i.e., how many real data symbols there are between two pilots, is greater
than the filter delay (M − 1)/2. This will resulting in only one pilot sample
being affected by this property. If instead L ≤ (M − 1)/2, then more than one
pilot sample at the end cannot be filtered with the symmetric filter. In practice,
the interval cannot be extended, which leaves essentially three solutions to the
problem.

– Filter the pilot sample with the use of samples adjacent on one side of the
pilot sample and incorporate the output in the prediction.

– Do not filter the sample but still incorporate it in the prediction.

– Do not filter the sample and do not incorporate it in the prediction.
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The first alternative requires a filter with a non-symmetric impulse response
creating different delays for the different excess delays. Since this is a sample that
will be used to start the prediction, the alternative was not pursued any further.

The second choice gives an unchanged SNR of the last sample. Since the
prediction approach uses this sample when interpolating the predicted samples
with sampling period ∆fAR, the resulting RMSE was not decreased for the first
predicted channel samples Ĉ[k] while a slight reduction was found for further
prediction. Several filter lengths were considered with this approach giving the
same results and therefore, also this alternative was dismissed.

Finally, the third alternative essentially decreases the modeling window with
one sample and hence, this approach will therefore need to predict one sample
further compared to if no filter is used. Since one more prediction step might not
be worse than using no filter at all, it was decided that this method was worth
exploring closer.

The delay in the filter does not only affect the end of the filtering process. In
the beginning of the filtering there will be an initial phase of M −1 samples where
not all filter taps are active. Therefore also the first pilot sample was not used.

Before the results of filtering prior prediction are shown, another perspective of
the filtering can help the understanding of the choice of all-equal-tap filters. Con-
sider again the channel frequency response sampled, but now only in the frequency
direction

C[m, k] =

N
∑

n=1

αne
j[2π(fDnmTsymbol−τnk∆fsc)+θn]

=

N
∑

n=1

αne
−j[2πτnk∆fsc−φn] = C[k], (5.31)

where φn = 2πfDn
mTsymbol + θn. This expression, can be seen composed of N

complex valued rotating vectors. If the frequency response is evaluated no samples
ahead k in frequency direction one get

C[k + no] =
N
∑

n=1

αne
−j[2πτn(k+no)∆fsc−φn]

=
N
∑

n=1

αne
−j[2πk∆fscτn−φn]e−j2πno∆fscτn , (5.32)

where e−j2πno∆fscτn is the phase change of the nth multipath signal. Hence, the
phase change of C[k] is dependent on how the N vectors, all with different length
and rotating rate τn, are added. This could, for each simulation, be computed
theoretically and an optimal filter, perhaps symmetric, derived. This requires
knowledge of the exact attenuation αn, excess delays τn and phases φn which is
probably not feasible in practice. A filter with more carefully chosen taps could
perhaps be derived and perform better than the all-equal-tap filter. Hence, it can
be concluded that the filters will distort the signal. It will here be investigated if
the prediction is better with a distorted signal with less noise than with a non-
distorted signal with no noise reducing filter applied.

The results will be shown by using the RMSE gain defined by

∆RMSE[k] = Efiltered20 log |C|,RMSE [k] − E20 log |C|,RMSE [k], (5.33)
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τmax [µs] τmax∆fsc ∆l [km]

1 0.0150 0.3
5 0.0750 1.5
9 0.1350 2.7

Table 5.3: Column 1: Maximum excess delays used in the simulations in Section 5.6.1. Column 2: The
maximum excess delays normalized by ∆fsc = 15 kHz. Column 3: Travel distance corresponding to
the maximum excess delay τmax.

which hence should be negative if the filtering have improved the prediction. Sim-
ilar ∆RMSE’s can be defined for EC,RMSE [k] and E|C|2,RMSE [k] but will not
be shown due to their similarity to the above quantity. In Figures 5.20-5.22,
∆RMSE is found for a channel with the parameters in Table 5.2 except for the
varying τmax, Γ, and SNRAR. It is assumed that the calculation of the AR model
and the prediction are instantaneous so that no delays are introduced.

