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Chapter 1

Introduction

1.1 Extremely Large Telescopes - ELT

During the past few years a number of telescopes with apertures of up to 10
meters, Very Large Telescopes (VLT:s), have been constructed. Scientific obser-
vations and conclusions made from data received at these VLT:s, have been
exciting for astronomers. Among other things the observations concerned
studies of the early universe and its evolution, very distant galaxies and inter-
galactic matter. Astronomers however are facing challenges that require ob-
servations with even higher spatial resolution as well as more powerful light
collection. In order to acquire these observations, Extremely Large Telescopes
(ELT:s) are being developed.

1.2 Euro50 - Design

There is a European collaboration between scientists in five different countries
doing technological studies on ELT:s. Their project is called Euro501. A picture
showing the suggested design of Euro50 is found in figure 1.1. It is decided for
the Euro50 to have a two mirror design with one primary and one secondary
mirror. The primary mirror is the light collector whereas the secondary mirror
focuses the light for observations to be possible. The name Extremely Large
Telescopes originates in the fact that their primary mirrors are large, in this
case 50 meters. It would be inappropriate to use a monolithic mirror as pri-
mary mirror for several reasons. There are manufacturing problems as well
as problems with transport, when dealing with such large apertures. Further
it would be expensive to reproduce if a misfortune happens during handling
or manufacturing. Therefore a segmented primary mirror with 618 segments,
where each segment is 2 meters wide, is planned. The full primary mirror, as

1Read more about Euro50 and its design in [7]
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6 Chapter 1 Introduction

Figure 1.1: The suggested design of Euro50 with a segmented primary mirror
and the secondary mirro in the tripod.

well as its segments, has a hexagonal shape. The shape of the primary mirror
segments are controlled via a primary mirror alignment system that operates
within a bandwidth of 10 Hz. Its purpose is to align the segments to form
a monolithic-like surface and to correct for natural effect such as wind dis-
turbances. Also the secondary mirror is hexagonal. It will be a monolithic
deformable mirror that is slightly less than 4 meters in diameter.
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Figure 1.2: The left figure shows the case when no atmospheric distortion is
present. The right figure shows how atmospheric distortion affects the in-
coming wavefronts. This distortion results blurry images of distant stars in
the telescope.

1.3 Atmospheric distortion

As opposed to space telescopes as Hubble Space Telescope, Earth based tele-
scopes such as ELT:s have atmospheric distortion to deal with. Because of
uneven heating and cooling of the atmosphere, small pockets of air and water
vapor that move around are created. These small pockets act like little lenses
since their refractive indices differ. Parallel light rays, originating from dis-
tant galaxies, do bend randomly when traveling through the atmosphere due
to these pockets. This effect is called atmospheric distortion, which is graph-
ically explained in figure 1.2. The light rays that are reflected by the primary
mirror are not parallel. Therefore the light rays will be focused to slightly dif-
fering points instead of at one focal point. This slightly defocused light will
lead to blurry images of distant stars. In the figure the incoming light is rep-
resented as wavefronts instead of light rays. The atmospheric distortion has
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to be compensated for in order to achieve desirable resolution for Euro50 and
other ELT:s. A control system, usually referred to as adaptive optics, must be
developed to compensate for the distortion.

1.4 Adaptive optics

The idea behind adaptive optics is to reshape the secondary mirror surface
with high frequency. The objective of the reshaping is to cancel the effect of
atmospheric distortion. This is done through making the reflected wavefronts
parallel. This will result in pictures with a higher resolution. To be able to
shape the deformable mirror, force actuators mounted at the back of the mir-
ror is used. In order for a closed loop control law to be implementable, also
sensors are mounted at the back of the mirror.

The control system need reference signals to know how to compensate for
the distortions. These reference signals are retrieved by a matrix of Shack-
Hartmann wavefront sensors2 (WFSs) that analyzes the incoming light. The
wavefront sensors are placed after the focal point of the secondary mirror.
The conceptual design of a Shack-Hartmann WFS is shown in figure 1.3. In
a Shack-Hartmann WFS the incoming light firstly passes though a lens that
makes the light rays parallel. The parallel light rays then passes through many
small lenses that are mounted in a matrix pattern. The small lenses focus the
light to a certain point in the focal plane. If this point do not coincide with
the focal point of the lens, the incoming light ray has been distorted. A CCD-
camera then measures the deviation from the focal point of the little lenses.
This gives information about how much the incoming light ray has been dis-
torted. The incoming light can be represented as plane wavefronts with the
same phase instead. The resulting wavefront is perpendicular to every light
ray. This implies that wavefront slopes can be measured, instead of light ray
angles, in accordance with the sensor name. All slopes of different parts of the
wavefront can be interpolated in order to reconstruct a full wavefront. This re-
constructed wavefront is mapped to reference signals for every actuator in the
secondary mirror. The task for the adaptive optics control system is to follow
this reference for every actuator.

1.5 Previous research

There is a couple of research groups involved in control of deformable mir-
rors. Among these, a group of Italian scientists from Osservatorio Astrofisico
di Arcetri in Firenze, has been most successful so far. They have implemented

2Read about adaptive optics, atmospheric distortion and wavefront sensors in [11]
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Figure 1.3: The figure shows the conceptual design of a Shack-Hartmann
WFS.

control laws for two small physical deformable mirrors.

The first one is called MMT3363 and is 64.2 cm in diameter. The number of ac-
tuators is 336. Collocated with every actuator there is a capacitive sensor that
measures actuator deflection. They use equal proportional SISO controllers to
control the different actuators. Since the material itself is poorly damped ad-
ditional damping is needed to achieve good performance. A plate is mounted
50µm from the back of the mirror. The thin air gap between the mirror and the
plate increases the mirror damping extensively, provided the air gap is small.
The damping factor is inversely proportional to the gap size, h, to the power
of three. Damping∝ 1/h3. This results in a stable and fast controller. There are
however disadvantages with this method. First of all the productional cost is
high because of the required precision for the air gap. Furthermore the air gap
is sensitive to dust, which can ruin the damping properties. Thus the Italian
group abandoned this approach and introduced electronic damping instead.

3Read about the MMT336 in [4]
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Their second mirror was called LBT6724, with 672 actuators and a diameter
of 91.1 cm. In this project the structural damping using a plate was abandoned
and replaced by electronic damping. The electronic damping is straightfor-
ward. The sensor signals are differentiated, then sensor, and hence actuator,
positions and velocities are known. Equal proportional-derivative (PD) con-
trollers are implemented at every actuator location. The derivative part is used
for damping purposes. This has shown to be a feasible and well performing
approach when controlling a deformable mirror. To obtain accurate deriva-
tives, sensor signals need to be low-pass filtered and sampled with a high fre-
quency. The Italian group uses a position sampling frequency of 80 kHz.

The above mentioned adaptive mirrors are used or will be used in telescopes.
The MMT336 is used in the Multiple Mirror Telescope situated on Mount Hop-
kins, Arizona. The other adaptive mirror, LBT672, will operate in the Large
Binocular Telescope that is currently being constructed on a site at Mount Gra-
ham, Arizona5.

4Read about the LBT672 in [5]
5Read about the MMT and the LBT telescopes in [2] resp. [1]



Chapter 2

Objective of this Master Thesis

Adaptive optics on large deformable mirrors has not yet been performed upon
an actual mirror larger than 1 m. The vision of using adaptive optics with the
secondary mirror of ELT:s, requires this to be possible. This Master Thesis is
the first stage of an experiment that will take place at Lund Observatory. The
objective of this experiment, hence also this Thesis, is to find a control law that
controls a 1.45 m deformable circular mirror. This control law will then be ex-
panded and applied to the secondary mirror of Euro50.

The control law will be derived under the following guiding principles.

1. The whole control system should be kept as simple as possible.

2. The objective is not to find an optimal controller, but to find a controller
that is good enough.

3. Realization of the control system should be considered throughout the
development process. The derived controller should be straightforward
to implement in hardware and applied on the actual mirror.

4. Scalability of the control system is essential, in order to be applicable for
the larger secondary mirror of Euro50.

2.1 Control system specifications

The specifications of the control system are determined by atmospheric aber-
rations and telescope vibrations. Euro50 will be developed to compensate for
atmospheric aberrations in infrared (IR) wavelengths. The actuators, that con-
trol the mirror surface, should be mounted 68 mm from each other for IR com-
pensation to be achieved. For the secondary mirror of Euro50, this leads to
3169 actuators, while the deformable mirror in this master thesis will have 420

11



12 Chapter 2 Objective of this Master Thesis

actuators. Their stroke capacity is required to be up to 20 µm to compensate
for atmospheric distortions as well as structural deflections that arise when the
telescope is exposed to wind loads etc. These external disturbances will how-
ever be compensated by other control systems as well. The actuators will be
controlled in closed loop, which requires sensor measurements. To minimize
production costs, the sensors will not be collocated with the actuators. Sen-
sors that are located at actuator locations require much higher manufacturing
as well as mounting precision, which is expensive. Hence that configuration
is not chosen for the Euro50 secondary mirror. The sensors and actuators are
mounted in a hexagonal pattern at the back of the secondary mirror. This
mounting pattern is used for the smaller circular mirror in this thesis as well,
as shown in figure 2.1. As seen in the figure, there is a hole in the center of the
mirror. The mirror will be fixed there and the outer edge will be unconstrained.
The bandwidth requirement for the adaptive optics system is from 500 Hz up
to 1 kHz to achieve satisfying compensation. Another performance criterion
for the control system concerns the maximum Root Mean Square (RMS) value
of deformation deviations. The RMS for the current configuration, where IR
light is to be compensated for, is 80 nm. The RMS value is defined by

σ =

√√√√ 1

N

N∑
k=1

δ2
k (2.1)

where N is the number of samples and δ is the deformation deviation.