One of the interesting effects to explore is the trade-off between distortion
of the true channel and noise reduction. The amount of distortion depends on
the filter length M , but as well as the excess delay τmax. In the figures, τmax
is equal to 1, 5, and 9 µs, respectively. Their normalized values, with respect
to the subcarrier spacing ∆fsc, are shown in Table 5.3, and could be compared
with Figure 5.19. These values of τmax correspond to path lengths of 0.3, 1.5,
and 2.7 km, respectively, between the transmitter and receiver. The distortion
introduced is measured by the top graphs in each figure below, i.e., when no noise
is added to the simulated channels. It can be seen from both the normalized
excess delays in Table 5.3 and the figures that the longer FIR filter, the more
distortion is introduced. Also, as τmax is increased, more distortion is introduced.
This is because the large excess delays are attenuated more than the small excess
delays. The ∆RMSE tends to zero at a very long prediction since the errors of
the estimated poles, i.e., excess delays, of both the filtered and non-filtered signal,
have resulted in cumulative errors that are approximately the same.

If only considering the case τmax = 1 µs, which is shown in Figure 5.20, one
can see that the most narrow filter, M = 11, has the highest gain for both 10 and
20 dB SNRAR. This is because the channel is very slowly varying in the frequency
direction, implying that averaging over a relatively long time is feasible.

Note that the top, middle, and bottom graphs in the figure cannot be compared
with each other since the ∆RMSE[k] is a relative measure. Also, the x-axis of
the graphs are from 0 to 10 MHz, while, as has been seen in Section 5.5.2, the
prediction can only be considered reliable 1-2 MHz. The choice of x-axis length is
motivated by that it gives the opportunity to see what values the ∆RMSEs tend
to.

When increasing the maximum excess delay to 5 µs the result is somewhat
different. The distortion is of course increased for all filters since the signals
spectrum of excess delays are wider while the filters’ pass bands stay the same. The
steepest filter is no longer the best because important excess delays are attenuated.
With 20 dB SNR in the channel, filtering with the 11 tap filter increases the RMSE.
With both 20 and 10 dB, M = 7 seems to be the best compromise. Notice that
even though the 11 tap filter increases the RMSE for 20 dB SNR it reduces the
RMSE for 10 dB. Thus, for 10 dB, the prediction is better with a distorted signal
with less noise than with a non-distorted signal with noise. This is true for all
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filter lengths.
If an even larger maximum excess delay, τmax = 9 µs, is considered, the longest

filter gives an increased RMSE for both 20 and 10 dB SNR. Even the usage of
a 7 tap filter results in an increased RMSE for 20 dB. The large excess delays
result in that the channel is so fast fading in the frequency direction, that only
the three tap filter is able to provide an improvement of the channel samples used
for prediction.

The reason why ∆RMSE not has the same value on every prediction depth
for the same SNRAR and filter length M , could be explained by considering the
RMSEs dependency in prediction depth and SNR in Figure 5.15, which is not
linear.

The results above have shown that even very simple filters, such as non weighted
averaging filters, can decrease the RMSE at least 0.5 dB at reasonable prediction
length. This procedure might therefore be worth giving extra attention in future
studies where more optimized filters should be evaluated.

5.6.2 RMSE Gain due to Filtering in Time Domain

One fundamental difficulty when trying to filter the signal in frequency direction is
the problem of comparatively low sampling rate. The spectrum part which should
not be disturbed is considerable, which causes the ideal filter to have a rather large
pass band. Since the filter length was constrained by the last sample omittance,
it is difficult to create a filter with steep edges that removed the remaining part
of the spectra.

Recall that in OFDM, a large subcarrier spacing ∆fsc ≈ 1/T implies small
OFDM symbol length T . The receiver will thus have a large sampling frequency in
time direction of the grid in Figure 3.5. Remember also that the highest frequency
of a channel in time direction is fDmax

, which was the cornerstone in the derivation
of the prediction algorithm in Chapter 4.

If considering the same channel case as in the previous section, the subcarrier
spacing was 15 kHz resulting in an fsymbol of also 15 kHz. If the maximum
velocity of the receiver is about 160 km/h, the maximum Doppler shift will be
300 Hz. Comparing 300 Hz to 15 kHz it follows that the signal is highly over
sampled and that the interesting part of the spectra of the discrete time signal
will be at very low frequencies. Hence, it seems reasonable, in a way to increase the
SNR and hence improve the prediction, to filter every subchannel that has a pilot
in the last sample in time direction. Notice that this approach does not involve
how dispersive the channel is, instead it is dependent on how fast the different flat
fading subcarriers fade with time, i.e., the interesting parameter is here fDmax

and
not τmax as before.

As above, it is advantageous if the filter has linear phase, resulting in that
different Doppler frequencies are equally delayed, thus the filter is symmetric.

As an example, assume that the receiver has access to an estimation of the
channel frequency grid in Figure 3.5 for a certain frequency interval W and up
to sample mo in the time direction. If a filter of length M is applied to every
subchannel with a pilot as the last time sample, the same problem as above with
filter group delay will occur. The last sample, which is the most important one
since it will be used in the prediction, cannot be filtered with the full filter length.

A solution to this problem is to wait for (M − 1)/2 OFDM symbols more to
be received. This will give a delay of (M − 1)/(2fsymbol) seconds of the signal to



Prediction in Frequency Domain 99

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

∆ 
R

M
S

E
 [d

B
]

M = 3
M = 7
M = 11

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

∆ 
R

M
S

E
 [d

B
]

M = 3
M = 7
M = 11

0 1 2 3 4 5 6 7 8 9 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Prediction length [MHz]

∆ 
R

M
S

E
 [d

B
]

M = 3
M = 7
M = 11

Figure 5.20: ∆RMSE as a function of prediction length in MHz of a channel with τmax = 1 µs when
using averaging filters with length M = 3, M = 7, and M = 11. Top: SNRAR = ∞ dB. Middle:
SNRAR = 20 dB. Bottom: SNRAR = 10 dB.
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Figure 5.21: ∆RMSE as a function of prediction length in MHz of a channel with τmax = 5 µs when
using averaging filters with length M = 3, M = 7, and M = 11. Top: SNRAR = ∞ dB. Middle:
SNRAR = 20 dB. Bottom: SNRAR = 10 dB.
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Figure 5.22: ∆RMSE as a function of prediction length in MHz of a channel with τmax = 9 µs when
using averaging filters with length M = 3, M = 7, and M = 11. Top: SNRAR = ∞ dB. Middle:
SNRAR = 20 dB. Bottom: SNRAR = 10 dB.
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be used in the prediction. Hence, during this time, the frequency response of the
channel might have changed and the RMSE must be calculated by comparing the
prediction with time index mo with the true channel at mo + (M − 1)/(2fsymbol).
Also here is it assumed that the AR model derivation and the prediction are
instantaneous.

To once again show the duality of time and frequency, consider the channel
frequency response only in time direction

C[m, k] =

N
∑

n=1

αne
j[2π(fDnmTsymbol−τnk∆fsc)+θn]

=

N
∑

n=1

αne
j[2πfDnmTsymbol+φn] = C[m], (5.34)

where φn = −2πτnk∆fsc + θn. As before, looking no samples ahead, now in time
direction, a phase factor comes out

C[m+ no] =

N
∑

n=1

αne
j[2πfDnmTsymbol+φn]ej2πfDnnoTsymbol , (5.35)

which shows how much the different multipath vectors rotate. This is exactly the
dual to Eq. (5.32) that instead of fDn

depends on τn. From this expression, it is ob-
served that if Tsymbol is very small, then the resulting complex vector C[m+no] will
not differ much from C[m]. This could be a motivation for using an all-equal-tap
filter since usually the exact number of scatterers and their individual amplitudes
and Doppler frequencies are unknown and at the same time 1/Tsymbol ≫ fDmax

.
To be able of performing a comparison of the filtering in time and frequency

domain, respectively, and with the above reasoning in mind, the filters used in
time domain will be the same as in the section above. Thus, simple averaging
all-equal-tap filters with lengths M = 3, M = 7, and M = 11 are considered.