2.2 Work procedure

First of all a model of the system will be created. The most common model-
ing strategy when dealing with structures is FEM-modeling. Femlab is used
for as FEM-modeling software in this Master Thesis. Then a simulation en-
vironment will be set up in Simulink. Simulink is a tool for modeling and
simulating different systems. It runs as a companion to Matlab, which is a
widely used program for numeric mathematics. No actual mirror is available
at this stage, so the derived control law will be tested upon a mirror model in
Simulink. Controller stability and performance will be evaluated using Matlab
and Simulink. Then the control law will be changed according to observations
done during simulations. In a continuation of this Master Thesis the control
law will be implemented in hardware and tested upon an actual mirror.
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Figure 2.1: This is the layout of the deformable mirror in this Master Thesis.
The crosses (x) denote actuator positions whereas the dots (.) denote sensor
positions. There are altogether 420 actuators and 804 sensors.



Chapter 3

FEM-Modeling

In order to test a control law for the deformable mirror, a model of the mirror is
needed. The most common modeling strategy for large mechanical structures
is Finite Element Modeling, FEM. It is essential that this model is accurate
enough for the controller to work with the actual mirror.

3.1 FEM-modeling

The idea of FEM-modeling1 is to spatially discretize a structural system and
to virtually interconnect neighboring discretization points, nodes, via springs
and dampers. Every node has 6 degrees of freedom, dof:s, describing its pos-
sible movements. Three dof:s are translational whereas the other three are
rotational dof:s. Actually it is the interaction between neighboring dof:s that
is described with virtual springs and dampers. When connecting neighboring
nodes with lines, a pattern called mesh is generated. The denser this mesh
is, the closer to each other the nodes are and the more accurate the model
gets. To achieve acceptable performance of the model a large number of nodes
have to be chosen. This in turn makes the number of dof:s large. Since the
interaction between neighboring dof:s is represented by springs and dampers,
the interaction is mathematically described by spring-equations. The resulting
equation-system that appears when assembling all these equations into matri-
ces is usually very large. A feature of the system matrices is that they are sparse
since the dof:s are connected only to their neighbors. The equation-system that
describes the physical system is:

Mẍ + Cẋ + Kx = F (3.1)

M is the mass matrix, C the damping matrix and K the stiffness matrix. The
F vector represents the force load acting upon the different dof:s. The system

1Read more about FEM-modeling in [9] and [8].

14



3.2 Model reduction techniques 15

can be described in state space coordinates. Choosing positions and velocities
as states, the equation-system becomes:(

ẋ
ẍ

)
=

(
0 I

−M−1K −M−1C

)(
x
ẋ

)
+

(
0

M−1

)
F (3.2)

3.2 Model reduction techniques

Since FEM-modeling usually generates large system matrices, computer sim-
ulations using them are cumbersome. To reduce simulation times and to pre-
vent memory allocation errors, model reductions are of great need. The fol-
lowing sections will describe some useful methods that reduce the number of
states which in turn decreases the computational burden when simulating.

3.2.1 Modal truncation

Modal truncation2 is a commonly used reduction method. The idea is to de-
scribe the system with the modes that are significant to the behavior of the
structure. The rest of the modes are truncated since their influence upon the to-
tal behavior is negligible. A great benefit of this method is that it diagonalizes
the system matrices. This leaves a decoupled system, saying that the modes
do not influence each other. Modal truncation on a FEM-model generates a
system that is described by a number of uncoupled second order differential
equations. A difficulty might be to choose the important modes. There are
different methods that apply to different systems. One approach is to choose
a sufficient number of the lowest frequency modes. More reliable methods in-
volve calculation of the importance of each mode according to different norms.
When truncating the system, the chosen eigenmodes are put in columns in a
matrix, Φ. The eigenmodes are calculated from the generalized eigenvalue
problem KΦ = MΦΛ. Changing coordinates in 3.1 from x = Φq and left mul-
tiplying with ΦT gives:

ΦT MΦq̈ + ΦT CΦq̇ + ΦT KΦq = ΦT F (3.3)

Since the modes are shape functions they can be scaled by a factor and still
be modes to the system. This implies that a normalization of the eigenmodes
can take place. Mass normalization, ΦT MΦ = I is used to scale the modes.
The stiffness matrix then becomes ΦT KΦ = ΦT MΦΛ = IΛ, where Λ is a di-
agonal matrix containing the eigenvalues of the system. The damping matrix
can be chosen to introduce ordinary second order systems for every modal
coordinate, that is ΦT CΦ = 2ZΛ1/2 where Z contains the modal damping in

2Read more about modal truncation in [10].
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a diagonal matrix. The eigenvalue matrix, Λ, equals Ω2 where Ω is a diago-
nal matrix that contains the angular eigenfrequencies. This results in a system
with a number of decoupled second order differential equations:

q̈ + 2ZΩq̇ + Ω2q = ΦT F (3.4)

This shows that the system is diagonalized by the modal truncation. The
eigenfrequencies of the system are obtained by dividing the angular eigen-
frequencies, Ω, by 2π.

3.2.2 Guyan reduction

Another method that reduces the number of dof:s in a FEM-model is the Guyan
reduction. The advantage of this method in comparison with the modal trun-
cation is that Guyan reduction keeps a reduced number of the original dof:s
which is useful in some applications. Also in Guyan reduction the retained
dof:s has to be chosen. The retained dof:s are called master whereas the trun-
cates ones are called slave. Methods that select optimal choices of master dof:s
do exist. This is done by determining the ratio between stiffness and mass.
High stiffness and low inertia gives a less significant dof and vice versa. All
applications however do not require an optimal optimal choice of master dof:s.
In these cases the master dof:s can be chosen arbitrarily. Accuracy of the re-
duced model then has to be tested. In Guyan reduction the mass- and stiffness
matrices are rearranged according to master and slave dof:s:(

Mmm Mms

0 0

)(
ẍm

ẍs

)
+

(
Kmm Kms

Ksm Kss

)(
xm

xs

)
=

(
F
0

)
(3.5)

The inertia of the slave dof:s are approximated to be zero. The second row in
the equation says Ksmxm+Kssxs = 0 which is equivalent to xs = −K−1

ss Ksmxm.
A transformation matrix can be constructed:(

xm

xs

)
= Txm , T =

(
I

−K−1
ss Ksm

)
(3.6)

Changing coordinates and multiplying T T from the left gives

Mrẍm + Crẋm + Krxm = F (3.7)

where Mr = T T MT , Cr = T T CT , Kr = T T KT and T T (F 0)T = F .

These new mass and stiffness matrices are of the same size as the number of
dof:s retained. One approximation in this reduction method is that the mass
elements associated with the slave dof:s are approximated to be zero. This is
perhaps not a very good approximation, but the method is still very commonly
used in FEM-modeling.
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3.2.3 Dynamic condensation

The approximation of zero mass inertia for slave dof:s in Guyan reduction
might be bad. Dynamic condensation is another reduction method that in-
clude the influence of the slave dof:s inertia. The method is very similar to
Guyan reduction:(

Mmm Mms

Msm Mss

)(
ẍm

ẍs

)
+

(
Kmm Kms

Ksm Kss

)(
xm

xs

)
=

(
F
0

)
(3.8)

The second row is extracted and transformed into the frequency plane.
−ω2Msmxm − ω2Mssxs + Ksmxm + Kssxs = 0 From this, the transformation
matrix, T , can be derived:(

xm

xs

)
= Txm , T =

(
I

− (Kss − ω2Mss)
−1

(Ksm − ω2Msm)

)
(3.9)

The transformation matrix is applied in the same manner as in equation 3.7.
Dynamic condensation optimizes the reduced systems accuracy at one desired
frequency chosen in ω as opposed to Guyan reduction which optimizes accu-
racy in static conditions.

3.2.4 Iterative Improved Reduced System - IIRS

Iterative IRS is based on dynamic condensation and is extended with an ad-
ditional corrective term that is generated iteratively. There are proofs, see [6],
showing that the natural frequencies of the IIRS reduced model converge to
the natural frequencies of the full model. Also for IIRS a transformation ma-
trix is used to decrease the number of dofs. This transformation matrix, Ti+1

applied in the same manner as in 3.9, is calculated and iteratively improved
with the following formulas:

Ti+1 =

[
I

ti+1

]
(3.10)

where,
ti+1 = ts + K−1

ss [Msm Mss]TiM
−1
Ri KRi (3.11)

with,
t0 = ts = −K−1

ss Ksm (3.12)
The reduced stiffness and mass matrices after the i:th iteration are defined as:

KRi = T T
i KTi (3.13)

and
MRi = T T

i MTi (3.14)
This reduction method is more accurate than the two previously discussed. It
requires however more computational effort to derive the desired model.



18 Chapter 3 FEM-Modeling

3.3 The mirror model

In this Master Thesis Femlab was used to create the desired FEM-model. Since
the mirror is very thin compared to the diameter, 3.3 mm contra 1.45 m, it
was modeled as a 2-D shell element. Shell elements describe the behavior
better than 3-D elements when dealing with such ratios between dimensions.
3-D structures can shear lock themselves leading to smaller deflections in the
model than in reality. Another advantage with 2-D shell elements is that the
number of nodes is greatly reduced. Since structure behavior is known at
node locations, actuator and sensor locations will be chosen as nodes. More
nodes are necessary to describe the circular boundaries accurately. These extra
nodes are automatically chosen by Femlab using Delaunay triangulation. The
method maximizes the minimum angle of the triangles that appear when con-
necting the neighboring nodes with lines. This pattern is, as mentioned earlier,
called a mesh and the density of this mesh is user defined in Femlab. Figure
3.1 does show the mesh and the interconnecting virtual springs and dampers
for one chosen mesh density. The FEM-model equation has one mass matrix,
one damping matrix and one stiffness matrix. The damping matrix can not be
exported or predicted by a FEM-modeling program. Hence the damping has
to be decided upon by the user. In cases of structures like this, a low modal
damping is commonly used.

3.3.1 FEM-model verification

As mentioned the mesh density of the FEM-discretization is user defined. In
Femlab there are seven different choices from extremely coarse, over normal
to extremely fine. The accuracy of the different mesh choices can be analyzed.
Analytical formulas for edge deflection when different loads are applied can
be found in [12]. In chapter 10, table 24.1.l, an example that can be applied
to this system is found. It is a circular, thin plate with fixed inner edge and a
circular line load applied at a chosen radius from the center. The deflection at
the outer edge is:

z =
−wa3

D

[
C2

C8

(
r0C9

b
− L9

)
− r0C3

b
+ L3

]
(3.15)

Where w is the line load [pounds/inch], a is the outer radius [inch], b the inner
radius [inch], D = Et3/12(1 − ν2), E is modulus of elasticity [pounds per
square inch], ν is Poissons ratio, t is the plate thickness [inch], r0 is the radius
of the applied load, and the remaining constants are defined below:

C2 = (1/4)[1− (b/a)2(1 + 2 ln(a/b))]

C8 = (1/2)[1 + ν + (1− ν)(b/a)2]
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Figure 3.1: The left figure shows a mesh for the deformable mirror. Compare
the mesh to sensor and actuator placements in 2.1. Every sensor and actuator
position is a node in the mesh. The right figure shows how the nodes are
virtually interconnected via springs and dampers in FEM-modeling.

C9 = (b/a){[(1 + ν)/2] ln(a/b) + [(1− ν)/4][1− (b/a)2]}
C3 = (b/4a){[(b/a)2 + 1] ln(a/b) + (b/a)2 − 1}
L3 = (r0/4a){[(r0/a)2 + 1] ln(a/r0) + (r0/a)2 − 1}
L9 = (r0/a){[(1 + ν)/2] ln(a/r0) + [(1− ν)/4][1− (r0/a)2]}

When applying a line load of 1.0 kg/m (= 0.0560 pounds/inch) at a 30.0 cm (=
11.811 inch) radius from the center the outer radius deflection according to the
analytical formula is -70.498 µm. A comparison with deflections using differ-
ent mesh densities in the FEM-model is done and presented below.

Mesh Nbr dof:s Boundary deflection Error
Extremely coarse 11562 -71.93 µm 2.03 %
Coarser 18894 -71.10 µm 0.85 %
Normal 24300 -70.63 µm 0.19 %
Finer 26274 -70.58 µm 0.12 %
Extremely fine 38250 -70.53 µm 0.05 %

As seen, all different choices of mesh density lead to static errors less than
approximately 2%. Since computer simulations on an ordinary PC are not fea-
sible with any of the full FEM-models, model reductions are needed. These re-
ductions introduce further approximations leading to errors. Hence the model
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using the extremely coarse mesh density is sufficient and therefore chosen. It is
preferable to keep the model as small as possible without compromising with
its accuracy.

3.3.2 Selection and verification of reduced model

Different model reduction techniques are suitable for different problems. When
a direct physical interpretation of the model states is desired, Guyan reduction,
dynamic condensation or IIRS is appropriate. Modal truncation is commonly
used when the states do not need to be physically observed. Another advan-
tage with modal truncation is that a modal damping that is commonly used is
easily implemented. Hence modal truncation is chosen to describe the mirror
behavior when simulating.

As mentioned, the damping is not given by the FEM-program, leaving the
decision of the damping matrix to the user. Modal damping is commonly ac-
cepted when dealing with structures like this mirror. Either a constant modal
damping or a frequency dependent damping (Rayleigh damping), where higher
frequency modes are more damped, is usually chosen. In this thesis both low
constant modal damping and low frequency dependent damping is evaluated.
Figure 3.2 plots Bode diagram for all actuator to actuator transfer functions
with a constant modal damping of 0.02. The figure contains only 43 different
Bode plots. All actuator to actuator transfer functions are there since there is
symmetry in actuator placements leading to some identical transfer functions.

Modal truncation says that modes are to be truncated from the mirror model.
The retained modes have to be chosen somehow as discussed in 3.2.1. Here
the one thousand lowest frequency eigenmodes are retained and the rest are
truncated. The frequencies of the retained modes range from 3.8 Hz up to 5504
Hz. Sufficiency in the number of retained modes must be verified. This is done
through analysis of static behavior as well as a discussion about how the dif-
ferent modes will be controlled. Some of the mode shapes are shown in figure
3.3.

All the different modes have different stiffness. Low frequency modes have
low stiffness and accordingly high frequency modes have high stiffness. This
implies that different forces have to be applied to deflect different modes equally
much. For the lowest frequency mode to deflect a maximum of 1 µm a 5× 10−4

N force is needed. In order to deflect mode 1000 a maximum of 1 µm a force
of 1 kN is required. Applying 1 N to mode 30 results in 1 µm deflection. Since
the control system will operate with forces around 1 N and mirror deflections
around 1 µm only low order modes, approximately a couple of hundred, will
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Figure 3.2: Bode diagrams for the different actuator to actuator transfer func-
tions when having constant modal damping of 0.02 and the modal truncated
model.

Figure 3.3: Some of the mirror eigenmodes are plotted in this figure. Mode
number and eigenfrequency for each mode is also presented.
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Figure 3.4: The figure shows the modal stiffness. Too stiff modes are not
controlled in closed loop but in open loop via the feed forward.

be controlled in closed loop. Higher order modes are controlled in open loop
using feed forward to achieve correct static behavior. This implies that a suffi-
cient number of modes are retained to describe system behavior satisfactorily,
if the static behavior is acceptable. Even higher order modes can be interpreted
as noise to the system. A plot showing stiffness contra mode number is pre-
sented in figure 3.4.

Comparing the reduced model with the full FEM-model when applying a 1
N force at an actuator position lead to small differences. The largest ratio be-
tween the deflections of the reduced model and the full FEM-model appear
close to the inner boundary. The ratio is however everywhere less than 1.0005
which confirms the correctness and accuracy of the derived reduced model.

Three more reduction methods have been described in this chapter. These
are used to derive a model for actuator and sensor positions and velocities out
of plane, since these are the interesting states when controlling the structure.
The accuracy of the reduced models will be discussed here. The IIRS-reduced
model has been derived by 25 iterations.
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Among the 1000 retained modes in modal truncation, 23 are purely in-plane
modes. The reduced models describe deflections out of plane; hence these 23
modes will not be contained in the reduced models. Taking this into consider-
ation a modal frequency comparison can be made. As mentioned the lowest
frequent modes are controlled through feedback, hence these are most impor-
tant. Mean natural frequency errors in percentage for the different models are
presented below:

Guyan reduction Dynamic condensation Iterative IRS
Avg err, 1000 modes 35.2% 7.3% 0.08%
Avg err, 300 lowest modes 26.5% 0.8% 0.02%

This says that IIRS is the best reduction method dynamically. Statically all
methods produce errors smaller than 0.001% when applying a 1 N force at
an actuator location. The dynamic accuracy of the model is, however, more
dependent upon the choice of damping matrix than the choice of reduction
method. Hence dynamic condensation will be used when a direct physical in-
terpretation of the states is needed in subsequent chapters. The dynamic con-
densation is accurate enough and it is much faster to obtain a reduced model
using this method than with IIRS.

3.4 Simulation

The purpose of the mirror model and its reductions is to enable simulation
of the mirror behavior. This renders information about how the mirror be-
haves when subjected to forces. In the previous section a modal truncated FEM
model was decided upon to represent the mirror. The mirror model equations
are (see 3.4):

q̈ + 2ZΩq̇ + Ω2q = ΦT F (3.16)
y = Cq

The state space representation of the system is:(
q̇
q̈

)
=

(
0 I
−Ω2 −2ZΩ

)(
q
q̇

)
+ BF (3.17)

y = Cq

where B = (0 ΦT )T . Simulink is used to create the desired simulation envi-
ronment. The Simulink representation of the modal mirror model is shown in
figure 3.5. The routing in the model is optimized with respect to simulation
times. Different control algorithms will be derived in subsequent chapters.
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Figure 3.5: The Simulink model of the mirror. Compare the routing to the
state space model in equation 3.17.