In the channel model, the normalized Doppler frequencies are distributed in the
interval [−fDmax

, fDmax
]/fsymbol. The result of the filtering will be attenuations

on both sides of the spectrum since the filter is symmetric in the frequency variable
and has gain 1 only at the center frequency 0, see Figure 5.19.

The simulated channel’s parameters are equal to those in Table 5.2 except for
the varying maximum Doppler frequency and SNRAR. The resulting ∆RMSE
performance of the extended prediction algorithm is found in Figures 5.23-5.26,
where the Doppler frequencies are 10, 100, 200, and 300 Hz, respectively, with
SNRAR equal to ∞, 20, and 10 dB. In Table 5.4, the by fsymbol normalized
Doppler frequencies and corresponding velocity are shown. As in the former sec-
tion, it is very important to acknowledge that the top, middle, and bottom graphs
in the figures cannot be compared since ∆RMSE is a relative measure.

As expected, when having infinite SNR, the prediction degrades with filter
length and maximum Doppler shift. But the performance degradation is not only
due to the signal distortion as before since here the delay of (M − 1)/2 samples of
the signal to model is introduced causing the predicted channel to be (M − 1)/2
time samples to late.

The 11 tap filter is outperformed by the 7 tap filter in all cases which can be
interpreted as the 5 samples delay that comes with the usage is too large even for
a slowly changing channel with fDmax

= 10 Hz.
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fDmax
[Hz] fDmax

/fsymbol v [km/h]

10 6.67 · 10−4 5.4
100 6.67 · 10−3 54
200 1.33 · 10−2 108
300 2.00 · 10−2 162

Table 5.4: Column 1: Maximum Doppler frequencies used in the simulations in Section 5.6.2. Column
2: The maximum Doppler frequencies normalized by fsymbol = 15 kHz. Column 3: Corresponding
velocity of receiver when fc = 2 GHz.

The effect of the introduced delay is clearly visible in Figure 5.24, bottom
part, where in the beginning the ∆RMSE for both 7 and 11 tap filters decreases
while it later begins to increase again. The 3 tap filter instead results in a strictly
increasing curve at the beginning. Although, the ∆RMSE is always negative.
This could be explained by the effect that the prediction of the nearby frequencies
with 7 or 11 taps filters applied are better to a certain extent compared with the
prediction with no filtering.

If further prediction is required, the direct prediction will rapidly decrease in
performance due to the e.g., cumulative noise error. The prediction with pre-
filtering has a more slowly increase in RMSE even though it predicts an in time
old frequency response. With the case of an 11 tap filter, the ∆RMSE begins
at approximately -0.1 dB, since at this point the prediction with noise compared
with prediction with filtering and delay is comparatively equal. At 0.5 MHz pre-
diction length the delay compared with the cumulative noise has less influence on
the prediction degradation which causes the ∆RMSE to be smaller. The same
reasoning can be followed for the 7 tap filter, but here the delay will be less causing
the ∆RMSE to be smaller. The 3 tap filter only has this effect when the SNR is
20 dB while at 10 dB the ∆RMSE increases monotonically since here, the delay
compared with how much the channel change and the cumulative error without
noise reduction, is small.