The performance of these algorithms will be tested in this simulation environ-
ment.
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Control

4.1 Control strategy

To decide upon a control strategy, previous research (section 1.5) is consid-
ered, bearing the guiding principles (chapter 2) in mind. The simplicity of the
second SISO approach developed by the Italian group with PD controllers for
every actuator is appealing. The difference between the mirror of the Italian
group and the mirror in this master thesis is that the sensors are not collo-
cated in this problem. This suggests a control law based on a state feedback
controller with an observer that estimates actuator positions and velocities.
The estimates will be fed back to the local SISO controllers that will be imple-
mented as ordinary PD controllers. To benefit from the SISO controlling scal-
ability, the observer needs to be distributed. To update a state in a distributed
observer, only information from its physically neighboring states should be
needed. A centralized observer, on the other hand, needs information from
all states to update other states. When the system is large and complex, a dis-
tributed control approach implies faster and more efficient control. The poorly
damped material, with many eigenfrequencies inside the desired controller
bandwidth, requires a controller with high sampling frequency. Also this im-
plies that a distributed controller is preferable. Preceding considerations imply
that this control strategy can be divided into two subtasks:

1. Find a controller that stabilizes the mirror with actuator state-feedback,
starting with a SISO approach.

2. Create a distributed observer that estimates position and velocity in the
actuator positions.

25
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4.2 State feedback control

As mentioned the control problem can be divided into two subtasks. In this
chapter a state feedback controller will be designed. Information about actua-
tor positions and velocities is assumed here assumed to be known.

4.2.1 SISO controller

The simplest distributed controller is to have a SISO controller for every actu-
ator. These SISO controllers calculate the actuator forces with feedback from
the same actuator states only. The force applied by an actuator is calculated
by:

f = −n(x− xr)− lẋ + nrxr (4.1)

where x = actuator position, ẋ = actuator velocity, xr = reference value, n =
proportional gain, l = derivative gain nr = feed forward gain. This is an ordi-
nary PD controller that is used at all actuator locations. The proportional part
and the derivative part control the actuator in closed loop. The feed forward
is an open loop component that is added to eliminate static errors. When as-
sembling all PD controllers into matrix form, the following system equation
appear (compare to equation 3.1).

Mẍ + Cẋ + Kx = −FNF T (x− xr)− FLF T ẋ + FNrF
T xr (4.2)

The F factor in FNF T and FLF T decides upon which state the applied actua-
tor forces operate in the equation system. N and L are diagonal matrices since
the controllers are chosen to be of SISO type. All the different SISO controllers
are represented with their respective proportional gain, n in the diagonal of N .
The same holds for L and l. Absolute tuning of these parameters is somewhat
uninteresting since direct feedback from actuator states is impossible when
dealing with the actual mirror. The diagonal elements of N , that is the propor-
tional part of the PD controllers, are however chosen to create a not too large
overshoot when executing a step response test. The diagonal elements of L,
that is the derivative part of the PD controllers, are then chosen to minimize
oscillations after a step response test. n and l for the different SISO controllers
are chosen equal, since the interaction between neighboring actuators is large.
Then the effect of neighboring control action is not too significant to compen-
sate for. The feed forward term Nr is the only control parameter left to decide.
The purpose of Nr is to eliminate static errors by making the static amplifica-
tion one. Calculation of Nr is done by transforming the system into state space,
z = (x ẋ)T : (

ẋ
ẍ

)
= A

(
x
ẋ

)
+ B

(
x
ẋ

)
+ Rxr (4.3)
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y = (D 0)

(
x
ẋ

)

where,

A =

(
0 I

−M−1K −M−1C

)

B =

(
0 0

−M−1FNF T −M−1FLF T

)
(4.4)

R =

(
0

M−1F (Nr + N)F T

)

Hereafter the transfer function from reference signal to output is calculated:

Y (0) = (D 0)(sI − A−B)−1(0 M−1F (N + Nr)F
T )T Xr (4.5)

Statically the transfer function is D(−A − B)−1(0 M−1F (N + Nr)F
T )T . Nr is

chosen to make the static transfer function equal to the identity matrix, which
eliminates static errors because Y (0) = IXr. This feed forward matrix, Nr, is
however dependent on the mirror model. If the static deflections of the model
are not the same as those of the actual mirror, this feed forward matrix has
to be adjusted. Further the feed forward term is centralized, meaning that
all reference signals influence all actuators to achieve correct static behavior.
This is not in contradiction to the stated control strategy of a fast distributed
controller. The reason is that the references will be applied in a slower outer
control loop. When dealing with the actual mirror, this feed forward matrix
cannot be directly applied. It is sensitive to mounting errors etc and has to be
determined once the mirror is at place.

This controller has in simulations shown good performance. Exact perfor-
mance evaluation at this stage is however not interesting since this controller
without observer is not realizable. Further it has been proved to be stable with
all closed loop system eigenvalues in the left half plane. Mathematical consid-
erations can also be used to prove stability which is done below. The feedback
dynamics of system is:

Mẍ + Cẋ + Kx = −FNF T x− FLF T ẋ (4.6)

A Lyapunov function, V (x), i chosen:

V (x, ẋ) = ẋT Mẋ + xT (K + FNF T )x (4.7)

Differentiating V (x, ẋ) with respect to time gives:

V̇ (x, ẋ) = ẋT Mẍ + ẍT Mẋ + ẋT (K + FNF T )x + xT (K + FNF T )ẋ (4.8)
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Since M = MT and (K + FNF T ) = (K + FNF T )T the following hold:

ẍT Mẋ = (ẍT Mẋ)T = (Mẋ)T ẍ = ẋT Mẍ (4.9)

and

xT (K+FNF T )ẋ = (xT (K+FNF T )ẋ)T = ((K+FNF T )ẋ)T x = ẋT (K+FNF T )x
(4.10)

Insertion of 4.9 and 4.10 into 4.8 gives:

V̇ (x, ẋ) = 2ẋT Mẍ + 2ẋT (K + FNF T )x

= 2ẋT (−(C + FLF T )ẋ− (K + FNF T )x) + 2ẋT (K + FNF T )x

= −2ẋT (C + FLF T )ẋ (4.11)

Lyapunov theorem for global asymptotic stability says that if:

1. V (0) = 0

2. V (x) > 0 for all x 6= 0

3. V̇ (x) < 0 for all x 6= 0

4. V (x)→∞ as ‖ x‖ → ∞

then x = 0 is globally asymptotically stable. Since M , K+FNF T and C+FLF T

are all positive definite, the Lyapunov conditions hold, which proves stability
for this state feedback controller when fed with correct state information.

4.3 Simulation

When the feedback is assumed to be exactly correct, information about ac-
tuator states can be extracted from the mirror model when simulating. The
simulation environment in Simulink is shown in figure 4.1. The mirror model
is the same as in figure 3.5.
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Figure 4.1: The Simulink model when the controller is fed with actual actuator
state information. The states are position and velocity. N is the proportional
gain of the controller and the L is the derivative gain of the controller. The
subsystem ”Mirror model” is shown in figure 3.5.
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Observer

The derived controller requires accurate state feedback from actuator positions
and velocities. Since the sensors are located between the actuators, sensor mea-
surements cannot directly serve as state feedback. An observer is needed to
estimate the actuator states. The overall control strategy is to have a fast local
feedback; therefore the observer should be distributed. In this section differ-
ent observers and their accuracy will be discussed in order to decide upon
what kind of observer that is needed. The possibility to distribute the observer
is crucial, this will be addressed ones an accurate enough central observer is
obtained.

5.1 Smoothing

Initial attempts to find an observer was carried out using spatial smoothing.
The idea behind smoothing is to retrieve the shape of a structure based on
spatially discretized samples. In this case sensors are the discretized sampling
points. The whole structure shape is not needed here, only actuator positions
need to be known. Every actuator has six surrounding sensors. One smooth-
ing possibility would be to create a mean value from the surrounding sen-
sors and use it as position state for the actuator. This is however not accurate
enough since the largest deformations appear in actuator locations where the
forces are applied. Figure 5.1 illustrates the problem. In order to create a more
accurate observer based on smoothing, a Guyan reduced model, 3.2.2, is used.
The retained states are z-translations for actuators and sensors. The following
matrix transformations are used to create a static relationship between sensor
measurements and actuator states.

Krxm =

(
Kaa Kas

Ksa Kss

)(
xa

xs

)
=

(
F
0

)
(5.1)

Index a is for actuators and s for sensors. Rearranging the second row of the
matrix equality gives: xs = −K−1

ss Ksmxm. Pseudo inverting the transformation

30
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Figure 5.1: The figure shows why the mean value of surrounding sensor mea-
surements is a bad estimation of the actuator position. This is because the
maximum deformations appear where the forces are applied.

matrix−K−1
ss Ksm gives the static relationship between sensor and actuator po-

sitions.

5.1.1 Limitations

There are two main limitations when using smoothing in this context. It only
estimates position states and no velocity states. To estimate velocities, a dif-
ferentiation of position estimates has to take place. This would be possible
if sensor signals were being low-pass filtered and sampled with a high fre-
quency. The other limitation is of more important nature. Smoothing in this
case considers only static relationships. Control of structures of this type re-
quires dynamically as well as statically accurate estimates. Smoothing does
not give accurate enough state estimates, hence this approach is abandoned.

5.2 Kalman filtering

Feedback requirements of dynamically and statically correct estimates suggest
that a Kalman filter is needed. General Kalman filters will be briefly intro-
duced before discussing Kalman filters in this particular case. The idea of the
Kalman filter is to use a model of the structure whose states are to be esti-
mated. In addition a corrective term is applied comparing the plants outputs
to the Kalman filter outputs. The discrete Kalman filter:

x̂(k + 1) = Φx̂(k) + Γu(k) + Kd(y(k)−Dx̂(k)) (5.2)



32 Chapter 5 Observer

The continous Kalmanfilter:

˙̂x = Ax̂ + Bu + Kc(y −Dx̂) (5.3)

Comparison with the FEM state space model 3.2 shows that the difference is
the additional corrective term, Kc(y − Dx̂). This term compares the observer
output to the plant output. The K matrices are determined to minimize the
estimation error variance using the continuous respective the discrete Riccati
equations. The hat in the above equations denotes that it is an estimate of the
real state. In this Thesis mostly discretized Kalman filters with high sampling
frequencies will be used to reduce simulation times. The theory however will
be mostly covered in continuous time since the original FEM-model is contin-
uous.

5.2.1 Kalman filtering using the full FEM-model

Problems occur directly when trying to use the Kalman filter with the full
FEM-model. A state space representation of the Kalman filter in this case is:(

˙̂x
¨̂x

)
=

(
0 I

−M−1K −M−1C

)(
x̂
˙̂x

)
+

(
0

M−1

)
F + Kc

(
y − (D 0)

(
x̂
˙̂x

))
(5.4)

The state space representation of the Kalman filter consists of the state space
representation of the FEM-model found in equation 3.2 and the corrective
term, Kc = (y − (D 0)(x̂ ˙̂x)T ). The original FEM-model describes the system
with large and sparse matrices as mentioned in 3.1. Inversion of the M -matrix
generates a full matrix causing memory allocation error when trying to sim-
ulate. More consequences of the full M -inverse are that distribution of the
originally sparse matrices is not straightforward.

5.2.1.1 Distribution

An approach to overcome the distribution problem caused by the full inverse
of M is needed. Since M is sparse, a distributed approximation of its inverse
can be done through introduction of an additional state variable, p. This p is
introduced to approximate the second derivative of x without having to use a
full inverse of the M -matrix. The second derivative approximation is:

p = ẍ

ṗ = −g(Mp + Cẋ + Kx− F ) (5.5)

If g is chosen large, ṗ will converge to zero very fast. When ṗ approaches
zero, Mp + Cẋ + Kx − F also approaches zero. According to equation 3.1,
Mẍ + Cẋ + Kx − F = 0. Thus p approaches ẍ when ṗ approaches zero and
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can serve as an approximation of the second derivative of x. The full system
in state space with this approximation follows: ẋ

ẍ
ṗ

 =

 0 I 0
0 0 I

−gK −gC −gM


 x

ẋ
p

+

 0
0

gF

 (5.6)

This leaves a distributed system with sparse matrices. There are however
problems with this approach. As mentioned, the full FEM-matrices, which
are very large, are used. All states in the model have to be estimated to extract
the estimations of the interesting 840 states used in the feedback (420 actua-
tor position states and equally many actuator velocity states). More accurately
17343 states need to be estimated to obtain the required 840 estimates. The
number of estimations needed is determined by the number of dofs in the full
FEM-model (11562), multiplied by three because of the size of the state space
model, and divided by two since z-translation do only depend on itself and
x- and y-rotation. The estimation of the not required states is a time consum-
ing and inefficient task that limits the sample frequency. The second problem
is that of choosing the variable g. The difficulty lies in to make the system
stable, while keeping it a good approximation to the real system. This was
not accomplished. The structural damping of the system is very low, leading
to instability when approximating the acceleration for almost all choices of g.
By increasing the structural damping in the model, a stable system for some
choices of g can be obtained. This choice of structural damping, however, does
not represent the damping of the real system. Preceding arguments suggests
that a model reduction is needed for the Kalman filter to be feasible.

5.2.2 Kalman filtering using a reduced model

Numerous reduction methods are discussed in chapter 3.2. The dynamic re-
duction method, see chapter 3.2.3 for further details, is used in the continua-
tion because it is fairly rapidly computed and accurate enough. When using
this reduced model in the observer, accurate results are obtained. The observer
is described by equation 5.4, with the reduced matrices as system matrices.
When using dynamic condensation master and slave states must be chosen. In
this case the interesting z-translation for the actuators and sensors are chosen
as master states. This results in reduced system matrices that are 1224×1224.
Both the reduced system matrices and the M -inverse matrix are full. Hence
the distribution problem is still not solved. An accurate Kalman filter is rather
easily obtained. The difficulty is the distribution of the Kalman filter, which is
addressed in the next section.
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Figure 5.2: The figure shows a surface plot of the reduced stiffness matrix. As
seen, far away states do not influence much. Altogether the far away states
do, however, influence too much to be neglected.

5.2.2.1 Distribution

Physical considerations might imply that states spatially far away from the in-
teresting state are of negligible importance, implying that the influence from
these can be approximated to be zero. When examining the system matrices
conclusions about the influence of far away states can be drawn to be small.
Figure 5.2 shows a surface plot of the stiffness matrix of the reduced model.
However, not only state dependencies need to be addressed. In order to create
a distributed observer, far away inputs need to have negligible influence as
well. The input matrix has similar structure as the stiffness matrix, saying that
forces applied far away seem to have a negligible influence. Distribution of
the Kalman filter might then be done through a dependence truncation of the
system matrices. States and forces that influence less than a threshold of 0.1%
upon a state will be approximated to not influence at all. This however has
shown to be a too inaccurate approximation since there are too many states
that have a small interaction that is neglected. Altogether this leads to a large
dependence. If the influence threshold is reduced, the distribution areas be-
come too large, leading to an unfeasible distribution.

Another distribution method would be to introduce a distributed Kalman fil-
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ter. There is much literature1 covering distribution of a Kalman filter with
loops in the communication topology. Distribution of the Kalman filter used in
this case will lead to extensive calculations. The reason is that every calculation
unit includes the reduced model with estimates of all states in the Kalman filter
model. Most of these states are not used as shown in the following example.
There are 420 actuator and hence 420 calculation units distributed over the mir-
ror. The Kalman filter system matrix seen in equation 5.4 is 2448×2448 which
says that the state vector to be estimated contains 2448 states. Altogether this
results in 420×2448=1028160 state estimates being performed at every update.
The task for every calculation unit is to estimate position and velocity states
for its associated actuator. Altogether 840 state estimates is needed for the
feedback, that is the position and velocity for the 420 actuators. As seen, a dis-
tributed Kalman filter of this type is not recommendable because of the heavy
calculation burden.

5.2.3 Kalman filtering using distributed local models

Previous sections say that a Kalman filter using the complete mirror model is
hard to distribute over many calculation units. This suggests introduction of
many small local Kalman filters that each estimate the states of one actuator.
Every actuator is provided a unique local Kalman filter. Altogether these local
Kalman filters estimate all actuator states. Figure 5.3 shows the local model in
the Kalman filter. As seen, the center actuator depends only on the surround-
ing sensors and actuators within two actuator rings. Dynamic condensation,
see 3.2.3, is used to derive the small local models needed for these Kalman
filters. States associated with the actuators and sensors in the local model are
chosen as master states in the reduction process. The mass and stiffness matri-
ces are as usual rearranged in master and slave states:(

Mmm Mms

Msm Mss

)(
ẍm

ẍs

)
+

(
Kmm Kms

Ksm Kss

)(
xm

xs

)
=

(
F1

F2

)
(5.7)

F1 contains the forces applied inside the local model. An approximation has
to be made to be able to implement these local models distributed. Forces out-
side the local model must be approximated to not directly affect the center of
the model. In the equation this correspond to F2 being zero. Dynamic conden-
sation is applied to obtain the local model. The full system is described by the
following equation with M, C and K rearranged as in equation 5.7:

Mẍ + Cẋ + Kx = (F1 0)T (5.8)

1See [3] for an example of a distributed Kalman filter.
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Figure 5.3: The left figure shows the deformable mirror as in figure 2.1. The
right figure shows how the local models are chosen with one center actuator
and all sensors and actuators within two actuator rings.

This equation is transformed by the transformation matrix T used in dynamic
condensation, see chapter 3.2.3 for details:

T =

(
I

− (Kss − ω2Mss)
−1

(Ksm − ω2Msm)

)
(5.9)

The transformed model contains only the master states which says that a local
model is obtained:

T T MTẍm + T T CTẋm + T T KTxm = F1 (5.10)

New mass, damping and stiffness matrices are obtained that describe the local
behavior, T T MT = Mr, T T CT = Cr, T T KT = Kr. To use this model in a
Kalman filter a state space representation is needed. The Kalman filter equa-
tion is:(

˙̂xm

¨̂xm

)
=

(
0 I

−M−1
r Kr −M−1

r Cr

)(
x̂m

˙̂xm

)
+

(
0

M−1
r

)
F1+Kc

(
y −D

(
x̂m

˙̂xm

))
(5.11)

The task for every local Kalman filter is, besides to estimate the states of the
center actuator, also to estimate the states for one, two or three of its surround-
ing sensors.
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Every actuator position will be the center in a local Kalman filter. This results
in 420 different Kalman filters. The Kalman filters need accurate information
from neighboring states and forces to estimate their states. These surrounding
states are accurately estimated by other Kalman filters. The required state es-
timations are therefore provided by the surrounding Kalman filters.