With higher Doppler frequencies, e.g., fDmax
= 200 Hz, the fading is so rapid

that there is little or none improvement when filtering at 20 dB SNR while a
significant improvement is found at 10 dB SNR. A step further, only the 3 tap
filter is showing improvement on the prediction accuracy at a maximum Doppler
shift of 300 Hz since the channel now changes too rapidly for delays of 3 and 5
samples to be feasible.

A problem with this filtering approach is the fact of being required to wait
for several more OFDM symbols before a linear phase filtering is feasible. Future
work should therefore try to find a filter which gives a satisfying phase response
without requiring waiting for several samples.

5.6.3 Comparison

Since the prediction really is reliable only approximately 1-2 MHz ahead, it is
merely this interval that is important when comparing the two filtering methods.
The ∆RMSE was displayed for as far as up to 10 MHz only to get knowledge on
what value it tends to.

If measurements of both τmax and fDmax
are available and the channel is

considered having approximately the properties used in the simulations above,
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Figure 5.23: The change ∆RMSE as a function of prediction length in MHz of a channel with
fDmax = 10 Hz when using averaging filters with length M = 3, M = 7, and M = 11. Top:
SNRAR = ∞ dB. Middle: SNRAR = 20 dB. Bottom: SNRAR = 10 dB.
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Figure 5.24: The change ∆RMSE as a function of prediction length in MHz of a channel with
fDmax = 100 Hz when using averaging filters with length M = 3, M = 7, and M = 11. Top:
SNRAR = ∞ dB. Middle: SNRAR = 20 dB. Bottom: SNRAR = 10 dB.
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Figure 5.25: The change ∆RMSE as a function of prediction length in MHz of a channel with
fDmax = 200 Hz when using averaging filters with length M = 3, M = 7, and M = 11. Top:
SNRAR = ∞ dB. Middle: SNRAR = 20 dB. Bottom: SNRAR = 10 dB.
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Figure 5.26: The change ∆RMSE as a function of prediction length in MHz of a channel with
fDmax = 300 Hz when using averaging filters with length M = 3, M = 7, and M = 11. Top:
SNRAR = ∞ dB. Middle: SNRAR = 20 dB. Bottom: SNRAR = 10 dB.
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one should be able to chose which filtering method to use for best prediction
performance.

It is concluded that if the channel is flat and is very rapid fading, the usage
of filtering in frequency direction gives the best performance. On the contrary, if
the channel is very frequency selective but not time varying, the filtering should
be performed in time direction.

Finally, if the channel is both time varying and frequency selective, the optimal
decision must be based on the measurements and simulations by using e.g., Look-
up table. There are too many cases from the above simulations to process, instead
a single decision can be explored.

Consider a channel that is both time varying and frequency selective with the
parameters τmax = 9 µs and fDmax

= 200 Hz, i.e., Figure 5.22 and 5.25 should
be compared. For SNRAR = 10 dB and a prediction length of 2 MHz, filtering
in time direction gives a ∆RMSE between approximately -0.8 to -0.5 dB with a
3 tap filter, while filtering in frequency direction only gives at best a ∆RMSE of
about -0.65 to -0.4 dB also with a 3 tap filter. Hence, in this case filtering in time
direction with a 3 tap filter should be chosen.

Instead, if the SNRAR = 20 dB, the performance is almost identical between
the two approaches with 3 tap filters. One reason to choose filtering in frequency
direction is because filtering in time direction gives a positive ∆RMSE for a very
short prediction lengths.

5.7 Summary

In this chapter the prediction algorithm with a deterministic autoregressive mod-
eling has been implemented in frequency direction showing that it is feasible to
predict several coherence bandwidths ahead. A Wiener filter with approximative
correlation functions was derived and proven to work very well.

The duality of time and frequency domain of a radio channel was shown
throughout the chapter since the feasible prediction length was dependent on the
prediction parameters in the same characteristic way as in time domain.

An extended prediction algorithm making use of the many channel estimates
used for equalization was derived and proven, with very simple non-weighted av-
eraging filters, to give a considerable improvement despite the signal distortion.
This area can be explored further.