The local models have in simulations shown to estimate the states accurately,
both dynamically and statically, when fed with actual sensor and actuator
state information. When the state estimates, on the contrary, originate from
the other Kalman filters, as is planned for this observer, problems occur. Dy-
namically the observer behaves correctly, but when the mirror is static a state
wind up in the estimation occur.

5.2.3.1 Problem - Sharing estimates

A scenario that reveals the cause of the wind up problem is described here.
Denote an actuator A, anywhere on the mirror surface. One position and one
velocity state is associated with this actuator, as well as all the other actuators.
The states are estimated by the local Kalman filter and sent to the neighbor-
ing Kalman filters in order for them to update their states. Denote one of A:s
neighboring Kalman filters B and assume that the mirror is static. B uses state
and force information not used by A when estimating its states, since their re-
spective local models are not the same. The state estimate originating from
A might be slightly wrong in order for the state estimates in B to stay static.
When the states in B have been updated, they are sent to all its neighbors, in-
cluding to A. This will result in a slight change of state estimates also in A.
The procedure is repeated between all Kalman filters, leading to a drift in the
estimates. These loops, that cause the drift in the state estimates, exist all over
the mirror surface between all shared estimates. This problem is needed to be
solved for the distributed observer to function.

An approach to solving the drift problem is to share and to update the models
using measurements instead of estimates. This approach need new local mod-
els where state estimates depend on sensor measurements and applied forces
only.

5.2.3.2 Solution - Sharing measurements

As mentioned, new models have to be derived in order for estimates to depend
on measured values only. Previously the local models contained actuator and
sensor states in a surrounding area, see figure 5.3. This approach required ac-
tuator state information, that was estimated by other models. The fact that
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Figure 5.4: The left figure shows the deformable mirror as in figure 2.1. The
right figure shows how the local models are chosen with one center actuator
and all sensors within two actuator rings. The difference from the local model
in 5.3 is that actuator states are not present in this model. To account for the
forces applied at those actuators, their impacts are transformed into virtual
forces at the sensor locations.

estimates was shared resulted in drift of state estimations. To overcome this
problem, new models that depend on surrounding sensor states only, have
been derived. The new local model is shown in figure 5.4. Here measure-
ments and differentiated measurements can be directly applied when estimat-
ing the center actuator states. This solves the problem of estimation drift since
measurements are shared instead of estimates. One issue concerning actuator
forces remains however. In the previous local model, actuator states and the
forces acting upon them, were included in the model. These forces do still di-
rectly affect the behavior of the center actuator states. Hence it is necessary for
those forces to be accounted for in the new local models. The applied forces
can actually be transformed to virtual forces at the surrounding sensors loca-
tions in the local model. This is done through dynamic condensation, chapter
3.2.3. The mass and stiffness matrices are as usual rearranged with the states
in figure 5.4 chosen as master states:(

Mmm Mms

Msm Mss

)(
ẍm

ẍs

)
+

(
Kmm Kms

Ksm Kss

)(
xm

xs

)
=

(
F1

F2

)
(5.12)
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F1 contains forces applied to the master states. The only master state that is
an actuator, is the center actuator who’s states are being estimated. Accord-
ingly F1 do only contain that force. F2 contains all forces except the center
actuator force. The forces applied outside the previously used local model is
in F2 approximated to be zero. The reason is to maintain the distribution. The
remaining forces applied at actuator locations in the previous local model are
here contained in F2. The transformation matrix for dynamic condensation,
see 3.9, is:

T =

(
I

− (Kss − ω2Mss)
−1

(Ksm − ω2Msm)

)
(5.13)

This is applied to the system:

Mẍ + Cẋ + Kx = (F1 F2)
T (5.14)

Leading to:

T T MTẍm + T T CTẋm + T T KTxm = T T (F1 F2)
T (5.15)

xm are the master states, that is, the states in the local model. T T MT = Mr,
T T CT = Cr and T T KT = Kr are the reduced mass, damping and stiffness
matrices for this local model. These system matrices are always square and
the size is the same as the number of master states chosen, that is 25 according
to figure 5.4. This can be compared to the original mass, M , damping, C and
stiffness, K, matrices that are 11562x11562. The transformation matrix does
not only transform the system matrices to reduce the number of states needed,
but does also transform force impact points. The right hand side of equation
5.15 can be written as:

T T (F1 F2)
T = F1 − (Kss − ω2Mss)

−1(Ksm − ω2Msm)F2 (5.16)

F1 and F2 are described above. As seen the force in F1 acts directly on its cor-
responding state. The forces in F2 are transformed to virtual forces applied at
the master states. This force transformation is crucial to keep the estimation of
the center actuator states accurate.

The local model in 5.15 is in a form not suitable for implementation in an ob-
server. The equation can be written as:

Mrẍm + Crẋm + Krxm = Fr (5.17)

A state space representation of the model is:(
ẋm

ẍm

)
=

(
0 I

−M−1
r Kr −M−1

r Cr

)(
xm

ẋm

)
+

(
0

M−1
r

)
Fr (5.18)
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or shorter, (
ẋm

ẍm

)
= A

(
xm

ẋm

)
+ BFr (5.19)

The model needs to be discretized before realization in hardware. The discrete
state space model is: (

x(k + 1)
ẋ(k + 1)

)
= Φ

(
x(k)
ẋ(k)

)
+ ΓFr (5.20)

where

Φ = eAh (5.21)

Γ = B
∫ h

0
eAs ds (5.22)

As discussed, state measurements instead of state estimates are used in these
local observers. The discrete model in equation 5.20 is placed in a observer
and the observer equation becomes:

x̂s(k + 1)
x̂a(k + 1)
˙̂xs(k + 1)
˙̂xa(k + 1)

 = Φ


y(k)
x̂a(k)
ẏ(k)
˙̂xa(k)

+ ΓFr (5.23)

x̂s and ˙̂xs denote sensor estimates. These estimates are not used. x̂a and ˙̂xa

denote the center actuator estimates. These estimates are required for the state
feedback and placed in the output from the observer. y(k) in the equation say
that sensor measurements instead of sensor estimates are used in the observer.
This observer is not a Kalman filter and will be denoted as local observer in the
continuation. Actually the actuator estimates consist of weighted sensor mea-
surements from the local model from the startup of the observer until present
time.

The idea of sharing measurements instead of estimates has eliminated the drift
problem in the state estimates. The full distributed observer is obtained by im-
plementing the local observers with their uniquely derived local models at
every actuator location on the mirror.

5.2.3.3 Realization

The full observer consists of 420 unique discrete local observers described in
equation 5.23. Every local observer is implemented in its own calculation unit,
that is situated above their respective center actuator. This leads to 420 dif-
ferent calculation units distributed over the mirror surface. Altogether the
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Figure 5.5: The figure shows a local model as in figure 5.4. The forces applied
at the grey crosses are transformed to virtual forces at sensor locations. Every
actuator has a calculation unit with a observer associated to itself. The closest
neighbors of all sensors are a calculation unit within the figure. This implies
that the communication of estimated states and applied forces need only to
take place between the grey crosses and the center blue cross.

local observers estimate the actuator states required for the feedback. As men-
tioned, the local observers need state information from its surrounding sensors
and force information from its surrounding actuators. The sensor signals will
be differentiated to obtain the derivative information. Thus the sensor signals
need to be low-pass filtered to increase the Signal to Noise-ratio in the differen-
tiations. To minimize the number of low-pass filters needed, every calculation
unit is assigned to collect data from one, two or three directly surrounding
sensors and to low-pass filter their signals. The one, two or three sensors are
chosen on beforehand for all sensors to be low-pass filtered by neighboring
calculation units. These low-pass filtered signals are then sent to neighboring
calculation units that need the information to update its estimates.

The area over which state and force information needs to be shared, is de-
termined by the local models. Forces applied at actuators locations in the local
model in figure 5.3, are transformed to virtual sensor forces. Those forces are
therefore needed to update the estimates the local observers. The area of the
required applied forces can be described as two actuator rings around the cen-
ter actuator. Information about those forces are needed to be sent to the local
observer at the center actuator. All sensor measurements needed, originate
from sensors within this area. Thus one of the calculation units within the two
actuator ring area, will low-pass filter the sensor signals in the model. This
sensor state information will also be sent to the local observer at the center
actuator. The communication area is hence not increased by the sensor state
communications. This is exemplified in figure 5.5.
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Figure 5.6: The figure shows the Simulink model of the system with the ob-
server. The subsystems ”Mirror model” and ”Controller” are shown in figure
3.5 and 4.1 respectively. The local observers are discretized and assembled to
one system representation in ”Observer”.

5.3 Simulation

Simulation of the full control system is, as before, performed in Simulink. The
simulation routing is shown in figure 5.6. The control system consists of the
observer and the 420 state feedback PD controllers. The observer actually con-
sists of 420 small observers that each estimate the states of their respective cen-
ter actuator. The A-matrix in the figure is an assembly of all the local discrete
observers. A discrete local observer is described in equation 5.23. The lines
associated with the center actuator state estimates for each local model are ex-
tracted from the Φ matrix in the local observer and placed in the A-matrix. The
same holds for the B matrix with the difference that the interesting lines are
taken from the Γ matrix instead. The C matrix passes the, for the state feed-
back, interesting state estimates through. This way the distributed observer,
consisting of many small local observers, can be simulated in one system rep-
resentation.



Chapter 6

Control System Evaluation

6.1 Proposed control system

To control this mirror, with its sensor and actuator configuration, a state feed-
back controller and an observer is needed. The proposed state feedback con-
troller is a SISO controller of PD type. All 420 actuators are controlled using
the same controller in order to minimize cross coupling effects. The SISO con-
troller is described in section 4.2.1. These controllers need position and veloc-
ity information for the mirror at actuator locations. Since no sensors are avail-
able there, these states have to be estimated by and observer. The proposed ob-
server consists of as many local observers as there are actuators, namely 420.
These observers are based on local models that include the desired actuator
states and surrounding sensor states. The sensor position states are measured,
and their velocity states are obtained through differentiation of the position
signals. The proposed observer is more accurately described in section 5.2.3
from the subsection Sharing measurements and onward.

In the subsequent sections of this chapter robustness and performance of the
control system will be evaluated. For these tests to have relevance, the con-
trollers must be tuned. As mentioned the PD controllers all over the mirror
are chosen equal. The control parameters are chosen to obtain required per-
formance but still to have satisfactory robustness to disturbances. Tests have
shown that a proportional gain, N , of 0.15 N/µm and a derivative gain, L, of
75 Ns/m is a good tradeoff. The derivative part creates well damped step re-
sponses to prevent oscillations and large overshoots. The feed forward term
Nr is calculated to eliminate static errors.

43
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Figure 6.1: The figure shows modal damping properties of different mirror
models.

6.2 Sampling frequency

Throughout this thesis rapidly sampled or continuous sensor measurements
have been assumed. This is not feasible when realizing the control system
in hardware. A rule of thumb is to use at least ten to twenty times as high
sampling frequency as the desired closed loop bandwidth. The closed loop
bandwidth is around 1 kHz leading to a sampling frequency of at least 10
to 20 kHz according to the rule of thumb. Because of the many resonance
frequencies inside the closed loop bandwidth, a sampling frequency of 20 kHz
was decided upon.

6.3 Robustness to modeling errors

It is not probable that the damping properties of the observer and the actual
mirror will fit. Hence robustness to errors in the observer damping must be
evaluated.

The derived controller uses a derivative part for damping purposes. The damp-
ing force is proportional to the velocity of the actuator at a given time. If the
damping properties of the observer model are false, a damping force of oppo-
site sign might occur. This might lead to instability. Hence the robustness to
damping matrix errors in the controller, depends on the derivative gain. Less
derivative gain leads to a worse performing controller. As always this is a bal-
ance between performance and robustness.
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Mirror damping: f× (1/4π)×10−6 Mirror damping: Zero
D-gain, L Stability RMS value D-gain, L Stability RMS value
0 yes 2.5µm 0 yes 2.5µm
30 yes 890nm 30 yes 890nm
75 yes 220nm 75 yes 220nm
125 no 125 no
200 no 200 no

Mirror damping: f× (1/4π)×10−5 Mirror damping: Constant, 0.02
D-gain, L Stability RMS value D-gain, L Stability RMS value
0 yes 2.5µm 0 yes 2.5µm
30 yes 890nm 30 yes 880nm
75 yes 220nm 75 yes 220nm
125 yes 420nm 125 no
200 yes 890nm 200 no

Mirror damping: f× (1/4π)×10−4

D-gain, L Stability RMS value
0 yes 2.4µm
30 yes 860nm
75 yes 220nm
125 yes 420nm
200 yes 890nm

Table 6.1: The table presents robustness to modeling errors. The dependence
on derivative gain (D-gain) is also shown. A, in this case relative, performance
indicator, RMS, is also presented. The f denotes modal frequency in Hz.

In these robustness tests the mirror model will be assigned different modal
damping whereas the observer model will have the same damping proper-
ties throughout the test. Structural damping is usually described as a modal
damping that is constant, or a modal damping that is dependent of the eigen-
frequency. The different damping properties used in the tests are plotted in
figure 6.1. The observer damping properties has been chosen to be the eigen-
frequency variable, that is the eigenfrequency multiplied with a factor, here
(1/4π)×10−4. This damping is higher than the probable mirror damping, lead-
ing to a more damped observer than the actual mirror. This choice will be justi-
fied later. The test is performed to evaluate not only the robustness to different
mirror damping properties, but also to see how the derivative gain in the con-
trollers affect stability. Stability is checked for all test cases and the RMS value
for deformation deviation is calculated. Thus both robustness and a perfor-
mance can be evaluated. The tests are made within a short time frame in where
large steps on all actuators are applied. The RMS values presented are because
of the transients much larger than corresponding RMS values when running
the controller for a longer period of time. The RMS values can however be
compared to each other to evaluate performance differences. Test results are
printed in table 6.1.
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Figure 6.2: The blue line shows frequency response for the PD-controller
without low-pass filtering of sensor signals. The green line shows frequency
response for the PD-controller when sensor signals are low-pass filtered.

The table reveals that the higher the derivative gain is, the less robust the con-
trol system is to errors in the damping matrix. A high derivative gain is needed
to obtain required performance. L = 75, however, manages to keep the system
stable in all cases, but it is very oscillating and close to instability. Too high
derivative gain leads to an over damped system which is revealed in the RMS-
value of L = 125 and 200. When examining the instability frequency closer, it
is revealed that the high order modes cause the instability. The reason is that
the derivative part of the controller amplifies high frequency modes much. As
mentioned earlier, high frequent modes can be seen as noise to the system. A
low-pass filter can be introduced to suppress the high frequency modes that
cause instability. The low pass filter should suppress the high order modes,
but still not introduce too much phase lag to the other modes. The effect of
the low-pass filtering can be viewed in a bode plot that compares the origi-
nal SISO controller with the one where the sensor signals are being low-pass
filtered before. This is done in figure 6.2, where the low-pass filter is chosen
to be 1/(s/10000 + 1). A consequence of the low-pass filter and the resulting
phase lag is that the controller performs worse. The choice of using observer
damping that is higher then the probable mirror damping, is justified by the
introduction of the low-pass filter. Information about high frequency oscilla-
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Mirror damping: f× (1/4π)×10−6 Mirror damping: Zero
D-gain, L Stability RMS value D-gain, L Stability RMS value
0 no 0 no
30 yes 1.3µm 30 yes 1.3µm
75 yes 290nm 75 yes 290nm
125 yes 350nm 125 yes 340nm
200 yes 820nm 200 yes 820nm

Mirror damping: f× (1/4π)×10−5 Mirror damping: Constant, 0.02
D-gain, L Stability RMS value D-gain, L Stability RMS value
0 no 0 no
30 yes 1.3µm 30 yes 1.3µm
75 yes 280nm 75 yes 280nm
125 yes 340nm 125 yes 350nm
200 yes 820nm 200 yes 820nm

Mirror damping: f× (1/4π)×10−4

D-gain, L Stability RMS value
0 no
30 yes 1.3µm
75 yes 270nm
125 yes 340nm
200 yes 820nm

Table 6.2: The table presents robustness to modeling errors when sensor sig-
nals are low-pass filtered before entering the observer. The dependence on
derivative gain is also shown. A, in this case relative, performance indicator,
RMS, is also presented. The f denotes modal frequency in Hz.

tions is canceled by the low-pass filter. Thus it is inappropriate to introduce
high frequency oscillations by using a poorly damped observer since these os-
cillations will not correspond to actual oscillations in the mirror. The previous
robustness tests are again undertaken with the difference that sensor signals
are being low-pass filtered before entering the observer. The results are pre-
sented in table 6.2.

The table reveals that other choices of damping matrices and derivative gains
do cause instability. The low-pass filter has eliminated the cause of high fre-
quency instability, but has instead introduced low frequency instability when
no derivative gain is used. This instability occurs due to the phase lag intro-
duced by the low-pass filter. If the controller uses derivative gain, the phase is
increased in the crucial frequency range, hence leading to stability. The deriva-
tive gain can however not be increased too much. This would again lead to a
too large high frequency amplification and the problem with high frequency
instability would be reintroduced. The robustness to damping matrix errors
has been made fairly large after the introduction of a low-pass filter.
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Figure 6.3: The figure shows the control signal for one actuator under differ-
ent measurement noise circumstances.

6.4 Robustness to sensor noise

So far sensor measurements without noise have been used in simulations. The
sensors are specified to have noise less than 50 nm. White independent noise
with zero mean is inserted in the simulation environment to simulate the ex-
pected noise in the actual sensors. When simulating with sensor noise and
the suggested control parameters, without a low-pass filter, the noise does not
affect the output significantly. Hence the controller is adequately robust to sen-
sor noise of this specified magnitude.

The sensor velocity is, as mentioned, estimated through differentiation of the
sensor signal. When the sensor signals are affected by noise, the sensor ve-
locity estimates will be very choppy. This will lead to choppy control signals
as well. In the previous section a low-pass filter was introduced to ensure
high frequency stability. This low-pass filter is also needed for measurement
noise to be suppressed to keep the Signal to Noise Ratio (SNR) acceptable after
differentiation. Figure 6.3 shows control signals to one of the actuators when
using realistic references with an initial step to all actuators. The figure shows
the difference between the control signals when the sensor signals are low-pass
filtered and when they are not. It does also, as comparison, show the control
signal when the sensor signals are not low-pass filtered and there is no noise
present. The control signal when using a low-pass filter has larger overshoot
due to the phase lag. Since the sensors that will be used to measure mirror de-
flections are specified to have very little noise, this will not constitute a major
problem.
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6.5 Robustness to time delays

Robustness to time delays in the communication of measurements and applied
forces is crucial to the control system. The proposed observer need informa-
tion from sensor states and actuator forces that are located within two actuator
rings from the actuator whose states are being estimated, see figure 5.5. The
communication of measured states and applied forces cannot be performed
without time delays. The robustness with respect to these delays has to be
examined. The robustness tests will be undertaken using the different mirror
model damping properties used in table 6.1. The observer damping is also the
same as in table 6.1, namely (1/4π)×10−4 times the eigenfrequency. Table 6.3
shows the maximum delay in complete samples before instability occurs for
different damping properties.