Chapter 6
Prediction Based Adaptive

Symbol Mapping

In this chapter, the prediction approach will be used as a mean to implement
adaptive symbol mapping on a frequency interval with unknown channel frequency
response. The algorithm will be presented and simulation results will be compared
with a non-predictive approach.

6.1 Algorithm

In the RMSE results for the channel model used in Section 5.5.2 it can be seen
that a RMSE of about 3.5 dB is present when predicting approximately 1 MHz
ahead. This metric does not incorporate at what dB level the error occurs, i.e.,
it is an absolute error not a weighted error. If an error of a few dB occurs at a
deep fade of −30 dB, it is not a concern since the channel here is still too bad
for usage. But if the error occurs at a channel power of 0 dB, it is considerable
because the prediction might be used for e.g., adaptive power control and coding
and thus gives a large performance loss.

During the many simulations performed it has been observed that even though
the prediction deviates from the true channel with several dB, there is still some
correlation between them for a considerable prediction length. This motivates use
of another error metric which has the possibility to explore the correlation and is
not too sensitive for errors at the deep fades.

One of the reasons for prediction of a radio channel was the ability to chose
symbol sets adaptively for a frequency interval available for transmission. Since
the choice of symbols is determined from the SNR level of the channel, which
can be indirectly predicted with the current prediction algorithm, this might be a
suitable metric. Even though the prediction is off by a few dB, there is a possibility
that the prediction is still useful for symbol mapping, which would give optimal
signal constellations.

For every data bit error probability, a symbol set has a lowest SNR per data
bit that must be fulfilled. If the noise in the channel is considered white, the SNR
per symbol Es/No, which have been used in this work, is calculated from the SNR
per data bit Eb/No by

Es
No

=
Eb
No

R log2M, (6.1)
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Symbol Eb/No [dB] R Es/No [dB] Bits/Symbol

64-QAM 10 1 18 6
64-QAM 7 1/2 12 3
16-QAM 3 1/2 6 2
QPSK 1 1/2 1 1
N/A – – (< 1) 0

Table 6.1: Column 1: Chosen symbol sets. Column 2: Lowest SNR per bit for a certain bit error
probability. Column 3: Coding rate of binary data. Column 4: Lowest SNR per symbol for a certain
bit error probability calculated from Eq. (6.1). The levels are rounded to nearest integer and are used
in the symbol mapping at the predicted frequencies together with the estimated SNR. Column 5: Data
bits per mapped symbol.

where R is the coding rate, M the set size, No the noise variance and Es and Eb are
the energy per symbol and bit respectively. This SNR is a threshold that must be
exceeded if a data transmission with a certain error probability is required. From
literature, several limits of the Eb/No quantity of the mapping alternatives can
be found for different systems. The limits used in the evaluation of the prediction
algorithm can be found in Table 6.1 together with chosen symbol sets, coding
rates and resulting SNR limit per symbol. As an example, if the symbol SNR is
predicted to be 13 dB, then 64-QAM with coding rate R = 1/2 will be used.

The predicted SNR is calculated by first performing the normal prediction
procedure and then deriving the per symbol, i.e., frequency bin, predicted instant
SNR as

ŜNR[k] = 10 log
|Ĉ[k]|2
σ2
N

= SNR+ 10 log |Ĉ[k]|2, (6.2)

where SNR is the mean SNR of the channel defined at its modeling, see Eq. (5.16).
If the prediction does not deviate from the true channel then the expected value
of the predicted SNR is SNR. This quantity will be used later on in a mapping
approach used as a comparison to the prediction result.

Also, a simple power control was implemented which had its basis in assuming
that every different symbol, i.e., waveform, had the same amount of energy and
that the total energy sent should be constant. With a symbol is sent on every
subcarrier, the total sent energy is

Etot =
K
∑

k=1

S2[k]. (6.3)

If the prediction shows that not even the most robust choice of coding and modu-

lation can be expected to be successful on certain frequencies, i.e., ŜNR[k] < 1 dB
for some k’s, the corresponding energy can be distributed on the other subcarriers
instead. Hence, if e.g., ko subcarriers are excluded, then the energy of the remain-
ing K− ko symbols can be increased by K/(K− ko). The estimated SNR of these
subcarriers will thus be

ŜNRpc[k] = 10 log
K

K−ko
|Ĉ[k]|2

σ2
N

= ŜNR[k] + 10 log
K

K − ko
, (6.4)

which will perhaps give the opportunity to send a symbol containing more data
bits. The symbol size and coding rate to use on a subcarrier is selected by com-

paring ŜNRpc[k] with column four in Table 6.1.
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The performance characteristics of the approach is evaluated by calculating
the ratio of received bits and optimally received bits. The latter is calculated
by using the true channel SNR when mapping to symbols while the former is
derived by comparing the optimally received symbols with the symbols sent with
the prediction approach. If the prediction approach sent a symbol with more data
bits than the optimal one at the same frequency bin, the received data bits for that
subcarrier were assumed erroneous and therefore set to 0. Hence, the performance
ratio is defined as

κ =
Received bits

Optimally received bits
, (6.5)

and is ideally equal to 1. The ratio can be calculated for every prediction length
and the results will be shown as κ as a function of prediction length. Setting
the received data bits to 0 in this way is pessimistic because one can re-send the
symbol by including its data bits in the next symbol to be sent by decreasing the
coding rate.

As a benchmark of the prediction based symbol mapping, a mean SNR mapping
approach will be used. Since the channel is simulated with a mean SNR, the
mapping scheme without prediction will only use the symbol set corresponding
to this SNR level. Consider the case with SNR = 10 dB, then 16-QAM with
rate R = 1/2 will be used for the whole prediction interval. This was found in
simulations being the best choice of the available alternatives. One can of course
come up with a channel where this approach not is the best, but with the channels
simulated here, it is the most reasonable.

6.2 Simulation Results

For fair comparison to the RMSE results, the simulation parameters in Table 5.2,
Section 5.5.2, were used with varying modeling window length, order of Burg’s
method, SNRAR, and τmax. This resulted in a mean τRMS of 1 µs and, hence,
the channel coherence bandwidth was in the mean BC = 1/(5 · 10−6) = 200 kHz.

The extended prediction algorithm could easily been implemented together
with the SNR prediction, but to merely see the effects of the common approach,
it will be assumed that filtering has been done and resulted in different SNR
quantities. Therefore, the noise variance σ2

N at the modeling part of the channel

was set to 0.01 yielding a SNR of 20 dB, while at the calculation of ŜNR and

ŜNRpc, it was set to 0.1. This filtering is feasible if the Doppler shifts are low.
Some of the resulting κ for different parameters can be found in Figure 6.1

and 6.2. Their characteristic behavior resembles the RMSE results considering
the dependency of the different parameters

In all different cases the symbol mapping with predicted channel is better than
the mean SNR symbol mapping approach in the adjacent frequencies. As an
example, when considering a radio channel with low Doppler spread, which with
filtering in time the direction of the channel samples can give a SNR of 20 dB,
together with a fairly dispersiveness characteristic of τmax = 5 µs, as much as 80%
compared with the optimally sent data bits, will be obtained.

If considering further prediction lengths, κ decreases monotonically because

the correlation between ŜNR and the true SNR value will decrease.
Since the channel is simulated with a mean SNR, the symbol mapping using

SNR will stabilize at a certain value, here κ ≈ 0.73, and not be dependent on the
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prediction length. Hence, at a certain prediction length it is better to assume the
instant SNR equal to SNR than using the prediction.