Observer damping: Eigen frequency × (1/4π)×10−4

Modal mirror damping Nbr of samples delay
Constant, 0.02 1
Eigen frequency × (1/4π)×10−6 1
Eigen frequency × (1/4π)×10−5 2
Eigen frequency × (1/4π)×10−4 5

Table 6.3: The table presents robustness to time delays for different mirror
dampings.

As seen, the robustness is largely dependent on the actual mirror damping.
The less the mirror damping is, the less robust to time delays the system be-
comes. The delay causes high frequent instability for all cases except when the
mirror damping is as high as the observer damping. Then a low frequency
instability occurs because the high frequent modes are naturally damped out
due to the higher damping. If low mirror damping diminishes the robustness
to time delays, it might be advantageous to use a lower observer damping
as well, to estimate the derivative more accurately. Simulations have, how-
ever, shown that lower observer damping leads to worse robustness. The rea-
son is that sensor signals are low-pass filtered, hence information about high
frequency modes do not reach the observer. Then, if the observer damping
property is low, high frequency modes in the observer output are created by
the observer itself and do not originate from the actual mirror. Then the con-
troller acts upon invented high frequency derivatives which easily can excite
high frequency modes. When instead using a higher observer damping, the
high frequency modes that do not reach the observer, are not present in the
observer output either. These high frequency modes are therefore left uncon-
trolled and will be damped by the natural mirror damping. This implies that



50 Chapter 6 Control System Evaluation

Figure 6.4: This is a typical shape of the mirror that compensates for atmo-
spheric distortion.

the choice of a relatively high observer damping will lead to a more robust
controller.

6.6 Performance evaluation

In section 2.1 performance specifications of the control system are stated. They
concern the RMS value of deflection deviations, and closed loop bandwidth.
The RMS value for reference to output deviation is specified to be below 80 nm
for every actuator. To obtain realistic results of how the control law would per-
form when applied in a telescope, realistic reference signals are needed. They
are generated through simulation of atmospheric disturbances. These atmo-
spheric phase distortions are then transformed to path differences at actuator
locations. It is these path differences that must be compensated for. They are
therefore mapped to act as reference signals for the actuators. An example of
references for the mirror at a certain time is shown in figure 6.4. To further
make the simulation as realistic as possible, a delay of one sampling period is
introduced. Also noise is inserted to the simulation. A constant modal damp-
ing of 0.02 is chosen for the mirror, The observer damping is chosen higher,
namely (1/4π)×10−4 times the eigenfrequency. Simulations over 0.8 seconds
has been undertaken to evaluate the performance.

The reference tracking result of the simulation is for one of the actuators is
found in figure 6.5. The accuracy in the reference tracking can be described by
the RMS value for deflection deviations from the reference. The largest RMS
value was 85.5nm and obtained at the outer edge of the mirror. The smallest
RMS value was 13.4nm and obtained close to the fixed center. These RMS-
values satisfy the specified requirements closely enough. Hence the perfor-
mance of the controller is satisfying.
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Figure 6.5: The figure shows reference tracking for one of the actuators. The
red line is the reference signal and the blue line is the output. The RMS value
for the reference tracking in this figure is 18.1nm.

To determine the bandwidth of the different control loops over the mirror a
sine wave reference can be applied. The closed loop bandwidth is defined as
the frequency where the actuator deflection follows the sine wave reference
with an amplitude of -3 db (= 0.708) of the reference amplitude. The band-
width for the different controllers is around 1 kHz, which well satisfy the re-
quirements. The phase lag is around 50 degrees at the bandwidth frequency.
Bode diagrams of the closed loops for the different actuators are plotted in
figure 6.6.

6.7 Hardware requirements

Actuators and sensors have so far been treated as ideal. That is with a con-
stant transfer function. Because of the sampling frequency of 20 kHz, they
should operate close to an ideal actuator or sensor within this bandwidth.
Further requirements on the hardware are due to communication speed and
computational effort. The delay in communication of states and applied forces
should be one sample length or less to not introduce too much phase lag. The
proposed control strategy does also set a requirement regarding the speed at
which states and applied forces need to be communicated.
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Figure 6.6: Closed loop Bode plots for all actuator to actuator transfer func-
tions when fed with actual state information and controlled by the chosen
PD-controllers. The modal mirror damping is here 0.02.

Assume that there are no delays in sensor measurements. Further assume
that the communication is performed in single precision and that there is one
calculation unit for every actuator position. Then, for every state and applied
force that is to be sent to another calculation unit, 32 bit times 20 kHz equals
0.61 Mbit/s is required by the communication channel. One calculation unit is
set to send the low-pass filtered position state of one, two or three surround-
ing sensors and the applied force upon the actuator to neighboring calculation
units. This says that a maximum of four signals are being sent between two
calculation units in one direction. This sets the minimum requirement of the
speed to 0.61*4 = 2.5 Mbit/s. This communication has to be performed with
full duplex since the estimates are shared in both directions. Then 5.0 Mbit/s
will be sent through the communication channels. Altogether there are 420
calculation units each connected to between 9 and 18 neighboring calculation
units. Altogether this requires 3417 communication channels with full duplex
that interconnects the different calculation units. This results in an overall
dataflow of 5.0 Mbit/s times 3417 communication channels = 16.6 Gbit/s. This
communication burden will produce a lot of heat, setting requirements on the
cooling capacity of the mirror setup.
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6.8 Alternative hardware configuration

A way to extensively reduce control complexity is to let sensors and actuators
be collocated. Then no observer is required and the communication of states
and forces at a total of 16Mbit/s is no longer needed. This also eliminates the
problem of delays due to the communication. Further the 3417 communication
channels no longer needs to be mounted. The robustness to mirror modeling
errors, especially robustness to errors in the chosen damping matrix, is greatly
improved. To control the system where sensors and actuators are collocated,
only PD controllers at every actuator location is needed.

A design with collocated sensors and actuators is more expensive due to re-
quirements of higher manufacturing and mounting precision, than when sen-
sors and actuators are not collocated. On the other hand, collocated sensors
and actuators lead to an increased simplicity and decreased sensitivity to er-
rors in the control system. These factors need to be compared and evaluated
before a hardware setup is decided upon.

6.9 Simulation

The performance evaluation was performed in Simulink. Figure 6.7 shows the
Simulink model of the realistic performance test. The Delay in the figure repre-
sents communication delays for forces and state estimates. The Differentiator
differentiates the signals and passes both the incoming position signals and
the differentiated signals on. The differentiation is performed in the following
way:

ẋ(k) =
x(k)− x(k − 1)

h
(6.1)

where h is the sampling frequency. The low-pass filter is chosen to be 1/(s/10000+
1), that is y = 1/(s/10000 + 1)u. A state space representation of the low-pass
filter is:

ẋ = −10000x + 10000u (6.2)
y = x (6.3)

This state space model is discretized:

x(k + 1) = 0.61x(k) + 0.39u(k) (6.4)
y(k) = x(k) (6.5)

This discrete state space model of the low-pass filter is placed in the Ad and
Bd matrices respectively. One model for each sensor signal. The other blocks
are described in the simulation section of their respective chapter.
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Figure 6.7: The figure shows the Simulink model used when simulating the
realistic test. The subsystems ”Observer”, ”Mirror model” and Controller are
shown in figures 5.6, 3.5 and 4.1 respectively.



Chapter 7

Conclusions

Controlling a large deformable mirror under hard performance specifications
was certainly a challenge. The main difficulty originated in the fact that the
sensors were not collocated with the actuators in the specified design. Since
actuator state feedback control was desired, estimates of actuator states were
required. To limit communication burdens, the observer that performs the es-
timations needed to be distributed. To find a distributed observer capable to
perform these estimations accurately, was the main difficulty as well as the key
to success in this project.

The derived distributed observer consists of many local observers, one for each
actuator, that altogether estimate the required actuator states. The state estima-
tions are, as mentioned, performed to supply state feedback controllers with
state information. These state feedback controllers, that control the actuator
forces, are of PD type. This control system satisfies the performance specifica-
tions and is adequately robust to modeling errors and time delays.

There are still uninvestigated matters needed to be addressed before the con-
trol system is ready to be implemented in hardware. These matters include
the affect of having non-ideal actuators and sensors. Further, the sensor sig-
nals in this Master Thesis have been assumed to be exactly known. The pro-
posed sensors, located at the back of the mirror, can however only measure
variations in mirror behavior above approximately 20 Hz. Their signals do
therefore not contain any information about their offsets from the nominal po-
sition. This low frequency and static information will be provided from the
WFSs described in 1.4. These two sensor signals must be added somehow to
obtain correct sensor measurements. These matters as well as hardware re-
lated matters need to be addressed before implementation. Anyway, adaptive
optics on large deformable mirrors seems to be a solvable task and hopefully
this contribution can be useful in the continuation.
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