Several attempts of improving the performance were made by introducing hys-
teresis limits on the mapping, i.e., delays between symbol set switching when

ŜNRpc crosses a level. This was explored to rule out that the prediction did
not have any systematic errors such as always predicting deep fades too soon or
late, or always being some dB above the true channel. Essentially three different
hysteresis actions were tried out, hysteresis on,

Falling edge. As the prediction crosses a mapping level, the symbol set switch
was delay until either the prediction was below the mapping level with a
predetermined limit in dB, or, the prediction had been below the mapping
level for a predetermined number of samples. The action was normal when
the prediction crossed a mapping level upwards.
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Figure 6.1: The resulting κ with the simulation parameters in Table 5.2 and 6.1. The mean coherence
bandwidth of the simulated channels was 200 kHz. Horizontal line correspond to adaptive symbol
mapping based on SNR. Top: κ as a function of modeling window length and prediction length.
Bottom: κ as a function of order of Burg’s method and prediction length.
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Figure 6.2: The resulting κ with the simulation parameters in Table 5.2 and 6.1. The mean coherence
bandwidth of the simulated channels was 200 kHz. Horizontal line correspond to adaptive symbol
mapping based on SNR. Top: κ as a function of SNR in the channel and prediction length. Bottom:
κ as a function of maximum excess delay τmax and prediction length.



Prediction Based Adaptive Symbol Mapping 115

Rising edge. As falling edge but now the symbol switch delay was on rising edge
instead of falling edge, i.e., the prediction had to be above the mapping
level with a certain property. Normal action was taken when the prediction
crossed a mapping level downwards.

Both falling and rising edge. The two above actions was used jointly, i.e., hys-
teresis on both up- and downward crossings.

In simulations, all the above efforts resulted in decreased performance, which in-
dicates that the prediction has no systematic errors.

In this chapter, it has been shown that the prediction gives considerably higher
throughput of data bits in the adjacent frequencies compared with an approach
where the mapping was based on the average SNR. To increase the performance
of the symbol mapping, future work might include the RMSE result in a mean
to include uncertainty in the prediction. For instance, the SNR used for symbol
mapping can be assumed originate from a certain distribution, e.g., Gaussian, with
the predicted SNR as mean value and a standard deviation equal to the RMSE
from the simulations in Section 5.5.2.



116 Prediction Based Adaptive Symbol Mapping



Chapter 7
Summary and Conclusions

The purpose of this thesis was to derive, implement, and evaluate a possible solu-
tion to the channel frequency response prediction problems.

The solution stated utilized the difference between maximum Doppler fre-
quency or excess delay and the sample rate of the channel, both in time and
frequency direction. A deterministic AR model of the channel frequency response
was derived by Burg’s method and the close connection between an autoregressive
process and prediction of a discrete time signal was iteratively used to perform long
term prediction. Due to the great over sampling, it was feasible to use only pilot
symbols when deriving the AR model. The reduced sample rate gave longer reli-
able prediction but also an interpolation problem that was solved by implementing
Wiener filters.

In Chapter 4, the prediction algorithm was explained in detail and its per-
formance in time direction of the channel frequency response was thoroughly in-
vestigated. It was shown that with reasonable SNR and time variant Doppler
frequencies, several wavelengths or coherence times ahead of the channel was fea-
sible to predict accurately.

Later, in Chapter 5, the prediction algorithm was applied in the frequency
direction of the frequency response. Extensive simulations proved the algorithm
being able to prediction several coherence bandwidths. The prediction algorithm
was also extended by utilizing several OFDM symbols and averaging FIR filters
which yielded in a decided increase in performance.

Chapter 6 utilized the prediction algorithm in a possible application, i.e., sym-
bol mapping in a frequency interval not currently used. Results showed the oppor-
tunity of considerably higher data throughput than compared with the approach
where the mapping was based on the mean SNR of the channel.

Over all, the prediction algorithm has shown promising results and could be
extended further by deriving e.g., rules for optimal selection of decreased sample
rate, order of Burg’s method, AR modeling window, and filters for improving
channel estimates depending on channel properties.
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